当前位置: 仪器信息网 > 行业主题 > >

弧前演化

仪器信息网弧前演化专题为您整合弧前演化相关的最新文章,在弧前演化专题,您不仅可以免费浏览弧前演化的资讯, 同时您还可以浏览弧前演化的相关资料、解决方案,参与社区弧前演化话题讨论。

弧前演化相关的资讯

  • 2100 | 末次盛冰期以来长江中游沉积环境驱动的地下水流系统演化
    地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古气候指标重建汉江平原第四纪含水层系统的沉积环境;(2)深入理解末次盛冰期(LGM)以来沉积环境驱动的GFS演化模式。作者于2015年和2017年在汉江平原腹地和过渡区钻了两个钻孔G01和G05,深度分别为200 m和185 m。从钻孔中收集沉积物样品,分析其粒度分布,地球化学和矿物成分。并从钻孔G01和G05中分别采集了19个和17个粘土样品,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取粘土孔隙水,并进一步分析其δ18O。江汉平原第四纪沉积相、河系和主要钻孔分布。【结果】G01(a)和G05(b)钻孔孔隙水δ18O、沉积物OSL年龄、粘土矿物和地球化学指标的垂向分布以及第四纪古气候演化阶段。古气候阶段G01和G05钻孔孔隙水δ18O值、 粘土矿物和沉积物地球化学指标。【结论】基于水文地质条件、粒度分布特征、沉积物年代学、古气候指标和现存地下水年龄等综合分析,阐明了江汉平原沉积环境驱动的GFS演化模式。该研究的主要发现总结如下:在江汉平原第四纪含水层沉积环境的演化历史中,沉积相主要为河流相、湖泊相和河湖相,由中深层含水层的粗粒相过渡到浅层含水层的细粒相。这意味着水动力条件逐渐减弱并趋于稳定。此外,湖泊相沉积层厚度向平原腹地方向增加。自LGM以来,江汉平原气候演化和沉积相之间具有一定的耦合关系。沉积环境从LGM期间深下切侵蚀环境转变为末次冰消期(LDP)快速冲填粗粒沉积物的河流相环境,然后转变为全新世暖期(HWP)具有细粒沉积物的稳定湖泊相环境。这些变化与长江水位的波动密切相关。基于江汉平原现存地下水年龄的分布,自LGM以来,GFS的演化模式可分为三个阶段。阶段I(22-13 ka B.P.),长江水位急剧下降造成的强水势差增加了地下水的驱动力,极大促进了该阶段区域GFS充分发展,其环流深度达到第四纪底部。随着阶段II地下水驱动力的快速削弱(13-9 ka B.P.),区域GFS再循环深度下降至深层含水层上部,而阶段I的区域GFS逐渐深埋于盆地中。作为阶段III(9 ka B.P.至今)稳定在低水位地下水驱动力,阶段I和阶段II的区域GFS保存在盆地深处,被认为是一个停滞系统(地下水年龄在10 -20 ka之间)。此外,区域GFS(地下水年龄为4-10 ka)和中间GFS(地下水年龄为1-6 ka)共同被认为是稳定体系。随着微地形的充分发育,垂直于河流方向的浅层地下水流形成了活跃的局部GFS(地下水年龄 100 a)。
  • 清华大学最新天文观测成果,揭示星系形成演化
    5月5日,清华大学举办新闻发布会介绍,由清华大学天文系牵头的国际团队通过全波段数据,直接探测到早期宇宙中星系周围气体进入星系的详细过程,证实了重元素丰度较高的“循环内流”是驱动星系恒星形成的关键,为理解星系“生态系统”及星系演化迈出重要一步。相关研究成果5月5日在线发表于《科学》。清华大学天文系蔡峥教授团队,通过世界上最大的光学望远镜——“凯克”对距今110亿年的一个巨大气体星云进行了观测。利用凯克望远镜的成像光谱仪——“宇宙网成像器”,清华大学团队成功探测到了星系周围气体的氢元素及多种重元素辐射并进一步计算出重元素的大尺度空间分布。观测表明,星系周围气体已经富含重元素。进一步的光谱和数值模拟分析发现,这些富含重元素的电离气体极为可能是早先被星系中心的黑洞喷射到星系周围,冷却下来后,在引力和环境角动量共同作用下,重新回流入星系,形成“循环冷气体流”。运动学建模进一步表明,循环气体流是朝星系流入的,可以促进和维持恒星形成活动。星系吸积星系外气体,形成恒星的详细过程是当前和未来天体物理学研究的热点。本次发现对星系如何与环境进行物质交换进行了清晰的成像,表明富含重元素的循环气体流可以驱动星系中剧烈的恒星形成活动。该发现为理解星系生态系统、星系形成和演化迈出了关键的一步。未来,结合更大口径、更大视场的光谱巡天望远镜,人们有望揭示星系形成的全貌。
  • Nature:广谱抗体再添抗疫新武器 北大团队破解新冠病毒演化趋势
    自新冠病毒奥密克戎变异株出现以来,其子代变异株井喷式涌现,并呈现出“趋同演化”的趋势,大量中和抗体药物和康复者血浆已经“被逃逸”,这给新冠疫情的防控带来了十分严峻的考验。“趋同演化”现象的形成机制以及演化终点亟需深入探究。北京大学生物医学前沿创新中心(BIOPIC)、北京昌平实验室曹云龙研究员/谢晓亮教授课题组联合中国食品药品检定研究院王佑春课题组于2022年12月19日在《自然》(Nature)杂志在线发表了题为“Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution”的研究论文,系统地探究了新冠病毒受体结合域(RBD)“趋同演化”的机制,并前瞻性地对病毒未来突变演化方向进行了预测,为广谱疫苗和抗体药物的设计与研发提供了宝贵的理论与数据支持。研究人员对不同免疫背景人群中分离得到的抗体进行了大规模中和测定和逃逸图谱表征,发现病毒趋同进化产生的变异株几乎逃逸了目前所有中和抗体药物、疫苗接种者或康复者血浆,包括BA.5突破感染者血浆。并且,由于“免疫印迹”现象的存在,奥密克戎亚型变体突破感染后产生的抗体多样性逐渐降低,特别是BA.5突破感染,这提示基于BA.5变异株研发的疫苗加强针不能对新出现变异株产生良好的交叉防感染保护效果。另外,研究者基于抗体的大规模中和测定和逃逸图谱表征的数据建立了一个计算模型,对病毒演化方向进行了合理预测。尽管这些新突变株,特别是其中的XBB、BQ.1.1和CH.1.1等支系具有前所未有的免疫逃逸能力,作者团队此前筛选出的广谱中和抗体药物组合SA55+SA58,特别是SA55,仍然强效中和所有主要突变株和未来短期内可能流行的突变株,且能同时具有治疗和预防作用,是目前唯一已知能够高效中和所有新突变株的、处于临床阶段的药物抗体,相关论文此前于12月初发表于知名生命科学期刊《细胞报道》(Cell Reports)。该抗体具有广谱中和能力强、将很难被未来变异株逃逸、半衰期长等特征,将特别适用于不适合接种疫苗的老年人、免疫缺陷人群等群体的防护。本研究最早于2022年9月16日在线发布于bioRxiv预印本平台,是世界首篇系统性研究新冠病毒“趋同演化”机制,预测病毒进化方向的研究论文,在国际学术界引起了广泛关注。病毒的持续突变演化使得多种较高增长优势的变异株陆续涌现,BA.2.3.20、BA.2.75.2及其支系,乃至最近出现的BQ.1.1和XBB等变异株相比于BA.5都具有更高的增长优势。尽管它们的进化过程各不相同,处于奥密克戎的不同支系,但其受体结合结构域(RBD)上的突变都集中于R346、K356、K444、V445、G446、N450、L452、N460、F486、F490、R493和S494等位点,呈现出“趋同演化”的趋势(图1)。图1 奥密克戎亚型变体RBD蛋白携带的突变中和测定的数据提示“趋同演化”产生的变异株具有极强的逃逸能力,绝大多数中和抗体药物都被以XBB为代表的变异株逃逸(图2),包括此前已初步进入国内市场的阿斯利康公司Evusheld(“恩适得”)预防抗体药物。由于此类新突变株的流行,美国FDA也取消了礼来公司Bebtelovimab(贝特洛韦单抗)的使用授权。唯一的例外是作者团队开发的SA55抗体,它是目前唯一对包括XBB和BQ.1.1等在内的所有突变株仍旧有效的进入临床阶段的抗体药物(图3)。图2 奥密克戎亚型对中和抗体药物的逃逸情况图3 广谱中和抗体SA55和SA58血浆中和数据也显示,XBB,CH.1.1和BQ.1.1.10(或BQ.1.18)等毒株不仅逃逸了三针灭活疫苗接种者的血浆,也几乎完全逃逸奥密克戎BA.1/BA.2/BA.5突破感染者的血浆样本,显示出极大的免疫逃逸能力(图4)。图4 奥密克戎亚型逃逸疫苗接种者与康复者血浆中和为了探究不同奥密克戎变异株呈现“趋同演化”现象的具体机制,团队从BA.1、BA.2或BA.5突破感染康复者体内富集了抗原特异性记忆B细胞,发现其中大部分记忆B细胞交叉结合新冠原始株和奥密克戎变异株,印证了之前作者团队报道的存在于奥密克戎突破感染中的“免疫印迹”现象。基于高通量深度突变扫描技术,团队对不同来源的3051个交叉结合新冠原始株与奥密克戎变异株的抗体进行了突变逃逸图谱测定与聚类分析(图5a),发现奥密克戎特别是BA.5变体突破感染刺激产生的有效中和抗体种类明显减少,产生的主要是E2.2、E3和F1等不竞争ACE2结合表位且中和能力较弱的抗体(图5b-d)。图5 奥密克戎亚型变异株突破感染刺激产生抗体的表位表征基于抗体逃逸图谱、抗体中和活性、RBD突变对于ACE2亲和力变化等数据,团队建立了一个模型,分别计算了BA.2和BA.5突破感染刺激产生抗体的突变逃逸图谱(图6a),结果显示,BA.5突破感染刺激产生抗体的突变逃逸位点显著减少,表明其结合表位多样性明显减少。这提示,免疫印迹现象使得奥密克戎变异株突破感染刺激产生中和抗体表位多样性降低,导致免疫压力集中,从而加速了病毒的趋同进化。在此基础上,研究者基于2022年8—9月真实世界的主流免疫状态,基于计算模型预测了BA.2.75和BA.5的进化趋势(图6b),这在随后趋同进化产生的新毒株中得到验证。图6 免疫印迹效应加速了抗体逃逸突变的趋同进化另外,研究人员基于BA.2.75和BA.5突变株的预测进化趋势,设计了携带不同RBD和NTD预测突变组合的假病毒(图7a),并测定了这些假病毒对不同中和抗体药物和血浆样本的中和情况及ACE2亲和力(图7b-g),结果显示,对BA.5或BA.2.75突变株最少引入5个突变就可以逃逸包括BA.5突破感染者在内的不同免疫状态下的几乎所有血浆样本。并且,合成的假病毒与之后真实世界流行的BQ.1.1支系、CH.1.1支系等高度相似,验证了预测模型的准确性。图7 趋同逃逸突变的累积能够几乎完全逃逸BA.1/BA.2/BA.5突破感染血浆的中和作用本研究揭示了“免疫印迹”造成的奥密克戎突破感染刺激产生抗体表位多样性降低,进而导致免疫压力集中化,促使新冠病毒RBD蛋白发生趋同演化的现象,这些积累趋同进化突变的病毒在获得极强突变逃逸能力的同时,也保持了较高ACE2亲和力。本研究中的预测方法为预测病毒突变演化趋势、开发广谱疫苗和抗体药物提供了参考资料,且具有扩展到其他体系的潜力。同时,研究结果也提示,基于BA.5突变株研发的疫苗对于其他变体的交叉保护效果很可能不够理想,进一步开发设计能够克服免疫印迹、激活广谱中和抗体的新型疫苗至关重要。而以SA55+SA58抗体组合为代表的广谱中和抗体既可以通过鼻喷给药方便快捷地在呼吸道建立短效预防,又可以通过注射实现感染初期的治疗和中长期预防,特别适用于保护高风险的医护人员以及不宜接种疫苗的免疫缺陷人群和老年人。SA55与SA58已经授权给科兴生物进一步开发,初步的单盲随机对照试验显示,喷雾吸入一次提供的即时保护可维持6—12小时,预防感染效率可达到80%以上,且成本较低,方便使用,目前正在进行更严谨的临床试验,预计将来可以大规模推广。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、王菁、宋玮良,中国食品药品检定研究院于原玲为Nature论文的共同第一作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员、谢晓亮教授、中国食品药品检定研究院王佑春研究员为Nature论文的共同通讯作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、张志莹、阿依江伊斯马衣,地坛医院郝晓花博士,北京协和医学院鲍琳琳研究员为Cell Reports论文的共同第一作者。北京昌平实验室、北京大学曹云龙研究员、谢晓亮教授、肖俊宇教授,北京协和医学院秦川教授,地坛医院金荣华院长为Cell Reports论文的共同通讯作者,北京大学、昌平实验室、动物所、中检院、科兴公司等单位的相关科研人员为共同作者。本系列研究得到科技部、昌平实验室基金、国家自然科学基金和北京市科技计划支持。参考文献[1] Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature (2022).[2] Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature (2022).[3] Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature (2022).[4] Cao, Y. et al. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. (2022)专家点评:清华大学医学院祁海教授:这一工作深入探究了构成当前新冠大流行的多个奥密克戎毒株对人类群体免疫的逃逸规律。曹云龙/谢晓亮联合团队发现,多个奥密克戎株亚型在受体结合蛋白上都显现出相同或类似的逃逸突变。这些突变,在保证病毒结合其受体的同时,躲避了之前中和抗体的抑制作用。这说明,人群序贯疫苗接种和自然感染所构建起的群体免疫,的确在阻断并降低既往毒株感染;同时,这种群体免疫的压力,也为未来病毒变异留下了越来越少的潜在逃逸路径。那么,我们是否可以根据已有的群体免疫状态和现有毒株的受体结合蛋白,来预测未来最有可能出现的逃逸突变呢?曹云龙/谢晓亮联合团队利用他们开发的一种高通量深度突变扫描(DMS)方法,分析、鉴定了BA5和BA2可能逃逸群体免疫的突变。非常重要的是,他们预测出来的突变,确实出现在了其它具有流行潜力的毒株上。曹云龙/谢晓亮联合团队这项研究所提供的这种预测能力,可以帮助我们更高效地设计广谱抗新冠疫苗,也会使我们更可能为所有潜在逃逸现有群体免疫的毒株准备好“特效药”。中国科学院生物物理所王祥喜研究员:新冠病毒一直在持续性进化,衍生出多种突变株;然而在奥密克戎出现之后,新冠病毒的演变速度明显加快。近半年来,就有BA.5、BF7、BA.2.75、BQ、XBB等近十种新突变株在一些国家成为主要流行突变株。这些新突变株往往其传染性和抗体逃逸能力都在增强。总体来讲,人类对新冠病毒的研究是被动地跟着病毒跑,一个新突变株出现后再去了解它的病毒特性,去探究新突变株对现有疫苗和药物的影响。如何前瞻性预测病毒演变的方向,提前预判未来一段时间内可能出现的突变株具有重要的战略意义。2022年12月19日,北京大学谢晓亮/曹云龙团队联合中检院王佑春团队在Nature上发表题为“Imprinted SARS-CoV-2 humoral immunity induces convergent OmicronRBD evolution”的研究论文,这是该团队继新冠中和抗体、新冠疫苗效果评估、追踪新突变株免疫逃逸特性后,又一系统性而创新性工作。该项研究有五点重要发现:1)从庞大的数据库中分析出近期有几十个新突变株其生长优势超越BA.5,且这些突变株有一定的共性,在某些特定位点携带相同或相似的突变,呈现趋同进化规律;2)这些新突变株展示出极强的抗体逃逸特性,基本逃逸国际上已批准上市的抗体药物;3)一个抗体对组合SA55/SA58(也是该团队的研究成果)依然高效中和这些新突变株;最后两点更精彩:4)从原始株感染康复者、BA.1/BA.2/BA.5突破感染者等不同免疫背景分离2000余株抗体,并绘制出不同免疫背景下抗体谱系特征。相对之前的免疫背景,BA.5突破感染者的主要中和抗体类别相对单一,非中和抗体比例提高,更容易滋生病毒变异去逃逸宿主免疫;5)利用高通量酵母展示技术精准绘制出抗体免疫逃逸图谱,与BA.2突破感染的免疫背景相比,BA.5突破感染中和抗体的免疫逃逸位点相对集中且大多出现在近期出现的突变株上。实验数据与真实世界监测结果高度一致。这一研究成果能够实现对未来一段时间内新突变株的精准预测,预先了解这些新突变株的病毒特性能够为科学精准防控留出宝贵的时间窗口。
