当前位置: 仪器信息网 > 行业主题 > >

滑爽性能

仪器信息网滑爽性能专题为您整合滑爽性能相关的最新文章,在滑爽性能专题,您不仅可以免费浏览滑爽性能的资讯, 同时您还可以浏览滑爽性能的相关资料、解决方案,参与社区滑爽性能话题讨论。

滑爽性能相关的资讯

  • 如何通过摩擦系数仪优化化妆品日化产品的滑爽性能
    引言在化妆品与日化产品领域,产品的使用体验是吸引并留住消费者的关键因素之一。其中,滑爽性能作为直接影响触觉感受的重要指标,其优化显得尤为重要。摩擦系数仪作为科学评估材料表面滑爽性能的专业工具,在化妆品与日化产品的研发与优化过程中扮演着不可或缺的角色。本文将深入探讨如何通过摩擦系数仪来优化这类产品的滑爽性能,旨在为行业内的研发人员提供一套系统的实践指南。一、理解摩擦系数仪的工作原理与应用1.1 工作原理概述摩擦系数仪通过模拟实际使用场景下的摩擦行为,测量样品表面与其他材质(如皮肤模拟物、包装材料等)之间的摩擦阻力,从而计算出摩擦系数。这一数值直接反映了产品表面的滑爽程度,是评估产品使用体验的重要指标之一。1.2 在化妆品日化产品中的应用在化妆品领域,摩擦系数仪可用于评估乳液、面霜、防晒霜等产品的涂抹顺畅度;在日化产品方面,则可用于检测洗涤剂、洗洁精等产品的去污能力及使用后表面的爽滑感。通过精确测量,研发人员可以更加科学地调整配方,以达到最佳的滑爽性能。二、摩擦系数仪测试前的准备工作2.1 样品的准备确保测试样品具有代表性,即能够真实反映产品整体的滑爽性能。同时,注意样品的储存条件,避免温湿度变化对测试结果的影响。2.2 测试参数的设定根据产品的特性和测试目的,合理设定测试速度、负载、滑动距离等参数。这些参数的设定将直接影响测试结果的准确性和可靠性。2.3 仪器的校准与维护定期对摩擦系数仪进行校准,确保其测量精度符合标准要求。同时,做好仪器的日常清洁与维护工作,避免外界因素对测试结果造成干扰。三、优化化妆品日化产品滑爽性能的策略3.1 调整配方成分通过改变配方中油脂、乳化剂、增稠剂等成分的种类和比例,可以有效调节产品的滑爽性能。例如,增加适量的硅油或天然油脂成分,可以显著提升产品的润滑感和滑爽度。3.2 优化生产工艺生产工艺对产品的滑爽性能同样具有重要影响。通过改进搅拌速度、温度控制、均质时间等工艺参数,可以使产品更加细腻均匀,从而提高其滑爽性能。3.3 引入新型材料随着科技的进步,越来越多的新型材料被应用于化妆品与日化产品中。这些材料往往具有独特的物理化学性质,能够显著改善产品的滑爽性能。例如,纳米材料、生物基材料等新型添加剂的引入,为产品的优化提供了更多可能性。3.4 数据分析与反馈利用摩擦系数仪获得的测试数据,进行深入的统计分析和趋势预测。通过对比不同配方、工艺条件下产品的滑爽性能差异,找出影响滑爽性能的关键因素,并据此制定针对性的优化方案。同时,建立反馈机制,及时调整优化策略,确保产品性能的持续改进。四、案例分析:某品牌面霜滑爽性能优化实践某知名化妆品品牌在其面霜产品的研发过程中,遇到了滑爽性能不佳的问题。为此,该品牌研发团队借助摩擦系数仪进行了深入的测试与分析。通过调整配方中的油脂比例、引入新型乳化剂以及优化生产工艺等措施,成功提升了面霜的滑爽性能。经过市场验证,优化后的面霜不仅涂抹更加顺畅,而且能够显著提升消费者的使用体验。这一成功案例充分展示了摩擦系数仪在化妆品日化产品滑爽性能优化中的重要作用。五、结论与展望综上所述,摩擦系数仪作为评估化妆品日化产品滑爽性能的重要工具,其在产品研发与优化过程中具有不可替代的作用。通过科学合理的测试与分析方法,结合配方调整、工艺优化等策略手段,可以有效提升产品的滑爽性能和使用体验。未来,随着科技的不断进步和消费者需求的日益多样化,化妆品日化产品的滑爽性能优化将成为一个持续的研究热点。我们期待更多的创新技术和方法能够应用于这一领域,为消费者带来更加优质、舒适的产品体验。
  • 塑料保鲜膜有必要使用摩擦系数仪测试湿态下的摩擦系数吗
    塑料保鲜膜是家庭和商业厨房中常用的食品包装材料,它的主要作用是保护食品免受污染,减少水分蒸发,并在一定程度上隔绝氧气,延长食品的保质期。摩擦系数是衡量材料表面滑爽性的一个重要参数,尤其在包装和运输过程中,它影响着材料的堆叠、展开和使用便利性。湿态下摩擦系数测试的必要性使用环境:在实际使用中,塑料保鲜膜可能会暴露在潮湿环境中,或者用于包裹含水食品,因此测试湿态下的摩擦系数可以更准确地模拟实际使用条件。产品性能:湿态下的摩擦系数可能会与干态时有所不同,这可能会影响保鲜膜的使用性能,如开合的便利性、包装的密封性等。质量控制:通过测试湿态下的摩擦系数,制造商可以对产品进行更全面的质量控制,确保其满足不同条件下的使用要求。安全标准:某些食品安全标准或包装材料标准可能要求测试材料在不同条件下的性能,包括湿态下的摩擦系数。消费者体验:湿态下的摩擦系数直接影响消费者在使用保鲜膜时的体验,如易拉性、易撕性和易铺展性。摩擦系数仪的选择和测试设备选择:选择能够进行湿态测试的摩擦系数仪,确保设备可以模拟潮湿环境并准确测量摩擦系数。测试条件:设定合适的测试条件,包括湿度、温度和测试速度,以确保测试结果的准确性和可重复性。样品准备:按照标准要求准备样品,确保样品的代表性和测试的有效性。数据记录:记录测试过程中的数据,包括摩擦系数、测试条件等。结果分析:对测试结果进行分析,评估塑料保鲜膜的湿态摩擦性能,并与干态性能进行比较。结论虽然塑料保鲜膜在干态下的摩擦系数测试是常规的质量控制步骤,但进行湿态下摩擦系数的测试同样重要。这不仅可以提供更全面的产品性能评估,还可以确保产品在实际使用中的性能满足消费者的期望和安全标准的要求。因此,使用摩擦系数仪测试塑料保鲜膜湿态下的摩擦系数是有必要的,它有助于提升产品质量和消费者满意度。
  • SYSTESTER发布智能全自动薄膜阻隔性测试仪新品
    智能全自动薄膜阻隔性测试仪品牌:【SYSTESTER】济南思克测试技术有限公司适用范围:气体透过率测定仪主要用于包装材料气体透过量测定工作原理:压差法测试原理型号:气体透过率测试仪(又称:薄膜透气仪,透氧仪,气体渗透仪,压差法透气仪,等压法透气仪,氧气透过率测试仪等,气体透过量测定义,药用复合膜气体透过率测试仪,人工智能技术仪,氧气渗透仪,济南思克,OTR透氧仪)智能全自动薄膜阻隔性测试仪采用真空法测试原理,用于各种食品包装材料、包装材料、高阻隔材料、金属薄片等气体透过率、气体透过系数的测定。 可测试样:塑料薄膜、塑料复合薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔复合膜、方便面包装、铝箔、输液袋、人造皮肤;(红外法)(电解法)水蒸气透过率测试仪气囊、生物降解膜、电池隔膜、分离膜、橡胶、轮胎、烟包铝箔纸、PP片材、PET片材、PVC片材、PVDC片材等。试验气体:氧气、二氧化碳、氮气、空气、氦气、氢气、丁烷、氨气等。 GTR系列 药用复合膜气体透过率测试仪,人工智能技术【济南思克】技术指标:测试范围:0.01~190,000 cm3/m2?24h/0.1MPa(标准配置)分 辨 率:0.001 cm3/m2/24h/0.1MPa试样件数:1~3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃ 控温精度:±0.1℃ 试样厚度:≤5mm 试样尺寸:150 mm × 94mm 测试面积:50 cm2试验气体:氧气、氮气、二氧化碳、氦气等气体(气源用户自备)试验压力范围:-0.1 MPa~+0.1 MPa(标准)接口尺寸:Ф8 mm 外形尺寸:730 mm(L)×510mm(B)×350 mm(H) 智能全自动薄膜阻隔性测试仪产品特点:真空法测试原理,完全符合国标、国际标准要求三腔独立测试,可出具独立、组合结果计算机控制,试验全自动,一键式操作高精度进口传感器,保证了结果精度、重复性进口管路系统,更适合极高阻隔材料测试进口控制器件,系统运行可靠,寿命更长进口温度、湿度传感器,准确指示试验条件一次试验可得到气体透过率、透过系数等参数宽范围三腔水浴控温技术,可满足不同条件试验系统内置24位精度Δ-Σ AD转换器,高速高精度数据采集,使结果精度高,范围宽嵌入式系统内核,系统长期稳定性好、重复性好嵌入式系统灵活、强大的扩展能力,可满足各种测试要求多种试验模式可选择,可满足各种标准、非标、快速测试试验过程曲线显示,直观、客观、清晰、透明支持真空度校准、标准膜校准等模式;方便快捷、使用成本极低廉标准通信接口,数据标准化传递可支持DSM实验室数据管理系统,能实现数据统一管理,方便数据共享 (选购) 标准配置:主机、高性能服务器、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气精密减压阀、取样器、取样刀、真空密封脂、真空泵(进口)、快速定量滤纸 执行标准:GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003 其他相关:系列一:透氧仪,透气仪, 透湿仪,透水仪,水蒸气透过率测试仪,药用复合膜气体透过率测试仪,人工智能技术,7001GTR透气仪系列二:包装拉力试验机、摩擦系数仪、动静摩擦系数仪、表面滑爽性测试仪、热封试验仪、热封强度测试仪、落镖冲击试验仪、密封试验仪、高精度薄膜测厚仪、扭矩仪、包装性能测试仪、卡式瓶滑动性测试仪、安瓿折断力测试仪、胶塞穿刺力测试仪、电化铝专用剥离试验仪、离型纸剥离仪、泄漏强度测试仪、薄膜穿刺测试仪、弹性模量测试仪、气相色谱仪、溶剂残留测试仪等优质包装性能测试仪!注:产品技术规格如有变更,恕不另行通知,SYSTESTER思克保留修改权与最终解释权!创新点:1.以边缘计算为特点的嵌入式人工智能技术赐予了仪器更高的智能性;2.赋予仪器高度自动化、智能化;3.外观设计独到智能全自动薄膜阻隔性测试仪
  • 校企双星陨落,高校产学研用该何去何从
    近日,紫光集团(原清华紫光)发布公告向法院申请进行破产重组。据了解,紫光集团最早起步于1988年。当年,清华大学成立清华大学科技开发总公司,这是清华大学为加速科技成果产业化成立的全校第一家综合性校办企业,也是紫光集团前身。此前7月5日,北京第一中级人民法院公告,北大方正等公司的破产重整计划获批。北大方正和清华紫光被誉为“校企双星”,如今双双陨落。紫光集团申请破产重组公告校办企业是高校产学研探索的一个重要尝试。根据教育部在2014年公布的《高等学校校办企业统计概要公告》,2013年度,全国552所普通高等学校涉及企业5279家,其中一级企业有1797家,二级企业1566家,三级及以下企业1916家。如今,校企双星的陨落显露出了高校产学研模式的坎坷之路。校办企业为何相继倒闭?随着社会主义市场经济进一步发展,高校所属企业问题日益凸显。2017年6月,中央纪委监察部公布十八届中央第十二轮巡视反馈情况,在针对29所中管高校党委专项的巡视中,有23所高校被指出存在校办企业管理混乱的问题和廉洁风险——监管空缺的校企逐渐成为“高校反腐重灾区”。早在2015年9月,中共中央、国务院印发的《深化科技体制改革实施方案》中,就明确提出高校要逐步实现与下属企业的剥离,并且为高校企业改革设置了明确的实施步骤。2018年5月11日召开的中央全面深化改革委员会第二次会议上,通过了《高等学校所属企业体制改革的指导意见》(以下简称《意见》),要求逐步实现高校与下属公司剥离,深化高校所属企业体制改革。清华紫光和北大方正作为依靠清华和北大的科研转化发展起来的校企,虽然都是上市公司,但是根本算不上现代企业,管理混乱,虽然有先进的实验室和优秀的研究成果,但即便外聘职业经理人,也容易被腐化,单一的科研成果无法依靠资本实力在产业链上产生有效增值,不懂市场,所以只能被市场抛弃,最终浪费了大量的国家资产。紫光和方正的处境,恰恰说明我们的科研转化和校办企业运作模式存在非常严重的问题,有必要探索产研新路径,如科研院所与民营企业合作而非让国立高校乱搞。在自由市场上,一家企业的破产和失败并不会影响市场走向,只有在公平竞争中,才会产生真正伟大的企业。高校产学研探索的困境产学研即产业、学校、科研机构等相互配合,发挥各自优势,形成强大的研究、开发、生产一体化的先进系统并在运行过程中体现出综合优势。那么为何高校产学研之路频频遇阻?实验室项目没有传承、积累,缺少维护,管理水平低,甚至处于小作坊模式。高校教师大都是博士毕业直接进入学校工作,没有真正长时间的进入企业和理解企业的一套办事流程,也没有长时间接触工程上的技术。高校的项目,办事儿主力军都是学生,更没有经验,很多老师虽然之前接触过一些项目,但还没有总结出成熟的项目流程,心有余而力不足,想教也没法儿教,只能当甩手掌柜,遇到事情催学生。硕士生和博士生在经验方面也是如此,都得从头学,而且毕业后很少有交接工作,保证项目可以持续进行。很多导师压迫着手里的博士,明明人家都已经达到毕业标准了,还迟迟不肯放人,不让其毕业,原因也在于此。而对于产业界来说,往往需要潜心一个方向数十年,吃透摸透工艺才能实现量产。目前我国高校仍以论文评价为导向,但对于很多工艺研发往往不能出高影响因子论文,研究动力不足。而企业看重产品前景想赚钱,但高校院所想出论文但并不关心产品化,缺乏对产品的深耕细作。由此导致很多教授的研究成果对于企业来说毫无意义。要不就是纯粹水论文,要不就是过于高瞻远瞩。至于论文不够评不上的教授,又由于没有帽子,得不到支持。部分教授的确实有很强的技术,但由于不懂财务,企业经营而屡屡犯难,甚至财务不合规,而被送进监狱。高校、研究机构的人低估了工业化的难度;而产业界的人又低估了理论分析的重要性。
