当前位置: 仪器信息网 > 行业主题 > >

厚度与阻氧性

仪器信息网厚度与阻氧性专题为您整合厚度与阻氧性相关的最新文章,在厚度与阻氧性专题,您不仅可以免费浏览厚度与阻氧性的资讯, 同时您还可以浏览厚度与阻氧性的相关资料、解决方案,参与社区厚度与阻氧性话题讨论。

厚度与阻氧性相关的论坛

  • 【分享】磁性涂镀层厚度测量仪应用原理简介

    一、磁吸力原理测厚仪利用永久磁铁测头与导磁的钢材之间的吸力大小与处于这两者之间的距离成一定比例关系可测量覆层的厚度,这个距离就是覆层的厚度,所以只要覆层与基材的导磁率之差足够大,就可以进行测量。鉴于大多数工业品采用结构钢和热轧冷轧钢板冲压成形,所以磁性测厚仪应用最广。测量仪基本结构是磁钢,拉簧,标尺及自停机构。当磁钢与被测物吸合后,有一个弹簧在其后逐渐拉长,拉力逐渐增大,当拉力钢大于吸力磁钢脱离的一瞬间记录下拉力的大小即可获得覆层厚度。一般来讲,依不同的型号又不同的量程与适应场合。 在一个约350º角度内可用刻度表示0~100µm;0~1000µm;0~5mm等的覆层厚度,精度可达5%以上,能满足工业应用的一般要求。这种仪器的特点是操作简单、强固耐用、不用电源和测量前的校准,价格也较低,很适合车间作现场质量控制。 二、磁感应原理测厚仪磁感应原理是利用测头经过非铁磁覆层而流入铁基材的磁通大小来测定覆层厚度的,覆层愈厚,磁通愈小。由于是电子仪器,校准容易,可以实多种功能,扩大量程,提高精度,由于测试条件可降低许多,故比磁吸力式应用领域更广。当软铁芯上绕着线圈的测头放在被测物上后,仪器自动输出测试电流,磁通的大小影响到感应电动势的大小,仪器将该信号放大后来指示覆层厚度。早期的产品用表头指示,精度和重复性都不好,后来发展了数字显示式,电路设计也日趋完善。近年来引入微处理机技术及电子开关,稳频等最新技术,多种获专利的产品相继问世,精度有了很大的提高,达到1%,分辨率达到0.1µm,磁感应测厚仪的测头多采用软钢做导磁铁芯,线圈电流的频率不高,以降低涡流效应的影响,测头具有温度补偿功能。由于仪器已智能化,可以辨识不同的测头,配合不同的软件及自动改变测头电流和频率。 一台仪器能配合多种测头,也可以用同一台仪器。可以说,适用于工业生产及科学研究的仪器已达到了了非常实用化的阶段。利用电磁原理研制的测厚仪,原则上适用所有非导磁覆层测量,一般要求基本的磁导率达500以上。覆层材料如也是磁性的,则要求与基材的磁导率有足够大的差距(如钢上镀镍层)。磁性原理测厚仪可以应用在精确测量钢铁表面的油漆涂层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,化工石油行业的各种防腐涂层。对于感光胶片、电容器纸、塑料、聚酯等薄膜生产工业,利用测量平台或辊(钢铁制造)也可用来实现大面积上任一点的测量。

  • 用eds能谱测量氧化膜厚度

    铝表面自然生长的氧化膜通常小于10nm,如果经过退火处理,氧化膜会随温度升高而增厚,曾经有人用SEM-EDS 测量铝样品表面区的氧的相对含量(面积比),并利用ESCA 化学分析电子光谱测量氧化膜的厚度,最后得出氧化膜厚度和氧相对含量的关系式,这样就可以通过电镜能谱得到氧化膜的厚度。但以上方法对于电镜的试验条件变化比较敏感。又听说利用辉光光谱GDS或GDOES可以测量类似的氧化膜厚度,即通过测量氧的浓度分布来反映膜的厚度,我相信这是可行的,各位谁知道上海哪里有这样的仪器?又听说可以用XPS来测量膜厚,谁知道这方面的信息?

  • 铝氧化膜厚度的测量

    请问谁知道正常氧化条件下铝的氧化膜厚度的测量方法,估计在10nm以下。听说用辉光光谱可以测,上海哪里有这个仪器呢?另外ESCA 化学分析电子光谱也能测,谁知道具体信息。还有人说XPS也能测,谁知道?

  • 关于巴赫相变仪板形试样厚度请教

    想用巴赫相变仪测加热和冷却过程中的膨胀曲线,用的是10mm(长)*4mm(宽)的矩形试样。想请教一下,厚度有要求吗?1mm左右厚度的试样可以吗?多谢!!!

  • 【求助】测量样品厚度

    请问在电镜中,或是用其他什么办法可以测量金属透射样品观察区域的厚度吗?如果不是区域的,有什么好的办法测量平均厚度(可观察区域的)的吗?万分感谢

  • 镀层厚度测试

    大家能否分享一下镀层厚度测试的经验?诸位对用岛津的EDX720测镀层厚度的准确性方面都有什么感受?请不吝赐教!

  • 液体膜厚度对柱效的影响?

    液膜厚度增加,传质阻力增加,理论塔板高度增加,柱效降低?还是膜厚增加,相当理论塔板数增加,柱效升高?那个对啊?

  • 为什么说较厚的液膜厚度有利于改善峰形?

    最近在进行乙醇中甲醇的分析,使用薄液膜甲醇的峰型明显不如厚液膜的峰型好;也看到很多地方都说[color=#FF0000]增加膜厚度通常可以改善[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]毛细管色谱柱的峰型,同时有利于挥发性组分的分析[/color],请问原因是什么?理论解释是什么?

