当前位置: 仪器信息网 > 行业主题 > >

花生种子

仪器信息网花生种子专题为您整合花生种子相关的最新文章,在花生种子专题,您不仅可以免费浏览花生种子的资讯, 同时您还可以浏览花生种子的相关资料、解决方案,参与社区花生种子话题讨论。

花生种子相关的资讯

  • 安东帕折光仪测花生油氧化稳定性
    DELICIOUSFOOD问你知道如何规定花生产品(如花生酱、烤坚果、糖果和花生油)的保质期长短吗?答花生种子含有约50%的油,其中约50%是油酸,30%是亚油酸。油酸是一种单不饱和脂肪酸;与此相反,亚油酸是多不饱和脂肪酸。而油酸和亚油酸的比例(O/L)恰恰会影响花生油的氧化稳定性,从而影响了花生油产品的保质期。问油酸和亚油酸的比例越高?保质期越长吗?答是的,O/L比越高,油中的总不饱和度越低。这使得产品更加稳定,延长了花生产品的保质期。"非高O/L"花生的正常O/L比通常都小于9,大多数O/L平均值为1.5到2.0。所以为了种植出O/L比为9甚至更高的花生种子,花生种植户会投入了大量精力。问我听说一般都用气相色谱法来确定油中脂肪酸分布。答气相色谱法并不是花生工业的优先选择的方法,因为这种方法费时、昂贵,对操作员的专业度要求还很高。近几十年来,人们发现可以通过测量油的折射率来表征种子油的化学性质。折射分析法由于它的快速、经济且高效,逐渐变成更为普遍应用的一种方法。安东帕Abbemat系列折光仪可通过测量折射率快速测定花生油中的O/L比。安东帕 Abbemat 3X00 系列折光仪为了根据油酸和亚油酸的含量区分花生油,首先我们需要准备一台测量精度至少满足0.0001nD的Abbemat折光仪。温度对折光率而言是较大的影响因素。为确保测样结果的准确性,Abbemat 3100系列折光仪内置式帕尔帖温度控制功能可在数秒内以无以伦比的精度调整棱镜/样品界面的温度。测量前,测量棱镜必须保持清洁。仪器应使用安东帕提供的折光标准品进行校准:通过测定蒸馏水的折射率检查仪器的温度控制和棱镜的清洁度。测量来自多个种子的特征油用一次性移液管将油滴加到棱镜上,并在589.3 nm.测量折射率。所有测量必须在20°C下进行。由于温度强烈影响样品的折射率,测量温度应控制在至少±0.1°C的范围内。实 验结 论通过测量花生油的折射率,可以快速将花生定性为正常或高油酸。如果临界折射率为1.46895nD,折射率高于该值的花生将被归类为正常花生,而低于该折射率的花生则表示O/L比≥ 9,将花生分类为高油酸,误差低至1%。不仅仅是种子油,安东帕折光仪也被广泛应用于其他花生制品的质检过程。来看看我们的折光仪是如何工作的吧!📺Abbemat 折光仪测量一切可测量物质这不单是一句口号。我们一直致力于与客户密切合作,并努力收集并开发新的方法和应用。Abbemat 折光仪如今正广泛应用于各行各业,从药品、化学品、石油产品、香精香料到食品饮料… … 在留言区告诉我们你们想测什么?测量过程中有什么难点疑点? 我们都会在后续的推送中一一解答一经录用必有好礼相送哦!
  • 种子尺寸分析仪-种子分析仪型号TPKZ-1型
    托普云农TPKZ-1型作种子尺寸分析仪专业用于玉米果穗、截面、作物籽粒的精确考种以及出苗数、整齐度、均匀度分析。  种子尺寸分析仪适用于玉米、水稻、小麦、油菜、豆类、花生、芝麻等各种作物种子考种。  【TPKZ-1型种子分析仪功能特点】  1、配A3幅面最大分辨率1600dpi × 1600dpi、紫光M1彩色扫描仪。可分析各类种子的种粒直径1~20mm。扫描仪分析工作区尺寸:A3幅面(431.8mm×304.8 mm)   2、分析仪分析速度:可同时成像分析10个玉米果穗、35个玉米截面、1000粒左右玉米籽粒   3、自动数粒速度:1500~3000粒/分钟(玉米籽粒),其它籽粒为1200~20000粒/分钟,数粒误差≤±0.1~0.4%,可监视修正结果。具有相机画面畸变、背光板均匀性的自动矫正特性,有效减小尺寸测量误差   4、自动测出籽粒数、各籽粒的粒形参数(长、宽、长宽比、面积、等效直径、周长等),以及其平均值,并排序输出。自动千粒重分析的精度误差:≤±0.5%。并能对不同品种的种子进行长和宽的对比,并输出矢量图   5、同时成像分析玉米果穗:10个/次/分钟、玉米截面:35个/次/2分钟。自动测出各玉米穗长、穗粗、秃尖长、左右穗缘角、穗行角、平均行粒数、粒厚、截面穗行数、穗粗、轴粗,颜色以及其平均值,可测出各玉米截面上的粒长、粒宽、颜色(RGB具体数值表示)、粒高等参数   6、水分测定:通过水分测定仪,数据能输入到软件中,最后统一输出   7、图像分析:有任意放大、缩小,方便查看标记结果   8、有被测种子样本条码、电子天平RS232重量数据的自动输入接口,插上电脑条码枪即可刷入样本条码编号 电子天平上的被测样本重量数据可一键送到电脑保存为EXCEL表   9、分析仪的分析过程为全程电脑控制,高效、准确、简便易用,真正一键式操作,鼠标一点,结果即现   10、辅助删补:用鼠标选择增加/删除,或直接用鼠标在屏上手工计数,以确保结果准确性。目标区的个性化计数:对工作区视野中任选范围或矩形范围内的计数   11、分析仪数据导出:分析图像结果可保存,自动形成总报表,统计分析结果能输出至Excel表,考种系统有云平台的支持,通过云平台可以上传或是下载TPKZ-1种子尺寸分析仪数据   12、软件加密:采用动态二维码+密码狗加密,登记具体使用单位的信息,防止加密狗的丢失。
  • 种子尺寸分析仪-玉米种子粒型参数分析仪器
    托普云农作物考种分析系统TPKZ-1型,专业用于各种作物籽粒的考种,同时也适用于测量玉米果穗、截面。种子尺寸分析仪-玉米种子粒型参数分析仪器。  种子分析仪适用范围:  玉米、水稻、小麦、油菜、豆类、花生、芝麻等各种作物种子。  种子尺寸分析仪功能特点:  1、配A3幅面最gao分辨率1600dpi × 1600dpi、紫光M1彩色扫描仪。可分析各类种粒的种粒直径1~20mm。扫描仪分析工作区:A3幅面(431.8mm×304.8 mm)。  2、分析速度:可同时成像分析10个玉米果穗、35个玉米截面、1000粒左右玉米籽粒。  3、自动数粒速度:1500~3000粒/分钟(玉米籽粒),其它籽粒为1200~20000粒/分钟,数粒误差≤±0.1~0.4%,可监视修正结果,监视修正即达准确。具有相机画面畸变、背光板均匀性的自动矫正特性,有效减小尺寸测量误差。  4、自动测出籽粒数、各籽粒的粒形参数(长、宽、长宽比、面积、等效直径、周长等),以及其平均值,并排序输出。自动千粒重分析的精度误差:≤±0.5%。并能对不同品种的种子进行长和宽的对比,并输出矢量图。  5、同时成像分析玉米果穗:10个/次/分钟、玉米截面:35个/次/2分钟。自动测出各玉米穗长、穗粗、秃尖长、左右穗缘角、穗行角、平均行粒数、粒厚、截面穗行数、穗粗、轴粗,颜色以及其平均值,可测出各玉米截面上的种子粒长、粒宽、颜色(RGB具体数值表示)、粒高等尺寸参数。  6、水分测定:通过水分测定仪,数据能输入到软件中,然后统一输出分析数据。  7、图像分析:有任意放大、缩小,方便查看标记结果。  8、有被测样本条码、电子天平RS232重量数据的自动输入接口,插上电脑条码枪即可刷入样本条码编号 电子天平上的被测样本重量数据可一键送到电脑保存为EXCEL表。  9、分析过程为全程电脑控制,高效、准确、简便易用,真正一键式操作,鼠标一点,结果即现。  10、辅助删补:用鼠标选择增加/删除,或直接用鼠标在屏上手工计数,以确保结果准确性。目标区的个性化计数:对工作区视野中任选范围或矩形范围内的计数。  11、种子尺寸分析数据导出:分析图像结果可保存,自动形成总报表,统计分析结果能输出至Excel表,考种系统有云平台的支持,通过云平台可以上传或是下载数据。  12、软件加密:采用动态二维码+密码狗加密,登记具体使用单位的信息,防止加密狗的丢失。
  • 万深发布万深SC-H手机拍照款自动种子数粒仪新品
    万深SC-H手机拍照款种子自动数粒仪一、 用途:快速便捷地自动计数种子等的数量二、技术指标:可一键化拍照自动数粒,精准获得种子等的数量,并清晰标记以核对正确性。可自动数粒的种粒大小1~20mm,自动数粒误差:玉米、小麦、油菜籽、小米、高粱籽、大豆、红豆、绿豆、蚕豆、白芸豆、大麦、南瓜籽、花生仁、萝卜籽、辣椒籽等近似圆形种粒≤±0.1%。实粒稻谷、芝麻、瓜籽等略长形种粒≤±0.5%,数粒时间约5秒/次,可自动数粒标记各种粒并保存图,数粒结果可输出。背光灯板可选:小灯板的最大数粒区250*200mm,标配灯板的最大数粒区400*250mm,野外用灯板的最大数粒区400*285mm(带5V移动电源可背光照明4小时)。三、供货清单:1套背光灯板(硬件质保1年)+透明种盘、手机APP软件下载使用二维码。在万深官网用手机浏览器扫二维码下载软件(或支付软件扫描+复制链接下载,或者安卓手机直接点链接),可进入试用或使用订购界面。注:需自备能拍照的智能手机应用万深分析仪器 发表的中外学术论文已逾506篇创新点:将种子的自动数粒问题用智能手机的拍照计算来实现,极大地提高了使用方便性。万深SC-H手机拍照款自动种子数粒仪
  • 美国修订乙丁烯氟灵在花生、大豆等产品中的残留限量
    据美国联邦公报消息,2023年4月10日,美国环保署发布2023-07456号条例,修订乙丁烯氟灵(Ethalfluralin)在部分产品中的残留限量。美国环保署就其毒理性、饮食暴露量以及对婴幼儿的影响等方面进行了风险评估,最终得出结论认为,以下残留限量是安全的。拟修订内容如下:商品Parts per million(ppm)干莳萝叶子0.05新鲜莳萝叶子0.05大麻种子0.05洋葱,鳞茎,作物亚组3-07A0.01花生0.05油菜籽,作物亚组20A0.05大豆0.05干甜叶菊叶子0.05新鲜甜叶菊叶子0.05向日葵,作物亚组20B0.05瓜类蔬菜,作物组90.05去壳干豆类,大豆除外,作物亚组6-22E0.05去壳干豌豆,作物亚组6-22F0.05块茎和球茎类蔬菜,作物亚组1C0.01 据了解,本规定于2023年4月10日起生效,反对或听证要求需在2023年6月9日前提交。
  • 美国修订乙丁烯氟灵在花生、大豆等产品中的残留限量
    据美国联邦公报消息,2023年4月10日,美国环保署发布2023-07456号条例,修订乙丁烯氟灵(Ethalfluralin)在部分产品中的残留限量。美国环保署就其毒理性、饮食暴露量以及对婴幼儿的影响等方面进行了风险评估,最终得出结论认为,以下残留限量是安全的。拟修订内容如下:商品Parts per million(ppm)干莳萝叶子0.05新鲜莳萝叶子0.05大麻种子0.05洋葱,鳞茎,作物亚组3-07A0.01花生0.05油菜籽,作物亚组20A0.05大豆0.05干甜叶菊叶子0.05新鲜甜叶菊叶子0.05向日葵,作物亚组20B0.05瓜类蔬菜,作物组90.05去壳干豆类,大豆除外,作物亚组6-22E0.05去壳干豌豆,作物亚组6-22F0.05块茎和球茎类蔬菜,作物亚组1C0.01据了解,本规定于2023年4月10日起生效,反对或听证要求需在2023年6月9日前提交。
  • 岛津的坚果种子中α-生育酚含量测定方案
    维生素E是脂溶性维生素类之一,也是维持正常人体生理功能的重要维生素之一,通常在坚果、谷物和种子中含量最高。维生素E可分为&alpha 、&beta 、&gamma 、&delta 四种亚型,而其中&alpha -生育酚最为广泛的被关注和研究是因为其在四种亚型中的具有较高的生理活性。&alpha -生育酚的生理活性主要表现在对生育功能的改善、对机体的抗氧化作用和清除自由基等方面,故目前食品行业中较为广泛的将&alpha -生育酚作为重要的食品添加剂(E307)和抗氧化剂之一。在对农业作物育种方面,&alpha -生育酚的含量也是对转基因种质筛查的重要项目之一。 岛津公司建立了用GCMS检测&alpha -生育酚的快速分析方案,验证非硅烷化后&alpha -生育酚被检出的可行性。方案中采用岛津新一代的气相色谱质谱联用仪GCMS-QP2010 Ultra分析了杏仁和花生中&alpha -生育酚的含量,前处理方法简单易行,验证了非硅烷化后&alpha -生育酚被检出的可行性,能有效快速的分析坚果种子中&alpha -生育酚的含量。实验结果线性良好,重现性高,可为农业作物的基因育种选种,食品质量监控等行业提供迅速有效的检测方法。 在本方案中使用了气相色谱质谱联用仪GCMS-QP2010 Ultra。以满足时代要求为宗旨开发的GCMS-QP2010 Ultra,具备卓越的超快速性能,最高扫描速度达到20,000u/sec 配备ASSP功能,提高了高速扫描时的灵敏度;分析效率大幅提高,分析周期缩短到以往的1/2* ,减少维护时的停机时间约3小时*,色谱柱更换简便,生产效率提高2倍*;GCMS-QP2010 Ultra的分析待机时电量减少36%*,C02排放量减少30%*,是对生态友好的新一代气相色谱质谱联用仪。(*本公司指定条件下的比较值) 岛津气相色谱质谱联用仪GCMS-QP2010 Ultra 欲知详情请点击GCMS-QP2010 Ultra检测坚果种子中&alpha -生育酚的含量。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 为农业“芯片”插上数字之翼 托普云农亮相全国种子双交会
    10月22—24日,第十八届全国种子双交会在山东国际博览中心成功举办。作为国内先行的数字农业综合服务商,托普云农携最新的技术成果与解决方案亮相4号馆4WT21展位。托普云农展位 托普云农是一家服务于农的国家高新技术企业,始终致力于用科技改变传统农业。在推动现代种业发展方面,托普云农利用人工智能、图像识别等新技术研发系列高效便捷的仪器设备和智能管理平台,为育种信息化、种子检验实验室数字化、制种基地信息化、数字种业综合监管实时化等多领域提供产品及解决方案,提升种业科研精度、科研实验效率、数字监管能力,助力种业全面振兴。 在本届种子双交会上,托普云农带来了数字种业综合解决方案,用科技手段助力种业科研,用数字技术保障14亿中国饭碗装满中国粮。01 育种信息化建设 助力种源创新攻关 实现种业振兴不仅要“藏粮于地”,也要“藏粮于技”,即加强种业核心关键技术攻关。目前来看,我国的种业核心关键技术对标世界农业强国还有较大差距,要缩小差距甚至赶上种业强国,现代化的育种手段必不可少。 托普云农深谙种业科研数据采集复杂、作业流程繁琐、存在主观误差等痛点需求,针对科研院所、高校、种业监管部门等科研群体,利用人工智能、图像识别等数字技术研发了一系列高效便捷的智能装备和智慧应用,比如,智能考种分析系统、作物株高测量仪、小麦亩穗数测量系统、知种APP等等,涵盖种子的根、茎、叶到花、果实的全流程,为科研育种提供更多数字化助力。同时建设综合育种信息化平台,通过材料管理、权限管理、查询统计、试验管理、数据管理、数据分析等过程,形成统一的数据仓、多维度全流程的数据管理、直观的可视化展示、完善的分析策略,切实提高育种效率,降低育种专家劳动强度。托普云农育种信息化智能装备02 种子检验实验室建设 净化种业市场环境 市场保护机制不完善常常会引发恶性竞争,出现大量套牌、模仿和侵权的现象,伪劣种子泛滥市场,阻碍种子行业的良性循环,因此在完善市场秩序、打造区域良种品牌方面同样亟需“技术”攻关,保障种源安全,品牌质量可信赖。 对标国际种子检验协会种子质量控制指标,托普云农不断探索种子检测的国际前沿新技术和新方法,提供从图纸、实验室、设备配置到培训服务等的综合建设方案。打造专业种子检验环境,为科研人员构建专业实验基地,建设标准化种子检验实验室,同时配备包含荧光定量PCR仪、PCR扩增仪、智能光照培养箱、种子低温低湿储藏库、种子风选仪、分样型自动数粒仪、超高清种子x光机等在内的智能检测设备,使种子实验室具备农作物种子扦样、净度分析、发芽试验、品种纯度鉴定(田间)、水分、活力健康、重量、SSR分子标记品种真实性等8个项目的检验能力,提升种子检验各环节的效率和精准度,在检验质量的同时,助力优质农作物种源的存储和科研培育,为丰富现代种质资源提供数字化加持。种子检验实验室03 制种基地信息化建设 打造区域良种品牌 实现“中国粮”用“中国种”,最关键的不仅是解决培育“金种子”的问题,还要建设现代化制种的“根据地”,提高全国范围内的供种保障能力。 而在制种基地的信息化建设方面,托普云农以高标准农田为基准建设核心种源繁育基地,搭建田间生产智能化设施设备,例如,水肥灌溉系统、无人农机作业等等,实现旱能灌、涝能排,机械化生产。同时借助遥感、物联网、AI识别、大数据等先进技术,构筑农业环境监测网络,实时采集田间农情、墒情、病虫情数据信息,通过对生产环节的严格把控,提高种子纯度、净度、芽率、水分等检测指标。杭种数字化园区基地 最重要的是,从育种育秧、田间病虫害、水肥管理、数字化种植、机械化生产、良种储存等全链条都能以一张图形式展现在大数据平台上,真正实现信息化、自动化、科学化、可视化,保障了种源质量,为良种繁育构建“沃土”环境,实现种业提质、农民增收、企业增效、政府增税“四赢”目标。 此次种子双交会上,托普云农现场展示的新技术和新应用还吸引了各级领导和科研工作者的关注,其中“智能考种分析系统”、“稻穗形态测量仪”等智能育种装备更是成为现场焦点,受到众多好评。各领导专家莅临托普云农展位 肯定即动力,今后,托普云农将一如既往深化自身数字建设能力,聚焦种业“卡脖子”难题,为现代种业发展提供详实数据支撑,实现从育种、制种、销售、服务的一体化大数据服务体系。
  • 将野生等位基因渗入四倍体花生作物中以提高水分利用效率,早熟和产量
