当前位置: 仪器信息网 > 行业主题 > >

花生中甜蜜素

仪器信息网花生中甜蜜素专题为您整合花生中甜蜜素相关的最新文章,在花生中甜蜜素专题,您不仅可以免费浏览花生中甜蜜素的资讯, 同时您还可以浏览花生中甜蜜素的相关资料、解决方案,参与社区花生中甜蜜素话题讨论。

花生中甜蜜素相关的资讯

  • 拒绝甜蜜素,离子色谱检测白酒中的假“甜蜜”
    “无酒不成礼,无酒不成席,无酒不成俗”的酒文化是阖家团圆、走亲访友的佳节氛围助剂。杯酒之间,摇曳梦想,互送祝福,甜蜜温馨。不曾想,甜蜜幸福的节日中,也充斥着不甜蜜的尴尬——某知名白酒经销商举报自家白酒中添加甜蜜素,事件持续发酵,引起了广泛关注。一石激起千层浪,那么问题来了! 甜蜜素到底是什么?甜蜜素(Sodium cyclamate),又称甜精,化学名——环己基氨基磺酸钠,是一种人工合成的白色结晶粉末状甜味剂,其甜度是蔗糖的30~40倍,是食品生产中常用的添加剂。Tips :甜精,人工合成,蔗糖甜度30-40倍。 对人体有没有危害?1969年,美国国家科学院研究委员会收到有关“甜蜜素 : 糖精为10 : 1的混合物”可致膀胱癌的动物实验证据。1970年,美国食品与药物管理局即发出了全面禁止使用甜蜜素的命令。英国、日本和加拿大等国随后也禁用。 白酒中可以添加甜蜜素吗?我国《食品添加剂使用卫生标准》(GB 2760-2014)对食品加工中甜蜜素用量进行了严格限制。其中,白酒中禁止添加甜蜜素。 白酒中禁止添加的甜蜜素该如何检测 食品安全国家标准《GB 5009.97-2016食品中环己基氨基磺酸钠的测定》规定了食品中环己基氨基磺酸钠(甜蜜素)的三种测定方法—气相色谱法、液相色谱法和液相色谱-质谱/质谱法。 气相色谱法气相色谱法衍生时白酒中环己醇及环己基的类似物质可能与亚硝酸钠反应,而被误认为是环己基氨基磺酸钠与亚硝酸钠的反应,可能造成酒中甜蜜素测定假阳性。 液相色谱法液相色谱法也要进行衍生测定,操作复杂,且样品基体复杂时,可能遭遇气相色谱衍生化遇到的同样问题。 液相色谱-质谱/质谱法液相色谱-质谱/质谱法适用于白酒中甜蜜素的测定,前处理需要水浴蒸发去除乙醇基质,液质检测成本略高。离子色谱法(IC)简便快速,经济环保Thermo Scientific™ Dionex™ Aquion™ RFIC 离子色谱仪 离子色谱法(IC)——离子交换原理,卓越的极性离子型化合物分离、定性和定量色谱方法。 “只加水”离子色谱法(RFIC)——电解水产生淋洗液和抑制液,仪器运行只需超纯水,极简的仪器分析方案。“只加水”离子色谱仪原理图淋洗液自动发生器(Eluent Generator,EG)原理图电解抑制器原理图甜蜜素,水溶性强,易电离,碱性条件下以磺酸盐阴离子形态存在,离子交换分离检测是最佳分析手段,无需任何衍生操作。对于白酒样品,简单稀释后即可直接进样分析。 甜蜜素标准溶液分离谱图某白酒中甜蜜素分离谱图 离子色谱法,白酒中甜蜜素的检出限为0.072mg/L,与《GB 5009.97-2016食品中环己基氨基磺酸钠的测定》中液相色谱-质谱/质谱法相当。 此外,通过色谱条件优化,离子色谱法,一次进样还能同时测定安赛蜜和糖精钠等人工甜味剂,以及氯离子、硝酸根和硫酸根等对白酒口感存在影响的水质常见无机阴离子(下图)。是不是一举多得呢!离子色谱同时测定多种甜味剂(甜蜜素、安赛蜜和糖精钠) 离子色谱的结果,想串联质谱验证一下,怎么办?赛默飞电解抑制器,在抑制电导检测时,已经将强碱性的阴离子淋洗液(如氢氧化钾)转变为水了。换而言之,离子色谱想串联质谱,直联即可。色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 甜蜜素又现酒中 艾尔黑啤全市停售
    北京蓝宝酒业有限公司生产的艾尔黑啤酒日前被检出不得添加的甜蜜素。此外,北京市下架的其他产品包括:天下第一厨娘30g/袋白胡椒粉;吉庆30g/袋 黑胡椒粉;麻辣豆干雅利洁 88g/袋;北京四季顺鑫食品有限公司生产的四季风味猪头肉;北京市八达岭酿酒公司老猎户白酒;北京钰峰食品有限公司牛蹄筋。 甜蜜素又一次被添加在酒中用以增加酒的口感。甜蜜素属于非营养型合成甜味剂,其甜度为蔗糖的30倍,而价格仅为蔗糖的三分之一。因其低廉的价钱和高额的利润,甜蜜素始终在酒行业屡禁不止。 甜蜜素相关危害 甜蜜素在1937年被伊利诺伊大学的学生麦克尔斯维达发现,1950年代开始应用于软性饮料工业,1960年代上市成为一般性代糖。1966年有研究发现甜蜜素可在肠菌作用下分解为可能有慢性毒性的环己胺。1969年美国国家科学院研究委员会收到有关甜蜜素:糖精的10:1混合物可致膀胱癌的动物实验证据,不久后美国食品与药物管理局即发出了全面禁止使用的命令。因甜蜜素有致癌、致畸、损害肾功能等副作用,一些国家也已经开始全面禁止在食品中使用。 甜蜜素检测方法 甜蜜素检测方法主要是通过透明度检测。所谓透明度不高是由于甜蜜素中含有一定的杂质,这些杂质的成份、来源和成因均较复杂,当甜蜜素溶入水中时,这些杂质也随之溶入水中。溶剂温度与浓度不同,甜蜜素与杂质的溶解度也不同,未完全溶解的杂质呈现一定的浊度,即表现出不同的透明度。杂质越多、温度越低,甜蜜素的透明度越低。 在GB12488规定的分析条件下,温度(室温)偏低,溶解度也就较低,要达到标准中规定的透明度质量指标相对就困难些。而中国国内采用的几种生产工艺均易产生杂质,如果生产和质量控制出现失误或者生产工艺中存在较大的缺陷,甜蜜素中的杂质是很难清除的,找出并确定甜蜜素中的杂质是困难的,但只要制定出合理的生产工艺、严格控制工艺指标、严格执行生产操作规程,找到杂质生成的途径并将它控制住是不难的。 甜蜜素检测透明度指标达不到GB12488规定的要求有多种原因。对甜蜜素透明度指标的控制作了五年多的生产研究和探索,也追根溯源到其它一些甜蜜素生产厂家作了实地考察、讨论和分析,经过对各甜蜜素生产厂家的工艺技术和设备结构分析,归纳整理了大量的原始生产记录和化验分析数据。在各厂家工艺技术不同之处,找出影响甜蜜素透明度的一些相同因素。同时,针对不同的工艺技术制定的相应技术措施,取得了令人满意的效果。 甜蜜素检测 消费者如果经常食用甜蜜素含量超标的饮料或其他食品,就会因摄入过量对人体的肝脏和神经系统造成危害,特别是对代谢排毒的能力较弱的老人、孕妇、小孩危害更明显。北京智云达科技有限公司研发生产了甜蜜素速测盒。适用于饮料和食品中甜蜜素的快速检测。
  • 拉曼光谱快速检测白酒中的非法添加“甜蜜素”
    2019年底曝出的酒鬼酒“甜蜜素”非法添加事件至今仍疑云重重,这是继2012年“塑化剂”事件之后,白酒业面临的又一个质量安全事件。“塑化剂”事件对整个白酒行业带来了严重不良影响,此次“甜蜜素”事件的影响也将难以估计。由于结论迟迟未定,公众猜测纷纷,该事件的不良影响还在继续发酵。如果在事件初始,有现场快速检测方法,白酒中是否有非法添加这一争议可立即获得结果,那么究竟是质量事件还是蓄意诽谤将得到最直接的证据支持。鉴知技术的拉曼光谱方法正适用于此场景,此方法可在半小时内检测完30个白酒样品,单个样品的平均检测时间仅1分钟。什么是甜蜜素?甜蜜素,是一种人工合成甜味剂,甜度是蔗糖的30-40倍,化学名称环己基氨基磺酸钠。它属于食品添加剂,常用于蜜饯、糕点、调味料等食品中,国标对其适用范围和最大允许使用量有明确限制。甜蜜素在配制酒中是允许使用的,但是在传统发酵生产出的白酒中,则是不允许添加的,属于非法添加剂。我国关于白酒产品的国家标准对于各种香型的白酒产品中也都有明确规定,不允许白酒产品添加任何甜味剂物质。此外,甜蜜素对人体是否存在危害目前仍无定论,《世界卫生组织国际癌症研究机构致癌物清单》中甜蜜素被归类在3类致癌物清单,即属于“对人类致癌性可疑,尚无充分的人体或动物数据”。甜蜜素非法添加仍时有出现但近年的食品安全抽检中,白酒、红酒中检出甜蜜素的情况仍时有出现,是酒类的主要抽检项目之一,在国家市场监管总局最新发布的《关于公开征求2020年食品安全监督抽检计划意见的公告》中,此项亦被列入其中。国家抽检一般采用GB 5009.97-2016中规定的气相色谱法、高效液相色谱法、或者液相色谱/质谱法对白酒中的甜蜜素进行定量检测。这种检测方法成本高操作复杂,需要实验室大型设备,一个样品需要专业人员耗时3-4小时才能完成检测。并且样品处理过程中,需要用到大量有机试剂,废料处理难。这给基层监管机构的检测带来很多阻碍和不便。白酒中甜蜜素的快速检测方法鉴知技术的拉曼光谱方法正是在此情况下专项开发的成果,实现了白酒中甜蜜素的简单快速检测。整个流程操作简单,30个样品在30分钟内即可迅速得出检测结果,大大提高了检测效率,并且节省了检测成本。未知白酒样品检测之后,与数据库中的数据进行自动比对,通过特征峰和特有算法,即可立即得出样品中是否含有甜蜜素的结论。便携拉曼光谱设备近年在食品安全快检领域应用越来越广泛,鉴知技术的RT5000食品安全检测仪利用拉曼光谱的特异性识别,专注于提供多目标物、非特异性痕量筛查的食品安全现场快速解决方案。除白酒中的甜蜜素外,还可检测农药残留、非食用化学物质、易滥用食品添加剂、兽药残留、保健品非法添加、有毒有害物质等六大类100余项物质,为消费者提供安全保障,为监管人员提供有效工具!【鉴知技术简介】北京鉴知技术有限公司,简称“鉴知技术”,是一家以光谱检测技术为核心的专业公司,产品已广泛应用于安检、食品、药品、毒品、医疗等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。鉴知技术公司源自同方威视技术股份有限公司与清华大学共建的“清华大学安全检测技术研究院”,历经10余年的孵育,公司的核心关键技术达到国际领先水平,专利累计申请数达140余件。公司所拥有的技术获得了国家科学技术委员会科技成果鉴定证书及中国专利优秀奖,相关产品获得了国际发明展览会金奖、北京市新技术新产品证书、中国科学仪器年度优秀新品奖、朱良漪分析仪器创新奖之“创新成果奖”等。【延伸阅读】“鉴知”首次亮相——访北京鉴知技术有限公司总经理王红球从威视到鉴知 150余项专利技术铺就拉曼发展之路乳品中三聚氰胺拉曼快检 全流程只需5分钟同方威视拉曼光谱检测出某壮阳保健品中含有非法添加他达拉非类物质
  • 白酒中甜蜜素检测方法研究 通过鉴定
    近日,四川省质检院顺利通过了国家质检总局下达的科研课题“白酒中甜蜜素检测方法研究”成果鉴定。  2008年12月28日,国家质检总局委托四川省质量技术监督局在成都组织召开了由四川省质检院承接的《蒸馏白酒中甜蜜素检测方法研究》(国家质检总局2005 QK 33)项目成果鉴定会。鉴定委员会由来自大专院校、科研院所、卫生、检验检疫、农业和质检等系统的7位专家组成。项目建立了白酒中甜蜜素的液相色谱-质谱联用(HPLC/MS)和离子色谱(IC)检测方法,在方法确认中运用数理统计学的原理和方法对其检测能力的各项技术参数进行了验证,具有一定的创新性;项目所取得的研究成果处于国内领先水平,具有推广应用价值。最后专家组建议课题组按照检验方法国家标准制修订的要求,进一步完善、补充实验内容,积极申报国家标准立项。  该课题方法学和取得的成果处于国内领先水平,获得了专家委员会的赞扬。对于较好的保护民族工业、建立白酒贸易技术壁垒、保护民族知识产权具有重要意义,为政府执法提供了有力的技术支撑。
  • 3 分钟测定土壤中总石油烃,7 分钟测定食品中甜蜜素,大咖手把手教你
    实验室面临的大量分析任务总是令人头痛不已,为此安捷伦推出了《大咖教你提升效率小课堂》系列讲座,带你一站式提升实验室效率,解决堆积的分析任务。两位重量级专家将在不同时间不同平台分享经验,确保您不会轻易错过讲座。讲座过程中更可与做客嘉宾线上互动,直接解答你的困惑。专场一:环境分析系列课堂——如何 3 分钟完成土壤中总石油烃的测定随着四氯化碳属于 ODS,面临淘汰,因此生态环境部制定了紫外法、荧光法和气相色谱法等测定石油烃的方法。其中“水质 可萃取性石油烃 ( C10-C40 ) 的测定 气相色谱法” ( HJ894-2017 ) 已经实施,“土壤和沉积物 石油烃 ( C10-C40 ) 的测定 气相色谱法”也将发布。这两个方法同 ISO 16703 基本一致,不仅可以准确定量,还能得到石油烃的沸程信息,并初步判断石油烃的组成特征。方法采用正己烷或二氯甲烷提取,硅酸镁净化,适当浓缩后采用 GC/FID 测定,流程简单,结果准确可靠。熟练方式方法的同时,如何解决色谱的程序升温时间较长的问题?如何能提升检测速度?如何处理大量样品可萃取性石油烃的分析?大咖手把手来告诉您!扫描识别图中二维码,提前报名预约讲座(温馨提示:三场中选择您时间最方便的一场即可,同样的演讲内容不一样的在线答疑哦!)二维码中报名链接显示为美国时间,安捷伦网络讲堂场次请以图中中国时间为准专场二:食品分析系列课堂——如何将食品中甜蜜素分析效率加倍甜味剂是食品工业中应用范围较广的一种的添加剂,而甜蜜素因其甜度较高又价廉易得,所以是食品生产中的常用甜味剂。摄入过量甜蜜素会对人体的肝脏和神经系统造成危害,特别是对代谢排毒的能力较弱的老人、孕妇、小孩危害更明显。我国《食品添加剂使用卫生标准》( GB 2760 ) 规定了不同食品中甜蜜素的最大使用量,目前甜蜜素含量测定的依据是 GB 5009.97-2016, 其中第一法即气相色谱法。经过多年的探索和实践,如何能翻倍提高效率?如何实现数据的快速批处理?大咖手把手来告诉您!扫描识别图中二维码,提前报名预约讲座(温馨提示:三场中选择您时间最方便的一场即可,同样的演讲内容不一样的在线答疑哦!)二维码中报名链接显示为美国时间,安捷伦网络讲堂场次请以图中中国时间为准扫描下方二维码, 关注“安捷伦视界”微信公众号,更多精彩小课堂系列讲座,敬请期待!
