当前位置: 仪器信息网 > 行业主题 > >

化学成分分离纯化

仪器信息网化学成分分离纯化专题为您整合化学成分分离纯化相关的最新文章,在化学成分分离纯化专题,您不仅可以免费浏览化学成分分离纯化的资讯, 同时您还可以浏览化学成分分离纯化的相关资料、解决方案,参与社区化学成分分离纯化话题讨论。

化学成分分离纯化相关的资讯

  • 中南大学化学成分分析中心通过CMA计量认证复评审
    4月24-25日,由湖南省质量技术监督局认评处杨敏处长、张立梅副处长带队,长沙市质量技术监督局刘尹丹处长、长沙市环境监测站易建平站长、省国土资源厅曹建高工等组成的评审专家组,对中南大学化学成分分析中心进行了综合评审。  在听取中心关于质量管理体系建立及运行情况的汇报后,专家组参观了中心相关实验室,审阅了质量管理体系文件,抽查了近两年来的质量运行记录和相关技术档案资料,并进行了现场盲样测试,对中心授权签字人的进行了技术培训和考核,在各项综合考核基础上,认为化学成分分析中心以中南大学化学实验教学中心(国家示范实验教学中心)为依托,经过4年多的建设,软、硬件条件已经符合CMA认证标准,组织管理机构健全,质量管理体系完善,分析检测设施齐备,技术力量雄厚,可以通过CMA认证复评审(含扩项)。  相关资料链接:  中南大学化学成分分析中心的前身是中南矿冶学院分析室,成立于1957年6月,迄今已有50余年的历史。2000年中南大学成立后,该中心由中南大学化学化工院负责管理。为更好地开展对外分析检测服务工作,分析中心所有的分析仪器通过了湖南省计量研究院的计量检定。分析中心对外出具的分析报告具有社会公信力。中心现有分析技术人员15人,拥有气质联用分析仪、高效液相色谱仪、气相色谱仪、分子荧光光谱仪等近千万元的各类分析仪器设备。资质范围涵盖资源、土壤、环境(水质、大气、噪声等)金属材料、化工产品中常见元素的分析检测服务。分析中心具有样品加工的能力,也可提供分析技术人员的技能培训、分析实验室的筹备与建设、分析方法的改进、新的分析方法的研究等与分析相关的技术服务。
  • 色谱和波谱自动连接技术“破解”中药化学成分密码
    p  中药及天然药物化学成分与生物活性的研究是阐明中药治疗疾病的科学内涵、实现中药现代化的前提和基础。而a title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/application/industry-S22.html" target="_self"span style="color: rgb(255, 0, 0) "strong天然药物中活性成分/strong/span/a分离是研究中的一大难关,工作量大、针对性差、重复率高等问题,使得活性成分分离效率难以提高。/pp  中国药科大学副校长孔令义带领的团队,经过20年的努力,创建了系列色谱和波谱技术自动连接的制备分离和结构识别一体化的中药和天然药物化学成分分离新技术,发现生物活性化合物和结构新颖化合物。新技术的应用加快了中药物质基础研究与开发的步伐,推动了中药的现代化和国际化,获2015年国家科技进步二等奖。/pp style="text-align: center"img title="捕获.JPG" src="http://img1.17img.cn/17img/images/201602/insimg/3f51a001-f6f6-40d3-9b61-4899555f3f3a.jpg"//pp style="text-align: center "span style="font-family: 微软雅黑, ' Microsoft YaHei' "strong孔令义获2015年国家科技进步二等奖/strong/span/ppbr//pp  strong探究中药化学成分分离新技术/strong/pp  样品损失、分离效率低是天然药物化学成分研究中的拦路虎。上世纪80年代,美国学者研发的一项高速逆流色谱技术,以其无固体支撑、根据物质在两相中分配系数的差异对物质进行分离,避免了传统色谱技术因不可逆吸附而引起的样品损失、失活、变性等,不仅使样品能够全部回收,回收的样品更能反映其本来的特性,特别适合于天然生物活性成分的分离。/pp  孔令义带领团队深入开展了高速逆流色谱在制备分离各类中药活性成分中的适用性研究,创造性地将制备型色谱分离技术(HSCCC、HPLC、MPLC)和波谱测定技术(MS)连接,建立了色谱和波谱技术自动连接的制备分离和结构识别一体化的中药及天然药物化学成分分离系列新技术,显著提升了天然活性化合物和结构新颖化合物的发现和分离水平。/pp  这项技术可以推动中药物质基础的阐明、基于中药和天然药物活性成分的新药发现、中药质量控制标准的完善和提高等方面的研究工作。将新技术应用到药物研发和生产实际中,可有效提高新药创制水平,解决关键技术难题,为我国中药行业提供强有力的技术支撑。/pp  strong基于新技术的中药成分研究/strong/pp  多年来,孔令义带领课题组应用新技术,从60余种中药及天然药物中分离鉴定了5000余个化合物,发现了600余个新化合物,其中新骨架化合物25个。同时,建立了中药和天然药物化合物库,在中药和天然药物的研究和开发中发挥重要作用。/pp  此外,该项目对化合物的生物活性开展了系统研究,阐明了部分中药和药用植物临床治疗疾病的物质基础,确定了具有降血糖、抗过敏性哮喘、抗肿瘤等显著活性的化合物42个,并为开发具有自主知识产权的新药奠定了基础,其中2个化合物被列为国家科技重大专项重大新药创制候选药物。/pp  课题组将分离新技术应用到中药化学对照品的研究制备中,也取得了很好的效果。将分离制备的中药化学对照品应用于《中国药典》2010年版的质量控制研究中,起草了12个中药及饮片的质量标准,并已颁布实施,为中药质量控制标准的完善和提高做出了重要贡献,保证了相关中药临床应用的安全性和有效性。/pp  项目获得8项专利授权,发表SCI收录论文116篇,其中30篇论文发表在色谱分离和天然产物研究相关领域的国际权威期刊。相关成果先后获得2013年度江苏省科学技术奖一等奖、2009年度教育部自然科学奖一等奖。/ppbr//p
  • 我国烟火药剂化学成分检测攻克世界难题
    广西检验检疫局(北海)烟花爆竹检测中心完成的《烟花爆竹用烟火药剂的化学成分检测方法研究》获得国家质检总局2011年度“科技兴检奖”三等奖。该课题为我国进出口烟花爆竹的检验监管、进一步扩大国际市场和促进烟花爆竹可持续发展提供了科学手段,同时也为烟花爆竹的安全生产管理、产品质量控制及安全事故的原因分析提供了强大的技术支撑。     广西(北海)烟花爆竹检测中心人员进行业务交流  北部湾畔,魅力北海,风生水起正扬帆,推动富民强桂新跨越 千年古郡,烟花之乡,丝绸之路始发港,传承中华文化耀五洲。  北海是北部湾海上丝绸之路较早的始发港,也是中国人从海洋走向世界的一个起点,当一个昌盛的中国崛起于世界的东方,历经繁荣与昌盛的北部湾正承载起新时期一个崭新的期望,走上时代的潮头浪尖。  烟火药剂研究迫在眉睫  我国已成为世界上最大的烟花爆竹生产国和出口国,世界上发达国家所用烟花爆竹主要从我国进口,据不完全统计,我国现有烟花爆竹生产企业5000多家,生产总值达100多亿元。在湖南、江西、广西等省区,烟花爆竹已成为不少市县的支柱产业。  根据联合国《全球化学品统一分类和标签制度》,必须对烟花爆竹用烟火药剂的化学成分进行全面的定性和定量分析检测。但是,国内外至今没有烟花爆竹用烟火药剂的化学成分检测标准方法及相关的技术规范。我国现有的有关烟花爆竹的国家标准和行业标准只有部分禁用化学成分的定性分析方法,如GB 10631-2004《烟花爆竹 安全与质量》、SN/T 0306-2006《出口烟花爆竹检验规程》,国外主要烟花爆竹进口国的标准或条例中只规定了禁用的化学物质,没有相关的检测方法,如美国的APA烟花条例、日本的烟花标准等。  