    pspan style="font-size: 18px "strongspan style="font-family: 宋体 "将野生等位基因渗入四倍体花生作物中以提高水分利用效率,早熟和产量/span/strong/spanstrong/strong/ppstrongspan style=" font-family:宋体"文献信息:/span/strong/ppspanWellison F. Dutra, Yrla?nia L. Guerra, Jean P. C. Ramos, Pedro D. Fernandes, Carliane/span/ppspanR. C. Silva, David J. Bertioli, Soraya C. M. Leal-Bertioli, Roseane C. Santos /spanspan style=" font-family:宋体"(/spanspan2018/spanspan style=" font-family:宋体")/span/ppstrongspanIntrogression of wild alleles into the tetraploidpeanut crop to improve water use efficiency,earliness and yield/span/strong/ppspanPLOS ONE | June 11, 2018span /spana href="https://doi.org/10.1371/journal.pone.0198776"https://doi.org/10.1371/journal.pone.0198776/a/span/ppspan style=" font-family:宋体"摘要/spanspan: /span/pp style="text-indent:28px"span style=" font-family:宋体"从野生物种中导入基因是育种人员很少用于改善商业作物的实践,尽管它为丰富遗传基础和创造新品种提供了极好的机会。在花生中,这种做法正在被越来越多地采用。/span span style=" font-family:宋体"在这项研究中,我们介绍了来自野生种/spanspanArachis duranensis/spanspan style=" font-family:宋体"和/spanspanA. batizocoi/spanspan style=" font-family:宋体"的野生等位基因渗入改善了光合特性和产量的一系列结果,这些系得自于诱导的异源四倍体和栽培花生在水分胁迫下的选择杂交。该测定法是在温室和田间进行的,侧重于生理和农艺性状。为了对耐旱品系进行分类,采用了多元模型(/spanspanUPGMA/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"几条品系显示出更高的耐受水平,其值与耐受对照相似或更高。突出显示了两个/spanspanBC 1 F 6/spanspan style=" font-family:宋体"系(/spanspan53 P4/spanspan style=" font-family:宋体"和/spanspan96 P9/spanspan style=" font-family:宋体"),具有良好的干旱相关性状,早熟性和荚果产量,对耐旱的优良商业品种/spanspanBR1/spanspan style=" font-family:宋体"具有更好的表型特征。这些系是创建适合在半干旱环境中生产的花生品种的良好候选者。/span/ppspan style=" font-family:宋体"概述:/span/pp style="text-indent:28px"span style=" font-family:宋体"适应干旱环境的植物栽培种的开发是改良计划中的一项有价值的策略,并且由于复杂的遗传遗传而面临着巨大的挑战。为了简化选择过程,育种者可以使用替代性状来帮助鉴定耐旱植物。/span/pp style="text-indent:28px"span style=" font-family:宋体"水分胁迫下的植物由于/spanspanCO2/spanspan style=" font-family:宋体"的扩散限制而降低了气体交换,降低了羧化效率,或者由于光抑制导致了叶绿体活性的限制。/span/pp style="text-indent:28px"span style=" font-family:宋体"植物自身有几种保护机制,以平衡吸收的光能与光合作用。根据/spanspanKalariya/spanspan style=" font-family:宋体"等研究,非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")是一个非常重要的特性,它是指通过叶绿体以非光化学方式释放多余的能量,从而保护光合器官。在多种情况下,气体交换和叶绿素/spanspana/spanspan style=" font-family:宋体"荧光是叶片生理状态和植物生长的非常敏感的指标。/span span style=" font-family:宋体"它们揭示了当前光合代谢的状态,包括胁迫条件下的损伤和修复状态。/span/pp style="text-indent:28px"span style=" font-family:宋体"花生(/spanspanArachis hypogaea L./spanspan style=" font-family:宋体")是许多国家种植的重要油料种子,可用于粮食和石油市场。/span span style=" font-family:宋体"花生属有/spanspan80/spanspan style=" font-family:宋体"多种,多数为二倍体(/spanspan2n = 2x = 20/spanspan style=" font-family:宋体"),代表了宝贵的遗传资源,广泛适应热带和半干旱环境。/span/pp style="text-indent:28px"span style=" font-family:宋体"花生野生种在改良计划中的使用受到限制,这主要是由于物种之间的倍性差异和染色体障碍。/span span style=" font-family:宋体"可以通过人工杂交/spanspanA/spanspan style=" font-family:宋体"和/spanspanB/spanspan style=" font-family:宋体"基因组野生物种,然后诱导染色体复制以恢复生育力和四倍体状态来克服这一问题。通过结合/spanspanA/spanspan style=" font-family:宋体"和/spanspanB/spanspan style=" font-family:宋体"基因组来培育合成系,提供了一系列具有几个优良特性的四倍体,例如对疾病和害虫的抵抗力,并为花生改良开辟了新的机遇。/span/ppspan1/spanspan style=" font-family:宋体"、材料和方法/spanspan:/span/ppspan1.1 /spanspan style=" font-family:宋体"植物材料/span/pp style="text-indent:28px"spanBRsub1/sub/spanspan style=" font-family:宋体"是一种早熟的直立品种,广泛适应热带和半干旱环境。被选为父本,由于即使在缺水的情况下(间歇性和季节结束)也能生产成熟的豆荚,产能很高。诱导的异源四倍体/spanspan[A. batizocoi K9484 x A. duranensis SeSn2848] 4x/spanspan style=" font-family:宋体"(在这里称为/spanspanBatDur/spanspan style=" font-family:宋体"),是使用/spanspanEMBRAPA/spanspan style=" font-family:宋体"遗传资源和生物技术的花生种质库中的野生种质生产的。将/spanspanBRsub1/sub/spanspan style=" font-family:宋体"和/spanspanBatDur/spanspan style=" font-family:宋体"杂交,并将来自该杂种的/spanspanF sub2/sub/spanspan style=" font-family: 宋体"后代与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"回交。/spanspan BC sub1/sub Fsub 1/sub s/spanspan style=" font-family:宋体"自交,产生/spanspan281/spanspan style=" font-family:宋体"种子。/spanspan BC sub1/sub Fsub 2/sub/spanspan style=" font-family:宋体"植物在温室中生长(/spanspan(Recife, 8?03’14”S 34?52’51”W, 7m/spanspan style=" font-family:宋体")/spanspan, /spanspan style=" font-family:宋体"将种子播种在/spanspan20/spanspan style=" font-family:宋体"升的花盆中,该花盆中装有事先经过石灰处理和施肥(/spanspanNPK/spanspan style=" font-family:宋体",/spanspan20/spanspan style=" font-family:宋体":/spanspan60/spanspan style=" font-family:宋体":/spanspan30/spanspan style=" font-family:宋体",硫酸铵,单过磷酸钙和氯化钾)的砂质壤土。发芽后的第/spanspan25/spanspan style=" font-family:宋体"天,将植物停水/spanspan15/spanspan style=" font-family:宋体"天。只有/spanspan87/spanspan style=" font-family:宋体"个植物达到完整周期,并根据收获指数(/spanspanHI 35/spanspan style=" font-family:宋体"%)和耐旱指数(/spanspanDTI 0.7/spanspan style=" font-family:宋体")选择了/spanspan13/spanspan style=" font-family:宋体"个植物。由于所有后代均处于胁迫状态,因此将/spanspanBRsub1/sub/spanspan style=" font-family:宋体"的平均值用作对照。/span span style=" font-family:宋体"从/spanspan13/spanspan style=" font-family:宋体"种选择的植物中的每一种中选择十个/spanspanBCsub1/subFsub3/sub/spanspan style=" font-family:宋体"种子用于进一步的田间测定。/span/ppimg style="width: 600px height: 457px " src="https://img1.17img.cn/17img/images/202009/uepic/6878c32a-d597-4220-81f6-0d845f3544e3.jpg" title="1.png" width="600" height="457" border="0" vspace="0" alt="1.png"//ppimg style="width: 600px height: 475px " src="https://img1.17img.cn/17img/images/202009/uepic/a75bf1e5-4c54-4bc5-acc3-dd8ab76ad07b.jpg" title="2.png" width="600" height="475" border="0" vspace="0" alt="2.png"//ppspan style=" font-family:宋体"图/spanspan1. /spanspan style=" font-family:宋体"诱导的异源四倍体/spanspanBatDur/spanspan style=" font-family:宋体"近交采用的选择步骤。/span/ppspan1.2 /spanspan style=" font-family:宋体"田间初选和生理测定/span/ppspanspan /span/spanspan style=" font-family:宋体"在/spanspan2015/spanspan style=" font-family:宋体"年雨季结束时,在田间试验中种植了/spanspan130/spanspan style=" font-family:宋体"粒/spanspanBCsub1/subFsub3/sub/spanspan style=" font-family:宋体"种子(/spanspanCampina Grande/spanspan style=" font-family:宋体",/spanspanPB/spanspan style=" font-family:宋体",/spanspan7?13' 50” S/spanspan style=" font-family:宋体",/spanspan35?52' 52” W/spanspan style=" font-family:宋体",/spanspan551 m/spanspan style=" font-family:宋体",半干旱气候)(/spanspan 7/spanspan style=" font-family:宋体"月/spanspan-10/spanspan style=" font-family:宋体"月)。将植物播种成/spanspan5m/spanspan style=" font-family:宋体"行,间隔/spanspan30/spanspan style=" font-family:宋体"厘米,出苗/spanspan25/spanspan style=" font-family:宋体"天后要停水/spanspan21/spanspan style=" font-family:宋体"天,然后恢复灌溉,在生长周期中保持相当于/spanspan400/spanspan style=" font-family:宋体"毫米的浇水量。收获时,根据收获指数(/spanspanHI 30/spanspan style=" font-family:宋体"%)从最初的/spanspan130/spanspan style=" font-family:宋体"株植物中选择/spanspan64/spanspan style=" font-family:宋体"株。评估了/spanspan64 BCsub 1/sub Fsub 3/sub/spanspan style=" font-family:宋体"植物的后代与干旱抗性和农艺性状相关的生理响应。在干旱季节,植物生长在/spanspanPB/spanspan style=" font-family:宋体"的/spanspanCampina Grande/spanspan style=" font-family:宋体"的温室中(十月/spanspan/ 2015-Feb / 2016/spanspan style=" font-family:宋体")。将/spanspanBCsub1/subFsub 4/sub/spanspan style=" font-family:宋体"植物种子播种在/spanspan30L/spanspan style=" font-family:宋体"盆中,该盆中装有事先用石灰和肥料施肥的沙壤土质地的土壤。/span span style=" font-family:宋体"测定中添加了三种栽培基因型:/spanspanBR1/spanspan style=" font-family:宋体"(瓦伦西亚直立,耐旱),塞内加尔/spanspan55-437/spanspan style=" font-family:宋体"(西班牙直立,耐旱)和/spanspanLViPE-06/spanspan style=" font-family:宋体"(弗吉尼亚州流浪者,对干旱敏感)。每天给植物浇水,保持田间容量/span/ppspan style=" font-family:宋体"。/span span style=" font-family:宋体"在花期(直立品种为/spanspan24/spanspan style=" font-family:宋体"–/spanspan25/spanspan style=" font-family:宋体"天,亚种/spanspanLViPE-06/spanspan style=" font-family:宋体"为/spanspan34/spanspan style=" font-family:宋体"–/spanspan35/spanspan style=" font-family:宋体"天),植物需忍受/spanspan15/spanspan style=" font-family:宋体"天的水分限制。水分替代基于作物的蒸散量(/spanspanETC/spanspan style=" font-family:宋体"),通过温室内安装的蒸发罐和花生的作物系数来估算。/span span style=" font-family:宋体"分析期间记录的温度范围为/spanspan18?C/spanspan style=" font-family:宋体"至/spanspan44?C/spanspan style=" font-family:宋体"。/span span style=" font-family:宋体"空气的相对湿度平均为/spanspan68/spanspan style=" font-family:宋体"%。/span/pp style="text-indent:29px"span style=" font-family:宋体"采用不完全随机区组,重复/spanspan10/spanspan style=" font-family:宋体"次。测量了以下生理特征:气孔导度(/spanspangs/spanspan style=" font-family:宋体"),蒸腾速率(/spanspanE/spanspan style=" font-family:宋体"),净光合速率(/spanspanPn/spanspan style=" font-family:宋体")和胞间/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体")。