  • 投资6千万元国家盐化工质检中心落户淮安
    昨天上午,国家盐化工产品质量监督检验中心建设论证会在淮召开。国家盐化工产业研究方面的专家和省市有关部门领导就淮安建设国家盐化工产品质量监督检验中心相关方案进行研讨,一致同意通过论证。副市长陆长苏出席论证会。  该中心计划总投资6000万元,占地30亩,位于淮安经济开发区盐化工新区,设计总建筑面积1.6万平方米。该项目围绕我市盐化工企业及相关产品开展产品检验、企业人员培训、新产品研发、产品标准研究等展开业务,力争在技术装备、实验室环境、队伍建设和研发功能等方面达到国际一流、国内领先的水平。
  • 太赫兹光谱或成为评价地质演化过程的新方法
    流体包裹体是研究矿物演化的重要手段之一。最近,中国石油大学(北京)油气光学探测技术北京市重点实验室的宝日玛副教授利用太赫兹时域光谱技术对石盐体系进行了检测,根据石盐矿物的太赫兹波吸收系数随温度的变化关系,总结出石盐矿物的早成岩期、晚成岩期和近似变质阶段的成岩演化过程,实现了地质成岩成矿的太赫兹光谱表征与评价(如图1所示)。相关成果以“地质成岩成矿演化过程的太赫兹光谱研究”为题发表在近期出版的2015年第8期《中国科学: 物理学 力学 天文学》。  研究表明,盐?水体系中的流体包裹体包含了在自然界中保留的主要流体包裹体类型,能够提供古流体组成的物理化学信息。温度是成岩环境的重要因素之一,通过测试包裹体在成岩过程中的温度影响,能够为矿物演化评价提供详细的信息。  该项研究基于太赫兹光谱能够灵敏反映化合物结构与环境的指纹特性以及快速无损检测的特征,首次应用太赫兹时域光谱技术研究了不同温度生长的石盐晶体的光学性质,得到了石盐晶体的太赫兹吸收谱,建立了石盐矿物在温度环境下的演化模型,总结出石盐矿物的成岩过程,并通过理论模拟进一步验证了演化模型的正确性。  这一研究结果表明太赫兹技术可以成为地质成岩成矿演化过程评价的新方法,有望为环境演化、岩盐矿产成矿规律研究和含盐盆地地质成岩成矿演化过程的评价提供新的参考信息。
  • 科学仪器助力中国科大在复杂有机团簇分子的形成和演化研究取得新进展
    记者从中国科学技术大学获悉,该校地球和空间科学学院甄军锋、秦礼萍团队,提出了一条星际大分子自下而上的生长过程中复杂有机化合物的形成气相生长的路径,为进一步深入了解它们在星际介质中的化学演化行为提供了理论和实验数据支持。研究成果于日前在国际学术期刊天文与天体物理学报《天文与天体物理学》上发表。 星际复杂有机分子被认为是更复杂的有机化合物的一部分,甚至是生命物质的重要组成部分。有机分子已知存在于恒星形成区域和行星形成的原行星盘中。然而,气相中的游离有机分子在紫外光照射下容易被破坏,单个紫外光子的能量就能够解离这些分子。多环芳香烃化合物及其衍生物可能在复杂有机化合物的演化过程中发挥重要作用,大型的多环芳香烃化合物分子或团簇以及非常小的尘埃颗粒可以有效地保护这些气相有机分子,避免其被紫外光解离破坏掉。中国科大供图 研究团队利用自主搭建的实验仪器平台研究有机分子-多环芳香烃团簇在离子-分子碰撞反应过程中的稳定性和堆积形成的途径:大质量的多环芳香烃阳离子和有机分子作为反应物的形成和演化途径,对多环芳香烃有机分子团簇的形成过程进行了一系列的理论计算。 实验及理论研究表明,复杂的有机分子或其他相关生命前分子可以有效地吸附在星际介质中的小尘埃颗粒上。根据实验及理论计算结果,有大量反应途径会产生非常复杂的具有三维结构的大质量的分子团簇。这些分子团簇为星际介质中自下而上中的大型复杂生命前分子提供了可能的形成和化学进化途径,表明气相星际物质在自下而上的生长过程中可以直接形成大型复杂的有机衍生物。这种有趣生命前分子团簇的产生,为有机物分子在星际空间中的演化过程提供了更深入的理解。 研究结果还表明,有机分子可以积聚在星际介质中的小尘埃颗粒上,同时这一积聚过程也支持了生命前分子可以通过彗星、陨石或星际尘埃颗粒输送到地球这一观点。
  • 中德人类演化与科技考古联合实验室成立
    5月22日,由中国科学院古脊椎动物与古人类研究所、中国科学院研究生院和德国马普进化人类学研究所共建的人类演化与科技考古联合实验室在京挂牌成立。中科院古脊椎所研究员高星在主持会议时表示,这标志着酝酿已久的实验室建设和相关合作研究取得了实质性的进展。古人类学家吴新智院士表示,这一实验室的建立将会使更多的现代科技手段用于人类演化和科技考古研究的探索,这也是该领域的发展趋势。 据了解,该联合实验室的宗旨是:通过建立实验与技术的共享平台,有效整合和利用相关单位的资源、人才和技术优势,系统运用现代科技手段,开展人类演化与科技考古研究。促进自然科学和人文学科的交叉与协作,加强国际合作与交流,在现代人类起源、演化过程与机制、农业起源、文明起源等重大课题方面取得创新与突破,提高我国相关领域的实验条件、研究水平和学术影响力。 中科院研究生院教授王昌燧介绍了联合实验室规划、研究方向和运行模式。他表示,联合实验室的建设目标是在短期内成为中国科学院重点实验室,10年内建成具有国际影响的国家重点实验室,成为具有国际领先水平的人类起源、演化及科技考古研究中心和高端人才的培养基地。 按照联合实验室的宗旨和学术方向,其实验与研究单元规划为:石器技术与功能分析、古代DNA分析、环境考古、同位素与古代食谱分析、古代残留物分析、动物考古等。随着学科的发展,将适度拓展研究领域、组建新的实验室单元。 按照合作协议,中德双方在资金、设备和材料方面作等同的投入与贡献。德方在古代DNA和同位素分析仪器设备方面提供实质性的支持。联合实验室挂靠中国科学院古脊椎动物与古人类研究所并与研究生院共同管理;实验室主任由三方代表轮流担任;成立学术委员会,对实验室的学术方向和运行过程提供建议与指导。 德国马普学会代表、著名分子遗传学家Svante Paabo介绍了古代DNA分析在尼安德特人研究中取得的进展,并介绍了德中合作的计划与前景。挂牌仪式后,来自中科院地质所、研究生院、古脊椎所、马普学会、加拿大皇家安大略博物馆、加拿大西蒙弗雷泽大学的各领域专家分别作了相关领域的学术报告。
  • 基于海洋放射性核素时空演化体系的海洋核安全评估技术
    基于海洋放射性核素时空演化体系的海洋核安全评估技术林武辉1,5,杜金秋2,拓飞3,曹少飞4,张翊邦5,祁第1,陈立奇1,余克服5(1. 集美大学港口与海岸工程学院 极地与海洋研究院,厦门 361021;2. 国家海洋环境监测中心,大连 116023; 3.中国疾病预防控制中心辐射防护与核安全医学所,北京 100088;4. 中国辐射防护研究院,太原 030006;5. 广西大学 海洋学院,南宁 530004)摘要:本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全评估的基石,提出本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史与现状,有利于评估过去12年以来日本福岛核电站修复进程中相关修复措施的有效性。之后,本文指出在利用海洋数字孪生技术的基础上,针对上述三种海洋核安全评估技术对应提出从寻找人类核活动历史的可靠“档案馆”、健全海洋放射性核素的基准/标准限值和探索长期低剂量生物辐射效应与风险三个角度展望未来海洋核安全评估技术需求与发展方向,以期为国内外新形势下我国海洋核安全评估与管理提供一定借鉴。核安全是核能发展与核技术利用的生命线。自1984年成立国家核安全局以来,我国已经形成法律、条例、部门规章、标准、导则等不同层次的核安全制度体系[1],以保护人类和环境免受电离辐射危害。核安全和深海安全是总体国家安全观的有机组成,二十大报告中也明确指出“强化……核、太空、海洋等安全保障体系建设”。在加快建设海洋强国战略背景下,海洋核安全也应该是国家安全保障体系的重要环节。1. 新形势下的海洋核安全需求海洋占地球表面积约71%,占地球总水量约97%,是地球气候的重要调节器,也为人类生存和发展提供了重要的资源和生态服务功能[2]。然而,20世纪人类大气核试验产生69%的人工放射性核素137Cs(780 PBq)直接沉降进入海洋[3],部分沉降进入陆地环境中的人工放射性核素通过河流仍在持续不断输入海洋[4, 5];福岛核事故泄漏的放射性核素总量的80%最终进入太平洋[6];过去60多年来,英国和法国的乏燃料后处理厂也一直向北大西洋和北冰洋排放137Cs、129I、236U等人工放射性核素[7-13]。日本在2023年8月24日已经启动福岛核污水排海计划,预计持续30年[14, 15]。海洋数值模拟显示,福岛核污水将通过海洋环流逐步迁移扩散至全球海域,未来也将进入我国海域[16, 17]。此外,在复杂的国际形势下,我国周边海域日益频繁的核动力航母和核潜艇活动也有可能增加海洋核污染风险。2023年修订通过的《中华人民共和国海洋环境保护法》中首次新增“加强海洋辐射环境监测”。因此,海洋核安全具有重要的研究意义和强烈的社会需求。2. 全面构建海洋中放射性核素本底基线的时空演化体系天然放射性核素(比如宇生放射性核素14C、原生放射性核素238U等)通过河流、大气沉降和地下水等自然过程,持续不断地进入海洋;核电站、乏燃料后处理厂、核医学等活动以及日本福岛核事故所产生的人工放射性核素也持续排入海洋[18]。当今海洋存在几十种天然和人工放射性核素,不同核素活度水平从104 Bq/m3到10-5 Bq/m3[19],相差9个数量级。海洋中同一种放射性核素也存在一定的时空分布特征。比如,自20世纪60年代美苏停止大气核试验以来,我国海水中人工放射性核素90Sr随着时间总体呈现指数下降趋势[4]。空间上海洋中人工放射性核素存在“双峰型”纬向分布特征,即南北半球40°—60°的纬度带存在全球落下灰(Global fallout)活度高值[20]。由于切尔诺贝利核事故和英法乏燃料后处理厂运行的影响,北欧海域中90Sr、137Cs、129I、239+240Pu等人工放射性核素均显著高于其它海域[21-23]。海水中90Sr和137Cs的活度随深度增加,总体活度呈现下降趋势,而海水中239+240Pu却经常出现次表层峰值现象[24]。精准甄别海洋中人为新增放射性核素的种类与含量不仅是异常辐射信号判别与不同人类核活动溯源技术的前提,也是海洋核安全评估的核心。过去十多年来,作者和团队已经围绕海洋中多种介质(海水、沉积物、生物、悬浮颗粒物、大气等)的210Po[25]、210Pb[25]、234Th[26]、238U[27]、226Ra[27]、228Ra[28]、228Th[28]、232Th[27]、40K[27]、90Sr[4]、137Cs[29]、239,240Pu[29]、14C[29]、3H[15]等十多种天然和人工放射性核素,从放射性核素的源汇过程及其物理—海洋生物地球化学调控机制的角度长期开展海洋与核技术的多学科交叉研究,初步构建海洋放射性核素本底基线的时空演化体系。针对海洋中放射性核素的时空演化历史数据,国际上IAEA与日本筑波大学已经建立Marine Radioactivity Information System (MARIS)[30, 31]与Historical Artificial Radionuclides in the Marine Environment (HAM-Global 2021)[32-34]两个数据库。然而,MARIS和HAM数据库中我国辽阔海域放射性核素的历史资料数据却极度缺乏。我国海洋放射性核素监测工作始于20世纪60年代的大规模大气核爆。在20世纪60~90年代期间,卫生部门李树庆、中国科学院海洋研究所李培泉和原国家海洋局第三海洋研究所蔡福龙等人开展海洋中放射性核素研究[35-37];唐森铭和商照荣重点对20世纪中后期我国海域放射性调查进行总结[38]。我国历次海洋污染基线调查积累了部分海洋放射性监测数据。滨海核电站建设和运行过程中也持续开展海洋放射性监测。虽然我国生态环境部门、自然资源部门、卫生系统、中国科学院与高校系统、地方政府部门和核电公司等不同机构基于业务管理和科研的需求已经积累一些海洋放射性监测的历史数据,但数据零散分布于多个不同管辖部门,不仅缺乏统一的全国性海洋放射性核素监测数据库,而且缺乏基于时空演化视角的系统分析,不利于数据挖掘、解译、利用和管理。总之,全面构建海洋放射性核素本底基线的时空演化体系则是海洋核安全评估的基石。中国近海放射性核素本底基线的时空演化体系构建将有助于科学评价我国滨海核电和其它滨海核设施的影响[4]。开阔大洋放射性核素本底基线的时空演化体系构建可以用于评价其它国家人类核活动(核电站事故、核试验、核材料的海洋倾倒、核潜艇与核动力航母活动等)的影响,并对我国海域的潜在影响进行预报与预警评估,也是我国维护国家安全和人民生命健康、深度参与全球海洋治理、构建海洋命运共同体的重要体现。因此,全面构建海洋中放射性核素本底基线的时空演化体系对于海洋核安全具有重要意义。3. 海洋核安全评估技术活度与剂量是定量表征放射性核素的独特物理量,不同于元素和同位素的常见表征方式。在海洋核安全评估中,活度浓度和剂量率是重要的定量参数,对应常见单位为Bq/m3(或者Bq/kg)和Gy/h(或者Sv/h)。为此,本文总结提出本底基线法、活度限值法和剂量限值法开展海洋核安全评估。3.1 本底基线法自20世纪中叶以来,人类在核能发展与核技术利用的进程中已经产生大量的人工放射性核素[20]。其释放进入地球环境中的长半衰期人工放射性核素(比如239,240Pu、137Cs等)甚至被视为定义“人类世”(继全新世后,人类活动作为重要地质营力所主导的地质新时代)的重要代用指标[20, 29]。全面构建海洋中放射性核素本底的时空演化体系,准确掌握海洋中人工放射性核素的历史本底基线水平,是进一步精准甄别人为新增放射性核素和开展海洋核安全评估的前提。短半衰期的人工放射性核素(比如131I、134Cs、106Ru、110mAg等)通常不存在于天然环境本底之中,其定性或者定量的异常检出可以直接指示短期内人为新增的海洋核污染源(比如核事故、核潜艇活动等)。中长半衰期的人工放射性核素(比如90Sr、137Cs、239,240Pu、129I等)则需要考虑人类核活动的历史排放而残留的本底基线的时空演化特征后,借鉴人为新增信号和本底噪声处理技术,开展人为新增海洋核污染源的定量甄别。此外,核素活度比值(比如134Cs/137Cs、90Sr/137Cs等)和原子比值(比如129I/127I、240Pu/239Pu等)也常作为核素特征指纹,指示判别不同人类核活动源项。