国家标准GB/T15814.1-1995《烟花爆竹药剂 成分定性测定》中检测成分种类有限,当前烟花爆竹用化工原材料更复杂,且有些方法已过时,烟花爆竹标准化技术委员会正在组织有关单位进行修订。行业标准SN 0545-1996《出口烟花爆竹烟火药剂安全检验规程》[11]已被SN/T0306-2006《出口烟花爆竹检验规程》取代,该行业标准也只规定了烟花爆竹中禁限用药物的定性检测,没有其他大部分成分的定性检测方法,更没有烟火药中主要化学成分的定量分析方法。开展烟花爆竹用烟火药剂的化学成分分析方法研究成为当务之急。  检测方法研究取得突破  广西局(北海)烟花爆竹检测中心是全国质检系统首家通过CNAL/CNAS认可的烟花爆竹实验室,也是第一个通过危险性分类定级项目认可的烟花爆竹实验室。  《烟花爆竹用烟火药剂的化学成分检测方法研究》是国家质检总局批准立项的科研项目,由该中心承担完成,项目比较系统全面的对我国目前烟花爆竹用烟火药剂的主要成分进行研究,分为主要成分定性检测方法研究和定量分析方法研究,样品预处理方法贯穿其中。  课题组通过查阅大量分析化学资料和国内外相关的最新烟花法规、技术标准,充分考虑现阶段常用烟火药剂的特点,假定目前有可能出现的最为复杂的烟火药剂成分为本方法的研究对象。通过科学的反复试验,最后确定了以特定的有机溶剂分离出含聚乙烯醇、糊精、酚醛树脂等有机黏合剂的样品预处理方法 利用烟火药剂中各组分的物化特性,通过大量试验,成功对其实行分组分离,以最简单的方法准确地解决了烟火药剂的化学成分定量分析这一最大的难题,研究各类烟花爆竹用烟火药剂的试样制备方法、烟火药剂试样的预处理方法,烟火药剂中钡、重铬酸盐、锌、铜、钛、锶、铅、钠、镁、硫、钾、高氯酸盐、铝、铋、铁、硝酸盐、碳等30多种化学成分化学定性分析和利用X荧光光谱仪快速定性分析、干扰离子的消除方法和化学成分定量检测方法。  成果推广应用前景广阔  该成果已在广西区内外200多个烟花爆竹生产厂家和国内主要检测机构中应用,解决了烟花爆竹检验监管中的难题,在药种药量控制、事故原因分析等方面效果明显。同时,课题组利用课题成果及其关键技术为广西区内100多个生产企业培训专职检验员400多人次,这些人员大多成为各个烟花爆竹企业的技术骨干和中坚力量,为烟花爆竹产业快速发展提供了技术和人员保障。  广西区内近百家企业应用该成果后,产品质量稳步上升,促进了出口。据悉,2011年,广西检验检疫部门共受理出口烟花爆竹检验2048批次、货值6908.7万美元。共检出不合格产品21批、货值6.8万美元,同比分别下降了27%和70%,国外客户反应良好,未发现由于质量原因退货和索赔现象。在国内,该科研成果及其关键技术成功应用,解决了烟花爆竹检验监管的难题,为安监部门加强烟花爆竹安全监管起了较大作用,为烟花爆竹安全与环保提供了坚实的技术保障,广西辖区内烟花爆竹安全事故得到了有效地遏制。  “行百里者半九十”,课题主要负责人、该中心主任肖焕新说。肖焕新作为广西检验检疫局首批学科带头人、国家质检总局《全球化学品统一分类和标签制度》(简称GHS)9名国家专家之一,该烟花中心去年承担完成17项行业标准制订任务,填补了国内外该领域空白,对加强我国烟花爆竹用原材料的质量控制起到重要作用,帮助企业从源头把好烟花爆竹产品质量关和安全关,有力地保障了进出口烟花爆竹的产品安全。目前,该中心还有《联合国烟花分类默认表中闪光成分试验装置的研制及其应用研究》、《烟火药剂制样安全系统的研制》等国家总局科研项目、11项行业标准和1项国家标准项目正在紧锣密鼓地开展中。  链 接  四大创新  课题在完成过程中完成科技论文4篇、行业标准草案11项、国家标准草案6项。所确立的烟花爆竹烟火药剂主要化学成分定量分析方法,解决了烟火药剂中化学成分定量分析的世界性难题,方法快速、准确、实用,该课题实现以下创新:  一是系统地对当前最为复杂的烟花爆竹用烟火药剂的化学成分开展研究,提出了采用化学法进行30多种成分的定性检测方法和采用仪器分析法对10多种成分进行快速分析方法,较系统地完成了对烟火药剂中各成分的定性分析。  二是通过对烟火药剂预处理,利用烟火药的物理特性和化学特性,对烟火药剂中的主要成分实行分组分离,成功完成了17种主要成分的定量分析方法。  三是首次使用X荧光光谱仪对烟火药剂进行定性分析研究,快速准确,同时也为烟火药剂定量分析提供科学依据,起到“初筛”的作用,优化了技术方案和节省了分析时间。  四是我国较早开展GHS应用研究的科研成果之一,课题的顺利完成,为我国烟花爆竹行业顺利实施GHS奠定了技术基础。
  • 美法科学家交付火星化学成分分析仪
    美国洛斯阿拉莫斯国家实验室表示,美、法两国科学家合作研究小组9月21日将研制的、名为“ChemCam”的仪器交付给了喷气推进实验室。该仪器将安装在计划于2011年发射的火星探测车“好奇”(Curiosity)上,其作用是帮助人们了解火星上的化学元素。  据悉,未来新的火星探测车抵达火星表面开始工作时,“ChemCam”仪器带有的激光器会向距离火星探测车7米处的目标发射激光,并利用激光诱导分解光谱(laser-induced breakdown spectroscopy)技术检测被激光照射目标物质所含的化学成分或元素。  具体分析过程是,首先用激光束轰击分析目标,轰击点仅为针头大小。在激光的作用下,被轰击的物质发生蒸发。随即利用光谱分析仪捕捉和分析蒸发物质发出的闪光。由于原子在激光作用下转变成电离原子时将发出光波,而不同的原子在电离时发出的光波波长不同,因此“ChemCam”可以通过将观察到的光波波长与自身携带的原子光谱数据库的数据进行比较,从而推断出被轰击目标物质中所含的原子或元素。  研究人员表示,即使岩石目标被灰尘遮盖也难不倒“ChemCam”分析仪,因为它可以先用激光清理掉灰尘或其他覆盖物,再对岩石样品进行分析。洛斯阿拉莫斯国家实验室“ChemCam”仪器研制负责人罗杰维恩斯说,他们汇集了众多的新理念才将该仪器变为现实。  “ChemCam”仪器法国参与人员负责人斯尔维斯特莫瑞斯认为,该仪器如同地质化学观察仪,将为人们提供有关火星的组成成分数据,以了解它过去、现在或将来是否适于居住。同时该仪器还将帮助火星探测车控制组选择最有价值的目标,供探测车上的其他仪器进行研究。未来,美、法联合研究小组将共同操控“ChemCam”在火星上的元素分析活动,并解释获得的数据。  “好奇”火星探测车是迄今为止针对火星探测最大且能力最强的机器人。它采用核动力驱动,自身重量超过了900公斤,尺寸大小如同小汽车。搭载它进入火星大气层的太空舱的大小甚至超过了当年搭载3名宇航员的“阿波罗”登月舱。包括“ChemCam”在内,“好奇”探测车上所要携带的仪器总数为10台。其他的仪器能够帮助人们了解火星矿产、嗅出有机物质、观察气象和辐射环境、钻探火星岩石(深度为数厘米)。根据原定计划,“好奇”探测车将于2011年11月从佛罗里达航天中心发射,2012年8月抵达火星。
  • PharmaSep药物分离纯化技术交流会顺利举行