  • 超高分辨质谱助力组学发展|赛默飞助阵第二届全国代谢组学及蛋白质组学双星峰会
    上海 双星峰会2021年11月27-29日,第二届全国代谢组学及蛋白质组学双星峰会在上海隆重召开,此次会议汇集了近200位国内外相关领域的知名专家、学者以及临床疾病、中医药、肿瘤、植物等多个研究方向的研究人员积极参与,共同交流探讨基于质谱的蛋白组学及代谢组学在精zhun医学、创新药、植物生理、营养健康、环境和食品等转化应用,共商我国代谢组学和蛋白质组学在后疫情时代的研究与发展。为降低疫情影响,大会采取线上同步直播的方式,在线人数达到600人。在此次会议中,赛默飞质谱组学应用专家鼎力助阵,分享超高分辨质谱技术在组学研究中的应用及进展,助力组学研究发展。在本次大会主会场上,赛默飞质谱组学应用资shen工程师范自全报告了“组学前沿-超高分辨质谱技术在组学研究中的应用和进展”,引起大家高度关注。上世纪90年代初开展的人类基因组计划,在破译人类遗传信息密码的同时,为科研学者提供了大量的完整基因编码序列,从而奠定了大量、快速鉴定蛋白质序列的坚实基础。然而,蛋白质以及代谢物的数量远远超过基因组中基因数量——基因分析量在万级,而蛋白质分析量可能在十万-百万级。完整的组学分析对质谱的性能提出了非常高的技术需求。赛默飞Orbtrap超高分辨质谱技术具有超高分辨率、超高质量精度、超高的稳定性及灵敏度等性能优势,助力科学家进行高通量的蛋白质和代谢物的结构表征和定量分析。质谱技术作为蛋白质和小分子物质的主要检测手段,借助赛默飞Orbitrap高分辨率质谱凭借其高精zhun的定性、定量能力,助力蛋白质组学和代谢组学研究实现精确医疗研究。通过蛋白质组、代谢组、脂质组等多种组学的联合研究,为疾病致病机理发现、疾病的早期诊断及预后生物标志物、疾病分型以及新的治疗靶点研究提供理论依据。随着研究人员对蛋白质组学和代谢组学研究的深入,对样品中分子的空间分布情况及其相互作用的需求日益增加。质谱成像技术能够直观的检测样品中分子的空间分布信息,近年来受到了高度关注与广泛应用,成为与传统光学显微成像互为补充的新一代“分子成像显微镜”。基于Orbitrap的成像技术具有超高的质量及空间分辨率,ji致清晰的成像结果为多种应用领域提供全面丰富的多层次数据。例如在赛默飞质谱成像技术支持下,Spengler教授团队研发出低至1.4μm 空间分辨率的应用,小鼠脑组织成像结果更加清晰。这个水平的空间分辨率也使得单细胞质谱成像技术成为可能。在较大的组织甚至整体动物研究方面,国内学者采用自主研发的空气动力学气流辅助解吸电喷雾电离质谱成像技术,在大鼠脑、肾脏和人食道癌组织中观察到数千种代谢物,并且采用人工神经网络算法,突破了定量研究中的难题,为疾病研究提供了有力的分析工具。会场外赛默飞领xian的Orbitrap质谱技术在现场一众质谱厂商中尤显突出。展台上全方位展示了基于其超高分辨的静电场轨道阱(Orbitrap)质谱平台结合其功能强大的软件平台提供的蛋白质组学及代谢组学全流程的整体解决方案,助力科研超越。
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 【华高仪器】岛津顺序型双单色器——高性能ICP发射光谱仪
    双顺序扫描型单色器装置确保尖锐的谱线和稳定性这是一款高性能的ICP发射光谱仪,配置了顺序型双单色器,拥有高分辨率及快速的特点,并且提供了多种的进样系统。仪器易于操作,适用于研发和质量控制。高分辨率(0.0045 nm)高分辨率可满足金属、稀土和土壤分析的要求,可对目标分析物提供精细准确至痕量水平的高分辨率分析,并且不受干扰物质或者主要成分的影响。真空型光室可提供长期稳定的测量真空光室可对S, B, I, Al和其他在真空紫外线区域拥有很高灵敏度分析线的成分进行高灵敏度分析。由于不需要气体吹扫,因此可减少气体对流时的波动和污染。所需稳定时间短,并能确保长时间分析的稳定性分析铁中的锌和砷。登记样品名称并用已设定好的分析条件开始分析。分析条件很容易改变,并可设置到常规条件中。分析结果可用商业软件以报告的形式打开。
  • 新加坡国立大学刘小钢团队:制备用于提高射线成像性能的像素化双锥形光纤阵列
    当前,在全球范围内科技与产业革新的浪潮中,信息光电子、激光加工、激光全息、光电传感等技术正在快速发展。光电产业与能源、信息、医疗等领域的结合和渗透也在加速,推动着新技术、新产品和新商业模式的不断涌现,全球光电产业的竞争格局经历重大重塑。据Market Research Future预测,到2032年,光电市场的规模将从2024年的381.9亿美元增长至845亿美元。预计在2024至2032年期间,该市场的年复合增长率为10.44%,其中光电子在多个不同领域的应用增加以及红外元件利用率的提高是促进市场增长的关键市场驱动力。随着光电子技术的进步和规模化生产,社会生产对光电子相关器件的需求日益增加,互联网与光电产业深度融合。作为高新技术产业基础的光电元件,正快速朝着微型化、精密化、轻薄化以及集成化的方向发展。然而,由于其发展历程相对较短,仍面临诸多挑战和问题需要逐步解决。其中,高能射线成像是一种利用高能射线(如X射线、伽马射线等)进行成像的技术,主要用于医学、工业检测、安全检查和科学研究等领域。但该技术受到的主要限制因素在于厚层闪烁体材料内部存在的自吸收和散射现象。近年来,钙钛矿纳米闪烁体已直接集成到电荷耦合器件中以实现X射线成像。然而,为了有效吸收高能射线,钙钛矿闪烁体层必须达到毫米至厘米的厚度。但由于横向光子散射和固有的自吸收,毫米厚度的钙钛矿闪烁体的光穿透和空间分辨率仍将受到限制。基于此,新加坡国立大学(NUS)化学系的刘小钢教授研究团队开发了一种用于提高射线成像性能的像素化双锥形光纤阵列。该阵列通过双锥面设计可以有效地吸收传递闪烁体层激发的光子,降低闪烁体材料内部的散射和自吸收,从而有效提高射线成像的空间分辨率和成像性能。相关成果以“A double-tapered fibre array for pixel-dense gamma-ray imaging”为题,发表在《Nature Photonics》期刊上。光纤可以增强光耦合,执行光信号传输,并实现具有低损耗接口的光子集成电路。此外,理论研究表明,锥形或双锥形光纤可以通过促进倏逝波在锥形区域的基模上的传播来充当高功率放大器。在这里,研究人员扩展了理论分析,并通过实验验证了使用柔性双锥形光纤阵列和钙钛矿纳米晶闪烁体实现高灵敏度伽马射线成像的可能性。图1. 用于定向光收集的透明双锥形光纤阵列的结构特性研究人员对光收集特性进行了表征,并优化了锥形光纤的几何形状,以最大限度地提高光收集效率和传输效率。研究团队通过成型和层压聚氨酯和有机硅弹性体制造双锥形纤维阵列,首先采用摩方精密面投影微立体光刻(PμSL)3D打印技术制作出光纤阵列模具(nanoArch S130,精度:2μm),并结合PDMS翻模技术得到双锥形纤维阵列。钙钛矿纳米晶充当闪烁体,通过测量其激发光谱对钙钛矿纳米晶进行表征,其表示作为波长的函数的相对发光强度。钙钛矿闪烁体表现出相对较小的斯托克斯位移和较高的量子产率,导致发射光子的大量重吸收。图2. 用于光子回收和高分辨率X射线成像的双锥形光纤阵列的光学特性双锥形光纤阵列系统的一个关键特征是它适用于发光穿透深度不足的所有情况,例如,具有上转换材料的近红外探测器、具有钙钛矿闪烁体的X射线或伽马射线探测器以及电激发发光二极管。通过将光纤阵列和钙钛矿纳米晶相结合,在实验中实现了输出信号增加了三倍,并通过4 mm厚的闪烁体层实现了6 MeV和10 MeV的伽马射线成像。伽马射线成像对于测量放射治疗、医学诊断和工业三维伽马射线断层扫描期间的皮肤剂量非常重要,因为这需要深度穿透。鉴于双锥形光纤阵列与硅技术的兼容性以及材料的可延展性,有望被大规模生产用于制造超灵敏光子探测器和用于高能辐射的大面积柔性成像设备,在仿复眼学、光场成像、生物分子传感、光学放大器以及发光二极管等领域也有着潜在应用。
  • 欧盟批准蔗糖脂肪酸酯用于调味饮料
    据欧盟网站消息,8月29日欧盟发布(EU)No818/2013号委员会条例,修订了(EC)No1333/2008号法规附录III,批准蔗糖脂肪酸酯用于水基澄清调味饮料香精,在香精中的最大用量为15000mg/kg,成品中的限量为30mg/L.  本法规自发布之日起第20天生效,所有条款都将具有法律效力并直接适用于所有成员国。  蔗糖酯是蔗糖脂肪酸酯的简称,其外观为白色至淡黄色粉末,作为一种食品添加剂,在食品工业中有着十分重要的用途。首先,蔗糖酯具有乳化作用,在制备O/W型乳剂时,如甜牛奶、纯牛奶、乳化饮料、混浊果汁饮料等,通常选用平衡值较高的蔗糖酯,所制得的乳剂可以任意稀释,可防止蛋白质凝聚和油脂上浮,不会产生沉淀、分层、油圈等问题。另外,蔗糖酯还可以改善食品口感,在饮料生产过程中,蔗糖酯呈现出良好的乳化和分散功能,且蔗糖酯本身没有异味,不会对饮料的风味产生负面影响,反而是饮料在吞咽时具有滑爽感且无腻味。  在此,检验检疫部门提醒相关企业:一是掌握欧盟发布(EU)No 818/2013号委员会条例,批准蔗糖脂肪酸酯用于调味饮料香精的消息 二是在使用添加剂过程中尚须严格把控用量,切勿盲目使用 三是加强产品检测,保障产品顺利出口。
  • 娃哈哈营养快线陷凝胶风波 专家称含多种添加剂
    饮料业巨头娃哈哈陷入“饮用”风波。这次是其年销售额超过100亿的主打产品“营养快线”。  最近,有网友做了一个实验,将娃哈哈生产的饮料营养快线倒入一个瓷盘,经一夜时间阴干,饮料变成了白色的胶状物。这则消息很快引起了人们的关注和热议,并对营养快线等果乳饮料营养价值产生疑问。  对于网友的试验,昨日(12月19日)晚间,娃哈哈集团发声明表示,液态乳制品或含乳饮料等以牛奶为主要原料的产品,含有丰富的蛋白质,而牛奶中的蛋白质与其他蛋白质一样具有凝胶性和成膜性的物理、化学性能。而利用蛋白质的这种凝胶性能制造的产品在日常生活中也随处可见,如豆腐皮、酸奶、鱼冻、肉冻、熟鸡蛋等。公司专业研发人员通过实验对比及机理研究,市场上各类液态乳制品,如牛奶、酸奶、乳饮料等含牛奶产品在脱水后都会出现凝胶现象。由于营养快线产品牛奶蛋白含量较高,因此其脱水后成胶是一种正常的蛋白质凝胶现象。  不过,有专家称,严格意义来说,类似于营养快线类的果乳产品并不属于乳品,只是饮料,其营养价值也远低于乳品。  网友实验“营养快线”  日前,网上一则有关 “营养快线”的消息称,有网友做了一个实验,将娃哈哈营养快线饮料倒入一个瓷盘,一夜的时间,饮料就变成白色的胶状物。  网友在帖子中称,是因“好奇而求证其他网友发布帖子真实性”而将娃哈哈营养快线饮料倒入盘子中阴干。结果发现,阴干后的饮料只剩一层“胶状的皮”。该网友同时还附上相关试验的图片进行说明。  这一消息因为营养快线的巨大销量而引发了广泛关注。  12月19日,杭州滨江区一连锁超市店长告诉 《每日经济新闻(微博)》记者,目前市场上,类似于娃哈哈旗下的“营养快线”果乳产品很多,但娃哈哈品牌的销售情况最好,“娃哈哈同类品牌下,以最早面市的款式销售最好”。  娃哈哈公司官方网站显示,目前,该公司果乳系列产品主要有营养快线、营养快线幸福牵线、营养快线升级版、问候阳光、思慕C等。  娃哈哈集团2010年实现营业收入550亿元,利税达到112亿元,一跃成为中国最大、全球第四的饮料制造商。公开报道显示,娃哈哈乳饮料营养快线的年销售额已超百亿元。今年1~10月,娃哈哈营业收入556亿元,同比增长23.46%。  蛋白质含量低 添加剂种类多  中国儿童食品专业学会会员、浙江省食品添加剂协会专家组委员唐家寰向 《每日经济新闻》记者表示,大部分乳饮料中的蛋白质含量只能达到1克/100毫升,所以不能归到乳品范畴。含乳饮料的蛋白质含量通常只有普通牛奶的三分之一左右,1公斤的牛奶可以兑出3~4公斤的含乳饮料。  公开资料显示,按照规定,鲜牛奶中每100毫升乳液中,蛋白质含量不得低于2.5克。《每日经济新闻》记者12月19日购得一瓶生产日前为2011年9月19日,编号为432033HC的娃哈哈牌“营养快线”,标签显示,其果汁含量≥5%,牛奶含量≥5%,而营养成分中,蛋白质为1克,保质期(常温)9个月。  乳业专家、原中国奶业协会理事王丁棉表示,含乳饮料还有一特点就是含糖分较高,口感好。  王丁棉表示,含有多种食品添加剂也是含乳饮料一大特点,“部分饮料含量多达近20种食品添加剂”。  《每日经济新闻》记者购得的这款“营养快线”配料表中,包括水、复原牛乳(水、全脂乳粉)、白砂糖、食品添加剂,其中食品添加剂包括羧甲基纤维素钠、阿斯巴甜、乳化硅油等共11种食品添加剂,以及牛磺酸等其他成分。不过娃哈哈在声明中称,其添加剂及含量完全符合国家各项安全标准要求。  专家:营养价值不如牛奶  娃哈哈公司官方网站对娃哈哈营养快线描述称:营养一步到位,是娃哈哈集团根据中国人独特膳食结构和营养状况,精心研制而成的一种全新的牛奶果昔饮品。  至于其营养成分,该网站信息显示,“纯正果汁与香浓牛奶的完美结合,让营养快线不但拥有来自牛奶的丰富营养和钙质,而且还有来自果汁的丰富维生素。”  对于“营养快线”的营养价值,这则介绍还称,口感清新滑爽,营养丰富全面,一上市就赢得了众多消费者的喜爱。  然而在一些业内人士看来,“营养快线”获得市场青睐的原因主要在于口感,其实际营养价值远低于牛奶。  王丁棉向《每日经济新闻》记者表示,含乳饮料最大的特点就是含乳成分少,其蛋白质含量多在0.7%~1.3%,若严格分类,并不属于乳品,只是含有牛奶成分,且实际营养价值远低于牛奶。
  • 精彩回顾 | 第二届全国代谢组学及蛋白质组学双星峰会圆满落幕!