  • 安捷伦发布食品中甜蜜素快速检测新方案
    中秋时节,又到了疯狂采购“甜蜜”的时候。每每走过月饼、糖果、果冻、饮料、饼干等甜食的货架,都忍不住将其推满自己的购物车、满载而归。但如果留心这些甜食的配料表,您就会发现这一丝丝的甜蜜有时不是来自于蔗糖,而是来自于甜蜜素。甜蜜素,其化学名为环己基氨基磺酸钠,属无营养甜味剂,是食品生产中常用的添加剂,其甜度是蔗糖的 30 - 40 倍。因其口感好、价格低廉,被广泛应用于各种食品中。糖尿病患者、肥胖者有时也将其代替蔗糖。近年,人们通过对甜蜜素的毒理学研究发现,其代谢产物环己胺对心血管系统有一定损害。我国卫生部于 1986 年批准甜蜜素作为食品添加剂使用,但严禁在食品中超量添加。由于基质种类繁多,分析时间较长,对于各类食品检测机构而言,甜蜜素检测项目为分析任务最繁重的气相色谱项目之一。安捷伦科技公司在国家标准 GB5009. 97-2016 的基础上,采用最新 Agilent Intuvo 9000 气相色谱系统成功开发了高效、准确的甜蜜素分析方法,以期协助各相关单位攻克甜蜜素分析相关难题。采用 Intuvo 9000 分析食品中的甜蜜素 由于甜蜜素是采用衍生化方法进行样品前处理的,因此产生了大量的非目标产物,这给后续目标物和非目标物的分离带来了难度,增加了分析时间。在国标 GB 5009. 97-2016 中采用了较慢的柱温程序和恒定柱流速的方法,整个分析时间较长,不利于分析通量非常大的商业实验室。Agilent Intuvo 9000 气相色谱采用专利的色谱柱固体加热技术和第六代 EPC(电子气路控制),本系统具有业界最快的升温速度和程序升压的能力,可在最短的时间内将非目标物赶出色谱柱。本文所述方法采用 Intuvo 9000 气相色谱、DB-5 超惰气相色谱柱和 FID 检测器对食品中的甜蜜素进行分析。从下图的 Intuvo 9000 方法与传统方法的比较中可以看出,整个分析时间从原来的 14min,缩短到了 7.5min,节约了 6.5min、近一半的分析时间。采用 Intuvo 9000 完成国家标准 GB 5009.97-2016 食品中环己基氨基磺酸钠(甜蜜素) 的测试,250 C/min 的分析方法可以节约近一半的分析时间为了验证方法的可靠性,本文对方法精密度和食品基质适用性进行了测试。从下面的谱图和数据中可以看出本方法具有非常好的进样重复性(RSD 约为 0.32%),并在多种食品基质中具有良好的适用性。重复进样 6 次考察其重复性,RSD 约为 0.32%不同食品基质样品中甜蜜素的分析通过以上讨论可以看出,Agilent Intuvo 9000 气相色谱系统可以准确可靠的分析食品当中的甜蜜素,可大幅提高商业食品实验室的分析通量并带来丰厚的利润回报。点击下方链接,了解更多食品检测应用:食品(月饼)中脂肪酸及其甲酯衍生物 (FAME)检测
  • 甜蜜素 白酒业的新塑化剂危机?
    白酒业尚未走出塑化剂风波,一份国家食品药品监管总局日前公布的抽检不合格名单又使得&ldquo 甜蜜素&rdquo 成为这个行业的危机关键词。这份名单显示,近300款白酒产品出现各种质量问题,其中茅台旗下子公司品牌和皇台酒业等诸多酒企产品曝出的不合格项目一致地栽在了添加剂甜蜜素上。行业内人士表示,白酒业&ldquo 重营销、轻产品&rdquo 的生存理念下,技术标准空白是该行业陷入当前添加剂危机的重要原因。  名酒品牌登质量黑榜  在近300款查出不合格项目的白酒中,贵州茅台酒厂集团保健酒业有限公司2010年1月31日生产的&ldquo 锦绣东方酒&rdquo 不合格项目为&ldquo 环已基氨基磺酸钠(甜蜜素)&rdquo 。茅台保健酒公司方面昨日回应北京商报记者称,上述涉事酒是出了很久的老酒,&ldquo 且锦绣东方品牌有很多款产品,仅从现在的信息上不能判定是哪一款,还需再核对一下&rdquo 。茅台另强调称,该公司在基酒检测上把关还是比较严格的,而且酱香型酒应该不存在甜蜜素。  全国企业信用信息公示系统显示,贵州茅台酒厂(集团)保健酒业有限公司成立于2005年3月4日,公示的惟一股东是&ldquo 贵州茅台酒厂(集团)有限责任公司&rdquo 。  值得注意的是,这一次栽在甜蜜素指标上的酒企并不在少数,其中就包括甘肃皇台酒业股份有限公司生产的皇台本色酒(本色6#窖藏)、吉林省吉盛涌鑫酿酒有限公司生产的老北京二锅头酒。  国家食品药品监管总局介绍,本次专项抽检不合格率达9.26%,其中酒精度检出不合格样品占抽检样品总数的4.4%,其次是甜蜜素等甜味剂,占抽检样品总数的3.6%。  &ldquo 甜蜜素添加&rdquo 之辩  &ldquo 根据相关国家食品安全标准和白酒产品标准规定,白酒中不允许添加甜味剂,甜蜜素、糖精钠和安赛蜜是人工生产的甜味剂。&rdquo 国家食品药品监管总局在其通报中称。事实上,对于这一指标在白酒中的使用,业内尚存争议。早在2004年就曾有观点称,食品中甜蜜素的测定不适用于白酒,其中一项原因是白酒生产原料、工艺的复杂性和多样性,可能在中间环节生成类甜蜜素物质,以致误判。另有酒企负责人称,向白酒中添加一定量甜蜜素可以改善口感,&ldquo 只要保证在安全范围内&rdquo 。  然而,反对者的担心则主要是&ldquo 超标&rdquo 可能会对身体的危害。有公开资料称,如果经常食用甜蜜素超标的食品,会危害人体的肝脏及神经系统。  对于这一次查出白酒甜味剂不合格的原因,国家食品药品监管总局解释,可能是生产企业为降低成本,同时增加产品的口感,在产品中添加甜蜜素、糖精钠、安赛蜜等甜味剂来调节口感,也可能是由于其他原辅料使用不当带入。  标准&ldquo 空白&rdquo 待补  业内人士普遍认为,甜蜜素添加争议的背后,实则是白酒业自有技术标准缺失的尴尬。白酒行业分析师蔡学飞介绍,目前国内还没有针对白酒业的统一技术标准。&ldquo 很多指标都还是依从食品行业统一标准,然而,白酒业的特殊性在于生产方式较为原始,现代化水平低,这就导致在例如物质指标等把控上存在不确定性,也酿成了最终执行差的后果。&rdquo 蔡学飞说。  他续称,严格意义上讲,国内白酒业并非完全没标准,&ldquo 部分区域有,但区域间差异很大,且并非强制。尤其白酒企业往往在当地经济中扮演重要角色,也造成了标准的执行、监管不强&rdquo 。  在蔡学飞看来,与国外企业主动由行业推动整体标准进化不同的是,国内白酒业颇为被动。&ldquo 究其原因,在于白酒业&lsquo 重营销、轻产品&rsquo 的生存方式,酒企们更看重通过各种炒概念增强产品附加值,但其背后是否真正存在技术的不同尚不得知。&rdquo 蔡学飞认为,也正是因为对产品的&ldquo 轻视&rdquo ,造成了现在陷入标准围攻的境地。  2012年的塑化剂风波曾引起白酒业不小的震动。&ldquo 相比于甜蜜素,塑化剂并不是食品添加剂,它的查出引发了社会对白酒安全的质疑。然而,白酒中存在的一些物质,有的并不可怕,关键是限定在合适的量内。这既要求企业自律,更需要加强监管。尤其,近来食品安全问题越发敏感,出台属于白酒业的国标显得格外必要。&rdquo 一位白姓行业内人士表示。
  • 膨化食品抽查 甜蜜素超标
    组织部门:国家质量监督检验检疫总局  抽查范围:北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东等10个省、直辖市88家企业生产的100种产品  抽查概况:对膨化食品的感官、酸价、过氧化值、羰基价、糖精钠、安赛蜜、甜蜜素、柠檬黄、菌落总数、大肠菌群、沙门氏菌、志贺氏菌、金黄色葡萄球菌等21个项目进行了检验。本次抽查,有6种产品不合格  主要问题:大肠菌群不合格,违规添加甜蜜素
  • 塑化剂政策刚刚出台,甜蜜素风波再起,白酒的江湖一言难尽
    2012年,白酒塑化剂超标事件发生,引发公众恐慌,伴随着公众对“塑化剂”的关注,推动了“塑化剂”相关标准的出台,2019年11月市场监管总局于近日正式发布关于食品中“塑化剂”污染风险防控的指导意见,得以让白酒行业更加稳健的发展。2019年12月20日,有媒体报道“酒鬼酒被举报非法添加甜蜜素”,同样引发公众关注。进入2020年,酒鬼酒“甜蜜素”事件正陷入一场拉锯战。这场由原酒鬼酒代理商实名举报引发的风波,至今仍在发酵中。 珀金埃尔默的液相质谱可以对白酒中的甜蜜素含量进行检测,而白酒中甜蜜素来源何处,如何管控的问题则需要社会各方力量来共同努力应对。甜蜜素是什么?化学名为“环己基氨基磺酸钠”,是一种甜味剂,其甜度是蔗糖的30到40倍,在我国是一种常见的合法添加剂,常用于蜜饯,糕点,酱菜,调味料和饮料等食品中,国家标准中有食品类别和最大使用量的限制。从摄入量角度来说,FAO/WHO食品添加剂联合专家委员会(JECFA)制定的甜蜜素的每日允许摄入量(ADI)为11mg/kg bw。换句话说,对于一个体重60kg的成年人来说,即使每天都吃到甜蜜素,只要其每天摄入量不超过660mg,就不会给人体的身体健康带来危害。但是法规层面上,根据上面GB 2760-2014食品安全国家标准食品添加剂使用标准的要求,配制酒中可以限量使用甜蜜素,但是白酒里是不允许添加甜蜜素的。另外关于甜蜜素的安全性,学术界仍无定论。《世界卫生组织国际癌症研究机构致癌物清单》(2017版显示),甜蜜素(sodium cyclamate)被归类在3类致癌物清单(第120项),即属于“对人类致癌性可疑,尚无充分的人体或动物数据”。综合以上可知,中国白酒中是不允许添加甜蜜素的,并且甜蜜素对人体的安全性尚待研究,目前无充分数据。因此对白酒中的甜蜜素含量监控很有必要。日前市场监管局发布的《关于公开征求2020年食品安全抽检计划意见的公告》在白酒品类下,甜蜜素被列为白酒的主要抽检项目。白酒中为什么会添加甜蜜素?既然白酒中不允许添加,那为什么白酒中还有人会添加甜蜜素?个别白酒企业为为改善产品的口感,在白酒加入甜蜜素进去,能喝出绵甜回甘之感。或白酒企业购入了含有甜蜜素的白酒作为原料,导致成品酒中检出甜蜜素。白酒甜蜜素的检测白酒甜蜜素也并非个例,根据新京报记者初步查询2014年至2019年以来的国家和各地食品安全抽检公布结果显示,关于白酒的抽检,全国各市场监管部门近6年共检出约1055批次不合格白酒,不合格的主要原因是酒精度不合格、检出甜蜜素。甜蜜素不合格的365批次,占不合格批次的34.59%。因此采用适合的甜蜜素检测方法,做好甜蜜素的监测工作对于白酒行业健康发展,保障人民身体健康具有重要的现实意义。食品甜蜜素的检测标准主要是依据国标《GB 5009.97- 2016 食品安全国家标准食品中环己基氨基磺酸钠的测定》,规定了食品中环己基氨基磺酸钠(甜蜜素)的三种测定方法——气相色谱法、液相色谱法和液相色谱-质谱/质谱法。 其中气相色谱法里食品中的环己基氨基磺酸钠用水提取,在硫酸介质中环己基氨基磺酸钠与亚硝酸反应,生成环己醇亚硝酸酯 ,由于白酒可能含有环己醇及含环己基的物质,在硫酸介质中也易与亚硝酸反应生成环己醇亚硝酸酯,而导致实验的假阳性,所以气相色谱法不适于白酒。珀金埃尔默推荐采用液相质谱联用的方法对白酒中的甜蜜素进行检测。扫描下方二维码,即可下载珀金埃尔默白酒中甜蜜素的LC-MS/MS分析方法测定相关文献资料。
  • 原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」
    原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼郭藤 史碧云 高立红原来液质还可以这样玩—— 用这个方法分析糖,从此“甜蜜负担”只有「甜蜜」 低聚糖春节刚刚过去,忙碌了一年的你,放假在家面对各种美食糖果是否自控力显得不够了?在工作和生活中我们时常会看到“寡糖”或者“低聚糖”这个词,加了低聚糖的饮品、食品,牛奶本身也含有非常多种低聚糖,营养师给出的饮食指南中常常提到用富含功能性低聚糖的食物代替蔗糖的建议,许多保健品中也宣称添加了低聚糖,生病去医院也会经常输葡萄糖,那么,今天我们就了解一下低聚糖吧。寡糖(Oligosaccharide),又称低聚糖,为2-10个单糖分子通过糖苷键聚合而成的碳水化合物。低聚糖集营养、保健、食疗于一体,广泛应用于食品、保健品、饮料、医药、饲料添加剂等领域,因此糖类化合物的分离分析是糖学研究的热点之一,同时具有很大的挑战性,主要是由于糖类化合物结构的“微观不均一性”,存在大量的位置异构体和差向异构体,使其分离极其困难。由于寡糖分子的极性非常大,在很多类型的色谱柱上,保留表现都不是很理想,色谱峰形差强人意,尤其寡糖有非常多同分异构体存,难以实现较好分离。今天我们就给大家介绍一套非常适合寡糖的分析方法和流程: 基于目标物的化学特征可知,离子色谱对糖类物质很好的保留和分离效果,国内外相关文献报道已有很多,一些糖测定标准方法也是使用离子色谱法,结合质谱具有高灵敏度、高通量和高选择性等优势,将离子色谱与质谱联用,二者强强联合,可以解决寡糖等强极性化合物分析诸多难题,目前尚属于较新的应用技术,本实验建立了基于ICS 5000+-TSQ Altis分析不同聚合度寡糖样本的方法和流程,并且取得了非常好的结果,该方案可一次进样同时检测1~10不同聚合度的寡糖,线性范围跨越5个数量级,回归曲线的可决系数(R2)达到0.9999,并且有you秀的重复性,相关传统方法具有不可比拟的优势,是一种更可靠、前沿的分析方法。图1. ICS-5000+离子色谱-TSQ Altis三重四极杆质谱仪联用示意图下面,我们就以某样品为例展示寡糖的检测结果,该样品为不同聚合度寡糖混合物,M1/G1~M10/G10代表聚合度为1~10:图2.聚合度1~10寡糖样本离子流图(点击查看大图) 表1. M1/G1~M10/G10寡糖重复进样5次的RSD图3. 代表性化合物(M1/G1)的标准曲线及回归方程(点击查看大图)总结看完之后是不是对ICMS在寡糖研究中的表现十分惊叹呢?赶快扫码获得应用笔记,使用起来吧!糖类是一类结构复杂的生物分子,它不仅是生物体储存和释放能量的关键物质,更在生理和病理过程中扮演重要的角色,对于更多其它单糖或者低聚糖以及它们在生物样本中的检测,飞飞也可以帮你实现,精彩下期继续哦~扫二维码获得应用笔记
  • 甜蜜七夕,要浪漫更要安全!