根据这些数据,估算了瞬时羧化效率效率(/spanspanPn / Ci/spanspan style=" font-family:宋体")和瞬时水分利用效率(/spanspanWUE/spanspan style=" font-family:宋体"),以比率/spanspanPn / E/spanspan style=" font-family:宋体"表示。使用红外气体分析仪(/spanspanIRGA/spanspan style=" font-family:宋体",/spanspanACD/spanspan style=" font-family:宋体",/spanspanLCPro SD/spanspan style=" font-family:宋体",/spanspanUK/spanspan style=" font-family:宋体")和/spanspan1600/spanspan style=" font-family:宋体"μ/spanspanmolm-2s-1/spanspan style=" font-family:宋体"的光源,在上午/spanspan9:00/spanspan style=" font-family:宋体"和/spanspan11:00 AM/spanspan style=" font-family:宋体"之间测量光合作用参数。/span span style=" font-family:宋体"使用叶绿素荧光仪/spanspanOS5p+/spanspan style=" font-family:宋体"(/spanspanOpti-Sciences/spanspan style=" font-family:宋体",/spanspanHudson/spanspan style=" font-family:宋体",/spanspanUSA/spanspan style=" font-family:宋体")测量叶绿素荧光特性。/span span style=" font-family:宋体"使用/spanspanKramer/spanspan style=" font-family:宋体"模型评估非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")。/span/pp style="text-indent:29px"span style=" font-family:宋体"使用软件/spanspanGENES 2013.5.1/spanspan style=" font-family:宋体"通过单变量和多元(非分层模型)方法分析数据。/spanspanUPGMA/spanspan style=" font-family:宋体"方法被用作非分层模型。为了调整模型,估计了显着相关系数。/span/ppspan2/spanspan style=" font-family:宋体"、光合荧光生理参数分析/span/pp style="text-indent:28px"span style=" font-family:宋体"在这项研究中,我们旨在育种高级品系,将来自杜鹃花和蜡梅的野生等位基因渗入以提高花生的耐旱性。/span span style=" font-family:宋体"将一种由巴西曲霉/spanspanx/spanspan style=" font-family:宋体"杜兰曲霉诱导的异源四倍体与当地的优良耐旱品种/spanspanBR1/spanspan style=" font-family:宋体"杂交。从该杂交获得的/spanspanF 2/spanspan style=" font-family:宋体"代与/spanspanBR1/spanspan style=" font-family:宋体"回交,并且从/spanspanBC 1 F 2/spanspan style=" font-family:宋体"开始,在温室和田间进行测定,以鉴定耐干旱的植物。/span span style=" font-family:宋体"使用这种方法的合理性主要基于被确定为抗旱等位基因的潜在良好供体的花生。/span/pp style="text-indent:28px"span style=" font-family:宋体"总体而言,这些基因型保持了较高的气孔导度(/spanspangs/spanspan style=" font-family:宋体")(图/spanspan3A/spanspan style=" font-family:宋体"),导致蒸腾速率提高(/spanspanE/spanspan style=" font-family:宋体",图/spanspan3B/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"这种组合有利于在水分限制期间维持这些植物的净光合速率(/spanspanPn/spanspan style=" font-family:宋体",图/spanspan3C/spanspan style=" font-family:宋体"),降低细胞间/spanspanCO sub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体",图/spanspan3D/spanspan style=" font-family:宋体")。如图/spanspan3E/spanspan style=" font-family:宋体"所示,大多数基因型的瞬时羧化效率(/spanspanPn / Ci/spanspan style=" font-family:宋体")与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"相似或更高。这表明在水分利用率低的情况下/spanspanCOsub 2/sub/spanspan style=" font-family:宋体"固定效率。/spanspan 11/spanspan style=" font-family:宋体"个基因型的水分利用效率要比对照亲本/spanspanBR1/spanspan style=" font-family:宋体"高(图/spanspan3F/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"此外,在/spanspan64/spanspan style=" font-family:宋体"个/spanspanBC 1 F 4/spanspan style=" font-family:宋体"植物中,有/spanspan8/spanspan style=" font-family:宋体"个产生了较重的豆荚,其中/spanspan3/spanspan style=" font-family:宋体"个产生了较重的种子(/spanspanS1/spanspan style=" font-family:宋体"表)。这表明,根据此处采用的实验条件,这些基因型对水分胁迫的耐受性更高。/span/ppimg style="width: 600px height: 201px " src="https://img1.17img.cn/17img/images/202009/uepic/6ad0e52e-87c2-46b1-b105-e7e73764b4cd.jpg" title="3.png" width="600" height="201" border="0" vspace="0" alt="3.png"//ppimg style="width: 600px height: 191px " src="https://img1.17img.cn/17img/images/202009/uepic/a54a5250-acdc-4ec2-a559-add2438fd0c9.jpg" title="4.png" width="600" height="191" border="0" vspace="0" alt="4.png"//ppimg style="width: 600px height: 203px " src="https://img1.17img.cn/17img/images/202009/uepic/b8c2ef15-1870-425a-9be7-f1f0e8da3a99.jpg" title="5.png" width="600" height="203" border="0" vspace="0" alt="5.png"//ppspan style=" font-family:宋体"图/spanspan3/spanspan style=" font-family:宋体":花生品系的气体交换。/spanspan A-/spanspan style=" font-family:宋体"气孔导度(/spanspangs/spanspan style=" font-family:宋体"),/spanspanB-/spanspan style=" font-family:宋体"蒸腾速率(/spanspanE/spanspan style=" font-family:宋体"),/spanspanC-/spanspan style=" font-family:宋体"净光合速率(/spanspanPn/spanspan style=" font-family:宋体"),/spanspanD-/spanspan style=" font-family:宋体"胞间/spanspanCO sub2/sub/spanspan style=" font-family:宋体"浓度(/spanspanCi/spanspan style=" font-family:宋体"),/spanspanE-/spanspan style=" font-family:宋体"瞬时羧化效率(/spanspanPn/ Ci/spanspan style=" font-family:宋体"),/spanspanF-/spanspan style=" font-family:宋体"瞬时水分利用效率(/spanspanWUE/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"虚线是/spanspan64/spanspan style=" font-family:宋体"个品系的估计平均值。/spanspanBR1/spanspan style=" font-family:宋体"和/spanspan55-437/spanspan style=" font-family:宋体"(对照)。/span/ppimg style="max-width: 100% max-height: 100% width: 600px height: 158px " src="https://img1.17img.cn/17img/images/202009/uepic/b68e1efa-aa84-4ed1-87b7-7c60d4788aec.jpg" title="6.png" alt="6.png" width="600" height="158" border="0" vspace="0"//ppimg style="max-width: 100% max-height: 100% width: 600px height: 300px " src="https://img1.17img.cn/17img/images/202009/uepic/f02a7c1c-839f-4003-b577-60b6eb2ccd90.jpg" title="7.png" alt="7.png" width="600" height="300" border="0" vspace="0"//pp style="text-indent:42px"span style=" font-family:宋体"图/spanspan4. /spanspan style=" font-family:宋体"花生品系的非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"虚线是/spanspan64/spanspan style=" font-family:宋体"个品系的估计平均值。/spanspan BR1/spanspan style=" font-family:宋体"和/spanspan55/spanspan style=" font-family:宋体"–/spanspan437/spanspan style=" font-family:宋体"(对照)。/span/ppspanspan /span/spanspan style=" font-family:宋体"植物在缺水的情况下会调节气孔关闭,减少蒸腾作用,从而克服胁迫期。这种情况导致/spanspanCO2/spanspan style=" font-family:宋体"吸收减少。/span span style=" font-family:宋体"根据文献报道,气孔导度(/spanspangs/spanspan style=" font-family:宋体")是限制水分胁迫下植物光合作用的主要因素之一。气孔导度与净光合速率呈正相关(/spanspantable 1/spanspan style=" font-family:宋体")。/span span style=" font-family:宋体"在半干旱环境中,雨季经常发生间歇性干旱,通常与强太阳辐射有关。这些可能导致对光合作用器官的严重损害,因此,大大降低植物中/spanspanCO 2/spanspan style=" font-family:宋体"的固定。为了避免这种损害,植物形成了多种保护机制,例如非光化学淬灭(/spanspanNPQ/spanspan style=" font-family:宋体"),它负责光合作用和光能的平衡。在这项研究中,有/spanspan15/spanspan style=" font-family:宋体"种基因型的/spanspanNPQ/spanspan style=" font-family:宋体"值超过了一般平均值(图/spanspan4/spanspan style=" font-family:宋体"),其中/spanspan10/spanspan style=" font-family:宋体"种与/spanspanBRsub1/sub/spanspan style=" font-family:宋体"相似或更高,表明这些基因型即使在水分胁迫下也能消耗多余的能量,从而改善了光合器官的功能。/spanspanspan /spanspan /span/span/pp style="text-indent:28px"span style=" font-family:宋体"表/spanspan1/spanspan style=" font-family:宋体"中数据显示了他们之间的相关性,/spanspangs x Pn/spanspan style=" font-family:宋体"(/spanspan0.57/spanspan style=" font-family:宋体"),/spanspangs x NPQ/spanspan style=" font-family:宋体"(/spanspan-0.52/spanspan style=" font-family:宋体"),/spanspangs x Ci/spanspan style=" font-family:宋体"(/spanspan0.76/spanspan style=" font-family:宋体"),/spanspanPn x Ci/spanspan style=" font-family:宋体"(/spanspan0.62/spanspan style=" font-family:宋体")和/spanspanNPQ x Ci/spanspan style=" font-family:宋体"(/spanspan-0.75/spanspan style=" font-family:宋体"),相关性很高。/span span style=" font-family:宋体"表明它们可以用作花生抗旱性近亲繁殖选择程序的替代性状。/span/pp style="text-align:left text-indent:28px"span style=" font-family: 宋体"这些新育种系的采用为扩大未来品种的遗传基础提供了机会,也为在野生育种计划中利用野生遗传资源提供了机会。/span span style=" font-family:宋体"此处创建的品系是用于半干旱环境的花生育种进步的非常有前景的材料。/span/pp style="text-indent:28px vertical-align:baseline"span style=" font-family:宋体"北京澳作生态仪器有限公司可提供完备的植物光合荧光测量技术方案。