当前位置: 仪器信息网 > 行业主题 > >

琥珀止痛膏

仪器信息网琥珀止痛膏专题为您整合琥珀止痛膏相关的最新文章,在琥珀止痛膏专题,您不仅可以免费浏览琥珀止痛膏的资讯, 同时您还可以浏览琥珀止痛膏的相关资料、解决方案,参与社区琥珀止痛膏话题讨论。

琥珀止痛膏相关的资讯

  • FDA叫停强生与阿斯利康的止痛药试验
    北京时间12月28日上午消息,据外电报道,美国食品与药物管理局(FDA)日前叫停了强生公司与阿斯利康公司的止痛药试验,理由是这些药物可能会增加关节受损的风险。  强生公司的发言人杰佛瑞-里鲍(Jeffrey Leebaw)在电邮中表示,FDA上周通知强生,要求暂停fulranumab药的研究工作。阿斯利康昨日则表示已主动暂停同类药物的早期研究工作。美国制药商Regeneron Pharmaceuticals昨日也表示,FDA已叫停该公司的与神经生长因子抗体(anti- nerve growth factor)相关的药物试验。  而全球最大的制药商辉瑞公司也在今年6月暂停止痛药tanezumab的试验,理由是有服用该药的患者需要进行关节置换。Cowen & Co分析师巴克瑞(Ziad Bakri)表示,这使得神经生长因子抑制剂的研发前景堪忧,并降低了投资者对该市场的预期。  在辉瑞的试验被FDA叫停之前,瑞士信贷驻纽约分析师阿尔诺(Catherine Arnold)曾预计,tanezumab及同类治疗神经生长的药物将创造110亿美元的年销售额。
  • 元胡止痛片中醋延胡索和白芷的含量测定
    元胡止痛片,为理气剂,由延胡索和白芷组成,为临床常用经方,具有理气,活血,止痛之功效。主气滞血瘀所致的胃痛,胁痛,头痛及痛经。 方中延胡索辛散温通,既善于活血祛瘀,又能行气止痛,为本方之君药。白芷辛散温通,长于祛风散寒,燥湿止痛,为本方之臣药,助延胡索活血行气止痛。全方合用,共奏理气,活血,止痛之功。中国药典2020版一部中,对元胡止痛片中延胡索和白芷的含量测定分别进行了规定,文中按中国药典的方法,用月旭Ultimate LP-C18进行测定,符合药典要求,能满足检测需求。 01 色谱条件醋延胡索中延胡索乙素的测定流动相配置0.6%冰醋酸溶液:取水1000ml,加入冰醋酸6ml,用三乙胺调节pH至6.0,抽滤,用冰醋酸/三乙胺将pH调至6.0,摇匀,超声脱气,即得。谱图和数据延胡索乙素对照品溶液图02 色谱条件白芷中欧前胡素的测定 色谱柱:月旭Ultimate LP-C18(4.6×250mm,5μm);流动相:乙腈/水=47/53(在线混合);检测波长:300nm;柱温:30℃;流速:1.0ml/min;进样量:20μL。谱图和数据欧前胡素照品溶液图结论使用月旭Ultimate LP-C18(4.6×250mm,5μm),在该色谱条件下进行测定,可以达到检测需求,可用于元胡止痛片中醋延胡索和白芷的含量检测。
  • XRDynamic 500 | 让止痛药的药剂更精确,更安全!
    固定剂量复方止痛药X 射线衍射法固定剂量复合剂 (FDC) 描述的是在单一剂型种包含一种以上活性药物成分(API)的药物。结合不同的 APIs 可以提高药物的效力或帮助抵消副作用。在质量控制和生产研发中,精确确认FDC中不同 APIs 的比例至关重要;XRD 被证明是这种测试的最理想工具。简介据世界卫生组织统计,头痛是最常见的神经系统疾病之一,估计有 50% 的成年人每年至少头痛一次。止痛药是专门为缓解头痛症状而配制的,通常作为非处方药和处方药提供。由于头痛可能是由不同的,并且有时是多种因素引起的,因此以不同方式影响身体的多种 APIs 的复合剂可以提高镇痛的效果。在此类固定剂量复合剂 (FDCs) 中,产品中不同镇痛药的比例至关重要。因此,物相组成的确定和确认是研发和质量控制过程中的重要步骤,这通常使用 X 射线衍射(XRD)进行表征。在本应用报告中,确定了市售的抗头痛药物的物相组成,即三种不同成分(乙酰水杨酸、对乙酰氨基酚和咖啡因)的FDC。研究了不同结晶和无定型辅料的存在,并通过 Rietveld 方法定量拟合最终确定了三种组分的比例。实验样品制备FDC 以片剂形式购买,并在玛瑙研钵中手工研磨成细粉。将粉末填充在直径为 1 mm 的毛细管中用于 XRD 测试。X 射线衍射测试衍射测试是在安东帕的自动化多用途粉末 X 射线衍射仪 XRDynamic 500 上进行的,衍射仪配有毛细管旋转台和 Primux 3000 密封管 Cu靶 X 射线源。入射光路使用椭球 Ni/C 多层膜反射镜聚焦 X 射线束的水平透射几何,毛细管在其中旋转时进行测试。结果定性分析本报告中检测的样品包含三种主要成分:乙酰水杨酸(ASA)、对乙酰氨基酚(扑热息痛)和咖啡因。FDC 的衍射图案显示出几个尖锐的布拉格峰,清楚地表明存在结晶相。与文献数据模拟的所有三种 APIs 的粉末图样直接比较表明,测试数据的大多数反射都与模拟非常吻合,无论是在峰值位置还是强度(图1)。 数个反射峰 (见于12.5°, 16.5°, 19.2°, 19.6°, 20°, 21.3° 和 23.8° 2θ) 无法与 API 相关,因此需要进一步分析。图 1:将 FDC 样品的测试衍射图与从所有三种已知 APIs 模拟的图谱进行比较。无法解释的反射标有 *。三个最强的无法解释的反射的放大视图显示为镶嵌。比较从文献数据模拟的 α-乳糖水合物的衍射图与 FDC 衍射图清楚地表明,乳糖的最强反射与迄今为止 API 未解释的峰位置一致(图 2)。图 2: 测试的 FDC 衍射图谱与 α-乳糖水合物的模拟图谱比较。对数坐标绘制 FDC 图谱清楚地揭示了广泛的特征,表明除了已经确定的晶相之外,还有其他非晶成分(图3)。图 3: 对数坐标绘制测试FDC衍射谱图和由所有结晶组分和背景拟合模拟的谱图。定量分析图4 显示了基于 Rietveld 精修的 FDC 的定量评估结果。图 4: 测试的FDC 衍射谱和定量拟合后的拟合谱图的比较。还绘制了拟合和测试谱图之间的差异以及拟合的背景。在拟合程序后,模拟数据的所有反射位置和强度都与测试数据吻合良好。通过安东帕的 XRDanalysis PRO 软件中的自动 Rietveld 拟合顺序进行拟合,使用具有 12 个系数的 Chebyshev 多项式来描述背景。选定的拟合 R 值在表 1 中给出。表1: FDC 样品定量拟合的选定的 R 值。表2:不考虑无定形组分,从定量拟合结果计算的相对和绝对质量。以所有结晶组分值为M(all)=600 mg 和用于APIs 的值为 M(all)=500 mg 进行计算。绝对质量是由从Rietveld 精修获得的相对质量和用作样品片剂的质量计算出。这种近似是有缺陷的,因为无定形成分的相对数量是未知的,因此尚不清楚药片的总质量中有多少是由四个结晶相组成的。为了给出更真实的近似值,在计算成分的相对重量时忽略了乳糖,将三种APIs 的总和看成100。由于结构中存在可见的非晶峰,因此也可以对非晶进行量化(图5)。为此,假定线性背景代表理想化的预期背景。背景上方的区域被分配为一个无定形的驼峰,在21.3° 2θ 处 FWHM 约为8°。图 5: FDC 测试的谱图和基于 Rietveld 精修的定量分析后模拟谱图的比较。还绘制了理想化的线性背景和非晶物相的贡献。计算出无定形相的相对质量为 19%,再次假定片剂为 600 mg,其绝对质量为 114 mg。表 3 中给出了结晶和无定形组分的相对和绝对质量。表3:对 M(all)=600 mg,所有结晶和无定形组分的定量拟合计算的相对和绝对质量根据制造商的说法,一粒 600 mg 的药片应含有 500 mg 的 API,这意味着计算出的 114 mg 的无定形比预期的要大。因此,API 物相的绝对质量都比预期的少约 10 mg。然而,由于绝对质量的这些差异仅转化为相对质量高达 3% 的偏差,因此它们完全在这种定量拟合的误差范围内。此外,与表 2 中的值相比,考虑到无定形相的定量分析提供了更合理的值,并且还允许在相对质量中包含乳糖-水合物。还应该提到的是,用于量化无定形成分的理想化背景只是一个近似值,选择不同的背景参数可以改变结果。在这种情况下,当量化无定形成分时,这会导致固有的不准确性。解决此问题的一种可能解决方案是测量仅包含结晶 APIs 而没有任何无定形材料的样品,并将这种图样的背景与 FDC 样品衍射谱图进行比较。结论实验清楚地表明,粉末 X 射线衍射是确定研发和质量控制药物材料中物相组成的强有力工具。即使在非常低的浓度下,也可以确定结晶辅料和无定形组分的存在和数量。由于物相确定和定量拟合可能很困难,特别是对于包含不同浓度的多相体系,因此必须使用具有高分辨和良好信噪比的衍射仪,XRDynamic 500 已被证明是完美用于此类应用的仪器。
  • 琥珀渐成造假重灾区 仪器已难辨真伪
    目前,随着收藏热的不断升温,各种文玩物件在收藏市场中逐渐受到藏家追捧。据了解,琥珀造假从塑料冒充,发展到目前的假鉴定证书以及琥珀粉压制冒充真品琥珀等。  ●买琥珀的时候不要过分抱着&ldquo 捡漏&rdquo 的心态,商家一般会对自己货品的进价、成色、真假十分了解。  证书、检测仪器不再是真伪守护神  目前,随着收藏热的不断升温,各种文玩物件在收藏市场中逐渐受到藏家追捧。特别是由于蜜蜡矿藏的稀缺性,当下其收藏势头只增无减。但是,琥珀的造假情况也逐渐上升,而且造假手段还花样翻新,使琥珀成为造假的重灾区。  据了解,琥珀造假从塑料冒充,发展到目前的假鉴定证书以及琥珀粉压制冒充真品琥珀等。相关专家表示:&ldquo 在购买琥珀、蜜蜡时,证书和检测仪器并不能真正保证琥珀的真伪,收藏爱好者需在确认没问题的前提下再谨慎入手。&rdquo   假琥珀附带假证书  很多造假者在摸清了收藏爱好者对证书的信赖心理之后,就通过一些非法机构进行证书伪造。在售出琥珀、蜜蜡的时候,附带造假证书,蒙蔽消费者。曾有收藏爱好者买到两条塑料仿蜜蜡竟然还带有国土资源部的证书,从颜色上观察比较像真的,仔细观察,却有明显的流动性构造。而且,证书上面也有猫腻,将琥珀、蜜蜡定为同一名称,而琥珀是大类,包含蜜蜡。所以,购买琥珀千位别迷信证书。  &ldquo 原矿&rdquo 琥珀暗藏陷阱  目前,马路边、地铁口,甚者各地古玩市场内,都会有号称卖抚顺矿珀的地摊,摊上的&ldquo 矿珀&rdquo 一眼看上去和煤差不多,颜色很黑,灯打可透光,价格还极其低廉,让人现场加工磨皮,吸引消费者参与。而经过检测实为塑料。这种&ldquo 原矿&rdquo 琥珀的特点就是手头特重,颜色呈绿色。北京潘家园旧货市场有限公司副总经理、中国珠宝鉴定师师俊超表示:&ldquo 碰到这种不要图便宜一时冲动买回,费功夫姑且不论,买来假货总会让人心中别扭。&rdquo   选购大个&ldquo 虫珀&rdquo 需警惕  提起琥珀,我们最初的印象可能就是小学时候学过的一篇文章《琥珀》,里面松脂滴下来包住蚊虫的描述让人印象深刻。所以,更多琥珀爱好者就对&ldquo 虫珀&rdquo 情有独钟。而造假者抓住这个心理,用科巴树脂来造假,有时候会见到一个&ldquo 虫珀&rdquo 里面有非常多的虫子,或是特别大个头的&ldquo 虫珀&rdquo ,这就需要质疑了,我们在见到这样的&ldquo 虫珀&rdquo 后可以用手握紧,如果发粘,就有问题。  仪器难辨再造琥珀  再造琥珀也是琥珀的常见仿制品。这种琥珀是用很细的琥珀碎块压制而成的,粉压的特点是比较均匀。而由于这种琥珀的成分跟天然琥珀无异,用红外仪器来测显示出来的就跟天然的一样。所以,仪器也不是万能的,通常鉴定一个琥珀是不是天然的,要经过各种手段,综合起来才能定位。万不可听店家的一面之词,以&ldquo 过仪器没问题&rdquo 为幌子将再造琥珀作为天然琥珀出售。  相关提示  ●购买琥珀的时候最好去信誉度高的正规商家,虽然价格会相对高一些,但是质量比较有保证。  ●买琥珀的时候不要过分抱着&ldquo 捡漏&rdquo 的心态,商家一般会对自己货品的进价、成色、真假十分了解。加上眼下人们的收藏意识提升,我们如果欠缺相关知识的话,一定不要盲目&ldquo 捡漏&rdquo 。  ●维权意识一定要提升,在购买琥珀、蜜蜡过程中需留相关证据便于退换货,与卖家商定买假包赔付或包换,这样在避免自己财产损失的前提下,也能够最终买到合适的琥珀、蜜蜡。  ●爱好始终是第一位的,不需要抱着&ldquo 收藏升值投资&rdquo 、&ldquo 转手卖大钱&rdquo 的心态。普通爱好者需要调整好自己的心态,自己买来的琥珀、蜜蜡随着岁月的流逝,都会产生一些感情在里面为自己的生活增添乐趣。我们只有摆正心态,才能够抵挡住一些诱惑。