    七夕节,被认为是中国最具浪漫色彩的传统节日,在当代更是产生了“中国情人节”的文化含义。在这一天,不少情侣都会向对方送上糕点糖果、香囊罗帕等精心挑选的礼物,表达浓浓的爱意,但是在享受这份甜蜜的同时,需要警惕购买到市面上的假冒伪劣产品,使用了含有有毒有害物质或受到污染的商品,将会严重危害身体健康,产生各种疾病。 为了不让您珍视的人受到伤害,禾信仪器提供了完善的产品检测服务,帮助天下有情人守护这一份甜蜜和浪漫。一、重金属检测重金属过量摄入,将在体内长期积累,会导致人体中毒、损害神经系统发育以及增加患癌概率。食物受到重金属污染的原因有很多种,有可能是原材料生长的土壤受到重金属的污染,也有可能是生产过程中接触的设备和模具带入导致重金属超标,近年来,时有知名巧克力品牌抽检被爆出“铜”、“铅”、“镉”超标。应用禾信仪器电感耦合等离子体质谱仪ICP-MS 1600,参考标准GB 5009.268-2016《食品中多元素的测定》建立相应的检测方法。电感耦合等离子体质谱仪ICP-MS 1600上述结果表明,该方法线性相关系数R2均大于0.999,线性良好,实测检出限优于标准要求的检出限,完全满足标准检测要求。二、可分解芳香胺染料检测佩戴了含有禁用偶氮染料的罗帕、衣物,在长期接触过程中,其有害成分会被皮肤吸收,并在人体内扩散,此类物质可改变人体的DNA结构,从而引起病变和诱发恶性肿瘤物质,导致膀胱癌、输尿管癌、肾盂癌等恶性疾病。应用禾信仪器气相色谱质谱联用仪GC-MS 1000,参考标准GB/T 17592-2011《纺织品 禁用偶氮染料的测定》建立相应的检测方法。气相色谱质谱联用仪GC-MS 1000 该方法建立了纺织品中24 种致癌芳香胺化合物的检测方法,各化合物的线性相关系数 R2均大于 0.999;目标物的方法检出限在 0.33 mg/kg -2.25mg/kg范围内。上述结果表明禾信GCMS 1000具有良好的线性和检测灵敏度,满足检测需求。三、甜味剂检测合成甜味剂是常用的食品添加剂,被广泛用于巧克力、糕点生产中,可以增加甜度、改善口感风味。但是过量摄入人工合成甜味剂可能损害人的神经、肝脏及消化系统,引发肥胖、高血糖、糖尿病等风险。应用禾信三重四极杆液质联用仪LC-TQ 5200,参考标准SN/T 3538-2013《出口食品中六种合成甜味剂的检测方法 液相色谱-质谱/质谱法》建立相应的检测方法。禾信三重四极杆液质联用仪LC-TQ 5200该方法建立了甜蜜素、糖精钠、安赛蜜、阿斯巴甜、阿力甜、纽甜6种甜味剂的检测方法,结果表明,该检测方法的6 种合成甜味剂的线性相关系数R2均大于 0.999,线性良好,样品加标回收率为 95.0%~119.2%,表明结果准确,符合标准要求。四、微生物检测生产车间没有做好鼠蚁除害,储存间没有进行空气消毒,材料在进入车间前未经过杀菌工序,生产人员进入车间前没有做好灭菌消毒措施,所用的设备没有及时消毒等都会导致产品在生产过程中被细菌污染,食用后会导致食物中毒,引起严重的腹泻,腹疼,免疫力较低下者甚至能引起败血症甚至死亡。应用禾信仪器全自动微生物质谱检测系统CMI-3800,建立了食品性微生物的快速检测方法。禾信仪器全自动微生物质谱检测系统CMI-3800该方法以微生物体内高丰度、高特异性、持续表达的核糖体蛋白指纹图谱为检测依据,结合全面权威的数据库,可对3500种以上的细菌、真菌快速鉴定,种水平准确率达95%以上。上表是某市场监督管理局食品安全监督抽检的微生物污染样本检测结果,结果表明,仪器性能稳定,鉴定结果高度可信率达到96%,无鉴定失败样品。禾信仪器一直肩负着社会责任使命,以先进的仪器和优质的技术服务回馈社会,致力于解决消费品质量安全问题,为消费者的健康和利益提供保障。爱情道路长而辛,您出真心我出力,携手共筑平安桥,科技赋能暖千里。科技创新,让生活变得更加美好。
  • 岛津液质联用技术丨揭开白酒回甘的“甜蜜”陷阱
    风吹腊梅香,年味日渐浓。新年的脚步越来越近了,然而不和谐的音符又出现了。 1月25日,山东省市场监督管理局发布关于食品不合格情况的通告,其中某酿酒企业生产的浓香型白酒被检出甜蜜素。事实上,近一个月以来,全国已有多家酒企都曾涉及“甜蜜素”事件。佳节将至,“舌尖上的安全”再度成为公众舆论焦点。 关于甜蜜素的三问 1问:甜蜜素对人体有危害吗?2问:有危害,为什么还要添加?据悉,一是为增加甜味,酒中的甜味主要来源于粮食发酵产生的醇类,甜蜜素的甜味大概是蔗糖的30倍,而价格却仅为其三分之一。二是为掩盖生产工艺的缺陷,利用甜蜜素盖住酒中苦味,使消费者喝起来有回甘。也就是说:白酒回甘,也许是“甜蜜”陷阱 3问:国家明令禁止吗?GB2760-2014《食品安全国家标准 食品添加剂使用标准》明确规定,甜蜜素:配制酒中应≤0.65g/kg,其他酒类中均不得使用。重要的事情说三遍白酒中禁止添加!禁止添加!禁止添加! 甜蜜素怎么测? 样品前处理参照《GB 5009.97-2016 食品中环己基氨基磺酸钠的测定》标准中“第三法 液相色谱-质谱/质谱法”中试样溶液制备方法。 分析仪器岛津三重四极杆液质联用仪LCMS-8050 方法学结果 定量离子对MRM谱图(0.005 μg/mL) 采用外标法绘制环己基氨基磺酸钠标准曲线,在0.005~2 μg/mL浓度范围内,线性相关系数r大于0.999,各标准点准确度在96.6~103.7%之间。 实际样品 取某市售白酒样品(未检出甜蜜素)作为空白酒样,添加环己基氨基磺酸钠标准品溶液,制备成浓度为100μg/kg的加标样品,按照上述检测方法测定,白酒样品加标回收率在98.7~105.3%之间。除了甜蜜素,还有其它非法添加甜味剂 岛津公司已推出了《食品中非法添加物和滥用物质检测方案》,其中包括使用三重四极杆液质联用仪测定白酒中甜蜜素、糖精钠、阿斯巴甜等6种甜味剂的检测方法。 新春共饮团圆酒,举杯同祝全家福。新春佳节将至,岛津为您守护幸福年味! 请识别二维码下载《食品中非法添加物和滥用物质检测方案》。
  • 食品检测智云达 揭露隐藏在蜂蜜里的甜蜜“谎言”
    蜂蜜被誉为“大自然中最完美的营养食品”,成分除了葡萄糖、果糖之外还含有各种维生素、矿物质和氨基酸等,既是良药,又是上等饮料,集延年益寿、润肺消食、美容养颜多种功效于一身,颇受消费者亲睐。几乎每个家庭都有过蜂蜜消费的经历,但那些隐藏在蜂蜜里的秘密你可能不知道,造假蜂蜜早有耳闻,北京智云达食品安全检测产品带您揭露那些隐藏在蜂蜜里的甜蜜的“谎言”。 作为全球最著名的蜂蜜类产品,新西兰麦卢卡蜂蜜一直以其独特的药用价值举世闻名。但很少人知道当你花费了高昂价格购入一小瓶新西兰麦卢卡蜂蜜,很可能里面连一滴麦卢卡茶树的成分都没有,或许买的只是一瓶掺入了大量糖浆的混合物。根据新西兰一家蜂农协会的统计,新西兰每年大约只出产1700~2000吨的麦卢卡蜂蜜,但在全球范围内,每年以麦卢卡名义出售的蜂蜜高达1万吨以上。 这其中的内幕不言而喻,在蜂蜜市场,真正纯的蜂蜜已经太少,造假蜂蜜五花八门,以白糖蜜、大米糖浆蜜、玉米糖浆蜜等为主要形式,再加入明矾、甜蜜素、饴糖等各类食品添加剂,这就是市售的所谓的“指标蜜”,农药残留和兽药残留等各项指标也符合标准,但是毕竟添加的是糖,尤其是患有糖尿病的患者,在不知情的情况下误以为是蜂蜜大量食用,长此以往势必会适得其反。 由此消费者在选购蜂蜜时要学会如何辨别真假蜂蜜,可通过感官辨别。纯正的蜂蜜透光性强,颜色均匀一致,劣质蜂蜜显得浑浊而有杂质;纯蜂蜜用筷子挑一下拉长丝,丝断后回缩至珠状;储存在5℃-13℃条件下不久会结晶,劣质蜂蜜不受温度影响。纯蜂蜜口味醇厚、芳香甜润,入口后回味长易结晶。 感官辨别因人而异,需要有一定的经验和阅历,消费者也可以通过食品安全检测产品快速辨别蜂蜜中是否掺假。北京智云达科技有限公司作为食品安全快速检测行业的领先者,在强大的研发队伍下研发、生产了多项拥有自主知识产权的产品和设备,其生产了多项检测蜂蜜中成分的检测产品,SMART-02F多功能食品安全检测仪可检测蜂蜜中多项指标,还有小包装蜂蜜果糖、葡萄糖速测盒、造假蜂蜜糊精速测盒等多种快检产品,便于携带、操作简便,真正为您揭露那些隐藏在蜂蜜里的甜蜜“谎言”。 现在市场上销售的蜂蜜类产品鱼龙混杂,但是相信有智云达这样专业从事食品安全检测的企业,能更好的为身边的食品保驾护航,作为您身边的食品安全检测专家北京智云达一直在不断努力中,接下来还会有更多更先进更精确的快速食品检测产品上市。
  • 聚光十岁啦,新年甜蜜蜜
    &ldquo 新年好!新年甜蜜蜜!&rdquo 1月4日上午,聚光科技公司大门口鼓声阵阵、热闹非凡,来公司上班的员工都被穿着卡通衣服为员工分发糖果的情景所吸引。原来,1月4日是2012年第一个工作日,也是聚光科技十周岁的生日,为了在这个特殊的日子里,营造喜庆氛围,给员工带来惊喜与温暖,聚光科技开展了主题为&ldquo 聚光十岁啦,新年甜蜜蜜&rdquo 的为员工送祝福和糖果活动。 从早上7:50开始,穿着&ldquo 米老鼠&rdquo 、&ldquo 喜洋洋&rdquo 、&ldquo 灰太狼&rdquo 卡通服装的工作人员为来公司上班的每一位员工送上了祝福和糖果,员工们在惊喜之余也纷纷送上生日祝福,祝公司生日快乐,新年大吉。
  • 来伊份等蜜饯食品添加剂使用严重超标
    昨日,央视《消费主张》与《今日观察》栏目曝光了山东、杭州等地部分工厂蜜饯生产加工过程中存在严重漏洞,不仅生产环境污秽不堪,而且食品添加剂使用严重超标,过期产品还可以随便更改生产日期。在沃尔玛、世纪联华超市、家乐福和上海来伊份的专卖店等地方,记者购买了多款标称杭州这些工厂生产的蜜饯,检测结果显示,甜蜜素、糖精钠等甜味剂,胭脂红、苋菜红、亮蓝等着色剂以及用作漂白剂和防腐剂的二氧化硫都超过了国家标准要求的最大使用量,有的甚至超过国家标准要求的三倍多。  山东:加工桃肉多已腐烂  在山东省临沂市蒙阴县和平邑县,加工桃肉的工厂很多,但大都没有厂名和卫生许可证。同时这些晾晒的桃肉都是在路边的露天水泥地进行盐渍加工。记者在路边看到,一个大水泥池里泡着桃肉,旁边肮脏不堪。揭开盖着水泥池的塑料膜,里面浸泡着的桃肉有很多已经腐烂变质,一些垃圾也夹杂在其中。  在水池旁边,还摆放着一些盛放焦亚硫酸钠的白色编织袋。工人说,腌渍桃肉必须用焦亚硫酸钠,起漂白和防腐的作用。按照国家标准,蜜饯加工时可以限量使用焦亚硫酸钠作为漂白剂,然而在这些加工厂,对于焦亚硫酸钠的使用,却是按地域添加。用来盛装桃肉的编织袋,有的竟是动物的饲料袋,很多袋子上还明确写着:含有药物饲料添加剂。  杭州:蜜饯生产企业徒手作业  这些经过装袋后的蜜饯桃肉半成品卖到了什么地方?浙江杭州市余杭区的塘栖镇有蜜饯生产厂家近百家。杭州超达食品有限公司是当地蜜饯生产的龙头企业,其产品涉及话梅、杨梅和桃肉等品种。在超达公司的原料仓库,肮脏的地面上,一位工人正站在破旧的编织袋上运装原料。盐渍桃肉很多已经发出难闻的气味,而且用来装桃肉的编织袋正是在山东包装时使用的动物饲料袋。  在这里,记者看到更多的蜜饯加工手法。一些企业会建立两个工厂,新厂只负责包装和应付执法机关的检查,而老厂负责生产加工,一般人很难找到他们的老厂。从山东等地运来的半成品原材料,首先要做的就是人工剪碎。  杭州灵鑫食品有限公司是为上海来伊份食品有限公司代加工蜜饯的一家公司。在这里,成筐的桃肉堆放在一起,不管好的烂的,工人们正在徒手剪碎。在杭州余杭马氏食品有限公司,工人们也在徒手作业。  在上海来伊份食品和百味林代加工的几家加工厂里,记者在蜜饯晾晒场上没有看到防护措施,不时的有苍蝇、蜜蜂落在这些蜜饯上,晾晒的蜜饯筐里已经落有多种脏杂物。  但是几乎每家蜜饯食品生产企业的产品外包装上,都赫然印着QS的食品安全标志。  甜蜜素、糖精钠等严重超标  在浙江塘栖镇的一些蜜饯加工厂的库房里,记者见到了随意堆放的苯甲酸钠、甜蜜素、香兰素、柠檬酸等添加剂。在白果食品厂的一排大缸前,一位工人正端着一个塑料筐在向缸里加甜蜜素。  记者分别在沃尔玛、世纪联华超市、家乐福和上海来伊份的专卖店等地方,购买了标称为杭州超达食品有限公司、杭州灵鑫食品有限公司等多个厂家生产的多个品种的蜜饯,送往北京市理化分析测验中心进行检测。检测结果显示,甜蜜素、糖精钠等甜味剂,胭脂红等着色剂以及用作漂白剂和防腐剂的二氧化硫都超过了国家标准要求的最大使用量。  专家表示,甜蜜素使用过量可能引起一些健康隐患,以美国为例,目前规定甜蜜素是不允许使用在食品中的。  “这些食品加工厂像一个垃圾厂,而且是比较脏的垃圾厂,是那种让人感觉无法忍受的垃圾厂。这么一个生产环境,让我们很难把它跟食品联系到一块,我想这个需要很大的想象力。如果让我们来做一个竞猜游戏,那么我想99%的人都不会猜到这是在制作美味的蜜饯,想不到晾晒的果子里面有虫子,烂的也舍不得扔掉,到最后装进一个装过鸡饲料的袋子里,而且这所有的过程竟然在光天化日之下进行。这样一个过程,不要说我们看了以后还会不会吃,就算几天以后,我们回味起这个场面来,都感觉到我们非常的不幸。 ”
  • 月饼检测“神器”亮相合肥 10分钟测出添加剂含量
    中秋节来临之前,工商部门一般都会对市场上的月饼例行检查,与往年不同的是,今年,瑶海区市场监管局携带一样新型“秘密武器”,多功能食品安全监测仪,俗称“快检”,来到各个月饼市场,通过这个检测仪能够在短时间内就测量出食品中的添加剂、农药残留、三聚氰胺等物质,月饼市场的随机抽查也从肉眼观察月饼的包装、标签等表象,到如今直接通过仪器检测月饼的“内在”。  十分钟可检出添加剂含量  9月9日上午,瑶海区市场监管局食品监管科、稽查大队执法人员、和平路街道工作人员一起来到和平路附近,对一家大型连锁西点店的月饼进行随机抽查。  常规检查中,执法人员会检查散称月饼的包装,查看其标签标注的情况,指导经营者规范食品标签使用行为,而月饼是否超范围、超限量使用添加剂等成分问题,是无法通过肉眼查看的,需要有专门的仪器进行检测。  当天上午,瑶海区市场局稽查大队的执法人员就带来了一个“秘密武器”,它就是快速检测仪,据说可以在十分钟内,就检测出月饼中食品添加剂的含量。  “快检”只用于筛查  这个检测仪从外观看,就像一个黑色的手提行李箱,打开之后,插入电源设备,一个电子屏幕出现在眼前。执法人员首先输入检测样品的基本信息和检测单位。  执法人员随机选择了两款不同品种的月饼进行检测,花生香芋月饼和蔓越莓月饼。  十分钟左右,仪器吐出了一张印有检测数据和结果的纸条,“检测项目:甜蜜素,甜蜜素计:250.0mg/kg,结果判断:合格”“检测项目:硼砂,结果判断:未检出”等检测信息一目了然。  “从这个结果判断,这几组样品的添加剂都是在允许范围内,属于合格的产品。”执法人员说,但如果检测出存在不合格数据,“快检”还不能作为唯一的判断标准,需将这一批次的产品全部送到专业检测机构,出具检测报告才能判定是否不合格。“也就是说,快检仪器主要在检查过程中起到筛选的作用。”
  • 青岛海关破获14万吨花生走私案 黄曲霉毒素严重超标
    最近,青岛海关公布了一起去年破获的农产品走私大案,共查获涉案走私花生近14万吨,而且,经过检验,这些走私进口花生的黄曲霉素严重超标。 黄曲霉素,或许大家并不陌生。黄曲霉素具有极强的致癌力,毒性堪比砒霜,对肝损害巨大,被世界卫生组织划定为1类致癌物,是目前已知霉菌中毒性最强的。黄曲霉毒素在农产品中几乎是无法避免的,而花生和玉米是最容易被黄曲霉污染的粮食。因此,世界各国,都只能设定一个"限量标准"。如果,这14万吨黄曲霉素超标的花生一旦流入市场,后果将不堪设想。 这次青岛海关破获的毒花生案件总值15亿元,案件涉及山东、河南、安徽、广东等多个省份,仅青岛地区的涉案金额就达到了10亿多元,占总量的三分之二左右。这些有毒花生是如何被发现的?面对黄曲霉素超标花生,消费者又该如何的预防? 青岛海关缉私局在4月初公布了一起走私黄曲霉素花生的大案,共查获涉案花生等农产品13.88万吨,案值约13亿元,涉嫌偷逃税款3亿多元,抓获犯罪嫌疑人28名。据化验,部分涉案走私进口花生已发生霉变,含剧毒致癌物黄曲霉毒素。青岛海关缉私局工作人员冯铁军告诉记者,能够顺利揪出这么多毒花生,源于一起保税花生的走私案。 冯铁军:我们发现有好多经营单位,它加工的这个花生等农产品的实际加工量比正常的进口量要大。它多出来的数量,我们就怀疑它是偷运进境了。我们就对这件事情很关注,也展开了相关的调查。 在调查过程中,青岛海关缉私局发现,如果进口印度花生,本来从印度港口直接发货到青岛港,是最经济的一条运输线路,可涉案公司却非要舍近求远,不计成本的绕道越南。 冯铁军:因为正常经营的话,从印度进口花生应该是从港口直接发集装箱,发到实际销售地是最合理的。那么它的这种偷运进境的线路是从印度发到越南,从越南再发到广西的中越边境,从那里偷运进境。所以这种线路实际上是远远的增加成本。 经过深入调查,办案人员终于掌握了涉案公司的走私手法、以及涉案人员情况。据介绍,"蚂蚁搬家"是这些走私案件作案的主要手法。犯罪嫌疑人指使印度供货商将花生海运至越南港口,然后委托当地货运代理企业,并雇佣当地边民将花生从越南边境"搬"到广西,境内收货方安排专人接货,并将走私货物在国内销售牟利,而境内涉案企业都集中在青岛。 冯铁军:这种偷运进境,其实它不仅仅是逃避了税收,还逃避了商检。因为像花生这种农产品它是法检商品,也就是进口就必须得进行商检的。那印度花生它的黄曲霉素含量偏高,那么通过这种运输方式,它又有大量的霉变现象。 黄曲霉素是自然界最强的致癌物,而花生又是最容易被黄曲霉素污染的农产品,根据食品安全国家标准,花生及其制品中黄曲霉素B1限量标准为每千克20微克,而涉案的花生,黄曲霉素B1含量已经达到了每千克27.04微克,超出国家限量标准35%以上。据青岛海关缉私局工作人员冯铁军介绍,他们找到青岛涉案公司的仓库时,发现里面存储的花生有大量的霉变现象。 冯铁军:仓库里存储的那些花生有大量的腐败、霉变这种情况,那么它的黄曲霉素肯定是严重超标。黄曲霉素它本身是一种强致癌物质。 这些不良商家偷逃税款不说,还危害了食品安全。根据进一步的线索,全国缉私干警统一行动,成功破获了这起走私农产品的大案。 冯铁军:证实这批花生它不仅仅是销往山东地区,包括广西、广东、贵州、安徽、河南、河北等地都有销售。刑事立案27起,案值是15亿,偷逃税款5个亿。那么,我们在行动当中扣下的货物,就是霉变的这些花生大概是14万吨。 专家提醒广大消费者,黄曲霉毒素是耐高温的,所以一般的烹调温度无法使其失活,因此消费者在选购、食用花生时,一定要注意甄别,用肉眼看这些食物的颜色是否不同于正常颜色、有没有霉毛;再就是用鼻子闻是否有霉味,如果发现异常,就不要购买和食用了。
