当前位置: 仪器信息网 > 行业主题 > >

化蛋白

仪器信息网化蛋白专题为您整合化蛋白相关的最新文章,在化蛋白专题,您不仅可以免费浏览化蛋白的资讯, 同时您还可以浏览化蛋白的相关资料、解决方案,参与社区化蛋白话题讨论。

化蛋白相关的论坛

  • 蛋白质泛素化:基本概念、蛋白大小与泛素化蛋白组学的应用

    [font=宋体][font=宋体]泛素化是一种细胞内的蛋白质标记系统,蛋白质泛素化是指将小的蛋白质泛素共价地连接到其他蛋白质分子上的过程。泛素([/font][font=Calibri]ubiquitin[/font][font=宋体])是一种高度保守的蛋白质,其结构由[/font][font=Calibri]76[/font][font=宋体]个氨基酸残基组成。泛素连接到目标蛋白质上的过程,经历了泛素激活、泛素转移和靶蛋白接受三个主要步骤。[/font][/font][font=宋体] [/font][font=宋体]蛋白质泛素化具有多种特点,例如它是高度选择性的,不同蛋白质泛素化的位置和数量可以影响其功能;它是可逆的,通过去泛素化反应可以调控蛋白质的泛素化状态;它还是动态调控的,受到多种因素的调控,如细胞信号通路和环境刺激。[/font][b][font=宋体]泛素化蛋白大小:[/font][/b][font=宋体] [/font][font=宋体][font=宋体]蛋白泛素化是指将小蛋白颗粒泛素([/font][font=Calibri]Ubiquitin[/font][font=宋体])与其他蛋白质共价结合的修饰过程。 泛素化修饰通常会导致泛素共价连接在蛋白质的赖氨酸残基上形成多重泛素链。 这种蛋白质泛素化增加了蛋白质的分子量,因为每个泛素分子的质量大约为[/font][b][font=Calibri]8.5[/font][font=宋体]千达尔顿([/font][font=Calibri]kDa[/font][/b][font=宋体][b])[/b]。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]泛素化蛋白质组学在许多领域有重要的应用,主要包括:[/font][/b][font=宋体] [/font][font=宋体]①疾病机制研究:泛素化是一种广泛存在于细胞中的蛋白质修饰方式,参与了细胞的生长、分化、修复和调控等多个生命活动。泛素化蛋白质组学的研究可以帮助我们了解泛素化修饰的生物学功能和调控机制,为疾病发生机制和治疗策略的研究提供重要线索。例如,在癌症、代谢综合征、神经退行性疾病等疾病中,则会出现异常泛素化。[/font][font=宋体]②药物研发:通过分析药物对泛素化蛋白质的影响,可以评估药物的效力和选择性,为药物研发提供指导。[/font][font=宋体]③临床诊断:泛素化蛋白质组学鉴定与定量分析技术可以揭示细胞调控的机制,通过分析泛素化蛋白质的组学数据,可以确定泛素化修饰在细胞信号转导、蛋白质降解和细胞周期调控等过程中的重要作用。此外,通过比较病态和正常样品中泛素化蛋白质的差异,可以鉴定与疾病发生发展相关的泛素化修饰靶点,并进一步理解疾病的分子机制。因此,这些技术也可用于临床诊断。[/font][font=宋体]④蛋白质降解调控:在癌症、神经退行性疾病和免疫相关疾病等病症中,蛋白质降解调控出现异常。而泛素化蛋白组在调控蛋白质降解中发挥重要作用。通过与泛素连接,目标蛋白质被送入蛋白酶体或蛋白酶体样体中进行降解。这个过程是细胞清除异常、老化或受损蛋白质的重要途径。[/font][font=宋体]⑤高通量技术应用:高通量泛素化蛋白质组学鉴定与定量分析技术的发展包括质谱鉴定和抗体鉴定两种方法。质谱鉴定技术利用质谱仪的高灵敏度和分辨率,能够鉴定泛素化修饰的蛋白质及其泛素化位点。抗体鉴定技术则通过特异性抗体的使用,可以富集和鉴定泛素化修饰的蛋白质。这些技术为全面了解泛素化在细胞中的作用机制和调控网络提供了可能。[/font][font=宋体]总的来说,泛素化蛋白质组学在多个领域都有重要的应用价值,推动了我们对生命过程的深入理解以及疾病治疗的创新发展。[/font][font=宋体] [/font][font=宋体]更多详情关于[url=https://cn.sinobiological.com/resource/protein-review][b]蛋白资源[/b][/url]详情可以参看:[/font][url=https://cn.sinobiological.com/resource/protein-review][u][font=宋体][color=#0000ff][font=Calibri]https://cn.sinobiological.com/resource/protein-review[/font][/color][/font][/u][/url][b][font=宋体] [/font][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 蛋白纯化的原理及操作步骤

    [font=宋体]重组蛋白的表达(尤其是使用细菌载体和宿主)是一项成熟的技术。难点在于如何将其以活化形式分离。[/font][font=宋体] [/font][font=宋体]重组蛋白的纯化是生物学研究中的重要技术。为了研究蛋白的特定功能和结构,研究人员必须将重组蛋白从生物体中分离并纯化。蛋白纯化方法主要利用不同重组蛋白之间的相似性和差异性。可以根据蛋白之间的相似性去除非蛋白物质,然后根据蛋白之间的差异分离纯化目标重组蛋白。[/font][font=宋体] [/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]是一种可以提高重组蛋白的溶解度、简化蛋白纯化的简单有效的工具,并通过简单的方法跟踪蛋白表达和纯化过程。此外,蛋白标签是追踪活细胞中蛋白和进程的一种有效工具,可以通过显微镜直接跟踪或者通过[/font][font=Calibri]Western blot[/font][font=宋体]、免疫沉淀或免疫染色间接进行跟踪。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]蛋白纯化的原理:[/b][/font][font=宋体]不同的重组蛋白具有不同的氨基酸序列和空间结构,导致其物理、化学和生物学特性存在差异。我们也可以根据目标蛋白与其他蛋白和裂解液的性质差异设计合理的蛋白纯化方案。[/font][font=宋体] [/font][font=宋体][font=宋体]大多数的纯化方案需要不止一步才能达到理想的纯度水平。该过程中的每一步都会造成一定的产品损失,假设每一步的获得率为[/font][font=Calibri]80%[/font][font=宋体]。因此,建议尽可能减少纯化步骤。起始原料的选择是纯化过程设计的关键。[/font][/font][font=宋体] [/font][font=宋体]在背景信息、检测方法和样品规格都已到位的情况下,可以考虑采用三阶段纯化策略。纯化分为捕获、中度纯化和精细纯化三个阶段,每个阶段都有特定的目标。捕获阶段的目标是分离、浓缩和稳定目标产物。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b][url=https://cn.sinobiological.com/resource/protein-review/protein-purification]蛋白纯化[/url]操作步骤:[/b][/font][font=宋体]理想情况下,最终的纯化过程包括样品制备,其中包括在需要时进行萃取和澄清,然后进行上述捕获、中度纯化和精细纯化三个阶段的纯化。步骤的数量始终取决于所需的纯度和蛋白的预期用途。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供不同表达系统的蛋白纯化服务,有细菌系统蛋白纯化、哺乳动物瞬时系统蛋白纯化、杆状病毒系统蛋白纯化。详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification[/font][/font]

  • 重组蛋白纯化常用方法有哪些?义翘重组蛋白纯化服务介绍

    [font=宋体] [font=宋体]重组蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。[/font][/font][font=宋体] [font=宋体][b]重组蛋白纯化常用的几个方法如下:[/b][/font][/font][font=宋体] [font=Calibri]1.[/font][font=宋体]蛋白纯化色谱法:[/font][/font][font=宋体] [font=宋体]色谱法无疑是下游处理中主要和常用的操作,因为色谱法相比其他单元操作具有某些优势。例如色谱法支持高分辨率的效率,可以分离分子性质非常相似的复杂粗制混合物。此外,色谱法是生物工艺中遇到的稀释溶液中捕获分子的理想选择。[/font][/font][font=宋体] [font=宋体]柱色谱法[/font][font=Calibri]([/font][font=宋体]层析法[/font][font=Calibri])[/font][font=宋体]的原理是将一个大的蛋白池分离成许多小的蛋白池,其中一些富集了目标蛋白。虽然柱色谱法有昂贵的专业设备,但只需要基本的设备就可以了。[/font][/font][font=宋体] [font=Calibri]2.[/font][font=宋体]亲和色谱法:[/font][/font][font=宋体] [font=宋体]亲和色谱法依赖于蛋白对基质结合配体的特异性和可逆性结合。该配体可以直接与目的蛋白结合或共价连接到蛋白的标签上与其相结合。亲和层析通常是最有效的纯化方法,通常用在纯化方案的早期阶段。这种特定的亲和相互作用能够捕获目标物,同时去除溶液中的污染物或其他分子,并一步富集或纯化目标分子,使其与其他不能结合配体的分子分离。[/font][/font][font=宋体] [font=宋体]除了理论上蛋白能够通过免疫亲和色谱纯化之外,亲和法仅限于具有特异结合特性的蛋白,而免疫亲和色谱是所有亲和技术中特异性最高的。[/font][/font][font=宋体] [font=Calibri]3.[/font][font=宋体]离子交换色谱法:[/font][/font][font=宋体] [font=宋体]离子交换色谱[/font][font=Calibri](IEX)[/font][font=宋体]是一种主要基于蛋白净电荷的色谱分离方法,通常用于追踪脱酰胺和琥珀酰亚胺的形成。[/font][font=Calibri]IEX[/font][font=宋体]有两种类型:阳离子交换和阴离子交换色谱法。当缓冲液[/font][font=Calibri]pH[/font][font=宋体]值高于此[/font][font=Calibri]IP[/font][font=宋体]时,蛋白带负电(阴离子);当[/font][font=Calibri]pH[/font][font=宋体]值低于此[/font][font=Calibri]IP[/font][font=宋体]时,蛋白带正电(阳离子)。[/font][/font][font=宋体] [font=宋体]所有蛋白都表现出净电荷,这取决于蛋白氨基酸组成和任何共价连接的修饰。蛋白净电荷受溶解它的溶剂[/font][font=Calibri]pH[/font][font=宋体]所影响,因为溶剂会与蛋白进行氢离子交换。通常情况下,蛋白与[/font][font=Calibri]IEX[/font][font=宋体]的结合必须通过反复试验来确定,使用一系列[/font][font=Calibri]pH[/font][font=宋体]值的溶剂以确定蛋白保留的最佳[/font][font=Calibri]pH[/font][font=宋体]。通常溶剂的[/font][font=Calibri]pH[/font][font=宋体]值与[/font][font=Calibri]pI[/font][font=宋体]相差约一个[/font][font=Calibri]pH[/font][font=宋体]单位就足以实现蛋白结合。[/font][/font][font=宋体] [font=Calibri]4.HPLC[/font][font=宋体]法蛋白纯化:[/font][/font][font=宋体] [font=宋体]色谱法是一种常用分析技术,可以将混合物分离成单独的成分。高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法通常称为[/font][font=Calibri]HPLC[/font][font=宋体],在化学生物学研究实验室中广泛应用。[/font][/font][font=宋体] [font=宋体]在化学生物学中,单个分析物(如多肽)通常经色谱纯化后作为一种功能工具使用。高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法[/font][font=Calibri](HPLC)[/font][font=宋体]是一种用于分析和分离液体样品的方法。在化学生物学实验室中,[/font][font=Calibri]HPLC[/font][font=宋体]是纯化多肽(人工合成或用合成器自动合成)和其他中小型有机分子不可或缺的过程。它还允许使用颗粒非常小的柱填料,这就给固定相和流经它的分子之间产生相互作用提供了更大的表面积,这样可以更好地分离混合物的成分。[/font][/font][font=宋体][font=宋体]针对特定应用开发的[/font][font=Calibri]HPLC[/font][font=宋体]色谱柱有很多种类,如正相[/font][font=Calibri]HPLC(NP-HPLC)[/font][font=宋体]和反相[/font][font=Calibri]HPLC(RP-HPLC)[/font][font=宋体]。正确选择色谱柱是获得良好的[/font][font=Calibri]HPLC[/font][font=宋体]结果的关键。色谱柱的选择取决于我们希望分离的混合物的组分特性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供从基因合成、载体构建到蛋白质表达、纯化的一站式服务,可以根据客户需求,选用不同表达[/font][font=Calibri]/[/font][font=宋体]纯化标签、表达宿主等,真正为客户实现深度私人定制。多种纯化体系,为蛋白表达、纯化提供多种选择,我们致力于为客户提供高质量、低成本的重组蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多[url=https://cn.sinobiological.com/services/recombinant-protein-expression-service][b]重组蛋白表达纯化服务[/b][/url]详情尽在:[/font][font=Calibri]https://cn.sinobiological.com/services/recombinant-protein-expression-service[/font][/font]