    第二届全国代谢组学及蛋白质组学双星峰会现场 11月28-29日,由上海百趣代谢组学技术研究中心主办的「第二届全国代谢组学及蛋白质组学双星峰会」在上海市嘉定喜来登酒店成功举办。本次峰会大咖云集、嘉宾汇聚!以26场主题报告、充分的现场答疑、1大主会场报告、2大分会场报告、1场圆桌论坛等丰富的形式开展研讨交流。峰会邀请到26位国内外知名专家、学者就代谢组学及蛋白质组学领域的前沿技术研究进展和应用作深度报告,吸引了线上线下共1200多人参会。 为期一天半的会议,内容多样,干货满满!接下来让我们重拾精彩瞬间,回顾峰会盛况!徐美芳女士为双星峰会开场主持、陆叶青女士、黄宝康教授致辞 峰会伊始,上海嘉定先进技术创新与育成中心常务副主任徐美芳担任开场主持人,对会议议程、现场报告和云报告的专家、学者作了介绍,对莅临现场的领导、专家以及参会人员表示热烈的欢迎。上海嘉定工业区党工委委员、嘉定工业区集团公司党委副书记、总经理陆叶青女士,上海市植物学会理事长黄宝康教授为开幕式致辞,预祝本次峰会圆满成功。 随后,上海市嘉定区科学技术委员会副主任陈鑫、上海百趣代谢组学技术研究中心主任吴洪强共同为“上海百趣代谢组学技术研究中心”(民非组织)揭牌。陈鑫、吴洪强在揭牌仪式上合影 下面,让我们一起来回顾本次峰会专家们都有哪些前瞻观点和深度思考。 中国科学院分子植物科学卓越创新中心研究员、中国科学院院士陈晓亚长期从事植物的次生代谢研究,尤其是在萜类活性成分、棉花纤维发育以及RNA介导抗虫技术等方面取得了一定的研究成果。在本次峰会上,陈晓亚研究员就目前研究的三个主要课题方向做了一个介绍,向我们详细地讲解了丹参酮等萜类成分的合成调控途径;棉酚的生物合成通路及相关的转录调控因子;利用基因克隆和共表达分析等手段,揭示了辅酶Q在植物中的生物合成,并和大家分享了最新研究成果。陈晓亚研究员、院士在峰会现场作报告 洛杉矶加利福尼亚David Geffen分校生理学教授,医学、心脏病学和生物信息学主任Peipei Ping,介绍了不同的蛋白质翻译后修饰(PTM)类型,并以心脏生理和病理学为例,阐述了这些修饰在调节蛋白酶体功能方面的重要性。并通过O-PTM层面的分析,提出基于机器学习(ML)的整合方法有助于发现新的生物标志物,促进了精准医学的发展和进步。 军事医学研究院生命组学研究所研究员、北京蛋白质组研究中心主任秦钧,首先回顾了国家蛋白组学平台建设历程,强调中国人类蛋白组计划的特色是从临床来到临床去,致力于建设世界首个胃癌精准医疗体系。表明目前蛋白组学研究延续了小分子检测和基因组检测的思路,具有一定的局限性。应用于精准医疗的蛋白检测IVD不会只做一个或几个,几十个蛋白的绝对定量,而是将大数据应用于整个蛋白组图谱,开发符合蛋白组学特色的方法。未来我们需要再解放思想,引领行业创新发展。 香港中文大学终身教授、香港中文大学消化疾病研究所所长于君,分享了其研究团队与消化系统肿瘤有关项目的研究思路及成果。主要内容包括:阐述胆固醇在脂肪肝相关性肝癌发生和发展的作用机制;通过研究肠道微生物和代谢的改变,探索发现了与脂肪肝相关性肝癌相关有促进作用及潜在抑制作用的代谢产物;分享寻找肠癌疾病潜在诊断标志物的研究成果。报告围绕着研究的开展和发现,揭示了微生态及代谢的改变与消化系统肿瘤的密切关联。 会上,由上海交通大学吕海涛教授主持圆桌论坛,邀请五位不同研究方向的嘉宾围绕各自擅长的领域进行了充分的交流与讨论。吕海涛教授、朱正江研究员戴绍军教授、段大跃教授尹慧勇研究员、百趣生物CEO邓军亮进行圆桌讨论 中国科学院生物与化学交叉研究中心朱正江研究员就“如何扩大对代谢产物群的认知、如何鉴定更多的代谢产物尤其是新代谢产物”这一代谢组学的难题进行了分享。他表示,在代谢领域有很多已知功能代谢物和未知代谢物,如何把质谱信号转化为代谢物的化学结构存在巨大挑战。最传统的是采用核磁共振进行结构解析,但对于微量样本、生物样本来说,无法从样本里面将每一个组分分离出来进行核磁鉴定,所以现在主要是依赖质谱来进行物质鉴定。质谱进行物质鉴定通常采用标准品建立标准谱图库,包括精确质量数MS1,保留时间RT,二级谱图MS2以及朱正江实验室创新性开发的离子淌度碰撞截面积数据库,形成一个四维的(4D)代谢组学物质鉴定模式,同时结合代谢反应网络,生物信息从头推导的方式,极大地推动了已知的甚至是未知代谢物的鉴定。 上海师范大学戴绍军教授对“植物蛋白质组未来的走向”发表了自己的看法。植物蛋白组的起步很早,但发展势头没有医学快、猛。一个主要原因是植物的种类太多,国内的植物学家和农学家更多关注植物育种,蛋白质组和脂质组只是作为一个育种提供大数据的手段。未来随着高分辨质谱技术的发展,植物蛋白质组学应该会发展得很好。非常可喜的是,在今年十四五的重点研发计划里,专门列出了重要经济农作物蛋白质组学图谱的绘制。所以,植物,尤其是作物蛋白质组学在这样的时代背景下应该会有一个很好的发展,大家一起努力。 西南医科大学的段大跃教授围绕“在中医药表型组层面,如何去引入和利用好蛋白组和代谢组讲好表型组的故事”中讲到了三点。目前蛋白质组、代谢组、宏基因组等组学检测,大部分还只是集中在一个表型上,容易出现检测结果的多样性,应该上升到解决复杂的表型问题,这个复杂的表型就是表型组。整个现代医学是用一个表型来定义和分类的,中医定义疾病不是用表型而是用症候,如果理解症候就是一个表型组的话,就能很好地理解为什么要做中医药的表型组。如果说中医药表型组是一把非常复杂的锁,那么蛋白质组和代谢组等组学技术则是打开这把锁的钥匙。 中科院上海营养与健康研究院尹慧勇研究员主要研究方向是功能脂质组学,在圆桌论坛上给“未来想做脂质功能”的老师们提供了一些建议。尹教授表示,脂质代谢是代谢中非常大的一类,做代谢组学大概三分之二都是做脂质组学。脂质结构复杂,丰度差异大概在10个数量级以上,脂质代谢跟很多疾病息息相关,但同时受生活方式和饮食习惯的影响,中西方代谢差异较大,跟疾病本身的发病也有一些潜在的不同。脂质的功能要结合向肠道菌群等前沿技术来进行临床验证。尹教授希望大家多关注脂质代谢,开发更多的工具来启动基础和临床的研究。 上海百趣生物医学科技有限公司董事长、CEO邓军亮从企业和学术层面,对“未来组学应用走向和下一步战略”发表了看法。百趣生物积极响应国家号召,注重产学研融合,专注于质谱平台型技术的应用和发展,历经10年,百趣的科研服务平台日臻完善。在未来,百趣生物会从服务端延伸到产品端,百趣的产品端主要是往临床、大健康方向发展,具体来讲就是充分结合市场需求,利用质谱一次性检测很多物质的核心优势来设计产品,以试剂盒或小型仪器的形式呈现,最终为临床贡献新型、简单、好用的产品。 28日下午,峰会开设两大分会场。“组学前沿技术与方法”及“组学前沿应用研究”。朱正江研究员在峰会现场作报告 代谢组学发展和应用的先锋、美国加州大学戴维斯分校Oliver Fiehn教授、中国科学院生物与化学交叉研究中心朱正江研究员、江南大学纪剑副研究员、南京师范大学陈大勇教授、复旦大学陆豪杰教授、复旦大学张旭敏教授、复旦大学的乔亮教授出席“组学前沿技术与方法”分会场,分别带来《Beyond plasma: metabolomics of the brain and the gut》《代谢组学:从代谢物测量到代谢调控机制研究》《基于GCMS代谢组学的技术现状与发展趋势》《提高组学分析数据质量的新方法》《基于质谱的蛋白质糖基化分析方法》《LysC+ArgC,蛋白质组工具酶组合探讨》《数据非依赖采集模式(DIA)定量蛋白质组学新方法和新应用》 的主题报告。 南京医科大学研究生院夏彦恺教授、深圳市人民医院肾内科主任医师、内科学戴勇教授,中科院上海营养与健康研究院尹慧勇研究员、北京大学郑乐民教授、北京大学黄超兰教授、上海师范大学戴绍军教授、中国科学院生物与化学交叉研究中心张耀阳研究员出席“组学前沿应用研究”分会场,分别带来《 联通环境与健康研究的桥梁-整合代谢组 》《系统性红斑狼疮诊断生物标志物及疾病活动性标志物研究》《代谢组学在代谢疾病研究的应用》《琥珀酸与血管功能研究》《基于质谱的蛋白质组学在基础和临床上的角色》《利用氧化还原蛋白质组学技术解析植物盐逆境应答机制》《“老药新用”的药物靶标发现及作用机制研究》的主题报告。 29日上午,西南医科大学的段大跃教授、河南中医药大学第一附属医院李素云教授、上海交通大学吕海涛教授、国家蛋白质科学中心于晓波教授、复旦大学附属中山医院任骏教授、中科院分子植物科学卓越创新中心李大鹏研究员、赛默飞世尔科技(中国)有限公司范自全先生、上海百趣代谢组学技术研究中心刘志鹏研究员,分别作了《中医证候表型组的代谢组学机制》《中医辩证治疗对支气管扩张症呼吸道微生态的影响初步探讨》《基于质谱的功能代谢组学研究》《新冠疫情下的精准医学研究》《肥胖中的代谢小分子与心血管病》《基于代谢组学的植物代谢多样性解析》《组学前沿-超高分辨质谱技术在组学研究中的应用及进展》《肠道细菌和病毒微生态及其代谢物在临床疾病中的研究应用》的主题报告。上海百趣生物医学科技有限公司董事长、CEO邓军亮为闭幕式致辞 最后,上海百趣生物医学科技有限公司董事长、CEO邓军亮为本次峰会闭幕式致辞。对支持单位:上海市嘉定区经济委员会、上海市嘉定区科学技术委员会、上海市植物学会、上海嘉定工业区、上海嘉定先进技术创新与育成中心;赞助单位:赛默飞世尔科技(中国)有限公司、安捷伦科技(中国)有限公司、上海爱博才思分析仪器贸易有限公司、普敦实验室设备(上海)有限公司、北京曼哈格生物科技有限公司;媒体支持:北京热心肠生物技术研究院、转化医学网,以及所有到场的专家、学者、嘉宾表示感谢。并表示,百趣生物将会继续为做代谢组学和蛋白质组学相关研究的学者提供学习和交流的平台,共同推动代谢组学与蛋白质组学的发展。
  • 应用 | 乳化剂对氨基酸洁面膏性能的影响
    研究背景皂基类产品有非常强的清洁力,但对皮肤刺激性较强,市场上逐渐兴起氨基酸型清洁产品。常见的氨基酸表面活性剂有甘氨酸型、肌氨酸型、谷氨酸型以及丙氨酸型,而其中甘氨酸型表面活性剂因其易于冲洗,洗后干爽柔滑的使用感被广泛应用于洁面产品中。在实际产品开发中,往往会利用甘氨酸型表面活性剂在pH 6~7时部分酸化形成结晶的特性来制备洁面膏,但是这类产品在研制过程中容易出现发泡能力弱、制备料体稀薄、长时间放置后料体出水或外观粗糙等问题,目前主要通过调整配方中多元醇的种类及添加量,调节产品pH值或者添加高分子来解决,而乳化剂对结晶型氨基酸洁面膏性能影响的研究报道较少。本文主要通过动态泡沫分析仪等,研究了4种不同乳化剂对结晶型氨基酸洁面膏性能的影响,以期为洁面膏中乳化剂的选择提供实践基础以及理论支持,为开发兼具使用性及稳定性的洁面产品提供新的解决思路。实验仪器1.1样品制备表1.洁面膏基础配方1.2 泡沫性能测试DFA100动态泡沫分析仪 泡沫测试采用KRÜ SS的动态泡沫分析仪DFA100完成,包括泡沫高度分析以及泡沫结构分析。首先,用去离子水将洁面膏配成质量分数为10%的溶液,然后用注射器移取50 mL溶液至组装好的量筒配件中。将固定量筒的底座支架插入仪器中,进行泡沫测试。设置参数:发泡方法:搅拌器;搅拌速度:3000 r/min;搅拌3s停止3s(便于记录泡沫高度),循环15次;测试时间:15 min;照相机高度:55 mm;测试温度:25 ℃。结论与讨论2.1 乳化剂对泡沫性能的影响根据表1配方,考察不同类型乳化剂对结晶型氨基酸洁面膏的泡沫性能影响,其中1#配方为不添加乳化剂的空白组,泡沫高度结果如图1。 图1.不同乳化剂制备的洁面膏泡沫高度由图1可知,加入乳化剂,洁面膏泡沫量有不同程度的减少。空白组稳定后的泡沫高度为127.1 mm,其次是泡沫高度与其接近的2#,3#和5#配方,高度分别为126.6 mm,126.1 mm和126.7 mm;4#配方对泡沫总量减少较为明显,泡沫高度为119.4 mm。泡沫结构可以分析泡沫的细密程度以及泡沫的稳定性。图2为稳泡阶段的平均气泡面积随时间的变化曲线,图3为测试结束时的泡沫结构照片。由结果可知,除EumulginS21外,乳化剂的加入都能提高泡沫的细密程度以及稳定性,其中5#配方的泡沫最绵密,稳定性也最好,在测试时间内粒径变化最小,其次是3#与2#配方。定义每平方毫米内气泡个数衰减一半的时间为泡沫半衰期,则1#~4#配方的半衰期分别为615,626,637和553 s,而5#配方在测试周期内未观察到半衰期。这也说明用HostacerinDGSB,HostaphatKW340D 和PlantasensEmulsifier HP 30作为乳化剂能使结晶型氨基酸洁面膏的泡沫更加细密稳定,同时又不影响泡沫量。而EumulginS21使洁面膏的泡沫量减少,同时泡沫也更容易变大而破裂。乳化剂由于具有表面活性,在气泡中将被吸附在空气-水的界面,与表面活性剂共同稳定泡沫。结合泡沫的稳定性因素分析,乳化剂可能会增加气泡间液膜强度,减缓气体间的扩散导致泡沫增大,从而提高泡沫的稳定性。EumulginS21为聚醚类乳化剂,但配方中存在较高含量的多元醇和盐,这使得聚醚类乳化剂的浊点降低,从而改变乳化剂的亲水亲油平衡,在体系中的溶解度有限,在气-液界面形成棱镜铺展,取代表面活性剂,从而起到消泡的作用。其中Plantasens Emulsifier HP 30是一种液晶乳化剂,易于形成多层结构,这也可能是其泡沫稳定性最好的原因:多层液晶结构能赋予气泡间的液膜更高的粘度,可以防止或减慢排液的过程;而且液晶相的存在能增大气-液界面的曲率半径,从而减弱气泡间的Laplace压力;此外,液晶结构还能更大程度的增加液膜的力学强度和刚性,以抵御引起气泡破裂的热和机械扰动。 图2.不同乳化剂制备的洁面膏泡沫大小图3.不同乳化剂制备的洁面膏微观泡沫结构结论通过动态泡沫分析仪等研究了4种不同类型乳化剂对以椰油酰甘氨酸钠为主要表面活性剂的结晶型洁面膏的影响,包括泡沫高度和结构等,得出以下结论:磷酸酯类乳化剂HostaphatKW340D能提高洁面膏的泡沫稳定性;Eumulgin S21作为聚醚类乳化剂,在多元醇与盐含量较高的体系中浊点降低,使得其与体系的兼容性变差,从而导致泡沫量明显减少,泡沫的稳定性也最差;液晶型乳化剂PlantasensEmulsifier HP 30能显著提高泡沫的细密程度与稳定性,这可能是液晶乳化剂在体系中易于形成多层结构,从而使泡沫更加稳定。以上研究也为洁面膏中乳化剂的选择提供一定的实践结果与理论分析,因此在实际配方过程中,可挑选合适的乳化剂或乳化剂组合来达到改善洁面膏特定性能的目的。此文版权来自科莱恩化工(中国)有限公司,内容有所删减,全文请查看:张美龄,王晨茜,许明力,朱晨江.乳化剂对结晶型氨基酸洁面膏性能的影响[J]. 日用化学品科学, 2022,45(6): 43-47.