  • 科学家首次发现琥珀中的恐龙标本 成像仪器派上大用场
    根据琥珀复原的手盗龙类恐龙-绘图-张宗达微CT展示尾部的骨骼与羽干细节伊娃标本羽支分支结构的特写  继今年6月底,中外科学家首次公布琥珀中的古鸟类标本后,这个团队于12月9日爆出一个更加惊人的消息:他们在琥珀中发现了有史以来第一件恐龙标本(尾部)!  琥珀堪称大自然的博物馆。与沉积岩化石相比,琥珀中的动物能够保留许多与生前几乎无异的细节。得益于此,人类终于有机会一睹恐龙的真容。  这项研究由中国地质大学(北京)的邢立达博士与加拿大萨斯喀彻温省皇家博物馆的瑞安麦凯勒教授领衔研究。论文发表于《细胞》出版集团旗下的《当代生物学》杂志。  一棵黑乎乎的“扫帚菜”  2015年秋天,邢立达在一个琥珀商那里看到了这块琥珀。“他告诉我这里面有棵植物还是什么怪东西,我一看,还真像一棵黑乎乎的扫帚菜。”邢立达回忆道,“我仔细观察了一下上面的结构,发现了带有羽枝和羽轴的羽毛结构,那这肯定是一个动物啦!”  就这样,邢立达请单位购入了这块琥珀,不过那时候他还拿不准,这个标本究竟来自鸟类,还是非鸟恐龙呢?  科学家团队获得这块标本后,就开始采取多种无损成像和分析手段来研究它。中科院动物所的显微CT、北京同步辐射装置(BSRF)的硬X射线相衬CT、X射线荧光成像和X射线近边吸收谱、上海同步辐射装置的硬X射线相衬CT等都派上了用场。他们通过对CT数据的重建、分割和融合,无损得到了隐藏在羽毛内部的尾部脊椎的高清3D形态。  论文作者之一,中科院古脊椎所研究员徐星仔细研究了标本的骨骼形态,发现它的尾椎腹侧有明显的沟槽结构,与典型的非鸟虚骨龙类恐龙类似,而区别于典型的古鸟类 再从羽毛演化角度来看,则可归属于基干手盗龙类,介于似鸟龙类与尾羽龙类之间。  就这样,“扫帚菜”的身份被确定了下来,它是一段来自非鸟恐龙的尾巴。它的背面有着栗棕色的羽毛,而腹面则是苍白或几乎白色的羽毛,与很多现生动物一样,呈现出上深下浅的保护色。尾巴标本很小,即便完全展开也只有6厘米,由此推测那只小恐龙全长也只有18.5厘米。科学家给它取名叫“伊娃”。  “我研究恐龙数十年,并不曾想过,有朝一日能看到如此‘新鲜’的恐龙”,论文作者之一,加拿大皇家科学院院士,阿尔伯塔大学教授菲利普柯里说。  它揭示了很多秘密,又留下了许多问题  伊娃标本上保存了非常精致的羽毛形态学细节,包括尾部羽毛与羽囊的排列方式,甚至微米级的羽衣特征。更重要的是,这些羽毛都具有纤细的羽干,长有交替的羽枝和连续且均匀的羽小枝。“这些特征为羽毛发育的模型猜想提供了依据,证实羽枝融合形成羽轴时,就已经具有羽小枝了。”麦凯勒教授说。  研究团队还通过BSRF的同步辐射X射线荧光成像,获得了化石断面的微量元素分布图,其中钛、锗、锰、铁等元素的分布与化石的形态吻合度很高,蕴含着丰富的埋藏学信息。  中科院高能所副研究员黎刚解释:“伊娃标本的断面出现了高度富集的铁元素,近边吸收谱分析表明,其中80%以上的铁样本为二价铁,这些是血红蛋白和铁蛋白的痕迹。”  不过,伊娃也留下了很多有待科学家探讨的问题。台北市立大学运动能力分析实验室教授曾国维告诉记者,基于目前骨骼形态,还无法判断伊娃标本是幼年个体还是成年个体。此外,它没有挣扎的迹象,也没有明显的皂化外观,很可能在被树脂包裹时已经死去 但标本又没有明显的腐败特征,说明它可能刚刚死亡,是一具相对新鲜的遗骸。至于伊娃标本的死因,目前还没法断定,自然死亡或被掠食者捕杀都不能排除,还需要进一步的详细研究。  在后续研究中,科学家还对琥珀进行了纳米CT扫描,目前数据正在重建阶段。  “我们尽量采用无损方式去检测它。”中科院动物研究所副研究员白明说,“因为这样的琥珀可遇不可求,目前全世界也就只有这么一块。”  白明坦言,相比无脊椎动物,琥珀中的脊椎动物更难研究。每一块包含脊椎动物的琥珀,在重建中都面临着种种难题。他们为伊娃重建了很多3D图片,但是没能得到可靠性非常高的单个锥体三维形态图,因为所有锥体的很多细节都未保存下来或者呈现为碎块状。好在伊娃整体呈现出一种“皮包骨头”的状态,科学家们还是能够获得骨骼的整体形态信息。  琥珀还埋藏多少惊喜?  无论是之前发现的古鸟类翅膀,还是这次的恐龙尾巴,这些标本都出自著名的琥珀产区——缅甸北部克钦邦胡康河谷。  邢立达告诉记者,那里曾经是一片热带丛林,树木粗壮,分泌的树脂特别丰富,粘住了很多小动物。最重要的是,这里的琥珀形成于约9900万年前,保留了白垩纪中期生物的珍贵记录。这是大多数琥珀产区不具备的优势。而比缅甸琥珀产区年代更为久远的西班牙、黎巴嫩等产区,则要么产量很低,要么珀质不好。  种种原因,让学者们的眼光聚焦在缅甸胡康河谷这块“宝地”。但白明告诉记者,受战乱影响,再加上当地开掘技术相对落后,这一产区的琥珀产量近年来严重下滑。  除了天然的稀缺性,商业行为也在大量消耗那些极具科学价值的琥珀。由于市场更加偏爱质地纯净的琥珀,包含内容物的部分往往被切割下来,成为边角料。有些地区会把这些边角料作为取暖做饭的燃料 或者磨成粉末,添加进线香等产品 甚至切割成更小的颗粒,填充在枕头里,据说有保健作用。  邢立达表示,“伊娃”恐龙化石原本应该更加完整,有可能是在挖掘、保存和交易的过程中断裂,只剩下一截尾巴。  如何保护琥珀,保护这些陈列着灭绝物种的“博物馆”,是一个需要全人类共同面对的问题。
  • 国家药监局发布《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法
    近日,根据《化妆品监督管理条例》,国家药监局批准发布了《化妆品中脱水穿心莲内酯琥珀酸半酯的测定》化妆品补充检验方法。本方法规定了化妆品中脱水穿心莲内酯琥珀酸半酯的测定方法,适用于膏霜乳类、液体类、凝胶类、贴膜类化妆品中脱水穿心莲内酯琥珀酸半酯的定性和定量测定。
  • 涨姿势-琥珀中发现古雏鸟,科学家采用显微CT等无损设备神还原
    琥珀中发现古雏鸟:科学家采用显微CT等无损设备神还原新浪科技讯 6月8日消息,中加美等国的古生物学家在北京宣布,他们发现了有史以来第一件琥珀中的雏鸟标本,此次发表的标本是一只较为完整的反鸟类雏鸟,记录了其生命最初几周的骨学和羽毛特征。2016年,邢立达团队首次发现了世界上首例琥珀中的古鸟类翅膀和非鸟恐龙内容物,“我们在2015年便发现了数个更完整的古鸟类琥珀,尽管骨骼的三维重建耗费了大量的时间和精力,但结果令人非常震撼。”邢立达介绍说,“研究表明,特异保存的化石往往能提供远古生命前所未见的细节,比如“木乃伊”化的鸭嘴龙类埃德蒙顿龙所留下的皮肤印痕,虚骨龙类棒爪龙留下的肠道痕迹,以及中国热河生物群的众多脊椎动物化石。尽管这些标本对古生物学研究做出了特殊的贡献,但仍会受到成岩作用的影响,损失大量细节。琥珀则恰恰没有这些问题,它能为古生物提供无与伦比的保存状态,唯一的缺陷是它所能容纳的包裹物大小受到严格限制,因此琥珀中完整的大个体脊椎动物极为罕见。 比龙标本,蕴藏着几乎完整的雏鸟“此次,我们描述的古鸟类琥珀珀体很大,约9厘米长,容纳了接近完整的一只古鸟类的头部、颈椎、翅膀、脚部和尾部,以及大量相关的软组织和皮肤结构。”论文的作者之一,美国洛杉矶自然史博物馆恐龙研究院院长路易斯恰普(luis m。 chiappe)教授称,“这些保存下来的软组织除了各种形态的羽毛之外,还包括了裸露的耳朵、眼睑,以及跗骨上极具细节的鳞片,这为古鸟类研究提供了千载难逢的机会。”这件标本来自著名的琥珀产区之一,缅甸北部克钦邦胡康河谷。此地的琥珀距今约9900万年前,属于白垩纪中期的诺曼森阶。邢立达介绍:“这只小鸟体型娇小,从吻部到尾巴末端的长度约6厘米。当时它生活在缅甸北部潮湿的热带环境中,不幸被柏类或南洋杉类针叶树所流下的树脂包裹,在漫长的地质年代中形成琥珀,并一直保存至今。” 琥珀中的古鸟标本保存极为完好,尤其是约2厘米长的金黄色鸟足特别醒目,“上面的鳞片,丝状羽栩栩如生,有很锋利的爪子,当时当地人都以为是蜥蜴爪,但我意识到这个标本尤其特殊,更像鸟类的足部,”标本的拥有方,腾冲虎魄阁博物馆馆长陈光先生回忆道,获取标本之后,研究团队开始只是注意到了一对非常精美的鸟足,之后采用显微ct等无损设备来成像和分析标本之后,才发现了琥珀内部还隐藏着头骨、脊椎等重要信息,通过对ct数据的重建、分割和融合,最终无损得到了所有骨骼的高清3d形态。青年古鸟类学家邹晶梅表示,比龙标本的头骨有明显的牙齿,其椎体等其它骨骼形态一致表明,它属于典型的反鸟类。反鸟类是白垩纪出现的一类相对原始的鸟类,其肩带骨骼的关节组合与现生鸟类的相反,因此得名。反鸟类和今鸟类是鸟类演化的两个主要的谱系,并在早白垩世出现了较大的生态分化和辐射,它们有着较强的飞行能力,拇趾与其他三趾对握,适宜树栖,但最终在晚白垩世末期与恐龙一道完全绝灭。“羽毛形态是本次研究的重点之一。”瑞安麦凯勒教授说道,“比龙标本保留着迄今最为完整的古鸟幼鸟羽毛和皮肤,这在白垩纪的标本中尚属首次,这些细节包括羽序、羽毛的结构和色素特征等。” 比龙标本的羽毛形态学细节非常精致,幼鸟被树脂包裹时,正处于稚羽发育的最初阶段,这些稚羽同样可以与其他标本的羽毛印痕或缅甸琥珀中的孤立羽毛相对比。不过,不同于任何现生新孵出的雏鸟,比龙标本的羽毛同时具备了不同寻常的早熟性和晚熟性相混合的特征,同时存在着功能性飞羽和零散的体羽。此外,比龙标本的腿部、足部和尾部的羽毛形态亦不寻常,暗示着与现生鸟类的相比,反鸟类的雏绒羽可能更接近于现生鸟类的廓羽。不过,这些区域也保存着丝状羽,似乎类似于更原始的兽脚类的原始羽毛。“所有这些细节都是此前我们一无所知的。” 比龙标本复原图 绘图张宗达比龙标本是目前缅甸琥珀中最完整的古鸟类化石,它是一只出生仅数周的反鸟类雏鸟,琥珀的特异性使其保存了人类历史上最丰富的雏鸟骨学与软组织细节,为我们了解反鸟类和今鸟类在发育上的显著差异提供了新的证据。(郭祎)该研究由中国地质大学(北京)邢立达副教授、中国科学院古脊椎动物与古人类研究所外籍研究员邹晶梅(jingmai o’connor),中国科学院动物所白明副研究员、加拿大萨斯喀彻温省皇家博物馆瑞安麦凯勒(ryan c。 mckellar)教授等学者共同研究。研究论文发表于国际知名地学刊物《冈瓦纳研究》(gondwana research,影响因子8.743)。该项目受美国国家地理学会、中国国家自然科学基金、加拿大自然科学和工程研究理事会等项目支持。 以上信息来源:快科技借助布鲁克skyscan2211纳米级ct的检测手段,进入更深的研究领域!