    仪器信息网讯 2014年6月27日,PharmaSep药物分离纯化技术交流会于上海开元曼居酒店举行,近百名来自制药企业、科研院所从事药物研发、分析、生产等技术人员参加了本次交流会。  本次技术交流会围绕药物研发过程中杂质、手性化合物的纯化与分离技术相关的常规液相色谱仪、制备液相色谱仪以及相关色谱填料等技术手段,小分子化学药和中药两个类别的药物分离与纯化的实际应用案例进行交流,现场气氛热烈。会议现场  来自先声药物研究院的执行技术总监肖柏明就仿制药杂质谱的研究给出其研究思路。报告中指出,杂质研究流程包含三部分:杂质研究、基因毒杂质研究以及方法学研究。其中,杂质研究要经过确定是否有质量标准、是否有杂质结构、是否需要推测杂质结构、能否通过文献获得等一系列程序直至确定研究对象,在此基础上确定是否继续研究或终止研究。基因毒杂质的研究需要高选择性、高灵敏度的分析方法,确定研究对象后经过购买、合成、制备之后就需要给药物进行定位,进而分析其杂质情况,而这一过程就涉及到了用以优化的方法学研究。报告人:江苏先声药业有限公司 肖柏明报告题目:仿制药杂质谱研究的思维  来自上海美迪西生物医药有限公司的刘月庆对杂质分析中HPLC方法建立进行了介绍。在药物杂质分析过程中,HPLC方法开发流程要经过6个步骤:第一,确定分析方法的目的,熟悉化合物的化学性质 第二,确定起始HPLC分析条件,即开发一个达到最低分离限度的分析条件,用于方法开发实验 第三,样品制备,即制定一个合适的样品制备方法流程 第四,确定合适的定量方法,使用相对矫正因子等 第五,进行方法优化以及耐用性实验 第六,根据指导原则进行方法完全验证。报告人:上海美迪西生物医药有限公司 刘月庆报告题目:杂质分析中HPLC方法建立  来自浙江海正药业股份有限公司的朱文明博士就制药企业中分离纯化技术及应用进行了介绍。制药企业应用的分离纯化技术包括回收技术、细胞破碎技术、初步破碎技术、初步纯化技术、高度纯化技术及成品加工五大方面,涉及制备色谱、离心机、压滤机、超临界萃取、多级牛柳连续萃取、电泳、模拟移动床、层析柱、提取罐等仪器及设备,其中制备色谱药物研发、生产过程中一个极其重要的设备。评价制备色谱主要指标是单位时间内分离纯物质的量,高压制备在节约生产时间成本、提高生产效率、纯化效率、安全保障和环境效益等方面具有非常大的优势,使得药物纯化过程中绿色工艺的开发成为可能。报告人:浙江海正药业股份有限公司 朱文明报告题目:制药企业中分离纯化技术及应用  来自军事医学科学研究院放射与辐射医学研究所的马百平研究员主持本次技术交流会,并做&ldquo 中药化学成分的组成分析报告&rdquo 。报告人:军事医学科学研究院 马百平报告题目:中药化学成分的组成分析报告  此外,会议还邀请睿智化学蔡斌博士、杭州中美华东制药有限公司徐金勇博士及成都普瑞法科技开发有限公司谢期林高工做精彩报告。报告人:睿智化学 蔡斌报告题目:手性化合物的纯化与制备报告人:杭州中美华东制药有限公司 徐金勇报告题目:发酵与制备纯化的关联性研究报告人:成都普瑞法科技开发有限公司 谢期林报告题目:中药化学成分的放大生产及相关技术  作为本次交流会的赞助方博纳艾杰尔科技有限公司王洪宇就&ldquo 制备色谱填料的选择及工艺优化&rdquo 向与会人员进行了介绍。报告人:博纳艾杰尔科技有限公司 王洪宇报告题目:制备色谱填料的选择及工艺优化  本次交流会与会人员与演讲嘉宾进行了热烈的互动交流。互动交流
  • PharmaSep药物分离纯化技术交流会
    -----提高药品质量标准,迎接新药审批挑战  1. 会议简介  我国《新药审批办法》中规定,进行新药研究时,必须对该药物的纯度和稳定性进行试验研究,考察可能引入的杂质,并尽可能对杂质进行分离,研究其结构和降解机制。FDA对来自生产过程中的合成杂质、降解产物、无机杂质、残留溶剂等都做了相关要求。药物的分离纯化在新药研发过程中起着重要的作用。  为了迎接新药审批挑战,PharmaSep药物分离分析信息交流平台将在CPHI期间举办&ldquo PharmaSep 药物分离纯化技术研讨会&rdquo ,旨在与各界制药同行分享探讨药物分离分析领域的前沿技术,为提高药品质量标准的提供理论实验依据。  PharmaSep会务组诚邀药品检验机构、制药企业、CRO公司等相关技术负责人参会。  会议议题  杂质鉴定与分离技术  药物纯化制备最新技术(DAC, SMB,结晶)  时间:2014年6月27日下午14:50- 19:00  地点:上海开元曼居酒店,上海浦东新区罗山路1609号(新国际博览中心区域,内环高架路旁)  2. 研讨会日程时间报告人单位报告题目14:50-15:00观众签到,领取会议资料及礼品15:00-15:20肖柏明江苏先声药业有限公司仿制药杂质谱研究的思维15:20-15:40刘月庆上海美迪西生物医药有限公司杂质分析中HPLC方法建立15:40-16:00杨慧伟睿智化学手性化合物的纯化与制备16:00-16:20陈峰海正药业制药企业中新型提取纯化技术的应用及要求16:20:16:40待定中美华东发酵产物与制备纯化的关联性研究16:40-17:00AnilOrochemSMB的工艺开发案例17:00-17:20马百平军事医学科学院放射与辐射医学研究所中药化学成分的组成分析及分离纯化17:20-17:40谢期林成都普瑞法成都普瑞法科技开发有限公司中药化学成分的放大生产及相关技术17:40-18:00王洪宇博纳艾杰尔制备色谱填料的选择及优化18:00-18:10休息及收反馈表18:10-19:00晚宴  3. 报名方式  请填写报名回执表  1)发送到pharmasep@163.com,获得审核后会务组将邮寄邀请函到登记地址,凭邀请函入场  2)6月26日全天,6月27日14:30之前可在CPHI展会展馆到以下报名点现场报名,根据登记信息领取邀请函,凭邀请函入场。  报名点1:博纳艾杰尔展位# W5C60  报名点2:分析测试百科网展位# W5G70  报名点3:仪器信息网展位# W5G76  4. 参会费  参会费500RMB, 含会议资料,礼品及晚宴。会务组提供一定数量的免费名额,先到先得!  厂商参会赞助请联系姜平月15620189828  5. 班车信息  6月27日有开往会议地点的班车,请于14:30 在2#入口厅集合,凭邀请函登车。  6.报名回执表单位名称 邮 编 单位地址(入场券邮寄地址) 参会人姓名部 门职 务邮箱电话          关注的问题     报名联系人:姜平月 15620189828, 李娜021-58706852, 18017576638
  • 美国环保署更新安全化学成分清单
    据华盛顿消息,美国环保署(EPA)于2013年7月24日将超过130种的化学药品加入安全化学成分清单中。其中,119种商业和消费清洁产品所用的芳香物质首次加入清单中。  截止到现在,该安全化学成分清单包含了602种化学药品,为致力于制造更安全产品的生产商、提倡使用更安全化学药品的健康环保倡导者和寻求更安全化学产品成分信息的消费者,提供了有效资源。同时,也为环境化设计(DfE)产品标签提供了指南,以达到EPA严格科学的人类健康和环境保护标准。  目前,超过2500多种的商品通过了DfE的认证标准,包括全能型清洁剂、衣服及餐具洗涤剂、车船保养品、窗户清洁剂等。使用DfE认证产品无疑会大大降低对化学药品的暴露,从而保证身体健康和环境安全。  该安全化学成分清单首创于2012年9月,EPA将继续更新添加芳香物质和化学药品于该清单中。
  • EPA安全化学成分清单增添130种化学物质
    美国环保署(EPA)在其安全化学成分清单中增添了130种化学物质,包括在商业和清洁用品中使用的芳香物质。该含有602种物质的安全化学成分清单,给制造商、消费者和环保主义者提供了一种资源,同时也作为产品是否可携带DfE环保标签的指导原则,因为携带标签的产品必须严格依照EPA标准以保护人类健康及环境。EPA称,化学物质可能会从清单中删除或依照新的数据或技术革新提升安全化学品的标准而改变其状态。  环保署指出,这项自愿性计划能识别使用安全化学成分的具有高性能和成本效益的产品。目前有超过2500种产品携带DfE环保标签。该安全化学成分清单根据使用功能级别分类,旨在帮助产品制造商使用DfE计划已经评估确认为安全的化学物质。
  • 印度“月船”搭载光谱仪获俄协助 分析月球表面化学成分
    据spacedaily2017年2月17日报道,印度航天研究组织(ISRO)已经开始为月球表面软着陆器进行一系列传感器和作动器性能的地面测试。  ISRO选择俄罗斯JSC公司为其提供放射性同位素锔-244(Cm-244),用于确定任何岩石和土壤的化学成分。由JSC公司提供的同位素源将安装在阿尔法质子X射线光谱仪(APXS)上,旨在“月船”2号任务中分析月球表面化学成分。  类似的俄罗斯同位素源已经提供给美国NASA的3个探索任务:“火星探路者”(1997年)、“机遇”号(2004年)、“好奇”号(2012年),致力于探索火星上的岩石化学成分。Cm-244的生产目前只有俄罗斯和美国开展。  “月船”2号由轨道器、着陆器和巡视器组成。到达月球轨道100千米后,携带巡视器的着陆器将从轨道器上分离。受控下降后,着陆器将软着陆在月球表面的指定地点并释放巡视器,巡视器上的仪器将收集数据以分析月球土壤。目前已经开展了着陆器传感器性能测试,月球地形试验设施也为着陆器跌落试验和巡视器机动试验做好准备。“月船”2号计划2018年第一季度发射,任务成本预计为9100万美元。