  • 蛋白纯化的目的、原理及蛋白纯化的4种方法详解

    [font=宋体]蛋白质是包括人类在内的各种生物有机体的重要组成成分,是生命的物质基础之一。生物体的生长、发育、遗传和繁殖等一切生命活动都离不开蛋白质。[/font][font=宋体] [/font][font=宋体]随着分子生物学、结构生物学、基因组学等研究的不断深入,人们意识到仅仅依靠基因组的序列分析来试图阐明生命活动的现象和本质是远远不够的。只有从蛋白质组学的角度对所有蛋白质的总和进行研究,才能更科学地掌握生命现象和活动规律,更完善地揭示生命的本质。[/font][font=宋体] [/font][font=宋体]由此许多学者将生命科学领域的研究焦点从基因转向蛋白质,使蛋白质成为揭示生命活动现象和分子生物学机理的重要研究对象。研究蛋白质首要的步骤是将目的蛋白从复杂的大分子混合物中分离纯化出来,得到高纯度具有生物学活性的目的物。因此,高效的纯化技术和手段是蛋白质研究的重要基础和关键之一。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=宋体]蛋白纯化的目的[/font] [/font][/b][font=宋体][font=宋体]蛋白纯化的目的是将目标蛋白质从细胞裂解液的全部组分中分离出来,同时仍保留蛋白的生物学活性及化学完整性。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,需根据蛋白的特性选择合适的纯化方法来提高获得的蛋白制品的纯度。[/font] [/font][font=宋体] [/font][b][font=宋体][font=宋体]蛋白纯化的原理[/font] [/font][/b][font=宋体][font=宋体]不同蛋白质的氨基酸序列及空间结构不同,导致其在物理、化学、生物学等性质上存在差异,利用待分离蛋白质与其它蛋白质性质上的差异,即可以设计出一套合理的蛋白纯化方案。蛋白的纯化大致分为粗分离阶段和精细纯化阶段两个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如[/font] [font=Calibri]RNA[/font][font=宋体]、[/font][font=Calibri]DNA [/font][font=宋体]等分开,常用的方法为硫酸铵沉淀法。精细纯化阶段的目的是把目的蛋白与其他大小及理化性质接近的蛋白区分开来,[/font][/font][b][font=宋体][font=宋体]常用的方法有:凝胶过滤层析、离子交换层析、疏水层析、亲和层析等。[/font] [/font][/b][font=宋体] [/font][b][font=宋体]①[/font][font=宋体]凝胶过滤层析[/font][/b][font=宋体]凝胶过滤层析(又叫做分子筛)是根据样品的分子大小对样品进行分离的一种简单温和的层析技术。凝胶过滤层析也称分子筛层析、排阻层析,是利用具有网状结构的凝胶的分子筛作用,根据被分离物质的分子大小不同来进行分离。不同于离子交换层析和亲和层析,凝胶过滤的层析样品不与层析柱料结合,因此,缓冲液成分不直接影响分辨率。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]原理:层析柱中的填料是球状颗粒的惰性的多孔网状结构的柱料,多是交联的聚糖[/font][font=Calibri]([/font][font=宋体]如葡聚糖或琼脂糖[/font][font=Calibri])[/font][font=宋体]类物质。在加入样品之后,样品中的小分子物质能进入球状填料内部,在柱子中停留时间较长;而大分子物质不能进入球状填料内部,停留时间较短。所以当样品经过凝胶过滤层析柱分离后,样品中的不同分子大小的物质就可以被分离开了。[/font][/font][font=宋体] [/font][font=宋体]特点:[/font][font=宋体] [/font][font=宋体]根据分子大小和形状进行分离[/font][font=宋体] [/font][font=宋体]是一种非吸附的分离方式[/font][font=宋体] [/font][font=宋体]缓冲液成分不直接影响分辨率,只需要一种缓冲液[/font][font=宋体] [/font][font=宋体]操作便捷[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]②[/font][font=宋体]离子交换层析[/font][/b][font=宋体]离子交换层析是目前蛋白质分离纯化中应用最广泛的方法之一。[/font][font=宋体] [/font][font=宋体]原理:不同蛋白等电点差异,分子大小差异,在同一个流动相中电荷密度分布不同,电荷量不等,与具有相反电荷的离子交换介质结合强度不同,在流动相洗脱时保留时间不同,从而得以分离。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体]特点:[/font][font=宋体] [/font][font=宋体]根据分子大小和等电点差异进行分离[/font][font=宋体] [/font][font=宋体]灵敏度高,重复性,选择性好,分析速度快[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]③[/font][font=宋体]疏水层析[/font][/b][font=宋体]原理:疏水层析是依据蛋白质疏水性差异分离的。即根据蛋白质和疏水介质表面的疏水基团的可逆相互作用进行分离。蛋白的疏水性在高离子强度下被增强,因此在高离子强度环境中结合,通常采用降低离子强度的方式进行洗脱。独特的吸附分离模式使得疏水层析成为硫酸铵盐析后或离子交换高盐洗脱后理想的纯化方式。[/font][font=宋体] [/font][font=宋体]特点:[/font][font=宋体] [/font][font=宋体]采用了盐的水溶液作为流动相,色谱条件温和,生物大分子的活性回收率很高。[/font][font=宋体] [/font][font=宋体][font=宋体]蛋白质在[/font][font=Calibri]HIC[/font][font=宋体]操作过程中是高盐上样,低盐洗脱(高盐浓度的样品不必作处理就可直接上样)。[/font][/font][font=宋体] [/font][font=宋体]在一次色谱中可同时实现出去盐酸胍、蛋白质复性和分离三个目的。[/font][font=宋体] [/font][font=宋体][font=宋体]温度升高,蛋白质天然折叠伸展,暴露出更多内部疏水集团,使蛋白质的[/font][font=Calibri]HIC[/font][font=宋体]保留发生变化。[/font][/font][font=宋体] [/font][font=宋体]色谱填料稳定性好,盐水体系作流动相无环境污染。[/font][font=宋体] [/font][b][font=宋体]④[/font][font=宋体]亲和层析[/font][/b][font=宋体][font=宋体]原理:[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-ac][b]亲和层析[/b][/url]是应用生物高分子与配基可逆结合的原理,将配基通过共价键牢固结合于载体上而制得的层析系统。这种可逆结合的作用主要是靠生物高分子对它的配基的空间结构的识别。常用的生物亲和关系有酶[/font][font=Calibri]-[/font][font=宋体]底物、底物类似物、抑制剂、激活剂、辅因子,抗体[/font][font=Calibri]-[/font][font=宋体]抗原,激素[/font][font=Calibri]-[/font][font=宋体]受体蛋白、载体蛋白,外源凝集素[/font][font=Calibri]-[/font][font=宋体]多糖、糖蛋白、细胞表面受体,核酸[/font][font=Calibri]-[/font][font=宋体]互补核苷酸序列、组蛋白、核酸结合蛋白等,具有高效、简单、快速的优点,是当前最为理想的分离纯化蛋白的方法。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以参看蛋白纯化技术[/font][font=Calibri]/[/font][font=宋体]方法:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques[/font][/font][font=Calibri] [/font]

  • 蛋白纯化标签应该如何选择

    蛋白纯化标签应该如何选择

    蛋白纯化的方法很多,如层析法、电泳法、超离心法、超滤等,其中蛋白质亲和层析法通常只需要一步操作便能将目标蛋白从混合物中分离出来,且纯度很高,因而备受实验者的喜爱。在进行蛋白表达时,选择合适的标签有利于蛋白的纯化,促进蛋白的可溶性,因此了解几种常用的蛋白纯化标签很重要。一般来说,常用的蛋白纯化标签主要有His tag、GST tag、MBP tag、NusA tag、Strep tag,那么这些蛋白纯化标签有什么不同之处呢?His tag(组氨酸标签)融合蛋白是目前最常见的表达方式,其优点是标签小,纯化步骤简便,纯化条件温和,能纯化可溶性/包涵体蛋白,一般不会影响蛋白的功能结构,且可以产出大量的目标蛋白,但该标签不适合易氧化蛋白或膜蛋白的纯化。[img=,317,395]http://ng1.17img.cn/bbsfiles/images/2017/05/201705032028_01_3223241_3.png[/img]GST tag(谷胱甘肽巯基转移酶)的洗脱条件温和,有助于保持蛋白功能活性,适合pull-down 检测,具有很好的线性动态范围,但分子量较大,可能会影响蛋白质的功能和下游实验,如果蛋白不可溶,很难用变性的方法进行纯化。[img=,604,167]http://ng1.17img.cn/bbsfiles/images/2017/05/201705032028_02_3223241_3.png[/img]MBP tag(麦芽糖结合蛋白标签)可以减少目标蛋白的降解,增加蛋白的表达量和稳定性,提高表达产物的水溶性,但标签较大,对蛋白的结构和功能会有一定影响。NusA tag(转录终止/抗终止蛋白标签)不具有独立的纯化标签功能,需要和其他标签(如His标签)联用,可提高蛋白质的溶解性,但由于分子量较大,对蛋白下游应用会有影响。Strep tag([color=#ff0000]strep[/color][color=#ff0000]标签[/color])能产出高纯度(95%)的目标蛋白,且能保持目标蛋白活性,主要是因其纯化流程温和。其次,能进行变性条件下的纯化。在用于WB/ELISA,可侦测目标蛋白。另外,还可固定目标蛋白,检测蛋白质交互作用,或更进一步用以筛选治疗用蛋白质,或是工业用酵素。但Strep tag纯化系统的价格相对His tag而言较高,所产出的目标蛋白数相对较少。

  • IBA蛋白纯化技术革新

    IBA蛋白纯化技术革新

    一般来说,不同的组织或细胞中可能同时存在多种蛋白质,蛋白的含量也不尽相同,因此,若生物化学实验中要对某一特殊蛋白质进行研究,首先要选择合适的细胞来表达这蛋白,再对其进行蛋白分离纯化,蛋白纯化工作非常复杂,除了需要实验者的细致和耐心之外,还需要选择合适的纯化系统。最常被使用的是蛋白亲和层析法(affinity chromatography),一般分为以下步骤:1. 选择适合标签来标记目标蛋白2. 将目标蛋白温和的从原来的组织或细胞中以裂解出来,使其与适当的配体结合。3. 进行数次清洗,将其它杂蛋白移除。4. 将目标蛋白从配体上洗脱下来。实验步骤看似简便,但其中所需细致和精力只有参与实验的研究人员才能体会,您是否厌倦了蛋白纯化后的杂带?厌倦了为一个纯化流程调配多种不同的缓冲液溶剂?厌倦了为了后续实验需要在目标蛋白上接入多种标签?第三代Strep-tag系统:[b]「Strep-TactinXT:Twin-Strep-tag」[/b]蛋白纯化系统,能有效提升您目标蛋白的纯度,解决您实验中所遇到的常见问题。[img=,435,288]http://ng1.17img.cn/bbsfiles/images/2017/04/201704271044_01_3223241_3.png[/img][b]STREP-TACTINXT:目标蛋白纯度95%[/b]纯化出纯度极高的融合蛋白是Strep-tag系统的最主要特点,优于其他亲和纯化系统,如常见的His-tag。上图展现了STREP-TACTINXT的纯化程序,利用第三代Strep-tag系统仅需进行一次纯化程序,不需另使用其他纯化手续就可得到高纯度的目标蛋白。而新一代的Strep-tag系统,因Strep-TactinXT与Twin-Strep-tag的极佳亲和力,还可应用于变性条件下的纯化、批量纯化、高通量筛选等领域。[img=,602,378]http://ng1.17img.cn/bbsfiles/images/2017/04/201704271044_02_3223241_3.png[/img][b]STREP-TACTINXT:高效率的固定目标蛋白[/b]由于Strep-TactinXT与Twin-Strep-tag间的亲和力极佳,第三代Strep-tag系统能够高效率的固定目标蛋白,纯化后能直接将其固定在您所需的介面上,不需另外使用其他亲和标签!