3.2 活度限值法不同放射性核素存在不同程度的放射毒性,比如极毒组的239Pu、高毒组的90Sr、中毒组的137Cs、低毒组的3H等。在海洋核安全评估过程中,法律法规和标准规程等对海洋中不同毒性的放射性核素活度限值做出一些规定[39, 40]。比如,福岛核事故后日本政府规定海产品中134+137Cs的活度限值为100 Bq/kg[12]。我国的海水水质标准(GB3097-1997)和食品中放射性物质限制浓度标准(GB14882-94)分别规定了海水和海产品中部分放射性核素的活度限值。我国海洋沉积物尚没有相应放射性核素标准限值规定。鉴于部分地区经常采用海砂作为建筑材料,我们可以参考建筑材料放射性核素限量(GB6566-2010)的部分放射性核素的活度限值标准,评估海洋沉积物中的放射性核素。值得注意的是,国际上不同组织机构(国际原子能机构、世界卫生组织、国际粮农组织)和地区(中国、欧盟、美国、日本等)基于科学认识、国情现状和社会发展需求等综合因素,对相同介质中的同种放射性核素活度限值的规定经常存在一定差异[19, 40]。3.3 剂量限值法处于不稳定状态的放射性核素发生衰变并发射不同能量的α、β、γ粒子。活度可以衡量单位时间内放射性核素发射的粒子数,剂量则更精细刻画不同类型的粒子所产生的能量沉积和危害。比如,我国的电离辐射防护与辐射源安全基本标准(GB18871-2002)中规定公众的年有效剂量为1 mSv。针对海洋生物,欧盟开发的ERICA软件推荐10 μGy/h的剂量率限值作为筛选阈值(screening level)[41]。IAEA、ICRP、美国和加拿大等也推荐不同的剂量率限值(40~400 μGy/h)用以评估放射性核素对海洋生物的影响[42]。截至目前,我国法规标准尚未涉及放射性核素对海洋生物的剂量限值规定。4. 日本福岛核电站港口区的海洋核安全评估日本福岛核事故已经泄漏大量人工放射性核素进入海洋[6],福岛核污染水也已经启动排入太平洋[14]。这些放射性核素可能通过海洋水文动力驱动下的“随波逐流”和海洋生物洄游驱动下的“搭乘便车”等过程进入我国海域[12]。作为福岛核污水排海的利益攸关方,我国公众和政府始终高度关注由此引发的海洋核安全问题。距离福岛第一核电站最近的港口区(图1a,1 km范围内)是日本福岛核事故后污染最严重的海域。港口区属于日本领海,其它国家都无法进行采样而获取相关数据。港口区的海洋核污染历史与现状不仅是世界了解福岛核事故后海洋核污染的重要窗口,而且直接反映日本福岛核电站修复进程与修复措施的有效性。本文聚焦福岛核事故后污染最严重的海区——港口区,系统汇总IAEA的MARIS数据库、日本东电公司(TEPCO)、日本经济产业省(METI)和日本原子能规制委员会(NRA)等多方的大量数据,全面构建福岛核事故前后海水中137Cs的历史活度曲线(图1b),利用本底基线法、活度限值法和剂量限值法,联合开展海洋核安全评估。本底基线法显示,福岛核事故后日本福岛附近海域的海水137Cs活度从1.3 Bq/m3骤升至1.9×1012 Bq/m3(图1b中红色箭头)。截至2023年9月的最新数据,港口区海水中137Cs活度为5.1×103 Bq/m3,仍然比2011~2015年期间我国海域的海水中137Cs平均活度(1.05 Bq/m3)高3个数量级。值得警惕的是,2016年以来福岛港口区海水中137Cs活度并没有显著下降趋势,甚至出现多次周期性异常升高事件。活度限值法显示,2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)高于我国海水水质标准(GB3097-1997)中海水137Cs活度限值(700 Bq/m3)。日本监测数据显示港口区的海洋鱼类通过生物富集吸收海水中高浓度的137Cs,进一步导致部分鱼类体内137Cs(1.8×104 Bq/kg)显著超过日本规定的限值标准(100 Bq/kg)[43]。本文基于港口区的海水中137Cs活度数据,利用欧盟开发的ERICA软件开展海洋鱼类的辐射剂量评估。福岛核事故后海水中137Cs峰值活度(1.9×1012 Bq/m3)可以导致游泳鱼类和底栖鱼类的辐射剂量率为2.9×107 μGy/h和3.1×109 μGy/h,均大大超出欧盟推荐的剂量率筛选阈值(10 μGy/h)。2016~2023年期间港口区海水中137Cs平均活度(6943 Bq/m3)对底栖鱼类产生的剂量率为11.2 μGy/h,也高于欧盟推荐的剂量率筛选阈值(10 μGy/h)。因此,三种海洋核安全评估技术获得的定量评估结果均显示,港口区的海洋核污染仍然较为严重。图1 中国海、日本福岛近海、福岛第一核电站港口区等海区的海水137Cs活度历史曲线。中国海和日本福岛核事故前的福岛近海数据来自MARIS数据库[44],核事故后的福岛近海数据来自NRA[45],核事故后的港口区数据来自TEPCO和METI[46, 47]Fig. 1 Historical 137Cs activity in seawater from the China seas, Fukushima offshore, and the port area nearby the Fukushima Daiichi Nuclear Power Plant. The data of the China seas and the Fukushima offshore before the Fukushima Nuclear Accident (FNA) was obtained from the MARIS database[44], the data of the Fukushima offshore after the FNA was provided by the NRA[45], and the data of the port area after the FNA was derived from TEPCO and METI[46, 47]5. 总结及展望新形势下的海洋核安全需求极为迫切。本文指出全面构建海洋中放射性核素本底基线的时空演化体系是海洋核安全研究的基石,提出本底基线法、活度限值法和剂量限值法的三种海洋核安全评估技术,并应用于福岛核事故后污染最严重的核心海区——港口区,定量剖析港口区的海洋核污染历史和现状。然而,面对海洋中核素种类众多、活度差异巨大、时空分布不均、迁移行为各异、生态影响复杂以及危害程度不一等现状难题,海洋核安全的科学评估仍然存在较大挑战性。基于本底基线法、活度限值法和剂量限值法三种海洋核安全评估技术,本文强调融合海洋数字孪生技术,尝试从以下三个角度展望海洋核安全评估技术未来的发展方向(图2)。图2 海洋核安全评估的技术路线与展望Fig. 2 Technical route and prospect of marine nuclear safety assessment寻找人类核活动历史的可靠“档案馆”。海洋放射性核素的本底基线存在复杂的时空演化特征。然而,海洋放射性核素实际观测数据的时间和空间分辨率均十分欠缺,特别是在我国广大海域。冰芯、树轮、黄土、沉积柱、珊瑚礁是记录不同时空尺度环境变化的天然档案馆。特别指出,海洋中珊瑚礁具有年轮清晰、分辨率高、连续记录、固定生长等优点[48],是记录海洋放射性核素本底基线时空演化历史和追踪人类核活动历史的十分理想的档案馆[29, 49]。健全海洋放射性核素的基准/标准限值。活度限值是海洋核安全评估和管理的重要依据。出于人类健康的需求,国际上更多关注饮用水和食品中放射性核素的活度限值[40]。海洋为人类提供丰富的生物资源和重要的生态服务功能。出于海洋中非人类物种的保护与人类健康的综合需求,未来我国需要加强海洋中非人类物种的放射性核素基准/标准限值研究和制定工作[39]。探索长期低剂量生物辐射效应与风险。国际上对于低剂量辐射效应和危害仍然存在争议[50],较为缺乏实验室内受控观测和流行病学现场调查等证据[51],直接影响人类和非人类物种的剂量限值规定和管理。此外,海洋生物辐射剂量模型的构建和计算,还涉及代表生物的筛选、海洋生物富集和海洋食物链/网的传递等过程。在巨大且复杂的海洋生态环境系统中,这些过程又往往存在较大的物种差异性和海域特异性。因此,在海洋核安全技术与管理需求背景下,亟需开展适用于我国海域现状与发展需求的长期低剂量海洋生物辐射效应与风险研究。作为海洋大国,新时代中国明确提出加快建设海洋强国。海洋核安全是我国维护国家安全和人民生命健康、深度参与全球海洋治理以及构建海洋命运共同体的关键领域,亟需投入与滨海核电发展及应对海上核风险能力需求相匹配的研发力度, 以保障新时期我国海洋核安全,进一步丰富和完善现代化核安全监管体系,践行全面推进美丽中国建设需求。参考文献:[1] 于大鹏, 梁晔, 徐晓娟, 等. 我国核与辐射安全现状研究与探讨 [J]. 核安全, 2022, 21 (4): 12-18.[2] Sverdrup K, Kudela R. Investigating oceanography, 4th edition [M]. New York: McGraw Hill, 2023.[3] Buesseler K O. Fukushima and ocean radioactivity [J]. Oceanography, 2014, 27 (1): 92-105.[4] Lin W H, Mo M T, Yu K F, et al. Establishing historical 90Sr activity in seawater of the China seas from 1963 to 2018 [J]. Marine Pollution Bulletin, 2022, 176: 113476.[5] Smith J T, Wright S M, Cross M A, et al. Global analysis of the riverine transport of 90Sr and 137Cs [J]. Environmental science & technology, 2004, 38 (3): 850-857.[6] Lin W H, Chen L Q, Yu W, et al. Radioactive source terms for the Fukushima nuclear accident [J]. Science China: Earth Sciences, 2016, 59 (1): 214-222.[7] Casacuberta N, Smith J N. Nuclear reprocessing tracers illuminate flow features and connectivity between the arctic and subpolar north atlantic oceans [J]. Annual Review of Marine Science, 2022, 15(1): 203-221.[8] Song J M. Biogeochemical processes of biogenic elements in China marginal seas [M]. Berlin: Springer, 2010.[9] 黄彦君, 沙向东, 祝兆文, 等. 压水堆核电厂流出物监测的关键核素研究 [J]. 核安全, 2020, 19(5): 27-34.[10] 王茂杰, 郝丽娜, 徐晋, 等. 核电厂流出物监督性监测实践 [J]. 核安全, 2021, 20(3): 12-16.[11] Machida M, Iwata A, Yamada S, et al. Estimation of temporal variation of tritium inventory discharged from the port of Fukushima dai-ichi nuclear powerplant:analysis of the temporal variation and comparison with released tritium inventories from Japan and world major nuclear facilities [J]. Journal of Nuclear Science and Technology, 2023, 60(3): 258-276.[12] 林武辉, 余克服, 杜金秋, 等. 日本福岛核废水排海情景下海洋生态环境影响与应对 [J]. 科学通报, 2021, 66(35): 4500-4509.[13] Wang F F, Men W, Yu T, et al. Intrusion of Fukushima-derived radiocesium into the East China Sea and the Northeast South China Sea in 2011–2015 [J]. Chemosphere, 2022: 133546.[14] Smith J, Marks N, Irwin T. The risks of radioactive wastewater release [J]. Science, 2023, 382(6666): 31-33.[15] 林武辉, 张翊邦, 余克服, 等. 2023年日本福岛核污水站在历史的十字路口 [J]. 环球财经, 2023, 267(2/3): 46-50.[16] Zhao C, Wang G, Zhang M, et al. Transport and dispersion of tritium from the radioactive water of the Fukushima daiichi nuclear plant [J]. Marine Pollution Bulletin, 2021, 169: 112515.[17] Liu Y, Guo X-Q, Li S-W, et al. Discharge of treated Fukushima nuclear accident contaminated water: macroscopic and microscopic simulations [J]. National science review, 2022, 9(1): 209.[18] Hu Q-H, Weng J-Q, Wang J-S. Sources of anthropogenic radionuclides in the environment: a review [J]. Journal of Environmental Radioactivity, 2010, 101(6): 426-437.[19] 林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展 [J]. 中国环境科学, 2015, 35(1): 269-276.[20] Waters C N, Syvitski J P M, Ga&lstrok uszka A, et al. Can nuclear weapons fallout mark the beginning of the anthropocene epoch? [J]. Bulletin of the Atomic Scientists, 2015, 71(3): 46-57.