  • 富营养湖泊水柱颗粒有机碳三维遥感研究获进展
    目前对全球海洋水体已报道了颗粒有机碳(POC)垂向分布的三种类型——垂向均一分布、幂函数衰减分布和指数分布,但湖泊水体比海洋水体更复杂多变,尤其是在全球变暖和人为活动的影响下,湖泊富营养化导致的藻华暴发在全球湖泊常常发生。POC在湖泊生态系统中普遍存在,可为微生物生存提供食物/能量,并影响温室气体排放和沉积物碳埋藏。此外,POC分解会消耗水体溶解氧并产生有害物质而使水质恶化。因此,借助遥感手段三维动态监测湖泊POC具有重要意义。中国科学院南京地理与湖泊研究所研究员段洪涛团队副研究员刘东等基于多源观测资料构建了面向过程的富营养湖泊水柱颗粒有机碳储量三维遥感流程,并揭示了我国江淮湖泊群颗粒有机碳时空变异特征和驱动机制。相关研究成果发表在Water Research上。在我国江淮湖泊群,不同湖泊的表层POC浓度空间差异较大;洞庭湖、鄱阳湖、巢湖、洪泽湖和太湖等五大淡水湖的表层POC浓度呈现明显空间异质性,整体表现为湖湾处表层POC浓度高。河流输入会明显湖泊POC分布,在受河流输入影响明显的河口水域会呈高POC含量。不同湖泊表层POC浓度均表现明显的季节变异特征,整体上表现为夏季高、冬季低、春秋季相当。尽管一些湖泊的水位季节变化不明显,但不同湖泊的水柱POC储量均表现出明显的季节变异特征。该研究构建了面向过程的富营养湖泊水柱POC储量遥感流程,并基于OLCI/Sentinel-3遥感反演结果厘清了我国江淮富营养湖泊群POC含量的三维时空变异特征,这对全球湖泊碳循环研究具有重要意义。研究工作得到国家自然科学基金和中科院青年创新促进会等的支持。图1.OLCI/Sentinel-3A遥感反演的江淮湖泊群表层POC浓度图2.OLCI/Sentinel-3A遥感反演的江淮区域六大湖泊水柱POC储量
  • 我国湖泊底泥重金属污染监测研究取得新进展
    p  湖泊重金属污染严重威胁着水生生物及人类健康,受到社会的广泛关注。中国科学院武汉植物园近日研究分析了高光谱技术在反演重金属的可行性,并讨论了重金属的反演机理,为湖泊污染监测研究提供了科学依据。/pp 湖泊重金属污染具有高毒性、致癌性和持久性特征,底泥作为重金属沉降富集的受体,其中富集的重金属可被水生植物吸收或因扰动再次释放造成二次污染。然而,底泥重金属来源广泛,诸如大气降尘、工业废弃物、农药等,其分布具有较大空间异质性,加重了人们监测的难度。 /pp 现有研究表明,高光谱技术可以有效估测土壤属性信息,为当前土壤属性探测及制图开辟了新的途径。然而,土壤底泥中的重金属含量极微,其波谱特征往往被多量元素的信息掩盖,利用高光谱技术对其反演的能力及精度尚存争议。 /pp 中国科学院武汉植物园全球变化生态学学科组科研人员以武汉东湖底泥的重金属污染为例,分析了高光谱技术在反演重金属镉、铬、汞、镍和铅等物质的可行性,并讨论了重金属的反演机理。 结果表明,光谱模型对重金属的反演能力差异显著,其中镉、汞、镍和铅等被反演性较高,而铬、铜和锌等无法被反演,这取决于重金属与总有机碳的内在关系与共生机制。/pp 这一研究的开展为光谱快速获取高异质性土壤重金属污染信息提供了一定的参考,相关研究成果近日在线发表在国际环境科学期刊《Catena》(《连锁:土壤科学-水文学-地貌学杂志》)。/p
  • Hydrolab HL多参数水质分析仪在湖泊中的应用
    Hydrolab HL多参数水质分析仪在湖泊中的应用湖泊是重要的国土资源,具有调节河川径流、发展灌溉、提供工业和饮用的水源、繁衍水生生物、沟通航运、改善区域生态环境以及开发矿产等多种功能,在国民经济的发展中发挥着重要作用。同时,湖泊及其流域是人类赖以生存的重要场所,湖泊本身对全球变化响应敏感,在人与自然这一复杂的巨大系统中,湖泊是地球表层系统各圈层相互作用的联结点,是陆地水圈的重要组成部分,与生物圈、大气圈、岩石圈等关系密切,具有调节区域气候、记录区域环境变化、维持区域生态系统平衡和繁衍生物多样性的特殊功能。 监测湖泊水质状况,诸如常规五参数、叶绿素、蓝绿藻、氨氮等,是开展湖泊物理、化学、生物、沉积等研究的重要基础参数至关重要。监测所得数据主要应用于科学研究,对数据质量要求非常高。在进行实地水质调查时,现场环境较为恶劣,因此对仪器的性能稳定性、硬件的抗压性、便携性、防水性都有很高要求。选用OTT全新的Hydrolab HL7多参数水质分析仪,用于现场水质的测量是两全其美之举。 主要仪器包括:Hydrolab HL7主机,手操器(内置气气压检测),主机配备以下传感器:pH、ORP、LDO、电导率、浊度、深度、叶绿素、蓝绿藻、水温。 HL4、HL7主机及手操器 通过在全国各主要流域的重点湖泊及水库进行实地考察、调研及采样并检测。采用OTT Hydrolab HL7在现场实地测量水的常规五参数、叶绿素和蓝绿藻。由于单次野外调查时间跨度长、路途颠簸、采样及现场监测条件有限,需要随时知道仪器状态是否正常,以保证测量结果的准确性。Hydrolab HL7具有自我诊断功能,并在手操器屏幕直接显示电极的健康状态。独有的元数据功能,保证每一次每一个测量参数的准确性。手操器上提供可视化的电极测量结果稳定性指示图标、平均值输出功能,大大降低人为判定稳定终点带来的误差,提高监测效率。可选便携式箱包在颠簸路途中可以提供很好的仪器保护。 对于一些深水湖、库,需要检测不同水深的水质情况,HL系列提供的深度剖面及离线监测模式,有效避免了由于船舶漂移及水流引起的线缆倾斜而带来的深度误差。 HL系列水质分析仪的性能优势 市场独有元数据记录功能,对数据准确性了如指掌 稳定性校核、平均值输出功能,减少环境波动影响模塑机身、钝性钢接头,极大提高仪器的抗摔打性低功耗、超长待机、超大存储,便携使用更有信心简单直观、引导式的校准流程,轻松完成上手操作最高10种参数同时测量和输出,多种参数灵活搭配 中科院某研究所作为国内具有代表性的学术科研机构,对于便携式仪器测量结果准确度、稳定性及机身抗摔打性能均要求非常高。在2019年6-9月全国重点湖库巡回调查过程中,使用OTT Hydrolab HL7便携式多参数水质分析仪,很好的完成了现场水质的监测。客户对于稳定性校核、平均值输出尤其是元数据功能,评价很高,在保证数据质量的前提下,大大节省了单个点位停留时间,Hydrolab HL7对于顺利完成此次全国范围湖库调查工作起到了积极正面的作用。
  • 青藏高原首个大型浮标式湖泊监测平台在纳木错投放运行
    从中国科学院青藏高原研究所获悉,搭载有水质多参数仪、声学多普勒流速剖面仪和自动气象站等监测设备的大型浮标式湖泊监测平台近期在纳木错投放运行,目前运行正常。青藏高原的湖泊多分布在海拔高、气候恶劣、生活艰苦甚至无人长期居住地区。此次的浮标投放要求更严格的施工和技术能力,体现了厂家专业化服务能力,而在高海拔恶劣气候环境下运行良好的浮标设备,也体现了高质量高性能的优势。浮标平台在湖畔组装搭建浮标平台由高强度抗腐蚀的化学材料浮体、综合数据采集器和无线信号控制器以及一系列监测设备组成。科考队员希望通过长期对水量和水质的监测,更加深入地了解湖泊变化过程。监测平台能够定点连续高频监测纳木错的水温、电导率、溶解氧、叶绿素、pH(酸碱度)等湖水理化参数,获取实时的多层湖水流速,以及湖面的气温、空气湿度、风向风速、气压、四分量辐射等指标,并将获取的数据通过4G信号通讯模块自动传输到北京数据中心。使用长臂吊车将浮标投放在纳木错湖中工作中的浮标监测平台重要意义地处青藏高原腹心地带的纳木错,湖面海拔4718米,是青藏高原第二大湖泊以及中国第二大咸水湖,也是第二次青藏科考的重要观测地。此大型浮标式湖泊监测平台提供的数据将为纳木错湖泊的三维热力学、动力学和生态学过程以及模拟研究提供重要基础数据,辅以在相同位置布设的沉积物时间序列捕获器,可以了解沉积发生的湖泊物理化学和动力条件,从而实现了信息化手段支持的青藏高原大湖湖泊现代过程的综合观测。文章来源:青藏高原研究所,点击阅读原文查看更多详情。
  • 青藏科考进行时纳木错湖泊科考
    青藏科考第二次青藏科考的重要基地在西藏第二大湖纳木错南岸的科考基地。纳木错是全世界海拔最高的高原深水大湖,西藏三大圣湖之一,湖面海拔4718米,纳木错在藏语里的意思就是天湖,它就像一块高原碧玉,镶嵌在藏北草原上,成为西藏著名的旅游目的地。湖岸南边,是青藏高原主要山脉之一念青唐古拉山脉,东西长约600公里,是藏北和藏南的分界线。它的主峰念青唐古拉峰,海拔7162米,银装素裹、巍峨雄壮。就在主峰脚下,是中科院纳木错综合观测站的站址,从2005年建站以来,来自世界各国的科学家和研究人员来到这里,围绕大气、冰川、积雪、河流、湖泊、生态等开展了系统和连续的观测和研究。科考队员们继续搭乘科考船,展开纳木错开湖后的水上作业,包括采集水样,水质监测等等。青藏高原是全球变化研究的关键地区之一,而地处青藏高原腹心地带的纳木错流域,也是第二次青藏科考,包括长江、怒江、色林错、纳木错在内的“两江两湖”区域的重要观测地。纳木错湖在阳光的照射下,纳木错波光粼粼,清澈透明。随着夏季到来,降水增多,水体的沉淀作用发生之后,湖水还会变得更清。科考队员在往年夏季的观测,测到湖水的透明度可达16米。根据2018年最新遥感数据,纳木错的最新面积是2013平方公里,相比上个世纪70年代的1950平方公里,增加了63平方公里,主要原因是该地区降水和冰川融水补给的增多。科考团队将在湖面搭设大型平台外,还计划钻取100米深的湖芯,分析研究纳木错地区10到20万年以来古气候的演变过程及其机理。 水完全分层后,包括温度、溶解氧都会有变化,溶解氧就是溶解于水中的分子态氧,用于衡量水体自净能力。 科考队员希望通过长期对水量和水质的监测,更加深入地了解湖泊变化过程。上图为科考队员使用赛莱默分析仪器旗下YSI EXO产品,图片纳木错站王君波,文章来源CCTV环境问题1、全球气候变暖由于全球气候变暖,将会对全球产生各种不同的影响,较高的温度可使极地冰川融化,海平面每10年将升高6厘米,因而将使一些海岸地区被淹没。全球变暖也可能影响到降雨和大气环流的变化,使气候反常,易造成旱涝灾害,这些都可能导致生态系统发生变化和破坏,全球气候变化将对人类生活产生一系列重大影响。2、臭氧层的耗损与破坏臭氧层被破坏,将使地面受到紫外线辐射的强度增加,给地球上的生命带来很大的危害。研究表明,紫外线辐射能破坏生物蛋白质和基因物质脱氧核糖核酸,造成细胞死亡;使人类皮肤癌发病率增高;伤害眼睛,导致白内障而使眼睛失明;抑制植物如大豆、瓜类、蔬菜等的生长,并穿透10米深的水层,杀死浮游生物和微生物,从而危及水中生物的食物链和自由氧的来源,影响生态平衡和水体的自净能力。3、酸雨蔓延酸雨是指大气降水中酸碱度(PH值)低于5.6的雨、雪或其他形式的降水。这是大气污染的一种表现。 酸雨对人类环境的影响是多方面的。酸雨降落到河流、湖泊中,会妨碍水中鱼、虾的成长,以致鱼虾减少或绝迹;酸雨还导致土壤酸化,破坏土壤的营养,使土壤贫瘠化,危害植物的生长,造成作物减产,危害森林的生长。此外,酸雨还腐蚀建筑材料,有关资料说明,近十几年来,酸雨地区的一些古迹特别是石刻、石雕或铜塑像的损坏超过以往百年以上,甚至千年以上。世界已有三大酸雨区。我国华南酸雨区是唯一尚未治理的。
  • 聚光科技成功牵手国家水专项“感知湖泊”项目