  • AKTA蛋白纯化系统操作

    AKTA蛋白纯化系统是当前重组蛋白表达与纯化服务中经常用到的一组设备,自动化程度很高。AKTA系统依据不同的配置,可以分为AKTA EXPLORER、AKTA PILOT、AKTA PURIFIER等多种型号的设备。以下以AKTA EXPLORER为例简单介绍AKTA蛋白纯化系统的一般操作。

  • 真核蛋白表达及纯化步骤有哪些?

    [font=宋体][font=宋体]真核蛋白表达系统是一种广泛应用的蛋白表达方式,通常利用酵母、昆虫或哺乳动物细胞作为宿主。这种表达系统所生成的蛋白与目标[/font][font=Calibri]DNA[/font][font=宋体]具有极高的相似性,能诱导高效蛋白表达。那么,在实施真核蛋白表达时,有哪些关键的纯化步骤呢?接下来,我们将详细解析这一过程。[/font][/font][font=宋体] [/font][font=宋体]首先,我们要明确真核蛋白表达的纯化步骤是至关重要的环节。这些步骤不仅关系到最终产品的纯度和产量,还直接影响其生物活性和应用价值。因此,选择合适的纯化方法对于整个实验的成功至关重要。[/font][font=宋体] [/font][b][font=宋体]真核蛋白表达及纯化步骤主要有以下几个方面:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组质粒构建:将目的基因克隆进表达载体,常见的方法包括限制性切酶切割,基因合成等,根据连接酶说明,进行线性载体和目的基因片段的酶联,最后对质粒测序做好验证;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、蛋白诱导表达:普适条件下查看蛋白是否表达,若不表达,更换载体,表达菌株等方法查看是否表达,如果表达,继续实验;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、蛋白表达部位分析:分析蛋白是可溶性还是不溶性的表达,即在超声后上清表达还是沉淀表达;是否与你的目标蛋白表达部位相同,相同进行后续蛋白表达条件优化;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、蛋白表达优化:优化诱导[/font][font=Calibri]IPTG[/font][font=宋体]浓度、诱导温度,进行放大培养;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体]、蛋白纯化:根据目标蛋白的性质进行样本处理,然后进行亲和纯化,获取目的蛋白。[/font][/font][font=宋体] [/font][font=宋体][b]真核表达系统的选择与应用[/b][/font][font=宋体]酵母蛋白表达系统[/font][font=宋体]酵母真核蛋白表达系统有甲醇酵母表达系统,酿酒酵母表达系统,裂殖酵母表达系统以及克鲁维酸酵母表达系统等,其中最早应用于基因工程的酵母是酿酒酵母,但现在运用最广泛的酵母表达系统还是甲醇酵母表达系统中的毕赤酵母真核蛋白表达系统。[/font][font=宋体] [/font][font=宋体]哺乳动物细胞表达系统[/font][font=宋体][font=宋体]哺乳动物细胞表达系统是真核表达系统中唯一可以表达复杂蛋白的系统,它能够指导真核表达蛋白进行正确折叠,提供复杂的[/font][font=Calibri]N[/font][font=宋体]型糖基化和准确的[/font][font=Calibri]O[/font][font=宋体]型糖基化等多种翻译后加工功能,所以它和昆虫酵母系统比较更具有发展潜力,哺乳动物细胞真核表达的蛋白与天然真核表达蛋白的结构、糖基化类型和方式几乎相同且能正确组装成多亚基蛋白[/font][font=Calibri],[/font][font=宋体]但成本较高也一定程度上减缓了它的发展速度。哺乳动物细胞表达系统主要是通过改造宿主细胞来提高外源蛋白的表达效率,常用的宿主细胞有[/font][font=Calibri]CHO[/font][font=宋体]、[/font][font=Calibri]COS[/font][font=宋体]、[/font][font=Calibri]BHK[/font][font=宋体]、[/font][font=Calibri]SP2 /0N[/font][font=宋体]等,哺乳动物转染方法[/font][font=Calibri]*[/font][font=宋体]有脂质体转染法,电穿孔法以及病毒转染等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques][b]蛋白纯化技术[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques[/font][/font][font=Calibri] [/font]

  • 蛋白纯化:原理、步骤详解

    [font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-purification-protocol][b]蛋白纯化[/b][/url]是生物实验室和制药工业中至关重要的技术。它涉及从复杂的混合物中分离出目标蛋白质,同时保持蛋白质的结构和功能。了解蛋白纯化的原理和步骤不仅有助于提高实验效率,还可以降低实验失败的风险。在本篇文章中,我们将详细介绍蛋白纯化的定义、原理和步骤。[/font][font=宋体] [/font][font=宋体][b]蛋白纯化定义及原理[/b][/font][font=宋体] [/font][font=宋体]蛋白纯化是生物研究常用的一种技术,是指从蛋白混合物中得到纯度较高的某种蛋白的过程。根据样本和杂质的特性选择适合的纯化方法,纯化技术的选择要简单化,并且要产生最佳的纯化效果。如果纯度的要求很高,再增加一个离子交换或疏水作用色谱的额外中间步骤。不过尽量尝试使用尽可能少的步骤,因为步骤增多会降低总蛋白产出量。亲和步骤常用重力柱,有时其他色谱步骤中会使用恒压泵,然而蛋白纯化系统将提供更多的控制,可获得更详细的目标蛋白和杂质信息,并为色谱柱提供更好的保护。[/font][font=宋体] [/font][font=宋体][b]可溶性蛋白纯化的步骤[/b][/font][font=宋体] [/font][font=宋体]用于分离可溶性重组或非重组蛋白的分离方法取决于蛋白的内在生理化学特性(被标记蛋白除外)。典型的纯化方案如下所示(使用离子交换色谱法)。[/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、细胞裂解液[/font][/font][font=宋体]澄清裂解液[/font][font=宋体][font=宋体]离心([/font][font=Calibri]60000[/font][font=宋体]×[/font][font=Calibri]g[/font][font=宋体],[/font][font=Calibri]90 [/font][font=宋体]分钟)过滤或脱盐和交换缓冲液[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、澄清裂解液[/font][/font][font=宋体]①用亲和法[/font][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])进行[/font][font=Calibri]DEAE-Sepharose[/font][font=宋体]离子交换[/font][/font][font=宋体]交换缓冲液[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])进行离子交换[/font][/font][font=宋体][font=宋体]? 弱阳离子[/font][font=Calibri]-[/font][font=宋体]羧甲基[/font][/font][font=宋体][font=宋体]? 强阳离子[/font][font=Calibri]-[/font][font=宋体]甲基磺酸盐[/font][/font][font=宋体][font=宋体]? 强阴离子[/font][font=Calibri]-[/font][font=宋体]季铵盐[/font][/font][font=宋体][font=宋体]? 弱阴离子[/font][font=Calibri]-[/font][font=宋体]二乙氨基乙基[/font][/font][font=宋体]? 磷酸纤维素[/font][font=宋体] [/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])用其他色谱方法[/font][/font][font=宋体]? 染料基质[/font][font=宋体]? 疏水[/font][font=宋体]? 羟磷灰石[/font][font=宋体]? 层析聚焦[/font][font=宋体] [/font][font=宋体]②浓缩[/font][font=宋体] [/font][font=宋体]③进行凝胶过滤[/font][font=宋体]④无菌过滤[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、经纯化的蛋白[/font][/font][font=宋体] [/font][font=宋体][b]包涵体蛋白的折叠与纯化[/b][/font][font=宋体]在大肠杆菌中表达的重组蛋白位于细胞裂解后低速颗粒部分,它们高度聚集。包涵体通常来自于细胞质(或细胞周质,如使用了分泌载体)中的蛋白聚集。如前所述,由于与细菌核酸的相互作用,蛋白也可以位于低速或高速颗粒部分中。[/font][font=宋体] [/font][font=宋体][font=宋体]采用蛋白变性剂提取蛋白,如盐酸胍[/font][font=Calibri](Gu[/font][font=宋体][/font][font=Calibri]HCl)[/font][font=宋体]、尿素或有机酸。使用还原剂二硫苏糖醇[/font][font=Calibri](DTT)[/font][font=宋体]防止人工二硫键形成(尤其是分子间键)。变性后的蛋白可以通过各种方法纯化后再折叠,也可以直接折叠。通常建议在折叠前进行一些纯化(如[/font][font=Calibri]Gu[/font][font=宋体][/font][font=Calibri]HCl[/font][font=宋体]中的凝胶过滤),因为这往往会带来更高的折叠产率。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]原文转载:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-protocol[/font][/font]

  • 蛋白测定的催化剂

    请问大家做蛋白时用什么做催化剂硒片还是用硫酸铜硫酸钾,还有用其他的吗用不同的催化剂消化时间和结果有差异吗还有硒片在哪买的到啊

  • 蛋白纯化的原理、操作及注意事项有哪些?

    [font=宋体][b]蛋白纯化的原理:[/b][/font][font=宋体]不同的重组蛋白具有不同的氨基酸序列和空间结构,导致其物理、化学和生物学特性存在差异。我们也可以根据目标蛋白与其他蛋白和裂解液的性质差异设计合理的蛋白纯化方案。[/font][font=宋体] [/font][font=宋体][font=宋体]大多数的纯化方案需要不止一步才能达到理想的纯度水平。该过程中的每一步都会造成一定的产品损失,假设每一步的获得率为[/font][font=Calibri]80%[/font][font=宋体]。因此,建议尽可能减少纯化步骤。起始原料的选择是纯化过程设计的关键。[/font][/font][font=宋体] [/font][font=宋体]在背景信息、检测方法和样品规格都已到位的情况下,可以考虑采用三阶段纯化策略。纯化分为捕获、中度纯化和精细纯化三个阶段,每个阶段都有特定的目标。捕获阶段的目标是分离、浓缩和稳定目标产物。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]蛋白纯化实际操作:[/font][/b][font=宋体] [/font][font=宋体]理想情况下,最终的纯化过程包括样品制备,其中包括在需要时进行萃取和澄清,然后进行上述三个阶段的纯化。步骤的数量始终取决于所需的纯度和蛋白的预期用途。[/font][font=宋体] [/font][font=宋体][font=宋体]分析纯化通常利用三个特性来分离蛋白。首先,蛋白可以通过[/font][font=Calibri]pH[/font][font=宋体]梯度凝胶或离子交换柱,根据其等电点进行纯化。其次,根据蛋白大小或分子量,可以通过体积排除色谱法分离或通过[/font][font=Calibri]SDS-PAGE([/font][font=宋体]十二烷基硫酸钠[/font][font=Calibri]-[/font][font=宋体]聚丙烯酰胺凝胶电泳[/font][font=Calibri])[/font][font=宋体]分析。通常采用[/font][font=Calibri]2D-PAGE[/font][font=宋体]对蛋白进行纯化,然后进行肽质量指纹图谱分析,以确定蛋白的特性。这对于实现科学目的非常有用,目前蛋白的检测限非常低,纳克级的蛋白足以用于分析。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]如何应用纯化原则:[/b][/font][font=宋体]①纯化技术的选择和组合:[/font][font=宋体]这种组合的目的是发展出一条最快的方法来获得所需纯度的产品。对于任何色谱分离来说,不同的技术在回收率、分辨率、速度和容量方面的表现都各不相同。我们可以对一种技术进行优化,使其专注于其中一个参数;例如分辨率要在速度和容量两个参数之间达到最佳。[/font][font=宋体] [/font][font=宋体]分辨率是通过技术的选择和色谱基质产生窄峰的效率来实现的。一般来说,此时目标蛋白和杂质具有非常相似的性质,分辨率是最难实现的。[/font][font=宋体] [/font][font=宋体][font=宋体]②标签蛋白的纯化[/font][font=Calibri]:[/font][/font][font=宋体][font=宋体]在蛋白中添加标签可以使蛋白具有它本来不具有的结合亲和力。通常重组蛋白是混合物中唯一具有这种亲和力的蛋白,有助于蛋白分离。最常见的标签是对镍或钴离子有亲和力的组氨酸标签([/font][font=Calibri]His[/font][font=宋体]标签)。因此,我们通过将镍离子或钴离子固定在树脂上,可以创建与组氨酸标签蛋白特异性结合的亲和介质。[/font][/font][font=宋体] [/font][font=宋体]③评估纯化产量:[/font][font=宋体][font=宋体]通常使用[/font][font=Calibri]SDS PAGE[/font][font=宋体]监测纯化过程中的不同步骤。这一方法只能粗略地测量混合物中不同蛋白的量,并且无法区分具有相似分子量的蛋白。为了评估多步纯化的过程,必须将特定蛋白的量与总蛋白的量进行比较。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]蛋白表达纯化实验中注意事项有哪些?[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]选择表达载体时,要根据所表达蛋白的最终应用考虑。如为方便纯化,可选择融合表达;如为获得天然蛋白,可选择非融合表达。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]融合表达时在选择外源[/font][font=Calibri]DNA[/font][font=宋体]同载体分子连接反应时,对转录和转译过程中密码结构的阅读不能发生干扰。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]菌液[/font][font=Calibri]OD[/font][font=宋体]值要小于[/font][font=Calibri]1[/font][font=宋体],否则细胞太浓太老,不易破碎,且质粒易丢失。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4. [/font][font=宋体]诱导时间最好做一个梯度,不同蛋白诱导时间需摸索。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5. [/font][font=宋体]诱导温度适当摸索。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6. IPTG[/font][font=宋体]浓度:一般在[/font][font=Calibri]1 mM [/font][font=宋体]以内,可适当摸索。[/font][/font][font=宋体] [/font][font=宋体]7. [/font][font=宋体]超声条件可视实际情况改变,只要使菌体裂解充分即可,即菌液清亮不粘稠。[/font][font=宋体][b]义翘神州提供[/b][url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]原核蛋白纯化服务[/b][/url][b],服务内容包括:[/b][/font][font=宋体]①基因合成及密码子优化[/font][font=宋体]②载体构建[/font][font=宋体]③表达鉴定和可溶性分析[/font][font=宋体][font=宋体]④放大表达和[/font][font=Calibri]1-2[/font][font=宋体]步纯化[/font][/font][font=宋体]⑤大量表达及纯化[/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/e-coli-protein-expression-service[/font][/font]