  • 通用高分子材料高性能化协同创新中心在沪成立
    9月16日,通用高分子材料高性能化协同创新中心在复旦大学揭牌成立。据悉,该协同创新中心将下设理事会,实行首席科学家负责制,中科院院士杨玉良担任中心首席科学家。  据介绍,高分子材料在国民经济和社会可持续发展中占有重要地位。由复旦大学、中石化北京化工研究院和上海石化共同组建的通用高分子材料高性能化协同创新中心,将以解决大品种通用高分子、高性能碳纤维等若干国家重大需求为总体目标,通过高校与工业研究院、大型企业的强强联合,创造产学研用合作共赢的无缝衔接新模式,建成代表我国通用高分子材料领域科学研究、产业开发和人才培养水平与能力的研发高地。同时,协同创新中心将在科技创新、人才培养和体制机制建设等方面加强改革与创新。  据悉,从1999年起,杨玉良团队与中石化北京化工研究院和上海石化一起,承担了关系国计民生的通用高分子材料和具有国家战略意义的碳纤维材料的研究,在国家科技部重大科技项目“通用高分子材料”及“高性能碳纤维”项目的支持和牵引下,为解决企业产业化中的实际问题作出了突出贡献。  他们研发的双轴拉伸聚丙烯已完全替代进口产品并开始出口,彻底改变了基本依赖进口的被动局面 在高性能碳纤维研究与产业化生产方面,2010年3月,3000吨/年硫氰酸钠法原丝工艺软件包和1500吨/年碳纤维整体工艺开发通过中石化鉴定并开工建设,总投资8.4亿元,项目一期已于2012年3月第一次打通全流程,预计于2013年年底全部完工。  复旦大学副校长金力希望,该中心能建成校企协同创新的典范,从而带动复旦协同创新体制机制的改革和创新能力的提升,加快建设世界一流大学的步伐。
  • 10亿元打造国内首个石墨烯轮胎中心实验室
    p style="line-height: 1.75em " 据最新消息报道,双星全球研发中心暨石墨烯轮胎中心实验室奠基仪式今日在青岛西海岸新区举行。该项目充分利用互联网,整合全球研发资源,建立全球开放的高性能轮胎研发、检测、认证平台和全球领先的石墨烯轮胎中心实验室,实现由有效供给到创造需求的目标,标志着双星加速推进市场全球化战略迈入新的里程。/pp style="line-height: 1.75em "  双星集团中央研究院院长李勇介绍功能说是“建立全球开放的高性能轮胎研发、检测、认证平台和全球领先的石墨烯轮胎中心实验室”。培养和引进国内外高端轮胎领域专业人才,加强与各大科研院所、高校协同创新,提升研发硬环境和软实力,建立超前研发、专业轮胎研发、模块化设计开发、PLM应用、大数据统计、有限元分析、质量及材料检测分析等平台,实现原材料检测、加工性能分析和成品检测功能 建立国内首个石墨烯轮胎中心实验室,实现高端石墨烯轮胎的超前研发和产业化。/pp style="line-height: 1.75em "  据了解,该项目总占地面积约120亩,建筑面积约16万平方米,总投资10亿元。其中,一期全球研发中心项目占地面积25亩,建筑面积4万平方米,计划于2016年年底投入运行。/ppbr//p
  • 郭守敬望远镜发现一颗宁静态中子星
    什么是中子星?它们在宇宙中以怎样的方式存在?如何发现中子星?这些科学谜团正在被天文学家慢慢揭开。基于国家重大科技基础设施郭守敬望远镜(LAMOST)的时域巡天数据,我国天文学家发现了一颗距离地球大约1037光年、处于双星系统中的宁静态中子星。这颗中子星的质量约为太阳的1.2倍,其伴星是一颗类似太阳但比太阳更红更暗的恒星。相关研究成果9月23日在线发表于《自然天文》杂志。找到它们如同“大海捞针”“这是继2019年认证一颗宁静状态的恒星级黑洞后,LAMOST黑洞猎手团队在探寻致密天体领域取得的又一项重要成果。”论文通讯作者、中科院国家天文台研究员刘继峰强调。所谓中子星,是指8—25倍太阳质量的大质量恒星演化到生命末期,发生剧烈的超新星爆炸后,在中心形成的密度极高天体。它与白矮星、黑洞一起成为不同质量恒星的生命终章。1967年,天文学家发现了第一颗脉冲星,经过几位天文学家一年的努力,最终证实这就是一颗正在快速自转的中子星。这一发现使中子星从一个理论猜想变成了一个可被实际观测的真实天体。从此以后,天文学家开始利用各种不同的方法来搜寻发现中子星。他们通过高速旋转的中子星产生的脉冲信号,来捕获中子星;或通过双星系统中致密天体吸积伴星的气体物质形成吸积盘,发出明亮的X射线,来找到中子星;还可以通过双中子星并合发出的引力波,来发现中子星。然而,与宁静态黑洞一样,那些既探测不到脉冲信号又没有发出X射线的宁静态中子星,也是宇宙中难以发现的、深藏不露的神秘天体。在浩瀚的宇宙中搜寻这些宁静态的中子星或者黑洞,绝对是“大海捞针”。“如何找到合适的方法发现这些宁静的中子星或黑洞,是天文学家研究致密天体家族及其物理性质的关键。”论文通讯作者、厦门大学顾为民教授说,而LAMOST是在漫天星海中“大海捞针”的利器,利用其大规模巡天优势和速度监测方法,有望发现一批深藏不露的黑洞和中子星。打破搜寻致密天体的观测限制在利用LAMOST时域巡天数据开展黑洞和中子星等致密天体搜寻计划时,研究人员发现了一个光谱不同于单星的特殊双星系统。“该双星系统由一颗0.6倍太阳质量的红矮星和一颗未被望远镜探测到的不可见天体组成,这个不可见天体极可能是一个致密星。”论文第一作者伊团博士介绍。接着,研究团队又利用美国帕洛玛天文台的5米海尔望远镜进行后随观测,并结合美国凌日系外行星巡天卫星(TESS)的高精度测光观测进行了进一步的分析和测定,从而确认该双星系统的致密天体是一颗质量约为太阳1.2倍的中子星。借助欧洲航天局的盖亚望远镜(Gaia)数据进行测距后,研究人员发现这个双星系统距离地球非常近,和地球相距大约1037光年。研究人员还发现,这颗身穿红色外衣的红矮星作为伴星每过6.6个小时就会和她的“王子”——中子星“共舞”一周,循环往复,从不间断。由于中子星的强大潮汐力作用,作为其伴星的红矮星被“瘦身”成了水滴状,像一颗闪耀的“红宝石”默契地围绕中子星身边。更重要的是,该双星系统的中子星并没有在吸积红矮星上的物质,周围也没有吸积盘的存在,因此无法探测到明亮的X射线。研究团队利用“中国天眼”(FAST)对其进行了一个小时的射电观测,同样也没有观测到这颗中子星的脉冲信号。也就是说,这是一颗宁静态中子星。“值得一提的是,LAMOST领先世界的光谱获取率和大规模巡天的绝对优势使得天文学家可以利用视向速度监测方法来发现宁静的黑洞、中子星等致密天体,打破了依赖于探测脉冲信号、X射线等来搜寻致密天体的观测限制。”刘继峰说,这种方法为发现处于双星系统中的宁静态致密天体开创了新途径。
  • 高性能轴承强化与润滑材料联合研发中心成立
    4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,兰州化物所学术委员会主任薛群基致辞。  4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo 。  4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,并举行中心揭牌仪式。图为薛群基和马希荣为中心揭牌 。  5月4日 据中科院兰州化物所官网报道:4月27日,中国科学院兰州化学物理研究所和西北轴承股份有限公司、宁夏宝塔石化科技实业发展有限公司在银川签订合作协议联合共建&ldquo 高性能轴承强化与润滑材料联合研发中心&rdquo ,并举行中心揭牌仪式。  兰州化物所学术委员会主任薛群基院士、党委书记兼副所长王齐华、科研一处处长张兵、国体润滑国家重点实验室副主任王立平以及实验室相关人员出席了仪式。  仪式上,薛群基、王齐华、宁夏回族自治区科技厅副厅长马希荣分别致辞。薛群基指出,轴承是重大装备的基础零部件,集成了诸多设计理论和制造技术,体现了国家极端制造能力和制造水平,是国民经济和高技术领域重大设备的重要基础保障,而我国轴承企业研发的投入处于较低水平,迫切需要国内有研发实力的研究所与轴承企业联合,加强对轴承前沿技术的研发。王齐华表示,希望通过建设联合研发中心,构建三方长期密切的合作关系,从而促进轴承以及轴承润滑材料领域的科学研究,推动相关产业的发展。马希荣代表宁夏回族自治区对联合研发中心的成立表示祝贺,并希望兰州化物所通过多种渠道加强与宁夏的企业合作,促进当地经济的发展。  联合研发中心是在框架协议指导下共同管理和运作的技术合作联合体,其宗旨是合理配置人才资源,发挥技术优势,通过联合研发和合作项目共同开发、研究先进润滑技术、表面工程技术和新材料技术,推动我国高性能轴承产品的开发应用。中心将以轴承强化与润滑一体化表面加工技术、轴承特种润滑油脂等新材料的应用,轴承材料可靠性分析以及高技术领域用轴承固体润滑表面处理技术的相关研发为重点,并根据各方需要扩展研究领域。中心将充分利用兰州化物所和相关高等院校应用研究的最新成果和企业在中试放大以及工业生产等方面的资源,加速高性能滚动轴承相关领域科技成果的转化。  期间,兰州化物所和西北轴承股份有限公司还签订了轴承表面类金刚石薄膜技术的专利实施许可协议合同。根据合同,兰州化物所将所研发的类金刚石薄膜专利技术用于西北轴承股份有限公司高端轴承产品的提升,并协助西北轴承股份有限公司建立一条轴承表面类金刚石复合薄膜的中试生产线。  西北轴承股份有限公司创建于1965年,1996年改制上市,成为中国轴承行业第一家上市公司。经过近半个世纪的建设发展,西北轴承跨入了中国机械500强和中国轴承50强行列,是我国西部地区最大的专业化轴承生产企业,生产外径40毫米至3500毫米的九大类型滚动轴承4000多种。产品广泛应用于石油机械、冶金机械、重载汽车、工程机械、化工机械、建筑机械、风力发电及机床、电机等行业的主机配套和维修。(
  • 永和黑豆浆检测含转基因成分
    永和黑豆浆检测出转基因 称未在国内市场销售  台湾永和国际开发股份有限公司生产的永和黑豆浆因检出转基因成分,被作退货处理。昨天记者从国家质检总局了解到,2月份共查出135批次进境不合格食品、化妆品,目前均已作退货、销毁或改作他用处理,未在国内市场销售。  据质检总局通报,被检出转基因的永和黑豆浆产地为台湾,进口商为天津永和食品有限公司,于天津口岸进境,目前已作退货处理。另外,中粮肉食北京有限公司进口26吨巴西产鸡二节翅,货证不符 中粮东海粮油工业(张家港)有限公司进口的3000余吨澳大利亚产脱胶菜子油,被检出含有毒有害物质苯、甲苯 上海易初莲花连锁超市有限公司进口的澳大利亚产维多利亚2010莫斯卡托葡萄酒、莫斯卡托2011葡萄酒,被检出酒精度不符合国家标准要求。  永和黑豆浆检测含转基因成分 再次“逗你玩”  “豆浆粉精”加水神奇变成的“豆浆”,其实里面不含大豆成分  记者走访发现该产品郑州市场有售,业内人士:长期食用影响身体  早上喝杯豆浆,吃些早点,已成为都市上班族的饮食习惯,豆浆成了一种不可或缺的饮品。然而,近日,有网友爆料,白开水加“豆浆粉精”,一秒即可变豆浆。昨天,记者走访发现,郑州市场的确有“豆浆粉精”出售。记者买回一桶做试验发现,在开水中加入“豆浆粉精”,短短时间就能兑出一杯“香甜”的豆浆。对此,有关医生表示,长时间食用影响身体。  A  “豆浆粉精”加开水一秒变“豆浆”  震惊  “亲眼见小贩把几十杯豆浆扔掉,  心想咋这么浪费!”  网友“@乐活上海滩”在新浪微博中发帖称:用“豆浆粉精”,白开水一秒变豆浆!里面不含黄豆任何成分,只有香精和葡萄糖,没有一点儿营养价值,而这样的“豆浆”比天然豆浆利润翻了将近20倍!更重要的是长期食用会对身体造成严重的不良影响。  微博发出后,引来众多网友的讨论。  网友“@小穆V5”:估计早餐摊的豆浆都是这么来的吧,要喝豆浆还是自己做吧。  网友“@儒尘用心”:亲眼见过小贩把没卖掉的几十杯豆浆扔到垃圾箱,心想咋这么浪费!  B  一个摊位一早能卖百余杯豆浆  走访  “豆浆不就是用豆和水做出来的吗?”有市民不解地说。  前天上午8时许,正值早餐时间,记者在农业路一都市村庄随机走访了六七家卖豆浆的早餐点,每家摊位前都站满了人,多数市民在离开时会拿一杯豆浆边走边喝。在一卖鸡蛋灌饼的摊位前,短短5分钟内,共有11位市民来买豆浆。“早上时间紧,多数人都是吃个饼或包子,再喝杯豆浆。”该摊位老板说,他一早上能卖出100多杯。当记者询问该豆浆是从哪里进的,都有什么原料时,该老板表示是批发来的,自己并不清楚。随后,记者又走访了四五家卖豆浆的商户,商户们均不清楚所卖豆浆中含有什么原料,只是说“很有营养,对身体好”。  随后,记者又来到一家现场磨豆浆的摊位前,看到了现场制作豆浆的整个过程。据该商户说,他制作的豆浆是天然的,市民能看清整个过程,喝着放心。  走访中,多数市民反映,豆浆香甜可口,早上喝豆浆已是他们多年的习惯,对于市场上所卖豆浆中究竟含什么成分,他们均不知情,“豆浆不就是用豆和水做出来的吗?”有市民不解地说。  C  调查  郑州发现“豆浆粉精”有卖  问产品中究竟含不含豆?老板说“好像含”。  市场上真有这种“神奇”的“豆浆粉精”吗?记者进行了走访。  昨天上午,记者来到郑州市农业路与天明路口附近的一家食品城,在一家销售豆浆机等用品的商店,记者以卖早餐想买些“豆浆粉精”为由,与老板聊天。得知记者来意后,老板很快从柜台下拿出一桶“豆浆粉精”,记者在外包装上看到,该“豆浆粉精”是广东一家公司生产,上面醒目地写着“半合型粉末香精”、“食品添加剂”以及“自然纯香”的字样,配料显示为“食用香料、食用香精辅料” 说明中还写着“本品具有纯豆奶香味,采用多种名贵香料经科学方法浓缩而成,适用于豆奶及其他豆味饮品增香增味”。  该老板说,这种产品每桶40元,卖得很不错,放一点到水里就有很浓的豆浆香味,用它做出的豆浆味道好,但其不能单独用,要配合豆浆一起使用。在一桶开水中,兑少许的豆浆,再放些“豆浆粉精”,一桶香甜可口的“热豆浆”就出来了。“此种产品中究竟含不含豆?”该老板说好像含,要不怎叫“豆浆粉精”,很多商贩都是买它来兑制豆浆的,具体怎么兑,自己随意。随后,记者以40元的价钱买回一桶。  记者试验  试验结果戳穿谎言  无法兑出真正的豆浆  网友所述一秒变豆浆,是否为真?是否真如老板所说要配合豆浆使用?对此,记者进行了试验。  记者在杯中倒入半杯开水,又在水中放入一点“豆浆粉精”,几秒钟后,白色粉末溶化,香味扑鼻。搅拌后发现,杯中液体有些浑浊,但较稀,没有豆浆那样的淡黄色,更没有豆浆的浓稠感。  试验结果是:单往清水中添加豆浆粉精,勾兑不出真正的鲜豆浆。  随后,记者又拿出一杯现磨的浓豆浆,加入开水及少量豆浆粉精进行搅拌,色泽变浅,喝上一口,香味浓厚,口感顺滑,与路边所卖的豆浆非常接近。  温馨提示  真正的豆浆长啥样?  面对鱼龙混杂的豆浆类产品,专家提示在选择时应注意从色泽、组织状态、气味、滋味等方面进行鉴别。  优质豆浆:呈现出均匀一致的乳白色或淡黄色的混悬液型浆液,有光泽 浆体质地细腻,无结块 有豆香气,无其他异味 口感纯正滑爽。  劣质豆浆:呈灰白色,无光泽 会出现分层现象,结块,有大量的沉淀 有浓重的焦煳味和酸味、苦涩味等其他不良的气味和滋味。  危害之说  长期食用对肝脏肾有影响  一专业经营磨豆浆生意的杜先生说,老手艺做出的豆浆最为纯正,但无法量产,且成本较大。现在市场上,不少商贩为节省成本,直接用添加剂兑水做成豆浆,卖给消费者。“这种‘豆浆粉精’是一种食品添加剂,根本不含豆,做豆浆的时候放些,就和做菜放味素一样,让食品更香、口感更浓。”杜先生说。  对此,河南中医学院第一附属医院脾胃肝胆病科主治医师王晓说,这种“豆浆粉精”其实就是一种复合添加剂,偶尔食用含这种添加剂的饮品,影响不大,但若长时间食用,会加重人体肝脏的负担,对肝脏及肾均有影响 小孩儿长时间食用也会对其生长发育造成影响。W2  永和黑豆浆  因检出含转基因成分被通报  质检总局3月29日公布了2012年2月进境不合格食品、化妆品信息。其中,永和黑豆浆因被检出转基因成分(NOS、CaMV36S)上质量黑榜。  检查结果显示,永和国际开发股份有限公司生产的永和黑豆浆被检出含有转基因成分NOS和CaMV36S。据了解,该产品产地台湾,进口商为天津永和食品有限公司,于天津口岸进境。目前这批被检查不合格的产品已做退货处理。