[21] Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern baltic sea ecosystem [J]. Oceanologia, 2013, 55(3): 485-517.[22] IAEA. Worldwide marine radioactivity studies (WOMARS): Radionuclide levels in oceans and seas [M]. Vienna: IAEA, 2005.[23] He P, Aldahan A, Possnert G, et al. A summary of global 129I in marine waters [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 294: 537-541.[24] Wu J W, Sun J, Xiao X Y. An overview of current knowledge concerning the inventory and sources of plutonium in the China seas [J]. Marine Pollution Bulletin, 2020, 150: 110599.[25] Lin W H, Ma H, Chen L Q, et al. Decay/ingrowth uncertainty correction of 210Po/210Pb in seawater [J]. Journal of Environmental Radioactivity, 2014, 137: 22-30.[26] Lin W H, Chen L Q, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean [J]. Scientific Reports, 2016, 6: 27069.[27] Lin W H, Feng Y, Yu K F, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway [J]. Marine Geology, 2020, 424: 106157.[28] Lin W H, Yu K F, Wang Y, et al. Assessing the feasibility of the 228Th/228Ra dating method for young corals (10 a) by gamma spectrometry [J]. Quaternary Geochronology, 2021, 61: 101125.[29] 林武辉, 张帆, 余克服, 等. 人工放射性核素在珊瑚岛礁系统中的富集与评估 [J]. 地球科学进展, 2023, 38(3): 286-295.[30] Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results [J]. Journal of environmental radioactivity, 2005, 81(1): 63-87.[31] Povinec P P, Hirose K, Honda T, et al. Spatial distribution of 3H, 90Sr, 137Cs and (239,240) Pu in surface waters of the Pacific and Indian Oceans--GLOMARD database [J]. Journal of environmental radioactivity, 2004, 76(1): 113-137.[32] Aoyama M, Hirose K. Artificial radionuclides database in the Pacific Ocean: HAM database [J]. The Scientific World Journal, 2004, 4: 200-215.[33] Inomata Y, Aoyama M, Hirose K. Analysis of 50-y record of surface 137Cs concentrations in the global ocean using the HAM-global database [J]. Journal of Environmental Monitoring, 2009, 11(1): 116-125.[34] Inomata Y, Aoyama M. Evaluating the transport of surface seawater from 1956 to 2021 using 137Cs deposited in the global ocean as a chemical tracer [J]. Earth Syst. Sci. Data, 2023, 15(5): 1969-2007.[35] 李培泉. 海洋放射性及其污染 [M]. 北京: 科学出版社, 1983.[36] 蔡福龙. 海洋放射生态学 [M]. 北京: 原子能出版社, 1997.[37] 李树庆, 祝汉民, 吴复寿, 等. 中国近海放射性水平 [M]. 北京: 海洋出版社, 1987.[38] 唐森铭, 商照荣. 中国近海海域环境放射性水平调查 [J]. 核安全, 2005, 4(2): 21-30.[39] 杜金秋, 王震, 林武辉, 等. 放射性核素水环境质量标准研究进展 [J]. 生态毒理学报, 2018, 13(5): 27-36.[40] Bradley F J, Pratt R M. Regulations. Poschl M, Nollet L M L. Radionuclide concentrations in food and the environment [M]. Boca Raton: CRC Press. 377-410, 2007. [41] Brown J, Alfonso B, Avila R, et al. The ERICA tool [J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371-1383.[42] 林武辉, 陈立奇, 余雯, 等. 海洋生物辐射剂量评价方法及应用 [C]. 福建平潭: 福建省海洋学会2014年学术年会暨福建省科协第十四届学术年会, 2014: 326-334.[43] TEPCO. Analysis of seafood [EB/OL]. (2023-6-5) [2023-6-13]. https://www.tepco.co.jp/decommission/data/analysis/pdf_csv/2023/2q/fish01_230605-j.pdf.[44] IAEA. Marine radioactivity information system (MARIS) [EB/OL]. (2014-12-28) [2023-11-13]. https://maris.iaea.org/explore.[45] NRA. Readings of seawater monitoring in off-shore sea area [EB/OL]. (2023-11-7) [2023-11-13]. https://radioactivity.nra.go.jp/en/list/292/list-1.html.[46] TEPCO. Analysis of radioactive substances around Fukushima daiichi nuclear power plant [EB/OL]. (2014-7-31) [2023-11-13]. https://www.tepco.co.jp/nu/fukushima-np/f1/smp/indexold-j.html. [47] METI. Progress status reports [EB/OL]. (2023-10-26) [2023-11-13]. https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/progress_status.html.[48] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应 [J]. 中国科学: 地球科学, 2012, 42(8): 1160-1172.[49] 林武辉, 何建华, 余克服, 等. 海洋中90Sr:日本周边海域与南海的对比 [J]. 海洋学报, 2020, 42(10): 47-58.[50] Sutou S. Low-dose radiation effects [J]. Current Opinion in Toxicology, 2022, 30: 100329.[51] Lowe D, Roy L, Tabocchini M A, et al. Radiation dose rate effects: what is new and what is needed? [J]. Radiation and Environmental Biophysics, 2022, 61(4): 507-543.
  • 宜春烟花实验室满足欧洲烟花检测条件
    3月25日,欧盟烟花认可实验室考察团一行就烟花测试合作对宜春检验检疫局烟花实验室进行了专门访问,详细了解实验室在烟花药剂成分和安全性能检测方面的能力,认为实验室基本满足欧洲烟花标准的检测条件。  今年7月欧盟烟火指令将正式实施,要求所有出口到欧盟国家的烟花爆竹须加贴“CE”标志(欧洲共同市场安全标志)才能进入欧盟市场,企业将为此付出巨额的药剂检测费用。欧盟烟花认可实验室是欧盟授权指定的烟花测试机构,宜春检验检疫局烟花实验室将积极开展与该实验室的沟通联系,争取早日成为其合作伙伴,以降低企业费用,促进我省烟花爆竹出口。
  • Nature子刊:原位拉曼光谱用于电解质演化捕捉
    在目前的电池研究工作中迫切需要改进的分析工具来识别锂离子电池的退化和失效机制。然而,了解并最终避免这些有害机制需要持续跟踪不同电池组件中的复杂电化学过程。为了达到这样的目的,剑桥大学Tijmen G. Euser教授团队报导了一种原位光谱方法,该方法能够在具有石墨阳极和LiNi0.8Mn0.1Co0.1O2阴极的锂离子电池的电化学循环过程中监测碳酸盐基液体电解质的化学性质。通过在实验室级别的软包电池内嵌入空心光纤探针,我们通过无背景拉曼光谱证明了液体电解质物质的演化。光谱测量的分析揭示了碳酸盐溶剂和电解质添加剂的比例随电池电压的变化,并在跟踪锂离子溶剂化动力学方面表现出极大的潜力。原位电解质监测可以促进研究复杂的化学途径和实际电池中化学物质之间的串扰现象。一个关键的例子是在没有初始碳酸亚乙烯酯(VC)的样品中出现了亚乙烯基拉曼谱带,这表明虽然亚乙烯基物质在阳极被消耗,但它们也在循环过程中通过碳酸亚乙酯(EC)氧化产生。本工作所提出的操作方法有助于更好地理解当前锂离子电池的局限性,并为研究不同电化学储能系统中的降解机制拓展了前景。原位拉曼如何表征电解质演化过程测试装置:图1. 具有空心光纤耦合拉曼分析设备的锂离子软包电池在拉曼装置中(图 1a),10-15 厘米长的空芯光纤的近端被封装在一个定制的微流体单元中,允许光线和流体进入光纤(图 1b, c)。纤维的远端安装并密封在软包电池的电极之间。使用两层单层PE聚合物隔膜(MTI)来避免纤维和电极之间的直接接触(图1d)。简化的空芯光纤(图 1c)经过优化,可在充满电解质时引导拉曼泵浦光和信号波长范围内的光。光纤的 36 µm 宽纤芯区域既可用作波导通道,又可用作微流体通道,其内部体积低至 30 nL/cm。自动注射泵用于根据需要从软包电池中取样和注入电解液。使用底部填充的 10x 0.3 NA 显微镜物镜将拉曼泵浦激光(785 nm 连续波,图 1a)发射到填充电解质的光纤芯中。拉曼信号沿光纤的长度产生,一部分以反向传播的光纤模式被捕获,并被引导回邻近的光纤端面。产生的拉曼光的 CCD 图像(图 1c 中的右侧图像)显示大部分拉曼光是在中空光纤芯内产生和引导的。每次光学测量后,电解质样品被注入回软包电池中。由于需要避免任何电池扰动,需要 22 分钟的单次采样间隔(在 C/10 C 速率下大约是完全放电时间的 4%)。定期重复采样以达到在较长时间内监测电解质的目的(典型的充电-放电形成周期需要超过 10 小时)。测试结果分析:图2. 空心光纤中的在线拉曼测量。(a) 从光纤端面发出的拉曼光(左,图像比例尺为 50 µm)和光谱色散图像(右) (b) 在连续样品渗透期间跟踪的拉曼光谱。红色虚线表示泵何时开启;t1-a表示样品流体到达纤芯的时间。 白色虚线表示泵何时关闭,然后是样品注射器的开关。水平实线表示获取 c 中所示光谱的时间 (c) 得到不同溶剂混合物的光谱。与电池化学相关的突出显示的拉曼谱带是 893 cm-1处的碳酸亚乙酯呼吸模式(深红色虚线)、740 cm-1处的 PF6 阴离子模式(绿色虚线)和以 1628 cm-1为中心的碳酸亚乙烯酯 -HC = CH- 谱带(不存在于这些溶液和光谱中)。阴影区域表示与锂溶剂化机制相关的 1700-1850 cm-1处的 EC 和 EMC 带, 插图 i 展示了由 IPA 的拉曼强度(819 cm-1)监测的样品交换时间和 EMC 骨架(~900 cm-1)模式(c中的箭头)。插图 ii 显示了 1700-1850 cm-1处的 EC 和 EMC 波段。纤维芯内的动态交换和拉曼光谱首先在没有软包电池的情况下针对一系列电解质成分和典型溶剂进行了非原位测试(图 2)。光谱仪 CCD 记录近端面图像和光谱分散的光纤图像(图 2a)。在整个实验过程中,以每个光谱 20 秒的积分时间连续记录光谱。为了能够同时监测多个拉曼波段,我们在光谱范围、分辨率和信号强度之间进行了最佳权衡(图 2b)。最初,纤维填充有异丙醇 (IPA),其拉曼光谱如图 2b-c 所示。更换注射器以交换样品,泵流速设置为 5 µL/min (0.083 µL/s) 以渗入纤维芯。一旦拉曼信号稳定,注射泵就会关闭。 样品交换后系统的流体稳定时间目前约为 400 秒(对应于约 33 µL 的流量,图 2c)。此处依次渗透到纤维中的样品是 IPA、碳酸甲乙酯 (EMC)、碳酸亚乙酯 (EC) 和 EMC 的 3:7 混合物,以及商用电池级液体电解质溶液 LP57(即 EC 中的 1.0 M LiPF:EMC 3:7 v/v)。对于每个样品,在 410 和 2182 cm-1 之间获取相对宽带的拉曼光谱(图 2c)。拉曼光谱清晰显示了各种电解质成分特征。 首先,在 LP57 电解质中可以清楚地看到 PF6- 阴离子拉曼谱带在 740 cm-1 处的光谱位置。PF6- 峰在 ~720 cm-1 处与 EC 骨架模式部分重叠。检测 PF6- 很有意义,因为它的分解是基于一种发生在 NMC811 等富镍正极的表面的降解机制。此外,PF6- 很容易与电解质分解反应中产生的水发生反应。 其次,893 cm-1 处的 EC 呼吸模式与分子的环结构完整性有关。