/span/pp style="margin-left:24px vertical-align:baseline"spanspan1、 /span/spanspanOS5p+/spanspan style=" font-family:宋体"便携式叶绿素荧光仪/spanspan style=" font-family:宋体 color:black background:white"采用的是独特的调制/spanspan style=" font-family:' Simsun' ,' serif' color:black background:white"-/spanspan style=" font-family: 宋体 color:black background:white"饱和/spanspan style=" font-family:' Simsun' ,' serif' color:black background:white"-/spanspan style=" font-family:宋体 color:black background:white"脉冲技术,可快速、可靠的测量光合作用的各种荧光参数,/spanspan style=" color:black"Y(II)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"ETR/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"PAR/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"T/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /Fm /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /Fo /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fo /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fm/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fv /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fms/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Fs /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"RLC/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"rETRsubMAX/sub/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Ik/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Im/spanspan style=" font-family:宋体 color:black";/spanspan style=" color:black" q L /spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Y(NPQ)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"Y(NO)/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"q N/spanspan style=" font-family:宋体 color:black"、/spanspan style=" color:black"q P/spanspan style=" font-family:宋体 color:black"。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"img style="max-width: 100% max-height: 100% width: 300px height: 224px " src="https://img1.17img.cn/17img/images/202009/uepic/bd44e8df-4aec-40ee-b0b6-093b4bf44c6b.jpg" title="8.png" alt="8.png" width="300" height="224" border="0" vspace="0"//span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppspan style="font-size:12px"OS5p+/spanspan style="font-size:12px font-family:宋体"便携式叶绿素荧光仪/span/pp style="text-align:left"span style=" font-family:宋体 color:black background:white"特点:/span/pp style="margin-left:28px vertical-align:baseline"span style=" font-family:Wingdings color:black"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体 color:black"可以分别测量非光化学淬灭/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"的四个分量/spanspan style=" color:black": qM/spanspan style=" font-family:宋体 color:black"叶绿体迁移、/spanspan style=" color:black"qE/spanspan style=" font-family:宋体 color:black"叶黄素循环、/spanspan style=" color:black"qT/spanspan style=" font-family:宋体 color:black"状态转换、/spanspan style=" color:black"qI/spanspan style=" font-family:宋体 color:black"光抑制,/spanspan style=" color:black"qM/spanspan style=" font-family:宋体 color:black"叶绿体迁移导致的荧光淬灭变化大约占/spanspan style=" color:black"NPQ/spanspan style=" font-family:宋体 color:black"非光化学淬灭的/spanspan style=" color:black"30%, OS5p+/spanspan style=" font-family:宋体 color:black"是市面上唯一可测量叶绿体迁移引起的荧光淬灭的仪器。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppimg style="width: 300px height: 230px " src="https://img1.17img.cn/17img/images/202009/uepic/5873f977-262f-443a-9c48-34c61493ae64.jpg" title="9.png" width="300" height="230" border="0" vspace="0" alt="9.png"//ppimg style="width: 300px height: 202px " src="https://img1.17img.cn/17img/images/202009/uepic/b3013e52-5d47-4712-9f15-9505b43e63fc.jpg" title="10.png" width="300" height="202" border="0" vspace="0" alt="10.png"//ppspanqM/spanspan style=" font-family:宋体"叶绿素体迁移的示意图及测量结果图示/span/pp style="margin-left:28px vertical-align:baseline"span style="font-family: Wingdings"?span style="font-variant-numeric: normal font-variant-east-asian: normal font-stretch: normal font-size: 9px line-height: normal font-family: ' Times New Roman' " /span/spanspanFm’/spanspan style="font-family: 宋体"校正技术/span/ppspan style="font-size: 14px font-family: 宋体"基于spanLoriaux 2013/span算法的spanFm’/span校正协议使用多相饱和光闪技术,利用最小二乘线性回归分析,推导出无限强的饱和光闪条件下的spanFm/span’值,用于校正spanY(II)/span和spanETR/span的计算。 使用较低强度的饱和光闪,准确测量spanFm/span’,这种技术不会损伤植物,也不需要完全关闭所有反应中心。/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"img style="max-width: 100% max-height: 100% width: 600px height: 259px " src="https://img1.17img.cn/17img/images/202009/uepic/087ea026-8480-40ba-9e0d-d5d244453bcb.jpg" title="11.png" alt="11.png" width="600" height="259" border="0" vspace="0"//spanbr//pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/pp style="text-align:left"span style=" font-family:宋体"多相饱和光闪校正/spanspanFm’/spanspan style=" font-family:宋体"原理图/span/pp style="margin-left:24px text-align:left"spanspan2、 /span/spanspanLCproT/spanspan style=" font-family:宋体"全自动便携式光合仪可以测量/spanspanPn/spanspan style=" font-family:宋体"净光合速率、/spanspanE/spanspan style=" font-family:宋体"蒸腾速率、/spanspangs/spanspan style=" font-family:宋体"气孔导度、/spanspanCi/spanspan style=" font-family:宋体"胞间/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度,全彩色触摸屏设计。/spanspan /span/pp style="text-align:left"span style=" font-family:宋体"特点:/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"可以控制叶片生长的微环境(光照、温度、/spanspanCOsub2/sub/spanspan style=" font-family:宋体"浓度和相对湿度)。/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"配置红绿蓝/spanspanLED/spanspan style=" font-family:宋体"光源,测量不同光质对植物光合作用的影响;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"内置/spanspanGPS/spanspan style=" font-family:宋体"模块,可记录采样点位置和高程信息;/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/ppbr//ppimg style="width: 400px height: 257px " src="https://img1.17img.cn/17img/images/202009/uepic/fcafc9dc-05d1-4a2d-aa87-844bc88aa591.jpg" title="12.png" width="400" height="257" border="0" vspace="0" alt="12.png"//ppspan style="font-size: 12px "LCproT/spanspan style="font-size: 12px font-family: 宋体 "全自动便携式光合仪/span/ppspan style="font-size: 12px font-family: 宋体 "img style="max-width: 100% max-height: 100% width: 400px height: 220px " src="https://img1.17img.cn/17img/images/202009/uepic/1bbabd8a-6c86-4fc5-9d20-74bb59ec31bc.jpg" title="13.png" alt="13.png" width="400" height="220" border="0" vspace="0"//span/ppspanGPS/spanspan style="font-family:宋体"位置和高程数据/span/pp style="margin-left:24px vertical-align:baseline"span style=" font-family:宋体 color:black"/span/pp style="margin-left:24px text-align:left"spanspan3、 /span/spanspaniFL/spanspan style=" font-family:宋体"光合荧光复合测量系统,是一款可以同时测量植物光合参数和叶绿素荧光参数的仪器。/span/pp style="text-align:left"span style=" font-family:宋体"特点:/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"可以精确测量叶片的实际光吸收率;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"直接得出/spanspangm/spanspan style=" font-family:宋体"叶肉导度、/spanspanCc/spanspan style=" font-family:宋体"羧化位点/spanspanCO2/spanspan style=" font-family:宋体"浓度、/spanspanRd/spanspan style=" font-family:宋体"光下呼吸;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " /span/span/spanspan style=" font-family:宋体"在白光化光源下测量/spanspanqM/spanspan style=" font-family:宋体"叶绿素体迁移;/span/pp style="margin-left:28px text-align:left"span style=" font-family:Wingdings"span?span style="font:9px ' Times New Roman' " span style="font-size:14px font-family:宋体"内置的/spanspan style="font-size:14px font-family:' Times New Roman' ,' serif' "Fm’/spanspan style="font-size:14px font-family:宋体"校正协议,/spanspan style="font-size: 14px font-family: 宋体"校正spanY(II)/span和spanETR/span的计算。/span/span/span/span/ppspan style=" position: absolute z-index:251663360 left:0px margin-left:55px margin-top:316px width:255px height:36px" /span/ppimg style="max-width: 100% max-height: 100% width: 400px height: 393px " src="https://img1.17img.cn/17img/images/202009/uepic/4a2b520f-83d1-4418-bce5-f4b7d64959f3.jpg" title="14.png" alt="14.png" width="400" height="393" border="0" vspace="0"//ppspan style="font-family: 宋体 font-size: 12px "iFL/spanspan style="font-family: 宋体 font-size: 12px "光合荧光复合测量系统/span/ppspan style=" font-family:宋体"img style="max-width: 100% max-height: 100% width: 400px height: 241px " src="https://img1.17img.cn/17img/images/202009/uepic/13418810-bbc1-4813-ab13-97b0ee28f24c.jpg" title="15.png" alt="15.png" width="400" height="241" border="0" vspace="0"//span/ppspan style="font-size:12px"Cc/spanspan style="font-size:12px font-family:宋体"羧化位点/spanspan style="font-size:12px"COsub2/sub/spanspan style="font-size:12px font-family:宋体"浓度和/spanspan style="font-size:12px"gm/spanspan style="font-size:12px font-family:宋体"叶肉导度测/spanspan style="font-size:12px font-family:宋体"量结果/span/ppbr//ppbr//p