  • 蛋白标签纯化有哪些?有哪些特性及优缺点

    [font=宋体][font=宋体]体外重组蛋白表达技术已经渗透到生物学的各个领域。目前,体外重组蛋白表达系统主要有四类:原核表达系统、哺乳动物细胞表达、酵母表达系统及昆虫细胞表达。表达的一般实验包括载体构建[/font][font=Calibri]-[/font][font=宋体]表达鉴定[/font][font=Calibri]-[/font][font=宋体]蛋白纯化三大步骤。在构建载体阶段,除了一些必要的表达元件,还需要考虑的密码子优化和标签的选择。选择合适的标签不但有利于蛋白的纯化,促进蛋白的可溶性,同时也不能影响蛋白的结构功能和下游应用。本文详细介绍了几种蛋白纯化标签,帮助我们更好的设计实验。[/font][/font][font=宋体] [/font][font=宋体][b]蛋白纯化标签比较[/b][/font][table][tr][td][b][font=微软雅黑]融合标签[/font][/b][/td][td][b][font=微软雅黑][font=微软雅黑]大小([/font][font=微软雅黑]KD)[/font][/font][/b][/td][td][b][font=微软雅黑]功能[/font][/b][/td][td][b][font=微软雅黑]是否切除[/font][/b][/td][/tr][tr][td][font=微软雅黑]HIS[/font][/td][td][font=微软雅黑]0.84[/font][/td][td][font=微软雅黑][font=微软雅黑]有利纯化,能纯化可溶性[/font][font=微软雅黑]/包涵体蛋白[/font][/font][/td][td][font=微软雅黑]标签小,对蛋白无影响[/font][/td][/tr][tr][td][font=微软雅黑]GST[/font][/td][td][font=微软雅黑]26[/font][/td][td][font=微软雅黑]增强蛋白可溶性,仅能纯化可溶性蛋白,屏蔽毒性蛋白[/font][/td][td][font=微软雅黑]标签较大,影响较大[/font][/td][/tr][tr][td][font=微软雅黑]MBP[/font][/td][td][font=微软雅黑]44.4[/font][/td][td][font=微软雅黑]增强蛋白可溶性,屏蔽毒性蛋白[/font][/td][td][font=微软雅黑] [/font][/td][/tr][tr][td][font=微软雅黑]NusA[/font][/td][td][font=微软雅黑]55[/font][/td][td][font=微软雅黑]增强蛋白可溶性,屏蔽毒性蛋白[/font][/td][td][font=微软雅黑] [/font][/td][/tr][tr][td][font=微软雅黑]SOMO[/font][/td][td][font=微软雅黑]11.2[/font][/td][td][font=微软雅黑]增强可溶性,屏蔽毒性蛋白[/font][/td][td][font=微软雅黑] [/font][/td][/tr][/table][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]HIS-Tag[/font][font=宋体](组氨酸标签)[/font][/font][/b][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]HIS-Tag[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/poly-his-tag-protein-expression][b]蛋白纯化[/b][/url]的首选标签[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]HIS-Tag[/font][font=宋体]本身的特性对目的蛋白没有影响,不会形成二聚体;[/font][/font][font=宋体] [/font][font=宋体][font=宋体]分子量较小,只有[/font][font=Calibri]0.84KD[/font][font=宋体],对蛋白的下游应用不会产生影响;[/font][/font][font=宋体] [/font][font=宋体]免疫原性低,可将纯化的蛋白直接注射动物进行免疫并制备抗体;[/font][font=宋体] [/font][font=宋体][font=Calibri]HIS-Tag[/font][font=宋体]与细菌的转录翻译机制兼容,有利于蛋白表达;[/font][/font][font=宋体] [/font][font=宋体]可与其他标签构建双标签表达,可用于多种蛋白表达系统,纯化条件温和对蛋白影响较小。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]HIS-Tag[/font][font=宋体]由[/font][font=Calibri]6-10[/font][font=宋体]个组氨酸残基组成,分子量不到[/font][font=Calibri]0.84KD[/font][font=宋体],,通常插入在目的蛋白的[/font][font=Calibri]C[/font][font=宋体]末端或[/font][font=Calibri]N[/font][font=宋体]末端。[/font][font=Calibri]HIS-Tag[/font][font=宋体]是目前原核表达最常用的标签,蛋白纯化完之后可以不需切除此标签,也不会对蛋白产生功能影响。同时,蛋白纯化步骤简便,纯化条件温和,对蛋白也不会产生太大影响。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]GST-Tag[/font][font=宋体](谷胱甘肽巯基转移酶标签)[/font][/font][/b][font=宋体][font=Calibri]GST-Tag[/font][font=宋体]相对分子质量较大,约为[/font][font=Calibri]26KD[/font][font=宋体],插入在目的蛋白的[/font][font=Calibri]C[/font][font=宋体]末端或[/font][font=Calibri]N[/font][font=宋体]末端,大肠杆菌中常用在[/font][font=Calibri]N[/font][font=宋体]端。[/font][font=Calibri]GST([/font][font=宋体]谷胱甘肽巯基转移酶[/font][font=Calibri]) [/font][font=宋体]蛋白本身是一个在解毒过程中起到重要作用的转移酶。一般选择[/font][font=Calibri]GST[/font][font=宋体]标签的目的有两个,一是提高蛋白表达的可溶性,二是提高蛋白的表达量。蛋白表达纯化结束后需根据不同的蛋白应用而确定是否切除标签,标签较大,切除与否需根据下游应用考虑。如果要去除[/font][font=Calibri]GST[/font][font=宋体]融合部分,可用位点特异性蛋白酶切除。检测方法可用[/font][font=Calibri]GST[/font][font=宋体]抗体或表达的目的蛋白特异性抗体检测。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]GST-Tag[/font][font=宋体]的优缺点[/font][/font][/b][font=宋体]增加外源蛋白的可溶性;[/font][font=宋体] [/font][font=宋体]可在不同的宿主中表达,适用范围广;[/font][font=宋体] [/font][font=宋体]可用不同的蛋白酶可以方便去除;[/font][font=宋体] [/font][font=宋体]很好保留了蛋白的抗原性和生物活性,提高外原蛋白的稳定性;[/font][font=宋体] [/font][font=宋体]高特异性,纯化方便且温和;[/font][font=宋体] [/font][font=宋体]分子量较大,可能会影响蛋白质的功能和下游实验;[/font][font=宋体] [/font][font=宋体]如果蛋白不可溶,很难用变性的方法纯化。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]GST[/font][font=宋体]亲和纯化原理[/font][/font][/b][font=宋体][font=Calibri]GST [/font][font=宋体]亲和层析是利用[/font][font=Calibri]GST [/font][font=宋体]融合蛋白与固定的谷胱甘肽[/font][font=Calibri](GSH)[/font][font=宋体]通过硫键共价亲和,通过[/font][font=Calibri]GSH[/font][font=宋体]交换洗脱的原理来进行纯化 。该纯化柱中,凝胶手臂上通过硫键结合一个谷胱甘肽。然后利用谷胱甘肽与谷胱甘肽巯基转移酶(即[/font][font=Calibri]GST-tag[/font][font=宋体]([/font][font=Calibri]26 KDa[/font][font=宋体]))之间酶和底物的特异性作用力,使得带[/font][font=Calibri]GST[/font][font=宋体]标签的融合蛋白能够与凝胶上的手臂谷胱甘肽结合,从而将带标签的蛋白与其他蛋白分离开。谷胱甘肽通常有氧化型[/font][font=Calibri]GSSG[/font][font=宋体]和还原型[/font][font=Calibri]GSH[/font][font=宋体],当我们使用[/font][font=Calibri]GSH[/font][font=宋体]洗脱时,[/font][font=Calibri]GSH[/font][font=宋体]会与凝胶上的谷胱甘肽竞争结合融合蛋白,从而将目标蛋白洗脱。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]GST[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/gst-tag-protein-expression][b]标签蛋白[/b][/url]可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶[/font][font=Calibri](Glutathione sepharose)[/font][font=宋体]亲和树脂进行纯化。[/font][font=Calibri]GST[/font][font=宋体]标签蛋白可在温和、非变性条件下洗脱,因此保留了蛋白的抗原性和生物活性。[/font][font=Calibri]GST[/font][font=宋体]在变性条件下会失去对谷胱甘肽树脂的结合能力,因此不能在纯化缓冲液中加入强变性剂如:盐酸胍或尿素等。如果蛋白表达在包涵体中,可复性后再纯化。此外要去除[/font][font=Calibri]GST[/font][font=宋体]标签,可用位点特异性蛋白酶切除。[/font][/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体][font=Calibri]MBP-Tag[/font][font=宋体](麦芽糖结合蛋白标签)[/font][/font][/b][font=宋体][font=Calibri]MBP[/font][font=宋体](麦芽糖结合蛋白[/font][font=Calibri]maltose binding protein[/font][font=宋体]), 残基数[/font][font=Calibri]346[/font][font=宋体],分子量[/font][font=Calibri]42.5KDa[/font][font=宋体],由大肠杆菌[/font][font=Calibri]K12[/font][font=宋体]的[/font][font=Calibri]malE[/font][font=宋体]基因编码,构建时刻放在[/font][font=Calibri]N[/font][font=宋体]端,用来提高可溶性(尤其是真核蛋白)。[/font][font=Calibri]MBP[/font][font=宋体]的折叠需要[/font][font=Calibri]DnaK-DnaJ-GrpE[/font][font=宋体]和[/font][/font][font=宋体][font=Calibri]GroEL-GeoES[/font][font=宋体]两个分子伴侣系统的帮助,这可以使这些分子伴侣聚集到目的蛋白的附近帮助其正确折叠。另外,以标签蛋白形式存在的麦芽糖结合蛋白可以减少目的蛋白的降解,提高表达产物的水溶性,也为以后对目的蛋白的纯化提供了基础。麦芽糖结合蛋白能够被多糖树脂吸附,因此在过柱时,能够使融合蛋白与其它蛋白成份分离。[/font][/font][font=宋体][font=Calibri]MBP[/font][font=宋体]氨基酸序列:[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]MBP[/font][font=宋体]标签的优缺点[/font][/font][/b][font=宋体]简单亲和纯化即可实现;[/font][font=宋体] [/font][font=宋体]增加蛋白表达量和蛋白稳定性;[/font][font=宋体] [/font][font=宋体]促进蛋白的可溶性和正确折叠;[/font][font=宋体] [/font][font=宋体][font=宋体]标签较大,对蛋白的结构[/font][font=Calibri]/[/font][font=宋体]功能会有一定影响。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]NusA-Tag[/font][font=宋体](转录终止[/font][font=Calibri]/[/font][font=宋体]抗终止蛋白标签)[/font][/font][/b][font=宋体][font=Calibri]NusA[/font][font=宋体]是大肠杆菌自身的一种蛋白,即转录抗终止因子,残基数[/font][font=Calibri],495[/font][font=宋体],分子量[/font][font=Calibri]:54.87KDa[/font][font=宋体],由[/font][font=Calibri]1999[/font][font=宋体]年[/font][font=Calibri]Davia[/font][font=宋体]将[/font][font=Calibri]NusA[/font][font=宋体]从[/font][font=Calibri]4000[/font][font=宋体]种大肠杆菌蛋白库中筛得。[/font][font=Calibri]NusA[/font][font=宋体]不具有独立的纯化标签功能,所以要与其它标签[/font][font=Calibri]([/font][font=宋体]如[/font][font=Calibri]His[/font][font=宋体]标签[/font][font=Calibri])[/font][font=宋体]联用。利用原核表达时,[/font][font=Calibri]NusA[/font][font=宋体]标签可以明显的提高蛋白的可溶性,例如含有[/font][font=Calibri]NusA[/font][font=宋体]标签的人白介素[/font][font=Calibri]-3 [/font][font=宋体]融合蛋白[/font][font=Calibri](NusA/hIL-3 )[/font][font=宋体]在[/font][font=Calibri]37[/font][font=宋体]℃条件下诱导表达几乎全部可溶[/font][font=Calibri](97%)[/font][font=宋体],而当其单独表达或融合[/font][font=Calibri]GST[/font][font=宋体]标签表达时都是包涵体形式。另外[/font][font=Calibri]NusA[/font][font=宋体]标签还可以提高不溶性靶蛋白如牛生长激素([/font][font=Calibri]bGH)[/font][font=宋体]、人干扰素[/font][font=Calibri]-[/font][font=宋体]γ [/font][font=Calibri](hIFN-[/font][font=宋体]γ[/font][font=Calibri])[/font][font=宋体]的可溶性。来自草木犀根瘤菌[/font][font=Calibri](Rizobiummeliloti)[/font][font=宋体]的酪氨酸激酶因为分子量大[/font][font=Calibri]([/font][font=宋体]超过[/font][font=Calibri]54kDa)[/font][font=宋体]并且基因含有大量稀有密码子,自身在大肠杆菌中无法过量表达,但是与[/font][font=Calibri]NusA[/font][font=宋体]融合后却可以高效表达。[/font][/font][font=宋体][font=Calibri]NusA[/font][font=宋体]氨基酸序列:[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]NusA[/font][font=宋体]的优缺点[/font][/font][/b][font=宋体][font=宋体]可以提高蛋白质的溶解性,可选的标签有[/font][font=Calibri]NusA[/font][font=宋体],[/font][font=Calibri]MBP[/font][font=宋体],[/font][font=Calibri]GST[/font][font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=宋体]这些标签不能用专门的亲和基质纯化,融合蛋白构建时必须与可用于纯化的小亲和标签连用。尤其是当[/font][font=Calibri]NusA[/font][font=宋体]蛋白增加融合蛋白溶解性时,一些在大肠杆菌中表达为不溶性的蛋白在与[/font][font=Calibri]NusA[/font][font=宋体]在[/font][font=Calibri]N[/font][font=宋体]端融合时则变成可溶。但是由于它的分子量较大,导致靶蛋白的得率相对降低;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]NusA[/font][font=宋体]本身不具有独立的纯化标签功能,所以要与其它标签如[/font][font=Calibri]His[/font][font=宋体]标签联用;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]NusA[/font][font=宋体]对蛋白下游应用会有影响,如蛋白需进行结构分析(晶体衍射或核磁共振)。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]SUMO[/font][font=宋体](小泛素相关修饰物)[/font][/font][/b][font=宋体][font=Calibri][url=https://cn.sinobiological.com/resource/protein-review/sumo-tag-purification][b]SUMO[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/resource/protein-review/sumo-tag-purification][b]标签蛋白[/b][/url]是一种小分子泛素相关修饰蛋白,是存在于真核生物中高度保守的参与蛋白质小泛素化相关修饰的一类大蛋白。与[/font][font=Calibri]GST[/font][font=宋体]、[/font][font=Calibri]MBP[/font][font=宋体]或[/font][font=Calibri]NusA[/font][font=宋体]相比,[/font][font=Calibri]SUMO[/font][font=宋体]不仅可以作为重组蛋白表达的融合标签还具备分子伴侣的功能,能促进蛋白的正确折叠,对热和蛋白酶具有耐受性,更有助于保持目的蛋白的稳定性。此外,[/font][font=Calibri]SUMO[/font][font=宋体]标签有着与其配套的蛋白酶(专一性强),此蛋白酶识别的是[/font][font=Calibri]SUMO[/font][font=宋体]的三级结构,切割的特异性极高,不存在任何氨基酸的残留,因此适用于重组蛋白表达。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以关注[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]蛋白标签[/b][/url]纯化:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font][font=Calibri] [/font]