  • 原子层沉积技术——“自下而上”精准构建和调控异质催化剂结构和性能
    引言 异质催化剂的合成通常借助于传统的湿法化学法,包括浸渍法、离子交换和沉积-沉淀法等。然而,这些方法合成的催化材料往往具有非常复杂的结构和活性位点分布不均匀等问题,这些问题会显著降低催化剂的催化性能,特别是在选择性上,阻碍了科学家们在原子水平上理解催化剂的结构-活性关系。此外,在苛刻的反应条件下通过烧结或浸出造成的活性组分的损失会导致催化剂的大面积失活。因此,亟待发展一种简便的方法来调控催化剂的活性位结构和其在原子水平上的局部化学环境,从而促进对反应机理的理解和高稳定性催化剂的合理设计。 原子层沉积(ALD, Atomic layer deposition)是一种用于薄膜生长的气相催化剂合成技术,目前已成为一种异质催化剂合成的替代方法。和化学气相沉积(CVD, Chemical vapor deposition)一样,其原理是基于两种前驱体蒸汽交替进样,并在载体表面上发生分子层面上的“自限制”反应,实现目标材料在载体表面上的沉积。通过改变沉积周期数、次序和种类等方法可以实现对催化剂活性位结构的原子精细控制,进而为研究者提供了一种 “自下而上”可控合成催化剂的新策略。 美国Arradiance公司的GEMStar系列台式原子层沉积系统(如图1所示),在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可多容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。图1. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统 在本篇文章中,我们将介绍利用ALD方法在负载型单金属 和双金属催化剂精细设计方面的进展和ALD方法在设计高效催化剂方面的特点与优势。同时,我们也整理了利用ALD技术制备单原子和双原子结构金属催化剂的方法与策略以及利用氧化物可控沉积调控金属催化活性中心周围的微环境,从而实现提升催化剂活性、选择性和稳定性的方法。后我们也将展望ALD技术在催化剂制备领 域中应用的潜力。ALD合成负载型催化剂 近年来,研究者对各种氧化物和碳基材料基底上的金属ALD催化剂进行了广泛研究。由于高温下ALD生长的金属原子在氧化物和碳基基底上的高迁移率,沉积物通常以金属纳米粒子形式存在,而不是二维金属薄膜。如图2a所示,金属纳米颗粒的尺寸大小和负载量可以通过调整ALD循环次数和沉积温度变化来进行调控,且金属颗粒的尺寸分布通常非常狭窄。近期,中国科学技术大学的路军岭课题组使用ALD技术发展了一种双金属纳米粒子的合成新策略,即使用较低的沉积温度和合适的反应物,在负载的单金属纳米粒子表面增加二金属组分,获得原子可控的双金属纳米粒子(如图2b, PtPd双金属纳米粒子)。研究发现,在较低的温度下,金属基底会促进金属前驱体在其上的成核和ALD生长,而金属氧化物通常是惰性的,因此不能在低温下与金属前驱体反应和开始成核。图2. ALD合成(a)单金属Pt纳米粒子,(b) 双金属PtPd纳米粒子,(c)Pt 单原子催化剂在N掺杂的石墨烯上,(d)Pd单原子催化剂在g-C3N4上,(e)二聚的Pt2/石墨烯催化剂。 原子分散的金属催化剂,由于其特的催化性能和大的原子利用效率,越来越受人们的关注。使用ALD技术从气相中获得单原子催化剂具有很大的挑战性,因为ALD生长通常在高温下进行,金属的聚集会显著加剧,但考虑到ALD的自限特性,仍是有可能的。加拿大西安大略大学孙学良教授团队从事了先驱性的工作,在250℃下,对N掺杂的石墨烯表面进行五十次Pt ALD循环合成了Pt单原子催化剂(如图2c)。DFT计算表面,Pt单原子与N原子成键,其HER活性相对于商业Pt/C显著增强(~37倍)。类似的,路军岭团队通过调控石墨烯上的含氧官能团种类和数量,在150℃下对石墨烯表面进行一次Pd ALD循环(Pd(hfac)2-HCHO),合成了原子分散的Pd单原子催化剂(如图2d),没有观察到Pd团簇和纳米粒子的形成。除此之外,使用ALD技术还可以合成原子的超细金属团簇,如二聚物等。如图2d所示,路军岭团队报道了Pt2二聚体可以通过ALD技术在石墨烯载体上创建适当的成核位点 “自下而上”制备获得,即Pt1单原子沉积,并在起始位点上进行Pt原子的选择性二次组装。氧化物包覆实现金属催化剂的纳米尺度编辑 对于负载型金属催化剂来讲,其载体不仅仅是作为基底,也会通过电子转移或金属—氧化物相互作用,显著的调制金属纳米颗粒的电子性质。当氧化物层包覆在金属纳米颗粒上时,会形成新的金属-氧化物界面(如图3a),可以进一步改变金属纳米颗粒的电子性能和形貌,有望进一步提升其催化性能(如图3b)。金属纳米颗粒通常含有低配位位点(lcs)和高配位的台阶(HCSs),通过氧化物ALD沉积的选择性阻挡某些活性位点,局部改变其几何形态,影响催化过程中的化学键断裂和生成,导致不同的反应途径(如图3c)。另外,物理氧化包覆层还可以提高纳米颗粒的稳定性,在恶劣的反应条件下防止金属组分的烧结和浸出(如图3d)。在原子层面上控制氧化膜厚度,从而在高比表面材料上实现高的均匀性,使得ALD成为在纳米尺度上提高纳米金属催化剂催化性能的理想工具,且不会产生质量迁移的问题。图3. (a)ALD氧化物包覆负载型纳米离子生成新的金属——氧化物界面ALD合成,(b)ZnO包覆Pt纳米粒子催化剂显著提高催化活性,(c)ALD氧化铝包覆Pd/Al2O3显著提高催化选择性,(d)TiO2包覆层显著提高Co@TiO2催化剂催化稳定性。 总结和展望 催化剂的原子合成,是阐明催化作用的关键机制和设计先进高性能催化剂的关键。ALD特的自限制特性可实现催化材料在高比表面材料上的均匀和可控沉积,实现一步步和“自底向上”的方式在原子层面上构建复杂结构的异质催化剂材料。这些ALD催化剂具有较高的均匀性,使其相对于传统方法制备的催化剂,拥有更好的或可观的催化性能,并可作为模型催化剂有助于阐明催化剂的结构-性能关系。 参考文献:[1] Lu J. et.al, Acta Phys. -Chim. Sin. 2018, 34 (12), 1334–1357.[2] F. H. et al. J. Phys. Chem. C 2010, 114, 9758.[3] Elam, J. W. Nat. Commun. 2014, 5, 3264.[4] Liu, L. M. et al. Nat. Commun. 2016, 7, 13638.[5] You, R. et al. Nano Res. 2017, 10, 1302.[6] Huang, X. H. et al. Nat. Commun. 2017,8, 1070.[7] Elam, J. W. ACS Catal. 2016, 6, 3457.[8] Lu, J. ACS Catal. 2015,5, 2735.[9] Huber, G. W. Energy Environ. Sci. 2014, 7, 1657.
  • 高性能润滑油的稳定性和颗粒特征
    LUM邀请您参加2021年9月14日至17日润滑油和冷却液系列的在线研讨会。本次活动的课题将帮助您更好的了解润滑油以及冷却液的特性,从而帮助您优化并改进您产品的配方。本次课题的在线研讨会都是独立的,您需要单独注册每一个课题。润滑油和冷却液之课题二: 高性能润滑油的稳定性和颗粒特征课题二的讨论重点是如何通过SEPView软件的三种分析模块来评价高性能的润滑油的稳定性和颗粒特征。主讲人:Stefan Küchler会议持续时间:60分钟会议语言:英语会议时间:2021年9月16日15:00 (北京时间)报名方法:扫描下方”二维码”填写报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。如有问题,请联系 event@lum-gmbh.de
  • Nano Energy:分子层沉积技术助力铂基催化剂性能提升
    由于在氢氧化(hydrogen oxidation)和氧还原(oxygen reduction)反应中的高效催化特性,铂基催化剂被广泛地应用于质子交换膜燃料电池当中的关键组成部分,比如阴和阳。然而,当质子交换膜燃料电池在较为严苛的环境下(比如低pH环境(<1)、高的氧浓度、高湿度等)运行时,商用的铂/碳催化剂会展现出耐用性低的问题。由于Ostwald熟化效应、铂纳米颗粒的脱离、铂纳米颗粒的团聚等问题,铂/碳催化剂的活性会显著下降。因此,开发有效方案来稳固铂基催化剂从而防止其活性在燃料电池运行时的损耗,是非常重要的。 针对上述问题,加拿大西安大略大学的孙学良教授课题组,开创性地利用退火MLD(Molecular Layer Deposition,MLD,分子层沉积)夹层结构来固定铂纳米颗粒,从而实现了铂基催化剂性能的提升,相关结果刊载于Nano Energy(https://doi.org/10.1016/j.nanoen.2019.03.033)。在孙教授团队的工作中,MLD衍生层是通过三基铝和丙三醇合成在掺氮碳纳米管(nitrogen-doped carbon nanotubes,NCNT)上的,此后通过煅烧获得多孔结构。后,通过ALD工艺,铂纳米颗粒被沉积在MLD-NCNT载体之上。多孔结构有益于稳固铂纳米颗粒、避免团聚以及从载体上脱离。相较于沉积在掺氮碳纳米管(NCNT)上的铂催化剂来说,沉积在MLD-NCNT载体上的Pt催化剂展示出了显著提升的氧化还原反应活性以及耐用性。文中利用X射线吸收光谱等手段,详细揭示了增强的机制。 图1 NCNT-MLD-Pt的制备流程示意图以及出色特性(图片来源:Nano Energy:Rational design of porous structures via molecular layer deposition as an effective stabilizer for enhancing Pt ORR performance) 相较于ALD(Atomic layer deposition,ALD,原子层沉积)来说,MLD技术还比较新。MLD技术可以视为ALD技术的亚类,具有与ALD相似的气相沉积工艺,基于序列及自限制反应,在分子尺度上生长材料,目前比较多涉及的是有机聚合物或者无机-有机杂化材料。由于本质上属于ALD技术的衍生技术,因此MLD技术具备了ALD技术的主要优点:优异的三维共形性、大面积均匀性、良好的工艺重复性、膜厚或组成的控制、分子结构或官能团的裁剪,以及较低的沉积工艺温度。然而,由于MLD工艺中采用有机分子作为前驱体,有机分子前驱体的蒸汽压低、热稳定性差,因而反应活性较低。此外,MLD工艺中的有机分子前驱体存在同质官能团引起的双反应现象,会使得沉积速率变慢,甚至是发生非线性的反应生长速率。所以,利用MLD工艺沉积新材料,对于设备和工艺掌控都提出了较高的要求。 在本文当中,孙教授团队利用MLD沉积铝氧烷所用的设备是美国Arradiance公司生产的型号为Gemstar-8 的台式ALD沉积系统,此套系统直接与手套箱相联,手套箱中为氩气气氛。在本工作之前,孙教授所在课题组已经利用MLD技术合成了铝氧烷,并且将铝氧烷涂层应用于提高碳/硫阴或碱金属阳的电化学特性。制备当中,他们采用三基铝和丙三醇作为前驱体,在150 ℃的条件下将,将前驱体依次通入腔体当中。 另一方面,目前大多数无机-有机杂化物质对于空气中的湿度非常敏感,不稳定。由于Arradiance公司生产的台式ALD系列产品,非常小巧,并且非常友善周到地为用户们预留了可以与各类市场主流手套箱集成的接口,从而使得无机-有机杂化物质在制备完成后可以在惰性环境中转移至其他实验环境或是进行其他实验。 图2 Arradiance台式原子层沉积系统,设计紧凑,功能齐全,堪称“麻雀虽小五脏俱全” 图3 紧凑而友善的设计理念,使得Arradiance ALD系统可以方便地与手套箱集成,满足用户的特殊实验需求
  • 医用注射器滑动性能测试仪的应用与重要性
    医用注射器滑动性能测试仪的应用与重要性在制药包装行业中,医用注射器作为一种不可或缺的医疗器械,扮演着至关重要的角色。它们被广泛用于临床医学中,通过吸入并注射药品至患者体内,以实现治疗目的。医用注射器的使用不仅需要确保药品的精确剂量,还需保证其在使用过程中的安全性和可靠性。因此,对医用注射器进行严格的性能测试,特别是滑动性能测试,显得尤为重要。医用注射器的应用与用途医用注射器通常由针管、活塞(芯杆)、针座、活塞柄、护帽和胶塞等部分组成,其设计精巧,操作简便。在制药包装行业中,医用注射器被用于封装各种药品,如注射液、疫苗等,以便安全、有效地传输给患者。其精确的剂量控制和密封性能,使得医用注射器成为临床治疗中不可或缺的工具。滑动性能测试的必要性为了确保医用注射器的使用质量,国家标准《GB15810-2001使用注射器》对其活塞滑动性能做出了严格规定。滑动性能是指活塞在注射器内移动时的顺畅程度,直接关系到注射过程中药品的推送效果和患者的感受。如果注射器的滑动性能不佳,可能会导致药品推注不畅、注射阻力过大或泄漏等问题,进而影响治疗效果和患者安全。因此,进行医用注射器滑动性能测试,是保障其使用质量、确保患者安全的重要措施。通过测试,可以评估注射器的滑动性能是否符合标准要求,及时发现并解决潜在问题。医用注射器滑动性能测试仪及其测试方法医用注射器滑动性能测试仪是一种专门用于检测注射器滑动性能的仪器。该仪器通过模拟实际使用过程中的推拉动作,对注射器的芯杆施加一定的力,并在一定速度下测量其试验拉力和试验推力。具体测试方法如下:固定器身:首先,将注射器的器身固定在测试仪上,确保其在测试过程中不会移动。施加力并测量:然后,给芯杆一端施加一个力,并设定测试仪的速度(通常为100mm/min±5mm/min)。在此速度下,测试仪将记录芯杆与注射器身之间的试验拉力和试验推力。数据记录与分析:测试仪将自动记录施加的力、芯杆的运动情况以及相应的拉力和推力数据。通过这些数据,可以分析注射器的滑动性能是否符合标准要求。值得注意的是,济南三泉中石实验仪器生产的注射器滑动性测试仪还配备了定制注射管夹具,可以精确测定注射时的初始力、滑动力以及保持力等参数。在拉伸和压缩技术试验模式下,控制横梁的上下移动模拟液体的注入和射出过程,生成相关数据,并计算分析报告初始、平均、最大和最小力等关键指标。综上所述,医用注射器滑动性能测试仪在制药包装行业中具有广泛的应用和重要的意义。通过严格的性能测试和评估,可以确保医用注射器的使用质量符合标准要求,保障患者的安全和治疗效果。