  • 开展铁矿石产品中化学成分等调查的通知
    随着我国钢铁产量的持续增长,对铁矿石的需求越来越大,为保障铁矿石产品质量,规范全国统一标准,中国钢铁工业协会准备组织有关单位制定铁矿石产品分等分级冶金行业标准。为此,在全国范围内开展铁矿石产品中化学成分和物理性能指标以及铁矿石标准使用情况的调查,请你单位给予支持。详见附件。 附件:铁矿石产品中化学成分和物理性能指标以及铁矿石标准使用情况调查表
  • 美国环保局扩展更安全的化学成分列表
    2013年7月24日消息,美国环保局(EPA)在其更安全的化学成分列表中新增了132种物质,其中包括119种用于商业或家用清洁用品中的香氛物质。这些化学品是首批列入清单中的香氛物质。  该机构称,香氛物质在很多家用清洁用品中是一个即重要又复杂的部分。EPA称,通过将香氛物及其他化学品加入清单中,可以继续致力于帮助企业制造出更安全的产品,给公众提供更好的化学品信息。  该列表于2012年9月建立,目前已包括602种化学品。该列表旨在为制造商、消费者以及环境和健康的倡导者提供一种资源,同时也可用于指导EPA设计的环境产品标签计划。
  • 新一届全国钢标准化技术委员会化学成分测定分技术委员会成员确定
    3月26日,在江苏省泰州市召开的“2014年全国钢标准化技术委员会年会”上,钢研纳克检测技术有限公司首席科学家王海舟院士被国家标准化管理委员会聘请为新一届全国钢标准化技术委员会化学成分测定分技术委员会主任委员。钢研纳克总经理贾云海被聘请为全国钢标委化学成分测定分技术委员会副主任委员。质量部副主任罗倩华被聘请为全国钢标委化学成分测定分技术委员会秘书长兼委员。检测事业部总经理宋志敏被聘请为全国钢标准化技术委员会委员、全国钢标委钢管分技术委员会委员。检测事业部副总经理高怡斐被聘请为力学及工艺性能试样方法分技术委员会副主任委员。
  • 征集|化妆品原料禁用化学成分和动植物品种的意见
    科学与技术飞速发展,化妆品的研制和开发越来越多的融入高科技的含量,以满足人们越来越高的要求。各种功能性化妆品应运而生,为保证化妆品的使用安全,进一步加强化妆品原料安全监管,1月22日,中检院向各级药品监管部门和检验检测机构、相关行业协会、生产企业及科研机构等征集关于化妆品原料禁用目录的意见和建议。要求于2021年2月18日前,填写《征求意见反馈表》(见附件),以电子邮件方式发送至hzpbwh@nifdc.org.cn。目前,中检院对化妆品禁用原料目录等文件进行了修订,包括1309项化学成分目录(附件1)、112项植(动)物品种目录(附件2)、化学成分修订前后对比(附件3)、植(动)物品种修订前后对比(附件4)。《化妆品禁用原料目录》制修订说明为贯彻落实《化妆品监督管理条例》(以下简称《条例》)要求,进一步加强化妆品原料管理,保证化妆品的质量安全,规范和促进化妆品行业健康发展,国家药品监督管理局组织启动了对《化妆品禁用原料目录》(以下简称《禁用目录》)的制修订工作,现将有关情况说明如下: 一、必要性(一)满足化妆品行业发展需要近年来,我国化妆品生产和消费均呈现快速发展的趋势。化妆品原料的使用与化妆品的质量安全密切相关,随着化妆品行业的发展和科学认识的提高,根据我国对一些化妆品原料风险评估结果,同时参考近几年欧盟、美国等化妆品行业发达国家或地区对一些化妆品评估和法规调整情况,发现部分原料急需调整管理使用要求。为切实保障消费者的使用安全,按照从严管理原则,我国《化妆品安全技术规范》(2015版)中禁用原料管理规定亟待调整。(二)满足化妆品安全监管的需要《条例》第十五条规定,禁止用于化妆品生产的原料目录由国务院药品监督管理部门制定、公布。随着科学技术的发展,新的检测方法和安全评估方法的出现,逐步发现部分原料可能存在潜在安全风险,需要加强管理。为了贯彻落实《条例》关于禁用原料的管理规定,结合化妆品行业发展和监管工作需要,急需在《化妆品安全技术规范》(2015版)中禁用组分的基础上制修订《禁用目录》,用于指导和规范化妆品行业和化妆品禁用原料的管理工作。二、制定目标和原则(一)制定目标以《化妆品安全技术规范》(2015版)为基础,制修订化妆品禁用原料要求,提高《禁用目录》的适应性和可操作性,满足化妆品监管工作的需要。(二)制定原则一是继承发展的原则。以《化妆品安全技术规范》(2015版)第二章化妆品禁用组分的内容为基础,对适用的部分予以充分保留,并根据最新的风险评估结果,将具有潜在安全风险的原料纳入《禁用目录》,满足监管工作的需要,切实保障消费者的使用安全。二是科学规范的原则。在充分考虑当前化妆品相关学科领域科研成果的基础上,参考国内外权威机构对原料的命名原则要求,对部分原料名称进行修改完善,力求科学规范。三是与时俱进的原则。根据化妆品技术研究进展和化妆品监管工作需要,对《禁用目录》内容进行修订和补充。三、制定要点《禁用目录》以《化妆品安全技术规范》(2015版)第二章化妆品禁限用组分的内容和体例为基础,结合评估结果、近期国际和国内化妆品安全监管的要求及变化,参考相关规范性文件编写而成。一是参考最新的评估结果,按从严原则,《化妆品安全技术规范》(2015版)中的限用、准用组分表或《已使用化妆品原料名称目录》中的评估结论认为可能存在安全风险的物质,纳入至《禁用目录》。二是针对近几年化妆品安全监管工作中发现的问题,为严厉打击不法企业添加禁用目录中具体药物名称外的药物,对易发生非法添加进而凸显化妆品功效的抗感染药物、激素和抗组胺药,不仅限于原目录中的具体名称,进行类别管理。三是规范部分禁用原料名称及内容。四是规范部分禁用植物原料名称。四、主要内容(一)新增17种化妆品禁用原料一是参考国际法规相关规定,结合我国对《化妆品安全技术规范》(2015版)限用、准用组分列表和《已使用化妆品原料名称目录》中部分已收录原料的评估结果,将可能存在安全风险的原料纳入《禁用目录》。例如,3-亚苄基樟脑、新铃兰醛、万寿菊花(TAGETES ERECTA)提取物、万寿菊花(TAGETES ERECTA)油、2-氯对苯二胺、2-氯对苯二胺硫酸盐、硼酸、硼酸盐、四硼酸盐和其他硼酸盐类和酯类、过硼酸钠、甲醛、多聚甲醛、二氯甲烷等。二是根据我国安全评估结论,将在化妆品中使用可能存在安全风险的原料纳入《禁用目录》,如非那西丁等。三是参考其他国家或地区的法规调整,结合我国的评估情况,考虑其可能存在安全风险,新增纳入《禁用目录》,例如苔黑醛、氯化苔黑醛、苄氯酚、环己胺、咪唑等。(二)修订13种化妆品禁用原料一是对部分原料名称进行规范,如“抗生素类”修改为“抗感染类药物”等。二是补充部分禁用原料的CAS号,如右丙氧芬、地芬诺酯、石棉、氢醌、羟苯异丙酯及其盐、羟苯异丁酯及其盐、羟苯苯酯、羟苯苄酯、羟苯戊酯、短杆菌素等。三是补充部分禁用原料的EC号,如联邻甲苯胺基染料等。四是对部分原料的CAS号勘误,如常压塔处理的残液(石油)等。(三)按照技术法规文件要求对文字内容进行调整规范考虑到下一步《禁用目录》将作为单独的技术法规文件或者强制性国家标准进行发布,有必要对《化妆品安全技术规范》(2015版)载明的禁用组分表1和表2的内容和体例进行调整规范,将原禁用组分中引用的部分在新《禁用目录》里进行相应调整。例如将“表1”改为“本表”, “表2”改为“化妆品禁用植(动)物原料”,“表3”改为“化妆品限用组分”,“表4”改为“化妆品准用防腐剂”,“表6”改为“化妆品准用着色剂”,“组分”改为“原料”。