  • 【讨论】中空玻璃厚度安装检测

    新业主在装修家居门窗时都会选择安装中空玻璃,因为中空玻璃是一种良好的隔热、隔音、美观适用、并可降低建筑物自重的新型建筑材料,它是用两片(或三片)玻璃,使用高强度高气密性复合粘结剂,将玻璃片与内含干燥剂的铝合金框粘结,制成的高效能隔音隔热玻璃。 与普通的门窗玻璃相比起来的优势明显,尤其是隔热效果,在不影响透光性的同时保证了良好的隔热隔噪音的效果,在安全防盗上也起到了保护作用。提到隔热,很多人都知道可以通过给玻璃贴太阳膜、隔热膜来达到同样的效果;确实如此,如今的玻璃应用广泛,都会选择贴太阳膜、隔热膜。 玻璃选择贴膜的透光性可以使用太阳膜检测仪、光学玻璃透过率仪来检测其可见光透过率,即太阳膜透光率,同时还能检测其红外及紫外的阻隔率。红外阻隔率是隔热效果的判定标准,紫外阻隔率是防紫外线辐射伤害的判定标准。 如果在给玻璃贴太阳膜达不到满意的效果情况下是可以选择安装中空玻璃门窗。这样能起到双重的隔热效果,夏季阻隔外界热量进入室内,冬季保温防止室内气温流失。中空玻璃的玻璃与玻璃之间,留有一定的空腔。因此,具有良好的保温、隔热、隔声等性能。如在玻璃之间充以各种漫射光材料或电介质等,则可获得更好的声控、光控、隔热等效果。 在安装隐框幕墙选用中空玻璃时,必须做到中空玻璃第二道密封胶一定要采用硅酮密封胶,并与结构性玻璃装配用密封胶相容,两者必须采用相互相容的密封胶。即中空玻璃的安装厚度有要求,在安装之后的质量检测中可以使用中空玻璃厚度测量仪,也叫中空玻璃测厚仪。

  • 测量镀层厚度--设备

    求助:在金属表面测镀层厚度,镀的是同一种物质比如镍;镀两层,这两层镍的物理属性不同,晶粒大小不一样,请问有什么仪器可以测试出不同镀层的厚度。谢谢!

  • 广东发布《超声波测厚仪》《磁性和电涡流覆层厚度测量仪》两项地方标准

    《计量资讯速递》消息 日前,由广东省计量科学研究院牵头起草的《超声波测厚仪》和《磁性和电涡流覆层厚度测量仪》两项广东省地方标准获批准发布,从2014年3月6日开始实施。《超声波测厚仪》和《磁性和电涡流覆层厚度测量仪》两项广东省地方标准的制订规范了磁性、电涡流式覆层厚度测量仪生产、检验过程,统一了我省超声波测厚仪及磁性和电涡流覆层厚度测量仪的型式评价和质量监督管理。  据了解,超声波测厚仪、磁性和电涡流覆层厚度测量仪是依法管理计量器具目录(型式批准部分)上的产品,此前尚没有关于磁性、电涡流式覆层厚度测量仪产品的检验规则以及产品的标志、包装、运输、贮存的国家及地方标准。来源:广东省计量协会

  • 【求助】EDX的扫描厚度

    EDX的扫描对样品厚度有要求,大家有知道要求厚度是多少吗?各种型号或厂家的产品要求厚度都不一样吗?

  • 【原创大赛】SGS材料说: 显微镜法测量金属和氧化物覆盖层厚度

    【原创大赛】SGS材料说: 显微镜法测量金属和氧化物覆盖层厚度

    [align=center][b]显微镜法测量金属和氧化物覆盖层厚度[/b][/align][b][/b][align=center]SGS 王晓卫[/align][align=left][b]1 前言:[/b][/align][align=left]在产品表面处理中,通过采用物理或者化学等方法(多数为化学方法),在金属或非金属材料的表面形成一层或多层具有一定厚度的金属和氧化物覆盖层,从而起到对产品外表美观、装饰,导电,防腐蚀等作用。[/align][align=left]覆盖层又分为金属覆盖层和氧化物覆盖层。金属覆盖层中常见的多为电镀层,如铜合金表面镀镍镀锡;氧化物覆盖层多为化学转化膜,如铝合金表面生成的氧化膜。[/align][align=left]覆盖层厚度和均匀性是表征覆盖层性能的重要参数,在科学研究、工艺控制、产品质量检测中常常对覆盖层厚度进行测量,测量方法主要有涡流法、磁性法、库仑法、显微镜法、扫描电子显微镜法、轮廓仪法,X射线法。显微镜法测量覆盖层厚度简单且直观,是较早使用的光学测量法。显微镜法测量厚度是一种破坏性测量方法,由于测量精确度高,也被作为厚度测量的仲裁方法。[/align][align=left][b]2 测量原理:[/b][/align][align=left]从待测件上切割一块试样,镶嵌后,采用适当的技术对横断面进行研磨、抛光和侵蚀。用校正过的标尺测量覆盖层横断面的厚度。[/align][align=left][b]3 测量流程:[/b][/align][align=left]取样→清洗→吹干→试样镶嵌→研磨→抛光→清洗→吹干→侵蚀→清洗→吹干→上校准过得金相显微镜观察拍照→使用测量软件,测量厚度。[/align][align=left][b]4 测试举例[/b][/align][align=left]4.1 铜合金表面电镀镍+电镀锡厚度测量[/align][align=center][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271415160847_2204_2883703_3.jpg!w690x517.jpg[/img][/align][align=left]使用双氧水氨水水溶液腐蚀,各层显示出清晰的分界面。铜合金表面电镀镍层厚度在3.3-4.6um之间,平均值为3.9um;最外层相对疏松电镀锡,厚度相对不均匀,在3.8-7.5um之间,平均值为4.9um。[/align][align=left][b]4.2 铝合金表面氧化膜厚度测量[/b][/align][align=center][b][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807271416246565_4483_2883703_3.jpg!w690x517.jpg[/img][/b][/align][align=left]使用keller试剂腐蚀,清晰显示处氧化层与基体分界线。铝合金表面生成氧化膜厚度在15.3-15.8um,平均值为15.6um。[/align][align=left][b]5 测量心得[/b][/align][align=left]1.显微镜法测厚度的关键是制备符合要求的横断面。如果制备的横断面不符合要求,无论多么精密的设备都不能测量出厚度的真实值。样品横断面制备过程需考虑横断面斜度,覆盖层变形,表面粗糙度等。[/align][align=left]2.选择合适的试剂进行适当的侵蚀,在两种物质的界面上产生细而清晰地黑线,准确测量覆盖层厚度,如果不侵蚀或者侵蚀过度,界面线会不清晰或者线条变宽,产生测量误差。[/align]