  • 蛋白纯化常见问题解析

    [font=宋体][url=https://cn.sinobiological.com/resource/protein-review/protein-purification][b]蛋白纯化[/b][/url]是生物学实验中的关键环节,旨在从复杂的生物样本中分离和提纯出目标蛋白质。然而,在蛋白纯化的过程中,研究人员常常会遇到各种问题和挑战。这些问题可能源于样本的复杂性、蛋白质的特性,或是纯化技术的局限性。为了成功地进行蛋白纯化,理解并解决这些常见问题至关重要。下面是关于蛋白纯化的相关问题解析,希望对你有帮助:[/font][font=宋体] [/font][b][font=宋体]一、蛋白质的纯化技术有哪些?[/font][/b][font=宋体] [/font][font=宋体]①沉淀法[/font][font=宋体]②电泳[/font][font=宋体][font=宋体]在克隆基因表达产物的检测分析过程中,电泳是常用的方法,但在纯化蛋白时,通常都不采用电泳的方法。由于某些特殊的目的,需要用聚丙烯酰胺凝胶电泳纯化蛋白质,常用下述方法进行:[/font][font=宋体]①从电泳后的凝胶上切下所需的相应条带,将凝胶压碎,用缓冲液浸泡,使其中的蛋白质扩散出来,从而获得纯化的蛋白质。此法简单但回收率低。②将电泳后的凝胶用电洗脱的方法使蛋白质从凝胶转移到溶液中,从而达到纯化的目的。此法快速,回收率高,但需要特殊的电泳装置。[/font][/font][font=宋体]③色谱法:[/font][font=宋体][font=宋体]色谱法([/font][font=Calibri]chromatography[/font][font=宋体])是蛋白纯化中最常用的一种方法,这种方法既可以制备大量的纯化蛋白质,又可以保持蛋白质的生物学活性。色谱的种类很多,可分为常规色谱和高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]([/font][font=Calibri]high-performance liquid chromatography,HPLC[/font][font=宋体])。凝胶过滤色谱、离子交换色谱、亲和色谱等均为常规色谱法。[/font][font=Calibri]HPLC[/font][font=宋体]包括反相高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]([/font][font=Calibri]reversed-phase HPLC,RP-HPLC[/font][font=宋体])、离子交换高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]([/font][font=Calibri]ion exchange HPLC[/font][font=宋体])等。根据目标蛋白性质的不同可选用相应的色谱分离技术纯化蛋白质。[/font][/font][font=宋体] [/font][b][font=宋体]二、什么是最好的蛋白质纯化方法?[/font][/b][font=宋体] [/font][font=宋体][font=宋体]常见的蛋白质纯化方法包括色谱法(如凝胶过滤、离子交换和亲和色谱)、电泳法(如[/font][font=Calibri]SDS-PAGE[/font][font=宋体]和[/font][font=Calibri]Native-PAGE[/font][font=宋体])以及沉淀法(如盐析和有机溶剂沉淀)。每种方法都有其独特的优缺点和适用范围。[/font][/font][font=宋体] [/font][font=宋体]例如,凝胶过滤色谱适用于大规模纯化,能够基于蛋白质的分子量进行分离;离子交换色谱则适用于根据蛋白质的电荷差异进行分离;而亲和色谱则特别适用于那些与特定配体有高亲和力的蛋白质。电泳法则更适用于分析蛋白质的纯度或分离特定亚型的蛋白质。[/font][font=宋体] [/font][font=宋体]综合考虑,我认为最好的蛋白质纯化方法应该是结合了多种纯化技术的综合方案。这种方案可以根据目标蛋白质的具体性质,灵活选择和应用不同的纯化技术,以达到最高的纯度和分离效率。此外,自动化和智能化的纯化系统也是未来的发展趋势,它们能够减少人为操作误差,提高纯化的稳定性和可重复性。[/font][font=宋体] [/font][font=宋体]总之,选择最佳的蛋白质纯化方法需要综合考虑多种因素,并可能需要根据实际情况进行调整和优化。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]三、蛋白质纯化的一般策略是什么?[/font][/b][font=宋体] [/font][font=宋体]①纯化技术的选择和组合:[/font][font=宋体]这种组合的目的是发展出一条最快的方法来获得所需纯度的产品。对于任何色谱分离来说,不同的技术在回收率、分辨率、速度和容量方面的表现都各不相同。我们可以对一种技术进行优化,使其专注于其中一个参数;例如分辨率要在速度和容量两个参数之间达到最佳。[/font][font=宋体] [/font][font=宋体]分辨率是通过技术的选择和色谱基质产生窄峰的效率来实现的。一般来说,此时目标蛋白和杂质具有非常相似的性质,分辨率是最难实现的。[/font][font=宋体] [/font][font=宋体][font=宋体]②标签蛋白的纯化[/font][font=Calibri]:[/font][/font][font=宋体][font=宋体]在蛋白中添加标签可以使蛋白具有它本来不具有的结合亲和力。通常重组蛋白是混合物中唯一具有这种亲和力的蛋白,有助于蛋白分离。最常见的标签是对镍或钴离子有亲和力的组氨酸标签([/font][font=Calibri]His[/font][font=宋体]标签)。因此,我们通过将镍离子或钴离子固定在树脂上,可以创建与组氨酸标签蛋白特异性结合的亲和介质。[/font][/font][font=宋体] [/font][font=宋体]③评估纯化产量:[/font][font=宋体][font=宋体]通常使用[/font][font=Calibri]SDS PAGE[/font][font=宋体]监测纯化过程中的不同步骤。这一方法只能粗略地测量混合物中不同蛋白的量,并且无法区分具有相似分子量的蛋白。为了评估多步纯化的过程,必须将特定蛋白的量与总蛋白的量进行比较。[/font][/font][font=宋体] [/font][b][font=宋体]四、蛋白质纯化的色谱技术有哪些不同?[/font][/b][font=宋体] [/font][font=宋体]以下是几种常见的蛋白质纯化色谱技术及其特点:[/font][font=宋体] [/font][font=宋体][font=宋体]凝胶过滤色谱([/font][font=Calibri]Gel Filtration Chromatography[/font][font=宋体]):也被称为尺寸排阻色谱,它主要根据蛋白质的分子量和形状大小来分离蛋白质。这种技术使用多孔的球形颗粒作为固定相,允许小分子量的蛋白质进入孔中并长时间滞留,而大分子量的蛋白质则不能进入孔中,因此会更快地洗脱出来。这种方法的优点在于设备简单、操作方便,且适用于分离纯化蛋白质、核酸、多糖等多种物质。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]离子交换色谱([/font][font=Calibri]Ion Exchange Chromatography[/font][font=宋体]):这种技术是基于蛋白质与离子交换剂的亲和力来分离蛋白质的。离子交换剂上的带电基团与蛋白质表面的带电基团相互作用,从而实现蛋白质的分离。这种方法适用于分离具有不同电荷或电荷密度的蛋白质。[/font][/font][font=宋体][font=宋体]亲和色谱([/font][font=Calibri]Affinity Chromatography[/font][font=宋体]):亲和色谱是一种高度特异性的分离方法,它利用生物分子之间的特异性亲和作用来分离目标蛋白质。通常,亲和色谱使用一种与目标蛋白质有高度亲和力的配体作为固定相,当目标蛋白质流经色谱柱时,会与配体结合,从而实现分离。这种方法具有高分辨率和高选择性的优点,特别适用于分离含量极低或性质不稳定的蛋白质。[/font][/font][font=宋体] [/font][font=宋体]总的来说,不同的色谱技术各有优缺点,选择哪种方法取决于目标蛋白质的性质、纯化的要求以及可用的设备和技术。在实际应用中,可能需要根据实际情况将不同的色谱技术组合使用,以达到最佳的纯化效果。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/recombinant-protein-expression-service][b]重组蛋白表达纯化服务[/b][/url],详情关注:[/font][font=Calibri]https://cn.sinobiological.com/services/recombinant-protein-expression-service[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 蛋白纯化中的DTT:作用与应用