(四)将禁用药物成分进行分类合并参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的药物成分进行分类合并,将三溴沙仑、抗生素、二氢速甾醇、乙硫异烟胺、呋喃唑酮、酮康唑、甲硝唑、呋喃妥因、磺胺类药物(磺胺和其氨基的一个或多个氢原子被取代的衍生物)及其盐类、甲巯咪唑等合并为抗感染类药物;将溴苯那敏及其盐类、氯苯沙明、苯海拉明及其盐类、多西拉敏及其盐类、羟嗪、曲吡那敏等合并为抗组胺药;将甾族结构的抗雄激素物质、肾上腺素、糖皮质激素类(皮质类固醇)、雌激素类、孕激素类、具有雄激素效应的物质等合并为激素类。(五)修订27种禁用植(动)物原料一是规范原料名称。将禁用植(动)物组分表2中名称不规范的原料名称进行统一调整规范,如将“八角科八角属植物(八角茴香除外)”调整为“五味子科八角属植物(八角除外)”。二是规范原料命名格式。调整植物组分(属)的拉丁文学名或英文名的格式为“属(科)拉丁名”,如“羊角拗类”调整为“夹竹桃科羊角拗属植物”。 调整植物组分(种)的拉丁文学名或英文名的格式为“拉丁名(部位/描述/英文名)”,如土木香根油、无花果叶净油、月桂树籽油。三是统一原料拉丁文学名或英文名。若植物原料(种)有多个拉丁文学名或英文名,将其学名(正名)放首位,异名后置,异名格式对属名+种加词,并用synonym标记,如魔芋、威灵仙、铃兰、藤黄等。参考中国植物志,若植物原料(种)的中文名称对应多个拉丁文学名的,各拉丁文学名所述并非同一种植物原料,则将其拆分,如魔芋、威灵仙、大风子、牵牛、商陆;若一个条目包括2种原料,也将其拆分,如芥、白芥。四是规范正名和异名。参考中国植物志,将植物原料(种)的中文名称和拉丁文学名均以学名(正名)表述,原名称为异名/俗名的原料,保留原名称并增加其学名(正名)。学名(正名)置于首位,异名/俗名后置,异名格式对属名+种加词,并用synonym标记。包括海芋、吐根及其近缘种、木香根油、野百合(农吉利)、茅膏菜、莨菪、夹竹桃、北五加皮(香加皮)、牵牛、补骨脂、除虫菊、一叶萩、(白)海葱、马鞭草油、白附子。五、需要重点说明的问题(一)药物成分分类管理参考《中国药典》(2020年版)、《临床用药须知》(2015年版)、《马丁代尔氏大药典》对《化妆品安全技术规范》(2015版)禁用组分表收录的部分种类药物成分按种类进行合并,合并类别为抗感染类药物、抗组胺药和激素类,并将原分散于禁用组分表中的药物成分作为具体实例体现在合并后药物类别中。但类别药物的涵盖范围包括但不限于举例的药物成分,凡是属于该类别的药物成分,均属于该类药物的涵盖范围。(二)序号调整本次制修订工作涉及多个条目合并为一条(如类别药物,抗感染类药物、抗组胺药、激素类),也涉及一个条目拆分为多条(如魔芋、芥、白芥、威灵仙、牵牛、商陆)。为保证《禁用目录》的延续性,在原有的编号顺序基础上进行调整。将因合并而空出的序号删除;将因拆分而变多的原料赋予新序号,原序号删除。附件下载:附件1.xlsx附件2.xlsx附件3.xlsx附件4.xlsx征求意见反馈表.xlsx
  • “麦乐鸡”含橡胶化学成分 麦当劳否认危害健康
    据香港文汇报综合外报报道,麦当劳曾推出一种“全白肉”麦乐鸡,其食物成分被形容为“科学怪人的创作”。最近有调查发现,美国的麦乐鸡竟然含有橡胶化学成分“聚二甲基硅氧烷”。不过麦当劳表示,这种用于化妆品及泥胶的化学物质,不会危害人体健康。  美国麦当劳发言人称,在麦乐鸡加入聚二甲基硅氧烷,是基于安全理由,用以防止炸鸡块的食油起泡。据世界卫生组织的动物测验显示,这种物质对人体无害。  美国有线新闻网络的化验又显示,美国的麦乐鸡还含有化学成分“特丁基对苯二酚”(tBHQ),每件鸡块的tBHQ含量为0.02%。tBHQ从石油提炼,用于植物油与动物脂肪的防腐剂。据悉,人体摄取1克会出现反胃、耳鸣、作呕等副作用,甚至会感到窒息和虚脱。  美国烹饪节目主持兼杂志创办人金博尔就认为,麦当劳加入这些化学物质,是想保持麦乐鸡的质感和方块形状。  另外化验结果又显示,4件美国制麦乐鸡含190卡路里热量、12克脂肪和2克饱和脂肪,全高于英国的麦乐鸡。麦当劳发言人表示,这是由于两地制作麦乐鸡方法不同,英国麦当劳会先煮鸡块再涂炸浆,而美国的制作次序刚好倒转,故美国的麦乐鸡吸收较多油分,脂肪也较多。英国的麦乐鸡亦不含上述两种化学成分。  香港麦当劳没有回复在香港分店出售的麦乐鸡有没有含上述两种化学成分,但强调公司有质量监控程序,确保食物符合安全标准,而且生产过程亦依足香港法例的要求。相关新闻:麦乐鸡含两化学物为合法添加剂但用量监测困难
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 本草奇遇记——分离纯化之旅
    3本草奇遇记分离纯化之旅”在上一期的本草奇遇记中,我们详细介绍了步琦在中药萃取浓缩方面的解决方案,希望能通过先进且高效的萃取浓缩方式助力“十四五”中医药的发展。这次,我们将带大家另外了解奇遇记之分离纯化之旅,领略其在步琦产品线中是如何占有一席之地的。分离纯化天将降大任于斯人也。中药研究当中,分离纯化过程是“痛苦”的也是重中之重的。以往我们在此过程必将苦其心志,劳其筋骨,稍有不慎就会使得我们前功尽弃。而如今步琦公司推出的全息中高压制备色谱可以使得分离纯化过程变得异常的简单与高效。中高压制备色谱 Pure C-850智能高效,分离纯化理想伴侣全息中高压一体制备色谱 Pure C-850 功能十分强大,尤其适用于中药化学当中复杂成分的有效拆分。其优异的参数上限为用户提供更多的选择性。C-850 所搭载的 DAD+ELSD 双检测器系统可以更加完善的检测有紫外吸收和无紫外吸收的化合物,保证用户样品检测全面性。 Flash 与 Prep 双模式功能可允许用户在前期样品粗分及后期单体化合物高压制备两种需求中自由切换。除该型号之外,用户还可以根据自己样品特性及实验室条件选择最适合的一款型号:低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测应用:中药化学、天然产物和有机合成领域的组分分离方法:吸附色谱法、体积排阻色谱法等溶剂:有机溶剂/水应用实例一从银杏提取物中分离纯化类黄酮仪器:全息制备色谱 Pure C-815▲左右滑动查看更多应用实例二使用 Pure 制备色谱对五倍子中有效成分进行分离仪器:全息制备色谱 Pure C-815▲左右滑动查看更多应用实例三使用 Pure 制备色谱对水溶性抗坏血酸和烟酸的分离纯化仪器:全息制备色谱 Pure C-850▲左右滑动查看更多好啦,分离纯化之旅到这里就结束啦,如果您想要对这次“旅行”有更深入的了解的话,可以随时联系我们。步琦公司作为全球知名样品前处理设备供应商,致力于以丰富的经验与方案帮助用户解决实验难题。
  • 北京中医药大学李军与宋月林研究员建立全新三维质谱技术 快速鉴别中药化学成分组
    p style="text-align: justify text-indent: 2em line-height: 2em "strongspan style="text-indent: 2em "仪器信息网讯/span/strongspan style="text-indent: 2em " 化学成分组是中药发挥药效的基础。不同中药的化学成分组存在差异,药效也显著不同。代谢组学是区分中药化学成分组的有效策略。然而,无论是靶标还是非靶标代谢组学方法,都难以实现化学信息的快速、全面、准确采集,影响了差异化学成分的可信度。为了实现中药化学成分组的深入表征,span style="text-indent: 2em color: rgb(192, 0, 0) "strong北京中医药大学中药现代研究中心的李军、宋月林研究员小组综合靶标和非靶标代谢组学的优势,整合直接进样分析、全面信息依赖性数据采集方法,并引入在线能量分辨质谱技术,构建了全新的直接注射-三维质谱技术(DI-3D MS)/strong/span。/span/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "相关研究成果以《Direct infusion–three-dimensional mass spectrometry enables rapid chemome comparison among herbal medicines》为题在线发表于分析化学领域国际顶级期刊Analytical Chemistry。