  • 【讨论】塑料薄膜上的镀金层厚度

    塑料如PPS或PET(厚2微米)上的镀金层、镀镍层如何测量?本网上查到的测厚仪是用于:非磁性金属基体上非导电覆盖层采用涡流测厚法,而磁性金属基体上非导电覆盖层采用电磁感应测厚法,无法满足塑料膜上的磁性材料镀层厚度(镍)或非磁性材料镀层(金)厚度测量!先谢谢了!

  • 多层涂镀层厚度测量用什么仪器

    基体是陶瓷,陶瓷上有层钼和锰的氧化物层,厚度10UM--50多UM,外层是镍层,厚度是1-10UM,请问用什么仪器可以测两层或多层厚度,暂时我了解了X荧光测厚仪,换有别的仪器可以测量吗

  • 质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    质子交换膜燃料电池气体扩散层厚度方向导热系数测试方法研究

    [color=#cc0000]摘要:针对质子交换膜燃料电池中气体扩散层材料厚度方向导热系数测试,介绍了气体扩散层在压缩等条件下进行测试的几种有效测试方法,并分析了稳态法和瞬态法的特点、局限性和应用中存在的问题。并针对瞬态法开展了深入研究,提出了一种更实用的新型测试模型结构。[/color][color=#cc0000]关键词:燃料电池,气体扩散层,导热系数,温度波法,激光闪光法[/color][align=center][color=#cc0000][img=气体扩散层导热系数测试,690,454]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152122447766_8811_3384_3.jpg!w690x454.jpg[/img][/color][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1. 概述[/color][/b]  质子交换膜燃料电池中的气体扩散层(GDL)材料呈现明显的各向异性特点,而且厚度很薄,也就是气体扩散层材料是微米量级的物理尺度。在如此小的物理尺度下对薄膜材料性能进行准确测量评价,势必面临着严峻的技术挑战,这种技术挑战完全是薄膜材料面内方向热物理性能测试无法比拟的,毕竟物理尺度不在一个量级上。因此,上海依阳实业有限公司针对薄膜材料,特别是质子交换膜燃料电池中的气体扩散层薄膜材料,对厚度方向导热系数测试技术进行研究,以在实际工程应用中建立起测量准确性高、且操作简便的测试方法和测试仪器。[b][color=#cc0000]2. 气体扩散层厚度方向导热系数测试要求[/color][/b]  根据目前质子交换膜燃料电池中的气体扩散层(GDL)材料的现状,GDL薄膜材料在厚度方向上的导热系数测试,要考虑以下几方面的特性:  (1)各向异性条件:如文献报道,各种GDL材料的面内方向和厚度方向导热系数分别为3.5~15W/mK和0.2~2W/mK。这基本就确定了GDL薄膜厚度方向导热系数变化范围大致为0.05~5W/mK,这个范围基本就是非金属薄膜材料的导热系数范围。  (2)厚度范围:各种GDL材料的厚度基本都在100~500范围内。  (3)压缩力条件:在燃料电池装配过程中会对GDL产生一定的压缩力来改变电池性能,加载到GDL上的压力范围一般为1MPa以下,最大不超过6MPa。  [b][color=#cc0000]3. 测试方法及其特点分析[/color][/b]  薄膜材料的导热系数测试方法众多,但由于GDL被测样品要在上述加载压力下进行测试,有些方法并不适合。合适的测试方法基本上分为稳态法和瞬态法两类。[color=#cc0000]3.1. 稳态法3.1.1. 稳态热流计法[/color]  对于薄膜和薄层材料厚度方向导热系数的测试,最常用的方法是A-S-T-M D5470。由于这种方法基于稳态热流测量,所以通常称之为保护热流计法或恒定热流法。另外,由于这种方法可以对被测样品加载可控的压缩力和对接触热阻进行测量,使得这种方法在大多数GDL厚度方向导热系数测量中得到应用。[align=center][img=,690,547]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152116413556_4706_3384_3.jpg!w690x547.jpg[/img][/align][align=center][color=#cc0000]图3-1 气体扩散层(GDL)厚度方向导热系数测量装置示意图[/color][/align]  如图3-1所示,在稳态热流计法中,GDL样品夹在上下两个热流计棒之间。上热流计顶部与热板接触,下热流计棒底部与冷板接触,因此通过柱形棒轴线方向从顶部到底部存在连续的热流,实验装置也设计成热量仅允许沿轴向传递。通过温度传感器测量棒上的温度分布梯度(如图3-1所示,并排放置,在顶部和底部棒上具有相同间隔),施加到GDL样品上的压缩载荷也通过负载装置控制。在达到稳态条件下,分别测量流经样品的热流、样品厚度方向上的温差和样品厚度,就可根据稳态傅立叶传热定律计算得到GDL样品厚度方向上的导热系数。[color=#cc0000]3.1.2. 准稳态法[/color]  准稳态法是一种介于稳态和瞬态方法之间的一种导热系数测试方法,在板状被测样品的一面线性升温和降温过程中,在一维热流边界条件下,样品的冷热面温差会逐渐趋于一种相等状态,这个动态过程中的稳态阶段,就称之为准稳态。通过准稳态下的测量可确定被测样品导热系数随温度的实时变化曲线,准稳态法导热系数测试所对应的标准测试方法为A-S-T-M E2584。  准稳态法的测量原理如图3-2所示,Zamel等人采用准稳态法对用作GDL的碳纸在厚度方向的导热系数进行了测量,并测量了温度、压缩和PTFE加载对碳纸厚度方向导热系数的综合影响。在测试中所用的样品材料为日本东丽TPGH-120型号的碳纸,单张碳纸的厚度为370μm,被测样品由6层碳纸组成,总厚度为2.22 mm。测试温度范围为-50~120℃,压缩力大小最大为1.6 MPa。如所推测的那样,在碳纸未经处理和经PTFE处理过的不同情况下,随着压缩增加,导热系数增加。此外,他们还观察到温度的升高导致厚度方向导热系数提高。这种行为与面内导热系数研究的测量结果形成对比,表明碳纤维的热膨胀具有方向依赖性。[align=center][img=,690,561]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117126996_6136_3384_3.jpg!w690x561.