  • 冷水机对压缩机润滑油的性能有哪些要求
    冷水机对压缩机润滑油的性能有哪些要求?制冷压缩机是冷水机重中之重的一个部件,因此它使用的润滑油(也称之为冷冻机油)要求很高。为了保证冷水机的压缩机能够正常运转,必须使润滑油的性能满足以下要求。    (1)相容性:给冷水机压缩机选择的润滑油,必须要与该冷水机采用的制冷剂和材料等相容,从而降低对冷水机的不利因素。    (2)粘度:粘度是权衡润滑油好坏的最主要特性,它不仅决定润滑油的润滑性能,同时还影响到冷水机的压缩机性能,以及摩擦零件的冷却和密封性能。    (3)酸值:如果给冷水机选用的润滑油中含有酸性物质,将直接对冷水机中的金属产生腐蚀,严重影响到冷水机的使用寿命。    (4)浊点:选择润滑油的时候,要选择浊点低于冷水机蒸发温度的,否则石蜡析出后,会阻塞冷水机的节流机构,影响冷水机正常运行。    (5)凝点:虽然冷水机所用的行业不同,但是对冷冻油的凝点,一般要低于-40℃。    (6)闪点:通常情况下,冷水机要求润滑油的闪点不低于150℃。如果冷冻油的闪点较低,会引起润滑油的结焦甚至燃烧,因此,冷冻油的闪点必须比排气温高15~30℃以上。    (7)润滑油的化学稳定性及氧化安定性要在规定范围内。    (8)给冷水机选用润滑油时,一定要保证润滑油中没有含水分、机械杂质或者溶胶。  (9)击穿电压:这个是衡量冷冻油电绝缘性能的指标。  一台质量好,运行稳定的冷水机,离不开性能优的制冷压缩机。它就像是人体的心脏一样,掌握着生死大权。因此,用户在使用冷水机的过程中,要定期检查润滑油的情况,必要时一定要更换和冷水机厂一样的润滑油品牌及型号,确保冷水机安全正常的运行。 信息来源:上海田枫仪器有限公司www.tfyqchina.cn www.tfsye.com来源:上海田枫仪器有限公司www.tfyqchina.cn www.tfsye.com关键词:[冷水机][小型冷水机][工业水冷机][实验室冷水机][制冰机][超低温冰箱][冻干机] [实验室冻干机][生产型冻干机]
  • 高性能金属基润滑耐磨损材料制备有了新思路
    7月30日,科技日报记者从中国科学院兰州化学物理研究所了解到,该所固体润滑国家重点实验室高温摩擦学课题组在新型润滑耐磨损高熵/中熵合金设计制备和性能调控等方面进行了系统研究,取得了系列进展。给出一种构筑多级纳米异质结构和成分波动特征来实现合金低磨损的新方法,相关研究成果近日发表于综合性学术期刊《研究》。新型高熵/中熵合金具有诸多新奇特性,为设计制备高性能金属基润滑耐磨损材料提供了新启发,是目前材料学和摩擦学研究的热点和前沿。在解决高温润滑与磨损方面具有重要应用价值传统合金往往是由一种或两种主要金属元素构成,其他合金化元素的比例相对很低。高熵/中熵合金是近年来发展起来的有别于传统合金的新型合金。高熵合金和中熵合金是由多种主要金属元素构成的合金,二者只是在主要金属元素的种类和数量上有差异。一般而言,高熵合金包含5个或5个以上等原子比的金属元素,而中熵合金则包含3个金属元素。高熵/中熵合金展现出许多优异的力学和物理性能。“高熵/中熵合金有几个明显的特点,主要包括组织结构表现出复杂异质性、成分表现出多组元特征,具有‘质剂不分’的浓缩固溶体结构、晶体结构表现出连续畸变性。”中国科学院兰州化学物理研究所研究员程军介绍,基于其独特的异质结构、成分波动、多级纳米析出相等微观组织结构和多组元特征,高熵/中熵合金展现出卓越的强度—塑性组合、高温结构稳定性、摩擦界面自保护、高温抗氧化等新奇特性。与传统合金相比,高熵/中熵合金具有非常广阔的成分调控空间,通过对高熵/中熵合金中的元素进行替换或增减,能获得一些具有特殊性能的微观组织结构和异质相,为设计制备高性能金属基润滑耐磨损材料提供了新思路。程军告诉记者,针对高熵/中熵合金体系开展润滑耐磨损成分设计,采用熔炼、粉末冶金或喷涂等工艺即可制备出具有润滑与耐磨损性能的高熵/中熵合金材料。“这类新型材料在解决航空航天、轨道交通、核能等领域高端装备运动与传动部件的高温润滑与磨损难题方面具有重要的应用价值和应用前景。”程军介绍。强度、塑性、热稳定性和耐磨性优于传统合金中低温下,金属材料摩擦表界面会发生严重的弹塑性变形、局部断裂和磨粒磨损,而高温下则会发生材料黏着、软化变形和氧化磨损,这些因素导致金属材料在宽温度范围内表现出严重的摩擦磨损。针对上述问题,晶粒细化和复合润滑相/抗磨相是目前提高金属材料耐磨损性能的主要手段。“但是,这两类方法通常会引发新的问题,如当晶粒细化至纳米尺度时,可能会在摩擦过程中引发严重的纳米晶不均匀塑性变形,增加磨损;复合润滑相/抗磨相和基体相之间的错配界面可能会使摩擦界面在磨损过程中发生脆性断裂。”程军说。研究表明,如果在摩擦副界面之间引入一个能够逐级释放摩擦应力的界面层,可极大减小摩擦过程中不均匀塑性变形和界面错配导致的磨损问题。然而,这种特殊的界面层难以通过常规的制备或加工手段获得。基于这个问题,研究人员考虑是否可通过调控合金的成分和结构设计制备一种新型金属材料,使其能在中低温摩擦过程中原位形成逐级释放应力的梯度界面耐磨层,高温摩擦过程中形成耐磨损釉质层,从而在宽温度范围内保持稳定的低磨损性能。高熵/中熵合金独特的浓缩固溶体结构使其表现出优于传统合金的强度、塑性、热稳定性和耐磨性等性能。因此,研究人员以镍元素为溶剂,引入等摩尔比的铝、铌、钛和钒4种元素作为合金化元素,通过将合金化浓度从25 at.%(原子百分数)提高至50 at.%,制备了一种具有纳米分级结构和成分波动特征的新型镍铝铌钛钒中熵合金。为了使溶质元素之间形成高混合熵的过饱和固溶体结构,元素粉末需经历32小时的机械合金化过程,形成面心立方结构和体心立方结构的混合固溶体粉末。研究人员通过放电等离子烧结使粉末在1050℃发生异质相分离,并在冷却后固结成型,最终形成高体积分数的纳米耦合晶粒相和分级纳米沉淀相,其呈现纳米分级结构和成分波动特征。纳米分级结构异质相的形成将使合金可在磨损诱导的变形过程中沿深度方向原位形成梯度界面层,选用高浓度的易氧化的铝和铌会促进合金在高温摩擦过程中快速形成保护性氧化釉质层。此外,高浓度的钛可显著提升合金体系的晶格畸变效应,从而提高摩擦界面层的屈服强度。“与传统合金相比,该合金的结构由分级纳米耦合晶粒组成,表现出纳米尺度的成分波动特征,这种独特的异质性结构使合金在室温至800℃宽温度范围内的磨损过程中自发激活自适应摩擦界面保护行为,形成耐磨损纳米梯度摩擦层或釉质层。该材料作为高温抗磨材料具有重要的应用价值。”程军说。他认为该合金成分可调、可采用热压、喷涂等多种工艺固化成型,有望实现产业化应用。
  • “大科学装置前沿研究”重点专项2021申报指南:拟支持电子自旋共振谱仪等21个项目
    5月10日,科学技术部发布国家重点研发计划“大科学装置前沿研究”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。有关事项通知详情点击此处链接。“大科学装置前沿研究”重点专项2021 年度项目申报指南本重点专项总体目标是:开展专用大科学装置的科学前沿研究,推动我国粒子物理、核物理、天文学等重要学科的部分研究方向进入世界先进行列;开展平台型大科学装置的先进实验技术和实验方法研究,提升大科学装置支撑科技创新、经济社会发展和国家安全的能力。继续支持我国具有特色和优势的大科学装置开展前沿探索研究,力争在世界上率先实现若干重大前沿突破。2021年度指南围绕粒子物理、核物理、强磁场、天文学、先进光源、交叉应用等6个方向进行部署,拟支持21个项目,拟安排国拨经费概算5.15亿元。同时拟支持8个青年科学家项目,拟安排国拨经费概算4000万元,每个项目500万元。本专项 2021 年度项目申报指南如下。1. 粒子物理1.1 CKM 矩阵参数与底强子非粲衰变CP破坏的精确测量研究内容:利用海量的底夸克实验数据开展CP破坏等重味 物理前沿课题研究,主要包括:精确测量CKM夸克混合矩阵参数,例如β和γ相角等;精确测量B介子非粲衰变的CP破坏,包括理解三体衰变复杂的CP破坏结构等;在底重子衰变中寻找CP破坏,包括衰变到三体或四体末态,并理解其中多体末态的CP破坏结构。考核指标:对γ相角相关的重要衰变道进行测量,并结合其他测量结果,将γ相角的测量精度提高到4度以内;在无圈图污染过程中完成sin2β测量,精度达到10%以内。若干B介子非粲衰变和底重子衰变的CP破坏的测量结果达到世界最好水平或为世界首次测量。1.2 基于中微子的反应堆监测新技术及相关物理研究研究内容:发展新型中微子探测技术,开展反应堆监测技术和物理研究,主要包括:发展极低阈值、极低本底双相氩时间投影室探测技术,寻找反应截面最大但尚未被探测到的反应堆中微子—原子核相干散射过程,以实现中微子探测器的小型化,用于反应堆监测,同时研究其相关物理;发展基于新型低温液体闪烁体的高能量分辨探测器技术,用于精确测量反应堆中微子能谱及核素谱。考核指标:发展小型化反应堆中微子探测技术,研制并运行一个极低阈值、极低本底的双相氩时间投影室探测器,采用低本底氩,有效质量不低于150kg,探测阈值达到1keV核反冲能;利用台山反应堆,成功探测到反应堆中微子—原子核相干散射信号;测量低能标下的弱混合角。研制并运行一个采用高量子效率硅光电倍增管的新型低温液体闪烁体探测器,有效质量不低于1吨, 能量分辨在3MeV时优于1%,比现有大型液闪探测器的最好水平(Borexino,~2.8%)提高2.5倍以上;利用台山反应堆,测量高精度反应堆中微子能谱和核素谱,为江门中微子实验提供有效谱形误差1%以内的数据依据,对U235和Pu239测量的有效谱形误差达到4%和8%。1.3 无中微子双贝塔衰变和太阳中微子实验关键技术研究研究内容:依托中国锦屏地下实验室,开展寻找无中微子双贝塔衰变、太阳中微子探测实验的关键技术和方法研究,并初步建立相关实验装置开展实验探测。考核指标:在无中微子双贝塔衰变实验领域开展先进高纯锗半导体探测器、极低温晶体量能器、基于Topmetal技术的高气压时间投影室等实验技术研究,确定具有中微子双贝塔衰变有效质量小于10meV灵敏度的探测器技术方案;建设百吨级太阳中微子探测平台,实现太阳B8中微子的探测,重建出太阳中微子方向,5MeV 能量区间,太阳角重建的角度分辨为35度(68%的置信区间)。1.4 依托大型国际合作装置阿尔法磁谱仪(AMS)的物理研究研究内容:依托大型国际合作装置AMS实验,开展暗物质和反物质寻找,宇宙线的起源加速和传播规律机制的物理研究工作。通过宇宙线正电子、反质子和反氘核的精确测量,进行暗物质寻找;通过宇宙线反氦核、反碳核和反氧核的测量寻找原初反物质;精确测量宇宙线各原子核的能谱以研究宇宙线的起源加速和传播规律。参与国际合作,研制满足空间环境要求的新型大面积硅探测器,应用于AMS02的探测器升级。考核指标:暗物质寻找的研究,分析AMS实验数据得到1GeV~1.4TeV的宇宙线正电子能谱测量结果700~1000GeV精度达到35%;得到1GV~500GV的宇宙线反质子能谱结果,反质子能谱500GV精度好于20%;得到宇宙线反氘研究结果。反物质寻找的研究,得到宇宙线反氦研究结果。宇宙线起源加速传播机制的研究,得到2GV~3TV的宇宙线Na、Al、S、亚铁(Z=21~25)等分析结果,100GV精度4%~5%,3TV精度20%~40%;研制成 满足空间条件的10cm×100cm硅探测器,位置分辨率好于5微米,优良通道占比超过 95%。2. 核物理2.1 STAR束流能量扫描实验中QCD相结构和临界点的实验研究研究内容:针对量子色动力学(QCD)的核物质相结构和QCD临界点的重大科学问题,依托相对论重离子对撞机(RHIC)的螺旋管径迹探测器(STAR)的第二期束流能量扫描实验,主要开展质心能量20GeV以下的重离子碰撞实验的物理分析。通过测量守恒荷的高阶矩、超子整体极化和矢量介子的自旋排列、多奇异强子的产生、同质异位核素的可能的手征磁效应分析等,建立系统的QCD相结构和临界点的实验探针与方法,研究QCD物质相结构和QCD临界点。考核指标:基于STAR实验第二期能量扫描实验数据,获得质心系7~20GeV不同能量点下的守恒荷的高阶矩的高精度实验数据,系统测量Λ、反Λ超子及矢量介子的整体极化及自旋排列的快 度依赖与能量依赖并揭示其物理起源,精确测量Ω粒子、φ粒子等 多奇异强子的产额分布并揭示其产生机制;通过测量分析同质异 位素碰撞中相关物理量给出QCD手征磁效应、手征磁波效应是否在夸克胶子等离子环境中被观测到的结论;利用以上分析得到的系统实验结果给出QCD相结构及QCD临界点的信息。2.2 低能区原子核结构与反应及关键天体核过程研究研究内容:针对 X 射线暴和超新星等爆发性天体环境中的关键核反应过程,依托北京放射性核束装置BRIF和相关核天体物 理研究装置等,在低能区开展高精度的原子核的基本性质、结构特性与反应机制及关键天体核过程研究,积极发展相关微观模型,在更广泛的同位旋和角动量维度上探索原子核有效相互作用新规律,探索宇宙元素起源和星体能量产生机制。考核指标:完善BRIF高精度核物理实验平台(带电粒子探测器阵列立体角覆盖达4Pi的40%以上,能量分辨好于50keV),测量3~5项奇特原子核的基本性质、反应截面和衰变过程,统计精度好于10%;发展结合人工智能的核理论分析方法,探索原子核有效相 互作用及其演化规律;完善BRIF和相关核天体物理实验平台(伽马探测器阵列立体角覆盖达4Pi的60%以上),发展天体核反应的 高精度实验方法,测量天体演化相关的3~5项核反应截面和放射性原子核半衰期,统计精度好于10%;结合天文观测,验证天体演化模型,理解宇宙元素起源和星体能量产生机制;建立相关微观模型,研究α团簇和核物质状态方程等在天体核过程中的关键作用。3. 强磁场及综合极端条件3.1 强磁场下的代谢性疾病发病机制及防控新方法研究研究内容:瞄准糖尿病和脂肪肝两种代谢性疾病,依托稳态强磁场大科学装置,发展高场生物磁共振波谱与成像新技术,深入研究糖尿病和脂肪肝发生发展和调控机理;探索不同参数稳态磁场对糖脂代谢、铁代谢和氧化还原等代谢性疾病关键过程的调控及机制,研究稳态磁场对肠道微生物代谢的影响,探索稳态磁场在糖尿病和脂肪肝诊疗中的新策略。