最后,1700-1850 cm-1 之间的阴影(宽紫色)带对应于 EMC 和 EC/VC 中羰基(C = O)键的拉曼峰,其光谱位置随锂离子溶剂化动力学而变化。此外,还标记了(弱)光谱带在 1628 cm-1(灰色虚线)处的预期位置,这是由于亚乙烯基 –HC = CH 添加剂 VC 的振动。因此,通过在装置中使用低密度衍射光栅,我们可以同时监测许多重要的电解质成分。图3. 循环过程中的电池电解质拉曼光谱演变。(a) 在 LiNi0.8Co0.1Mn0.1O2(NMC811) - 石墨锂离子软包电池的形成周期期间操作拉曼光谱,其电解质包含 LP57 + 2 wt.% VC。将电池恒流充电至 4.3 V,恒电位保持在 4.3 V,然后放电 (b) 拉曼光谱演化显示电池电解质的一系列拉曼模式中空纤维嵌入由 LiNi0.8Co0.1Mn0.1O2 (NMC811) 阴极和石墨阳极组成的软包电池中,以监测其在循环期间电解质的化学变化。每个圆形电极的有效面积为 1.54 cm2(直径 14 mm),并被一层聚合物隔膜覆盖。HC 纤维放置在两个分隔层之间,以保护电极表面免受纤维的机械损伤(图 1d)。将电池密封并填充 100 µL LP57,并添加 2 wt.% VC。尽管 HC 纤维在两个隔膜之间产生了微小的间距,但总电极表面与电解质的体积比 (~15 cm2/mL) 仍然非常接近于研究环境中常规组装的软包电池。将电池恒流充电至 4.3 V,在 4.3 V 下恒电位保持 1 小时,最后以 C/10 (18.5 mA g-1NMC) 的循环速率放电至 3.5 V。为确保在纤维芯中进行完全的样品交换,每 22 分钟从电池中提取 24 µL 体积的微量样品(大约是内部纤维体积的 50 倍),通过纤维内拉曼光谱进行分析,然后重新注入软包电池。我们从EC分子从正极到负极的穿过隔膜的扩散时间(td)来监测电极过程。假设聚合物隔膜的曲折度为 2.5,液体扩散系数为 10-6 cm2/s,这导致分子从一个电极到另一个电极的扩散时间为 td = 445 s(~7 分钟)。与之前的实验一样,我们使用宽光谱窗口(640-2340 cm-1,粗光栅)同时跟踪一系列化学物质。在第一个电化学循环期间,拉曼光谱的演变被测量为电池电压(红色曲线)的函数,在此期间预计会由于 EEI 形成而发生许多化学变化(图 3a)。在 PF6-、EC 呼吸模式和 EMC 和 EC/VC 中的羰基 (C = O) 键的谱线中观察到清晰的特征,如图 2b 所示。此外,在~1628 cm-1 处检测到(弱)亚乙烯基-HC = CH-拉曼谱带。在整个循环过程中收集完整的拉曼光谱可以对电解质盐和溶剂及其相互作用进行详细分析。总结:循环过程中碳酸酯溶剂的C=O拉伸模式相关的拉曼光谱变化,以及亚乙烯基-(C=C)双键浓度的变化等信号都可以由原位拉曼装置检测得到。对这些信号的获取和分析有助于研究电解质中的溶剂和盐成分在电池循环中的变化,揭示电池性能降解的机理,对开发长寿命的电池系统具有非常重要的意义。参考文献:Ermanno Miele et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 2022.DOI: 10.1038/s41467-022-29330-4
  • 力学所孙成奇团队在微结构和损伤演化的准原位EBSD观测研究中取得新进展
    疲劳研究的一个核心问题是疲劳裂纹萌生和损伤演化的微观过程。因此,量化和表征不同取向晶粒/晶界的变形/损伤与循环周次之间的关系,对于揭示疲劳机理、建立准确的疲劳寿命模型具有极其重要意义。然而,现有的原位扫描电子显微镜(Scanning Electron Microscope, SEM)或原位电子背散射衍射(Electron Backscattered Diffraction, EBSD)方法,难以实现大载荷、高频率、不同应力比等条件下微结构和损伤演化研究。 力学所非线性力学国家重点实验室微结构计算力学课题组孙成奇研究员等将常规试验机(如MTS试验机)与EBSD观测技术相结合,发展了一种可以实现大载荷、高频率、不同应力比下微结构和损伤演化的准原位EBSD观测方法,并研究了深海载人潜水器耐压舱用钛合金和增材制造钛合金在(保载)疲劳载荷下的变形和损伤行为。 研究发现,α晶粒中是否能形成孪晶取决于晶粒的晶体学取向和加载条件,一定程度的保载应力促进可以发生孪生的α晶粒中孪晶的形成(图1a);观测到随着循环周次增加α晶粒中取向差增大和亚晶粒的形成(图1b),以及α晶粒中由于孪生而形成亚晶粒的过程(图1c),为循环载荷下位错滑移和孪晶的形成都可以诱导晶粒的细化提供了直接证据。 研究也表明,一定程度的最大应力保载有利于脆性微裂纹的形成,但如果保载应力高或保载时间长,保载引起的塑性变形会抑制脆性微裂纹的增长,并诱导延性破坏模式。该研究从微观尺度解释了保载应力和保载时间不同而导致的不同失效机制。     图1 a: 发生孪晶的α晶粒c轴与施加轴向应力之间夹角和柱面滑移施密特因子(Schmid Factor, SF)关系; b:α晶粒内取向差变化和亚晶粒形成;c: 孪晶增长和亚晶粒形成相关研究得到国家自然科学基金基础科学中心“非线性力学的多尺度力学研究”项目(11988102)等支持。部分研究结果与北交大合作完成,主要研究成果发表在Int. J. Fatigue 2023, 176: 107897;Int. J. Fatigue 2023, 175: 107821
  • 我国科学家发现超临界地质流体演化新过程和机制
    流体就像地球内部的“血液”,对于物质和能量的传输发挥重要作用。尤其是在地球深部的高温高压条件下,所形成的超临界地质流体,具有复杂的成分和结构、超常规的物理化学活性,可以促进地球深部物质循环,迁移元素富集成矿。然而超临界流体实验研究难度很高,目前国内外对超临界流体的演化行为仍严重缺乏了解。  在国家重点研发计划“变革性技术关键科学问题”重点专项的支持下,中国科学技术大学倪怀玮教授团队利用水热金刚石压腔原位观测了硅酸盐-水体系超临界流体随温度和压力降低而发生的相分离过程,首次发现超临界流体旋节分解和熔体网络形成机制,旋节分解机制可以极大地提高熔体和流体相分离的效率,熔体网络结构有利于矿物结晶时同时捕获不同比例的硅酸盐熔体和富水流体形成一系列成分有别的流体包裹体,揭示了一种全新的超临界流体演化机制,对岩浆热液矿床的形成具有重要指导意义。
  • 春节中的化学:烟花何以五彩缤纷
    一、爆竹中的化学  中国民间有&ldquo 开门爆竹&rdquo 一说。即在新的一年春节到来之际,家家户户开门的第一件事就是燃放爆竹,以&ldquo 噼里啪啦&rdquo 的爆竹声除旧迎新。春节燃放爆竹的同时,民间还喜欢放烟花。烟花没有爆竹清脆的声响,但却有变幻无穷、色彩纷呈的图案。绚丽多彩的烟花与声声爆竹相辉映,将节日的夜空装点得热闹非凡。  我国人民燃放烟花爆竹已有二千多年历史。每逢喜庆日子,人们为了增加节日的欢乐气氛,燃放烟花爆竹。  爆竹的主要成分是什么?烟花在空中爆炸时,为什么会绽放出五彩缤纷的火花?燃放烟花爆竹可以增加节日的喜庆气氛,但是近几年来,我国许多大、中城市相继做出禁止燃放烟花爆竹的决定。这是为什么呢?  爆竹的主要成分是黑火药,含有硫磺、木炭粉、硝酸钾,有的还含有氯酸钾。制作烟花时是在火药中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色,所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  当烟花爆竹点燃后,木炭粉、硫磺粉、金属粉末等在氧化剂的作用下,迅速燃烧,产生二氧化碳、一氧化碳、二氧化硫、一氧化氮、二氧化氮等气体及金属氧化物的粉尘,同时产生大量光和热、而引起鞭炮爆炸。纸屑、烟尘及有害气体伴随着响声及火光,四处飞扬,使燃放现场硝烟弥漫,硫氧化物、氮氧化物、碳氧化物等严重污染空气。这些气体对人的呼吸道及眼睛都有刺激作用。燃放鞭炮不仅污染空气,飞扬的纸屑、烟尘落在地面上,还会影响清洁卫生。同时爆炸声如雷贯耳,据测定单个闪光雷爆炸时,其噪声至少在130分贝(dbA)以上,成为噪声公害。此外,每逢春节,由于燃放鞭炮而引起火灾,炸伤手臂、面部或眼睛的事故屡见不鲜。因此,禁止燃放烟花爆竹,对于保护环境,维护人民的正常生活秩序,都是十分有利的。  二、五彩缤纷的烟花  过春节时,家家户户都喜欢烟花。烟花是由筒壳体(纸、塑料、薄金属片等材料制成),烟火剂,封口物质,附件(如尾翼底座、横担、轴、杆),点火装置(如引线、擦火板、电点火头等)组成。它利用烟火剂燃烧或爆炸时产生的光、色、音响、气动、发烟等效应,使烟花成为一种供观赏品。  烟花是在火药(主要成分为硫黄、炭粉、硝酸钾等)中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色(即&ldquo 焰色反应&rdquo ),所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  除了金属和金属化合物外,人们还会在烟花里加入不同剂量的氧化剂、助光剂和黏合剂。氧化剂在燃烧时会产生大量氧气,起到助燃和使烟花颜色更加鲜艳的作用 助光剂能大大提高烟花的亮度 黏合剂则用来将粉末状的化合物组成大小不一的光剂颗粒。如果把这些颗粒按一定的规则排列,就可以制成不同图案的烟花。如&ldquo 向阳花&rdquo 中间一圈放上发黄色光的颗粒,周围放上发绿色光的颗粒,到天空爆炸后,就会形成一朵绿叶扶衬的向日葵,美丽极了。  烟花的颜色是由于不同金属灼烧,发生焰色反应颜色不同造成的。烟花是利用各种金属粉末在高热中燃烧而构成各种夺目的色彩的。使用不同金属就能产生不同效果,发出不同颜色的光芒  焰色反应:  钠(Na):黄 锂(Li):紫红 钾(K):浅紫 铷(Rb):紫  铯(Cs):紫红 钙(Ca):砖红色 锶(Sr):洋红 铜(Cu):绿  钡(Ba):黄绿  烟花爆竹的种类  按燃烧效果不同,可将烟花产品分为以下十类:  (1)喷花类:燃放时以喷射火苗、火花为主的产品   (2)旋转类:燃放时烟花主体自身旋转的产品  (3)升空类:燃放时,由定向器定向升空的产品   (4)吐珠类:从同一筒体有规律地发射多珠的产品   (5)线香类:用装饰纸或薄纸筒裹装烟火药或在铁丝、竹杆、纸片上涂敷烟火药形成的线香状产品   (6)地面礼花类:放置在地面,从筒体内发射并在空中爆发出焰药效果的产品   (7)烟雾类:产生烟雾效果为主的产品   (8)造型玩具类:产品外壳制成多种形状,燃烧时或燃烧后能模仿所造形象或动作的产品   (9)小礼花弹类(直径不大于38mm):弹体从发射管中发射到空中后,能爆发出各种花型图案或其他效果的产品。
  • 刺突糖蛋白结构揭示新冠病毒演化新线索,或助疫苗设计
    p style="text-align: justify line-height: 1.75em text-indent: 2em "施普林格· 自然旗下专业学术期刊《自然-结构和分子生物学》最新发表一篇病毒学研究论文称,通过对新型冠状病毒(SARS-CoV-2)及其近缘蝙蝠病毒RaTG13的刺突糖蛋白strong(刺突糖蛋白可以让病毒与细胞结合并进入细胞)/strong结构进行比较研究,为进一步了解新冠病毒刺突的演化过程提供了信息,这对疫苗设计或具借鉴意义。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/b316467b-3f03-46b6-b0df-d15b9cd8871f.jpg" title="111.png" alt="111.png" width="600" height="413" border="0" vspace="0"//pp style="text-align: justify line-height: 1.75em text-indent: 0em "  该论文指,研究人员认为蝙蝠冠状病毒可能是新冠病毒的演化前体,此前研究发现蝙蝠病毒RaTG13与新冠病毒的亲缘关系是已知关系中最近的。不过,尚不清楚新冠病毒如何演化到可以感染人类,也不清楚它是通过某个中间宿主还是直接传播给了人类。/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  论文通讯作者、英国伦敦弗朗西斯· 克里克研究所病毒学研究专家Antoni Wrobel和Donald Benton及其同事,通过strong比较新冠病毒/strong和strongRaTG13的刺突糖蛋白/strong发现,strong两者虽然结构相似/strong,strong但新冠病毒刺突糖蛋白的形式更稳定,与人受体蛋白ACE2的亲和力要高出1000倍左右。/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  他们还发现新冠病毒刺突上的strong弗林蛋白酶切位点可能对病毒有利/strong,因为strong它可能会促进病毒与细胞上受体的结合。/strong基于这些观察结果,strong论文作者认为与RaTG13相似的蝙蝠病毒不太可能感染人类细胞,这也支持了新冠病毒是不同冠状病毒基因组重组后演化而来的理论。/strong/pp style="text-align: justify line-height: 1.75em text-indent: 0em "  论文作者指出,他们进行研究的新冠病毒刺突糖蛋白分辨率高,几近完整,比之前报道的结构有更多的外部环(loop),这对于疫苗研发设计或许具有重要意义。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "strong关于刺突糖蛋白(spike glycoprotein)/strong/pp style="text-align: justify line-height: 1.75em text-indent: 2em "刺突即病毒包膜的糖蛋白。有些病毒除了具有包膜外,还有包膜突起。病毒包膜突起的化学本质多为糖蛋白,其功能各不相同。有的是病毒粒子的吸附蛋白,与病毒的吸附有关;有的是病毒的融合蛋白,可以促进病毒包膜与细胞膜融合,与病毒的侵入有关。/pp style="text-align: justify line-height: 1.75em text-indent: 2em "关于论文《SARS-CoV-2 and bat RaTG13 spike glycoproteinstructures inform on virus evolution andfurin-cleavage effects》,点击附件了解更多。/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202007/attachment/5b4a8287-977a-42ff-8b2d-858c8fe5345c.pdf" title="SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf"SARS-CoV-2 and bat RaTG13 spike glycoprotein.pdf/a/ppbr//p
  • 别再怪过年禁放烟花爆竹了~烟花爆竹一响,二氧化硫、PM2.5瞬间爆表!