    [font=宋体][font=宋体]在生物科学领域,[url=https://cn.sinobiological.com/resource/protein-review/protein-purification][b]蛋白质纯化[/b][/url]是一个至关重要的过程,它有助于获取单一、高纯度的蛋白质,以便进行结构和功能分析。在这个过程中,二硫苏糖醇([/font][font=Calibri]DTT[/font][font=宋体])作为一种常用的还原剂,扮演着不可或缺的角色。本文将详细探讨[/font][font=Calibri]DTT[/font][font=宋体]在蛋白纯化中的重要作用。[/font][/font][b][font=宋体] [/font][font=宋体][font=宋体]一、[/font][font=Calibri]DTT[/font][font=宋体]的作用机制[/font][/font][/b][font=宋体] [/font][font=宋体][font=Calibri]DTT[/font][font=宋体]是一种小分子化合物,具有很强的还原能力。其主要作用是还原蛋白质中的二硫键。在蛋白质中,二硫键的形成对于维持蛋白质的高级结构和功能至关重要。然而,在进行蛋白质纯化时,这些二硫键有时会成为障碍,影响蛋白质的分离和纯化。此时,[/font][font=Calibri]DTT[/font][font=宋体]就派上了用场。通过与二硫键反应,[/font][font=Calibri]DTT[/font][font=宋体]能够将其还原为巯基,从而打破原有的二硫键,降低蛋白质的聚合倾向,使其更容易进行后续的纯化步骤。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]二、[/font][font=Calibri]DTT[/font][font=宋体]在蛋白纯化中的应用[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]打破二硫键:在许多蛋白质中,二硫键的形成维持了蛋白质的高级结构。在纯化过程中,为了更好地分离和纯化蛋白质,需要打破这些二硫键。[/font][font=Calibri]DTT[/font][font=宋体]的引入可以有效地实现这一目标。[/font][/font][font=宋体][font=宋体]防止蛋白质聚合:某些条件下,蛋白质可能会发生聚合,这会影响纯化的效果。[/font][font=Calibri]DTT[/font][font=宋体]可以通过还原二硫键,降低蛋白质的聚合倾向,从而提高纯化的效率和效果。[/font][/font][font=宋体][font=宋体]辅助蛋白质的分离和纯化:在某些情况下,蛋白质的电荷性质会因为二硫键的存在而受到影响,这会影响到蛋白质在电泳或离子交换等分离技术中的行为。此时,[/font][font=Calibri]DTT[/font][font=宋体]可以改变蛋白质的电荷性质,使其更容易被分离和纯化。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]三、使用[/font][font=Calibri]DTT[/font][font=宋体]时的注意事项[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]虽然[/font][font=Calibri]DTT[/font][font=宋体]在蛋白纯化中具有广泛的应用,但使用时仍需谨慎。首先,[/font][font=Calibri]DTT[/font][font=宋体]具有一定的还原性,可能会影响某些实验的准确性或导致非特异性反应。因此,在使用[/font][font=Calibri]DTT[/font][font=宋体]处理蛋白质样品时,应充分考虑其对实验的影响。其次,[/font][font=Calibri]DTT[/font][font=宋体]的处理时间、浓度等条件需要进行优化,以避免对目标蛋白造成不必要的修饰或破坏。最后,处理过的蛋白质样品应及时进行下一步分析或保存,以避免重新形成二硫键或发生其他变化。[/font][/font][font=宋体] [/font][b][font=宋体]四、总结[/font][/b][font=宋体] [/font][font=宋体][font=宋体]总的来说,[/font][font=Calibri]DTT[/font][font=宋体]在蛋白纯化中起到了重要的作用,它能够还原二硫键、打破蛋白质的高级结构、降低蛋白质的聚合倾向等。然而,使用[/font][font=Calibri]DTT[/font][font=宋体]时也需要注意其对实验的影响和可能带来的问题。未来随着研究的深入和技术的发展,我们期待更加高效、准确的蛋白纯化方法出现,为生物科学领域的研究提供更多可能性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]蛋白纯化详情可以关注义翘神州![/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=Calibri] [/font]

  • 汉邦科技蛋白纯化仪

    汉邦科技蛋白纯化仪

    [size=18px] 汉邦全自动蛋白纯化系统是公司自主研发的一款高效、快速、可靠的全自动蛋白纯化系统。可用于微克到克级水平的蛋白、多肽和核酸等生物分子的快速高效纯化。该系统采用模块化设计、配套智能化软件并结合公司的各类层析柱,可满足实验室各类生物大分子的纯化需求。它的模块化设计、智能化软件并结合汉邦科技的各类层析柱,可以满足实验室中各类生物大分子的纯化挑战! 欢迎来电咨询:18952338196 [img=,690,469]https://ng1.17img.cn/bbsfiles/images/2022/05/202205261525020323_4695_2788731_3.jpg!w690x469.jpg[/img][/size]

  • His镍柱标签蛋白纯化,就是这么简单

    His镍柱标签蛋白纯化,就是这么简单

    [b]简 介[/b]1975年,Porath等人提出了一种新的纯化方法-固定化金属鳌合层析,利用金属离子(Ni2+,Cu2+等)与氨基酸表面的残基(如组氨酸的咪唑基)的配位鳌合作用,来纯化与金属离子有亲和作用的蛋白质。组氨酸标签由于分子量小,几乎不干扰靶蛋白的功能、活性和结构而被广泛的使用。固定的金属离子亲和层析是纯化组氨酸标签蛋白的最常用方法。[b]组氨酸标签蛋白的纯化工具[/b]月旭Ni亲和填料Ni Tanrose 6FF(NTA)Ni Tanrose 6FF(NTA)亲和介质是将金属离子Ni2+鳌合在以氨三乙酸为配基的6%高度交联的琼脂糖凝胶上形成的亲和层析介质。月旭科技研发的Ni Tanrose 6FF(NTA)不仅纯化纯度较高,通过控制合理的Ni离子密度,结合载量可达到~40mgHis标签蛋白/ml介质,可以用于各种表达来源(如大肠杆菌、酵母、昆虫细胞和哺乳动物细胞)的组氨酸标签(6xHis-tagged)蛋白的纯化。NTA含有四个螯合区,较一般的三齿螯合剂能更好的结合Ni2+。6xHis可与Ni2+螯合,从而使His标签蛋白结合在Ni Tanrose 6FF(NTA)纯化介质上,未结合的蛋白被洗涤下去,结合在介质上的蛋白经过一定浓度的咪唑或低pH缓冲液被温和的洗脱下来,从而得到高纯度的目标蛋白。具有载量高、选择性好、易于再生、成本低等优点。有了它,再也不用担心完不成纯化任务了。PreCot Ni 6FF(NTA)是Ni Tanrose 6FF(NTA)的1ml和5ml预装柱,用来纯化6xHis-tagged蛋白,可以使用注射器、蠕动泵,或者液相层析系统(例如AKTA或FPLC)。[b]Ni Tanrose 6FF(NTA)应用案例预装柱:[/b]PreCot Ni 6FF(NTA) 5ml[b]样品:[/b]含有His标签蛋白(大肠杆菌表达)[b]平衡液A:[/b]50mM Tris-HCl,0.5M NaCl,20mM咪唑pH8.0[b]洗脱液B:[/b]50mM Tris-HCl,0.5M NaCl,0.5M 咪唑,pH8.0[b]流速:[/b]平衡、洗脱-1.0ml/min上样-0.5ml/min[align=center][img=,600,283]https://ng1.17img.cn/bbsfiles/images/2019/09/201909061457288940_2085_932_3.jpg!w628x297.jpg[/img][/align][align=center][color=#595959]PreCot Ni 6FF(NTA)纯化His标签蛋白的纯化色谱图[/color][/align][color=#595959][/color][align=center][color=#595959][img=,600,507]https://ng1.17img.cn/bbsfiles/images/2019/09/201909061500136459_713_932_3.jpg!w459x388.jpg[/img][/color][/align][align=center][color=#595959][/color][/align][align=center]备注:1-3(样品和平衡液中不含咪唑);[/align][align=center]4-6(样品和平衡液中含20mM咪唑)[/align][color=#595959]1:原液[/color][color=#595959]2:流穿[/color][color=#595959]3:洗脱(100%B[/color][color=#595959])[/color][color=#595959]4:原液[/color][color=#595959]5:流穿[/color][color=#595959]6:洗(100%B)[/color][align=left][/align]由于宿主蛋白中也存在组氨酸和/或半胱氨酸氨基酸残基,其他的非特异性蛋白与靶蛋白一起与金属离子亲和层析填料结合,造成纯化样品纯度不高。提高样品中的咪唑浓度,组氨酸标签蛋白通过Ni Tanrose 6FF(NTA),可以一步纯化得到85%以上纯度的纯化样品。[align=center][img=,300,183]https://ng1.17img.cn/bbsfiles/images/2019/09/201909061502393331_9248_932_3.jpg!w690x422.jpg[/img] [img=,300,194]https://ng1.17img.cn/bbsfiles/images/2019/09/201909061502479331_4768_932_3.jpg!w690x447.jpg[/img][/align][align=center][color=#595959]月旭科技提供各种规格的层析填料预装柱,关注月旭科技公众号,欢迎咨询申请免费试用![/color][/align]

  • 蛋白过镍柱纯化的科学原理及详细步骤

    [font=宋体][font=宋体]蛋白过镍柱纯化的原理是利用[/font][font=Calibri]Ni[/font][font=宋体]柱中的氯化镍与有[/font][font=Calibri]HIs[/font][font=宋体](组蛋白)标签的蛋白特异性结合的能力,同时也能与咪唑结合。具体步骤如下:[/font][/font][font=宋体] [/font][font=宋体]①[/font][font=宋体][font=宋体]过柱子前可以选择[/font][font=Calibri]Ni[/font][font=宋体]柱重生,往柱子里倒氯化镍,一个柱长体积就行,然后平衡柱子,用你自己的[/font][font=Calibri]buffer[/font][font=宋体],给蛋白提供最适的环境。[/font][/font][font=宋体]②[/font][font=宋体][font=宋体]平衡[/font][font=Calibri]4[/font][font=宋体]个柱长后,蛋白上样,可以让他自己挂,这样挂柱子的效果好一些。如果流速太慢,可以加个恒流泵,但是一定不能太快,太快挂柱效果差。也可以选择循环挂柱,就是恒流泵的一头接你装蛋白的烧杯,从柱子中留下来的液体还用同一个烧杯接回去。[/font][/font][font=宋体]③[/font][font=宋体][font=宋体]挂完之后,按理想来讲,蛋白在[/font][font=Calibri]Ni[/font][font=宋体]柱中与[/font][font=Calibri]Ni[/font][font=宋体]就结合了,杂蛋白多数在烧杯里留下来了。肯定有少量杂蛋白也挂上了。这时候要梯度洗脱,拿咪唑和你的[/font][font=Calibri]buffer[/font][font=宋体]配,一般从[/font][font=Calibri]0[/font][font=宋体]、[/font][font=Calibri]20mM[/font][font=宋体]、[/font][font=Calibri]40mM......100mM[/font][font=宋体]这样洗脱。咪唑加入之后,会和蛋白争夺与[/font][font=Calibri]Ni[/font][font=宋体]的结合位点,杂蛋白、你的目的蛋白,会在不同的浓度被洗脱下来。[/font][/font][font=宋体]④[/font][font=宋体][font=宋体]洗完之后,可以用[/font][font=Calibri]200mM[/font][font=宋体]咪唑洗柱子,清理一切蛋白,然后平衡几次。是否选择重生你自己定咯[/font][font=Calibri]~[/font][font=宋体]然后放上[/font][font=Calibri]20%[/font][font=宋体]乙醇保存柱子就可以咯[/font][font=Calibri]~ [/font][font=宋体]过的蛋白用不同的管子收下,然后[/font][font=Calibri]SDS-page[/font][font=宋体]检测在哪个管子里。[/font][/font][font=宋体]以上步骤仅供参考,不同的实验条件可能方法会不同。具体可以查阅专业书籍或者咨询专业人士。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供不同表达系统的[url=https://cn.sinobiological.com/resource/protein-review/protein-purification][b]蛋白纯化服务[/b][/url],有细菌系统蛋白纯化、[url=https://cn.sinobiological.com/services/transient-protein-expression-service][b]哺乳动物瞬时系统蛋白纯化[/b][/url]、杆状病毒系统蛋白纯化等,具体重组蛋白纯化原理及操作步骤可以查看[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification[/font][/font][font=宋体][font=宋体]杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞蛋白表达服务:[/font][font=Calibri]https://cn.sinobiological.com/services/baculovirus-insect-protein-expression-service[/font][/font][font=宋体][font=宋体]原核([/font][font=Calibri]E. coli[/font][font=宋体])蛋白表达服务:[/font][font=Calibri]https://cn.sinobiological.com/services/e-coli-protein-expression-service[/font][/font]