    6月10日,由聚光科技、江苏鼎泽、中国环境科学研究院、上海交通大学、华东理工大学等联合承担的水专项湖泊主题“湖泊水污染控制与治理关键技术与设备研发及产业化基地建设”项目“感知湖泊系统构建关键技术、核心传感器研发及平台建设”课题(课题编号:2011ZX07106-004)顺利通过水专项专家组评审,这是聚光科技近年来承担的第三项水专项课题。  该课题拟通过突破湖泊重要生物要素——水生生物和浮游动物感知技术、湖泊底质(N/P释放)影响上覆水传感器技术、感知湖泊健康/灾变模拟与推演展示技术,开发系列湖泊生命观测传感器与应用解析软件包,构建湖泊生境观测一体化技术,建立地方感知湖泊平台,实现业务化示范运行,建立重点湖泊重要感知信息的国家湖泊感知平台。  该课题的实施将为我国湖泊环境监测、污染控制与治理提供重要科技支撑,同时也将促进国内感知湖泊的技术进步与产业发展。
  • 基于浮标温度剖线的湖泊调查
    基于浮标温度剖线的湖泊调查背景 夏季,深层湖泊会发生温度分层——表面温暖,深层水很冷。这对此类湖泊中的营养平衡和生物栖息地产生了很大影响。由于气候变化引起的气温普遍升高,两者都将发生变化,因此也将改变湖泊中生态系统的生活条件。巴伐利亚州环境局与威尔海姆市水管理局和OTT HydroMet公司合作,实施了一项测量项目,用于连续监测巴伐利亚阿默尔湖水中的水温剖线。由于可行的并且经过长期测试的方法非常少,因此有必要寻找新方法来实现客户基于浮标的温度曲线的想法。经过努力,在阿默尔湖的最深处(81 m)安装了一个浮标,该浮标由三个混凝土配重(每个750 kg)固定就位。 固定在浮标底部的测量链可在16个不同深度连续测量阿默尔湖的水温。由另外安装在浮标上面的紧凑型气象站LUFFT WS501-UMB,持续监控气象数据来帮助分析测量链上提供的温度数据。 监控解决方案测量浮标固定在湖泊的最深处(81 m)。在它的下侧, 有一个带有16个温度传感器的测量链,该测量链均匀地分布在下方,一直到湖底。 固定在浮标底部的测量链可在16个不同深度连续测量阿默尔湖的水温。由另外安装在浮标上面的紧凑型气象站LUFFT WS501-UMB,持续监控气象数据来帮助分析测量链上提供的温度数据。 OTT HydroMet交付的浮标配备了大量的测量设备:紧凑型气象站LUFFT WS501-UMB,用于监测气象参数:气温、气压、相对湿度、总辐射、风向和风速太阳能电池板,用于自主电源测量链带16个 温度传感器数据采集器netDL500,远距离传输 测量链和紧凑型气象站的温度传感器不断收集数据(间隔15分钟的平均值)。 测得的数据存储在浮标内部安装的OTT netDL数据记录器中。 一天内多次将数据通过移动通信从测量站点传输到水管理机构的数据库中,以便即时进行评估。
  • 如何利用高光谱成像仪展开河流湖泊水质污染问题的检测
    一、水质监测需求 “地表水水质监测现状的分析与对策, 绿色科技,2019(10)”中提出我国拥有28124亿m3水资源,其中地表水占96.4%,另“中国生态环境状况公报2019”中指出1931个地表水水质断面中,劣V类水质比例为3.4%。对于中国水污染的困境,国家先后制定了《水十条》、《重点流域 水污染防治规划(2016-2020年)》。 以上表明,我国河流、湖泊众多,然而伴随经济的高速发展,人类活动的增强,河流、湖泊水质污染问题日益严重,已经成为制约城市可持续发展的关键因素,因此有必要利用高新技术手段展开河流、湖泊水质污染问题研究,及时、快速的提供河流、湖泊的水质状况,保障人们正常的生产生活。 常规水质监测的痛点问题: 非原位监测,需要进行取样; 实时性差,自动监测站约4小时一次数据,人工分析时间更长 ;监测区域有限, 无法实现大范围区域性监测。 高光谱遥感由于其高精度、全谱段、信息量大等特点被广泛应用于遥感水质监测,大大提高了水质参数的估测精度。同时,该技术具备非接触式原位监测,无需取样;准实时测量,数据更新快;实现大范围区域性监测等优势。伴随着遥感技术的不断进步,水质监测已由定性描述转向定量分析,可监测的水质参数逐渐增加,反演精度也不断提高,在水资源的保护、规划和可持续发展方面发挥了重大作用。 二、数据采集设备 数据采集的设备为杭州高谱成像技术有限公司自主研发的无人机载高光谱成像系统(HY-9010),设备实景图,如下图。系统参数,见下表。系统核心部件采用自研大靶面高光谱相机及高稳云台,集成高清相机、高精度POS模块、地面站模块及数据采集与控制系统,实现高光谱数据、高清可见光数据及GPS数据同步采集,小型地面站模块搭配远程智控系统,实现系统状态监测及远程控制,极大程度上提高作业效率和使用便利性。 系统主要指标序号指标参数1光谱相机光谱范围400-1000nm2光谱相机光谱分辨率优于2.8nm3光谱相机IFOV0.71mrad@f=35mm 4光谱相机空间通道数4805光谱相机光谱通道数3006光谱相机视场宽度15.6°@f=35mm7光谱相机镜头焦距35mm8可见光相机分辨率1500万像素9RTK定位精度10cm10POS采集模式硬件同步触发11地面站控制模式远程智控 三、飞行概况 四、数据分析未经处理的原始高光谱数据如下图所示,可以看出图像清晰,光谱信噪比符合数据处理要求。 根据水质参数模型反演得到的水质分布结果,下图截取部分河道反演快示 五、数据对比 现场组织专业水质取样检测公司对监测河道进行选点取样,经过一周的数据处理,得出“表一”所列数据; 通过对单点检测数据的分析,对监测河道进行建模反演得出“表二”所列数据,可以看出,数据反演与实测数据匹配精度多达80%,精度较高,能够满足检测需求。 测试利用无人机高光谱技术,根据采样点测定值,建立指数模型,在水面上空获取水体的高光谱影像,通过在线反演可实时观察水环境的水质参数总氮、总磷、叶绿素a、悬浮物、浊度的变化,为城市河流的水质监测提供了全新的数据来源和技术手段,同时也为湖泊、河流的水环境保护及治理提供了依据。表一、现场水样单点检测数据采样日期2021/6/5采样位置叶绿素a悬浮物总磷(以P计)总氮(N计)氨氮高锰酸盐指数点位155200.663.671.456点位231140.483.872.423.9点位326120.483.882.453.9 表二、无人机载高光谱建模反演数据点位编号叶绿素aChla(ug/L)总悬浮物Tss(mg/L)总磷TP(mg/L)总氮TN(mg/L)氨氮NH3-N(mg/L)高锰酸盐指数CODmn(mg/L) 1架次1100%99.75%100.00%100.00%100.00%98.33% 架次297.48%62.95%96.97%98.37%92.41%90.00%2架次1100%94.43%97.92%100.00%99.17%96.92% 架次257.58%98%87.50%89.41%90.91%95.90%3架次1100%60.8%97.92%99.74%99.18%98.72% 架次291.38%93.33%79.17%93.81%86.12%98.97%
  • 沃特世于HUPO 2016推出新型质谱采集模式
    沃特世推出新型质谱采集模式,推动蛋白质组学和脂类组学研究发展  沃特世质谱技术研究人员Bob Bateman和John Hoyes荣获HUPO科学技术奖  中国台湾台北市,2016年9月20日 – 沃特世公司(纽约证券交易所代码:WAT)近日于国际人类蛋白质组研究组织(HUPO)第15届国际大会上推出全新的数据采集模式SONAR?,该模式专为Xevo® G2-XS四极杆飞行时间(QTof)质谱仪(MS)而开发,提供全新的非数据依赖型采集(DIA)方案获取MS/MS数据。这项技术能够帮助分析科学家们提升实验室工作效率,同时让他们对生成的结果更有信心。借助SONAR数据采集模式,科学家们只需执行一次进样即可完成复杂样品中脂质、代谢物和蛋白质的定量和鉴定,免去了采用MS/MS方法分析时通常需要额外进行方法开发的麻烦。  沃特世在HUPO国际大会期间隆重介绍了这一新型MS采集模式。会议同时表彰了沃特世公司的高级质谱技术专家Bob Bateman和John Hoyes为推动质谱技术发展所作的杰出贡献。  在现代蛋白质组学实验中,基于DIA的质谱技术是分析人员获取包含大量数据的样品谱图时常用的一项技术。随着蛋白质组学和脂类组学研究的不断发展,科学家们越来越追求针对性更强的实验,来定量分析特定的肽和蛋白质,这就需要进行额外的方法开发和重复分析。面对越来越复杂的样品,沃特世新推出的SONAR数据采集模式能够提供更丰富的信息,同时提升数据的清晰度。  沃特世公司的组学业务开发高级经理David Heywood表示:“如今的蛋白质组学研究已十分成熟,科学家们已经能够收集到蛋白质的大部分相关信息。现在,他们希望实现的目标是先针对某种蛋白质或特定的肽提出假设,然后采用靶向MS/MS定量方法就这种假设观点展开研究,而无需额外开发新的方法或实验。现在,借助SONAR数据采集模式,科学家们可以完成一站式分析并具有更高的选择性。这种模式可兼容高速UPLC分离,工作流程更加高效,通过一次进样即可完成更准确的定性和定量分析。”  沃特世科学家荣获HUPO国际大会表彰  此次HUPO国际大会还向沃特世公司的技术研究顾问Bob Bateman和质谱技术总监兼首席科学家John Hoyes颁发了HUPO科学技术奖,以表彰他们为推动蛋白质组学研究技术发展与开发QTof质谱仪所作出的杰出贡献。  HUPO执行委员会在颁奖辞中表示:“QTof串联质谱仪在其问世初期对蛋白质组学的发展产生了巨大影响,这类质谱仪与纳升级液相色谱(LC)联用后,能够在蛋白质组分析中表现出无与伦比的性能。”Waters® (Micromass® )Q-Tof?质谱仪自1996年进入市场以来不断进行技术创新,继上一次集成离子淌度分离技术之后,此次又增添了全新的SONAR MS数据采集模式。  SONAR为MS数据采集模式带来有效的性能提升  SONAR在选择性方面实现的提升主要得益于质谱仪四极杆的运行方式。在SONAR模式下,四极杆并不会始终保持打开状态传输所有离子,而是扫描指定的质量范围,每次扫描可捕获200张谱图。这种四极杆运行方式让SONAR能够兼容快速的超高效液相色谱(UltraPerformance Liquid Chromatography® ,UPLC® )分离,从而提高实验室分析通量。过去可能会发生色谱共洗脱的化合物现在可以通过四极杆实现分离并单独记录下来,数据库的搜索效率将随之得到提高。SONAR通过一次进样即可同时采集定量和定性数据。  HUPO国际大会于9月18日至22日在台北国际会议中心召开,期间将举办多场以SONAR技术为主题的研讨会。  SONAR数据可整合至Waters Progenesis® 和Symphony?软件分析工作流程,还可兼容Skyline等第三方软件包。由MassLynx® 软件控制的Waters Xevo G2-XS QTof质谱仪现已整合SONAR模式。  关于沃特世公司(www.waters.com)  沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。###  Waters、SONAR、Xevo、Micromass、Q-Tof、UltraPerformance LC、UPLC、Progenesis、Symphony和MassLynx是沃特世公司的商标。
  • 塑化剂家族已污染国内部分湖泊水体