/span/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/uepic/acc4dcca-2dba-4097-835c-6c9c2a111b2d.jpg" title="111111111.png" alt="111111111.png"//pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "(点击了解:/spana href="https://pubs.acs.org/doi/10.1021/acs.analchem.0c00483" target="_blank" style="text-indent: 2em color: rgb(0, 112, 192) "https://pubs.acs.org/doi/10.1021/acs.analchem.0c00483/aspan style="text-indent: 2em color: rgb(0, 112, 192) "/spanspan style="text-indent: 2em ")/span/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "在线能量分辨质谱法可以增加LC-MS的分析维度,增强定性、定量分析功能。研究成果开发的三维质谱技术可解析为:第一维:通过阶梯式多离子监测模式,高通量(单次分析只需4分钟)、全面采集化学成分定量信息,并实现数据矩阵的强制对齐;第二维:利用梯级固定扫描窗口结合信息依赖性数据采集模式记录每个质谱信号的二级质谱图,获得可能的化学结构;第三维:采用在线能量分辨质谱获得每个质谱信号的裂解曲线及半数丰度碰撞能(CE50),确证化学结构。作者将该技术成功应用于伞形科常用中药当归、前胡、白芷、紫花前胡、毛前胡的化学成分组的快速鉴别分析,为来源于同科属中药的化学成分快速鉴别分析提供了可靠的技术手段。/span/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202009/noimg/f01db276-833a-4661-8034-4eb9c7bd2bb3.gif" title="2.gif" alt="2.gif"//pp style="text-align: justify text-indent: 2em line-height: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align: justify text-indent: 2em line-height: 2em "span style="color: rgb(192, 0, 0) "strong下载附件了解详细研究成果:/strong/span/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="color: rgb(192, 0, 0) "strong/strong/span/pp style="line-height: 16px "img style="vertical-align: middle margin-right: 2px " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a style="font-size:12px color:#0066cc " href="https://img1.17img.cn/17img/files/202009/attachment/ffa769ea-3a8e-49f4-ad7a-6d4c22b83f53.pdf" title="Direct Infusion-Three-Dimensional-Mass Spectrometry Enables Rapid Chemome Comparison among Herbal Medicines .pdf"Direct Infusion-Three-Dimensional-Mass Spectrometry Enables Rapid Chemome Comparison among Herbal Medicines .pdf/a/pp style="text-align: justify text-indent: 2em line-height: 2em "span style="color: rgb(192, 0, 0) "strong/strong/spanbr//ppbr//p
  • 8109万元 中科天融“大气细颗粒物化学成分在线监测设备研制与应用示范”重大科学仪器专项获批
    日前,国家科学技术部发布了《科技部关于2013年度国家重大科学仪器设备开发专项项目立项的通知》,由中科天融(北京)科技有限公司(以下简称:中科天融)牵头,并由中国环境监测总站作为第一技术支持单位的“大气细颗粒物化学成分在线监测设备研制与应用示范”项目脱颖而出,成功获批。这是中科天融公司首次作为牵头单位获批国家级科学仪器开发和应用示范类项目。项目针对近年来我国雾霾天气频发的现状,围绕《国家环境保护“十二五”规划》中关于复合型大气污染治理的规划,针对细颗粒物污染进行合理有效的控制,对细颗粒物进行源解析,开发出科技创新,服务经济建设和社会发展的科学仪器。项目的成功立项,主要依托国家对人民群众的身体健康和生产生活环境的密切关注、政策支持,以及中科天融公司强大的技术、研发力量,可靠的质量控制程序,良好的企业信誉和雄厚的资金实力。
  • 探讨:材料成分分析技术与应用
    成分分析是材料研究中的一个必要项,可以帮助科研工作者了解材料的组成和性质,并对材料的改性和升级提供重要的理论依据。常用的分析方法有光谱、色谱、质谱等。为帮助广大科研工作者了解前沿表征与分析检测技术,解决材料表征与分析检测难题,开展表征与检测相关工作,仪器信息网将于2023年12月18-21日举办第五届材料表征与分析检测技术网络会议,特别设置成分分析专场,邀请多位专家学者围绕材料成分分析技术与应用展开分享。部分报告预告如下(按报告时间排序):上海交通大学分析测试中心研究员 朱邦尚《红外光谱分析制样技术漫谈》点击报名听会朱邦尚,博士,研究员,博士生导师,在上海交通大学分析测试中心/化学化工学院从事科研和教学工作,研究方向:生物材料和纳米生物医药,主要从事纳米生物材料在药物、生物医学领域的应用研究。仪器分析领域:光谱分析,主要涉及红外光谱、拉曼光谱、荧光光谱、紫外-可见-近红外光谱和圆二色光谱等。曾主持和参加10多项国家和省部级科研项目。在高水平的学术期刊Biomaterials、Biomacromolecules、Polymer Chemistry、Carbon和Macromolecules等杂志发表70多篇研究论文,他引5000多次。担任国家自然科学基金项目评审专家、教育部学位论文评审专家、上海市科委项目评审专家、仪器设备评审专家以及高级职称评审专家;同时,应邀参与Biomaterials、Carbon等国际一流学术期刊的论文审稿。报告摘要:红外光谱分析样品用量少、分析速度快、图谱直观,有成熟、完备的IR谱库支撑数据或谱图分析;同时,红外光谱仪价格相对便宜。所以,在物质定性分析或分子结构鉴定过程中,红外光谱备受青睐分析手段。然而,要想做出一张高质量的谱图,客观、准确、有效地反映样品的分子结构和化学成分特征,避免伪峰或假峰,必须要用正确的样品制备方法和选择合适的检测模式,样品制备是红外光谱分析的关键环节,“样品制不好,神仙做不了”。由于测试样品成分及来源复杂多变,不同类型样品所适用的方法不同。