  • 复旦教授钟扬车祸去世 倒在为人类寻觅种子的路上
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/33d0a404-f8a6-42af-959a-dbee39c3c49b.jpg" title="1_副本.jpg"//pp  复旦大学党委委员、研究生院院长、著名植物学家钟扬教授9月25日上午在内蒙古鄂尔多斯市出差途中遭遇车祸,不幸逝世。/pp  钟扬,1979年考入中国科学技术大学少年班,1984年毕业于该校无线电电子学系,获无线电电子学工学学士 留学日本国立综合研究大学院大学(The Graduate University for Advanced Studies),获生物系统科学博士。1984-1999年在中科院武汉植物所工作,历任研究实习员、助理研究员、副研究员(1992)、研究员(1996)、副所长(1997) 1992-1998年在美国加州大学柏克莱分校和密西根州立大学合作研究4年。/pp  2000年起任复旦大学生命科学学院教授,植物学和生物信息学博士生导师,并担任复旦大学生命科学学院常务副院长,生物多样性与生态工程教育部重点实验室副主任,上海生物信息技术研究中心副主任 兼任北京大学理论生物学中心教授、西藏大学教授等 兼任中国生物物理学会生物信息学与理论生物物理学专业委员会主任、中国植物学会系统与进化植物学专业委员会副主任。2002-2006年两次任日本文部科学省统计数理研究所外国人客员教授。2009年被教育部批准为长江计划特聘教授(西藏大学),曾获国家杰出青年科学基金 是中组部第六、七、八批援藏干部,曾任西藏大学校长助理。/pp  钟扬教授现为复旦大学研究生院院长,生命科学学院教授、博导。他从事植物学、生物信息学科学研究和教学工作30多年,勤奋钻研,锐意进取,在生物信息学、进化生物学等生命科学前沿领域有较长期的积累和独创性成果。钟扬教授在交叉学科领域教书育人、因材施教,培育了许多学科专业人才,多次获国家和上海市嘉奖 情系社会生态,坚持生物多样性的保护和利用,把科学研究的种子播撒在雪域高原和上海海滨,为国家与社会的生态文明和绿色发展作出巨大贡献。/pp  钟扬教授曾获国务院政府特殊津贴、教育部自然科学一等奖、上海市自然科学二等奖、国家杰出青年基金、全国对口支援西藏先进个人、国家发明二等奖、全国先进工作者、“上海市精神文明十佳好人好事”奖、上海市教卫系统优秀党员、中央电视台和光明日报社2015“寻找最美教师”大型公益活动“特别关注教师”等荣誉。“钟扬青藏高原生物学研究创新工作室”被上海市总工会命名为“上海市劳模创新工作室”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/3e3ad039-e33a-45d2-8e05-c9c12efc7b91.jpg" title="2_副本.jpg"//pp  钟扬曾在十几年间走遍青藏高原高海拔地区,收集可能在上百年后会对人类有用的植物种子。就在他去世前不久,他还在“一席”上做演讲——《种子方舟》,讲述了自己通过收集一颗颗普普通通的种子来造福苍生的故事。我们谨以此文缅怀钟扬教授。/pp  strong“种子”的重要性:提供水果、粮食、青蒿素等/strong/pp  粮食作物的“绿色革命”在国际上是由欧美驱动的,最后在墨西哥等国家广泛在70年代发展起来的高产作物来自一种矮秆基因,叫HYV。/pp  我们现在回头来看,主要是从野生资源中筛选到了矮秆基因,植物不需要长那么高,特别是农作物,长矮一点,让它的营养生殖减少一点,多结一些种子。发现矮秆基因的科学家罗曼· 保尔先生获得了诺贝尔和平奖。/pp  在我们国家,大家知道袁隆平先生在海南岛发现了一种叫野稗的野生稻子资源。然后通过反复的选育,终于得到了杂交水稻,带来了我们农业上完全可以称为革命的一些变革。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/c8015bf1-40d3-42ae-809e-ef0067a98b54.jpg" title="3_副本.jpg"//pp  种种迹象表明,如果我们能获得种子,对我们的未来是一件非常好的事。这些种子可以为我们提供水果,可以为我们提供花卉,改善我们的生活,更重要的是有粮食作物。还有比它更重要的吗?还有,那就是医药。/pp  我们的医药也缺乏,很多是来自天然产物。包括我们现在了解到的青蒿素,它也是来自植物,一种叫青蒿的、黄花蒿的植物。如果有了它的种子,我们就可以在全国乃至世界各地进行栽培,从中获取青蒿素这样有用的药物。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/c2ce6dec-d8fc-4cf4-9174-37ba225299b1.jpg" title="4_副本.jpg"//pp style="text-align: left "  strong以英国邱园为例,种子或可为建筑、艺术、材料科学提供新思路/strong/pp  但是非常糟糕的是,由于全球环境的破坏,人类活动的剧烈,在了解和知道它能否被利用之前,它就已经没有了。怎么办?很多科学家就提出了各种各样的方案。2000年新的世纪到来以后,科学家终于决定把这些保护生物多样性的想法付诸实现。世界上目前最引人注目的种子库是斯瓦尔巴特种子库,我们称之为“种子方舟”或“末日种子库”。/pp  它设置在离北极1000公里左右属于挪威管的永久冰川冻土层里面。不仅是工程上、科学上设计非常精妙,而且它还特地考虑了人类在遭受核打击和停电的情况下,到底种子能保存多久。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/162257ee-d5aa-4f1f-9575-7ef0254679fd.jpg" title="5_副本.jpg"//pp style="text-align: center "▲挪威斯瓦尔巴特种子库/pp  斯瓦尔巴特的种子库不仅能够保护一批种子,更重要的是有非常强烈的警示意义。只要它立在北极这个地方,就让我们清楚地了解到生物多样性并不太多了,我们应该行动起来。/pp  科学上光靠这个不行,我们还需要更为精妙的设计,那就是英国皇家植物园邱园(Kew Gardens)。首先它收集的地方非常地广泛,在那里可以轻易地找到来自非洲和亚洲所有的种子。因此我们可以分析全世界关于种子的现状,以及评估环境变化以后种子的状况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/feb25fa3-a15f-4607-bc66-226acde69e4c.jpg" title="6_副本.jpg"//pp style="text-align: center "▲英国皇家植物园邱园/pp  第二个特点,它收集的目标非常明确。因为那里的科学权威特别多,所以它非常系统地来收集一些农作物的种子。/pp  第三点,邱园的科学家们非常认真地从科学上探讨了一个种子究竟如何保存才能达到我们要的效果。他们现在摸索出来的条件是负20度的温度,相对湿度在15度左右。所有植物的保存时间,它的标准是定在80年到120年。一种样本的数量要达到5000粒。如果是濒危的物种,只需要500粒。/pp  邱园的种子艺术不仅是在做科学,而且已经跟艺术结合,产生了奇妙的效果。如果有人还记得2010年上海世博会,英国馆就是英国邱园的科学家来设计的。它是一粒一粒的种子,封装在特殊的材料里面做成的。设计是英国的,里面有很多的种子是我们中国科学家提供的,也包括了我提供的种子。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/0930800f-37fa-44e4-b5df-2d69d2e24aaa.jpg" title="7_副本.jpg"//pp style="text-align: center "▲2010年上海世博会英国馆,种子封装在特殊的材料里面做成/pp  这些种子看起来非常小,但是在显微镜、扫描镜下,都特别漂亮、特别美丽,无论是结构还是色彩。这些东西表明什么呢?种子可能给我们的生活,或为我们今后的建筑,或为我们的艺术,或为我们的材料科学,提供崭新的思路。/ppstrong  西藏有大量植物“特有种”,呼吁世界科学家重视/strong/pp  我工作的地方是青藏高原。青藏高原是国际生物多样性的热点地区,到这样的地方去收集种子很可能有它的特殊意义。首先,在全世界第一批确定的二十几个生物多样性的热点地区,我国就有三个,其中最为重要的是以横断山区为特征的青藏高原。/pp  西藏的面积占我国的1/7,但是它的植物,在科的等级占到了32%,在属的等级占到了38%,超过了1/3。其中,青藏高原一共有将近6000个高等植物物种,就是能够结种子的,占到全国的18%。更为重要的是,其中有1000个左右是只有在西藏才有的植物,我们把它称之为特有种。不仅数量很大,而且质量非常好。/pp  即使是这样一个庞大的数字,我们认为也被严重地低估了。我最近去采种子的地方是墨脱,大家知道墨脱是我国最后一个通公路的县。我们采种子的地方最近的离印度边境25公里,是我国藏南一个大约7万平方公里的地区,50年来植物学家很少涉足。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201709/insimg/9df91128-7a2a-4f74-af92-198303521e61.jpg" title="8_副本.jpg"//pp  我曾经去找英国皇家邱园的科学家来进行合作,我们找到了蔡杰先生。他是中国人,但是在英国皇家邱园工作。当我们要他提供能够给中国植物学家进行植物种子研究的资料的时候,他马上同意参加我们的团队。我们四个人分析了当时邱园所有的植物,发现里面居然没有一粒来自中国西藏的种子。因此它关于全球变化的预测,在这个版图上是少了一块。因此我们写了一篇小文章,阐述全世界气候变化必须要有西藏的种子。/pp  Nature杂志在2008年发表了我们这封来信,同时也呼吁世界科学家重视西藏的种子。事实上我们一方面呼吁,一方面就要来加以实施。2004年开始由中国科学院主导建立了中国西南野生生物资源库,在云南昆明。这个种子库从数量上来说,至少在我国,在亚洲肯定是第一大,也是世界上并列的三大种子库之一。/pp  种子实际上是应对全球的变化。你猜测一下,假设一百多年以后还有癌症,假设那时候大家发现有一种植物有抗癌作用,然而由于气候的变化,这个植物在西藏已经没有了,但是一百多年前有个姓钟的教授好像采过了。等终于发现了那个罐子,那个罐子里面有多少?5000粒。拿出来一种,只有500粒能活,最后种起来以后只有50粒能结种子。但是那个植物不就恢复了吗?/pp  当然也有人说,如果一百年以后这个种子没有用了呢?我期待看到种子没有用的那一天。说明什么?说明那个植物还在。/p
  • 种子尺寸分析仪-测量种子尺寸的仪器
    TPKZ-3-L种子尺寸分析仪由浙江托普云农公司提供,种子尺寸分析仪采用图像识别技术设计而成,可以在极短的时间内快速完成考种工作,测量种子长度尺寸。种子分析仪,也可以理解为能够测量种子尺寸的分析仪。  种子尺寸分析仪也称智能考种分析仪,托普云农新设计研发的智能型自动考种系统。这款仪器可以在极短的时间内快速完成考种工作,是现代育种考种、种子研发中的常用仪器之一。仪器是基于图像识别技术,突破籽粒和感知数据采集等关键技术,研发了集玉米、大豆等散粒长、粒宽、千粒重等多参数一体化快速检测设备,实现考种过程的自动化、智能化,减少人力成本投入,去除人为误差干扰,加强了考种测量准确率,构筑了智能化考种测量方法,为农业遗传育种研究而服务。  用途:能测量数量、千粒重、平均粒型、每一粒籽粒的粒型。玉米棒除外。  功能特点:  1.实时性:测量速度快,能够实时测量出籽粒的数量、粒长、粒宽、周长、面积、重量等参数。算法计算时间≤1s,大大缩短了测量的时间,为研究降低了时间成本。  2.一键式:智能考种分析系统是基于图像识别技术,一键执行,马上计算出所有测量参数,降低人工操作性,减少人为误差,简化操作流程,一键得到测量结果。  3.存储方式:测量数据的保存可以为研究提供详尽而细致的数据结果,智能考种分析系统配备了相应存储容量,可将所有数据导出excel到电脑,方便用户进行本地数据存储和数据对比分析工作,满足了数据存储的需要。  4.适应范围:针对于籽粒考种,智能考种分析系统设置散粒考种范围包括大豆,玉米的考种需求。  种子尺寸分析仪技术参数:  1.数粒范围:50~20000粒  2.数粒精度:圆形种子自动数粒误差≤±0.1%,长形种子自动数粒误差≤±0.5%,可手动修正保证结果准确。粒型误差≤±0.5%  3.系统供电:DC5V,直接使用USB供电,可以外接电脑或者充电宝  4.响应时间:5s内输出结果
  • 8作物种子质检中心成为合格种子检验机构
    中华人民共和国农业部公告第1261号  根据《中华人民共和国种子法》、《农作物种子质量检验机构考核管理办法》等有关规定,经我部考核,农业部全国农作物种子质量监督检验测试中心等8个农作物种子检验机构具备对外开展农作物种子检验的基本条件和能力,批准为合格种子检验机构,颁发《中华人民共和国农作物种子质量检验机构合格证书》,准许在批准的种子检验项目范围内使用农作物种子质量检验机构合格标志。  特此公告   二〇〇九年九月十五日  8个农作物种子检验机构如下:  1.农业部全国农作物种子质量监督检验测试中心  2.河北省农作物种子监督检验站  3.山西省农作物种子质量检验中心  4.辽宁省农作物种子质量监督检验测试中心  5.吉林省农作物种子质量监督检验站  6.安徽省种子质量监督检验站  7.山东省农作物种子质量监督检验站  8.湖北省农作物种子质量监督检验测试中心  附件:农业部批准的农作物种子质量检验机构名单(第一批).doc
  • 花生研究所:电子舌赋能花生育种及深加工应用
    电子舌技术已经应用于食品的风味评价、加工、鉴别和品质管理等方面,作为一种可以快速检测批量样品,对样品味觉特征实现量化的仿生仪器,电子舌未来的应用前景十分广阔。基于电子舌技术对鲜食花生味觉指标的评价还未见的相关报道,“吉林省农业科学院花生研究所”采用电子舌技术对33份鲜食花生品种(系)干燥籽仁的味觉指标行鉴别研究,利用主成分分析法对所测数据进行分析,为鲜食花生感官分析提供新的方法。一、实验检测设备味觉检测仪器电子舌采用了人工脂膜传感器技术,可以客观数字化的评价样品的苦、涩、酸、咸、鲜、甜味等基本味觉感官指标,同时还可以分析苦的回味、涩的回味和鲜的回味(丰富度)。电子舌具有强大的测试分析能力,适用于各种需要进行客观味觉评估的环节。味觉分析系统 TS-5000Z,日本INSENT公司二、实验检测结果电子舌检测结果采用TS-5000Z味觉分析系统收集33份鲜食花生材料(包含9个品种和24个高世代品系TC,后者来自吉花02-1-4和中花26的杂交组合)干燥籽仁的味觉相关指标数据,对5种基本味(酸、甜、苦、咸、鲜)和涩味进行主成分分析(PCA),确定了苦味、涩味、鲜味、咸味和甜味为有效的味觉指标。通过对有效味觉指标PCA分析,对第1主成分贡献较大的是咸味、鲜味和甜味,对第2主成分贡献较大的是咸味、鲜味和苦味。扶花1号等9个品种与TC品系具有明显的差异,对TC1~TC进行PCA聚类区分,鲜味、苦味、甜味等对第一主成分贡献较大,咸味对第二主成分贡献最大,其次是苦味等;对扶花1号等9个品种的花生进行PCA聚类分析,咸味对第一主成分贡献最大,其次是涩味等;甜味对第二主成分贡献最大,其次是涩味回味和苦味等。苦味方面,TC20~TC24的苦味最强,为6.5~7.0,其余品种苦味在6.5以下;涩味方面,TC5和TC6的涩味和涩味回味均偏低外,黑甜花和黑珍珠涩味回味最大,其它样本的涩味均为3.0~4.5;甜味方面,四粒红的甜味最大,黑珍珠的甜味最小,甜味值在21以上的品种有16个,TC品系的大部分样本的甜味值较高;鲜味和咸味方面,扶花1号等9个品种和TC17、18、19的鲜味较低,TC20~TC24的鲜味也相对偏低,其它TC品系的鲜味则较大;吉花403、吉花43和冀花甜1号、冀花甜2号4个品种接近,且鲜味和咸味均最低。三、实验结论探讨本研究为鲜食花生的味觉指标评价提供一种新思路,对鲜食花生的风味指标的确立及分析具有一定的指导意义,同时对智能感官分析在鲜食花生的育种及深加工的应用提供了参考。
  • 花生调和油里有多少花生油 检测机构称测不出来