  • 欧盟修订部分果蔬酱中甜味剂使用限量规定
    2013 年 9 月 24 日,《欧盟官方公报》发布了 No 913/2013 号委员会条例,修订了 No 1333/2008 号条例的附录 II,对某些果蔬调味酱中甜味剂的使用做了新规定。该条例自发布之日起第20日生效。  具体修订内容如下:甜味剂代码 甜味剂名称 最大使用限量(mg/kg) 使用范围 E950 安赛蜜 1000 低热量果蔬调味酱以 及低热量或不添加糖 的干果三明治调味酱 中 E952 甜蜜素 500 E954 糖精及其钠盐钾盐钙盐 200 E955 三氯蔗糖 400 E959 新橙皮苷二氢查尔酮 50 E960 甜菊糖苷 200
  • 北京食品市场现滥用添加剂 49种毒食品大曝光
    现如今,不少食品滥用添加剂后,就像变成了孙悟空会72变。继牛肉膏、毒豆芽、毒火锅曝光之后,北京市工商局又检测出市场上销售非法使用添加剂的食品,共有60个样本滥用添加剂。这60种不合格的食品中就包括青年人十分青睐的牛板筋、过桥米线等。让我们深感忧虑的是,各种食品添加剂已经无处不在,每个成人每天大概要吃进八九十种添加剂。这么多的化学制品将进入我们的身体,敢问当下我们还有多少食品可以吃,我们还能吃什么?这场食品安全保卫战还要打多久?让小编带您看看下面这49食品你吃过几种?  5月21日,北京市工商局公布了这批不合格食品的黑名单。此次监测对样品中甜味剂、防腐剂、着色剂项目进行检测判定。监测当中发现的主要问题一是滥用甜蜜素、糖精钠等甜味剂,二是超范围使用苯甲酸等防腐剂,三是超限量添加胭脂红等着色剂。市食品安全办、市工商局依法对不合格样本实施按批次全市停止销售的控制措施。  不合格样本情况表(部分)  商标 样品名称 生产企业名称 不合格项目  洪秋调味面制品 牛板筋众乐 菏泽市牡丹区 付提口苯甲酸、糖精钠、甜蜜素  香辣素牛板筋 好正点 重庆好媳妇食品有限公司 苯甲酸、糖精钠、甜蜜素  面制品(麻辣) 叫花鸡 宁顺彭州市晶晶食品有限责任公司 苯甲酸  牛板筋 麻辣世家 三鑫漯河市金兰食品厂 甜蜜素、胭脂红  串烧牛板筋 龙仔 沈阳市新龙仔食品厂 甜蜜素、柠檬黄  过桥米线(调味面制食品) 品缘众峰 郑州市管城区北斗星食品厂苯甲酸、甜蜜素  红烧牛柳(调味面制食品)吉祥 郑州市管城区方师傅熟食厂苯甲酸、甜蜜素  虎哥 调味面制食品 素食邱氏食品郑州市管城区天民食品厂甜蜜素  麻婆豆腐调味 面制食品 小四川 新郑市龙湖镇小四川食品厂苯甲酸、甜蜜素  神雕侠侣 琼宇 郑州琼宇食品有限公司 甜蜜素  卫龙大面筋 重庆风味卫龙 河南省驻马店市平平食品有限公司 苯甲酸、糖精钠  开胃牛 肉干味 曾礼和 扶沟县曾礼和食品厂 苯甲酸、甜蜜素、胭脂红  唐僧肉博利多 郑州市管城区博利多食品厂 甜蜜素  俊琪素食 欧阳 郑州市管城区欧阳食品厂 苯甲酸、甜蜜素  非常6+1振仔郑州市管城区振宇食品厂苯甲酸、糖精钠、甜蜜素  串烧 西施豆腐 思缘 郑州市二七区思缘食品厂出品 苯甲酸、甜蜜素  棒棒牛 一席地 郑州市管城区一席地食品 厂苯甲酸、甜蜜素  牛板筋 杨海鹏新 郑市海洋食品厂 苯甲酸、糖精钠、甜蜜素  小面筋 卫龙 河南省漯河市平平食品有限责任公司 苯甲酸、糖精钠
  • 泰国拟制订花生仁中黄曲霉毒素限量
    7月23日,泰国发布G/SPS/N/THA/216号通报:泰国拟制订农业标准“花生仁中黄曲霉毒素最大限量”草案。  该标准建立了最大限量(花生仁中的总黄曲霉毒素含量不得超过20μg/kg)和控制措施,以减少将用于食品的未加工干花生仁中的黄曲霉毒素,供国产、进口和出口未加工干花生仁在生产、贸易和检验时执行。  对花生生产商规定了以下控制措施:在配送前应将发霉的、破碎的、损伤的花生仁和外来的杂质挑拣出来 在配送前生产商应检验每批花生仁的黄曲霉毒素含量 花生出口商应证明出口未加工花生仁是由依据该标准授予证书的注册花生生产商生产的,并随附黄曲霉毒素含量不超过进口国限量的检验结果 花生进口商应证明进口未加工花生仁是由有该标准规定的控制措施的花生生产商生产的,并随附主管机关或认可实验室出具的黄曲霉毒素含量不超过20μg/kg的检验结果。  该通报的评议截止期为9月21日。批准和公布日期待定,预计于公布后12个月生效。
  • “来伊份”蜜饯被曝任意添加漂白防腐剂
    据《东方早报》报道,昨晚,央视财经频道《消费主张》播出暗访节目,称国内部分蜜饯生产过程中大量使用添加剂,生产环境恶劣。知名企业上海来伊份股份有限公司销售的蜜饯也遭到曝光。  昨晚,来伊份公司对此紧急回应,企业正在了解供应商的情况,将会在近期给予正面回复,消费者如对产品有疑问,可到各地门店退货。  央视记者探访了山东临沂市平邑县和蒙阴县一些蜜饯加工厂,厂内遍地都是晾晒的桃肉,一些老板表示,这里生产的桃肉大多没有生产许可证、卫生许可证。杭州灵鑫食品是为来伊份加工生产蜜饯的厂家之一,里面的工人都徒手剪碎果脯。  节目显示,多数出厂的蜜饯都是经过腌制的,而腌制的地方就是路边水泥池,甚至路边一个大水泥池里泡着5万斤左右的桃肉。这些水泥池旁边垃圾遍地、肮脏不堪,掀开塑料薄膜,很多桃肉腐烂变质,在水泥池边,还有不少印着焦亚硫酸钠的白色编织袋,加工人员称,“腌制过程中必须用到焦亚硫酸钠,起到漂白和防腐作用”。  焦亚硫酸钠,是一种白色粉末状物质,有较好的防腐和抗氧化作用,按照国家标准,蜜饯生产可以限量加入焦亚硫酸钠作为漂白剂,规定最大使用量以二氧化硫残留量计,控制在0.05g/kg,但这些工厂却是按照地域来添加。当地一家兴隆果脯厂员工周其喜称,“广东那里需要焦亚硫酸钠大的,杭州喜欢焦亚硫酸钠小的。”  央视记者在将超市以及来伊份购买的标注为杭州超达食品有限公司、杭州灵鑫食品有限公司等多个厂家生产的多个蜜饯产品送往北京市理化分析测试中心进行检测后发现,甜蜜素、糖精钠等甜味剂,胭脂红、亮蓝等着色剂以及用作漂白和防腐剂的二氧化硫都超过国家标准。  根据《食品添加剂使用卫生标准》规定,蜜饯中胭脂红的最大使用量为0.05g/kg,超达生产的美国车厘子,胭脂红含量为0.17g/kg。蜜饯中苋菜红的最大使用量为0.05g/kg,亮蓝的最大使用量为0.0255g/kg,超达生产的黑加仑,苋菜红含量为0.145g/kg,亮蓝含量为0.0855g/kg。  此次央视曝光的诸多企业中,上海著名商标来伊份最受消费者关注。来伊份成立于1999年,其第一家门店在上海徐汇区开张。目前来伊份全国门店突破2000家,其产品覆盖炒货、蜜饯、肉制品等九大系列,但产品的生产、配送环节完全外包,只负责产品研发、推广和终端销售环节。就在央视曝光前的4月19日,来伊份刚刚公布了首次公开发行股票招股说明书,谋求在深交所上市。  针对央视的报道,来伊份客服中心高级经理庞承蓉表示,向来伊份提供蜜饯产品的厂家有很多,不过她也承认,不能排除有劣质蜜饯流入上海市场。昨晚,来伊份公告称,企业正在了解被曝光供应商的情况,目前仍在调查了解过程中,将会在近期给大家正面的回复。来伊份还承诺,消费者如对产品有疑问,可到各地门店退货。
  • 食药监总局:逾三成不合格样品超量使用添加剂
    “在2016年抽检中,不合格产品主要问题是超范围、超限量使用食品添加剂,占不合格样品的33.6%。”1月16日,在国家食品药品监督管理总局召开的新闻发布会上,该局副局长郭文奇说。  郭文奇表示,当前我国食品安全形势总体平稳,去年总体抽检合格率为96.8%,与2015年持平。除超量使用添加剂之外,存在的其他问题有:一是微生物污染,占不合格样品的30.7%,其中因致病性微生物导致的不合格样品占此类不合格的25.6% 二是质量指标不符合标准,占不合格样品的17.5% 三是重金属等元素污染,占不合格样品的8.2% 四是农药兽药残留不符合标准,占不合格样品的5.5% 五是生物毒素污染,占不合格样品的1.1% 六是检出非食用物质,占不合格样品的0.7% 七是其他问题,占不合格样品的2.7%。  数据显示,2016年食药监总局在全国范围内组织抽检了25.7万批次食品样品,总体抽检合格率为96.8%,与2015年持平,比2014年提高2.1个百分点。  具体来看,大宗日常消费品抽检合格率总体保持较高水平,粮食加工品为98.2%,食用油、油脂及其制品为97.8%,肉、蛋、蔬、果等食用农产品为98.0%,乳制品为99.5%。  其次,社会关注度较高的婴幼儿配方乳粉共抽检2532批次,其中有0.9%的样品不符合食品安全国家标准,0.4%的样品符合国家标准但不符合产品包装标签明示值。  郭文奇表示,从2014至2016年抽检情况看,调味品、饮料、水果制品、蛋制品等9类的抽检合格率逐年升高。一些社会关注度较高的品种和指标,如乳制品和婴幼儿配方食品中的三聚氰胺、小麦粉中的黄曲霉毒素B1等,三年抽检样品均全部合格 花生油中的黄曲霉毒素B1、水果干制品中的菌落总数、餐饮自制发酵面制品中的甜蜜素等抽检合格率逐年提高。  针对抽检发现的问题,2016年,总局组织各地食品药品监管部门共处置生产经营单位9264件次,罚没总额达1.2亿元,下架封存不合格食品428.2吨、召回326.9吨。食品安全监督抽检和处置信息由各级食品药品监管部门按照规定向社会公布。
  • 将野生等位基因渗入四倍体花生作物中以提高水分利用效率,早熟和产量
    pspan style="font-size: 18px "strongspan style="font-family: 宋体 "将野生等位基因渗入四倍体花生作物中以提高水分利用效率,早熟和产量/span/strong/spanstrong/strong/ppstrongspan style=" font-family:宋体"文献信息:/span/strong/ppspanWellison F. Dutra, Yrla?nia L. Guerra, Jean P. C. Ramos, Pedro D. Fernandes, Carliane/span/ppspanR. C. Silva, David J. Bertioli, Soraya C. M. Leal-Bertioli, Roseane C. Santos /spanspan style=" font-family:宋体"(/spanspan2018/spanspan style=" font-family:宋体")/span/ppstrongspanIntrogression of wild alleles into the tetraploidpeanut crop to improve water use efficiency,earliness and yield/span/strong/ppspanPLOS ONE | June 11, 2018span /spana href="https://doi.org/10.1371/journal.pone.0198776"https://doi.org/10.1371/journal.pone.0198776/a/span/ppspan style=" font-family:宋体"摘要/spanspan: /span/pp style="text-indent:28px"span style=" font-family:宋体"从野生物种中导入基因是育种人员很少用于改善商业作物的实践,尽管它为丰富遗传基础和创造新品种提供了极好的机会。在花生中,这种做法正在被越来越多地采用。/span span style=" font-family:宋体"在这项研究中,我们介绍了来自野生种/spanspanArachis duranensis/spanspan style=" font-family:宋体"和/spanspanA. batizocoi/spanspan style=" font-family:宋体"的野生等位基因渗入改善了光合特性和产量的一系列结果,这些系得自于诱导的异源四倍体和栽培花生在水分胁迫下的选择杂交。该测定法是在温室和田间进行的,侧重于生理和农艺性状。为了对耐旱品系进行分类,采用了多元模型(/spanspanUPGMA/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"几条品系显示出更高的耐受水平,其值与耐受对照相似或更高。突出显示了两个/spanspanBC 1 F 6/spanspan style=" font-family:宋体"系(/spanspan53 P4/spanspan style=" font-family:宋体"和/spanspan96 P9/spanspan style=" font-family:宋体"),具有良好的干旱相关性状,早熟性和荚果产量,对耐旱的优良商业品种/spanspanBR1/spanspan style=" font-family:宋体"具有更好的表型特征。这些系是创建适合在半干旱环境中生产的花生品种的良好候选者。/span/ppspan style=" font-family:宋体"概述:/span/pp style="text-indent:28px"span style=" font-family:宋体"适应干旱环境的植物栽培种的开发是改良计划中的一项有价值的策略,并且由于复杂的遗传遗传而面临着巨大的挑战。为了简化选择过程,育种者可以使用替代性状来帮助鉴定耐旱植物。/span/pp style="text-indent:28px"span style=" font-family:宋体"水分胁迫下的植物由于/spanspanCO2/spanspan style=" font-family:宋体"的扩散限制而降低了气体交换,降低了羧化效率,或者由于光抑制导致了叶绿体活性的限制。/span/pp style="text-indent:28px"span style=" font-family:宋体"植物自身有几种保护机制,以平衡吸收的光能与光合作用。根据/spanspanKalariya/spanspan style=" font-family:宋体"等研究,非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")是一个非常重要的特性,它是指通过叶绿体以非光化学方式释放多余的能量,从而保护光合器官。在多种情况下,气体交换和叶绿素/spanspana/spanspan style=" font-family:宋体"荧光是叶片生理状态和植物生长的非常敏感的指标。/span span style=" font-family:宋体"它们揭示了当前光合代谢的状态,包括胁迫条件下的损伤和修复状态。/span/pp style="text-indent:28px"span style=" font-family:宋体"花生(/spanspanArachis hypogaea L./spanspan style=" font-family:宋体")是许多国家种植的重要油料种子,可用于粮食和石油市场。/span span style=" font-family:宋体"花生属有/spanspan80/spanspan style=" font-family:宋体"多种,多数为二倍体(/spanspan2n = 2x = 20/spanspan style=" font-family:宋体"),代表了宝贵的遗传资源,广泛适应热带和半干旱环境。/span/pp style="text-indent:28px"span style=" font-family:宋体"花生野生种在改良计划中的使用受到限制,这主要是由于物种之间的倍性差异和染色体障碍。/span span style=" font-family:宋体"可以通过人工杂交/spanspanA/spanspan style=" font-family:宋体"和/spanspanB/spanspan style=" font-family:宋体"基因组野生物种,然后诱导染色体复制以恢复生育力和四倍体状态来克服这一问题。通过结合/spanspanA/spanspan style=" font-family:宋体"和/spanspanB/spanspan style=" font-family:宋体"基因组来培育合成系,提供了一系列具有几个优良特性的四倍体,例如对疾病和害虫的抵抗力,并为花生改良开辟了新的机遇。/span/ppspan1/spanspan style=" font-family:宋体"、材料和方法/spanspan:/span/ppspan1.1 /spanspan style=" font-family:宋体"植物材料/span/pp style="text-indent:28px"spanBRsub1/sub/spanspan style=" font-family:宋体"是一种早熟的直立品种,广泛适应热带和半干旱环境。被选为父本,由于即使在缺水的情况下(间歇性和季节结束)也能生产成熟的豆荚,产能很高。诱导的异源四倍体/spanspan[A. batizocoi K9484 x A. duranensis SeSn2848] 4x/spanspan style=" font-family:宋体"(在这里称为/spanspanBatDur/spanspan style=" font-family:宋体"),是使用/spanspanEMBRAPA/spanspan style=" font-family:宋体"遗传资源和生物技术的花生种质库中的野生种质生产的。