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 准稳态法GDL厚度方向导热系数测量原理图[/color][/align][color=#cc0000]3.1.3. 稳态法应用中存在的问题和局限性[/color]  目前GDL厚度方向导热系数测量的大多数都是采用稳态测量方法,从文献报道上来看基本都是采用自行搭建的测试仪器。稳态法的最大特点是原理模型简单,这往往误导了很多此方法的使用者。因为稳态法原理模型所要求的边界条件非常苛刻且实现难度大,要做到对薄膜类材料导热系数准确测量需要非常精密的加工制造和复杂的校准过程,所以很多国外商品化稳态法测试仪器往往很昂贵,而这些往往是自行搭建仪器最容易忽略的关键内容,由此带来的结果就是测试数据波动性大和误差大,不同文献往往会得出相反的结论。  迄今为止,已经尝试了实验性努力以使用稳态法了解压缩对厚度方向导热系数的影响。用稳态法Khandelwal和Mench测量了温度在+26~+73℃范围内对TORAY碳纸导热系数的影响,他们报告了导热系数随温度升高而降低。他们的测量是在2MPa的压缩力下进行,该压缩力大小代表着接触热阻最小化的压力。在同一项研究中,他们还测量了Teflon对SIGRACET碳纸处理的影响,并表明在碳纸上添加PTFE会大大降低其导热系数。  在文献中还研究了压缩和添加PTFE对多个制造商碳纸的总导热系数的影响,观察到的一般趋势是厚度方向导热系数随着压缩压力的增加而增加,这主要归因于碳纤维之间总接触热阻的降低。在Burheim等人的研究中,他们研究了压缩、厚度、PTFE和液态水对碳纸的厚度方向导热系数的影响,他们报告说,添加PTFE会导致整体导热系数降低,而压缩和液态水会导致这种性能提高。此外,他们的主要观察之一是具有不同厚度的TORAY纸显示出不同的导热性,他们将这一发现主要归功于这种碳纸的制造过程,而且他们假设较厚的样品是通过将较薄的样品堆叠在一起而制成的。  在Nitta等人的研究中报道了,尽管施加的压力高达5.5MPa,但发现TORAY碳纸的导热系数与压缩压力无关,他们认为这种趋势主要是由于通过空气的热传递引起的,尽管其导热系数低于固体碳纤维的导热系数。值得注意的是,根据TORAY材料的规格参数,不考虑纸张厚度时,TORAY碳纸厚度方向导热系数在室温下为1.7 W/mK。没有关于TORAY所使用的测量方法的公开信息,此外,在已发表的文献中关于获得该值所需的压缩压力存在很大差异。例如,根据Khandelwal和Mench和Burheim等人的研究,压缩压力对整体导热系数有显著影响,而在参考文献中可以看出这种情况并非如此。  通过对大量文献进行分析,发现在气体扩散层(GDL)厚度方向热导率测试中很多研究机构选择稳态法测量导热系数,主要出于以下几方面的考虑:  (1)同时兼顾气体扩散层样品面内方向导热系数的测试。  (2)同时兼顾气体扩散层样品厚度方向电导率的测试。  (3)可进行仪器结构扩展以兼顾薄膜样品面内方向电导率和导热系数的测试。  由于在稳态法测试仪器研制过程中,缺乏对测试模型和边界条件的深刻理解,缺乏仪器设计和高精度制造的能力,缺乏校准和考核仪器的技术手段,以及稳态法自身存在的局限性,这些都会造成稳态法测试仪器对薄膜导热系数测量产生较大误差,使得薄膜热物理性能变化规律很容易淹没在仪器的系统误差内。  纵观各种稳态法测试仪器,在薄膜材料厚度方向导热系数测试应用中普遍存在的问题以及测试方法固有的局限性主要表现在以下几个方面。  (1)温度传感器的选择:温度测量的准确性差是目前稳态法薄膜导热系数测量的最严重问题。温度测量涉及到流经薄膜样品厚度方向热流测量和薄膜样品厚度方向上两个表面上的温度差,因此温度测量对导热系数和热阻测量精度有着直接影响。尽管在稳态法中温度测量可以是相对形式(温差值),但对温度传感器的灵敏度、稳定性和一致性要求非常高。绝大多数自制稳态法仪器普遍采用细径铠装热电偶进行测温,采用细径主要是为了减少铠装热电偶金属套管带来的侧向散热损失。而热电偶是一种测温精度较差的温度传感器,在常温附近更容易引起较大误差,所以热电偶的测温精度根本无法满足要求。但如果选择精度合适的电阻温度传感器,则会增大传感器尺寸,带来更大的定位误差,同时会增加传感器自身导热带来的散热损失。  (2)温度传感器的校准和配套措施:温度传感器除了在安装前需要进行自身校准之外,因为温度传感器还涉及到热流测量和样品表面温度的推算,安装后的温度传感器还需要进行一系列的在线校准来对传感器和装置做出准确的评估和合理的修正。另外,为了防止温度传感器引线带了的侧向热损,需要配套专门用于热电偶引线的热防护装置,这势必使得整个测量装置非常复杂。A-S-T-M D5470只是给出了原则性的规定,并没有详细的描述,这方面内容在A-S-T-M C177中有着详细描述以及试验考核验证过程。  (3)对于薄膜厚度方向导热系数测试,薄膜样品厚度,特别是在线受压时的厚度要求均匀性要好,这就对测量装置的机械移动机构和在线厚度测量机构提出非常高的要求,位移、平行度和位移测量至少要达到微米量级精度,否则很容易在加载压力过程中使得薄膜样品产生倾斜而带来很大的热阻和导热系数测量误差。同时,还需要测试仪器在整个生命周期内始终保持这个高精度。  (4)综上所述,可以将稳态法导热系数和热阻测量装置等效看作是一个精度更高的大号螺旋千分卡尺,位移及其厚度测量精度至少优于10微米,而且还要保证平行度,同时还要布置上多只温度传感器及其主动和被动热防护装置。所有这些都会使得相应的稳态法测试仪器较为复杂,在选材、设计和加工制作中要十分谨慎,并经过一系列复杂的校准和考核试验后,仪器才能正常使用。目前我们看到的国内外大多数自制的稳态法测试仪器,包括国内一些仪器厂商生产的一些低价的稳态法测试仪器,只能属于教学类仪器,根本经不起规范的考核验证的检验,无法真正在科研生产中进行准确测量,使得很多材料特征及其变化规律往往淹没在巨大的测试误差范围内。[color=#cc0000]3.2. 瞬态法[/color]  瞬态法不同于稳态法需要人为加载一个较大的温度梯度,瞬态法测量时只是在稳态样品上施加一个1℃左右的微小温度扰动,测量由于温度扰动所引起的温度幅度或相位变化,测试过程更快捷,测试边界条件更接近于薄膜材料的真实使用环境,直接得到的测量结果往往是热扩散系数。尽管瞬态法理论模型和数据处理十分复杂,但测量装置十分简单,可以直接放置在各种实际应用环境中进行测试,特别适用于老化过程中薄膜材料性能的实时衰减考核。  在ISO 22007标准测试方法中,比较全面的对各种瞬态法做出了规定。但针对气体扩散层(GDL)厚度方向导热系数在压力加载过程中的测试,比较合适的瞬态法是温度波法和激光闪光法。