本报告结合20多年来的实践经验,就红外光谱分析样品制备主要手段:压片法、糊状法、薄膜法(溶剂溶解成膜法、热压法制膜)、液体池法(液体测试、液膜测试)、气体池法等;不同红外检测模式:透射、反射、ATR、显微IR、纳米IR等给予充分地介绍,对于制样和测试过程中常出现的问题进行分析讨论, 供广大红外光谱和仪器分析工作者参考。江西理工大学分析测试中心教授 吴伟明《材料的成分分析探讨》点击报名听会吴伟明,江西理工大学分析与测试中心副主任与技术负责人,教授,全国稀土标准化技术委员会委员,中国稀土学会理化检验专业委员会委员。从事分析测定和应用化学方面的研究三十余年。主要从事电子精细化学品研制、再生金属的分离提取以及相关分析检测技术研究,特别是在有色金属冶金分析方面的检测领域。起草编制国家标准制定二项和参与制定国家和行业标准数项。主持和参加省部级和企业科研项目数项,获专利发明2项,发表学术论文二十余篇。报告摘要:材料的成分分析探讨:1.材料的成分 ;2.材料成分分析;3.高纯物质检测利器--电感耦合等离子串联质谱仪(ICP-MS/MS)。沃特世大中华区T&LS部门材料科学市场经理 李欣蔚《应对材料分析挑战的色谱质谱及信息化技术应用》点击报名听会李欣蔚,从事分析领域近15年,2011年进入沃特世以来,负责相关领域的色谱、质谱应用方案支持,帮助客户实现检测效率最大化;对接最新国际材料领域检测方案、推进全国化工行业高端客户合作、熟知细分行业材料分析思路;推动开发应对产业难题的解决方案,基于不同材料类型、不同应用领域、不同产业链需求制定定制化方案指导。报告摘要:分析检测可以助力材料研发、品质把控和溯源,但同时有机材料的分析过程中会遇到各种各样的挑战。无论是溶解难题、复杂样品拆分难题、如何数据挖掘解析的困难、以及对于效率和多种类样品分析的需要,沃特世提供创新性的、多样化、多角度分析的色谱质谱解决方案。 在本次报告中将分享沃特世超高效聚合物色谱APC、多样化的质谱进样手段、以及最新的Pattern Targeting Application软件表征应用案例和技巧。中国航发北京航空材料研究院高级工程师 高颂《高精度检测方法在高温合金化学成分分析中的应用》点击报名听会高颂,中国航发北京航空材料研究院,高级工程师;航空工业分析化学鉴委会委员和授课教师,冶金分析杂志理事会委员。多年来一直从事金属材料化学成分分析方法研究与航空试验室金属材料分析测试管理工作。主编航空用钛合金、铝合金、高温合金检测标准国军标、航业标准十余项,航发标准项十余项。授权发明专利2项,技术秘密3项,发表论文30余篇,出版专著2项,科技成果三等奖2项。近年来在辉光质谱法检测高温合金痕量元素、高分辨质谱法检测高温合金痕量元素方面成果显著,编写了系列分析方法标准多项。报告摘要:无。北京市科学技术研究院分析测试所(北京市理化分析测试中心)副所长/研究员 高峡《高分子材料老化降解成分捕获与分析测试技术》点击报名听会高峡,复旦大学材料物理与化学专业博士,先后工作于中国科学院化学研究所高分子物理与化学国家重点实验室和工程塑料院重点实验室,现任职于北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)副所长,有机材料检测技术与质量评价北京市重点实验室主任。承担国家、省部级科研项目 20余项、获批发明专利6项,立项或颁布国家标准7项、行业或团体标准10余项,主编或参编著作4部,发表学术论文百余篇,科研成果获省、部级行业科学技术奖二等奖2项、三等奖3项。兼任全国塑料制品标准化技术委员会委员、全国纳米技术标准化技术委员会委员、中国材料与试验标准化委员会微塑料及其环保试验技术标准化委员会副主任委员和秘书长等。报告摘要:重点介绍实验室自制高分子材料老化降解成分收集装置和老化产物分析测试技术,以及“微塑料”检测标准化进展情况。参会指南1、进入第五届材料表征与分析检测技术网络会议官网(https://www.instrument.com.cn/webinar/meetings/icmc2023/)进行报名。扫描下方二维码,进入会议官网报名2、会议召开前统一报名审核,审核通过后将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(电话:010-51654077-8285 邮箱:gaolj@instrument.com.cn)5、赞助联系人:周老师(电话:010-51654077-8120 邮箱:zhouhh@instrument.com.cn)
  • 国家重大科学仪器设备开发专项“大气细颗粒物化学成分在线监测设备研制与应用示范”项目启动会在京召开
    2014年3月6日上午,中科天融(北京)科技有限公司牵头的国家重大科学仪器设备开发专项“大气细颗粒物化学成分在线监测设备研制与应用示范”项目启动会在京召开。中国环境监测总站院士魏复盛、中国科学院安徽光机所院士刘文清、中国环境保护部科技标准司副司长王开宇、中国环境监测总站副站长王业耀、中国节能环保集团公司董事长王小康、副总经理余红辉,中节能六合天融环保科技有限公司总经理朱彤等有关领导、专家和项目合作单位成员代表60余人参加本次启动会。  近年来大气污染问题已成为民众关心的焦点,国务院和环保部门针对大气细颗粒物污染防治问题,制定了一系列的政策和计划。“大气细颗粒物化学成分在线监测设备研制与应用示范”项目的启动,正是科技部贯彻落实国务院《国家环境保护“十二五”科技发展规划》的重大举措,是实施《环境空气细颗粒物污染防治技术政策》的切实措施,既是科研项目,也是民生项目, 对切实改善我国空气污染现状、提升民众对大气环境的满意度具有重要的现实意义和深远的社会影响。  该项目的总体目标是针对近年来我国雾霾天气频发的现状,围绕《国家环境保护“十二五”规划》中关于复合型大气污染治理的规划,研制开发具有自主知识产权的大气细颗粒物化学成分在线监测设备,填补国产仪器空白,打破国外技术垄断,同时建立相关分析方法、技术标准和全过程质控体系,整体提升仪器性能与品质,实现产业化,为我国大气污染防治提供技术支撑和数据依据。该项目由中国环境保护部组织,中科天融(北京)科技有限公司牵头,中国环境监测总站为第一技术支持单位;由聚光科技(杭州)股份有限公司、河北先河环保科技股份有限公司、武汉宇虹环保产业发展有限公司、北京大学、中国科学院大气物理研究所合作开发,中国环境监测总站、武汉市环境监测中心进行应用示范。    会前,中国节能环保集团公司董事长王小康到会场与各位专家进行交流,表示我们要借目前国家对环境污染重视程度的加强,及环保部针对雾霾开展治理的契机,大力加强对污染控制技术的开发,为治理环境的共同事业、共同愿望多做贡献。    启动会上,王开宇副司长代表环保部讲话,对重大专项启动的积极意义给予很高评价,并寄予厚望,希望各承担单位加快部署进一步推动科学仪器设备的开发和应用,服务经济和社会发展;她强调各任务承担单位和任务负责人应统一思想,做好落实,严格按项目资金管理办法执行预算,尽快启动各任务的研究任务,按时、保质完成课题的预定目标。  中国节能环保集团公司副总经理余红辉向与会领导和专家介绍了中国节能在节能环保领域所做出的成绩和优势,鼓励课题组成员勇于技术创新,在项目合作中以宏远目标为重,充分利用大数据力量,兑现项目要求和各方期望。  与会专家认真听取项目负责人郭炜所作的项目情况介绍;同时,各仪器开发单位项目负责人逐一介绍了各自承担的任务,专家组高度评价此项目,并提出许多建议。魏复盛院士特别强调研发过程中要继承先进技术,真正解决当前雾霾问题,解决全社会关注的环境问题,以改善空气质量,造福人类。同时,魏院士希望成立各单位之间沟通的平台,通过相互借鉴学习,使服务水平和产品质量明显提高。刘文清院士认为课题的承担单位都是行业内技术力量较强的企业,要把设备开发转化为企业主流产品,通过制定标准,做好质量方面的规划和支持,创造经济效益和社会效益。  启动会后,中科天融(北京)科技有限公司作为项目牵头单位,将尽快按照各级领导的建议、落实专家意见,进一步细化技术方案,积极组织,协同各任务承担单位,按时、保质完成任务书的各项预定指标,向国家和人民交一份满意的答卷!