考核指标:发展针对糖尿病和脂肪肝等代谢性疾病的新型核磁共振波谱与成像检测方法,开发1~2种治疗糖尿病和/或脂肪肝的候选药物;阐明稳态磁场对糖脂代谢、铁代谢和氧化还原的调控机制,明确稳态强磁场生物安全界限,开发磁场在糖尿病和脂肪肝的潜在应用,研发1~2种基于磁场防控糖尿病和脂肪肝的演示样机,血糖和脂肪肝改善达到20%。3.2 强磁场下零/窄带隙新型电子材料制备及其应用研究研究内容:依托稳态强磁场装置,针对下一代电子器件对零带隙/窄带隙新型电子材料的需求,围绕极端条件强磁场下电子材料制备的关键技术与关键科学问题,聚焦磁场对材料生长调控规律的获取,系统开展强磁场下窄带隙化合物半导体、零带隙低维碳基材料、高频碳/磁薄层材料、新型热电材料等新型电子材料制备与应用研究,开拓其量产应用。考核指标:开发出强磁场(≥18T)辅助布里奇曼单晶炉样机1台;在强磁场下研发出几种具有实用化前景的零带隙/窄带隙电子材料,包括大尺寸窄带隙化合物半导体(~1 英寸,带隙~0.62eV,霍尔电阻率2000cm2/Vs,位错密度2)、高性能碳基光热催化量子点与光电材料(吸收/发射波长1200nm,光热转换效率≥40%,纳米酶催化效率≥0.1μM/s,载流子迁移率~10cm2/Vs,光响应性~106A/W)、适应于GHz/THz 波段的轻质宽带高频吸收材料 (GHz波段:吸收20dB、带宽5GHz;THz波段:吸收20dB、 带宽1THz)、低成本高性能多元纳米复合热电薄膜(ZT 值≥2.0, 温差≥10K,成本降低 50%);探索研发材料在器件中的量产应用。3.3 强磁场回旋管高功率太赫兹波源及电子自旋共振谱仪研究内容:依托脉冲强磁场装置,针对材料电子自旋与核自旋的关联、激发和弛豫过程等研究需求,开展THz回旋管理论与技术、高精度磁场位形和波形调控方法、THz高品质波束形成与瞬态测量技术、高功率THz波激励下的电子自旋共振谱仪研究,为探索关键材料结构、性能以及动力学变化提供先进测试平台。考核指标:建立基于强磁场的高功率回旋管太赫兹波源设计理论体系,解决磁场时空分布精确调控等关键技术问题,实现高功率太赫兹脉冲波和连续波输出。(1)脉冲波辐射源:磁场强度40T,频率1THz,功率300W;(2)连续波辐射源:磁场强度15T,频率800GHz,功率30W;(3)电子自旋共振谱仪:时间分辨≤10ns,带宽1GHz,DEER空间分辨2~50nm。4. 天文学4.1 依托LAMOST、FAST的恒星稀有天体和关键物理过程研究研究内容:瞄准恒星内部结构和关键物理过程,依托LAMOST、FAST大科学装置,搜寻和发现恒星关键/稀有天体, 探测恒星内部结构,识别Ia型超新星前身星;发展恒星对流模型,研究特殊元素的形成和输运、角动量转移过程;深入探讨双星演化的走向和结局,以及超新星等重要双星相关天体的形成和演化,结合黑洞观测,多方面提高宇宙测距精度。考核指标:发现几颗双星公共包层演化阶段天体;构建贫金属星和氦星的快速物质损失模型,系统建立双星演化的关键性判据;确定对流超射和星风在物质与角动量转移中的作用; 获得下主序恒星和红巨星表面存在磁场的星震学证据;通过FAST确定几颗超新星前身星;提高超新星等宇宙标尺的测距精度。4.2 第25太阳周重大爆发活动与空间天气研究研究内容:针对太阳爆发活动及空间天气形成的重大科学问题,充分利用我国自主观测设备,探索重大爆发活动中磁场时空演化、爆发机理、能量释放机制、空间天气形成机理及影响的全链路过程。诊断太阳活动中等离子体加热、粒子加速、激波形成与演化,获得对重大太阳活动产生机理及其空间天气效应新的可靠物理理解,并建立高精度的物理和数值预报模型。考核指标:确保我国自主观测新设备,如MUSER、NVST、AIMS、WeHot、FASOT等发挥科学效益;取得第25太阳活动周重大活动事件完整观测,建立数据库,涵盖国内外磁场、光学、 射电等多波段成像及光谱/频谱数据,开发新型大数据分析方法;发展三维(辐射)磁流体力学数值模拟,建立针对重大太阳爆发事件的理论和数值模拟模型;建立灾害性空间天气的高精确度预报模式和方法。5. 先进光源、中子源及前沿探索5.1 超高功率软 X 射线光源新原理及关键技术研究研究内容:针对能源科学、超导材料科学、超快物理化学和光刻等科学和应用领域对高功率EUV/软X射线光源的具体需求,依托软X射线自由电子激光大科学装置,开展超高平均功率和超 高峰值功率EUV/软X射线光源的新原理及核心关键技术研究,包括探索基于同步辐射和自由电子激光等产生高功率软X射线脉冲的新机制,发展高功率X射线光源所需种子激光、光学传输和诊断等关键技术。考核指标:完成基于角色散机制的高平均功率EUV/软X射 线光源(平均功率100W)和基于啁啾激光增强型自放大自发辐射的高峰值功率软X射线光源(峰值功率100GW)的物理机制研究;基于软X射线自由电子激光装置实验验证高功率X射线产 生的新机制,掌握其关键技术和实验方法,为用户提供峰值功率大于1GW、光子能量大于200eV的软X射线激光;掌握超高重复频率(1MHz)紫外波段种子激光和超大带宽红外波段种子激光等关键技术;掌握超高功率软X射线的光学传输、光学元件冷却(平均热负载100W,峰值功率100GW)和光学诊断(时间测量精度好于1fs)等技术。6. 交叉科学与应用6.1 超高真空平面微纳量子器件的分子束外延直接生长和原位表征技术研究研究内容:发展选区外延生长和片上掩模外延生长等技术,实现量子材料微纳结构和平面异质器件的超高真空分子束外延直接生长;开发极低温、强磁场原子力显微镜,实现绝缘基底上的微纳结构和器件的扫描隧道谱电子态表征;改进平台扫描微波显微镜、氧化物分子束外延生长等技术设备;基于这些新发展的技术研究拓扑-超导异质结构中的马约拉纳模相关物理机理等关键科学问题。考核指标:利用分子束外延在超高真空环境直接生长出超导电极间距6.2 粒子流、先进光源新实验技术研究研究内容:依托同步辐射光源、超快强激光、先进中子源、加速器等束流装置平台,针对材料科学技术、信息科学技术、生命健康和环境保护等领域的关键科学技术问题,发展急需的先进实验技术和方法。考核指标:在选定的研究领域和研究目标,通过研究平台与相关领域研究部门的密切合作,研发在同步辐射光源、超快强激光、中子源和加速器上为解决上述瓶颈问题急需的先进实验技术和实验方法,促进大设施在材料科学技术,信息科学技术、生命健康和环境保护等领域的交叉实验研究。有关说明:本方向拟支持不超过8个项目。附件:“大科学装置前沿研究”重点专项2021年度项目申报指南.pdf形式审查条件要求.pdf指南编制专家名单.pdf
  • 国家重点研发计划“高性能制造技术与重大装备”重点专项2021年度申报项目预评审专家名单公告
    根据2021年度国家重点研发计划重点专项评审工作安排,科技部高技术研究发展中心于2021年8月1日至8月7日组织开展了“十四五”“高性能制造技术与重大装备”重点专项2021年度申报项目预评审工作。此次评审采用网络评审方式,评审专家按照科技计划项目评审专家选取和使用的统一要求,从国家科技专家库中产生,共55人。根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发﹝2014﹞11号),和中共中央办公厅、国务院办公厅印发《关于深化项目评审、人才评价、机构评估改革的意见》(中办发﹝2018﹞37号)等文件精神,现将预评审专家名单予以公布,公示期为8月11日-8月15日。  专项管理办公室联系方式:010-68335972  组1:1.1 重大装备设计基础前沿(青年科学家项目)序号姓名单位名称1王海涛河北工业大学2陈长军苏州大学3何立子东北大学4薛梓中国计量科学研究院5丁香乾中国海洋大学6邓斌西南交通大学7刘建荣中国科学院金属研究所  组2:1.2 高性能基础件基础前沿(青年科学家项目)序号姓名单位名称1周锦松中国科学院空天信息创新研究院2李小灵江南造船(集团)有限责任公司3樊荣中煤科工集团重庆研究院有限公司4王勇广州机械科学研究院有限公司5白振华燕山大学6蔺永诚中南大学7徐丰羽南京邮电大学  组3:1.3 高性能制造工艺基础前沿(青年科学家项目)序号姓名单位名称1刘越东北大学2吴恒安中国科学技术大学3田良成都工具研究所有限公司4苏峰华华南理工大学5沈承金中国矿业大学6张路明中信重工机械股份有限公司7薛文斌北京师范大学8钟毓宁湖北汽车工业学院9张正元中国电子科技集团公司第二十四研究所10练朝春上汽通用五菱汽车股份有限公司11郭明忠盛瑞传动股份有限公司12胡献国合肥工业大学13唐晔北京遥感设备研究所14刘红旗中国联合网络通信集团有限公司15杨卫民北京化工大学16任玉成中国重型机械研究院股份公司17王建峰中国科学院苏州纳米技术与纳米仿生研究所18徐军同济大学19吴兴旺中国船舶重工集团公司20赵铁石燕山大学  组4:2.1 耐高温抗腐蚀传动系统轴承序号姓名单位名称1金百刚鞍钢集团有限公司2王文杭州电子科技大学3强永席杭州颢熙科技有限公司4陆宁云南京航空航天大学5刘永斌安徽大学6周文龙大连理工大学7杨为佑宁波工程学院  组5:2.7 大型薄壁铝合金整体构件精确成形技术序号姓名单位名称1杨志刚同济大学2皮孝东浙江大学3袁国东北大学4王冰昆山双桥传感器测控技术有限公司5袁鸿暨南大学6党选举桂林电子科技大学7魏静重庆大学  组6:3.4 第三代半导体高性能碳化硅单晶制备和外延工艺及成套装备序号姓名单位名称1毕英杰上海宝信软件股份有限公司2庞慰天津大学3孙清清复旦大学4张辉东南大学5恩云飞工业和信息化部电子第五研究所6黄辉大连理工大学7姚友良山推工程机械股份有限公司科技部高技术研究发展中心2021-08-11
  • 上海光源线站工程光源性能拓展通过工艺测试
    2022年8月12日,国家重大科技基础设施——上海光源线站工程的光源性能拓展部分顺利通过了中国科学院条财局组织的工艺测试。 工艺测试专家组由中国科学院近代物理研究所、中国科学院高能物理研究所、中国科学技术大学、上海交通大学等单位的7位专家组成,夏佳文院士任测试组长,徐刚研究员任测试组副组长。此外,线站工程工艺测试组总组长胡天斗研究员参加了测试,中科院条财局重大设施处樊潇潇视频参加了工艺测试会议。专家组听取了工程加速器分总体负责人姜伯承研究员汇报的光源性能拓展部分建设情况及自测报告,讨论确定了工艺测试内容和测试大纲,进行了现场实测。经现场测试和对以往测试的确认,结果表明光源性能拓展后的储存环加速器总体性能参数,以及超高磁场弯铁及长直线节双腰磁聚焦系统、低温系统、束流测量系统、束流控制系统、插入件系统、轨道快反馈系统、SLEGS光源系统的技术性能参数值均达到或优于设计指标。 上海光源二期线站工程根据光束线站的建设需求对储存环加速器进行了升级改造,即光源性能拓展: 将储存环的第3和第13单元改造成带2.29T超高磁场弯铁的DBA磁聚焦结构单元,增加2段1.89m直线节用以引出更多束线(图1),提高弯铁辐射光子特征能量至18.7keV以满足用户的需求(图2);将第11和16单元的超长直线节改造成双腰低βy直线节(图3),以满足安装两条高性能束线的要求;将第12单元的标准直线节进行局部消色散光学改造,以满足安装超导扭摆器的需要;以上改造均对局部光学函数进行了匹配(图4),以使全环的光学函数得到优化。储存环聚焦结构改造于2019年完成,随后投入日常运行,改造完成后的上海光源在第三代同步辐射光源中继续处于先进水平(表1)。图1. 超高磁场弯铁的DBA磁聚焦结构单元布局图及实景照片图2. 超高磁场弯铁照片以及常规和超高磁场弯铁的辐射功率谱比较图图3. 长直线节双腰布局图及实景照片图4. 改造前后的储存环光学函数(局部)对比图表1. 上海光源储存环主要参数改造前后的对比研制了13台插入件(表2、图5),包括6台真空内波荡器(IVU)、3台低温永磁波荡器(CPMU)、1台椭圆极化波荡器(EPU)和1组双椭圆极化波荡器(DEPU)、1台多磁极永磁扭摆器(MPW)和1台超导扭摆器(SCW),并陆续安装到储存环上;在此基础上,新建了基于康普顿散射的激光和电子束伽玛源(图6),伽玛能量范围0.4~20 MeV,满足了新光束线站建设的要求。 表2. 上海光源线站工程插入件参数图5. 各种类型插入件图6. SLEGS光源系统 新建了束团纯化系统和纯度监测系统,获得10-5量级的高纯净度的高流强单束团束流(图7)来满足时间分辨实验的需求。 图7. 束团纯化系统照片和效果图 新建了被动式超导三次谐波腔系统及配套的650W/4.5K液氦低温系统(图8、图9)并已完成调试,实现了24.5mA高流强单束团和200mA束团串混合填充模式的稳定运行,满足了快速成像线站的技术要求。图8. 超导三次谐波腔和束团纯化测量装置测得单束团流强图9. 低温系统(液氮/氦气储罐、4.5K和2K冷箱) 此外,还增加了轨道快反馈系统矫正铁数量,提高轨道快反馈系统的抑制带宽和抑制效果(图10);升级改造了横向束流反馈系统,实现了混合填充模式逐束团反馈,增加了系统动态范围到31db。图10. 轨道快反馈系统(左图参与快轨道反馈系统的轨道稳定性(快轨道反馈系统8小时工作);右图束流轨道噪音积分谱(FOFB打开/关闭)) 上海光源线站工程于2016年11月动工建设,在工程经理部的组织下,光源性能拓展部分按进度计划节点推进。2017年7月完成长直线节双腰改造,2018年7月完成第一台插入件(IVU)上线安装,2019年1月低温系统完成全部设备安装,2019年9月完成3和13单元超高磁场二极铁改造,2020年9月完成SLEGS光源系统相互作用腔上线安装,2021年3月完成超导扭摆器(SCW)上线安装,2021年9月完成三次谐波腔上线安装,并在2021年12月调试达到束线要求,实现了24mA单束团+200mA束团串填充模式,支撑快速成像线站完成了工艺测试(新闻链接:上海光源线站工程建设取得新进展)。截止目前,上海光源线站工程已完成了用户支撑实验系统、实验辅助系统、光源性能拓展和11条光束线站(20个实验站)的工艺测试,新建光束线站试运行已支撑用户取得了一批高水平研究成果。 通过加速器性能拓展工程的实施,拓展了光源光子能谱范围,增加了插入件直线节占比,即增加了可建束线的数量,实现了快速成像要求的高流强单束团和束团串的混合填充模式,同时,保持了加速器主要性能参数的先进性,提高了光源运行稳定性。
  • 中科院研发出基于二硫化钼/碳纳米复合材料的钠型双离子电池