由于瞬态热线法和平面热源法测量的是体积导热系数,无法明确测量厚度方向导热系数,并不适合各向异性GDL厚度方向导热系数测试。[color=#cc0000]3.2.1. 温度波法[/color]  ISO 22007-3规定了一种温度波分析方法,用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。  ISO 22007-3中给出了温度波法测量装置示意图,如图3-3所示,同时还给出了直接溅射到薄膜样品前后表面上的加热器和传感器元件的示例,如图3-4所示。[align=center][img=3-3 温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925076294_8710_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图3-3 温度波法热扩散系数测量装置示意图[/color][/align][align=center][color=#cc0000][img=3-4 加热器和传感器单元示例,690,381]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151925274567_6425_3384_3.jpg!w690x381.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-4 加热器和传感器单元示例[/color][/align]  从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。  由此可以看出,在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,温度波法也可以在测量过程中对样品加载一定的压力,但温度波法则规避了稳态法温度和热流测量方面的复杂问题,并采用交流加热和锁相放大技术可以有效的提取测量信号和减少误差,可以对薄膜材料进行高灵敏测量。  温度波法对薄膜热性能测试有着明显优势,Morikawa和Hashimoto采用此方法对芳香族族聚酰亚胺薄膜厚度方向热扩散系数进行了测量,获得了10~570K温度范围内厚度范围为0.1~300μm的薄膜热扩散系数。  但从图3-4所示的样品制备中可以看出,需要在薄膜样品的两个表面上进行繁琐的溅射工艺处理,这明显制约了温度波法的广泛应用,这也是ISO 22007-3温度波法标准颁布这么多年来一致没有推广使用的主要原因。[color=#cc0000]3.2.2. 激光闪光法[/color]  在ISO 22007-4对激光闪光法也做出的规定。激光闪光法的原理是使用短能量脉冲(通常由激光提供)照射样品的正面,并使用红外探测器记录样品背面的后续温度升高。从样品背面的温度-时间曲线的形状和样品厚度,可以确定样品的热扩散率。对于具有多孔或透明性质的薄膜材料,它们必须在测试前进行涂覆以确保分别在前后面进行吸收和发射。激光闪光法测量原理和样品表面处理如图3-5所示。[align=center][img=,690,236]https://ng1.17img.cn/bbsfiles/images/2019/01/201901152117530286_1398_3384_3.jpg!w690x236.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-5 激光闪光法测量原理和样品表面处理示意图[/color][/align]  激光闪光法最大的特点是非接触测量,很容易进行各种温度下的测试,因此激光闪光法在薄膜热物理性能测试中应用十分广泛。但对于气体扩散层(GDL)这种特殊薄膜材料的测试,采用激光闪光法则存在以下问题:  (1)气体扩散层(GDL)是一种多孔材料,相对于激光而言属于透光材料,在采用激光闪光法测试是需要对GDL样品进行表面处理,需要镀金和喷涂石墨来进行遮光处理,但这样的样品表面处理会使涂层材料通过孔隙进入GDL样品而对测量结果带来严重影响。  (2)GDL薄膜材料需要在可控压力加载情况下进行测试,而普通的激光闪光法测量装置并不具备压力加载和控制能力,由此使得激光闪光法很少用于GDL导热系数的测试。[color=#cc0000]3.2.3. 瞬态法特点和应用中存在的问题[/color]  在薄膜材料热性能测试方面,稳态法与瞬态法有着明显区别和各自的显著特点。  稳态法是基于温度和热流处于不随时间变化的稳定状态下进行测试的一种方法,测量薄膜材料热性能基本是基于较厚块体样品的测试软硬件体系。而在薄膜材料稳态法测试过程中,由于样品厚度的减小,相应的被测信号(如温度和热流)相应的也会变小,这使得在块体样品测试中一些并不明显的问题得到了放大和凸出,如温度传感器精度、热损影响和测量表面精度等。为了解决因样品变薄所带来的一系列问题,就需要增加相应的辅助措施来保证测试满足边界条件,从而造成测试设备整体十分复杂,并需要进行一系列的校准验证考核试验,但效果并不十分明显。从另一个方面来看,稳态法是在块体材料热性能基础上发展起来的测试方法,对于较大尺寸的块体样品测试技术非常成熟和稳定。为了进行薄膜材料测试,在稳态法上做的任何工作都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,但毕竟是测试能力下限,受到了稳态法自身的制约,这种扩展空间十分有限且效果很难保证。这也是市场上没有可用于薄膜材料热性能测试仪器的主要原因。  瞬态法与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小,这就是瞬态法测试设备往往比较简单的主要原因。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。  瞬态法与稳态法一样,在实际应用中都存在以下几方面的共性问题:  (1)在线厚度的均匀性和准确测量问题:样品尺寸越大,样品厚度越小,厚度均匀性越难保证。稳态法由于要布置多只温度传感器而使得样品面积尺寸没有多少减少余地,所以在厚度均匀性保证上有一个极限值。但瞬态法在样品尺寸变化上则有很大空间,瞬态法可以根据激励源和探测器的尺寸来改变样品尺寸大小,样品可以做到很小尺寸,如激光闪光法样品尺寸可以做到直径5~12mm,温度波法样品尺寸还可以更小,由此使得瞬态法更容易保证样品厚度的均匀性以及在线准确测量。  (2)接触热阻问题:无论是稳态法还是瞬态法,测量中都会面临接触热阻问题,在薄膜材料测试中会更为明显。