    邻苯二甲酸二(2-乙基)己酯(即塑化剂DEHP),这个拗口的化学名称,成为新的食品安全事件主角。在工业用途上,DEHP是塑化剂最主要的一种,被普遍应用于医用血袋和胶管、驱虫剂、化妆品、香味品、润滑剂、润滑油和去污剂等数百种产品的生产中。  而台湾地区的昱伸香料有限公司却将这种塑化剂掺入乳化剂中,作为食品添加剂出售。一家国内食品乳化剂企业技术人员虽然无法向记者说清楚塑化剂和乳化剂之间的区别,但他诘问:“那是加入塑料中的东西,食品中怎么能有呢?”  从毒理学上,包括DEHP在内的邻苯二甲酸酯类物质(简称PAEs)又是环境激素的一种,可能对人体的生殖系统、免疫系统、消化系统带来危害,如损害男性生殖能力,促使女性性早熟,可能造成儿童性别错乱,长期大量摄取还可能会导致肝癌。而研究人员测定发现,PAEs早已渗入北京的地面水体与空气之中,部分水体污染严重。这还仅是北京一市的测量结果。  北京水体已受PAEs严重污染  6月1日,卫生部将17种PAEs列入可能用于食品的非食用物质“黑名单”。上海天祥质量技术服务有限公司工作人员告诉记者,该机构已接到多家饮料企业自检样品,但送检企业要求将检测的项目集中于7种,而非全部被列入“黑名单”的PAEs物质。  上海天祥质量技术服务有限公司工作人员告诉记者,并不排除有塑料容器中的PAEs渗入水体,但“渗入的PAEs量与故意作为食品添加剂加入的数量应该有很大差值”。  北京市疾病预防控制中心邓瑛介绍,据统计,2007年,PAEs全世界年产量已超过200万吨,其中我国的年产量突破100万吨。有研究人员告诉记者,根据已有数据,自然界中的PAEs在全世界分布大致均衡,并无发达国家与发展中国家的巨大差异。  2010年6月,北京工业大学环境与能源工程学院钟嶷盛、陈莎等人发表了他们的一篇研究成果,他们采样了北京市11个公园湖水水样,“结果发现PAEs普遍比较高,说明北京公园水体受 PAEs的污染比较严重”。  他们检测出的主要污染物即为DEHP和邻苯二甲酸二丁酯(简称DBP)。  我国《地表水环境质量标准》规定,集中式生活饮用水地表水源中DEHP限值为8μg/L,DBP为3μg/L,地表水遵照此标准执行。  钟嶷盛等人的调查结果显示,朝阳公园、玉渊潭公园、莲花池公园、红领巾公园湖水DBP超标2倍,窑洼湖公园和颐和园超标3倍。人定湖和颐和园DEHP超标2倍,窑洼湖公园超标3倍。  这一研究成果发表在2010年6月的《中国环境监测》杂志上,对于PAEs超标原因,作者认为,自2004年起,北京市区湖泊补水由密云水库改为官厅水库,而官厅水库此前污染严重,一直达不到饮用水标准,再经过沿途的排污污染,到达市区湖泊的水基本是V类或劣V类水,并且公园普遍一年换水一次,流动性差,加上游人丢弃的食品包装盒、塑料袋、饮料瓶等,造成了北京公园水中PAEs污染严重的现象。  根据公开资料,早在1982年,就有学者对北京市大气、一些湖泊和水库进行了PAEs 测定,结果显示“北京市的大气和水均已受到PAEs的污染。北京市地面水中APEs浓度比其它国家地面水中PAEs的浓度高10倍”。  根据公开文献,这次调查只是笼统介绍了水样采集自北京市区和郊区公园水、饮用水、水库水、增塑剂生产厂污水等18个地点。  陕西省环境监测中心站分析测试中心助理工程师马文鹏介绍,大多数的PAEs在水环境中都相对稳定,其降解是一个相当漫长的过程。DBP的半水解期超过了20年,而DEHP则超过2000年。这也就造成钟嶷盛等人的调查发现,北京公园湖泊底泥中的PAEs含量要远远大于水体中的含量。而受到污染的水体远不止相对静止的公园湖水。已有研究成果显示,三峡库区DEHP最高浓度已达到5.421μg/L。而黄河部分河段中DEHP浓度高达109.93μg/L,超出我国《地表水环境质量标准》的13倍。  无处不在的PAEs  相比于水体,土壤也是接受污染物的重要自然载体。中国疾病预防控制中心一名研究人员告诉记者,塑料薄膜中的DEHP 具有很强的自由性,可从塑料中渗出进入环境,随着农用塑料薄膜的大量使用,塑料薄膜成为土壤中DEHP的一个主要来源。  一项对中国23个城市耕地土壤的抽样检测报告显示,DEHP的检出率为100%,含量范围为0.20-7.11 mg/kg。而北方土壤中PAEs的含量高于南方,这与农业地膜的使用呈现相关关系。  天津市化工设计院王韧韧介绍,PAEs是上世纪20年代引进的,不久便取代了当时被用作增塑剂且气味很大、易发挥的樟脑。目前是增塑剂的主体,占增塑剂总产量的80%。  在化妆品中,指甲油的PAEs含量最高,不少化妆品中的芳香成分也含有该物质。  PAEs在化妆品中的主要功效是:使指甲油能降低其脆性而避免碎裂 使发胶在头发表面形成柔韧的膜而避免头发僵硬 使用在皮肤上后,增加皮肤的柔顺感,增加洗涤用品对皮肤的渗透性等。  王韧韧介绍,目前我国对化妆品中该产品的含量还没有明确的规定,普通消费者很难从商品标注上看到该物质的含量。  据财新网报道,华南农业大学食品学院柳春红副教授及其同事最近在《食品科学》杂志刊发的一篇论文称,市售方便面和方便米粉存在不同程度的DBP和DEHP污染。  在一篇公开论文中,王韧韧提醒,平时最好不要用塑料容器泡方便面。  PAEs污染恐怕还会涉及医疗领域。一名化工行业人员告诉记者,重症监护室中所使用的医疗设备广泛采用了含有DEHP作为添加剂的塑料。  不过,北京师范大学环境学院副教授史江红告诉记者,DEHP只是几十种环境激素中的一种,“人类和动物身体无时不在向自然界排放激素,因此没有必要夸大自然界中环境激素的不良影响”。  但史江红也强调,目前,我国仅对环境激素在某些污水处理厂、少数河流中的含量等开展了有限的工作,但是关于河流、湖泊尤其是水源水中的存在的现状和评价仍未全面展开。  在官方资料中,记者只查阅到江苏省环境监测中心突发性污染事故中危险品档案库中对PAEs的描述:从事酞酸酯类(即PAEs)增塑剂生产的工人,可患有多发性神经炎,大剂量可引起麻醉作用,误服可引起胃肠道刺激,中枢神经系统抑制、麻痹、血压降低等。  有研究人员称,一些研究结果显示,PAEs有可能对幼儿的生殖系统发育产生影响,主要原因可能为幼儿的新陈代谢能力较差。  史江红提醒,要注意生活中的细节,“用来装食物的塑料饭盒其实是很不利于健康的”。有专家建议,不要用聚氯乙烯(含有PAEs成分)塑料容器在微波炉中加热食品,正确的做法是把食品移到耐热玻璃器皿或陶瓷器皿中加热。
  • 水利部:中国湖泊I-III类和劣V类水质比例均在降低
    p  在国新办1月5日举行的新闻发布会上,水利部副部长周学文表示,经过多年治理,我国湖泊总体来说,I-III类水质比例有所降低,劣V类水质比例也在降低,IV-V类水质的比例在增加,都在往中间靠。/pp  会上有记者问:当前我国湖泊水质状况如何?实施湖长制以后,如何发挥湖长在水污染防治方面的作用?/pp  周学文回应,经过多年治理,我国的一些重要湖泊,像太湖、滇池、巢湖等重点湖泊水质有所改善。但从全国来看,湖泊的水质总体状况仍不乐观。2016年,据全国118个重要湖泊监测评价的结果,总体水质为I-III类的比例为23.7%,IV-V类的比例为58.5%,劣V类的比例是17.8%。这说明很多湖泊水质状况是不乐观的,并且水质这两年还在变化。/pp  周学文表示,总体来说,I-III类水质比例有所降低,劣V类水质比例也在降低,IV-V类水质的比例在增加,都在往中间靠。所以,湖泊管理保护的任务还很重,很多的湖泊存在富营养化的问题。/pp  周学文介绍,这次湖长制指导意见出台后,我们要在全国的湖泊设立湖长。湖长怎么在水污染方面发挥作用?我想有三个方面。/pp  一是坚持问题导向,编制好一湖一策。/pp  二是采取综合的措施来治理湖泊。首先,要控制入湖污染物排放量。要通过节水来减少废污水的排放量 要实施入湖排污口的清理和整治 要提高入湖污染物排放标准。其次,要针对性地实施综合治理。有的湖泊淤积非常严重,需要开展底泥清淤,将内源污染要清理掉 有的地方在湖泊周边设置一些湿地,进一步净化入湖水质 有的地方实施一些水系连通工程,提高湖泊的水体流动性。/pp  三是要加强湖泊水环境的监测和评估、考核和问责。要找准病根,开好药方 治疗措施要精准 保健措施要跟上。/p
  • 我国将制定5项牙膏HPLC检测新国标
    仪器信息网讯 我国将制定5项牙膏国家检测标准方法,涉及抗菌剂检测、防腐剂检测、漂白剂检测、维生素类物质检测等,这5项标准都采用高效液相色谱法,计划2015年完成,由江苏省产品质量监督检验研究院、苏州质量检测科学研究院负责起草。  《牙膏中5种氯铵类抗菌剂检测 高效液相色谱法》  目前市场上诸多牙膏宣称&ldquo 对虚火牙疼、牙龈出血、口腔溃疡有迅速改善和预防&rdquo 的功效,有的则声称可&ldquo 除菌消炎、清热去火&rdquo .牙膏能够消炎止痛消肿,很大程度上是因为很多牙膏企业在普通牙膏的基础上加入了某些抗菌止痛的药物. 由于氯铵类抗菌剂具有较好的杀菌效果,而在牙膏及口腔护理用品中大量使用.但长期使用抗菌药物,可使口腔中的正常菌群失调,甚至会因为耐药而产生抗药性。  由此可见,制定氯铵类抗菌剂的测定方法标准,对规范牙膏中抗菌剂的使用和检测具有重要意义.但目前尚无一次性测定牙膏中氯铵类抗菌剂的测定方法报道,本标准旨在建立一次性测定牙膏中5种氯铵类抗菌剂的检测方法,为牙膏产品中氯铵类抗菌剂的测定方法作出探索性研究.  《牙膏中甲硝唑和诺氟沙星的测定 高效液相色谱法》  为了追求口腔疾病的防治效果,一些生产企业向牙膏中添加不同的抑菌杀菌成分,甚至添加抗生素,造成抗生素的滥用.国家标准GB 22115-2008《牙膏用原料规范》中已经将抗生素列为禁止添加在牙膏中的物质,但是仍有不法企业违禁添加抗生素.甲硝唑和诺氟沙星就是最常见的抗生素.  我国在牙膏产品检测技术研究上起步较晚,目前对于牙膏中甲硝唑和诺氟沙星的检测还没有相关的检测方法.希望通过本项目的研究,采用高效液相色谱技术,建立一种同时测定牙膏中甲硝唑和诺氟沙星的方法,并初步了解牙膏中甲硝唑和诺氟沙星的添加情况,为牙膏中禁限用物质检测及现代口腔护理品的质量控制提供科学依据.  《牙膏中禁用漂白剂的测定&mdash &mdash 高效液相色谱法》  过氧化苯甲酰是一类在世界范围内广泛使用的漂白剂,杀菌剂 过氧化苯甲酰对人体上呼吸道有刺激性,对皮肤有强烈刺激及致敏作用,进入人体后要在肝脏内进行分解.长期过量食用后会对肝脏造成严重的损害,极易加重肝脏负担,引发多种疾病 短期过量食用会使人产生恶心、头晕、神经衰弱等中毒现象.此外,过氧化苯甲酰受热能产生苯自由基,进而会形成苯、苯酚、联苯,这些产物都有毒性,对健康有不良的影响 自由基氧化会加速人体衰老,导致动脉粥样硬化,甚至诱发多种疾病.  本项目的研究内容主要包括以下两个方面:1、样品前处理技术研究.2、牙膏中过氧化苯甲酰的定量分析.  《牙膏中维生素类物质的测定 高效液相色谱法》  维生素B6有利于脂肪、蛋白质的吸收,协助维持身体内钠钾平衡,促进红细胞的形成.缺乏维生素B6将会导致伤口愈合不良,牙槽与口腔炎等症状.在牙膏中添加维生素B6,能有效为牙龈补充维生素B6,防止牙龈出血,保持牙龈健康.目前,国内已有一些牙膏产品中含有维生素B6成分.因此,建立牙膏中维生素B6的测定方法,对控制产品质量、防止虚假宣传、维护消费者权益有重要作用.  《牙膏中限用防腐剂的测定&mdash &mdash 高效液相色谱法》  一管牙膏少则使用3个月多则使用半年,此间微生物大量滋生使得牙膏容易腐败变质,为了达到牙膏防腐的需要,必须在牙膏中添加一定量的防腐剂.国家标准GB 22115-2008《牙膏用原料规范》中已经规定了作为防腐剂使用的山梨酸和苯甲酸的限量值.但是不排除有的生产企业为了追求防腐效果而大量的添加防腐剂.本标准采用高效液相色谱技术,建立一种同时测定牙膏中山梨酸和苯甲酸的方法,并初步了解牙膏中山梨酸和苯甲酸的添加情况,为牙膏中禁限用物质检测及现代口腔护理品的质量控制提供科学依据.