    p  近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队,成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。相关研究成果以Penne-Like MoS2/Carbon Nanocomposite as Anode for Sodium-Ion-Based Dual-Ion Battery为题,在线发表在Small上。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/6177974b-2ba4-49ab-b8d7-66db7c701632.jpg" title="1.jpg"//pp  锂离子电池已广泛应用于便携式电子设备、电动汽车、储能设备等领域。但由于锂离子电池的大规模应用加之锂资源的匮乏和分布不均,使锂离子电池成本日益攀升,难以满足未来能源存储的低成本、长循环寿命、安全可靠等要求。钠与锂有相似的物理化学性质,且储量丰富、成本较低,使得基于钠离子的二次电池体系的研究近年来受到广泛关注。然而钠离子半径较大,导致Na+在电极材料中扩散缓慢,从而影响电池的倍率性能和循环性能。/pp  为改善钠离子电池的倍率性能和循环性能,唐永炳研究团队成员朱海莉、张帆等成功研发出一种基于二硫化钼/碳纳米复合负极材料的钠型双离子电池。该电池采用膨胀石墨作为正极材料,具有分级结构的MoS2/C纳米复合材料作为负极材料。由于这种具有分级结构的MoS2/C具有更宽的晶体片层间距,有利于提高Na+在其中的离子扩散速率,且碳层的引入提高了材料的电导率,使基于该MoS2/C纳米复合材料的钠型双离子电池具有良好的倍率性能和循环性能。结果表明,该电池在1.0-4.0V的电压区间,2C的电流密度下循环200圈后容量保持率为85%。这种新型钠离子电池在低成本、环保大规模储能领域,如清洁能源、智能电网等具有潜在的应用前景。/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "研究工作得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。/span/ppbr//p
  • 借一双“慧眼”,将黑洞看得真切
    黑洞,这个词对于大部分人来讲并不陌生。许多以时空、宇宙为题材的电影作品,都出现过它的名号。30名研究人员耗时一年,用数千台计算机联网进行精确模拟,终于在《星际穿越》中大胆勾勒了黑洞的样子图源:sina.com 虽然是荧幕中的常客,事实上,我们对黑洞还知之甚微。它难以言喻的神秘、强大而诡异的美感,不光只是艺术创作的灵感源泉,更是人类智慧进步的驱动力。一点一点掀开它的面纱,或许会使我们对宇宙、生命产生完全不同的认知。 引力的神秘孩子:黑洞和中子星 一颗苹果的落地为人类带来了“引力”的概念,而也正是它,在极端宇宙中孕育了各种神奇的天体。 当一颗大质量恒星以绚烂的超新星爆炸结束自己的生命后,残留质量如超过了太阳的1.4倍,就难以抵抗自身引力的拉扯,坍缩成了体积小、质量大、密度高的中子星。如果超过了太阳的3-4倍呢?那就厉害了!引力将狂暴地席卷一切,彻底坍缩为“黑洞”。中子星和黑洞。一颗中子星可能只有一个小城市那么大(典型直径20km),但质量却可能是地球的几十万倍以上。图源:《活捉黑洞:中国慧眼看到极端宇宙》 1783年,英国剑桥大学的学监约翰米歇尔开了个清奇的脑洞,利牛顿公式他计算了逃离地球和太阳引力的速度,并推论如果一个质量足够大且足够紧致的恒星,其强大的引力场会使星体上的光都无法逃脱,也无法观测。十余年后,法国数学家拉普拉斯也得出了类似的推论,并将其命名为“暗星”(Black Star)。这就是200多年前,我们对“黑洞”最初的认识。 这个概念直到爱因斯坦发表广义相对论,有了引力对光的协调影响的理论,才开始被世界接受。从此,它在科学家们的演算纸中,以数学模型的形式成长了起来,逐渐具有了更丰富的物理内涵。 上世纪60年代脉冲星(以均匀时间间隔辐射脉冲的中子星)的发现,证实了中子星的存在。原来一颗恒星真的可以坍缩至如此小!那拥有更大质量的恒星更剧烈的坍缩也不是不可能的了。这也大为振奋了深信“黑洞”(Black Hole,脉冲星发现后不久,就被一位美国科学家正式命名了)存在的科学家们。 第一颗脉冲星的发现者乔斯林贝尔脉冲星的发现被誉为20世纪60年代天文学“四大发现”之一图源:iflscience.com被称为“宇宙灯塔”的脉冲星示意图图源:ech.qq.com 很快,世界第一颗X射线天文卫星乌呼鲁(Uhuru,原意是“自由”)在1971年为人类带来了“黑洞”存在的证据。它捕捉到的一个强X射线源,是一个不可见的、质量是太阳约10倍的致密天体——天鹅座X-1。如此庞大的质量,让科学家们认定它为黑洞无疑。 世界第一颗X射线天文卫星“乌呼鲁(Uhuru)”图源:baike.baidu.com 经过几百年的努力,我们已经将极端宇宙大门推开了一丝缝隙,感受到了门后世界的浩大和无尽神奇。理解“黑洞”,可能将左右人类对宇宙未来的认识和预测;而中子星作为天然的高能加速器,也可帮助我们进行无法在地球上的加速器开展的研究。不过,所有对于它们这样那样的推论和猜想,都需要用“看”到的实际证据来验证。 迢迢黑洞,一“线”牵 黑洞在宇宙中设下了“引力陷阱”,连光都会闷不吭声地掉进去,这样决心低调到骨子里的天体,叫人怎么能“看”清楚呢? 引导我们走近它的关键,就是X射线。 用一个比较简单易懂的说法:长期在宇宙中“岁月静好”的黑洞却有一个天生的习惯,那就“贪吃”。当它旁边有物质存在时,霸道的引力会将这些物质统统“吃掉”。大快朵颐期间,由于它“嚼”得实在是太激烈了(毕竟引力技能满点!),带电粒子会在这样的高温、高密度、强磁场、强引力场等极端物理条件下产生高能辐射,这个时候黑洞就“亮”了! 不过发出的光并不是可见的光,而是比其高能成千上万倍的X射线,甚至是γ射线。一般意义上,辐射出的X射线能量越高就意味着越靠近黑洞。贪吃的黑洞图源:《活捉黑洞:中国慧眼看到极端宇宙》 不同物理条件的天体,发出的电磁辐射的性质不尽相同。正因如此,通过研究宇宙X射线可帮助我们反推黑洞的物理状态。鉴于地球大气会将这些高能X射线吸收,所以卫星成为了最重要的观测工具。 1962年,美籍意大利裔天文学家里卡尔多贾科尼利用探空火箭,意外发现了除太阳以外的第一个宇宙X射线源——天蝎座X-1,从此开启了X射线天文学。在“乌呼鲁”正式树立起里程碑后,从20世纪七十年代始,包括英国、美国、荷兰、日本等多个国家,都相继发射了一系列的X射线天文卫星,迈向了深空。 第一个探测宇宙X射线的实验Giacconi et al., Phys. Rev. Lett., 9, 439 (1962)图源:ihep.cas.cn 《仰望星空—探索黑洞的历程》 而之前被送往宇宙的诸多卫星,大多都“专情”于波长较长、能量相对较低(0.1 keV-10keV)的软X射线波段。虽拥有很高的灵敏度,却容易饱和,较擅长观测“安静”的黑洞。而那些迸射出波长较短、能量相对较高(10 keV -1000 keV)硬X射线的“暴躁”黑洞,容易被它们所错过。 和软X射线观测相比,硬X射线观测可以摆脱热辐射的影响;和γ射线观测相比,由于光子的流强足够高,更易于被观测,可用于黑洞附近区域的物理性质及变化的详细研究,这也让其也成为了X射线天文观测发展的一个重要方向。而最新的一颗同时拥有高灵敏度和分辨率的硬X射线望远镜卫星HXMT,就是在中国诞生的。 (本图为仅为示意) 终得“慧眼”,开启一场伟大的宇宙探索 20世纪80年代,李惕碚、顾逸东、吴枚等第一批推动我国空间天文和其他空间科学探测的科学家出现了。通过不懈努力,并在著名核物理学家何泽慧先生的大力支持下,中国第一个用于空间高能天文观测的硬X射线望远镜,由高空气球“HAPI-1”送入了33千米的高空,飞行了8小时,实现了平流层高度上的天体X射线观测。 何泽慧先生在香河气球发放场图源:ihep.ac.cn 不过X射线,特别是硬X射线,波长极短、能量极高,如是普通的光学天文望远镜,射线会直接撞击或者穿透镜面,无法发生反射和折射,进而无法成像。虽然编码孔径成像技术和掠射式镜面技术解决了这个问题,但运用这两种方法制造的望远镜都十分复杂和昂贵,对于当时中国的工业和科技水平来讲都非常困难。 困局在1992年被打破了。李惕碚院士和吴枚研究员创新性的提出了直接调制成像方法,这种新的算法即使无法实现聚焦,仍可有效地将调制后的信号还原成图像。结合扫描探测技术,基于直接解调制成像法的硬X射线调制望远镜(Hard X-ray Modulation Telescope,HXMT)的建议于1993正式提出。但由于太过“神奇”,经过了长达18年艰辛的理论、实验和数据分析工作,终于于2011年迎来了立项。遗憾的是,同年何泽慧先生与世长辞,为纪念先生,HXMT升空后被赋予了另一个名字——“慧眼”。左:球载硬X射线望远镜HAPI-4,对直接调制成像方法进行了验证右:1994年9月HXMT的项目建议书 HXMT卫星首席科学家张双南研究员曾介绍到,十八年间,科学前沿以及X射线探测技术都有了较大的变化。所以,对这颗卫星的研究目标和手段也进行了调整,能区范围已经扩大到了1~250keV。不同能段的观测任务被分别分配到了高、中、低能望远上,其中最为受到关注的,则是高能望远镜上的18个主探测器。 “慧眼”的18个主要探测器 这18个主探测器每个直径19cm,总面积高达5000cm2,是目前世界上面积最大的空间X射线探测器阵列。它担任着高能能区,也就是硬X射线波段的探测任务,为我们捕捉光子的能量和时间等信息。之所以它可以敏锐的“看到”硬X射线,其核心部件——碘化钠和碘化铯的复合晶体可谓是功不可没。 碘化钠和碘化铯是两种对X射线非常敏感的晶体,它可以将“高深”的X射线“语言”转化为探测器可以读懂的“语言”(荧光信号)。然而,想将这样大面积且将多种厚度不同的晶体光导材料进行高质量的耦合,并实现在良好的抗震性能和密封性的基础上,达到世界一流的分辨率,是十分困难的。可以说,探测器是否优越和稳定,最终取决于封装工艺。 满足机械抗震指标是基础,实现高分辨率是核心,这需要拥有雄厚的技术功底。虽面临着国外技术和产品的“封杀”。但最终在负责HXMT高能望远镜的中科院高能物理研究所研制团队和北京滨松光子技术股份有限公司的共同努力下,经历了一系列艰辛的过程后(29轮试制,制作了30多个样品),终于解决了同时满足整体性能及抗震指标的大面积复合晶体封装问题,达到了国际同类产品先进水平。滨松5英寸光电倍增管HXMT高能望远镜的主探测器(右下:复合晶体)。探测器读出端采用的是滨松公司的5英寸端窗式光电倍增管,除了良好的工作稳定性,抗震性能也是核心指标。为了保证产品整体性能达标,滨松公司也专门成立了抗震性能研发小组,在有限时间内,保质保量完成了供货,并额外提供了样品,保障了项目的顺利进行。同时滨松公司生产的硅光电倍增管(MPPC)也被使用在了慧眼卫星的轨标定探测器中。这是硅光电倍增管在世界范围内首次被用于卫星项目中,也验证了其在空间使用的可靠性。滨松MPPC产品(部分)当然,历经艰难的不止只有高能团队,中能、低能望远镜及地面等团队都经受了巨大的考验,每一步的进展都伴随着起起伏伏,一条长征路走得艰辛,却也是单单一个“艰辛”所无法去涵盖和形容的。终于,伴随着HXMT的正式诞生,几代中国空间天文学研究者的梦想开出了珍贵的花朵。硬X射线调制望远镜(Hard X-ray Modulation Telescope,HXMT)——“慧眼” 2017年6月15日,HXMT卫星在酒泉火箭发射中心顺利升空,在轨测试期间,通过多天区的扫描成像观测和特定天区的定点观测,以及伽马射线暴监测等测试,各项功能和性能都得到了验证,并取得了银道面扫描监测、黑洞及中子星双星观测、伽马射线暴、引力波电磁对应体探测、太阳耀发、特殊空间环境事件等初步科学成果。 其中,最为引人注目的,则是2017年8月对引力波GW170817事件电磁对应体的成功监测,这也让人类在引力波观测中终于变得“耳聪目明”,慧眼卫星对其高能段的辐射给出了严格的限制,为全面理解该引力波事件和引力波闪的物理机制做出了重要贡献。慧眼卫星团队反应迅速,在全球70多个团队中,中国慧眼望远镜是第七个报告成果的,在本次引力波事件最重要的发现论文的正文部分有‘慧眼’的观测结果。此外,“慧眼”的详细分析结果以独立论文的形式于2017年10月16日同步发表在《中国科学:物理学力学天文学》杂志英文版的网页版。 HXMT卫星成为了中国空间X射线天文的开端,实现了宽波段、高灵敏度、高空间分辨率X射线巡天、定点和小天区观测,在世界现有X射线天文卫星中,具有先进的暗弱变源巡天能力、独特的多波段快速光变观测能力等优势,也将中国正式推上了世界空间天文的大舞台。2018年1月30日,HXMT卫星正式完成了在轨交付,如今它也正翱翔于宇宙,以一双“慧眼”,以期为人类探寻黑洞,以及更多的深空奥秘做出贡献。载梦翱翔于宇宙的“慧眼”卫星 参考文献:硬X射线调制望远镜卫星:巡天监测,刷新人类认知极限,倪伟波,《科学新闻》空间科学先导专项特刊;仰望星空——探索黑洞的历程,李惕碚,中国科学院高能物理研究所官网;透视宇宙的眼睛——“硬X射线调制望远镜”,卢方军,中国科学院高能物理研究所,《国际太空》2009年第12期;“黑洞,我来啦!”:“慧眼”空间X射线天文卫星自述,熊少林,中国科学院高能物理研究所,科学大院公众号荔枝网转载;“慧眼”硬X射线调制望远镜到底能做什么?,杭添仁,知乎;【人民日报海外版】人类首次“看到”引力波事件 中国“慧眼”做出重要贡献,吴月辉,中国科学院高能物理研究所;《中国科学报》 (2017-11-06 第5版 创新周刊) 探测引力波事件的“中国身影”,高雅丽。
  • 光伏组件用高性能EVA胶膜实现国产化
    本报讯近日,中国可再生能源学会光电专业委员会在北京组织召开了“光伏组件用高性能EVA胶膜”评审会。经讨论认定,由温州瑞阳光伏材料有限公司和杜邦公司合作研制的“瑞福REVAX”EVA胶膜项目开发成功,产品性能达到国际先进水平,特别是耐老化性能方面取得重大突破,居世界领先水平,满足光伏组件使用寿命需求。完全可替代进口EVA胶膜,实现了高性能EVA胶膜的国产化。     作为太阳能光伏组件中关键原材料之一,EVA封装胶膜的性能在此起着决定性的作用。经过3年潜心研发,瑞阳公司最终成功研制出耐老化性能优良的EVA封装胶膜,经国内权威质量检测机构检验,“瑞福REVAX”EVA胶膜经1000小时紫外老化试验后透光率的保持率超过99%,黄变指数小于2,解决了国内高性能EVA封装胶膜常年依赖进口的局面。  据了解,从2007年起,我国光伏组件产量居世界第一位。根据相关机构测算,到2020年,光伏组件年产量将达到42GW。需要高性能EVA封装胶膜60000万平方米,胶膜产值将达到150亿元。但目前高性能EVA封装胶膜还严重依赖国外进口产品,严重制约我国光伏产业发展。为满足太阳能光伏产业的快速发展,瑞阳将与杜邦公司合作,在浙江温州建设高性能EVA胶膜产业化基地,为中国光伏企业提供快速的本地化服务。(申明)
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制