    花生调和油里究竟有多少花生油 检测机构回应北青报称"测不出来"  "冠名"调和油比例检测无门  超市货架上的食用调和油配方比例往往不得而知供图/CFP    导读:橄榄调和油、花生调和油、海洋鱼油调和油、坚果调和油……市场上的调和油新品不断,但一些标称营养价值高、售价不菲的调和油,油料比例不透明让消费者选购时既困惑又有疑虑。由于缺乏检测方法,多家专业粮油检测机构表示无法检测调和油的具体配比。  市场  调和油只标名称不见比例  在各大超市食用油货架上,食用调和油品种越来越丰富,而配料表上各种油料的具体成分和比例不透明,令消费者缺乏基本的知情权。以某品牌坚果调和油配料表为例,其中就包括大豆油、葵花仁油、花生油、亚麻籽油、初榨橄榄油、山茶籽油、核桃油、葡萄籽油等成分,但这8种油的配方比例却不得而知。另一款某品牌的花生调和油,其配料表中仅标注含有大豆油、菜籽油、花生油、芝麻油,各类油的比例不详。  北京青年报记者调查发现,金龙鱼、鲁花、胡姬花、福临门等品牌都推出了调和油产品,虽然叫法不同,配料也略微不同,但都均没有标注各配料油的比例,尤其是冠名配料油的比例。  对于各品牌角逐调和油市场的原因,玉泉路粮油市场分析师刘敬亮介绍,从价位方面考虑,一般来说,大豆油价格低,花生油、玉米油、芝麻油等油品价格相对较高,而调和油价位处于二者之间,从价位上来说满足了一部分消费者的消费需求。  现象  最贵油品冠名成"潜规则"  据了解,多数食用油企业仅仅是将其调和油的配方到相关机构进行备案,并依照要求在产品标签上"按原料配比从大到小注明使用原料的油脂名称",食用调和油市场存在的另一个"潜规则"也由此产生:在名称上突出其最昂贵油品,并以此进行冠名。而实际上,产品主要成分仍以大豆油、菜籽油等低价油占大头。  按照去年实施的《预包装食品标签通则》中明确规定,包装标签上必须标注主要成分信息,并从高到低进行排序。北青报记者发现,市场上多数食用调和油都是以较为廉价的"大豆油"为基油,而在配料表排后几位的橄榄油、鱼油、花生油、葵花籽油、坚果油等"高级油种"往往被命名到产品名称中,身价和档次也因此提高了不少。  以同样是5升包装的海洋鱼油调和油、第二代金龙鱼调和油为例,在前者配料表里10种成分中,前三位是菜籽油、大豆油、花生油,鱼油仅占第6位 后者8种成分配料表里,前三位是大豆油、菜籽油、玉米油。但在卖场里,每桶海洋鱼油调和油要比普通二代调和油贵20元左右。  《标签通则》规定:如果在食品标签或说明书上特别强调添加了某种或者数种有价值、有特性的配料,应标示所强调配料的添加量。国内最大的粮油加工集团益海嘉里方面曾公开回应,旗下的金龙鱼深海鱼油的含量约为1.4%-1.8%,但这一数值并未标注在产品外包装上。  "当下的调和油市场确实还存在诸多不规范之处,不能以某种油品的名称来归并到调和油名称中来,这样容易引起误导。"北京市粮食行业协会会长田鸿儒表示。  追访  专业机构难测调和油配比  北青报记者致电各粮油企业询问现售调和油配比,各家企业无一例外地拒绝向记者透露相关内容。金龙鱼等食用油行业大企业均以技术保密、没有授权不方便提供为由拒绝透露调和油产品配比。  那么权威检测机构是否可以鉴定某种调和油中的成分?近日,北青报记者以消费者身份致电国家粮油质量监督检验中心(北京市粮油食品检验所),工作人员表示,油料配比是企业自己的事,质检中心可以检测出调和油中过氧化值是否符合国家标准,"地沟油都很难检测出油料比例,更何况调和油".  国家粮食局标准质量中心工作人员称,该部门仅负责起草粮油标准,检测问题可咨询国家粮食局科学研究院,而该院科研人员也回绝了北青报记者送检的要求,"我们有检测设备,但还得有检测配方比例的技术方法,这事仍然在科研阶段,是很复杂的一套体系。比如说将康师傅的水和冰露倒在一起,很难通过仪器设备进行区分。"另一家食品领域第三方检测机构也表示无法对食用油配比进行检测。  中国粮油学会油脂分会副会长王兴国也表示:调和油的检测是非常困难的,"油加油就是神仙都发愁".为什么食用调和油新国家标准没有出来?主要原因就是检测方法。  探因  调和油盈利是纯大豆油一倍  强大的宣传攻势、促销广告冲击,让很多消费者选购食用油时更多的是关注价格,而忘记看配料表。正在超市选购花生油的王女士告诉北青报记者,有一次看到花生调和油促销,5升装的比普通花生油便宜了30元,但买回家后吃起来却没有一点花生油香味,后来就不考虑调和油了。  近年来随着消费者对于调和油配方比例的不明确和质疑,食用调和油的销量正在衰退。AC尼尔森近几年的统计数据显示,作为国内第一大食用油消费品类,2010年调和油占比40.6%,2011年下降到37.1%,2012年下降到33.7%,已经连续两年下滑。  但对于很多品牌而言,调和油的利润仍要远远高于普通的大豆油,这正是近年众多企业投身调和油品类,市场份额逐渐扩大的缘由所在。曾有报道指出,例如100元的大豆油品,除去生产、包装和销售成本,只能赚3元钱,即3%的盈利。而相比较调和油而言,100元的以大豆油为基础油的调和油,盈利可以达到6元,即盈利6%,是纯大豆油盈利的一倍。  标准  成分配比有"行规"没"国标"  继食用油市场新兵中储粮油脂有限公司旗下正式推出两款注明成分配比的调和油后,近期一家橄榄油企业也率先在国内市场标注出橄榄油和果渣油比例,据该公司总经理杜先生介绍,在西班牙等国的调和油市场,标注成分配比的做法非常普遍。在现行法规缺失情况下,希望行业内有更多公司加入公布配比的队伍中。  据业内人士介绍,由于国家尚未制定出统一的食用植物调和油国家标准,更没有对调和油配料比例作出统一要求,目前各个企业采用和执行的都是企业标准。  据了解,食用调和油最早是标注各成分所占比例的,如金龙鱼第一代调和油标注了"97%的大豆油、2%的菜籽油、0.5%的芝麻油、0.5%的花生油".但由于调和油尚无国标的强制规定,随着生产企业和调和油品类增多,渐渐就不标注油中各成分量比例。  现行的《食用植物调和油》国家标准从2005年开始制定,当年10月形成征求意见稿,至今已多次公开征求专家和企业的意见。2008年,《食用植物调和油》国家标准征求意见稿完成,并提交全国粮油标准化技术委员会审定。虽然有专家近期也表示标注成分比例是与国际接轨的做法,但历时七年,食用调和油的新版国标仍未见踪影。  业内人士指出,专家、消费者、行业都呼吁国标尽快出台,公布调和油的成分比例对消费者明白消费、规范企业公平竞争都有好处。
  • 万深植物、种子表型分析设备助力三亚崖州湾种子实验室研究
    10日下午,习近平总书记在海南省三亚市崖州湾种子实验室考察调研时强调,种子是我国粮食安全的关键。只有用自己的手攥紧中国种子,才能端稳中国饭碗,才能实现粮食安全。种源要做到自主可控,种业科技就要自立自强。这是一件具有战略意义的大事。要弘扬袁隆平等老一辈科技工作者的精神,十年磨一剑,久久为功,把这件大事抓好。(新闻来源:人民日报客户端)经了解,崖州湾科技城种子实验室建设注重科技创新,其根系分析仪、叶面积仪、自动考种仪、大米外观品质检测仪等先进设备,均来自杭州万深检测科技公司。杭州万深检测科技有限公司致力于顶尖智能视觉检测,是一家集研发、销售、服务为一体的国家高新技术企业。作为国内智能视觉检测技术和设备的核心供应商,万深检测在农业、生命科学、环境监测、制药等领域,为上千家用户单位提供鉴定、计数、分析、监控的产品和服务。
  • 中国散裂中子源在广东东莞正式运行四年多
    直径只有原子的十万分之一,质量为1.6749286 ×10-27千克,平均寿命为896秒… …   这是中子,原子核包含的两种粒子之一,算得上“微不足道”。  然而,正是这般“微不足道”的中子,“落在”广东的“制造业之都”东莞,扎根巍峨山下、松山湖边,4年多来,“散裂”出科研的“庞然密林”:  500多人的“科研天团”、800多项研究课题、3800多名注册用户来了;一批高校院所、实验室、研发机构、青创基地接茬落户,一群群教授、研究员甚至院士常常在不经意间和寻常“老莞”擦肩而过;松山湖科学城和深圳光明科学城一道被纳入大湾区综合性国家科学中心先行启动区… …   一切变化,还要从一群人和一个大科学装置——中国散裂中子源说起。  磁 吸  小小中子,看不见、摸不着,却吸引一流科研机构、重大科技基础设施纷纷前来,对海内外高端创新资源的集聚效应日益显现  现任中国科学院高能物理研究所所务委员、东莞研究部副主任王生,就是这群人中的一个。  2017年6月,他和中科院院士、中国散裂中子源工程总指挥陈和生,高能所副所长、东莞研究部主任陈延伟,一起接待了来调研的时任中科院副院长王恩哥。彼时,距离中国散裂中子源首次打靶成功、获得中子束流还有两个多月。  说起散裂中子源的用处,陈和生有一段比喻:“散裂中子源就像‘超级显微镜’,是研究物质材料微观结构的理想探针,为我国材料科技、物理、化学化工、生命科学、资源环境和新能源等领域的研究提供了一个技术先进、功能强大的科研平台。”  这其中的材料科技,就是王恩哥的专业领域。当年底,在王恩哥发起推动下,广东首批4家省实验室之一的松山湖材料实验室启动建设,并于次年4月注册成立,选址就在距离散裂中子源数公里开外。至今,实验室已聚集600多名科研人员,引进创新样板工厂团队25个,注册成立38家产业化公司,注册资本超过3亿元。  小小中子,看不见、摸不着,甚至不带电,竟有如此强的“磁吸力”?  对此,王生科普道,中子和X射线一样,都是研究物质结构和动力学的强有力工具,但与后者主要和原子核外电子发生作用不同,中子是与原子核作用,即“遇见”原子核时发生散射或反射,通过分析中子的飞行轨迹,反推出原子核的内部结构,从而进行科学研究,“因此,在‘透视’材料微观结构和性能,研发新型前沿材料上,散裂中子源有不可替代的作用。”  为国家探索前沿科学问题、攻克产业关键核心技术,这是王生和同事们不远千里从北京来到广东,花6年半时间建设大科学装置的初心。  其实,我国早在本世纪初就开始谋划建设散裂中子源,最终确定由中科院和广东省共同建设,落地东莞松山湖。如今,中国首台、世界第四台脉冲型散裂中子源,总投资约23.5亿元,设备国产化率达到90%以上,装置整体设计先进,研制设备质量精良,靶站最高中子效率和3台谱仪综合性能达到国际先进水平。  这台投资规模巨大的“国之重器”,结束了珠三角地区没有国家大科学装置的历史。“中国散裂中子源在东莞的成功建设,展示了广东省引进大科学装置、推动科技创新的决心和成就,吸引了国内许多一流的科研机构落户广东,共同建设大科学装置。”陈和生感慨。  中国散裂中子源规划建设时,还没有“粤港澳大湾区”的概念。“落地东莞是富有远见的决定,有利于优化中国大科学装置的布局,把基础研究和应用基础研究的雄厚实力、珠三角地区强劲的经济实力,以及对科学技术和产业升级的迫切需求结合起来。”东莞市委副书记、松山湖高新区党工委书记刘炜说,中国散裂中子源的磁吸效应对海内外高端创新资源的集聚效应日益显现。  香港大学教授黄明欣长期从事材料研究,过去他需要向国外的散裂中子源申请机时,设计好实验步骤,把材料寄到国外,做好实验之后,再传回数据。2018年8月,中国散裂中子源正式投入运行。“在自家门口做实验,太方便了。”当时,具有广泛应用前景的“超级钢”正进入黄明欣的视野。利用中国散裂中子源的通用粉末衍射仪,他的团队发现了强度高而且韧性好的“超级钢”微观机制,为改进这种钢的断裂、韧性和腐蚀性等问题提供了关键数据支撑。  如今,以中国散裂中子源为起点,广东重大科技基础设施实现了“从0到1”“从1到多”的跨越,江门中微子实验、惠州的强流重离子加速器和加速器驱动嬗变研究装置等一批国家重大科技基础设施先后落地建设,探索未知世界、发现自然规律、引领技术变革。  撞 击  这一撞,不仅“撞”出了中子束流,还“撞击”着东莞的“世界工厂”城市理念,“撞”出巨大的发展空间  “你看,散裂中子源装置主要包括1台负氢离子直线加速器、1台快循环质子同步加速器、2条束流输运线、1个靶站,以及一期3台谱仪。”实验楼的沙盘模型前,中国散裂中子源研究员李晓挨个介绍不同设备的名字和用处。  “简单说,就是用高能质子束去撞击重原子靶。这里面最关键的是加速,跑不快,撞不开,一切都是空谈。”李晓说,经过直线、循环加速,质子束的速度被提升到0.9倍光速,然后“轰”一下,被撞出来的中子四散飞奔。  整个过程,用时约0.02秒。然而,从北京的中科院高能所大院到东莞山脚边的第一条中子束流,这条路,科学家们却走了十几年。  王生全程参与了散裂中子源的建设和运行,“不仅装置极为庞大,而且部件繁多,工艺极其复杂。大家为同一个目标汇聚在这里,记不清度过了多少个不眠之夜。”  国内首次研制快循环同步加速器的25赫兹交流磁铁;创新性提出谐振磁铁电源的谐波补偿方法,解决了多台磁铁之间的磁场同步问题,效果优于国外散裂中子源… … 一个个技术挑战被逐一攻克。  2017年8月,中国散裂中子源首次打靶成功。当时,人们可能想不到,这一撞,不仅“撞”出了中子束流,还“撞击”着东莞作为“世界工厂”的城市理念,为这座城市、广东,乃至后来的大湾区,“撞”出巨大的发展空间。  撞击而来的中子束流,慢化后通过中子导管引入特定的谱仪,即可开展实验研究。在一期工程已建成并对外开放3台谱仪的基础上,中国散裂中子源还与各高校、研究机构等积极开展合作,共同建设8台合作谱仪。“每个谱仪就相当于一个实验站,对应不同的实验领域和方向。”王生解释。  其中,由东莞理工学院投资8000万元,联合中国散裂中子源和香港城市大学建设的多物理谱仪是国内首台中子全散射谱仪,可用于不同有序度材料的结构研究。自2021年10月正式向全球的科研人员开放以来,香港中文大学、香港科技大学、香港理工大学、澳门科技大学等高校的用户在这里开展多项实验研究。  从最初不为人所知,到吸引各路“科研天团”纷至沓来,对科学的向往像涟漪般,在这里圈圈荡开。  从2012年中国散裂中子源土建动工开始,王生每年待在东莞的时间超过300天,早就把这里当成了自己的第二个家。以前,他总觉得东莞是个遍地车间的“大工厂”,但随着周边聚集起越来越多“学术大咖”、科研“大牛”,看着一排排人才公寓、科研院所等鳞次栉比,他明显感受到,科学城的成色愈加鲜明了。  当然,作为开放共享的平台,中国散裂中子源同样服务于建造它的中科院高能物理研究所的科学家,开展相关学科的前沿研究。散裂中子源的开放运行也已吸引一些国际一流专家来高能所工作。但王生说,他们自己也要像大家一样申请机时。散裂中子源主要服务于国家战略需求,为利用这个平台开展研究的科学家提供最好的研究条件和科研服务。2018年以来,中国散裂中子源完成7轮开放运行,科学产出重点在航空航天、量子、能源、合金、高分子、信息材料等领域,目前已在《科学》《自然通讯》《先进材料》《美国化学会志》等期刊上发表文章120余篇。近年来中国中子散射用户快速增长,今年上半年收到课题474项,同比增长89%,国家重大需求用户增长较快。  “目前,我们一年开放机时超过5000小时,运行效率达到97%,仍然供不应求。”王生坦言,现在只有1/3的申请能得到满足,只能尽量增加开放时间。好消息是,中国散裂中子源正在布局二期工程。届时中子谱仪总数将达20台,加速器打靶束流功率将从100千瓦提升到500千瓦,研究能力将大幅度提升。  散 裂  中子“扎根”,“散裂”出“庞然密林”,许多创新研究在东莞和大湾区落地,科学装置的建设也推动当地产业迭代升级,“科技创新+先进制造”被定义为城市特色  在王生推荐下,记者来到南方医科大学附属东莞医院(东莞市人民医院)。一栋新的大楼已经封顶,楼体上的蓝色条幅写着“东莞市人民医院硼中子俘获治疗(BNCT)项目治疗中心大楼”,紧挨着它,另一栋 “BNCT研究楼”也在施工中。  这是落户在该院的硼中子俘获治疗项目——中国散裂中子源“散裂”出的一个重大成果,今年底将竣工并安装第一台实验机。  “项目建成后将立足东莞、辐射大湾区,为恶性肿瘤等患者提供全新的治疗手段,并大力推进恶性肿瘤治疗和研究领域的发展。”该院党委书记蔡立民说。  硼中子俘获疗法开创了攻克恶性肿瘤的新途径。它利用了含硼药物进入人体后会在癌细胞中富集,并且能够俘获热中子的特性,通过用热中子照射,发生俘获反应产生的约230万电子伏裂变能,仅作用在约10微米的癌细胞上,彻底破坏其遗传链结构,使其不能修复而死亡;同时周围不含或极少含硼的正常细胞在中子照射下不受伤害,从而精准杀伤恶性肿瘤。  放眼国际,硼中子俘获治疗设备已在日本上市。东莞能突破这一关键核心技术的自主可控,得益于院地企之间的一次联动:2018年东莞市两会上,中科院高能物理研究所副研究员、后来成为BNCT治疗端运行负责人的童剑飞提交了一份建议书,报告了陈和生院士团队自主研发的我国首台加速器硼中子俘获治疗实验装置,并提出有技术转化的价值。东莞十分重视,经过审慎评估,决定在东莞市人民医院建设硼中子俘获治疗项目。  “这不仅是一个造福患者的治疗项目,未来在治疗规范、适应症以及硼药等相关领域的基础研究前景广阔,也将是一个肿瘤相关人才聚集和团队创新的绝佳科研平台。”虽然项目真正应用到临床还得再等几年,但蔡立民已十分憧憬。  自中国散裂中子源投入正式运行以来,来自粤港澳大湾区的用户超过1/4,许多创新研究在东莞本地和大湾区实现了落地。反过来,中国散裂中子源的建设也离不开各方的配套设备供应,这推动着本地产业的迭代升级。“我们在有意培养广东本地的厂商来合作解决问题。为了把装置的指标推到极致,经常需要最前沿的技术。”王生说。  就拿中子衍射谱仪闪烁体探测器来说,乍看只是个其貌不扬的金属盒子,却是散裂中子源谱仪的关键核心装备。“它的探测有效面积非常大,在散裂中子源的中子探测领域里,可以提供非常全面、更加多维的信息。”东莞理工学院科技创新研究院副院长魏亚东说。  过去,中国散裂中子源中子检测关键设备依赖国外进口。为实现国产化,自2019年5月开始,散裂中子源科学中心与东莞理工学院共建了先进探测技术联合实验室,联合开展先进粒子探测技术研究。研究团队先后成功突破探测器光纤加工塑形、闪烁屏精密成型和波移光纤端面耦合等一系列关键制造技术。目前,为散裂中子源量身定制的闪烁体探测器已实现批量生产,并通过中子束流测试,关键性能达到相关设计指标,即将安装到谱仪上。  虽然是定制实验设备,不可能给实验室创造很大的出货量,但在魏亚东看来,为实现批量自动化生产,实验室师生共同研发了独一无二的制造加工设备,将来可以在中子探测器的工程化和装备制造的产业化方面,开拓新的空间。  影响更深远的“散裂”,还折射在东莞的城市气质上。陈和生清楚地记得,打靶成功当晚,几个年轻人在餐馆用餐,相关的电视新闻正好播出,一个陌生人听闻他们是中国散裂中子源的科研团队后,临走时悄悄为他们结了账。“虽然是件小事,但能感觉到东莞市民对团队的尊重。”陈和生说。  “源头创新、技术创新、成果转化、企业培育”,如今,东莞打造了全链条创新体系,技术创新活跃度迅速提升:2021年,全市研发经费支出占GDP的比重达到3.54%,位居广东省第二;科技创新综合竞争力挺进全国城市20强… …   “科技创新+先进制造”被定义为未来5年东莞的城市特色。“东莞将进一步加大科技创新赋能力度,与粤港澳大湾区其他城市错位发展,形成最佳拍档,扎扎实实推进自身的高质量发展。”东莞市委书记肖亚非说。  这样的愿景,离不开王生和同事们的努力,离不开中国散裂中子源等大科学装置对科研、产业乃至城市的持续磁吸、撞击、散裂。一个中子与一座城的奇妙反应,还在继续… …
  • 水稻种子脱芒清选机介绍