  • 蛋白纯化方法有哪些?不同纯化方法的优缺点介绍

    [font=宋体]蛋白纯化采用多种色谱技术,根据其性质的差异将产物分离。标签蛋白便于用亲和色谱法处理,亲和色谱法根据蛋白标签的生物识别来捕获靶蛋白。[/font][font=宋体] [/font][font=宋体]在所有色谱技术中,亲和色谱法占主要地位。事实上,亲和色谱是最特异、最有效的蛋白纯化技术,为靶蛋白纯化提供了合理的依据。它利用了生物分子识别的原理,即生物活性大分子与亲和配体形成特定的可逆复合物的能力。随着高价值蛋白的传统纯化方案被基于亲和色谱等先进的方法所取代,人们的关注重点转向了设计和选择具有高亲和力和特异性的配体。[/font][font=宋体] [/font][font=宋体]从用于生化表征的浓缩蛋白提取物的制备到治疗性重组蛋白的大规模生产,任何纯化过程都需要经济且足量地获得纯化蛋白。因此,下游处理面临的挑战是高产能、高分辨率和高成本效率。[/font][font=宋体] [/font][font=宋体]亲和色谱法适用于基于高特异性相互作用的生化混合物的分离。在纯化过程中可以利用具有明确特性的靶蛋白。[/font][font=宋体] [/font][font=宋体]离子交换色谱法是一种常见的蛋白纯化方法,该方法基于与离子交换器的亲和力分离离子和极性分子。可溶性分子在通过色谱柱时与带相反电荷的不溶性固定相结合。[/font][font=宋体] [/font][font=宋体]尺寸排阻色谱法,根据分子的大小和分子量分离分子。[/font][font=宋体] [/font][font=宋体]疏水作用色谱分离表面有疏水氨基酸侧链的靶蛋白,与疏水基团相互作用并结合在一起。[/font][font=宋体] [/font][font=宋体][b]下面是不同纯化方法的优缺点介绍:[/b][/font][font=宋体][font=Calibri]1[/font][font=宋体]、亲和色谱法:[/font][/font][font=宋体]蛋白质特征:生物识别[/font][font=宋体]应用:受体和配体,酶和底物,抗原和抗体[/font][font=宋体][font=宋体]优点:[/font] [/font][font=宋体]①一次能够分离一种特定的蛋白[/font][font=宋体]②高回收率[/font][font=宋体]③快速分离[/font][font=宋体]缺点:要求配体具有高选择性[/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、离子交换色谱法[/font][/font][font=宋体]蛋白质特征:电荷[/font][font=宋体]应用:带电分子[/font][font=宋体][font=宋体]优点:[/font] [/font][font=宋体]①高准确度和精度[/font][font=宋体]②高基质耐受性[/font][font=宋体]③高选择性[/font][font=宋体]缺点:柱间不一致性[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、尺寸排阻色谱法[/font][/font][font=宋体]蛋白质特征:大小[/font][font=宋体]应用:大分子,大分子复合物[/font][font=宋体][font=宋体]优点:[/font] [/font][font=宋体]①高回收率[/font][font=宋体]②明确的分离时间[/font][font=宋体]③可获得窄条带[/font][font=宋体][font=宋体]缺点:[/font][font=Calibri]MW [/font][font=宋体]的需求存在差异[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、疏水作用色谱法[/font][/font][font=宋体]蛋白质特征:疏水性[/font][font=宋体]应用:表面具有疏水氨基酸侧链的蛋白和多肽[/font][font=宋体][font=宋体]优点:[/font] [/font][font=宋体]①高选择性[/font][font=宋体]②温和、非变性条件[/font][font=宋体]缺点:相互作用强[/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/resource/protein-review/chromatography-purification][b]蛋白纯化方法[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/chromatography-purification[/font][/font][font=Calibri] [/font]

  • 蛋白纯化技术(GST)

    为了赚分啊 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=12683]蛋白纯化技术(GST)[/url]

  • 重组蛋白亲和层析分离纯化的方法

    目的要求(1)了解克隆基因表达的方法和意义。(2)了解重组蛋白亲和层析分离纯化的方法。实验原理克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在 37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。试剂和器材一、试剂 LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. 氨苄青霉素:100mg/mL 上样缓冲液:100 mM NaH2PO4, 10 mMTris, 8M Urea, 10 mM2-ME, pH8.0 Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH8.0 IPTG二、器材摇床,离心机,层析柱(1′10 cm)操作方法一、氯霉素酰基转移酶重组蛋白的诱导1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于-20℃或-70℃冰箱中。二、氯霉素酰基转移酶重组蛋白的分离、纯化1. NTA层析柱的准备:在层析柱中加入1mL NTA介质,并分别用8mL 去离子水,8mL上样缓冲液洗涤。2. 重组蛋白的变性裂解:在冰浴中冻融菌体沉淀,加入5mL上样缓冲液, 用吸管抽吸重悬,超声波破裂菌体,用振荡器等轻柔的混匀样品60min, 4℃ 12000rpm 离心 30 min, 将上清吸至一个干净的容器中,并弃沉淀。取10ul 上清样品用于SDS-PAGE 分析。3. 上清样品以10-15mL/h 流速上Ni2+-NTA柱,收集流出液,取10ul样品用于SDS-PAGE 分析。4. 洗脱杂蛋白:用Washing Buffer以10-15mL/h流速洗柱,直至OD280 = 0.01.分步收集洗脱液,约3-4h,取10ul洗脱开始时的样品用于SDS-PAGE 分析。5. 洗脱目标蛋白:用Elution Buffer洗柱,收集每1 mL 级分,分别取10ul样品用于SDS-PAGE 分析。

  • CE-SDS测高糖基化蛋白

    有没有同学用CE-SDS测高糖基化蛋白的?现有的方法多数是测单抗的,对我目前检测的蛋白不适用。想要改进方法又没有方向。希望有类似研究方向的同学交流一下,怎么能建立一个适用的方法。我用的仪器是贝克曼PA800plus

  • 分离纯化天然植物蛋白

    [color=#444444]我在做天然蛋白的分离纯化,用的是C18色谱柱,基本上前10分钟就以及完全出峰,记得目标峰最好不要在前10分钟的,有什么解决办法吗?[/color][color=#444444]检测波长是215、254和280,是不是280就可以了,可是我的蛋白在280响应很低,远比不上215,215分离效果又不好,还有倒峰;[/color][color=#444444]用C18制备柱收集馏分并透析冻干后,无法复溶,有什么办法在不使蛋白变性的情况下使其复溶的吗,我后面要做活性鉴定的,十分感谢[/color]

  • 融合标签蛋白纯化常见问题解析

    [font=宋体][font=宋体]融合标签是已知的蛋白或多肽[/font][font=Calibri],[/font][font=宋体]可融合到目标蛋白上。在重组蛋白中,常常将目的蛋白末端与一些标签进行融合表达,这是为什么呢?常见的融合标签有哪些呢?它们都有什么区别呢?下面是[url=https://cn.sinobiological.com/resource/protein-review/protein-tag][b]融合标签蛋白纯化[/b][/url]常见问题解析分享:[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q[/font][font=宋体]:什么是融合标签?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A[/font][font=宋体]:融合标签是指利用 [/font][font=Calibri]DNA [/font][font=宋体]体外重组技术,在目的蛋白 [/font][font=Calibri]N [/font][font=宋体]端或 [/font][font=Calibri]C [/font][font=宋体]端进行融合表达的特定蛋白、多肽或寡肽标签。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q[/font][font=宋体]:融合标签有什么作用?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A[/font][font=宋体]:重组蛋白通过融合标签与包被在固相基质上的特异配基结合,使重组蛋白定向固定并得以纯化,大大简化了重组蛋白的检测,同时既能保留天然蛋白的大部分结构,又能实现增加溶解度,防降解,促进分泌,便于纯化等功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q[/font][font=宋体]:融合标签的分子量和功能有关吗?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A[/font][font=宋体]:蛋白融合标签的分子量越大,对蛋白质本身的功能影响越大,所以大分子融合标签一般只用于检测或蛋白纯化等。常见的小分子量的融合标签,因其具有很多商品化的标签抗体,可以节省使用者制备目的蛋白的单克隆抗体的时间与成本。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q[/font][font=宋体]:是否所有的融合标签都需要切除?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A[/font][font=宋体]:融合标签较小,免疫原性也很弱,一般不需要切除,对蛋白质的后续应用和研究不会产生影响。但是有些大标签是需要切除的,例如:[/font][font=Calibri]Dsb [/font][font=宋体]蛋白、[/font][font=Calibri]FkpA [/font][font=宋体]蛋白、[/font][font=Calibri]GST [/font][font=宋体]蛋白、[/font][font=Calibri]SUMO [/font][font=宋体]标签等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]为了便于将重组蛋白的融合标签去除,在设计构建载体时需要在标签蛋白和目的蛋白之间加上蛋白酶识别位点,常用的蛋白酶位点有:[/font][font=Calibri]HRV 3C [/font][font=宋体]蛋白酶切位点、[/font][font=Calibri]TEV [/font][font=宋体]蛋白酶切位点、肠激酶切位点、[/font][font=Calibri]SUMO [/font][font=宋体]蛋白酶切位点等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q[/font][font=宋体]:融合标签加在 [/font][font=Calibri]N [/font][font=宋体]端或 [/font][font=Calibri]C [/font][font=宋体]端,有什么区别?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A[/font][font=宋体]:蛋白融合标签对于 [/font][font=Calibri]N [/font][font=宋体]端或 [/font][font=Calibri]C [/font][font=宋体]端的选择性对重组蛋白的结构与特性会造成一定的影响。例如,对于较难表达或较容易降解的蛋白,可将融合标签选择在 [/font][font=Calibri]5[/font][font=宋体]’ 端,可以提高重组蛋白的稳定性,也可减小对重组蛋白的免疫原性。但是重组蛋白为分泌蛋白,在其分泌到高尔基体的过程中,处于 [/font][font=Calibri]5[/font][font=宋体]’ 端的融合标签会随着 [/font][font=Calibri]5[/font][font=宋体]’ 端信号肽的切除而切除,从而失去作用。在目的蛋白结构未知的情况下,可以分别于两端构建标记的表达克隆,以确定哪个更有效。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多详情可以参看义翘神州蛋白标签:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-tag[/font][/font]