  • 湖泊与环境国家重点实验室学术委员会在宁召开会议
    近日,湖泊与环境国家重点实验室第一届学术委员会第二次会议在中国科学院南京地理与湖泊研究所召开。来自国家自然科学基金委、中科院资源环境科学与技术局、中科院地质与地球物理研究所、中科院生态环境研究中心、中科院水生生物研究所、河海大学、南京师范大学、中科院南京地理与湖泊研究所的11位学术委员会委员出席了会议。中科院资源环境科学与技术局处长黄铁青也应邀参加会议。会议由学术委员会副主任刘嘉麒院士和沈吉研究员主持。 依托单位中国科学院南京地理与湖泊研究所所长杨桂山对与会委员长期以来支持重点实验室的工作表示衷心的感谢,同时简要介绍了重点实验室总体框架和重点任务。湖泊与环境国家重点实验室主任沈吉研究员作了重点实验室2008年工作报告,全面介绍了重点实验室一年来的建设情况,包括筹建过程、学科方向设置、队伍建设与人才培养、年度重要科研产出、实验支撑平台建设、制度和支撑团队建设、管理运行机制及实验室建设中存在的问题等。孔繁翔研究员、吴艳宏研究员、刘健研究员、朱广伟副研究员分别代表实验室的四大研究方向作了团队学术报告。实验室副主任薛滨研究员作了实验室五年工作计划报告,重点汇报了实验室2008-2012年工作计划的制定情况及五年工作规划。 学术委员会认真听取和审议了重点实验室建设基本情况和实验室发展规划报告,充分肯定了实验室的学科定位、发展目标以及研究方向设置,以及自批准建设以来取得的显著成绩。同时对实验室如何处理好支撑当前发展与引领未来的关系、学科优势创立、学科方向的凝练与核心竞争力培育、近3-5年标志性创新成果定位与目标凝练等重要议题提出了宝贵的建议。此外,与会学术委员也针对实验室专项经费使用、开放基金设置、实验室进一步加强开放和流动、重点研究内容的设置,以及如何进一步发挥学术委员会的作用等先后发表了意见。 学术委员会建议重点实验室要实现健康发展,要进一步对学科方向进行凝练,充分突出在国家湖泊科学研究基地的战略引领作用,重点突破3-5项标志性的创新成果;建议要加强重点实验室开放基金的管理,管好、用好开放基金,以促进重点实验室的开放和流动;建议实验室充分利用研究所多学科的优势,理顺团队关系,集中优势,重点攻关;重点扶持近期有前景、有苗头的研究方向,同时也重点支持基础薄弱学科的发展等。 湖泊与环境国家重点实验室2007年经科技部正式批准筹建,2009年底前需完成建设验收。建设期内,实验室需着力改善实验仪器装备条件、扩大实验室用房、吸引和培养高水平专门研究人才、产出高水平创新研究成果和完善管理运行机制等,力争在较短的时间内提高湖泊与环境领域原创性研究成果的水平,形成跻身国际先进行列、体现国家水平的湖泊与环境实验测试与野外研究和监测平台。湖泊与环境国家重点实验室第一届学术委员会第二次会议的召开,正值实验室筹建的关键时期,会议达到了预期目的,对实验室的学科建设、研究方向、研究内容的凝炼起到了重要的推动作用。
  • 赛默飞离子色谱助中科院在湖泊低价磷形态原位监测获新进展
    p 磷元素被认为是决定水体生产力及影响藻类异常繁殖的限制营养物质。全面阐释磷生物地球化学行为与生态系统响应关系对水质改善和生态系统恢复具有重要意义。当前绝大多数研究多以正五价磷酸盐为基础,忽略了正三价、正一价、负三价磷等低价磷的存在。近年来,越来越多研究已经证实:低价磷在环境中广泛存在,且其主导的氧化还原过程对维持整个生态系统平衡和元素地球化学循环方面的影响可能比以往的认知更为重要。/pp 我国湖泊富营养化频繁发生可导致大面积缺氧,从而显著影响水环境中磷赋存形态及环境行为。然而由于湖泊中低价磷形态具有含量低、不稳定以及易干扰等特性,导致传统磷形态分析手段很难对其进行科学解析,进而使得当前对富营养化湖泊多种磷形态赋存特征及迁移转化过程等地球化学行为认识十分有限。/pp 近日,中国科学院南京地理与湖泊所韩超等研究人员,在国内外率先将新型原位采样与二维毛细管痕量分析检测技术相结合,成功构建复杂基质中多种磷形态原位、同步分离和在线监测方法。该方法能够实现超痕量磷形态与干扰物质两次在线纯化与富集,大大提高检测灵敏度,可准确还原环境中低价磷赋存信息。在此基础上,研究人员以典型富营养湖泊太湖为研究对象,通过室内模拟以及原位监测实验,深入研究缺氧湖区低价磷界面分布特征与迁移转化控制机制。/pp 相关研究成果以In situ sampling and speciation method for measuring dissolved phosphite at ultratrace concentrations in the natural environment为题,发表在Water Research上。该研究得到了国家自然科学基金, 江苏省自然科学基金及污染控制与资源化研究国家重点实验室开放基金等项目资助。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/6a1d099a-8f23-4a84-adb6-ad52cd14c5aa.jpg" title="0806.png"//pp style="text-align: center "环境中低价磷原位分析技术流程/ppbr//p
  • 奥豪斯助力美国环保教育发展,保护新泽西湖泊生态环境
    2018年教师节,奥豪斯授予美国缅因州奥克兰 Messalonskee中学科学教师Amanda Ripa“Gustav Ohaus”奖项,以表彰其带动学生学习和为提高学生解决社区环境问题的能力、以及其带领学生探寻出简易环保的改善污染水质的方法做出的卓越努力。奥豪斯积极参与环境教育的举动不止于此——近日,对环境保护极为关注的奥豪斯仪器公司就又在小学环境教育中再次做出了应有的贡献:通过方便易用的ST20测试笔,帮助新泽西当地民众及孩子能通过简单的水质分析实验,参与到保护当新泽西最大的淡水湖霍帕康湖的行动中。 奥豪斯的贴心小科普霍帕康湖(Lake Hopatcong),位于新泽西洲,是该州最大的淡水湖。湖水最深可达60英尺,有着复杂的生态系统。为了保护湖泊水质,2012年专门成立了霍帕康湖基金会。基金会的重要工作之一,就是领导当地民众和孩子共同保护湖泊的环境。要保护湖泊水质,必须湖泊的ph值、溶氧量和温度进行准确的记录和分析。为此,霍帕康湖基金会发起了“研究之船”项目。2018年5月,霍帕康湖的“研究之船”正式起航。 在3个月中,“研究之船”向超过800名当地4年级学生和公众讲解水质检测分析的原则,包括检测湖水清澈度,测量水溶氧量、温度以及pH值等数据的重要性。特别是pH值,不仅可以反映湖水的系统环境,更是预测湖中物种的潜在多样性指标之一:湖中大多数物种都生活在pH值在7到9的湖水环境中,一旦湖水酸性过强(pH值在5或以下)或碱性过强(pH值在9或以上),大部分物种无法存活。 所以,指导当地孩子和民众如何检测湖水ph值就变得重要。考虑到项目开展的时间要求灵活、且需要学生能够快速学会仪器的操作等特殊要求,项目最终选用奥豪斯ST20笔式水质测量仪协助孩子们完成实验。这款小巧、便携且易用的测量笔,帮助孩子们轻松的记录下不同水深的ph值和温度,为孩子们观察春夏季节湖水的相关数值变化趋势和规律提供了精准的数据保障。该项目的负责人Donna Macalle-Holly称赞到:“奥豪斯ST20笔式测量仪非常好用,孩子很喜欢用这款仪器,因为它不仅使用简单,还能帮助他们开展一些以前做不了的实验。”“通过ST20收集到的测量数据,为‘研究之船’项目研究收集到更多精确具体的湖水水质数据业为后续的湖泊保护提供了支持。孩子们使用ST20水质笔式测量仪时,我们还会和学生们讲解霍帕康湖的历史渊源,指导他们通过测试数据对水体质量进行分析,在潜移默化中培养他们对科学的热爱。这些‘小小科学家’们因此收获了很多课堂以外的乐趣。“ 奥豪斯专注于生产专业且人性化的产品,以及方便易用的实验室水质测量仪器,助力基础环境教育,为保护像霍帕康湖这样重要的水域环境贡献着自己的力量! 奥豪斯 starter系列产品1.便携式pH计ST300IP54防水防尘,0.5级产品 精度更高, 2.便携式电导率仪ST300CIP54防水防尘,0.5级产品 精度更高,专配四环电导电极,还可选配纯水电导电极。 3.便携式溶解氧测定仪ST400D使用光学电极,测量准确,校准简单,存储方便 4.ST系列水质测试笔IP67防尘防水设计,外壳坚固耐用,操作简便 如果您想了解更多奥豪斯的水质分析仪器及电化学产品,请拨打电话奥豪斯销售服务专线或者进入「奥豪斯展台 」,留下您的信息,我们的专业工程师将竭诚为您服务!