    托普云农厂家生产的5S-200水稻种子脱芒清选机是用于水稻育苗时稻种脱芒(枝梗)作业的机器。水稻种子清选机由筛选装置、风选装置、电控装置和支架装置组成,作业效率高、操作简单,加工时稳定、可靠,移动方便,广泛应用于小区实验,有利于工厂化育秧作业。功能特点:1、水稻种子脱芒清选机由筛选装置、风选装置、电控装置和支架装置组成。占地小,操作简单,加工净度高,清机方便,能有效地防止混杂,保证种子的纯度。2、清筛橡胶球采用特殊配方制成,弹力较传统橡胶球大幅度提高,且耐低温、耐老化,能保证良好的清筛效果。3、筛片为镀锌钢板,由电脑全自动冲床加工完成,具有良好地防锈能力和精确度。4、适用于各种谷物,特别对小麦、玉米、水稻种子具有良好的精选分级效果。技术参数:最z大生产率(以小麦计):200 kg/h筛片层数:三层,可任意选一种作物的筛片。外形尺寸(长×宽×高 ):1600×800×1700 mm电 源:220V 50Hz总 功 率:1.22 kW
  • 种子恒温发芽箱的特点及应用范围|莱恩德新品
    点击此处可了解更多产品详情:种子恒温发芽箱  种子恒温发芽箱是一种用于种子发芽和生长的设备,具有温度、湿度和光照等控制系统。下面是一篇关于种子恒温发芽箱的文章的正文内容:    一、种子恒温发芽箱的概述    种子恒温发芽箱是一种专业的种子发芽设备,通过模拟自然环境中的温度、湿度和光照等条件,为种子的生长提供最佳的发芽环境。该设备可以有效地提高种子的发芽率和生长质量,广泛应用于农业、林业和园艺等领域。    二、种子恒温发芽箱的特点    1. 温度控制系统:种子恒温发芽箱具有精准的温度控制系统,可以根据不同种子的生长需求进行调节。同时,具有自动恒温功能,能够保持温度的稳定,避免温度波动对种子生长的影响。    2. 湿度控制系统:湿度是种子发芽的关键因素之一,种子恒温发芽箱具有独立的湿度控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有水位指示和水位报警功能,确保湿度的稳定和种子的正常生长    3. 光照控制系统:光照是种子发芽的重要因素之一,种子恒温发芽箱具有独立的光照控制系统,可以根据不同的种子类型和生长阶段进行调节。同时,配有光照强度指示和光照强度报警功能,确保光照的稳定和种子的正常生长。    4. 可编程控制:种子恒温发芽箱具有可编程控制功能,可以根据不同的种子类型和生长阶段进行编程控制,实现自动化管理。    5. 移动便捷:种子恒温发芽箱设计轻便,移动便捷,方便用户在不同场所使用。    三、种子恒温发芽箱的应用范围    1. 农业领域:种子恒温发芽箱可用于研究不同作物种子的发芽特性和生长规律,为农业生产提供科学依据。    2.林依业领域:种子恒温发芽箱可用于研究不同树种的生长特性和适应能力,为林业生产提供技术支持。    3. 园艺领域:种子恒温发芽箱可用于研究不同花卉、草种的生长特性和花期控制,为园艺设计提供帮助。    4.科研领域:种子恒温发芽箱可用于科研实验,为研究不同植物种子的萌发和生长过程提供实验设备。    5. 教育领域:种子恒温发芽箱可用于学校和教育机构的生物课程和实验活动,帮助学生了解植物生长的过程和环境因素对植物生长的影响。    四、总结    种子恒温发芽箱是一种先进的种子发芽设备,具有温度、湿度和光照等控制系统,可以为种子的生长提供最该佳设的备发广芽泛环应境用。于农业、林业、园艺等领域以及科研和教育领域。其移动便捷、可编程控制等特点使得它在不同场所的使用变得更加方便和高效。随着科技的不断进步和发展,相信种子恒温发芽箱的技术和质量会不断得到提升和完善,为植物的生长和研究提供更加可靠的支持。种子恒温发芽箱的特点及应用范围|莱恩德新品
  • 农业部公布第七批种子质检机构名录
    近日,农业部在其网站上发布通知,公布了“农业部批准的农作物种子质量检验机构(第七批)名单”,详情如下:  根据《中华人民共和国种子法》、《农作物种子质量检验机构考核管理办法》等有关规定,经我部考核,上海市农作物种子质量检测中心等6个农作物种子检验机构具备对外开展农作物种子检验的基本条件和能力,批准为合格种子检验机构,颁发《中华人民共和国农作物种子质量检验机构合格证书》,准许在批准的种子检验项目范围内使用农作物种子质量检验机构合格标志。  特此公告  附件:农业部批准的农作物种子质量检验机构(第七批)  农业部  2012年12月27日  附件:  农业部批准的农作物种子质量检验机构(第七批)  一、检验机构名单序号检验机构名称合格证书编号证书有效期1上海市农作物种子质量检测中心(农)中种检字(2012)第001号2017年12月27日2湖南省种子质量检测中心(农)中种检字(2012)第002号2017年12月27日3海南省农作物种子质量监督检测中心(农)中种检字(2012)第003号2017年12月27日4贵州省种子质量监督检验站(农)中种检字(2012)第004号2017年12月27日5新疆维吾尔自治区种子质量监督检验站(农)中种检字(2012)第005号2017年12月27日6农业部热带作物种子种苗质量监督检验测试中心(农)中种检字(2012)第006号2017年12月27日  二、检验机构信息  1、上海市农作物种子质量检测中心  法人单位:上海市种子管理总站  机构负责人:夏龙平  联系人及电话:刘康,021-64052103  通讯地址和邮编:上海市吴中路628号,201103  检验项目范围:农作物种子净度、发芽率、水分和品种  纯度等  授权签字人:夏龙平、刘康、楼坚锋  类别:首次评审  2、湖南省种子质量检测中心  法人单位:湖南省种子质量检测中心  机构负责人:盛建坤  联系人及电话:张家清,0731-84166346  通讯地址和邮编:湖南省长沙市远大一路480号种子大  厦二楼,410016  授权签字人:黄亚非、张家清、孙颖  3、海南省农作物种子质量监督检测中心  法人单位:海南省农业技术推广服务中心  机构负责人:叶凤  联系人及电话:钟兆飞,0898-65343126  通讯地址和邮编:海南省海口市美兰区美群路8-1号,  570203  授权签字人:蔡尧亲、钟兆飞  4.贵州省种子质量监督检验站  法人单位:贵州省种子管理站  机构负责人:彭义  联系人及电话:施文娟,0851-5282020  通讯地址和邮编:贵州省贵阳市延安东路85号,550001  授权签字人:施文娟  5.新疆维吾尔自治区种子质量监督检验站  法人单位:新疆维吾尔自治区种子管理总站  机构负责人:吾守尔• 司马义  联系人及电话:高翔,0991-5813161  通讯地址和邮编:新疆乌鲁木齐市钱塘江路453号,  830006  授权签字人:茹鲜、高翔  6.农业部热带作物种子种苗质量监督检验测试中心  法人单位:中国热带农业科学院热带作物品种资源  研究所  机构负责人:陈业渊  联系人及电话:张如莲,0989-23300085  通讯地址和邮编:海南省儋州市宝岛新村,571737  检验项目范围:热带农作物种子种苗净度、发芽率、  水分和品种纯度等  授权签字人:张如莲
  • 水稻种子活力无损检测分选设备顺利通过验收
    2022年12月3日,湖南省农学会组织以中国工程院院士、华南农业大学教授罗锡文为组长的专家组,对中国科学院长春光学精密机械与物理研究所和湖南省农业科学院联合研制的“水稻种子活力光学无损检测分选技术与设备研究”成果进行了现场评议,工程院院士、湖南省农业科学院党委书记柏连阳到会致辞。   种子活力是种质质量的核心指标,提高种子活力,提升农业用种质量,是保障国家粮食安全的重要途径。为实现个体种子活力精确检测,助力水稻种子活力分级加工,自2018年起,湖南省农业科学院联合我所组建了交叉学科研究团队,探索利用光学与信息科学手段解决水稻个体种子活力识别与分选这一种业瓶颈问题。   该成果首次采用超连续激光光源,获取种子透射光谱,关联“光谱数据集”与“种子活力表型数据集”,建立水稻个体种子活力光学无损检测的模型,率先研制出水稻种子活力无损检测分选样机,成功实现不同活力水稻种子自动分选,样机分选后的种子发芽率较分选前提高15%以上。   专家组评价认为:该成果填补了光学无损检测与分选水稻种子活力研究的空白,居国际较高水平。建议进一步提高水稻种子活力无损检测的精度及速度,尽早批量生产。   2018年,湖南省农业科学院余应弘课题组联合长春光机所梁静秋课题组开展了水稻种子活力无损检测研究,历经检测方法探索、检测平台搭建、设备迭代等多环节。此次验收的水稻种子活力无损检测分选样机由光学系统先进制造重点实验室刘钰副研究员负责研制。种子活力无损检测研究与设备研发得到了长春光机所领导的高度重视与支持。贾平所长多次亲临现场指导,勉励大家再接再厉,为种业科技创新、保障国家粮食安全贡献长春光机所力量。副所长王建立、所务委员黎大兵、所务委员孙守红,光学系统先进制造重点实验室、基础科研处以及知识产权与成果转化处领导等亲临实验室提出了意见与建议。   长春光机所与湖南省农科院将进一步通力合作,为提升农业用种质量、保障国家粮食安全做出更大的贡献。
  • 中国散裂中子源大气中子辐照谱仪通过验收
    作者:倪思洁 来源:中国科学报6月6日,中国散裂中子源的大气中子辐照谱仪通过验收。验收专家认为,基于中国散裂中子源,利用已规划和建设的靶站大气中子孔道,建设了大气中子辐照谱仪试验平台,高质量完成了各设备的设计、研制、安装、调试与谱仪联合调试,完成了预定任务,达到了项目建设指标;与世界同类设施相比,本项目建成的谱仪中子性能更接近大气中子真实环境的能谱,具有中子通量高、通量调节范围宽、束斑尺寸大且调节灵活等特点;项目组在宽能区脉冲中子辐射场测量、强辐照环境下中子束调控、高能中子屏蔽、大气中子辐照效应测试平台等技术上实现了突破,对国内相关工作的开展具有较好的参考价值。大气中子辐照谱仪是散裂中子源科学中心与工业和信息化部电子第五研究所共同建设的国内首台大气中子地面模拟加速测试平台。中国散裂中子源从2011年开始规划大气中子辐照谱仪并建设靶站内大气中子专用孔道,在广东省科技厅的资助下,大气中子辐照谱仪于2018年开始建设,于今年4月2日成功出束,并开展束流谱仪联合调试、中子束流参数测量以及辐照效应验证实验。据了解,大气中子辐照谱仪将为新型半导体器件、大规模集成电路、高可靠电子设备、新型功能材料、生物辐照效应、核数据测量等提供大气中子试验环境,为我国在航空、航天、通讯、能源、电力电子、现代交通、医疗电子及高性能计算等领域的高可靠电子信息系统研发与产品制造,提供一个先进的、功能强大的大气中子测试与科研平台。
  • 美国花生公司被责成关闭得州工厂
    据新华社电 美国得克萨斯州卫生官员2月10日通告说,由于美国花生公司位于该州普兰维尤的工厂生产的花生产品可能受到沙门氏菌污染,卫生部门已要求美国花生公司关闭这家工厂。 美国疾病控制和预防中心9日公布的最新数据显示,自去年9月以来,美国已有44个州发生沙门氏菌疫情,造成约600人染病,至少8人死亡。美国花生公司位于佐治亚州布莱克利的工厂被认为可能是此次疫情的源头之一。这家工厂明知其生产的花生酱和花生糊受到污染仍将这些产品分销给众多食品加工企业。美国食品和药品管理局网站公布的最新数据显示,自今年1月以来,美国已有1844种产品因此次花生酱污染事件而被召回。
  • 如何用科学仪器“攥紧中国种子”
    4月10日,正在海南考察的习近平总书记,第一站就来到三亚市崖州湾种子实验室,了解海南支持种业创新等情况,再次指明种子之于中国饭碗、之于粮食安全的重要战略意义。2021 年中央全面深化改革委员会第二十次会议上审议通过了《种业振兴行动方案》,提出种业振兴是我国农业现代化的基础,种源安全是国家粮食安全的保障,未来将集中力量破难题、补短板、强优势、控风险,实现种业科技自立自强、种源自主可控。2021年12月,中央经济工作会议再次强调,“要大力推进种源等农业关键核心技术攻关”、“加快建设南繁硅谷”,对种业工作进行了明确要求,指明方向。2022年3月6日,习近平总书记在看望参加全国政协十三届五次会议的农业界委员并参加政协联组会时强调中国种业要发挥我国制度优势,科学调配优势资源,推进种业领域国家重大创新平台建设,加强基础性前沿性研究,加强种质资源收集、保护和开发利用,加快生物育种产业化步伐;同时要深化农业科技体制改革,强化企业创新主体地位,健全品种审定和知识产权保护制度,以创新链建设为抓手推动我国种业高质量发展。2022年2月22日,2022年中央一号文件《中共中央 国务院关于做好2022年全面推进乡村振兴重点工作的意见》发布。这是新世纪以来,中央连续发出的第19个指导中国 “三农”工作的中央一号文件。文件指出,要启动农业生物育种重大项目。加快实施农业关键核心技术攻关工程,实行“揭榜挂帅”、“部省联动”等制度,开展长周期研发项目试点。强化现代农业产业技术体系建设。开展重大品种研发与推广后补助试点。如今,世界范围内以“生物技术+信息化”为特征的第四次种业科技革命正在推动种业研发、生产、经营和管理发生着深刻变革,千亿元规模的种业市场、成长中的我国种企正面临新一轮国际竞争。近年来,发达国家和跨国公司均将前沿生物技术作为优先发展方向超前部署,以期抢占产业制高点。2018年,美国科学院、美国工程院、美国医学科学院联合发布了《2030年农业研究科学突破预测》,提出跨学科研究和系统研究方法、传感技术、数据科学与农业-食品信息化、基因组学与精准育种、微生物组学五大重点突破领域,为农业生物技术发展描绘了战略路径。植物(作物)种子实验室的建设是为了攻关种子重大科学问题、解决种源“卡脖子”等关键技术难题,通常用于开展作物育种、种子学研究、种子检验、种子贮藏加工技术、种子处理等实验、实践项目。一般可以划分为:种子样品接收室、天平称重室、人工气象室、发芽检测室、纯度评定室、净度分析室、生活力检测室、低温储藏室、包衣种子检测室、档案留存室和办公接待室等区域——“种子既是生命的开始,也是终结”。相关的种子实验室仪器配置清单,包括基础实验所需的设备以及升级设备,供大家参考。此外,多家仪器企业也推出了自己的种业产品和方案。“天木生物”助力“攥紧中国种子”天木生物为三亚崖州湾种子实验室提供了常压室温等离子体诱变育种仪、全自动高通量微生物液滴培养仪等高端设备,目前已实现稳定应用。崖州湾种子实验室自去年起就引进了企业自主研发的常压室温等离子体诱变育种仪、全自动高通量微生物液滴培养仪,作为其种业研究专用仪器。在“攥紧中国种子,端稳中国饭碗”的奋斗过程中,“洛阳创新”再次发挥重要作用。其中,常压室温等离子体诱变育种仪在世界上首次实现了利用常压室温等离子体技术诱发细胞产生突变,具有诱变机理独特、突变效率高、使用安全便捷等优点。操作员通过全自动操作,即可获得大容量基因突变库,可极大提高建库效率。相关该技术属国际首创,目前已广泛应用于动物、植物及微生物的育种。托普云农用心守护“中国饭碗”从经验育种转变为科学育种,信息科技的入局更是加快了育种创新的步伐。以浙江托普云农科技股份有限公司为代表的一些农业科技企业凭借自身数据应用能力,为育种科研院所、制种企业提供辅助科研育种、制种的智能设备以及信息化平台,通过详实数据支撑,提升科研效率和准确性,帮助科研人员、企业主体加快科技成果转化推广应用,培育拥有自主知识产权的突破性品种,收获质优产高的中国粮食。育种大数据平台万深植物、种子表型分析设备助力三亚崖州湾种子实验室研究崖州湾科技城种子实验室建设注重科技创新,其根系分析仪、叶面积仪、自动考种仪、大米外观品质检测仪等先进设备,均来自杭州万深检测科技公司。杭州万深检测科技有限公司致力于顶尖智能视觉检测,是一家集研发、销售、服务为一体的国家高新技术企业。作为国内智能视觉检测技术和设备的核心供应商,万深检测在农业、生命科学、环境监测、制药等领域,为上千家用户单位提供鉴定、计数、分析、监控的产品和服务。种子难研磨?可精细到5um,种业人必备!种子的研磨,是有关于种子检测的首先一步,伴随着种子的研发进程不断加深,品种不断增加,在种子的有关检测过程中对于种子的精细度是极其微小的,上海净信多组织研磨仪加强型谁一款能够非常好的研磨所有品类的种子的仪器,最多可达192个样品的同时研磨,且研磨效果一样,不但如此其自身配备的多层次隔离罩还可提供很好的安全性,同时由于是透明材质,可随时观察样品情况,开盖即停。 图为上海净信加强型多样品组织研磨仪-48L它的工作原理主要是通过碳化钨小球或不锈钢等材质的小珠在样品研磨管(罐)内来回震荡将样本的粉碎、混合、均化以及细胞破碎,可以对硬性、软性、弹性等样品进行快速的粉碎和均相化处理,其精细度可达5um!符合种子理化分析实验室的要求;仪器还配置不同体积、不同材料的研磨罐,可根据试验需求进行干磨、湿磨及冷冻研磨,也能够进行细胞破碎及DNA/RNA提取。新芝仪器&植物(作物)种子实验室仪器设备1.高通量组织研磨器系列日常和基本的一个实验就是提取它们的遗传物质—DNA(脱氧核糖核酸)进行基因型鉴定,从而鉴定不同的种子来源。我们将待检测种子初步碾碎后加入离心管后利用高通量组织研磨仪进行组织研磨,获取颗粒更小的粉末,有利于后续种子DNA提取获得更高浓度的基因组模板,有利于后续核酸验证实验的准确性。  Southern Blot在种子分子生物学研究中具有重要地位,虽然距离这项技术发明已经过去很多年,但这项检测技术仍被广泛的应用在各种生物实验研究中。Southern Blot可分析具体基因的基因座及拷贝数,可以鉴定同源重组的概率,也可分析基因随机突变风险,是分子研究的“金标准”。实验过程可分为印迹和杂交两个步骤:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting),可采用紫外交联仪进行实现 二是固定于膜上的核酸与同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程,可采用分子杂交炉进行实现。2.LF系列分子杂交炉用模块化设计,结构简单,实用可靠 系统采用微电脑控制,触摸屏显示输入 采用钢化玻璃加工的机箱门不仅美观,还加大了使用人员的操作视野。温度控制系统采用模糊PID算法,自动演算,温度控制精确。杂交管旋转支架转速稳定,不受外界电压波动影响,摇匀功能能够快速满足用户摇匀需求。所有功能采用集中控制,操作更简单实用。在核酸分子杂交中对烤膜,预杂交,杂交,洗膜全过程可进行温度自动控制,可以有效的应用于核酸分子杂交技术的研究。3.紫外交联仪  SCIENTZ03-II紫外交联仪利用中波紫外线提供均匀强度的UV照射,主要用于将核酸交联固定在膜上,还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UV灭菌消除PCR污染等。其UV剂量控制精确,使用安全方便、能分紫外能量和时间两种操作模式。