稳态法解决接触热阻问题是通过测量一系列相同材质和表面状态但厚度不同的样品,通过测试结果推算出接触热阻。但对于薄膜材料而言,一系列不同厚度薄膜样品很难加工制作,另外薄膜厚度均匀性问题也会造成接触热阻测量误差很大。因此无论是稳态法还是瞬态法,采用变厚度测量方法测试接触热阻只能算是一种无奈之举。在瞬态法测试过程中,可以将接触热阻看作是另一种材质的样品薄膜,整个测试模型就可以看作是一个多层薄膜结构的测试问题。只要采用瞬态法测量结果推算出各分层样品的热性能参数,就可以消除接触热阻的影响。随着瞬态法理论模型的发展,目前已经找到多层结构求解的技术途径,还需要进一步的模拟计算和试验考核以验证此方法的准确性和可靠性。  (3)多层膜问题:大多数薄膜材料在实际应用中都是沉积在基材上,或是与其他薄膜材料进行复合后使用,呈现单层结构并能用于测量的薄膜材料很少,因此更有应用价值的是多层膜的测试问题,特别是对于多层膜样品要能够测试出各个单层薄膜的热物性参数,同时还要考虑压缩力等外部环境条件。多层膜问题与接触热阻问题类似,核心都是一个根据瞬态法测量结果求解单层膜信息的科学问题。[b][color=#cc0000]4. 瞬态法测试技术的深入研究[/color][/b]  从上述瞬态法特点和存在问题中可以看出,对于薄膜材料,特别是对于质子交换膜燃料电池气体扩散层薄膜材料,瞬态法测试中很大的问题是要对每个被测气体扩散层样品进行表面加工和处理,这显然会增大测试的难度和工作量。如果样品材料的刚度不够而发生皱着和弯曲,则会很难制造合适的被测薄膜样品,因此薄膜测试中被测样品的制作和提取一直是个比较棘手的问题。  我们通过分析,对瞬态法测试技术进行了更深入的研究,特别是在被测样品环节提出了一种新的试验方法。这种新方法就是不在被测样品上进行任何处理,将原来对样品表面的处理转移到两片基材上,通过两片基材把被测样品夹持在中心位置来达到样品表面处理的相同效果。新方法的原理如图4-1所示。[align=center][img=4-1 新型瞬态法测试模型原理示意图,690,396]https://ng1.17img.cn/bbsfiles/images/2019/01/201901151926256162_9109_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#cc0000]图4-1 瞬态法新型模型原理示意图[/color][/align]  针对不同的瞬态测试方法,这种改进后的瞬态法模型可以有不同结构形式,并具有以下几方面的功能和特点:  (1)对于温度波法而言,基体就相当于图3-4中的背板,可以将加热器、探测器和电极引线直接溅射在背板上,然后将被测薄膜样品加持在两块背板之间。这样避免了对被测样品的表面处理,通过已经制作成型的背板对各种样品进行测试。  (2)不对样品进行表面处理,可以避免直接在样品表面进行沉积涂层过程中涂层材料进入多孔薄膜对测量结果的影响,这对于气体扩散层这种多孔材料的导热系数测试尤为重要。  (3)对于激光闪光法而言,基体材料为刚性透明材料,激励层和探测层为沉积在基体材料表面的金属材料,然后表面在喷涂石墨层。这相当于将以往对透明样品的表面处理形式挪用到对基体材料的表面惊醒处理。作为激励源的激光脉冲经过透明的基体材料照射到激励层使得激励层温度快速升高,同时热量穿过被测样品到达探测层。探测层的温度变化透过透明基体被探测器检测,这个测试过程与普通激光闪光法完全相同,不同的是要考虑热量在多层结构中的传递,而不是以往那样仅有被测样品一层。在实际薄膜激光闪光法测试过程中,经过表面处理后的样品,也应该按照多层结构进行数据处理才能真正得到薄膜样品的测量结果。  (4)采用新型结构形式的激光脉冲法,同样规避了每次测试薄膜样品都需要进行表面处理的繁琐程序,做多每次需要再在基体表面喷涂石墨以增加发射率。  (5)从理论上来说,激光闪光法也可以看作是温度波法的一种特殊形式,普通温度波法是周期性热激励和周期信号检测,而激光闪光法则是单脉冲式的热激励和单个温升信号检测。因此,如果将激光单脉冲激励源更换为连续激光加周期性调制,使得经过激光束按照一定周期对激励层进行加热,这就相当于温度波法,但可以实现非接触测量。  总之,采用瞬态温度波法可以很好的进行压缩环境下薄膜材料的热物性测试。如果能解决多层模型的单层热性能参数的提取问题,解决接触热阻的影响,温度波法将更为准确和实用,同时也为激光闪光法开辟了更广泛的应用领域。[b][color=#cc0000]5. 参考文献[/color][/b]  (1) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20℃ to+120℃. Applied energy, 2011, 88(9): 3042-3050.  (2) American Society for Testing Material Committee, A-S-T-M D5470-17 Standard Test Method for Thermal Transmission Properties of ThermallyConductive Electrical Insulation Materials, A-S-T-M International, West Conshohocken,PA, 2011.  (3)Khandelwal M, Mench M M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106-1115.  (4) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells, 2008, 8(2): 111-119.  (5) Karimi G, Li X, Teertstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochimica Acta, 2010, 55(5): 1619-1625.  (6) American Society for Testing Material Committee, A-S-T-M E2584-14 StandardPractice for Thermal Conductivity of Materials Using a Thermal Capacitance(Slug) Calorimeter , A-S-T-M International, West Conshohocken,PA, 2007.  (7) Zamel N, Litovsky E, Li X, et al. Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from?50 to+120° C. international journal of hydrogen energy, 2011, 36(19): 12618-12625.  (8) Zamel N, Litovsky E, Shakhshir S, et al. Measurement of in-plane thermal conductivity of carbon paper diffusion media in the temperature range of?20° C to+120° C. Applied energy, 2011, 88(9): 3042-3050.  (9) Ramousse J, Didierjean S, Lottin O, Maillet D. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers. Int J Therm Sci 2008 47:1e6.  (10) Burheim O, Vie PJS, Pharoah JG, Kjelstrup S. Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. J Power Sources 2010 195: 249e56.  (11) Burheim OS, Pharoah JG, Lampert H, Vie PJS, Kjelstrup S. Through-plane thermal conductivity of PEMFC porous transport layers. J Fuel Cell Sci Technol 2011 8:021013-1e021013-11.  (12) Karimi G, Li X, Teerstra P. Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media. Electrochim Acta 2010 55:1619e25.  (13) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. J Power Sources 2010. doi:10.1016/j. jpowsour.2010.06.039.  (14) Sadeghi E, Djilali N, Bahrami M. Effective thermal conductivity and thermal contact reisstance of gas diffusion layers in proton exchange membrane fuel cells. Part 2: hysteresis effect under cyclic compressive load. J Power Sources 2010 195:8104e9.  (15) Radhakrishnan A, Lu Z, Kandilkar SG. Effective thermal conductivity of gas diffusion layers used in PEMFC: measured with guarded-hot-plate method and predicted by a fractal model. ECS Trans 2010 33:1163e76.  (16) Nitta I, Himanen O, Mikkola M. Thermal conductivity and contact resistance of compressed gas diffusion layer of PEM fuel cell. Fuel Cells 2008 8:111e9.  (17) TORAY Speci?cation, www.fuelcell.com/techsheets/TORAY-TGP-H.pdf.  (18) Zamel N, Litovsky E, Shakhshir S, Li X, Kleiman J. Measurememedia in the temperature range of -20 to +120C. Appl Energy 2011.  (19) Litovsky E, Puchkelevitch N. Thermophysical properties of refractory materials, Reference book. Moscow:Metallurgy 1982.  (20) Volohov GM, Kasperovich AS. Monotonic heating regime methods for the measurement of thermal diffusivity. In: Maglic KD, Cezairliyan A, Peletsky VE, editors. Compendum of thermophysical property measurement methods: recommended measurement techniques and practices, vol.2.New York and London: Plenum Press 1989. pp. 429e454.  (21) ISO 22007-3, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 3: Temperature wave analysis method.  (22) Morikawa J, Hashimoto T. Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis. Journal of Applied Physics, 2009, 105(11): 113506.  (23) ISO 22007-4, Plastics - Determination of thermal conductivity and thermal diffusivity - Part 4: Laser flash method.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【资料】GB/T 8014-2005 铝及铝合金阳极氧化氧化膜厚度的测量方法