将/spanspanBRsub1/sub/spanspan style=" font-family:宋体"和/spanspanBatDur/spanspan style=" font-family:宋体"杂交,并将来自该杂种的/spanspanF sub2/sub/spanspan style=" font-family: 宋体"后代与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"回交。/spanspan BC sub1/sub Fsub 1/sub s/spanspan style=" font-family:宋体"自交,产生/spanspan281/spanspan style=" font-family:宋体"种子。/spanspan BC sub1/sub Fsub 2/sub/spanspan style=" font-family:宋体"植物在温室中生长(/spanspan(Recife, 8?03’14”S 34?52’51”W, 7m/spanspan style=" font-family:宋体")/spanspan, /spanspan style=" font-family:宋体"将种子播种在/spanspan20/spanspan style=" font-family:宋体"升的花盆中,该花盆中装有事先经过石灰处理和施肥(/spanspanNPK/spanspan style=" font-family:宋体",/spanspan20/spanspan style=" font-family:宋体":/spanspan60/spanspan style=" font-family:宋体":/spanspan30/spanspan style=" font-family:宋体",硫酸铵,单过磷酸钙和氯化钾)的砂质壤土。发芽后的第/spanspan25/spanspan style=" font-family:宋体"天,将植物停水/spanspan15/spanspan style=" font-family:宋体"天。只有/spanspan87/spanspan style=" font-family:宋体"个植物达到完整周期,并根据收获指数(/spanspanHI 35/spanspan style=" font-family:宋体"%)和耐旱指数(/spanspanDTI 0.7/spanspan style=" font-family:宋体")选择了/spanspan13/spanspan style=" font-family:宋体"个植物。由于所有后代均处于胁迫状态,因此将/spanspanBRsub1/sub/spanspan style=" font-family:宋体"的平均值用作对照。/span span style=" font-family:宋体"从/spanspan13/spanspan style=" font-family:宋体"种选择的植物中的每一种中选择十个/spanspanBCsub1/subFsub3/sub/spanspan style=" font-family:宋体"种子用于进一步的田间测定。/span/ppimg style="width: 600px height: 457px " src="https://img1.17img.cn/17img/images/202009/uepic/6878c32a-d597-4220-81f6-0d845f3544e3.jpg" title="1.png" width="600" height="457" border="0" vspace="0" alt="1.png"//ppimg style="width: 600px height: 475px " src="https://img1.17img.cn/17img/images/202009/uepic/a75bf1e5-4c54-4bc5-acc3-dd8ab76ad07b.jpg" title="2.png" width="600" height="475" border="0" vspace="0" alt="2.png"//ppspan style=" font-family:宋体"图/spanspan1. /spanspan style=" font-family:宋体"诱导的异源四倍体/spanspanBatDur/spanspan style=" font-family:宋体"近交采用的选择步骤。/span/ppspan1.2 /spanspan style=" font-family:宋体"田间初选和生理测定/span/ppspanspan /span/spanspan style=" font-family:宋体"在/spanspan2015/spanspan style=" font-family:宋体"年雨季结束时,在田间试验中种植了/spanspan130/spanspan style=" font-family:宋体"粒/spanspanBCsub1/subFsub3/sub/spanspan style=" font-family:宋体"种子(/spanspanCampina Grande/spanspan style=" font-family:宋体",/spanspanPB/spanspan style=" font-family:宋体",/spanspan7?13' 50” S/spanspan style=" font-family:宋体",/spanspan35?52' 52” W/spanspan style=" font-family:宋体",/spanspan551 m/spanspan style=" font-family:宋体",半干旱气候)(/spanspan 7/spanspan style=" font-family:宋体"月/spanspan-10/spanspan style=" font-family:宋体"月)。将植物播种成/spanspan5m/spanspan style=" font-family:宋体"行,间隔/spanspan30/spanspan style=" font-family:宋体"厘米,出苗/spanspan25/spanspan style=" font-family:宋体"天后要停水/spanspan21/spanspan style=" font-family:宋体"天,然后恢复灌溉,在生长周期中保持相当于/spanspan400/spanspan style=" font-family:宋体"毫米的浇水量。收获时,根据收获指数(/spanspanHI 30/spanspan style=" font-family:宋体"%)从最初的/spanspan130/spanspan style=" font-family:宋体"株植物中选择/spanspan64/spanspan style=" font-family:宋体"株。评估了/spanspan64 BCsub 1/sub Fsub 3/sub/spanspan style=" font-family:宋体"植物的后代与干旱抗性和农艺性状相关的生理响应。在干旱季节,植物生长在/spanspanPB/spanspan style=" font-family:宋体"的/spanspanCampina Grande/spanspan style=" font-family:宋体"的温室中(十月/spanspan/ 2015-Feb / 2016/spanspan style=" font-family:宋体")。将/spanspanBCsub1/subFsub 4/sub/spanspan style=" font-family:宋体"植物种子播种在/spanspan30L/spanspan style=" font-family:宋体"盆中,该盆中装有事先用石灰和肥料施肥的沙壤土质地的土壤。/span span style=" font-family:宋体"测定中添加了三种栽培基因型:/spanspanBR1/spanspan style=" font-family:宋体"(瓦伦西亚直立,耐旱),塞内加尔/spanspan55-437/spanspan style=" font-family:宋体"(西班牙直立,耐旱)和/spanspanLViPE-06/spanspan style=" font-family:宋体"(弗吉尼亚州流浪者,对干旱敏感)。每天给植物浇水,保持田间容量/span/ppspan style=" font-family:宋体"。/span span style=" font-family:宋体"在花期(直立品种为/spanspan24/spanspan style=" font-family:宋体"–/spanspan25/spanspan style=" font-family:宋体"天,亚种/spanspanLViPE-06/spanspan style=" font-family:宋体"为/spanspan34/spanspan style=" font-family:宋体"–/spanspan35/spanspan style=" font-family:宋体"天),植物需忍受/spanspan15/spanspan style=" font-family:宋体"天的水分限制。水分替代基于作物的蒸散量(/spanspanETC/spanspan style=" font-family:宋体"),通过温室内安装的蒸发罐和花生的作物系数来估算。/span span style=" font-family:宋体"分析期间记录的温度范围为/spanspan18?C/spanspan style=" font-family:宋体"至/spanspan44?C/spanspan style=" font-family:宋体"。/span span style=" font-family:宋体"空气的相对湿度平均为/spanspan68/spanspan style=" font-family:宋体"%。/span/pp style="text-indent:29px"span style=" font-family:宋体"采用不完全随机区组,重复/spanspan10/spanspan style=" font-family:宋体"次。测量了以下生理特征:气孔导度(/spanspangs/spanspan style=" font-family:宋体"),蒸腾速率(/spanspanE/spanspan style=" font-family:宋体"),净光合速率(/spanspanPn/spanspan style=" font-family:宋体")和胞间/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体")。根据这些数据,估算了瞬时羧化效率效率(/spanspanPn / Ci/spanspan style=" font-family:宋体")和瞬时水分利用效率(/spanspanWUE/spanspan style=" font-family:宋体"),以比率/spanspanPn / E/spanspan style=" font-family:宋体"表示。使用红外气体分析仪(/spanspanIRGA/spanspan style=" font-family:宋体",/spanspanACD/spanspan style=" font-family:宋体",/spanspanLCPro SD/spanspan style=" font-family:宋体",/spanspanUK/spanspan style=" font-family:宋体")和/spanspan1600/spanspan style=" font-family:宋体"μ/spanspanmolm-2s-1/spanspan style=" font-family:宋体"的光源,在上午/spanspan9:00/spanspan style=" font-family:宋体"和/spanspan11:00 AM/spanspan style=" font-family:宋体"之间测量光合作用参数。/span span style=" font-family:宋体"使用叶绿素荧光仪/spanspanOS5p+/spanspan style=" font-family:宋体"(/spanspanOpti-Sciences/spanspan style=" font-family:宋体",/spanspanHudson/spanspan style=" font-family:宋体",/spanspanUSA/spanspan style=" font-family:宋体")测量叶绿素荧光特性。/span span style=" font-family:宋体"使用/spanspanKramer/spanspan style=" font-family:宋体"模型评估非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")。/span/pp style="text-indent:29px"span style=" font-family:宋体"使用软件/spanspanGENES 2013.5.1/spanspan style=" font-family:宋体"通过单变量和多元(非分层模型)方法分析数据。/spanspanUPGMA/spanspan style=" font-family:宋体"方法被用作非分层模型。为了调整模型,估计了显着相关系数。/span/ppspan2/spanspan style=" font-family:宋体"、光合荧光生理参数分析/span/pp style="text-indent:28px"span style=" font-family:宋体"在这项研究中,我们旨在育种高级品系,将来自杜鹃花和蜡梅的野生等位基因渗入以提高花生的耐旱性。/span span style=" font-family:宋体"将一种由巴西曲霉/spanspanx/spanspan style=" font-family:宋体"杜兰曲霉诱导的异源四倍体与当地的优良耐旱品种/spanspanBR1/spanspan style=" font-family:宋体"杂交。从该杂交获得的/spanspanF 2/spanspan style=" font-family:宋体"代与/spanspanBR1/spanspan style=" font-family:宋体"回交,并且从/spanspanBC 1 F 2/spanspan style=" font-family:宋体"开始,在温室和田间进行测定,以鉴定耐干旱的植物。/span span style=" font-family:宋体"使用这种方法的合理性主要基于被确定为抗旱等位基因的潜在良好供体的花生。/span/pp style="text-indent:28px"span style=" font-family:宋体"总体而言,这些基因型保持了较高的气孔导度(/spanspangs/spanspan style=" font-family:宋体")(图/spanspan3A/spanspan style=" font-family:宋体"),导致蒸腾速率提高(/spanspanE/spanspan style=" font-family:宋体",图/spanspan3B/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"这种组合有利于在水分限制期间维持这些植物的净光合速率(/spanspanPn/spanspan style=" font-family:宋体",图/spanspan3C/spanspan style=" font-family:宋体"),降低细胞间/spanspanCO sub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体",图/spanspan3D/spanspan style=" font-family:宋体")。如图/spanspan3E/spanspan style=" font-family:宋体"所示,大多数基因型的瞬时羧化效率(/spanspanPn / Ci/spanspan style=" font-family:宋体")与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"相似或更高。这表明在水分利用率低的情况下/spanspanCOsub 2/sub/spanspan style=" font-family:宋体"固定效率。/spanspan 11/spanspan style=" font-family:宋体"个基因型的水分利用效率要比对照亲本/spanspanBR1/spanspan style=" font-family:宋体"高(图/spanspan3F/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"此外,在/spanspan64/spanspan style=" font-family:宋体"个/spanspanBC 1 F 4/spanspan style=" font-family:宋体"植物中,有/spanspan8/spanspan style=" font-family:宋体"个产生了较重的豆荚,其中/spanspan3/spanspan style=" font-family:宋体"个产生了较重的种子(/spanspanS1/spanspan style=" font-family:宋体"表)。