    春运已正式开启,春节的脚步也越来越近。于是,近期又有全国多个城市新加入 “禁放烟花爆竹的阵营”,还有一部分本来禁燃限燃的城市在原来规定上进一步“加码”。 如石家庄三环以内禁止销售和燃放烟花爆竹;日照新发布城市建成区内禁止燃放烟花爆竹的声明......烟花爆竹确实会导致严重的空气污染问题,这是不争的事实。济南市环境监测中心站曾做过相关测试。测试结果表明,燃放前区域空气中细颗粒物(PM2.5)浓度为0.088微克/立方米,可吸入颗粒物(PM10)浓度为0.16微克/立方米。燃放后PM2.5和PM10 最高浓度分别飙升100倍和80倍。 烟花爆竹的制作原料往往含有硫、硝酸钾、木炭粉等,为了燃放时颜色各异,还掺有镁、铅等重金属。烟花爆竹的燃放会产生大量二氧化硫、氮氧化物、烟尘等颗粒物,且城市中建筑物的密集会导致空气流通不畅。燃放烟花爆竹形成的烟雾不能迅速扩散,大量二氧化硫、氮氧化物、二氧化碳等气体以及烟尘颗粒物、硫化钾、金属氧化物等污染因子会悬浮滞留在空气中。 尤其是PM2.5浓度会大幅攀升,大家长时间呼吸到含有大量有害物质的空气,刺激呼吸道黏膜,伤害到肺组织,容易引起或诱发支气管炎、气管炎、肺炎、肺气肿等疾病,特别是对老年人、儿童及体质较弱者影响较大。禁放烟花爆竹无疑是大气污染防治的重要举措之一,然而由于冬季气温较低,地面逆温频率增加,以及煤炭等的消耗量比较大,使二氧化硫等污染物在近地层不断积累,导致一次排放和二次转化成的PM2.5浓度较高。所以想要营造一个“清净”的过节氛围,必要的适时的环境监测少不了。冷杉 4000 厂界/厂区挥发性有机物(非甲烷总烃、苯系物、恶臭硫化物、气态污染物)在线监测系统,完全自主研发,性能指标达到并超越国际领先水平,具有超高的系统稳定性和安全可靠性,测量结果实时准确,且维护少,运行成本低。该系统非常适用于监测园区、厂区或环境中二氧化硫、氮氧化物、PM2.5、二氧化氮臭氧、总烃、甲烷、非甲烷总烃、苯系物、硫化氢、一氧化碳、氨气、一氧化氮、PM10等一种或多种化合物。系统组成预处理系统采样总管、机柜(正压防爆或常规)在线分析仪非甲烷总烃、苯系物、有机硫、二氧化硫、氨气分析仪、一氧化碳分析仪、臭氧分析仪、M2.5/PM10控制系统及软件上位机工控系统、系统控制软件气源零气发生器、氢气发生器、空气发生器、氮气发生器标定系统标准气体、气体动态校准仪(选配)辅助监测气象参数系统介绍样气经多级过滤除尘,进入在线气相色谱仪,采用定量环或脱附管定量,通过阀切换进入色谱柱,将不同的目标污染物分离并依次进入氢火焰离子化检测器(FID)或火焰光度检测器(FPD),测定其污染物浓度。仪表测试结果将直接上传至系统上位机,并通过数采仪,上传至相关部门。 常规型 防爆型系统特点1标准化设计?符合国家标准规范要求?结构设计合理,可实现连续自动监测2运行稳定安全,数 据真实可靠?采样管线选用聚四氟乙烯、硼硅酸盐玻璃或耐腐蚀、惰性化材质,减少管路吸附造成的损失。?全管路保温伴热,避免高沸点烃类物质冷凝“积油”及部件腐蚀3无人值守、操作方便?具有自我保护功能,气源供应不足时,火焰熄灭,关闭氢气空气 ?自动恢复运行功能,开机、气源供应恢复或意外断电恢复后自动运行?具备自动校准功能,实现无人值守应用行业 》环境空气自动监控 》居民区大气污染自动监控 》企业边界大气污染自动监控 》职业环境空气污染自动监控 》重点产业园区空气污染自动监控 》工作场所空气污染自动监控
  • 烟花爆竹标准化技术委员会召开会议
    9月24日,国际标准化组织/烟花爆竹标准化技术委员会(ISO/TC264)第一次全体会议在湖南浏阳隆重召开。国际标准化组织(ISO)秘书处技术官员和来自10个国家和地区的相关专家代表出席会议。  ISO/TC264秘书处于去年9月落户浏阳。由中国承担秘书处工作,是我国传统优势产业在国际标准化进程中取得的又一显著成绩。    国际标准化组织/烟花爆竹标准化技术委员会(ISO/TC264)第一次全体会议在浏阳召开。     湖南省人民政府副省长何报翔(中右)亲切会见参加会议的各国代表。  在中国,燃放烟花爆竹已有千余年的历史。传承至今,烟花爆竹已不仅是一种商品,更已成为一种文化、文明的载体。与此同时,世界上也有150多个国家和地区有着在庆典、大型活动或节日燃放烟花爆竹的传统。目前,烟花爆竹的消费量每年增加15%。据统计,全球现有烟花爆竹生产企业7000多家,从业人员350多万人,市场销售规模每年近100亿美元,其中90%来自于中国。  随着烟花越来越深受世界各地人们的喜爱,烟花国际贸易不断增大,在烟花生产、储运和消费过程中也常常发生安全事故。为了加强对烟花爆竹的管理,减少事故的发生,虽然世界各地制定了多种多样的法规、条例和标准,但国际上没有统一的标准对烟花进行规范,也为国际贸易带来了更大的风险和成本。另一方面,非洲、南美等新兴国家的烟花标准体系没有建立起来,给消费安全带来巨大的隐患。这都给世界烟花产业发展造成了阻碍。  为此,此次会议主要议题是就ISO/TC264秘书处成立后的工作计划进行各方磋商和讨论确定,并对《烟花爆竹通用语》、《烟花爆竹分类》、《烟花运输危险性定级试验方法》、《烟花运输危险性定级程序》四个国际标准提案草案进行讨论。  国家标准化管理委员会副主任于欣丽表示,作为ISO大家庭中的一员,中国积极推广国际标准化新理念,坚持“系统管理、重点突破、整体提升”的工作方针,不断提升中国标准化工作水平。同时,中国将进一步加强国际合作与交流,与各国分享国际标准化经验与成果,积极履行中国在国际标准化组织中应尽的义务,更广泛地参与ISO的技术和管理工作,为ISO的可持续发展多做工作、多作贡献。如果此次建设的标准体系得到世界国家的支持,就可以在一定程度上消除贸易壁垒,减少生产成本,保障烟花消费安全,从而促进世界烟花产业的发展。  湖南省人民政府副省长何报翔在接见会议代表时指出,烟花能给人们带来快乐,能让人们的生活更加丰富多彩。此次ISO/TC264会议旨在促进烟花爆竹产业健康、有序、持续发展,进一步推动世界各国在烟花爆竹领域进行的标准化的交流与合作,为推动烟花的国际贸易、保障消费安全做出更大的贡献。同时,他希望与会专家把好的建议留下来,更好地发展烟花爆竹行业。  据了解,烟花爆竹标准化技术委员会的主要任务是尽快制定国际烟花爆竹系列标准。按规定,国际标准从提案到发布应在3年内完成,国际上通过时间最快的国际标准也要24个月,因此,烟花国际标准最快将于2014年推出。根据ISO/TC264工作计划草案,将在5年内建立烟花爆竹标准化基本体系。  目前,ISO/TC264共有法、德、日等14个参与国成员国和美、英、意等16个观察员成员国(地区)。随着ISO/TC264工作方案的逐步展开,以及其国际影响力的加强,会有更多国家申请加入国际标准化组织。  此次烟花爆竹标准化技术委员会(ISO/TC264)全体会议是该组织自5月10日秘书处成立后举办的首次会议,由国家标准化管理委员会主办,中共浏阳市委、浏阳市人民政府和湖南烟花爆竹产品安全质量监督检测中心具体承办。我国派出了以湖南省质监局副局长江涛为团长、烟花业界代表组成的共20名成员的中国代表团参加此次会议。
  • 国际首次!我科学家“拍摄”到光生电荷转移演化全时空图像
    太阳能高效利用是洁净能源研究的科学“圣杯”。10月12日,《自然》在线发表了一项关于太阳能光催化研究的重要进展。通过综合集成多种可在时空尺度衔接的技术,中国科学院大连化学物理研究所李灿院士、范峰滔研究员等科研人员,对光催化剂纳米颗粒的光生电荷转移进行了全时空探测,在国际上首次“拍摄”到光生电荷转移演化全时空图像。“这项研究为突破光解水催化剂电荷分离的‘瓶颈’,提供了新的认识和研究策略。”李灿强调。太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,有望为实现“双碳”目标提供重要的解决途径,受到全世界关注。“虽然在过去半个世纪的光催化研究中,人们在光催化剂制备和光催化反应研究方面做出了巨大努力,但由于光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,人们对该过程的基本机制一直不清楚。”李灿坦言。光催化过程中,光照射到催化剂上时,催化剂内部会产生光生电荷,即光生电子和空穴。光生电子和空穴需要从微纳米的催化剂颗粒内部分离,并转移到催化剂的表面,启动化学反应。光催化过程的核心科学挑战在于如何实现光生电荷的高效分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一过程的微观机制极具挑战性。“长期以来,我们团队一直在致力于解决这一问题。在这项研究中,我们在时空全域追踪了光生电荷在光催化剂纳米颗粒中分离和转移演化的全过程。”李灿说。为更好地了解纳秒范围内光生电荷在催化剂内部的分离机制,研究人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度可以从一个表面移动到另一个表面。随后,为了直接观察光生电荷的转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在催化剂表面含有缺陷的晶面。“通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜、瞬态表面光电压光谱和表面光电压显微镜等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,时空追踪电荷转移的能力将极大促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。“这是基础研究的重大突破。未来,这个成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。
  • 安全监管总局开展烟花爆竹安全检测工作
    国家安全监管总局办公厅关于开展  2010年度烟花爆竹药物安全检测工作的通知  安监总厅管三〔2010〕215号  各省、自治区、直辖市及新疆生产建设兵团安全生产监督管理局:  国家安全监管总局定于2010年12月中旬至2011年1月,组织开展2010年度烟花爆竹药物安全检测工作。现就有关事项通知如下:  一、国家安全监管总局委托国家安全生产宜春、醴陵和浏阳三个烟花爆竹检测检验中心,对9个省(区)的180家生产企业和270家批发经营企业(抽检计划见附件)进行烟花爆竹药物安全抽检(以下简称总局委托抽检)。受委托的检测机构要认真制定抽检工作计划,严格遵守工作纪律,抽调精干力量,切实做好抽检工作,并于2011年1月31日前完成总局委托抽检任务,2月15日前向国家安全监管总局(监管三司)报送抽检工作总结和检测结果报告。  二、在本次总局委托抽检工作中,有关抽检品种数量、抽样方法、检测程序、检测结果判定、复检备用样本提取和封存,以及受检企业对检测结果提出异议的受理和复检等方面的要求,仍按上一年度相关工作要求执行。  三、要将烟花爆竹产品流向登记和购销合同签订情况纳入本次总局委托抽检检查内容。发现企业未按规定进行流向登记的,由企业所在地安全监管部门依法处罚并限期整改。在批发经营企业抽检时,要将该批次产品的流向登记记录及购买合同复印件作为检测报告附件 企业不能提供任何该批次产品合法来源书面证明的,视为经营非法烟花爆竹产品。对在生产和经营企业中发现的含氯酸钾产品和非法产品,由企业所在地安全监管部门依法封存没收并处以罚款,并由检测机构将有关情况记入该批次产品检测报告。  四、接受总局委托抽检地区的省级安全监管局,要积极组织相关安全监管部门配合检测机构开展抽检工作,及时协调解决抽检过程中出现的有关问题。  五、各省级安全监管局要按照氯酸钾专项治理工作要求,认真做好2010年度烟花爆竹药物安全抽检工作,并于2011年2月15日前,将本地区年度抽检工作以及对违规企业处罚情况的总结报送国家安全监管总局(监管三司)。    国家安全生产监督管理总局办公厅
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 安全监管总局:我国将推进烟花爆竹产品环保化
    国家安全监管总局监管三司司长王浩水1月9日表示,将推进烟花爆竹产品环保化,推动整个行业的转型升级。  王浩水当日在国务院新闻办举行的新闻发布会上说,烟花爆竹是一种特殊商品,在中国有着很长的燃放传统。但这几年也暴露出烟花爆竹产品安全性不够,特别是对环保构成一定的影响。安监总局正在会同有关部门深入研究,推进产品的环保化。现在整个烟花爆竹的主产区正在研制低硫或者无硫产品,这样的产品燃放起来对环境的影响比较小。  他说,这几年我国修订了国家烟花爆竹燃放与质量的标准,这个标准对专业燃放和个人燃放提出了明确要求,使燃放产品能够确保燃放者的安全。同时,要进一步推动整个行业的转型升级,推进机械化、环保化、科技化、信息化,以此推动行业提升产品的转型,来保证燃放的安全和环保。  在烟花爆竹行业安全方面,王浩水说,烟花爆竹消费的季节性比较强。马上就要进入消费旺季,消费旺季之前的三个月是生产的旺季。安监总局会同公安部、工信部、交通运输部、质检总局和工商总局对今年安全生产形势进行了研判,联合提出了加强烟花爆竹旺季安全生产的要求。  他说,六个部门联合执法,组织了两轮安全生产检查。目前检查还在进行中。安监总局也对九个省区市进行了明查暗访,对经营过程进行了重点检查。安监总局将继续对重点地区进行检查和暗访,以有力措施确保今年烟花爆竹旺季的安全生产。文章转载自:中央政府门户网站
  • 南方科大郑智平/杨烽/张新瑜Adv. Sci.:原位环境电镜揭密液态金属与单原子催化剂动态演化