  • 江河湖泊水深测量利器——无人机测深
    利用无人机搭载高精度测深仪,可以方便快捷地获取最深达200m的水深数据;相比传统方法,机载测量更为灵活高效,且成本更低;尤其是对于传统方法受限的难以到达的水域,机载测量的优势更为显著;它是一种测量水深的高性价比解决方案,可快速获取河流和湖泊的水深及剖面图,进行科学研究和环境监测。通过无人机测量水深的方案有两种,可根据作业需求和现场实际条件选择最合适的方案;两种方案均可通过具有雷达高度计的UgCS地形跟踪系统进行恒定高度水上飞行。方案一:无人机+回声测深仪? 回声测深仪最大探测深度为200m? 可记录地理标记数据并保持恒定的飞行高度? 速度提高10倍 & 成本效益提高2倍方案二:无人机+探地雷达 (GPR)? 最大测量深度:6~15 m? 可测量具有强流或受污染的水域? 可测量冰层覆盖的水域两种方案特点对比
  • 洛克菲勒大学Brian T.​Chait教授获US HUPO 2021组织颁发的蛋白质组学终身成就奖
    仪器信息网讯 2021年3月8日-11日,第17届美国人类蛋白质组学会议(US HUPO 2021)于线上盛大召开。自2005年以来,美国HUPO每年举行一次年度会议,除US HUPO外,该组织还联合多方举办过3届HUPO国际会议。本年度的US HUPO会议期间公布了该组织的多个奖项结果,其中洛克菲勒大学Brian Chait教授获2021年的蛋白质组学终身成就奖,加利福尼亚大学的PeiPei Ping教授获2021年的蛋白质组学杰出贡献奖。  US HUPO颁发的蛋白质组学终身成就奖全称为“Catherine E. Costello蛋白质组学终身成就奖”,该奖项由US HUPO赞助,是为了纪念其第一位获奖者Catherine E. Costello而设立的。  第三届获奖者(2021年) 洛克菲勒大学 Brian T. Chait  Brian T. Chait教授在过去的42年中,曾与卡米尔(Camille)和亨利德雷福斯(Henry Dreyfus)教授任职质谱和气态离子化学实验室的负责人。最近,他一直领导着美国国立卫生研究院(NIH)资助的国家资源生物大分子的质谱分析实验室。Chait教授因开发用于表征蛋白质的仪器和方法方面的研究而获得了多个奖项,包括2002 ACS质谱杰出成就奖,2007 HUPO蛋白质组学杰出发现奖和2015 ASMS质谱学会的杰出贡献。  往届获奖者一览:  第一届获奖者(2019年) 波士顿大学医学院 Catherine E. Costello  第二届获奖者(2020年) 苏黎世联邦理工学院 Ruedi Aebersold
  • 布鲁克4D-蛋白质组新技术斩获HUPO 2020科学技术奖
    p strong 摘要/strongbr//pp style="line-height: 1.5em text-align: justify "  prm-PASEF® 方法大幅提高4D-靶向蛋白质组学定量能力/pp style="line-height: 1.5em text-align: justify "  Matthias Mann实验室利用dia-PASEF® 、超低流量Evosep色谱和TIMS/PASEF装置的进一步的改进实现单个细胞鉴定超过1000种蛋白质/pp style="line-height: 1.5em text-align: justify "  布鲁克获得Albert Heck实验室的PhoX交联剂许可,caps-PASEF将进一步助力结构蛋白质组学研究/pp style="line-height: 1.5em text-align: justify text-indent: 2em "布鲁克凭借TIMS技术商业化的成功,斩获HUPO 2020科学技术奖/pp style="line-height: 1.5em text-align: justify text-indent: 2em "br//pp style="line-height: 1.5em text-align: justify "  2020年10月19日,第19届人类蛋白质组组织世界网络大会(hupo2020.org)上, 布鲁克公司的Melvin A.Park和Oliver Raether因捕集离子淌度技术(TIMS)和平行积累连续碎裂(PASEF® )方法的成功商业化而获得HUPO科学技术奖。该奖项以表彰新的方法改变了科学家研究蛋白质组学的方式,验证了timsTOF Pro使用短梯度的大队列深度4D-蛋白质组学在转化医学中的应用。布鲁克还借此机会对PASEF共同发明人Matthias Mann教授的贡献表示感谢。/pp style="line-height: 1.5em text-align: center "strongA:用PaSER™ 实现实时数据库搜索‘Run and Done’ 4D-蛋白质组学/strong/pp style="line-height: 1.5em text-align: justify "  布鲁克进一步宣布发布PaSER,这是一款基于完全基于GPU计算的软件,在最近宣布收购的IP2软件的基础上进行开发的,实现了蛋白质组学数据库的“实时”搜索。“PaSER”一词是由Scripps研究所的John Yates III教授和Robin Park博士创造的,由实时并行数据库搜索引擎(Parallel Database Search Engine in Real-time)英文单词的首字母缩写组成。独特的PaSER架构使用在GPU上运行的并行多线程搜索引擎,以比数据采集更快的速度实时搜索蛋白质组学结果。这就是‘Run and Done’的高通量4D-蛋白质组学,即在数据采集完成后,科学家们就已经可以鉴定肽和蛋白质组。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/0caae4db-f789-453e-aebe-a3f243058378.jpg" title="1.jpg" alt="1.jpg"//pp style="line-height: 1.5em text-align: center "strong图1: PaSER可以实时监测4D-蛋白质组学数据采集/strong/pp style="line-height: 1.5em text-align: justify "  John Yates III教授将在a href="https://www.bruker.com/events-records/2020/hupo-connect-2020.html" target="_blank" style="color: rgb(31, 73, 125) text-decoration: underline "span style="color: rgb(31, 73, 125) "strongHUPO Connect 2020的布鲁克网络研讨会/strong/span/a上将发表以“质谱和信息学的协同效应”为主题的演讲,Robin Park博士将在布鲁克蛋白质组学用户网络会议上探讨IP2和PaSER。/pp style="line-height: 1.5em text-align: justify "  布鲁克蛋白质组学副总裁Gary Kruppa博士评论道:“timsTOF Pro使4D-蛋白质组学可以大规模测量每一个被检测到的多肽的离子迁移率以获得碰撞截面(CCS)。结合timsTOF Pro的速度,这意味着蛋白质组学的瓶颈已经从检测技术转移到大量数据的处理上来。IP2的速度和基于PaSER GPU的搜索是timsTOF Pro的完美搭配。同时,我们很高兴Robin Park博士加入布鲁克,他将继续为TIMS/PASEF方法开发IP2和PaSER。”/pp style="line-height: 1.5em text-align: center "strongB:超高灵敏度和真正的单细胞4D-蛋白质组学/strong/pp style="line-height: 1.5em text-align: justify "  Matthias Mann教授在德国马普所和哥本哈根大学医学院的研究团队与Evosep和布鲁克进行合作,在高灵敏度和真正的单细胞蛋白质组学研究上取得了重大进展。 改造的timsTOF Pro可以从少量样品甚至对单个细胞进行蛋白质组学分析。/pp style="line-height: 1.5em text-align: justify "  Matthias Mann教授将在HUPO Connect 2020环节中介绍 “系统生物学的深度视觉蛋白质组学”方面的工作,而他的学生Andreas Brunner博士将在a href="https://www.bruker.com/events-records/2020/hupo-connect-2020.html" target="_blank" style="color: rgb(31, 73, 125) text-decoration: underline "span style="color: rgb(31, 73, 125) "strongHUPO Connect 2020的布鲁克网络会议/strong/span/aspan style="color: rgb(31, 73, 125) "strong上/strong/span介绍“timsTOF上的超高灵敏度MS使单细胞的蛋白质组学分析成为可能”。/pp style="line-height: 1.5em text-align: justify "  Matthias Mann教授说:“从样本处理和分析的角度来看,在真正的单细胞水平上对蛋白质表达进行有意义的测量是非常具有挑战性的。我们很高兴能与Evosep和布鲁克成为合作伙伴,以帮助我们实施、证明并最终将我们的想法付诸实践,以便在不久的将来为所有研究人员提供真正的单细胞蛋白质组学。”/pp style="line-height: 1.5em text-align: center "strongC.靶向定量4D-蛋白质组学与prm-PASEF/strong/pp style="line-height: 1.5em text-align: justify "  布鲁克的prm-PASEF定量蛋白质组学工作流程是目前通道数目最多的靶向蛋白质组学方法,TIMS提供的额外分离维度还可以减少MS2定量分析中的干扰。 凭借PASEF方法的速度和额外的TIMS分离优势,prm-PASEF现在可以在每100毫秒的TIMS分离中靶向十二种以上的母离子。/pp style="line-height: 1.5em text-align: center "strong/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/32db7ac2-da14-4399-93b7-e57823a38c9a.jpg" title="2.jpg" alt="2.jpg"//pp style="line-height: 1.5em text-align: center "strong图2:用TIMS prm-PASEF通过离子淌度过滤掉干扰离子/strongbr//pp style="line-height: 1.5em text-align: justify "  卢森堡健康研究所和卢森堡大学的Gunnar Dittmar教授将在a href="https://www.bruker.com/events-records/2020/hupo-connect-2020.html" target="_blank" style="color: rgb(31, 73, 125) text-decoration: underline "span style="color: rgb(31, 73, 125) "strongHUPO Connect 2020的布鲁克网络研讨会/strong/span/a上介绍“基于prm-PASEF的超高通道数的靶向蛋白组学新方法用于临床研究”。/pp style="line-height: 1.5em text-align: center "strongD. caps-PASEF方法与PhoX交联剂联合用于结构4D-蛋白质组学研究/strong/pp style="line-height: 1.5em text-align: justify "  布鲁克很高兴地宣布与Utrecht大学的Albert Heck和Richard Scheltema合作,并获得了PhoX交联技术使用授权。/pp style="line-height: 1.5em text-align: justify "  timsTOF Pro利用PhoX和新型caps-PASEF方法在交联质谱法中的优势在《Molecular and Cellular Proteomics》中发表的论文《Benefits of Collisional Cross Section Assisted Precursor Selection for Cross-linking Mass Spectrometry》中有详细描述。 布鲁克的PhoX交联试剂将于2021年初上市。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 400px height: 246px " src="https://img1.17img.cn/17img/images/202010/uepic/5435ce79-4850-4347-8dc5-d42723e30cef.jpg" title="3.jpg" alt="3.jpg" width="400" height="246" border="0" vspace="0"//pp style="line-height: 1.5em text-align: center "strong图3:Utrecht大学的Albert Heck和Richard Scheltema开发的PhoX交联剂的结构。/strong/pp style="line-height: 1.5em text-align: center "strongE.4D-蛋白质组学数据分析软件开发/strong/pp style="line-height: 1.5em text-align: justify "  因为布鲁克采用独特的开放式数据文件格式,围绕timsTOF Pro的第三方软件生态系统正在不断发展,包括Bioinformatics Solutions 公司的PEAKS Studio和PEAKS Online软件包对dia-PASEF的支持。特别是,PEAKS Online还提供了一个增强的、基于云的解决方案,用于处理来自大样本队列的大型数据集,LFQ定量和SILAC等新工作流也得到进一步提升。MaxQuant也很快将支持dia-PASEF数据处理。/pp style="line-height: 1.5em text-align: justify "  Biognosys宣布使用SpectroMine快速处理timsTOF Pro的4D PASEF数据,SpectroMine基于强大的Pulsar搜索引擎构建,可用于DDA蛋白质组学策略的多线程和非标记定量分析。/pp style="line-height: 1.5em text-align: justify "  Biogosys的首席技术官Lukas Reiter博士评论道:“我们一直将优化我们软件对timsTOF Pro的支持作为首要任务,从而实现对4D PASEF数据的快速处理和蛋白质组的深度覆盖。SpectroMine 2现在可用于同位素标记,以及使用timsTOF Pro数据进行非标记定量(LFQ)工作流。”/pp style="line-height: 1.5em text-align: justify "  HUPO Connect 2020的布鲁克网络会议的会议详情,请点击 a href="https://www.bruker.com/events-records/2020/hupo-connect-2020.html" target="_blank"https://www.bruker.com/events-records/2020/hupo-connect-2020.html/astrong/strong/pp style="line-height: 1.5em text-align: justify "  /p