  • 亲和层析纯化蛋白原理解析

    [font=宋体]蛋白纯化介质主要应用于研究目的蛋白的结构、功用以及相互作用的和过程中。比如:在蛋白纯化过程中,由于[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-by-ac][b]亲和层析法[/b][/url]的选择性和结合力较强,分辨率也高。所以,亲和层析法是一种常用的蛋白、抗体纯化方法,天地人和生物多种简单易用的亲和纯化介质,适用于批量或利用重力进行纯化,可以高效、便捷、可靠地从品中分离蛋白和抗体,为下游应用提供有力保证。[/font][font=宋体][b]亲和层析法的原理:[/b][/font][font=宋体][font=宋体]亲和层析是应用生物高分子与配基可逆结合的原理,将配基通过共价键牢固结合于载体上而制得的层析系统。这种可逆结合的作用主要是靠生物高分子对它的配基的空间结构的识别。常用的生物亲和关系有酶[/font][font=Calibri]-[/font][font=宋体]底物、底物类似物、抑制剂、激活剂、辅因子,抗体[/font][font=Calibri]-[/font][font=宋体]抗原,激素[/font][font=Calibri]-[/font][font=宋体]受体蛋白、载体蛋白,外源凝集素[/font][font=Calibri]-[/font][font=宋体]多糖、糖蛋白、细胞表面受体,核酸[/font][font=Calibri]-[/font][font=宋体]互补核苷酸序列、组蛋白、核酸结合蛋白等,具有高效、简单、快速的优点,是当前最为理想的分离纯化蛋白的方法。[/font][/font][b][font=宋体][font=宋体]亲和层析的操作步骤[/font][font=Calibri]:[/font][/font][/b][font=宋体] [/font][font=宋体][font=宋体]在亲和层析中,蛋白在影响蛋白[/font][font=Calibri]([/font][font=宋体]或标签[/font][font=Calibri])[/font][font=宋体]与其配体之间结合的条件下被加载到柱子上。在不破坏特定相互作用但能破坏污染蛋白与固定相之间任何非特异性相互作用的条件下洗涤结合的蛋白。然后用含有竞争性分子的缓冲液或破坏所有蛋白[/font][font=Calibri]/[/font][font=宋体]蛋白相互作用的条件洗脱结合的蛋白。竞争分子与配体结合,取代目标蛋白,这种竞争分子通常通过另一种色谱流程或透析法从目标蛋白中去除。[/font][/font][font=宋体] [/font][table][tr][td][b][font=微软雅黑][color=#232323]亲和层析配体和洗脱条件[/color][/font][/b][/td][td][font=微软雅黑] [/font][/td][td][font=微软雅黑] [/font][/td][/tr][tr][td][b][font=微软雅黑][color=#232323]需纯化的蛋白[/color][/font][/b][/td][td][b][font=微软雅黑][color=#232323]配体[/color][/font][/b][/td][td][b][font=微软雅黑][color=#232323]洗脱条件[/color][/font][/b][/td][/tr][tr][td][font=微软雅黑][color=#232323]抗体(抗原特异性)[/color][/font][/td][td][font=微软雅黑][color=#232323]抗原肽[/color][/font][/td][td][font=微软雅黑][color=#232323]游离肽[/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]多聚组氨酸标签蛋白[/color][/font][/td][td][font=微软雅黑][color=#232323]Ni2+或Co2+[/color][/font][/td][td][font=微软雅黑][color=#232323]咪唑或游离组氨酸[/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]FLAG标签蛋白[/color][/font][/td][td][font=微软雅黑][color=#232323]FLAG特异性抗体[/color][/font][/td][td][font=微软雅黑][color=#232323]FLAG肽或低pH值[/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]GST标签蛋白[/color][/font][/td][td][font=微软雅黑][color=#232323]还原型谷胱甘肽[/color][/font][/td][td][font=微软雅黑][color=#232323]游离谷胱甘肽[/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]Myc标签蛋白[/color][/font][/td][td][font=微软雅黑][color=#232323]Myc特异性抗体[/color][/font][/td][td][font=微软雅黑][color=#232323][font=微软雅黑]低[/font][font=微软雅黑]pH[/font][/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]抗体(类特异性)[/color][/font][/td][td][font=微软雅黑][color=#232323][font=微软雅黑]蛋白[/font][font=微软雅黑]A、G和L或精蛋白[/font][/color][/font][/td][td][font=微软雅黑][color=#232323]pH极端值[/color][/font][/td][/tr][tr][td][font=微软雅黑][color=#232323]DNA结合蛋白[/color][/font][/td][td][font=微软雅黑][color=#232323]肝素[/color][/font][/td][td][font=微软雅黑][color=#232323]高离子强度[/color][/font][/td][/tr][/table][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-by-ac[/font][/font]

  • 蛋白分离纯化方法全解:最详尽的指南

    [font=宋体][font=宋体]不同的蛋白具有不同的氨基酸序列和空间结构,从而导致其在物理、化学和生物学特性中存在差异。考虑到细胞提取物中重组蛋白的相对丰度较高,开发生产纯蛋白([/font][font=Calibri]SDS-PAGE[/font][font=宋体]显示单一条带)的实验室规模纯化方案应该相对简单。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]下游处理方案中的各个步骤可分离混合物中的蛋白和非蛋白部分,最终将所需的蛋白与所有其他蛋白分离,同时保留多肽的生物活性和化学完整性。分离步骤会利用粗混合物中目标蛋白与其他蛋白之间的化学[/font][font=Calibri]/[/font][font=宋体]结构[/font][font=Calibri]/[/font][font=宋体]功能特性的差异。这些性质包括大小、形状、电荷、等电点、电荷分布、疏水性、溶解性、密度、配体结合亲和力、金属结合、可逆结合、翻译后修饰以及特定的序列或结构。下面是针对蛋白分离纯化方法做了以下汇总:[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]1.[/font][font=宋体]根据蛋白质溶解度的差别分离[/font][/b][/font][font=宋体]蛋白质的溶解度具有显著的特性,可以根据其溶解度的差异进行分离。其中,等电点沉淀法、盐析和盐溶、有机溶剂沉淀以及重金属盐沉淀是常用的方法。[/font][font=宋体] [/font][font=宋体]①等电点沉淀法:蛋白质在等电点附近溶解度最小,易沉淀析出。利用不同蛋白质等电点的不同,将蛋白质从混合溶液中分开[/font][font=宋体] [/font][font=宋体]②盐析和盐溶:[/font][font=宋体] [/font][font=宋体]盐析:大量的中性盐溶液可以降低蛋白质的溶解度,使蛋白质沉淀析出的现象[/font][font=宋体] [/font][font=宋体]盐溶:低浓度的中性盐溶液促进某些蛋白质的溶解,从而与其他组分分开[/font][font=宋体] [/font][font=宋体]③有机溶剂沉淀:亲水性有机溶剂如乙醇、丙酮等能使蛋白质在水中的溶解度降低,从而沉淀析出[/font][font=宋体] [/font][font=宋体]④重金属盐沉淀:重金属盐带正电荷,可以与蛋白质负离子结合而形成不溶性蛋白质沉淀可利用此性质以大量清蛋白抢救重金属盐中毒的人[/font][font=宋体] [/font][font=宋体][b][font=Calibri]2.[/font][font=宋体]根据蛋白质分子大小的不同分离[/font][/b][/font][font=宋体] [/font][font=宋体]①透析:利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开,本质是以浓度差为推动力的膜分离过程。主要应用是血液(人工肾)的解毒[/font][font=宋体] [/font][font=宋体]②超滤:通过加压、抽滤、离心等多种方式,使水和其他小分子溶质透过超滤膜,而蛋白质截留在膜上,以达到浓缩和脱盐的目的,本质是以静压力差为推动力的膜分离过程[/font][font=宋体] [/font][font=宋体]③密度梯度离心:蛋白质颗粒的沉降速度取决于它的大小和密度,将蛋白质颗粒在具有密度梯度的介质中离心,质量和密度大的蛋白质比质量和密度小的蛋白质颗粒沉降得快,并且每种蛋白质颗粒沉降到与自身密度相等的介质梯度时,即停止不前,最后各组分在离心管中被分离成各自独立的区带[/font][font=宋体] [/font][font=宋体]④凝胶过滤层析:当不同分子大小的蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入凝胶珠内部,只能随溶剂在凝胶珠之间的孔隙向下移动并最先流出体外;比凝胶珠孔径小的分子能不同程度的自由进出凝胶珠的内外。于是不同大小的分子所经的路径长短不同而得到分离,大分子先洗脱出来,小分子后洗脱出来[/font][font=宋体] [/font][font=宋体]⑤超速离心:蛋白质溶液在强大离心场中会逐渐沉降,各种蛋白质沉降所需离心力场不同,可用超速离心法分离蛋白质并测定其分子量[/font][font=宋体] [/font][font=宋体][b][font=Calibri]3.[/font][font=宋体]根据电荷不同的纯化方法[/font][/b][/font][font=宋体] [/font][font=宋体]①电泳:在外电场作用下,带电颗粒将向着与其电性相反的电极移动,这种现象称为电泳。利用带点颗粒净电荷的差异分离混合物[/font][font=宋体] [/font][font=宋体][font=宋体]②离子交换层析:在某一特定的[/font][font=Calibri]PH[/font][font=宋体]值,混合蛋白质溶液中各种蛋白质所带电荷数目及性质不同,事先在层析柱中装上离子交换剂,其所带电荷性质与蛋白质电荷性质相反,当蛋白质混合溶液流经层析柱时,即可被吸附于柱上,随后用与蛋白质带相同性质电荷的洗脱剂洗脱,蛋白质可被置换下来,由于各种蛋白质所带电荷不同,离子交换剂结合的紧密程度不同,带电量小的蛋白质先被洗脱下来,增加洗脱液离子强度,带电量多的也被洗脱下来,可将蛋白质分离[/font][/font][font=宋体] [/font][font=宋体][b][font=Calibri]4.[/font][font=宋体]利用选择性吸附的纯化方法[/font][/b][/font][font=宋体] [/font][font=宋体]吸附层析:利用待纯化的分子和杂质分子与吸附剂之间的吸附能力和解吸性质不同而达到分离目的[/font][font=宋体] [/font][font=宋体][b][font=Calibri]5.[/font][font=宋体]利用对配体的特异生物学亲和力的纯化方法[/font][/b][/font][font=宋体] [/font][font=宋体]亲和层析:把待纯化的某一蛋白质的特异配体通过适当的化学方法共价连接到载体分子上,当蛋白质混合物加到填有亲和介质的层析柱时,待纯化的蛋白质与配体特异性结合,而其他蛋白质则不被结合,通过洗涤除去,被特异结合的蛋白质可以用含游离的相应配体溶液把它从柱上洗脱下来[/font][font=宋体] [/font][font=宋体][b][font=Calibri]6.[/font][font=宋体]高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url][/font][font=Calibri]HPLC[/font][font=宋体]和快速蛋白质[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]层析[/font][font=Calibri]FPLC[/font][/b][/font][font=宋体] [/font][font=宋体][font=Calibri]HPLC[/font][font=宋体]:以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]FPLC[/font][font=宋体]:是由经典的液体柱层析引入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]理论,并对相体进行改革,配用高压输液泵,采用高灵敏检测器、梯度洗脱装置、自动收集装置和微机等发展起来的现代[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]。适用各种层析技术,专门分离和纯化各类生物分子,包括天然蛋白质,重组和融合蛋白质、肽、寡核酸、质粒、病毒、抗生素、生物碱等等,操作肽图等精确分析和小量制备应用,具有快速、高分辨率、柱容量大、回收效率高及不易使生物大分子失活等特性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注义翘神州[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques][b]蛋白纯化技术方法[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques[/font][/font]

  • 【欢迎讨论】His融合蛋白纯化中常见问题?

    【欢迎讨论】His融合蛋白纯化中常见问题?

    His-tag是专门设计用于重组蛋白质的纯化,与其他标签相比有很多明显优势,是目前用于纯化的融合标签中使用最为广泛的一种。Tag虽然简单,但是做过的人都知道,融合蛋白的纯化并非简单。1、纯化介质有10多种,应该如何选择?2、洗脱的标签蛋白杂带较多是什么原因?如何优化?3、甚至洗脱产物中没有目标蛋白原因为何?策略如何?欢迎大家互相交流讨论啊!His-tag 选择[img]http://ng1.17img.cn/bbsfiles/images/2008/10/200810061637_111174_1613111_3.jpg[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制