    南方科技大学杨烽团队与郑智平讲席教授/张新瑜团队展开合作,利用环境球差透射电子显微镜(ETEM)耦合原位谱学的方法,在高温反应环境中,从原子层次上揭示了过渡金属单原子和多孔碳载体的起源和动态演化过程,阐明了液态金属作为重要中间物种,在形成单原子催化剂和刻蚀多孔碳结构中起到的关键作用。从原子尺度研究催化剂在反应环境中的表/界面结构及其动态演变对合理设计催化剂和揭示反应机理具有重要意义。在金属催化剂合成过程中原位揭示金属物种的演化过程、认识金属在载体表面的行为是催化剂结构精确控制的关键。高温热解是一种常用来制备金属单原子催化剂的方法。然而,在高温(500-1000 ℃)以及含碳环境中,相比于贵金属(Pt、Rh、Ag等),非贵金属过渡金属(Fe、Co、Ni)纳米颗粒表现出更加复杂的动态行为,如:熔融、碳扩散、团聚、结构演化等,从而对理解和揭示这一类单原子催化剂制备过程中的结构控制机理带来挑战。另一方面,在高温(500-1000 ℃)过程中原子层次的原位表征也存在较大困难。原位环境球差透射电子显微镜(ETEM)可以从原子尺度研究工况条件下催化剂的结构和演化等过程,尤其是适合于组成、结构不均一体系的局域表征;耦合原位电子能量损失谱(EELS),还可以提供物种价态变化等信息;此外,具有原子分辨的原位球差暗场电镜也非常适合于热场环境中金属单原子的研究。作者利用原位ETEM,在200-1000℃追踪了金属有机框架化合物前驱体(Co/Zn-ZIF)热解产生Co单原子的过程。研究发现热解过程中Co金属物种表现为团聚、分散、再团聚、升华的动态过程(图1)。耦合原位EELS监测了该过程中元素的化学演变(图2),发现升温至500℃时金属Zn已经升华消失;框架中的C逐渐转化为石墨化碳;在700 ℃,碳载体中原子级均匀分散的Co与C相互作用,形成类似Co 2 C的配位结构。而这种Co-C相互作用相对较弱,在更高温度850℃重新团聚成金属Co纳米颗粒(图3)。ETEM研究表明在850℃金属Co纳米颗粒熔化,并在载体中流动、扩散,刻蚀出多孔/缺陷碳结构,同时与碳载体发生反应生成碳化物(CoC x )(如下式);Co (l) + C (ZIF) → CoC x + C 1−x (defect∕porous structure)在这一液态金属扩散过程中,伴随着金属Co原子被刻蚀后的C-N缺陷位点锚定,形成单原子结构(图3)。原位HAADF-STEM和非原位XAFS表征进一步证实了上述过程,研究发现单原子Co在多孔CN x 载体上具有良好的稳定性,而剩余的CoC x 颗粒在高温1000 ℃逐渐升华(图4)。这类单原子Co催化剂在乙基苯选择性氧化模型反应中展示出优异的催化性能和稳定循环性。该工作近期在线发表在 Advanced Science ,并被选入Hot Topic: Carbon, Graphite, and Graphene。论文第一作者是南方科技大学研究助理张璐瑶,共同第一作者是博士研究生李岩岩、博士后张蕾;通讯作者是南方科技大学的郑智平讲席教授、杨烽助理教授、张新瑜研究助理教授。原位电镜数据在南方科技大学皮米中心收集,XAFS数据在北京同步辐射光源收集。该工作得到了国家自然科学基金、北京分子科学国家研究中心、科技部重点研发计划、广东省和深圳市项目的资助。图1. 原位ETEM表征Co/Zn-ZIF在200-1000 ℃的热解过程和金属物种行为。图2. 室温-1000 ℃原位EELS表征前驱体热解形成金属单原子过程中的化学变化图3. 原位ETEM表征熔融Co纳米颗粒扩散和刻蚀碳载体形成多孔结构,单原子锚定示意图图4. 1000 ℃原位HAADF-STEM表征金属团簇升华与单原子的稳定性。WILEY论文信息:Direct Visualization of the Evolution of a Single-Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon DissolutionLuyao Zhang#, Yanyan Li#, Lei Zhang#, Kun Wang, Yingbo Li, Lei Wang, Xinyu Zhang*, Feng Yang*, Zhiping Zheng*Advanced Science
  • “烟花”来袭,“田保姆”温情护航!托普云农智慧应用护粮食生产安全
    今天上午,河山绿营蔬菜专业合作社负责人董金龙在基地内巡查时发现,基地内的蔬菜大棚受到台风“烟花”带来的风雨影响,部分大棚薄膜出现了破损。 发现这一情况后,董金龙拿出手机,打开“田保姆”为农服务应用,通过“田易保--一健报案”功能进行报案。接到报案后,桐乡市农业农村局立即会同人保财险通过“田保姆”平台对受损情况进行线上查勘、定损,确定大棚薄膜受损4.8亩,共计赔付5560元。这也是桐乡开展抗台防汛工作以来,“田易保”理赔完成的第一单。 “农业生产大多要靠天吃饭,多亏了‘田易保’,让我们在应对恶劣天气时多了一重保障,最大程度减少了损失。”已于今天拿到全部赔付款的董金龙欣慰地说道。 据了解,桐乡市为对标国家粮食安全战略方针,按照数字化改革的要求,围绕“种粮一件事”全流程,从种粮主体、社会化服务组织、政府部门三方面需求出发,找准粮补贴“一次通办”、粮食种植“一键托管”、农田信息“一码查询”、保险贷款“一指办理”等八大“小切口”,桐乡市政府委托托普云农全资子公司——浙江森特信息主导开发了“田保姆”为农服务应用。截至目前,在前期试运行阶段,已有43家农业社会化服务组织入驻,注册农户数量达39258人,并且成功在“浙里办”APP上架。 而董金农使用的“田易保”是以“田保姆”为依托,引入地理信息系统、光谱遥感技术、卫星定位等科技手段,建立作物地图和农户信息数据库,通过资源共享、数据整合、定期监测等后台管理,使农户可在移动手机端实现一键投保、一键报案、一键理赔的一款数字化保险服务产品。 “农户只需在‘田保姆’为农服务应用中点击‘田易保’的‘一健报案’提交理赔需求,并上传受损照片,保险公司结合前期卫星影像技术在线评估受损区域和受损程度,实现远程查勘、定损和赔付,给农户、镇、村和保险公司带来便捷。”据桐乡市农业农村局相关负责人介绍。截至目前,“田易保”共接到报案31件,涉及农业主体25家,总报损面积257亩,其中大部分为大棚设施受损。 今年以来,桐乡市“田保姆”为农服务应用还入选省委改革办“一本账”目录、省发改委数字社会首批“揭榜挂帅”应用以及省农业农村厅浙农码第一批“先行先试”应用。此前,21日上午,“田保姆”上线暨田易保、田易贷首单仪式在大麻镇田保姆服务中心举行。
  • X射线成像和光谱任务探测器即将发射 有助揭示宇宙的演化和时空结构
    XRISM艺术图。图片来源:欧洲空间局据报道,X射线成像和光谱任务(XRISM)探测器将于9月7日发射,以观测宇宙中能量最高的天体和事件,从而揭示宇宙的演化和时空结构。XRISM任务由日本宇宙航空研究开发机构、美国国家航空航天局和欧洲空间局(ESA)携手开展。  X射线源于宇宙中能量最强的爆炸和最热的地方,如包围宇宙的最大组成部分——星系团的超高温气体。XRISM可探测这种气体发出的X射线,以帮助天文学家测量这些星系团的总质量,从而揭示有关宇宙形成和演化的信息。  XRISM对星系团的观测也将使科学家深入了解宇宙如何产生和分布化学元素。星系团内的热气是宇宙历史上恒星诞生和死亡的残骸,通过研究这些气体发射的X射线,XRISM将发现气体中含有哪些元素,并绘制出宇宙中这些元素或金属的富集情况。  与此同时,XRISM将更仔细地观察单个X射线发射源,以探索基础物理学。该任务将测量来自密度极高的天体发出的X射线光,如位于一些星系中心的超大质量活跃黑洞,这将有助于科学家了解这些天体是如何扭曲周围时空的,以及以接近光速的速度喷出的粒子“风”在多大程度上影响宿主星系。
  • 国家重大科研仪器研制项目 “高温合金损伤演化非线性超声表征与分析仪器研制”启动暨实施方案论证会召开
    1月5日,由华东理工大学牵头,联合复旦大学协同攻关的国家重大科研仪器研制项目“高温合金损伤演化非线性超声表征与分析仪器研制”启动暨实施方案论证会在上海举行。国家自然科学基金委数学物理学部物理科学一处处长刘强,复旦大学、南京大学等多所高校、科研院所的专家学者,项目组骨干等40余人参加会议。我校校长轩福贞出席会议并致辞,科研院院长赵黎明主持会议。轩福贞代表项目牵头单位致辞。他简要介绍了学校在学科建设、科技创新平台、重大科研仪器研制项目等方面的新进展。他指出,近年来,学校坚持“顶天立地”科技发展战略,面向科学前沿和国家需求,以科学目标为导向,坚持前瞻性思考、全局性谋划、整体性推进,提升高校科研原始创新能力。本次仪器项目面向声学科技前沿,立足于高端装备服役安全保障等国家重大需求,是学校聚焦“四个面向”不断提升高校科技创新能力的具体体现。下一步,学校将加强项目过程管理,为项目提供切实保障,确保项目顺利推进。刘强对仪器项目启动会的召开表示祝贺。他肯定了项目研究的科学和工程价值,对项目组提出了具体工作要求,希望项目组成员坚持严谨求实的科研态度,积极攻坚克难,高标准严要求完成项目。项目负责人项延训教授汇报了项目总体情况,详细阐述了项目的研发目标、研究方案、拟解决的关键问题、项目实施管理等方面的工作安排。参研单位课题负责人也对所负责的项目内容进行了详细汇报。与会专家对仪器研制实施方案等进行了热烈、深入的讨论,对项目实施中涉及的关键技术、解决方案等提出了宝贵的意见和建议。据悉,本项目围绕高端装备设计、制造、服役全寿命过程的跨尺度损伤检测和性能状态演化分析预测等仪器需求,重点突破高温材料和部件损伤表征从宏观缺陷检测向早期微观结构演化的智能检测仪器创制,为高端装备的高质量制造和高可靠服役提供支撑。
  • 三部门联合开展烟花爆竹国家标准培训
    记者从国家标准委获悉,4月25日,国家标准委会同公安部、质检总局、安监总局开展的GB 10631-2013《烟花爆竹 安全与质量》强制性国家标准宣贯活动,在湖南省浏阳市举行。  据介绍,2013年2月7日,国家质检总局、国家标准委批准发布了《烟花爆竹 安全与质量》国家标准,自2013年3月1日起实施。此次培训是落实国务院关于进一步加强烟花爆竹安全监督管理工作意见,在烟花爆竹安全监管部际联席会议推动下举办的。来自全国各省市烟花爆竹产销区的公安、质检、安监、检测机构与行业协会共170余人参与了此次宣贯活动。  全国烟花爆竹标准化技术委员会专家对标准的修订背景、主要修订内容、标准条款做了详细解读。新版标准细分了专业燃放类和个人燃放类产品,严格限定产品的最大允许药量,对产品安全性能和燃放性能进行了更加具体和细致的规范,丰富了检验手段,提高了产品燃放的安全性能和环保水平。并就相应级别产品的包装和标志提出了更明确的要求,以便于监管部门进行分类监管、消费者进行安全消费。
  • 元宵节烟花致15城市PM2.5爆表
    pbr//pp  环境保护部今日向媒体通报了元宵节期间全国城市空气质量状况。元宵节期间,全国338个地级及以上城市环境空气质量总体较好。重点区域中,京津冀区域空气质量相对较差,部分城市出现空气重污染 长三角和珠三角区域空气质量相对较好。/pp  环境保护部环境监测司司长罗毅介绍说,元宵节当日,338个城市中,241个城市空气质量优良,占71.3% 97个城市出现不同程度的污染情况,占28.7%,其中15个城市为重度及以上污染,主要位于京津冀及周边地区和新疆自治区。338个城市PM2.5平均浓度为62微克/立方米,同比上升44.2% PM10平均浓度为116微克/立方米,同比上升43.2%。/pp  京津冀区域13个城市中,石家庄、邢台、衡水和保定4个城市空气质量为重度污染,沧州市为中度污染,唐山、天津和邯郸市为轻度污染,首要污染物为PM2.5和PM10。北京、张家口、承德、廊坊和秦皇岛5个城市空气质量为良。区域PM2.5、PM10平均浓度分别为115微克/立方米、178微克/立方米,同比分别上升49.4%、38.0%。长三角区域25个城市中,除宿迁和徐州市为轻度污染外,其他23个城市空气质量全部优良。区域PM2.5、PM10平均浓度分别为47微克/立方米、82微克/立方米,同比分别上升80.8%、74.5%。珠三角区域9个城市空气质量全部为良,区域PM2.5、PM10平均浓度分别为46微克/立方米、81微克/立方米,同比分别上升76.9%、118.9%。/pp  罗毅说,三大重点区域中,京津冀区域受烟花爆竹集中燃放影响最大。该区域PM2.5小时均值浓度在22日20时和21时达到峰值(153微克/立方米),略低于2015年元宵节夜间峰值(157微克/立方米)。该时段京津冀区域13个城市中,衡水、沧州、石家庄、保定为严重污染,邢台为重度污染。受夜间冷空气影响,元宵节后半夜PM2.5浓度明显下降。北京市元宵节全天空气质量较好,夜间受烟花爆竹集中燃放影响,PM2.5浓度有所上升,但仍维持在优良水平,21时PM2.5小时峰值浓度仅为33微克/立方米,明显低于2014年和2015年同期。/pp  长三角、珠三角区域受烟花爆竹集中燃放的影响不大,PM2.5小时浓度变化相对平缓。长三角区域PM2.5小时浓度高于2015年,但低于2014年。珠三角区域PM2.5小时浓度在元宵节夜间呈快速下降趋势,夜间PM2.5浓度低于2014年和2015年同期。/pp  罗毅说,2月24~26日,京津冀及周边区域扩散条件一般,区域空气质量略有下降,以良到轻度污染为主,部分城市可能出现中度污染,区域性重污染过程出现的可能性不大。27~28日,受冷空气影响,区域空气质量自北向南逐步好转。24~28日期间,长三角区域以良到轻度污染为主,珠三角区域以优良为主。/ppbr//p
  • 从许幻山放不下的蓝色烟花到黎巴嫩的大爆炸!硝化之殇何时了?