这表明,根据此处采用的实验条件,这些基因型对水分胁迫的耐受性更高。/span/ppimg style="width: 600px height: 201px " src="https://img1.17img.cn/17img/images/202009/uepic/6ad0e52e-87c2-46b1-b105-e7e73764b4cd.jpg" title="3.png" width="600" height="201" border="0" vspace="0" alt="3.png"//ppimg style="width: 600px height: 191px " src="https://img1.17img.cn/17img/images/202009/uepic/a54a5250-acdc-4ec2-a559-add2438fd0c9.jpg" title="4.png" width="600" height="191" border="0" vspace="0" alt="4.png"//ppimg style="width: 600px height: 203px " src="https://img1.17img.cn/17img/images/202009/uepic/b8c2ef15-1870-425a-9be7-f1f0e8da3a99.jpg" title="5.png" width="600" height="203" border="0" vspace="0" alt="5.png"//ppspan style=" font-family:宋体"图/spanspan3/spanspan style=" font-family:宋体":花生品系的气体交换。/spanspan A-/spanspan style=" font-family:宋体"气孔导度(/spanspangs/spanspan style=" font-family:宋体"),/spanspanB-/spanspan style=" font-family:宋体"蒸腾速率(/spanspanE/spanspan style=" font-family:宋体"),/spanspanC-/spanspan style=" font-family:宋体"净光合速率(/spanspanPn/spanspan style=" font-family:宋体"),/spanspanD-/spanspan style=" font-family:宋体"胞间/spanspanCO sub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体"),/spanspanE-/spanspan style=" font-family:宋体"瞬时羧化效率(/spanspanPn/ Ci/spanspan style=" font-family:宋体"),/spanspanF-/spanspan style=" font-family:宋体"瞬时水分利用效率(/spanspanWUE/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"虚线是/spanspan64/spanspan style=" font-family:宋体"个品系的估计平均值。/spanspanBR1/spanspan style=" font-family:宋体"和/spanspan55-437/spanspan style=" font-family:宋体"(对照)。/span/ppimg style="max-width: 100% max-height: 100% width: 600px height: 158px " src="https://img1.17img.cn/17img/images/202009/uepic/b68e1efa-aa84-4ed1-87b7-7c60d4788aec.jpg" title="6.png" alt="6.png" width="600" height="158" border="0" vspace="0"//ppimg style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/202009/uepic/f02a7c1c-839f-4003-b577-60b6eb2ccd90.jpg" title="7.png" alt="7.png" width="600" height="300" border="0" vspace="0"//pp style="text-indent:42px"span style=" font-family:宋体"图/spanspan4. /spanspan style=" font-family:宋体"花生品系的非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"虚线是/spanspan64/spanspan style=" font-family:宋体"个品系的估计平均值。/spanspan BR1/spanspan style=" font-family:宋体"和/spanspan55/spanspan style=" font-family:宋体"–/spanspan437/spanspan style=" font-family:宋体"(对照)。/span/ppspanspan /span/spanspan style=" font-family:宋体"植物在缺水的情况下会调节气孔关闭,减少蒸腾作用,从而克服胁迫期。这种情况导致/spanspanCO2/spanspan style=" font-family:宋体"吸收减少。/span span style=" font-family:宋体"根据文献报道,气孔导度(/spanspangs/spanspan style=" font-family:宋体")是限制水分胁迫下植物光合作用的主要因素之一。气孔导度与净光合速率呈正相关(/spanspantable 1/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"在半干旱环境中,雨季经常发生间歇性干旱,通常与强太阳辐射有关。这些可能导致对光合作用器官的严重损害,因此,大大降低植物中/spanspanCO 2/spanspan style=" font-family:宋体"的固定。为了避免这种损害,植物形成了多种保护机制,例如非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体"),它负责光合作用和光能的平衡。在这项研究中,有/spanspan15/spanspan style=" font-family:宋体"种基因型的/spanspanNPQ/spanspan style=" font-family:宋体"值超过了一般平均值(图/spanspan4/spanspan style=" font-family:宋体"),其中/spanspan10/spanspan style=" font-family:宋体"种与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"相似或更高,表明这些基因型即使在水分胁迫下也能消耗多余的能量,从而改善了光合器官的功能。/spanspanspan /spanspan /span/span/pp style="text-indent:28px"span style=" font-family:宋体"表/spanspan1/spanspan style=" font-family:宋体"中数据显示了他们之间的相关性,/spanspangs x Pn/spanspan style=" font-family:宋体"(/spanspan0.57/spanspan style=" font-family:宋体"),/spanspangs x NPQ/spanspan style=" font-family:宋体"(/spanspan-0.52/spanspan style=" font-family:宋体"),/spanspangs x Ci/spanspan style=" font-family:宋体"(/spanspan0.76/spanspan style=" font-family:宋体"),/spanspanPn x Ci/spanspan style=" font-family:宋体"(/spanspan0.62/spanspan style=" font-family:宋体")和/spanspanNPQ x Ci/spanspan style=" font-family:宋体"(/spanspan-0.75/spanspan style=" font-family:宋体"),相关性很高。/span span style=" font-family:宋体"表明它们可以用作花生抗旱性近亲繁殖选择程序的替代性状。/span/pp style="text-align:left text-indent:28px"span style=" font-family: 宋体"这些新育种系的采用为扩大未来品种的遗传基础提供了机会,也为在野生育种计划中利用野生遗传资源提供了机会。/span span style=" font-family:宋体"此处创建的品系是用于半干旱环境的花生育种进步的非常有前景的材料。/span/pp style="text-indent:28px vertical-align:baseline"span style=" font-family:宋体"北京澳作生态仪器有限公司可提供完备的植物光合荧光测量技术方案。/span/pp style="margin-left:24px vertical-align:baseline"spanspan1、 /span/spanspanOS5p+/spanspan style=" font-family:宋体"便携式叶绿素荧光仪/spanspan style=" font-family:宋体 color:black background:white"采用的是独特的调制/spanspan style=" font-family:' Simsun' ,' serif' color:black background:white"-/spanspan style=" font-family: 宋体 color:black background:white"饱和/spanspan style=" font-family:' Simsun' ,' serif' color:black background:white"-/spanspan style=" font-family:宋体 color:black background:white"脉冲技术,可快速、可靠的测量光合作用的各种荧光参数,/spanspan style=" color:black"Y(II)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"ETR/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"PAR/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"T/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /Fm /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /Fo /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fo /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fm/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fms/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fs /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"RLC/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"rETRsubMAX/sub/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Ik/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Im/spanspan style=" font-family:宋体 color:black";/spanspan style=" color:black" q L /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Y(NPQ)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Y(NO)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"q N/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"q P/spanspan style=" font-family:宋体 color:black"。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"img style="max-width: 100% max-height: 100% width: 300px height: 224px " src="https://img1.17img.cn/17img/images/202009/uepic/bd44e8df-4aec-40ee-b0b6-093b4bf44c6b.jpg" title="8.png" alt="8.png" width="300" height="224" border="0" vspace="0"//span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppspan style="font-size:12px"OS5p+/spanspan style="font-size:12px font-family:宋体"便携式叶绿素荧光仪/span/pp style="text-align:left"span style=" font-family:宋体 color:black background:white"特点:/span/pp style="margin-left:28px vertical-align:baseline"span style=" font-family:Wingdings color:black"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体 color:black"可以分别测量非光化学淬灭/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"的四个分量/spanspan style=" color:black": qM/spanspan style=" font-family:宋体 color:black"叶绿体迁移、/spanspan style=" color:black"qE/spanspan style=" font-family:宋体 color:black"叶黄素循环、/spanspan style=" color:black"qT/spanspan style=" font-family:宋体 color:black"状态转换、/spanspan style=" color:black"qI/spanspan style=" font-family:宋体 color:black"光抑制,/spanspan style=" color:black"qM/spanspan style=" font-family:宋体 color:black"叶绿体迁移导致的荧光淬灭变化大约占/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"非光化学淬灭的/spanspan style=" color:black"30%, OS5p+/spanspan style=" font-family:宋体 color:black"是市面上唯一可测量叶绿体迁移引起的荧光淬灭的仪器。