  • 科学仪器助力东北地理所在富营养化湖泊溶解性有机物组分研究中取得新进展
    溶解性有机物(DOM)是全球水体有机碳的一个大的储存库,也是水环境中生物体的主要营养底物和碳源,对全球碳循环具有重要的贡献。同时,过量的DOM可能会导致天然水体变成“棕色”,会阻碍太阳辐射在水层中的穿透,进而影响水生态系统的生物化学循环。   目前很多研究都表明湖泊营养状态对水体中DOM的浓度和组成有显著影响,但尚未在分子水平上明确富营养化对水体DOM组分的影响。中国科学院东北地理与农业生态研究所水环境遥感学科组科研人员采用三维荧光技术和傅里叶变换离子回旋共振质谱(FT-ICR-MS)相结合的方法,明确了不同营养状态的湖泊在浮游植物繁盛期和衰亡期,水体中DOM分子组成的变化(图1)。   结果表明,富营养化使水体DOM分子构成中的CHO%含量减少,含硫元素的杂原子化合物(CHOS%和CHNOS%)含量增加;富营养化湖泊中夏季水体DOM的分子稳定性要高于秋季,这与浮游植物群落的季节性演替有关;富营养化水体中,DOM的主要组分为高度不饱和化合物为主、O3S+O5S化合物和富羧基脂环化合物(CRAMs),这是内源DOM(浮游植物衍生)被进一步生物转化的产物,湖泊富营养化可能会导致水体中难降解DOM化合物逐渐增多。目前全球范围内水体富营养化现象逐渐加剧,本研究结果为阐明湖泊DOM在未来全球碳循环中的作用提供了重要的理论支撑。   该研究成果发表在国际期刊Water Research上,中国科学院东北地理与农业生态研究所温志丹副研究员为第一作者,宋开山研究员为通讯作者。图1 不同营养状态湖泊水体DOM的分子组成分析   该研究得到了国家科技部重点研究计划项目(2019YFA0607101)、中国科学院青年创新促进会(2020234)和国家自然科学基金面上项目(42071336、42171374)等共同资助。
  • 加利福尼亚大学Peipei Ping教授获US HUPO 2021组织颁发的蛋白质组学杰出贡献奖
    仪器信息网讯 2021年3月8日-11日,第17届美国人类蛋白质组学会议(US HUPO 2021)于线上盛大召开。自2005年以来,美国HUPO每年举行一次年度会议,除US HUPO外,该组织还联合多方举办过3届HUPO国际会议。本年度的US HUPO会议期间公布了该组织的多个奖项结果,其中加利福尼亚大学的PeiPei Ping获2021年的蛋白质组学杰出贡献奖。  US HUPO颁发的蛋白质组学杰出贡献奖全称为“Donald F. Hunt蛋白质组学杰出贡献奖”,该奖项由《蛋白质组学研究杂志》(JPR)支持,旨在表彰Donald F. Hunt教授在蛋白组学领域取得的杰出成就,Hunt教授为该奖项的第一位获奖者,现在该奖项以他的名字命名。获奖者均为美国HUPO会员。  第四届获奖者(2021年) 加利福利亚大学 Peipei Ping  Ping教授任职于加州大学洛杉矶分校大卫格芬医学院主教生理学、医学和生物医学信息学。她在心血管疾病的线粒体生物学和蛋白质组重构、数据科学在分子表型和疾病中的应用以及心血管疾病的计算分析平台方面的专业知识得到了国际认可。Ping教授目前是加州大学洛杉矶分校心血管医学综合数据科学培训NHLBI T32项目主任,也担任加州大学洛杉矶分校Samueli工程学院计算机科学系可扩展分析研究所(ScAI)副主任。从2014年到2019年,Ping博士担任美国加州大学洛杉矶分校NIH BD2K卓越中心(HeartBD2K)的项目主任。  往届获奖者一览:  第一届获奖者(2018年) 弗吉尼亚大学 Donald F.Hunt  Donald F.Hunt是弗吉尼亚大学化学和病理学教授,美国艺术与科学学院院士。他以在质谱领域的研究而闻名,开发了电子捕获负电子质谱(ETD),在FT-MS方面做出许多贡献。在将近半个世纪的职业生涯中,Donald F. Hunt一直是质谱领域的先驱。Hunt 发表了3000多篇文章,培养了100多名研究生和博士后进入学术领域,并在质谱领域处于领先地位,此外还教授了4,000 多名医学预科学生。  Hunt教授的杰出贡献是:开发质谱仪器和方法来分析蛋白质,对蛋白质组学和质谱学领域产生了巨大影响。Hunt教授于1968年加入到弗吉尼亚大学,成为开发利用质谱研究生物有机分子技术的先驱。质谱学起源于物理化学,但Hunt教授和其他一些先驱者表明,这些工具也可以应用于生物,并最终用于生物医学用途。Hunt教授更是超过 25 项专利和专利申请的共同发明者,曾共同撰写了超过 300多篇学术出版物,并跻身全球 130 位引用最高的化学家之列。  第二届获奖者(2019年) 雪松西奈医疗中心 Jennifer Van Eyk  第三届获奖者(2020年) 哈佛大学医学院 Steven Gygi
  • AB SCIEX科学家再次荣膺2014年HUPO科学技术奖
    2014年10月16日,中国北京&mdash 生命科学分析仪器技术发展的全球领导者AB SCIEX今天宣布,Subhasish&ldquo Babu&rdquo Purkayastha博士荣膺国际蛋白质组学会(HUPO)科技技术奖,表彰其在用于蛋白质定量分析的同量异位素标记的商业化应用以及推动iTRAQ化学发展方面所做出的卓越贡献。这一奖项进一步巩固了AB SCIEX作为蛋白质组学研究的创新者地位,而Purkayastha博士则成为过去两年来第二位受到HUPO表彰的AB SCIEX团队成员。2013年,Christie Hunter博士因在其推动突破性靶向蛋白质组学方法的发展和商业化应用方面做出的杰出贡献荣获了此项大奖。Purkayastha博士将在马德里举行的2014年国际蛋白质组学大会上被授予该项大奖,表彰其为推动蛋白质组学发展做出的杰出贡献。  国际蛋白质组学会科学技术奖旨在表彰技术、产品或工作流程商业化领域的突出成绩,有关技术、产品或工作流程能够更好地帮助蛋白质组学研究人员开展工作。Purkayastha博士通过质谱分析法领衔推动蛋白质表达分析、定量分析以及复合数据采集技术发展。作为ICAT、cleavable ICAT和iTRAQ(4-plex和8-plex)等应用广泛的突破性技术商业化的领军人物,并发表了1000多篇文章,得到全球蛋白组学研究机构的认可,Purkayastha博士在推进复合数据采集技术走向市场的共同愿景方面发挥了关键作用。  AB SCIEX的化学试剂研发总监Babu Purkayastha博士指出:&ldquo 正由于有了我们的化学家、软件开发人员、MS应用科学家团队和合作伙伴,我们才能在2004年使首款复合数据采集技术解决方案实现商业化,让客户看到复合数据采集技术的优势所在。我们能够帮助科学家轻松使用这项技术,使其利用更多相关数据和一致的研究结果集中精力推动生物学知识的发展。我们的目标是提供相关工具,帮助我们的客户设计并开展研究,从而解决诸如识别生物标志等过程中遇到的关键性生物问题(这些技术在阿尔茨海默病、败血症、癌症等疾病的治疗检测中发挥着重要作用)。&rdquo   AB SCIEX的市场副总裁Veronique Berger指出:&ldquo AB SCIEX祝贺Babu Purkayastha博士实至名归获得国际蛋白质组学会科学技术奖,表彰其在iTRAQ开发和蛋白质组学研究发展中所做的不懈努力。蛋白质组学研究领域的两位最领先的研究人员&mdash &mdash Purkayastha博士以及2013年国际蛋白质组学会科学技术奖得主Christie Hunter博士能与我们共事,我们感到非常荣幸。&lsquo 科技探索,奥秘生命&rsquo 反映出,我们要投资于影响蛋白质组学研究发展的创新型解决方案,帮助科学家更好地开展工作,取得突破。&rdquo   在马德里国际蛋白质组学大会的整整一个星期的时间内,AB SCIEX将继续展示蛋白质组学研究领域的最新创新技术,包括国际蛋白质组学会发布的OneOmics项目。该项目是一次独家合作,将基于SWATH&trade 采集软件的新一代蛋白质组学(NGP)研究技术与新一代测序(NGS)工具在云计算环境中结合使用。此外还有ASMS发布的新一代蛋白质组学平台,包括采用SWATH&trade 2.0技术的全新TripleTOF 6600系统。此外,公司的科学家们还将展示在各种仪器上加速和改善工作流程的方法。  关于AB SCIEX  AB SCIEX可帮助科学家和实验室分析人员充分应对他们所面临的复杂分析挑战,并改善我们的世界。公司在液相色谱分析&mdash 质谱分析行业占据全球领先地位,能够提供世界一流的服务与支持,是世界各地从事基础研究、药物研发、食品安全与环境检测、司法鉴定与临床研究的数千名科学家和实验室分析人员值得信赖的合作伙伴。AB SCIEX拥有超过25年的业经验证的创新技术,在其领域遥遥领先,通过倾听并理解客户不断发展变化的需求,开发可靠、灵敏而直观的解决方案,让常规分析和复杂分析的结果不断深化。更多资讯,请您登陆AB SCIEX 公司网站:www.absciex.com。
  • 赛默飞世尔科技于HUPO会上发布包括五个软件解决方案的新系列
    赛默飞世尔科技于国际蛋白质组学大会(HUPO)上发布一个包括五个软件解决方案的新系列,可提高定性和定量蛋白质组学工作流程 澳大利亚悉尼(2010年9月20日) - 全球科学服务领域的领导者赛默飞世尔科技公司,于2010年国际蛋白质组学大会(HUPO)上宣布发布一个包括五个互补性软件解决方案的系列,致力于在定性和定量蛋白质组学应用中取得突破性进展。该软件解决方案结合现代最新技术的Thermo Scientific质谱仪,可为研究者提供快速简便而强大的工作流程,帮助他们应对蛋白质组学研究中不断涌现的挑战。这些解决方案将帮助关键工业创新项目取得进步,如2010年国际蛋白质组学大会(HUPO)的人类蛋白质组计划。 “HUPO上发布的软件创新方案加强了我们在定性和定量蛋白质组学领域中业界领先的工作流程,”赛默飞世尔科技生命科学质谱部门的蛋白质组学市场总监Andreas Huhmer说到,“这个独特的软件系列补充了Thermo Scientific质谱仪的功能,样品制备和色谱技术,有助于研究者在蛋白质组学领域中获得成功。该系列涵盖范围从复杂的蛋白质识别,磷蛋白质表征,蛋白质相对定量到潜在生物标志物的确认。” ProteinCenter软件将质谱数据转换为有用的生物信息全新Thermo Scientific ProteinCenter软件是一个基于网络的工具,可对蛋白质组学数据执行更快更好的积分,解析和共享。它连接着来自Thermo Scientific Proteome Discoverer软件的以多肽为中心的信息,该软件还具有以蛋白质为中心内容的常用生物数据库,如UniProt和NCBI数据库。用户可利用这些数据库在数分钟内完成数据的比较和解析。 ProteinCenterTM 软件现在包括超过1300万个独特的蛋白质序列,并隔周访问,更新和整合面向公众的蛋白质信息。 Proteome Discoverer软件提高生产率和定量结果准确性Thermo Scientific Proteome Discoverer软件是一个用于蛋白质组学数据的定量和定性分析的综合平台。该软件在基于工作流程的图形用户界面上,为大量的蛋白质组学实验提供了一系列生物软件工具和自定义工作流程,满足用户对灵活性的需求。该软件经过优化后可以充分利用Thermo Scientific质谱仪提供的高分辨率数据和多种互补性的碎裂方法。 Proteome DiscovererTM 软件具有提高生产率和定量结果准确性的新功能。它还支持细胞培养氨基酸稳定同位素标记技术(SILAC),以加速不同处理细胞群体的蛋白质表达水平的定量分析过程。这简化了复杂的SILAC实验数据的分析过程。该软件还可利用同量异序化学标签(如Thermo Scientific串联分子量标签,TMT)以及结果的统计分析,增强了相对定量能力。多肽识别的灵活处理提高了蛋白覆盖率,而且现在可以自动进行相对定量,数据采集以及处理。 SIEVE软件自动对无标记数据进行差异分析Thermo Scientific SIEVE 软件是对无标记的蛋白质,多肽和代谢物进行半定量差异表达分析的一种自动化解决方案。使用 SIEVETM 软件预过滤数据可显著减少待识别组分的数量,由此显著增加了复杂生物标志物发现实验的通量。 SIEVE软件帮助可靠识别蛋白质,还可利用机器学习算法计算假阳性率。该软件还包括一种新的统计分析能力(受试者工作特征,ROC),可识别疾病和正常蛋白之间的差异,有利于分析一个和多个潜在生物标志物的相关性。SIEVE软件现在提供样品浓度的归一化处理,以自动调整差异分析结果的表达率。与Proteome Discover软件的全面整合,使得用户可以将强大的蛋白质检索识别能力应用到蛋白质差异分析结果中。 Pinpoint软件提高生产率和结果准确性Thermo Scientific Pinpoint 软件简化了从早期生物标志物发现到潜在生物标志物的大规模定量验证的转变过程。它帮助研究者分析采集到的研发数据,利用智能SRM(iSRM)加速和简化了所有实验方法的定量分析过程。Thermo Scientific TSQ 三重四极杆质谱仪具有iSRM功能。该功能设计用于提高目标物定量分析的灵敏度,选择性和通量,可在一次运行中同时确认和定量数千种目标多肽。 PinpointTM 软件利用保留时间模型简化重复性实验,最小化不同运行之间的变化,并提高结果可靠性。全新多肽筛选算法提高了多肽识别能力。 ProSightPC软件可靠识别和表征完整蛋白质Thermo Scientific ProSightPC 软件利用Thermo Scientific质谱仪提供的离子对质量的高度准确性,可靠地识别和表征多肽和完整蛋白质。ProSightPC 软件与Proteome Discover 软件互为补充,并处理来自自上而下(top-down)或者自下而上(bottom-up)实验的准确的MS/MS数据,包括带有序列变异体和翻译后修饰(PTMs)的蛋白质。重要的是,它在数据库检索中优先考虑生物学知识。该软件还提供一种灵活的检索模式,用于识别未知或未预期的修饰。ProSightPC 软件利用高质量准确性减少了多次碎裂的复杂性,可识别一个MS/MS实验中的多个碎片离子。 更多有关Thermo Scientific解决方案的信息,请于HUPO 2010期间访问Thermo Scientific的展台55,56,65和66。更多有关Thermo Scientific蛋白质组学研究解决方案的信息,请拨打+1800-532-4742,发邮件至analyze@thermofisher.com 或者访问 www.thermoscientific.com/ms 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100多亿美元,拥有员工35,000多人服务客户。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲了解更多信息,请浏览公司网站: www.thermofisher.com 或中文网站www.thermo.com.cn ;www.fishersci.com.cn 。
  • 赛默飞两位科学家等获HUPO科学技术奖
    近日,赛默飞的两位科学家,与来自Proteome Sciences plc的合作者一起被授予&ldquo HUPO科学与技术奖&rdquo ,获奖原因是他们在开发和商品化同位素标记定量蛋白质组学实验方面的贡献。该奖项由人类蛋白质组组织颁发。  获奖者如下:  John Rogers,赛默飞Pierce蛋白质生物产品高级研发经理。他领导用于蛋白质定量的试剂研发,包括串联质谱标记(TMT)化学品和富集试剂。  Rosa Viner,赛默飞蛋白质组学项目经理。她实施了TMT的初步评估,并继续发展和完善此工作流程的仪器和数据分析工具。  Andrew Thompson,Proteome Sciences plc化学蛋白质组学主管。他是同位素质谱标记用于蛋白质组学的最初开拓者之一,并且他引导了新TMT试剂的发展。  第四位获奖者是AB SCIEX公司的Subhasish Purkayastha,他开发了ICAT和iTRAQ技术用于蛋白质标记和分析。(编译:杨娟)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制