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35351]GB/T 8014.1-2005 铝及铝合金阳极氧化氧化膜厚度的测量方法 第1部分:测量原则[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35352]GB/T 8014.2-2005 铝及铝合金阳极氧化氧化膜厚度的测量方法 第2部分:质量损失法[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=35353]GB/T 8014.3-2005 铝及铝合金阳极氧化氧化膜厚度的测量方法 第3部分:分光束显微镜法[/url]

  • 厚度,密度

    "试件在测试状态下平均密度:****,试件有效平均厚度:****"请问在这句话中的:测试状态下平均密度,有效平均厚度。怎么理解?该怎么计算?多谢。

  • 超声波测厚仪是怎样穿过涂层测量厚度

    [url=http://www.dscr.com.cn][color=#333333]超声波测厚仪[/color][/url]穿过涂层测厚度的原理:  钢中纵波声速具代表性的为5.900m/s(0.2320in/us),但是在漆层或类似涂层中声速一般低于2.500m/s(0.1000in/us)。常规超声设备在测量带漆层金属的总厚度时将错误地以钢的声速测量涂层,这意味着涂层将显示至少2.35倍(两种声速的比值)其真实厚度的值。在涉及厚涂层和紧公差的情况下,由涂层引入的这种误差可以为总厚度测量的很大一部分。这个问题的解决方案是以这样一种方法----从测量中将涂层成分去除----来测量或计算厚度。  回波―回波测量简单地应用了在两个相邻底面回波间的时间间隔的成熟技术,这个时间间隔代表了透过检测材料的声波的连续往返行程时间。在那些带涂层金属的情况中,这些多次回波只能发生在金属中而不是涂层中,因此任何一对回波的间隔(底面回波1到2、底面回波2到3等),只代表了已去除涂层厚度后的金属厚度。 透过涂层测量要使用一个专利软件来确定在涂层中一个往返行程代表的时间间隔。该时间间隔用于计算和显示涂层厚度,并且通过从总测量值中减去该时间间隔,仪器也能计算和显示金属底层厚度。  上述每一种技术都有优点和缺点,对一个特定的应用都应该考虑选择哪一种方法最好:  透过涂层测量优点:  1,能测量多种金属厚度,具代表性的,在钢中能从1mm到50mm  2,只需要一个回波  3,在点蚀情况能更精确地测量剩余地最小厚度  透过涂层测量缺点:  1,涂层最薄为0.125mm  2,涂层表面应当比较光滑  3,需要使用2种特定探头中地一个4,最高表面温度大约为50℃或51.67℃  回波-回波测量优点:  1,可使用多种普通探头工作  2,常能穿透粗糙表面涂层工作  3,用适当的探头能在接近500℃或498.89℃的高温时工作  回波-回波测量缺点:  1,需要多次底面回波,在严重腐蚀的金属中可能不存在多次底面回波  2,厚度范围比透过涂层测量限制更多

  • 【资料】X射线分析深度与样品厚度

    【资料】X射线分析深度与样品厚度

    前段时间看到有版友提到X射线分析深度与样品厚度的问题,在此,我查阅了一些资料,现在给大家分享一下。X射线分析深度与样品厚度 X射线在物质中的穿透深度与波长有关。波长越短,穿透深度越大。波长相同时,物质的平均原子序数越小(轻元素含量高),穿透深度越大。换句话说,样品所发射的荧光X射线的波长越短,及样品中的轻元素含量越高,则获得的试样深部的信息就越多。也就意味着,荧光X射线的波长越长,所得到的样品表面附近的信息就越多,或仅包含表面附近的信息。也因此,元素越轻越易受到样品表面的影响。 测定短波长X射线时,或者分析主成分为轻元素的样品时,如果样品的厚度不够,即使测定组成相同的样品,X射线强度也会因样品厚度不同而变化。图10.6是Ni箔样品中Ni的荧光X射线强度与试样厚度的关系曲线。在组成不变的情况下,X射线强度不再随样品厚度增加而变化时的厚度称为无限厚。除了薄膜分析之外,易受样品厚度影响的典型分析实例是树脂中重金属元素的分析。http://ng1.17img.cn/bbsfiles/images/2011/04/201104201724_290037_1601823_3.jpg 图10.6 样品厚度与X射线强度的关系 在分析树脂中Cd时,X射线强度随样品厚度而变化。将粒状树脂标准样品经热压后制成2 mm厚的圆片,作为Cd分析的校准样品。使用相同的样品,通过改变样品厚度或样品加入量,测定Cd的X射线强度。结果表明,即使是同一样品,因厚度或加入量的不同,测定强度也会发生很大变化。表10.2是以2mm厚的圆片校准,得到的不同厚度样品的定量结果。因此,在某些类型的样品分析中,因样品厚度不同所造成的分析误差是相当大的。http://ng1.17img.cn/bbsfiles/images/2011/04/201104201732_290041_1601823_3.jpg 由于被测样品或元素(谱线)是否受样品厚度影响对样品制备方法及测定条件的研究确定有很大影响,要进行高精度分析,就应事先对此进行检查。

  • 【求助】X射线衍射结果与样品的厚度以及样片的不同部位有关吗?

    进行XRD测试,以求晶面间距d。第一次板材的厚度为1mm,第二次为2mm,发现结果不同(板材制备工艺相同)。2mm后的板材,当选取不同的部位进行XRD测试时,结果相差更大,并且有不同的峰出现。我非常郁闷,XRD的结果与测试样品的厚度有关吗,另外,不同的样品测试部位不同结果差异会这么大吗。怎么XRD的测试与TEM和SEM一样需要选择最好的部位吗?请高人指教!!!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制