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppimg style="width: 300px height: 230px " src="https://img1.17img.cn/17img/images/202009/uepic/5873f977-262f-443a-9c48-34c61493ae64.jpg" title="9.png" width="300" height="230" border="0" vspace="0" alt="9.png"//ppimg style="width: 300px height: 202px " src="https://img1.17img.cn/17img/images/202009/uepic/b3013e52-5d47-4712-9f15-9505b43e63fc.jpg" title="10.png" width="300" height="202" border="0" vspace="0" alt="10.png"//ppspanqM/spanspan style=" font-family:宋体"叶绿素体迁移的示意图及测量结果图示/span/pp style="margin-left:28px vertical-align:baseline"span style="font-family: Wingdings"?span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: ' Times New Roman' " /span/spanspanFm’/spanspan style="font-family: 宋体"校正技术/span/ppspan style="font-size: 14px font-family: 宋体"基于spanLoriaux 2013/span算法的spanFm’/span校正协议使用多相饱和光闪技术,利用最小二乘线性回归分析,推导出无限强的饱和光闪条件下的spanFm/span’值,用于校正spanY(II)/span和spanETR/span的计算。 使用较低强度的饱和光闪,准确测量spanFm/span’,这种技术不会损伤植物,也不需要完全关闭所有反应中心。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"img style="max-width: 100% max-height: 100% width: 600px height: 259px " src="https://img1.17img.cn/17img/images/202009/uepic/087ea026-8480-40ba-9e0d-d5d244453bcb.jpg" title="11.png" alt="11.png" width="600" height="259" border="0" vspace="0"//spanbr//pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/pp style="text-align:left"span style=" font-family:宋体"多相饱和光闪校正/spanspanFm’/spanspan style=" font-family:宋体"原理图/span/pp style="margin-left:24px text-align:left"spanspan2、 /span/spanspanLCproT/spanspan style=" font-family:宋体"全自动便携式光合仪可以测量/spanspanPn/spanspan style=" font-family:宋体"净光合速率、/spanspanE/spanspan style=" font-family:宋体"蒸腾速率、/spanspangs/spanspan style=" font-family:宋体"气孔导度、/spanspanCi/spanspan style=" font-family:宋体"胞间/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度,全彩色触摸屏设计。/spanspan /span/pp style="text-align:left"span style=" font-family:宋体"特点:/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"可以控制叶片生长的微环境(光照、温度、/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度和相对湿度)。/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"配置红绿蓝/spanspanLED/spanspan style=" font-family:宋体"光源,测量不同光质对植物光合作用的影响;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"内置/spanspanGPS/spanspan style=" font-family:宋体"模块,可记录采样点位置和高程信息;/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppbr//ppimg style="width: 400px height: 257px " src="https://img1.17img.cn/17img/images/202009/uepic/fcafc9dc-05d1-4a2d-aa87-844bc88aa591.jpg" title="12.png" width="400" height="257" border="0" vspace="0" alt="12.png"//ppspan style="font-size: 12px "LCproT/spanspan style="font-size: 12px font-family: 宋体 "全自动便携式光合仪/span/ppspan style="font-size: 12px font-family: 宋体 "img style="max-width: 100% max-height: 100% width: 400px height: 220px " src="https://img1.17img.cn/17img/images/202009/uepic/1bbabd8a-6c86-4fc5-9d20-74bb59ec31bc.jpg" title="13.png" alt="13.png" width="400" height="220" border="0" vspace="0"//span/ppspanGPS/spanspan style="font-family:宋体"位置和高程数据/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/pp style="margin-left:24px text-align:left"spanspan3、 /span/spanspaniFL/spanspan style=" font-family:宋体"光合荧光复合测量系统,是一款可以同时测量植物光合参数和叶绿素荧光参数的仪器。/span/pp style="text-align:left"span style=" font-family:宋体"特点:/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"可以精确测量叶片的实际光吸收率;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"直接得出/spanspangm/spanspan style=" font-family:宋体"叶肉导度、/spanspanCc/spanspan style=" font-family:宋体"羧化位点/spanspanCO2/spanspan style=" font-family:宋体"浓度、/spanspanRd/spanspan style=" font-family:宋体"光下呼吸;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"在白光化光源下测量/spanspanqM/spanspan style=" font-family:宋体"叶绿素体迁移;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " span style="font-size:14px font-family:宋体"内置的/spanspan style="font-size:14px font-family:' Times New Roman' ,' serif' "Fm’/spanspan style="font-size:14px font-family:宋体"校正协议,/spanspan style="font-size: 14px font-family: 宋体"校正spanY(II)/span和spanETR/span的计算。/span/span/span/span/ppspan style=" position: absolute z-index:251663360 left:0px margin-left:55px margin-top:316px width:255px height:36px" /span/ppimg style="max-width: 100% max-height: 100% width: 400px height: 393px " src="https://img1.17img.cn/17img/images/202009/uepic/4a2b520f-83d1-4418-bce5-f4b7d64959f3.jpg" title="14.png" alt="14.png" width="400" height="393" border="0" vspace="0"//ppspan style="font-family: 宋体 font-size: 12px "iFL/spanspan style="font-family: 宋体 font-size: 12px "光合荧光复合测量系统/span/ppspan style=" font-family:宋体"img style="max-width: 100% max-height: 100% width: 400px height: 241px " src="https://img1.17img.cn/17img/images/202009/uepic/13418810-bbc1-4813-ab13-97b0ee28f24c.jpg" title="15.png" alt="15.png" width="400" height="241" border="0" vspace="0"//span/ppspan style="font-size:12px"Cc/spanspan style="font-size:12px font-family:宋体"羧化位点/spanspan style="font-size:12px"COsub2/sub/spanspan style="font-size:12px font-family:宋体"浓度和/spanspan style="font-size:12px"gm/spanspan style="font-size:12px font-family:宋体"叶肉导度测/spanspan style="font-size:12px font-family:宋体"量结果/span/ppbr//ppbr//p
  • 1500万!蜜雪冰城捐赠西湖大学|设立可降解塑料专项基金
    蜜雪冰城“甜蜜”支持西湖大学|可降解塑料联合实验室8月22日,西湖大学官网发布,在西湖大学云谷校区举办了一场捐赠仪式,捐赠方是蜜雪冰城股份有限公司,一家诞生于郑州的河南本土企业,西湖大学校长施一公出席了捐赠仪式。西湖大学官网新闻标题《甜蜜蜜的蜜雪冰城捐赠支持西湖大学》蜜雪冰城官方微博发布消息表示,蜜雪冰城向西湖教育基金会捐赠1500万元,设立西湖大学蜜雪冰城可降解塑料专项基金,支持设立西湖大学蜜雪冰城可降解塑料联合实验室,在现有研究基础上推进可降解塑料方面的科学研究,打造可持续发展。蜜雪冰城官方微博在捐赠仪式上,施一公特别感谢蜜雪冰城并表示:“我很骄傲!我的同乡、我的朋友,这么多的河南老乡这样支持西湖大学,希望西湖大学能够为国担当,这是一件非常美好的事情,未来会写到西湖大学的校史里,也会写到中国教育史里!希望河南老乡们都可以把西湖大学看成自己的大学,在科技突破中看到河南力量、民营企业的力量!”西湖大学校长助理、董事会秘书、西湖教育基金会秘书长刘旻昊,代表西湖教育基金会向蜜雪冰城的慷慨表达谢意,并对捐赠情况做了介绍。“蜜雪冰城是一家极富社会责任感的企业,在北方遭遇突发性洪涝灾害时第一时间捐赠,很幸运在西湖大学的同行伙伴中多了一位关注社会、关注民生、积极回应社会需求的西湖家人。”而此次捐赠,刘旻昊说,也正是因为蜜雪冰城在发展道路上重视绿色、低碳、可持续发展,所以捐赠西湖教育基金会,支持西湖大学开展基础研究。蜜雪冰城股份有限公司公共事务与传播中心负责人白砥,在捐赠仪式上介绍道,自1997年创立,经过20多年的发展,蜜雪冰城门店已覆盖全球 11个国家,成为涵盖新茶饮、连锁咖啡、高端冰淇淋领域,完成自建工厂和供应链、自产核心原材料产业布局的企业集团。在不断发展的过程中,蜜雪冰城也始终铭记回馈社会的使命,勇担社会责任,在科研科技、环保、生态环境、乡村振兴、教育、公益等领域都有付出。“我们在做公益捐赠时,唯一的标准是不能泛泛而做,每一笔捐赠都要能解决本质的问题,都要能够支持社会发展。”白砥说,“蜜雪冰城选择支持西湖大学、支持公益事业,就是在推动社会进步,为世界科技进步贡献一份蜜雪冰城的力量。”刘旻昊代表西湖教育基金会,白砥代表蜜雪冰城股份有限公司,共同签署捐赠协议蜜雪冰城股份有限公司公共事务与传播中心负责人白砥、社会责任事务部负责人刘伟伟、社会责任事务部徐静雯,蜜雪冰城全资子公司大咖国际食品有限公司研发技术中心总监范军营和团队娄潇雨、田家恒,大咖国际材料科技(河南)有限公司厂长耿雨露,采购中心负责人张双双和团队盛婷婷、高亚飞;西湖大学校长施一公,西湖大学校长助理、董事会秘书、西湖教育基金会秘书长刘旻昊,西湖大学生物制造和新材料实验室负责人张科春和团队代表,以及西湖大学、西湖教育基金会的工作人员,共同出席捐赠仪式。捐赠仪式参会人员合影
  • 警惕:冰激凌之夏 慎防添加剂过量
    冰激凌加工店内,工作人员在操作台前用机器制作冰激凌可食用托盘。制作不同风味的冰激凌需要不同的配料。制作完成的冰激凌。  作为一种冷冻乳制品,冰激凌是夏季常见的消暑食品之一。  形式最简单的冰激凌,是利用常见的食品(牛奶、乳酪、奶油等)与一些甜品和其他调味料混合制成。将它们混合在一起之后需要将温度降到非常低,以确保形成比较松软的形态而不是一个大冰块。  在一些现场加工制作不同口味冰激凌的品牌店铺,也会有一块温度保持在零下9度左右的大理石,避免冰激凌原液过快融化,影响口感。  广东省韶关学院食品科学与工程系教授彭珊珊介绍,冰激凌中含有大量的食品添加剂,主要有乳化剂、增稠剂、甜味剂、酸度调节剂、着色剂等几类,用于满足其色泽、口味、形态等需求。  记者随机从市场上购买了一些冰激凌,发现它们的配料表中确实都包含了多种食品添加剂,少则六七种,多则十几种。  食品安全专家  过量食品添加剂有潜在危害  &ldquo 夏天常吃的冰激凌中普遍含有多种人工合成色素,其中的胭脂红、柠檬黄、日落黄、亮蓝及铝色淀添加剂已在国外禁用,但在国内仍被广泛使用。&rdquo 彭珊珊说,如果长期大量食用含有这些添加剂的食品,对于身体各项机能尚未发育健全的儿童会存在一些潜在危害。  食品安全专家董金狮表示,食用过量的添加了食品添加剂的食品,会给身体健康带来诸多隐患。如甜蜜素是一种常用于增加口感的甜味剂,如果经常食用甜蜜素含量超标的冰激凌,就会因摄入过量对人体肝脏和神经系统造成危害,特别对体质弱的老人、孕妇、小孩,因其代谢排毒的能力相对较弱,危害更明显。  冰激凌生产商  &ldquo 不超标就是安全的&rdquo   有冰激凌生产商则指出,冰激凌中添加剂的使用量其实非常少。国家出台的《食品添加剂生产监督管理规定》要求所生产的食品必须明确食品添加剂标签。因此,冰激凌标签上以往标注的增稠剂、食用色素、香精等名称改成了具体的使用配料,哪怕是只有毫克的微量,因而就出现了多达十几种的食品添加剂。&ldquo 不超标,就是安全的。&rdquo   据了解,食品添加剂有个使用原则,就是能不使用就不使用。随着消费者食品安全消费意识的提高,现在业内为了应对市场需求,也日渐减少添加剂的使用。比如,越来越多的厂家放弃了价格低廉的甜蜜素,而采用传统的白砂糖来增甜,而前者的价格是白砂糖的1/50。  ■ 详解  冰激凌定型需要添加乳化剂  ●彭珊珊,广东省韶关学院食品科学与工程系教授  1、稳定剂  也称增稠剂,用以提高冰激凌的黏稠度和膨胀度,从而改变食品的物理性质,赋予食品黏稠、润滑、适宜的口感,并有乳化、稳定作用。冰激凌生产中常用的稳定剂有海藻酸盐、瓜尔豆胶、卡拉胶等。  2、乳化剂  冰激凌是一个极为复杂的三维体系,既可看成是水包油乳状液,又可认为是液/气两相混合的泡沫体系。而油和水是两种互不相溶的液体,它们在机械外力的作用下,可以互相混合,但一般难以混合成稳定的乳浊液,当施加的外力消失时,它们又会很快分离为原来的两种液体,为了使互相均匀混合的状态得以长久保持,需要添加乳化剂,这样冰激凌才具有所需的泡沫和组织造型。  3、甜味剂  通常所说的甜味剂是指人工合成的非营养甜味剂、糖醇类甜味剂与非糖天然甜味剂3类。甜味剂在冰激凌中主要有改善口感、调节和增强风味、掩蔽不良风味等作用。常用的有甜蜜素、木糖醇等。  4、香精香料  食品中常用的天然香料主要有柑橘油类和柠檬油类。柑橘油类和柠檬油类都属于芸香料植物的产物,其中有甜橙油、酸橙油、橘子油、柚子油、柠檬油、香柠檬油、白柠檬油、橙叶油等品种。其他使用较多的天然香料还有薄荷素油和留兰香油。合成香料大多配成食用香精后使用。食品中直接使用的合成香料仅有香兰素、苯甲醛和DL-薄荷脑等少数品种。  ■ 趋势  低脂无糖冰激凌大受欢迎  ●宋瑀,冰激凌制造者  冰激凌的口味主要由原料决定。原料包括冰激凌原液和配料,原液是工业化生产,主要是原味和巧克力两种。而配料有几十上百种,包括水果、蛋糕、饼干等,不同的创意,做出来的冰激凌完全不同。原味和巧克力味冰激凌,用原液就可以直接做出来。如果是特殊口味,如薄荷味、草莓味冰激凌,就要在原液中加入薄荷、草莓糖浆,搅拌后才能做出来。  近几年,由于功能甜味剂和油脂替代物的不断发展,以及人们对健康食品的追求和口味的不断变化,低脂和无脂冰激凌大受欢迎。典型的商品冰激凌含12%~16%的乳脂肪,低脂和无脂冰激凌的乳脂肪含量则要低很多。  无糖是指无蔗糖,即用阿斯巴甜和其他低热量甜味来替代蔗糖。低脂或无脂是用脂肪替代品如Litesse、Dairy-lo等替代冰激凌中加入的脂肪,从而降低脂肪含量,减少热量,并可强化产品口感、质地、稳定性、增加容积等。  ■ 辨析  冰激凌不能解渴  解渴需要的主要是水,并不需要吃蛋白质、脂肪,这些东西都没有解渴的作用,甚至正相反,它会使水的吸收更慢一些,所以说吃冰激凌绝对起不到解渴作用,甚至可能越吃越渴。如果真想解渴又想吃雪糕,那应该去啃冰棍,因为它的主料就是水和糖。  吃雪糕不一定导致肥胖  如果按正常计算,一般每人每天食用一份50至150g的冰激凌,热量为100至300千卡路里,是人们日常饮食摄入量的1/10至1/15。所以,吃冰激凌并不必然导致肥胖。但是,如果脂肪、糖、蛋白质等摄取已经足够,再多吃冰激凌,它当然就成了&ldquo 垃圾食品&rdquo ,即使是低脂、低糖产品,虽然单位卡路里含量减少了,但吃得多了,总热量还是很高的。因此,凡是冷冻饮品都不能过量食用。