    本周,热播剧《三十而已》终于迎来大结局。剧中烟花设计师许幻山最得意的作品“蓝色烟花” 虽然美丽,但最后生产工厂却爆炸了!烟花公司破产,他本人也坐了牢!电视剧截图剧中顾佳一直强调蓝色烟花不稳定易爆炸,那真的有这么 " 娇贵" 吗?是的,焰火的配料中含有铜离子,它使得药物配方的稳定性较差,需要恒温恒湿。一旦烟花储存环节出现漏洞往往造成爆炸。实际上铜离子主要是为了产生焰色效果,烟花爆炸的原因是最主要成分黑火药主要氧化剂KNO3发生的剧烈反应:2KNO3+ S + 3C = K2S + N2↑+ 3CO2↑包括KNO3在内的硝化物,是一类典型的危险化学品。硝化物爆炸往往造成非常严重的后果。 也许电视剧的情节你没有直观的感受。但就在2天前发生的黎巴嫩大爆炸的起因,便是附近储存的约2750吨的硝酸铵存储不当,事故已造成100人遇难。爆炸形成了巨大的红色蘑菇云。 新华社 图硝酸铵(NH4NO3)在不同温度下分解的产物不同:硝酸铵分解反应温度分解反应110℃时NH4NO3——NH3+HNO3+173KJ?170~190℃NH4NO3——N2O+2H2O+127KJ?210℃分解加速,同时发 生爆炸NH4NO3——N2+0.5O2+2H2O+129KJ400℃以上发生爆炸NH4NO3—— 0.75N2+0.5NO2+2H2O+123KJ?NH4NO3+2NO2——N2+2HNO3+H2O+231KJ?大量硝酸铵堆积在一起,散热表面积小,散热条件差,分解放热大于散热,局部温度升高,加速热分解,形成分解升温正反馈。温度上升到硝酸铵分解加速期后,分解急剧加快,同时放出大量热量和气体,此分解过程近似绝热密闭升温加压状态,局部温度剧增,压力增大,最终导致爆炸! 化工产品尤其是危化品生产、危化反应大多面临传质传热的问题! 对危化品全产业链进行安全管理,避免事故发生,需要企业主体增强安全意识,从生产的源头抓起! 危险化学品整个生命周期都必须进行严格监管,需要从生产的源头抓起:要求企业主体增强安全意识,企业主要负责人一定要严守安全第一的原则来管理危化品的整个生命周期,培养从业人员的安全素养和安全意愿!需要“防微杜渐”而不仅仅“亡羊补牢”提高危险化学品企业本质安全水平。大力提升危险化学品企业自动化控制水平,深化化工企业反应安全风险评估,应用技术创新成果助力安全生产。 康宁反应器技术致力于帮助行业客户保证安全和利益的同时提升自动化和本质安全水平。康宁反应器技术通过为化工行业客户量身定制本质安全、连续高效的微通道反应器技术及服务,帮助企业顺利进行安全生产升级!
  • 首部烟花爆竹标志国家标准发布
    国家质检总局和国家标准委1月10日联合发布首部《烟花爆竹标志》强制性国家标准。标准规定,烟花爆竹标志的内容应清晰、醒目、持久,使消费者购买时易于辨认和识读 所有烟花爆竹产品今后必须在销售包装上清晰标明“严禁酒后燃放”字样。
  • 江苏国家级盐化工产品质检中心投运
    江苏淮安国家级盐化工产品质检中心近日正式投入运营。该中心是全国四家国家级盐化工产品检测中心中硬件条件最好,软实力最优,处于领先地位。该项目一期工程占地30亩,建筑面积6600平方米,总体三层,集检验、检测、科研、培训、研发、创牌、标准制定、信息共享、技术咨询等功能为一体。总投资4250万元,其中设备投入1500万元,引进了液质联用仪、气质联用仪、电感耦合等离子体发射质谱仪、气相色谱仪等一批具有国际先进水平的仪器设备。拥有5个博士工作室,引进化工类专业博士2名、硕士4名。开展了3项国家级科研课题,已完成2项 参与起草1项国家标准和3项行业标准 帮助企业研发3项新产品和新工艺,获得发明专利1项 为企业提供检验1000多批次 与院校合作承担国家质检总局多项科技项目,其中'2-氯丙酸光学纯度分析方法的研究'项目填补了淮安地区光学活性物质光学纯度检测方法的空白。质检中心已通过国家'三合一'认证的现场评审,预计9月份通过国家质检总局验收。  质检中心的投入使用有助于企业提高生产效率,降低检验成本,在推动盐化工下游产品开发研究的广度和深度,提高盐化工产品附加值,推进成果转化,壮大名牌企业队伍,帮助企业研发新产品、新技术、新工艺,增强创新能力,形成具有自主知识产权的技术和产品。
  • 挑战自旋成像系统“无人区"——记国家重大科研仪器研制项目“电子自旋和自旋极化电流时空演化成像系统”
    “就像船在大海中遇到10米巨浪,但舱内桌子上水杯中的水却稳到没有一丝肉眼可见的细纹。”谈到团队研制的电子自旋和自旋极化电流时空演化成像系统的稳定性,复旦大学物理系教授沈健这样类比。在国家自然科学基金国家重大科研仪器研制项目支持下,沈健团队挺进科研仪器研制“无人区”,将飞秒超快自旋显微技术、音叉式自旋结构显微技术、自旋极化电流显微技术相结合,研制出技术指标明显领先国际同类商用仪器的成像系统。目前,该项目已获国内、国际专利授权9项,在《科学》《自然》等期刊发表论文8篇,培养出大批优秀人才。项目组科研人员与第三方技术验收专家交流合影科学界的共同难题电子自旋是凝聚态和材料物理学中许多奇妙现象的根源。从凝聚态物理角度来说,几乎所有的重大现象,比如高温超导、庞磁阻、多铁效应、量子霍尔效应等都和电子自旋有关。“要理解这些重大现象,必须表征电子自旋结构和自旋动力学。”沈健对《中国科学报》说,“通俗点讲,就是要看清电子自旋如何在空间排列,并弄清其运动轨迹、运动状态,才能真正理解这些现象的本质。”理解电子自旋与量子材料物性的关联,并在自旋器件中做到高效自旋输运,是目前自旋相关研究的关键。而解决这个关键科学问题的最大技术瓶颈就是如何表征电子自旋及其动力学过程。沈健解释说,由于电子自旋之间的相互作用在空间上具有多尺度特征,在时间上具有超快响应频率,其本身又有静态(自旋结构)和动态(自旋动力学)的区别,尤其是在自旋器件中,自旋随电荷处于流动状态。“人们‘看清’电子自旋的难度,就像在太空中观察地球时,能够清楚地看见上面的一个足球。”沈健补充说,“而且,我们不仅要看见这个足球,还要弄清它在比赛中是怎么被传递的,甚至还要以十万亿分之一秒的时间精度,看清它的运动轨迹。因此,同时在单原子的空间尺度和飞秒的时间尺度看清电子自旋是目前国际科学界面临的重大挑战。”“到目前为止,科学家要么只能在单原子尺度看见静态的电子自旋,要么只能牺牲空间分辨率,在百纳米尺度研究电子自旋的超快动力学过程。”该团队成员之一、复旦大学教授吴施伟说,“我们就是要做一个显微镜或成像系统,它既能看见单独的电子自旋,又能在飞秒尺度上看清电子的自旋轨迹。”五级减震挑战2015年,该团队承担的科研仪器研制项目执行初期,一条来自上海市政方面的“大消息”让项目组忧心忡忡:上海市规划的地铁10号线延长线紧邻学校。地铁最近的地方,离该团队的地下实验室不足百米。此前,国内高校就曾传出学校附近的地铁震动影响科学实验的消息。而在原子尺度上看电子自旋,对背景噪声水平要求极高,任何外界极细微的扰动,都会影响该系统的成像效果。当时,能不能在这里建实验室、采取什么样的避震措施成为项目组讨论的焦点。经过多轮研讨,该团队制定出一套减震方案,虽然理论推算上能自洽,但实际上是否可行,大家意见并不一致。“上海处在一个冲积平原上,土质很软。”该团队成员之一、复旦大学教授殷立峰说,“地铁经过时的震动,对仪器影响会非常大。”最后,该团队和上海市政方面协调,找来几辆满载的重型土方车,沿着地铁线路行驶,尽可能模拟地铁运行所造成的恶劣环境,从而获得震动的一手数据。“当百米开外的满载土方车开过时,我们在实验室中测到了强烈的2.5赫兹震动,震动强度比平常高了一个数量级,所以地铁的影响非常明显,大概与我们无液氦制冷机所产生的震动相当。”吴施伟说。经过多次努力和尝试,该团队制定了一套特殊的“五级减震”方案。按照该方案,他们将仪器安放在实验室墙角一个特定位置,然后安装上能探测震动大小,并据此主动调节气压的“气浮”平台,再给扫描隧道显微镜镜头安装两级波纹管隔离制冷震动,最后通过扫描头的弹簧和探针不同的频率特性,阻断剩余的高、低频两种震动。经多轮评估,专家组认为这种“五级减震”方案在理论上可行,有机会使震动减少7个数量级,即达到“船在惊涛骇浪里剧烈颠簸,杯中水面纹丝不动”的效果。2021年6月,该项目进行正式验收时,上海的地铁10号线延长线已经投入运营半年多了。在这样的测试环境下,该系统测试的所有16项指标均达到或优于项目计划。“现在我们的减震效果完全达到最好的液氦制冷商业仪器的同一水准。”吴施伟补充说,“地铁经过或开关制冷压缩机完全看不出任何差别。”蹚出两条路“这套系统有两大亮点:一是减震系统;二是在减震条件下的无液氦制冷技术。”沈健介绍说,“除对稳定性要求极高外,该系统对温度条件要求也十分苛刻。”极低温制冷技术通常有两种:一是利用压缩机制冷;二是使用液氦制冷。国际上多采用液氦来制造极低温条件,但我国是贫氦国家,液氦供应受制于人。“液氦特别昂贵,大量使用液氦来做实验,成本也几乎到了难以承受的地步。”沈健说,“所以,无液氦制冷就成为一个新的技术发展方向。”但制冷压缩机本身就是巨大的震动源,用在对震动极其敏感的仪器上,影响自不必言。项目进行中,该团队再次陷入技术路线的巨大争议。经过反复的讨论与争论后,该团队决定采用两条技术路线,即尝试大幅减震条件下的无液氦制冷技术。“我们团队有个特点,每两周有全组(包括学生)的大讨论,讨论技术路线、审视各种方案。”该团队成员之一、复旦大学教授高春雷说,“之所以采取两条路线,实际上是因为当时谁也说服不了谁,干脆各选一条路向一起汇合。”该团队成员之一、博士后孙泽元说:“我们团队配备有数名设计、加工、焊接方面的专业技术人员,所以一些新的想法很快就能进行测试,这大大加快了研发进度。”就这样,该团队首次实现了2K(K氏温度)低温无液氦制冷,同时在低噪环境下成像的重大突破(最低1.2 K,远低于国际上无液氦制冷同类商业仪器9 K的技术指标)。目前,该系统在精度、时间分辨率和低温条件等方面均领先国际水平。“和液氦技术相比,我们这个系统的优势之一是可以长时间运行(液氦技术需要定期停机补充液氦)。”殷立峰说,“另一个优势是可以在1.2K到300K之间任意改变温度(液氦制冷仪器一般只能实现某几个固定温度)。”目前,国际上还没有类似指标的成像系统,这让沈健等人“有点踏入无人区的感觉”。同时,他们又非常幸运,该团队两条技术路线最后都“走通了”,这也为今后无液氦低噪制冷技术提供了更多选择。“说心里话,我们非常感谢国家自然科学基金对科研仪器研制项目非常大的支持力度,所以我们能做一些真正开创性的仪器研发,走进‘无人区’,挑战一些难度更大的事情。”沈健说,“对我们来说,它真正帮助我们在仪器研制上取得了长足的进步,同时,一批年轻科研人员也在这个项目中成长了起来。”《中国科学报》:您认为科研仪器在科研中起着怎样的作用?沈健:物理学是一门以实验为基础的科学,现代物理研究几乎离不开科研仪器。成像系统就像人的眼睛,在对物性的研究中,只有看得更清、研究得更细,对其中的物理才能理解得更加深刻,才能发现一些新现象。本项目在自主研发中产生的一些新范式,也会带来基础研究的突破。基于研发过程中产生的无液氦低温隔振平台和原位自旋极化扫描隧道显微技术,我们厘清了二维磁性材料中层间堆叠结构和磁性耦合的关系,为二维磁体在非线性光学器件、自旋电子学器件上的应用打开了新维度,为面向实际科学问题和科学应用研究奠定了扎实的基础。《中国科学报》:当前我国在该领域的科研仪器研制处于怎样的国际地位,面临怎样的挑战?沈健:单从技术指标上看,目前我们的仪器明显领先于国际上同类商用仪器,但并未真正商业化,还处于实验阶段。我们自己用起来得心应手的仪器,别人用其做同样的实验可能就不行,因为这里面有太多的细节,所以我们还有很多工作要做。《中国科学报》:下一步团队有哪些研究重点?沈健:下一步,我们将推进该成像系统商业化进程,把它做成别人拿来就很容易使用的仪器。但这样一个尖端仪器,不是简单靠某几个人或哪个团队就能实现商业化的,会面临很大挑战。但是,国家花了很多钱,我们不能满足于研制一个只是自己课题组能用的仪器。一方面,我们要让仪器更加成熟、稳定,能让同行拿来真正解决一些重大科学问题;另一方面,我们自己也有很多科学问题,需要借助尖端仪器来解决,这也是我们团队的努力方向之一。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制