4.SCIENTZ18-A超声波DNA打断仪超声波DNA打断仪采用等温、非接触的方式对样品进行打断、匀浆和混合,用于无菌、可超微量破碎,隔着离心管能打断染色体。专为二代测序DNA样本与染色质免疫共沉淀实验样本前处理量身订做,对于每天要处理多个样品或者贵重样品的实验室,它具有处理高通量,样本低损耗,无交叉污染等优势。逐渐成为ChIP(染色质免疫共沉淀)和DNA剪切研究平台不可缺少的标准化工具。5. NP-2032全自动核酸提取仪  NP-2032是通过磁珠法提取、纯化核酸的设备。样品裂解后,释放出来的核酸分子被特异性的吸附在磁珠表面,通过内置磁棒磁吸、转移、洗涤,最后使核酸分子溶解在洗脱液中,搭配不同种类的磁珠核酸试剂,可以快速提取动植物组织、血液、体液、刑事检体等样品中的核酸。  6.加热型功率可调超声清洗机  DTD系列功率可调加热型超声波清洗机主要用于常规清洗、萃取、乳化、混匀、脱气、分散等领域。其优点是大液晶屏幕显示,具有时间、功率、温度均可调等功能,且仪器断电后具有工作参数记忆功能,方便直接调用和数据查询。被广泛应用于验室、机电行业、珠宝首饰、医疗牙科、光学等领域。  7. 恒温水浴系列  恒温槽分单加热型(SC系列)、加热制冷型(DC系列)、单制冷型(DLK系列)、高低温程控机型(CK系列)、高精度机型(GDH/GH系列)5种机型。产品为用户工作时提供一个冷热受控、温度均匀恒定的液体环境,对试验样品或生产的产品进行恒定温度试验或测试,也可作为直接加热或制冷和辅助加热或制冷的热源或冷源。  8.实验型钟罩式冷冻干燥冷冻干燥机用于种子样品的冻干保存,SCIENTZ-N 系列实验型钟罩式冷冻干燥机是专为实验室用户处理小批量样品打造的专用产品。在保持结构紧凑的同时,兼顾优异的性能。采用性能稳定的进口压缩机,功能强大,可提供高度自动化的高品质冷冻干燥环境(常规空载 -56℃,可选配 -80℃压缩机),是中小型实验室完成冻干工艺实验的理想选择。  9. 真空离心浓缩仪  可用于种子基因组提取物的离心浓缩用于后续检测;可用于种子胞内提取产物的离心浓缩,提高样品浓度,有利用后续检测实验的准确性。  真空离心浓缩仪,自带捕水冷阱,方便快捷。SCIENTZ-10LS 型为分体式离心浓缩仪,可适配 N、ND 系列冻干机,或配置低温冷阱才能实现浓缩冻干。可广泛用于生物学、微生物学、生物化学、制药研究以及分析化学等领域。  10. 台式高速冷冻离心机  为满足低温样本的分离、沉降等需求,并且可根据不同样本的需求更换转子,最小离心管可至 0.2ml(4*PCR8排管),最大离心管可至5ml(12*5ml),是一款性能先进、用途广泛、使用安全、操作简单的高质量产品。  11. XB全自动雪花制冰机  全自动雪花制冰机是一种新型优质的制冰机,特别适用于医院、实验室、学校等医疗科研场所,也可用于餐厅、酒吧、酒店等娱乐场所,还可用于超市、渔业捕捞、化工、食品加工、屠宰冷冻等需要大量使用冰的行业,应用非常范围广。上海保圣快速粘度仪助力“南繁硅谷”建设上海保圣快速粘度仪(Rapid Visco Analyzer,RVA)Rapid-20,RVA高灵敏度和准确度,是检测低粘度样品的选择(最小粘度160rpm时10cP)。低粘度检测包括:低固含量淀粉(例如造纸业或包装行业的乙基化淀粉和阳离子淀粉),低粘度食品淀粉(例如酸解或酶解淀粉),低粘度产品(例如酱油、番茄酱、肉汁、调味料、蛋黄酱、汤类和乳制品饮料)和其他低粘度非淀粉食品(例如胶体和蛋白质)。也适合分析宽粘度范围的样品(160rpm时可以达到25,000 cP )。高粘度检测包括:挤压膨化食品(例如早餐谷物、零食、宠物食品、鱼饲料和动物饲料),可熔性检测(例如人工乳酪、巧克力和糖果),高固含量淀粉和高粘度变性淀粉(例如取代和交联食品淀粉)。上海保圣快速粘度仪走进海南省崖州湾种子实验室,通过淀粉糊化温度、峰值粘度、谷值黏度、最终粘度、回生值、衰减值进行检测及计算,为种子实验室进行水稻育种、小麦育种、种子发芽损伤等种子相关演技提供稳定检测数据。上海保圣仪器工程师与崖州湾种子实验室的浙江大学、中国农业大学等多个学校的科研学者针对种子谷物的淀粉糊化特性进行测定,对不同育种的水稻特性进行分析。
  • 欧盟发布芽菜及其种子的新规定
    2013年3月11日,欧盟颁布了三条规定。第一条规定(EU) No 208/2013是关于芽菜及其种子追溯性的相关要求,以确保能够根据《(EC) No 178/2002规定》第18条之要求进行追溯。第二条规定(EU) No 209/2013是对《(EC) No 2073/2005规定》的修订,这是一个有关芽菜和已宰杀家禽及新鲜家禽肉抽样微生物标准的规定。最后一条规定《(EU) No 211/2013》是关于进口到欧盟的芽菜及其种子认证的相关规定。这些规定将于2013年7月1日开始生效。  “芽菜”是由种子放入水或其它介质中培育发芽得到的,在长出真正的叶之前采集起来,连同其种子一起食用。  自2011年5月在欧盟地区爆发产志贺毒素大肠杆菌事件之后,芽菜被认为是最为可能导致这一事件的根源。欧洲食品安全局(EFSA)的结论是,致病菌对干种子的污染最有可能是导致芽菜相关污染事件的根源,而干种子上的致病菌在抽芽期内会成倍繁殖。《(EC) No 2073/2005规定》对此做出了具体的规定,(EU) 209/2013对此进行了修订,而(EU) 209/2013被认为是现行关于芽菜种子微生物标准、抽样标准、分析参照以及微生物限制(包括沙门氏菌以及其它六种产志贺毒素大肠杆菌血清组,即O157、O26、O103、O111、O145和O104:H4等其它致病菌)的规定。同时增加了已宰杀家禽、新鲜家禽肉和芽菜的抽样和检测规定。  欧盟(EU) No 208/2013指令对一批芽菜及其种子在加工、生产和销售的各个阶段的可追溯性作出了规定。该指令要求,有关种子和芽菜的准确描述信息、产量或数量以及经营商名称和地址均要登记在案以便保护欧盟地区公众的健康。所记录的信息每天都要予以更新,并且在被要求把这些信息发送到采购这些种子或芽菜的食品经营商以及主管部门时不得延误。  另外,将芽菜及其种子进口到欧盟地区的承运人以及源自或从第三方国家发运过来的必须有《(EU) No 211/2013规定》附录中所要求的相关证明,以表明芽菜或种子是按照《(EC) No 852/2004规定》中《附录I》之第一部分里相关卫生要求而生产的。同时,遵循了《(EU) No 208/2013规定》中对可追溯性的明确要求。
  • 投资50亿 种子生命科学技术中心开工建设
    生物育种是我国“十二五”战略性新兴产业之一,也是未来全球种业竞争的科技制高点与制胜点。中国中化集团公司7月8日在湖北武汉国家生物产业基地举行中国种子生命科学技术中心开工仪式。据悉,中国种子生命科学技术中心项目总投资将达到50.6亿元人民币,是我国种业迄今为止在企业自主研发和人才创新创业基地建设方面最大规模的投资,将代表我国种业科技应用研究和产业化的最高水平,大幅提升我国种业的国际竞争力。  中国种子生命科学技术中心由中化集团所属中国种子集团有限公司投资兴建。中国种子集团有限公司是一家以粮食、油料和蔬菜种子为主营业务,集品种选育、生产加工、良种供应、技术服务于一体的农业产业化龙头企业,是国家级种业公司和我国唯一以农作物种业为主营业务的中央企业。中国种子生命科学技术中心建成后,将致力于农作物生物技术的应用研究及产业化,高起点地引进世界最先进的科研设施与技术,组建由院士领衔、国内外一流专家组成的科研团队,集成基因组学、分子生物学等农作物生物技术领域和主要农作物常规育种领域的国内外最新研究成果。  中国中化集团公司副总裁韩根生介绍,作为中国种子生命科学技术中心的组成部分,中国种子集团有限公司光谷实验中心已先期建成,并在7月8日落成剪彩后正式投入使用。一支由院士领衔、海内外生物技术及常规育种技术人才组成的80余人的研发团队已经组建到位,中国种子集团有限公司还与一批常规育种领域的科学家建立了战略合作关系。按照“统一规划、分步建设”的原则,目前启动建设的工程总建筑面积超过11万平方米,后期还将投入建设北京分中心、海南分中心,以及位于国内主要生态区的4个大型水稻、玉米等主要农作物全功能试验站和10个育种站、82个农作物新组合筛选测评点。  目前我国农作物种业发展仍处于初级阶段,产学研分割严重,商业化育种体系尚未建立,企业整体创新能力与核心竞争力偏低。今年4月10日出台的《国务院关于加快推进现代农作物种业发展的意见》明确提出,农作物种业是国家战略性、基础性核心产业,是促进农业长期稳定发展、保障国家粮食安全的根本,提出把“坚持自主创新,坚持企业主体地位,坚持产学研结合,坚持扶优扶强”作为我国农作物种业发展的四项基本原则,并把“建立商业化育种体系”作为重点发展任务之一。  2010年,中化集团以中国种子集团有限公司为平台,全面启动国家级种业公司建设,联合我国52家领先的科研院所、农业院校、骨干企业和行业协会,发起组建“种业技术创新战略联盟”,围绕农作物新品种培育和生物技术研究等关键领域开展联合攻关,建立覆盖主要农作物种植区域的五大基地带,并配套完善11个种子加工储运中心。
  • 种子界的“诺亚方舟”——种质资源库
    近日,由中央广播电视总台财经节目中心精心制作的六集大型纪录片《种子 种子》,正在央视综合频道和财经频道播出。 纪录片《种子 种子》用生动鲜活的案例和深入浅出的科普,讲述中国种业的成长发展故事,解开种子背后不为人知的基因密码。期间,“种质资源库”的镜头不断涌现。 作为一个国家的关键性战略资源,谁占有的种质资源越丰富,谁的基因开发潜力就越大。因此,种子资源库的重要性不言而喻。 种子“诺亚方舟”——种质资源库肩负了重要的储备任务。托普云农的种质资源库,就是这样的存在。稳定的制冷除湿系统和中央控制器,合理的围护结构,便捷的种质资源存储架,安全的保温隔离系统和暖通管道系统,是我们种质资源库的功能亮点。库门采用联动控制设计,防止冷量损失中央控制器远程监管、数据查看、参数设置密集柜通过分类排架号进行jing准定位,方便种质资源的管理与取用种质资源档案牌登记架号、容器类型、种质编号等,便于查找和管理密封盒、透明玻璃瓶、种子存储筐等不同存储容器可供选择 储存丰富的种质,只是种质库的一项功能。托普云农种质资源库更重要的意义在于未来,每一次资源都携带着独特的基因,它是培育新品种的希望。我们致力用科技手段解决种子贮藏难题,让种质资源保护更加高效,让每一碗“中国粮”都能用上“中国种”! 典型客户: 山西省林业科学研究院、江西省林业科学院、山东省林木种植资源中心、新疆草原总站、贵州省辣椒研究所、甘肃省天水市农业科学研究所、西藏日喀则农业科学研究院、三亚市林业科学研究院、金华市农业科学研究院、苏州西山中科药物研究、华东师范大学、邵阳市南方草业科学研究所… …
  • 再谈种子“这件大事”,托普云农用心守护“中国饭碗”
    古语常云,春种一粒粟,秋收万颗籽。那,“种”从哪里来? “种子是我国粮食安全的关键。只有用自己的手攥紧中国种子,才能端稳中国饭碗,才能实现粮食安全。”这不是zhong央di一次提到种业发展问题,从中央农村工作会议到“十四五”农业农村现代化发展规划多次提出要把“种业发展”放到事关发展全局和国家安全的战略大事上。 小小一粒种子,有多重要? 种子是农业的“芯片”,在农业产业链的最前端。中国有十几亿人口要吃饭,这是我国的国情,要在有限的耕地上多产粮、产好粮,种子是关键,小小种子承载着的是中国饭碗的希望。从现实情况来看,我国部分农作物种子仍然高度依赖进口,甚至出现“进口的按粒卖、国产的论斤卖”现象。例如,我国大豆种子对外依存度高达86%;截至2020年底,境外引进的品种数量占我国糖用甜菜品种登记总数的91.2%;茄子、胡萝卜、菠菜、洋葱等重要蔬菜的种子市场,也是国外企业占据优势。放眼当前和未来,中国粮食供需持续增加,然而疫情扩散蔓延、国际形势复杂多变,确保种业和粮食安全显得尤为重要。 种业要发展,种源要做到自主可控,种业科技要自立自强。当前,我国种业已进入到以自主创新为驱动力的发展新阶段,以海南崖州湾种子实验室、湖南岳麓山实验室、湖北洪山实验室、河南神农种业实验室、四川农科院天府种业实验室等为代表的各地实验室开展了大量新品种培育工作,我国植物新品种保护申请量已连续4年居世界di一,水稻、小麦、玉米高产典型不断涌现,优质化水平不断提升,一批具有推广应用前景的重大新品种有力保障了我国种业发展。 不止于此,从经验育种转变为科学育种,信息科技的入局更是加快了育种创新的步伐。以浙江托普云农科技股份有限公司为代表的一些农业科技企业凭借自身数据应用能力,为育种科研院所、制种企业提供辅助科研育种、制种的智能设备以及信息化平台,通过详实数据支撑,提升科研效率和准确性,帮助科研人员、企业主体加快科技成果转化推广应用,培育拥有自主知识产权的突破性品种,收获质优产高的中国粮食。育种大数据平台 “育种”环节的新机遇不断浮现,中国的田野里种上了更多的中国种子。春锄破土,播种希望。眼下,又是一年春耕农忙时节,春风里,黄土地上一派欣欣向荣的景象。待秋收,粮食产量再创新高,中国人端牢“饭碗”底气更充足。
  • 中国散裂中子源能量分辨中子成像谱仪通过验收
    2023年7月10日至11日,广东省科技厅在中国散裂中子源园区组织召开了“能量分辨中子成像谱仪”项目技术测试和验收会,张统一院士担任验收组组长。验收组专家来自香港科技大学(广州)、中国科学技术大学、中国科学院上海高等研究院、中国航发北京航空材料研究院、华南理工大学、厦门大学、故宫博物院等单位。验收组一致认为:本项目建成的能量分辨中子成像谱仪具有束流通量高、成像视场大、空间分辨率和波长分辨率高等优势,在高能量分辨布拉格边中子成像、中子成像与衍射信息融合、多尺度、多维度、多模态中子无损成像等技术上实现了突破。该项目建成了我国首台高分辨成像与中子衍射结合的中子成像谱仪,可广泛服务于新能源、先进材料、先进制造、基础科学前沿、文化遗产等领域的需求,具有广阔的应用前景。验收组一致同意该项目通过验收。   能量分辨中子成像谱仪是广东省科技厅出资支持建设的中国散裂中子源中子谱仪,于2019年11月启动建设,经过高质量的设计、研制、安装与设备调试,2023年1月5日成功出束,经过紧张的束流调试和测试,达到了项目任务书所列各项设计指标,优于验收指标。能量分辨中子成像谱仪的建成和后续开放运行将在服务国家发展战略需求和粤港澳大湾区的科技发展与产业升级等方面发挥重要作用。
  • 北京种子检测中心正式投用 80%设备国内制造
    27日上午,北京市种子质量检测服务中心正式揭牌。图为工作人员对种子进行筛选。27日上午,北京市种子质量检测服务中心正式揭牌。图为活动现场。  今后,更多的种业企业将在北京得到高效优质的种子检验检测服务。27日上午,位于南四环、占地1800平方米的北京市种子质量检测服务中心正式揭牌。这也是截至目前我国唯一通过国际种子检验协会(ISTA)认可的种子检验实验室。  检测中心配备了电泳室、DNA提取室、样品处理室、生活力活力发芽率检测室、水分净度及近红外光谱检验室等共12个功能实验室,检验仪器设备80台套。检测范围覆盖了蔬菜、大田、牧草等植物和花卉的种子,将对种子的品种真实性、纯度、发芽率、水分、净度、种子健康、活力、重量等7个项目进行检测。其中,种子无损检测技术将有望填补国内空白。  “2000个同一品种的种子样本,用以前的设备检测,需要两个月的时间,但在检测中心正常情况下只要7天就可完成。这里80%的仪器设备都拥有国内自主知识产权。”丰台区种籽管理站相关负责人在接受记者采访时说。据悉,目前检测中心面向种业企业进行免费检测。  千龙网记者了解到,中心还在王佐镇庄户村舍友面积为300亩的农作物种子质量田间鉴定基地,全年可开展各种农作物种子质量田间鉴定、种子病害、病理田间检测与技术研究。目前,检测中心由中国农业大学与丰台区共同负责运行管理,已经通过农业部组织的能力验证,拟建设成符合国际种子检测ISTA标准的种子检测服务中心。  据介绍,检测中心是打造北京市“种业之都”的重要举措,也是对2014年世界种子大会的有利科技支撑。即日起,检测中心将为北京种业发展提供便捷、高效、优质的检测服务,还将对世界种子大会会员企业、国内种子进出口企业开展广泛的种子质量服务,成为国际性的种子质量检测平台。
  • 中国农业大学种子质量检验丰台测试中心成立
    日前,&ldquo 中国农业大学种子质量检验丰台测试中心&rdquo 、&ldquo 北京市种子质量检测服务中心&rdquo 、&ldquo 中国农业大学牧草种子实验室&mdash &mdash 国际种子检验协会(ISTA)认可实验室丰台基地&rdquo 、&ldquo 北京市丰台区种子质量监督检验站&rdquo (以下简称&ldquo 检测中心&rdquo )揭牌活动在北京市丰台区种子管理站检验楼举行。  检测中心是北京市科委&ldquo 北京农科城建设&rdquo 重点支持的科技项目,也是中国农业大学与丰台区&ldquo 校区合作&rdquo 的成果。该中心建设面积约1800平方米,共有功能检验室12个、检验仪器设备80台套。检测范围覆盖蔬菜、大田、牧草、草坪草和花卉种子,具有品种真实性和品种纯度、发芽率、水分、净度、种子健康、活力、重量7个项目的检测能力,其中种子无损检测技术有望填补国内空白。检测中心在王佐镇庄户村设有面积为300亩的农作物种子质量田间鉴定基地,全年可开展各种农作物种子质量田间鉴定及种子病害、病理田间检测与技术研究。中国农业大学与丰台区目前共同负责检测中心的运行管理,该检测中心已通过农业部组织的能力验证,拟建设成符合国际种子检测IS?TA标准的种子检测服务中心。  检测中心是北京市打造&ldquo 种业之都&rdquo 的重要举措,也是对2014年世界种子大会有力的科技支撑。检测中心不仅为本地区种业发展提供便捷、高效、优质的检验检测服务,还将对世界种子大会会员企业、国内种子进出口企业开展广泛的种子质量检测服务,成为国际性、大区域性种子质量检测服务平台。检测中心将通过依托农大、农林科学院等高等院校的科技实力和科技人员,进一步建设成为集多个特色实验室、涵盖各种检验检测品种和检验能力的种子质量检验检测服务中心,从而提升北京市种子检测机构的整体检测水平,解决我国种业产业链下游种子质量检测技术落后等问题,提升服务种业企业能力,推动我国种子市场的健康、稳定、协调发展,加速种子质量管理体系与国际接轨,提升我国种子在国际市场的竞争力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制