  • 绿茶瓜子色素染出 工业滑石粉添增色泽
    绿茶瓜子跟茶叶完全“不沾边”、工业滑石粉让瓜子外表光鲜亮丽……上视新闻“七分之一”栏目前天播出调查报道《年货的秘密》,曝光炒货行业可能涉嫌违法使用食品添加剂乱象的情况。市质监局昨日第一时间回应表示,已连夜部署专项执法检查,覆盖所有本市炒货生产企业,全部抽样检测结果将及时公布。  检测结果将及时公布  根据上视报道,在深入安徽、江苏等瓜子生产地进行暗访时,有炒货厂老板自曝,绿茶瓜子、红茶瓜子都是用色素染的,并未使用茶粉。而对于自家产的瓜子,老板竟坦承“尽量少吃,确实不好”。而为了使瓜子光滑且色泽明亮,不少炒货厂商还违规添加工业滑石粉,对人体健康带来潜在危害。  对此,市质监局昨日回应,针对上视新闻曝光炒货行业可能涉嫌违法使用食品添加剂的情况,市质监局已连夜部署专项执法检查。检查将覆盖所有炒货生产企业,一旦查实违法行为、样品抽检不合格的情况,将依法严处。相关负责人表示,全部抽样检测结果将及时公布。  炒货历来是监督重点  炒货历来是质监部门质量监督检查的重点。去年,市质监局于3月和11月两次公布本市炒货食品及坚果制品质量专项监督抽查结果。抽查依据相关标准要求,对炒货及坚果产品的酸价、过氧化值、糖精钠、环己基氨基磺酸钠(甜蜜素)、乙酰磺胺酸钾(安赛蜜)、黄曲霉毒素B1、大肠菌群、霉菌、酵母、沙门氏菌、志贺氏菌和金黄色葡萄球菌等项目进行检验。去年3月份公布的质量抽查情况显示,66批次产品中,实物质量不合格4批次,不合格项目涉及酸价和过氧化值。去年11月份公布的结果则显示,40批次产品中,实物质量不合格1批次,不合格项目为酵母、霉菌超标。  [相关新闻]  沪暂停销售125公斤安徽宣城所产炒货  晨报记者江华报道 媒体曝光不少炒货可能存在违法使用食品添加剂现象后,本市工商部门已于昨日组织对部分食品批发市场经销的瓜子等炒货产品开展监督检查。  市工商局表示,此次重点检查经营户落实索证索票和进货查验、尤其是查验瓜子等炒货的质检合格报告等证明文件,指导市场主办方督促相关经营户暂停销售安徽宣城产瓜子等炒货125公斤。同时,委托法定食品检验机构抽检市场上经销的瓜子样品12组,并将根据检测结果作进一步处理。
  • 美国修订乙丁烯氟灵在花生、大豆等产品中的残留限量
    据美国联邦公报消息,2023年4月10日,美国环保署发布2023-07456号条例,修订乙丁烯氟灵(Ethalfluralin)在部分产品中的残留限量。美国环保署就其毒理性、饮食暴露量以及对婴幼儿的影响等方面进行了风险评估,最终得出结论认为,以下残留限量是安全的。拟修订内容如下:商品Parts per million(ppm)干莳萝叶子0.05新鲜莳萝叶子0.05大麻种子0.05洋葱,鳞茎,作物亚组3-07A0.01花生0.05油菜籽,作物亚组20A0.05大豆0.05干甜叶菊叶子0.05新鲜甜叶菊叶子0.05向日葵,作物亚组20B0.05瓜类蔬菜,作物组90.05去壳干豆类,大豆除外,作物亚组6-22E0.05去壳干豌豆,作物亚组6-22F0.05块茎和球茎类蔬菜,作物亚组1C0.01 据了解,本规定于2023年4月10日起生效,反对或听证要求需在2023年6月9日前提交。
  • 美国修订乙丁烯氟灵在花生、大豆等产品中的残留限量
    据美国联邦公报消息,2023年4月10日,美国环保署发布2023-07456号条例,修订乙丁烯氟灵(Ethalfluralin)在部分产品中的残留限量。美国环保署就其毒理性、饮食暴露量以及对婴幼儿的影响等方面进行了风险评估,最终得出结论认为,以下残留限量是安全的。拟修订内容如下:商品Parts per million(ppm)干莳萝叶子0.05新鲜莳萝叶子0.05大麻种子0.05洋葱,鳞茎,作物亚组3-07A0.01花生0.05油菜籽,作物亚组20A0.05大豆0.05干甜叶菊叶子0.05新鲜甜叶菊叶子0.05向日葵,作物亚组20B0.05瓜类蔬菜,作物组90.05去壳干豆类,大豆除外,作物亚组6-22E0.05去壳干豌豆,作物亚组6-22F0.05块茎和球茎类蔬菜,作物亚组1C0.01据了解,本规定于2023年4月10日起生效,反对或听证要求需在2023年6月9日前提交。
  • 岛津应用:九种甜味剂的LC/MS/MS同时分析方案
    日本食品卫生法中将糖精钠、阿斯巴甜、三氯蔗糖、安赛蜜等人工合成甜味剂作为指定添加物,并且对允许使用甜味剂的食品及使用量规定了使用标准。而对于日本以外的地区生产的食品中添加的甜蜜素等物质,因为在日本国内属于非指定添加物,所以需要对特定的进口食品进行检查。 根据当前需要,在多种甜味剂的分析中,不仅要对法律指定的甜味剂进行定量分析,对于非指定添加物也要进行测定。本文向您介绍使用岛津高效液相色谱-三重四极杆质谱联用仪LCMS-8040 同时分析九种属于指定添加物及非指定添加物的人工合成甜味剂的示例。岛津高效液相色谱-三重四极杆质谱联用仪LCMS-8040 了解详情,敬请点击《使用三重四极杆LC/MS/MS同时分析九种甜味剂》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 151种非法食品添加物黑名单公布
    记者23日从国务院食品安全委员会办公室获悉,为严厉打击食品生产经营中违法添加非食用物质、滥用食品添加剂以及饲料、水产养殖中使用违禁药物,卫生部、农业部等部门根据风险监测和监督检查中发现的问题,不断更新非法使用物质名单,至今已公布151种食品和饲料中非法添加名单,包括47种可能在食品中“违法添加的非食用物质”、22种“易滥用食品添加剂”和82种“禁止在饲料、动物饮用水和畜禽水产养殖过程中使用的药物和物质”的名单。  根据有关法律法规,任何单位和个人禁止在食品中使用食品添加剂以外的任何化学物质和其他可能危害人体健康的物质,禁止在农产品种植、养殖、加工、收购、运输中使用违禁药物或其他可能危害人体健康的物质。这类非法添加行为性质恶劣,对群众身体健康危害大,涉嫌生产销售有毒有害食品等犯罪,依照法律要受到刑事追究,造成严重后果的,直至判处死刑。  这次公布的151种食品和饲料中非法添加名单,是由卫生部、农业部等部门在分次分批公布的基础上汇总再次公布,目的是提醒食品生产经营者和从业人员严格守法按标准生产经营,警示违法犯罪分子不要存侥幸心理 同时,欢迎和鼓励任何单位个人举报其他非法添加的行为。  表一 食品中可能违法添加的非食用物质名单序号名称可能添加的食品品种检测方法1吊白块腐竹、粉丝、面粉、竹笋GB/T 21126-2007 小麦粉与大米粉及其制品中甲醛次硫酸氢钠含量的测定;卫生部《关于印发面粉、油脂中过氧化苯甲酰测定等检验方法的通知》(卫监发〔2001〕159号)附件2 食品中甲醛次硫酸氢钠的测定方法2苏丹红辣椒粉、含辣椒类的食品(辣椒酱、辣味调味品)GB/T 19681-2005 食品中苏丹红染料的检测方法高效液相色谱法3王金黄、块黄腐皮4蛋白精、三聚氰胺乳及乳制品GB/T 22388-2008 原料乳与乳制品中三聚氰胺检测方法 GB/T 22400-2008 原料乳中三聚氰胺快速检测液相色谱法 5硼酸与硼砂腐竹、肉丸、凉粉、凉皮、面条、饺子皮无6硫氰酸钠乳及乳制品无7玫瑰红B调味品无8美术绿茶叶无9碱性嫩黄豆制品 10工业用甲醛海参、鱿鱼等干水产品、血豆腐SC/T 3025-2006 水产品中甲醛的测定11工业用火碱海参、鱿鱼等干水产品、生鲜乳无12一氧化碳金枪鱼、三文鱼无13硫化钠味精无14工业硫磺白砂糖、辣椒、蜜饯、银耳、龙眼、胡萝卜、姜等无15工业染料小米、玉米粉、熟肉制品等无16罂粟壳火锅底料及小吃类参照上海市食品药品检验所自建方法17革皮水解物乳与乳制品含乳饮料乳与乳制品中动物水解蛋白鉴定-L(-)-羟脯氨酸含量测定(检测方法由中国检验检疫科学院食品安全所提供。该方法仅适应于生鲜乳、纯牛奶、奶粉联系方式: Wkzhong@21cn.com)18溴酸钾小麦粉GB/T 20188-2006 小麦粉中溴酸盐的测定 离子色谱法19β-内酰胺酶(金玉兰酶制剂)乳与乳制品液相色谱法(检测方法由中国检验检疫科学院食品安全所提供。联系方式: Wkzhong@21cn.com)20富马酸二甲酯糕点气相色谱法(检测方法由中国疾病预防控制中心营养与食品安全所提供21废弃食用油脂食用油脂无22工业用矿物油陈化大米无23工业明胶冰淇淋、肉皮冻等无24工业酒精勾兑假酒无25敌敌畏火腿、鱼干、咸鱼等制品GB T5009.20-2003食品中有机磷农药残留的测定26毛发水酱油等无27工业用乙酸勾兑食醋GB/T5009.41-2003食醋卫生标准的分析方法28肾上腺素受体激动剂类药物(盐酸克伦特罗,莱克多巴胺等)猪肉、牛羊肉及肝脏等 GB-T22286-2008 动物源性食品中多种β-受体激动剂残留量的测定,液相色谱串联质谱法29硝基呋喃类药物猪肉、禽肉、动物性水产品GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检测方法,高效液相色谱-串联质谱法30玉米赤霉醇牛羊肉及肝脏、牛奶GB/T 21982-2008 动物源食品中玉米赤霉醇、β-玉米赤霉醇、α-玉米赤霉烯醇、β-玉米赤霉烯醇、玉米赤霉酮和赤霉烯酮残留量检测方法,液相色谱-质谱/质谱法31抗生素残渣猪肉无,需要研制动物性食品中测定万古霉素的液相色谱-串联质谱法32镇静剂猪肉参考GB/T 20763-2006 猪肾和肌肉组织中乙酰丙嗪、氯丙嗪、氟哌啶醇、丙酰二甲氨基丙吩噻嗪、甲苯噻嗪、阿扎哌垄阿扎哌醇、咔唑心安残留量的测定,液相色谱-串联质谱法无,需要研制动物性食品中测定安定的液相色谱-串联质谱法33荧光增白物质双孢蘑菇、金针菇、白灵菇、面粉蘑菇样品可通过照射进行定性检测面粉样品无检测方法 34工业氯化镁木耳无35磷化铝木耳无36馅料原料漂白剂焙烤食品无,需要研制馅料原料中二氧化硫脲的测定方法37酸性橙Ⅱ黄鱼、鲍汁、腌卤肉制品、红壳瓜子、辣椒面和豆瓣酱无,需要研制食品中酸性橙II的测定方法。参照江苏省疾控创建的鲍汁中酸性橙II的高效液相色谱-串联质谱法(说明:水洗方法可作为补充,如果脱色,可怀疑是违法添加了色素)38氯霉素生食水产品、肉制品、猪肠衣、蜂蜜GB/T 22338-2008 动物源性食品中氯霉素类药物残留量测定 39喹诺酮类麻辣烫类食品无,需要研制麻辣烫类食品中喹诺酮类抗生素的测定方法40水玻璃面制品无41孔雀石绿鱼类GB20361-2006水产品中孔雀石绿和结晶紫残留量的测定,高效液相色谱荧光检测法(建议研制水产品中孔雀石绿和结晶紫残留量测定的液相色谱-串联质谱法)42乌洛托品腐竹、米线等无,需要研制食品中六亚甲基四胺的测定方法43五氯酚钠河蟹SC/T 3030-2006水产品中五氯苯酚及其钠盐残留量的测定 气相色谱法44喹乙醇水产养殖饲料水产品中喹乙醇代谢物残留量的测定 高效液相色谱法(农业部1077号公告-5-2008);水产品中喹乙醇残留量的测定 液相色谱法(SC/T 3019-2004)45碱性黄大黄鱼无46磺胺二甲嘧啶叉烧肉类GB20759-2006畜禽肉中十六种磺胺类药物残留量的测定 液相色谱-串联质谱法47敌百虫腌制食品GB/T5009.20-2003食品中有机磷农药残留量的测定  表二 食品中可能滥用的食品添加剂品种名单序号食品品种可能易滥用的添加剂品种检测方法1渍菜(泡菜等)、葡萄酒着色剂(胭脂红、柠檬黄、诱惑红、日落黄)等GB/T 5009.35-2003食品中合成着色剂的测定GB/T 5009.141-2003 食品中诱惑红的测定2水果冻、蛋白冻类着色剂、防腐剂、酸度调节剂(己二酸等)3腌菜着色剂 、防腐剂、甜味剂(糖精钠、甜蜜素等) 4面点、月饼乳化剂(蔗糖脂肪酸酯等、乙酰化单甘脂肪酸酯等)、防腐剂、着色剂、甜味剂 5面条、饺子皮面粉处理剂 6糕点膨松剂(硫酸铝钾、硫酸铝铵等)、水分保持剂磷酸盐类(磷酸钙、焦磷酸二氢二钠等)、增稠剂(黄原胶、黄蜀葵胶等)、甜味剂(糖精钠、甜蜜素等)GB/T 5009.182-2003 面制食品中铝的测定7馒头漂白剂(硫磺) 8油条膨松剂(硫酸铝钾、硫酸铝铵) 9肉制品和卤制熟食、腌肉料和嫩肉粉类产品护色剂(硝酸盐、亚硝酸盐)GB/T 5009.33-2003 食品中亚硝酸盐、硝酸盐的测定10小麦粉二氧化钛、硫酸铝钾 11小麦粉滑石粉GB 21913-2008 食品中滑石粉的测定12臭豆腐硫酸亚铁 13乳制品(除干酪外)山梨酸GB/T21703-2008《乳与乳制品中苯甲酸和山梨酸的测定方法》14乳制品(除干酪外)纳他霉素参照GB/T 21915-2008《食品中纳他霉素的测定方法》15蔬菜干制品硫酸铜无16“酒类”(配制酒除外)甜蜜素 17“酒类”安塞蜜 18面制品和膨化食品硫酸铝钾、硫酸铝铵 19鲜瘦肉胭脂红GB/T 5009.35-2003食品中合成着色剂的测定20大黄鱼、小黄鱼柠檬黄GB/T 5009.35-2003食品中合成着色剂的测定21陈粮、米粉等焦亚硫酸钠GB5009.34-2003食品中亚硫酸盐的测定22烤鱼片、冷冻虾、烤虾、鱼干、鱿鱼丝、蟹肉、鱼糜等亚硫酸钠GB/T 5009.34-2003 食品中亚硫酸盐的测定  食品动物禁用的兽药及其它化合物清单序号兽药及其它化合物名称禁止用途禁用动物1β-兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂所有用途所有食品动物2性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂所有用途所有食品动物3具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol,Acetate及制剂所有用途所有食品动物4氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂所有用途所有食品动物5氨苯砜Dapsone及制剂所有用途所有食品动物6硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂所有用途所有食品动物7硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂所有用途所有食品动物8催眠、镇静类:安眠酮Methaqualone及制剂                   所有用途所有食品动物9林丹(丙体六六六)Lindane 杀虫剂所有食品动物10毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂所有食品动物11呋喃丹(克百威)Carbofuran 杀虫剂所有食品动物12杀虫脒(克死螨)Chlordimeform 杀虫剂所有食品动物13双甲脒Amitraz 杀虫剂水生食品动物14酒石酸锑钾Antimonypotassiumtartrate 杀虫剂所有食品动物15锥虫胂胺Tryparsamide 杀虫剂所有食品动物16孔雀石绿Malachitegreen 抗菌、杀虫剂所有食品动物17五氯酚酸钠Pentachlorophenolsodium 杀螺剂所有食品动物18各种汞制剂包括:氯化亚汞(甘汞)Calomel,硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂所有食品动物19性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate、苯丙酸诺龙 NandrolonePhenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂促生长所有食品动物20催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定) Diazepam及其盐、酯及制剂、促生长所有食品动物21硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂、促生长所有食品动物
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制