  • 2019第七届中国生物制药分离纯化技术创新发展论坛
    p  会议规模600人/pp  主办单位:上海市生物医药行业协会/pp  协办单位:美中生物医药协会 广东工业大学生物医药学院/pp  承办单位:北京中航环宇国际文化交流中心/pp  本论坛在生物医药行业专家领导和朋友们的支持下,已连续成功举办了六届。是生物制药技术领域规模最大、学术水平最高、科研成果最新和专业性最强的年度行业盛会,共计超过2800多名专业人士参加,对中国生物制药技术发展起到了重要的推动作用。/pp  本次大会旨在提高生物制药分离纯化技术在生物药研发与工艺开发及下游领域的应用,展示新技术、新进展、为国内外学者提供广泛交流与合作的平台。/pp  本次论坛分为主题论坛,现场展示,专题论坛三部分。论坛涉及/pp  1. 抗体/ 疫苗生物大分子分离纯化专场、2.蛋白/多肽分离纯化专场、3.天然产物分离纯化专场,集中展示目前国际上最先进的分离技术新产品,新设备。/pp  部分演讲嘉宾/pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201906/uepic/38812cb8-e3e1-4bb9-8b53-08905cb4010d.jpg" title="1.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201906/uepic/41287933-c109-4c61-82ca-9de54970f473.jpg" title="3.png"//pp style="text-align: center"img style="" src="https://img1.17img.cn/17img/images/201906/uepic/92db5632-5937-46e0-983d-3e8bcfe994c3.jpg" title="2.png"//pp  /pp style="text-align: center "strong参展范围/strong/pp  1、生命科学与生物技术产品 /pp  2、疫苗、抗体、诊断试剂、实验室设备 /pp  3、生物药品质量分析仪器、酶标仪、培养基 /pp  4、生物制药分离纯化技术解决方案厂商 /pp  参展费用:15800元人民币/pp  1、统一配置:三面隔板(高度250cm,可用高度246cm)一块楣板(标注公司Logo 与名称)地毯、两盏射灯、一张洽谈桌、两把椅子、220V电源插座。/pp  2、会刊中刊登整版彩色广告与300 字左右公司介绍 /pp  3、提供2套会议餐券/pp  4、公司Logo与大会官方网站进行连接.宣传推广 /pp  /pp style="text-align: center "strong 论坛日程安排/strong/pp   strong2019年9月3日上午/strong/pp  ................................................................/pp  07:30-09:00 参会代表报到/pp  09:00-09:15 开幕式 :/pp  09:15-09:45 新时代,新机遇,新方向--从行业角度看新药研发/pp  09:45-10:15 蛋白质组学分离分析方法进展/pp  10:15-10:30 中场休息 参观展览/pp  10:30-11:00 中国生物制药的工艺开发和商业规模生产-优势和挑战/pp  11:00-11:30 美国、欧洲生物类似物相关法规及审批程序/pp  11:30-12:00 生物技术药物质量控制研究/pp  12:00-13:30 自助午餐/pp  /ppstrong 9月3日下午 专题论坛一抗体/ 疫苗生物大分子分离纯化技术/strong/pp  ................................................................../pp  13:30-14:00 新型层析分离介质促进生物大分子药物及疫苗分离纯化的创新/pp  14:00-14:30 单抗工艺开发过程中难点剖析/pp  14:30-15:00 疫苗分离纯化工艺开发及优化/pp  15:00-15:30 抗体药物下游工艺开发与产业化关键技术/pp  15:30-15:45 中场休息 参观展览/pp  15:45-16:15 单克隆抗体ATF高密度细胞培养的下游纯化工艺开发/pp  16:15-16:45 生物制药过程的效率和效益:过程模拟和评价/pp  16:45-17:15 抗体药物偶联分子设计与工艺纯化分析的挑战/pp  17:15-17:45 蛋白药下游工艺的难点分析与解决方案/pp  /ppstrong 9/strongstrong月4日上午 专题论坛二 蛋白/多肽分离纯化技术/strong/pp  ................................................................./pp  09:00-09:30 多肽药物的研究进展/pp  09:30-10:00 复杂生物样品中低丰度蛋白质与多肽分离纯化与鉴定/pp  10:00-10:15 中场休息 参观展览/pp  10:15-10:45 高效液相色谱在合成多肽分离与纯化中的技术应用/pp  10:45-11:15 多肽药物化学合成与纯化工艺/pp  11:15-11:45 重组蛋白和多肽的分离纯化技术/pp  11:45-12:15 化学合成多肽的分离纯化方法/pp  /ppstrong 9月 4日下午 专题论坛三 天然产物分离纯化技术/strong/pp  ................................................................../pp  13:30-14:00 中药活性成分分离纯化新技术新进展/pp  14:00-14:30 手性药物色谱分离技术应用和发展/pp  14:30-14:45 中场休息 参观展览/pp  14:45-15:15 高速逆流色谱及其在天然产物分离制备中的应用/pp  15:15-15:45 膜分离技术在中药分离纯化中的应用与进展/pp  15:45-16:15 天然产物提取分离新技术新方法/pp  ..................................................................../pp  1,※ 会议日程安排和演讲题目可能根据专家建议略有调整,大会组委会保留修改解释权。/pp  /ppstrong 大会组委会秘书处-联系方式/strong/pp  范宇主任 15910266159 微信同步/ppbr//p
  • 聚焦新技术 | AIS puriFlash® 制备纯化系统与流动化学集成,搭建连续分离纯化平台!
    流动化学创新地将传统独立分开的合成操作过程整合起来,在连续流动的系统中完成化学反应,加快了合成的速度,对于绿色化学和实验室自动化领域具有非常重要的意义。此前,我们与爱丁堡赫利瓦特大学 VilelaLAB 和流动化学实验室进行合作,借助 Advion Interchim Scientific puriFlash5.250 纯化制备系统,搭建了全新的连续分离纯化平台,进一步加快实验流程。AIS puriFlash5.250 纯化制备系统ONE平台搭建 平台大致上分为三部分:流动反应池部分、在线输送部分以及AIS puriFlash 5.250 制备纯化部分。实验平台搭建示意图ONE基本思路step 1:流动反应池系统用于进行合成并将粗反应混合物直接或通过在线萃取器输送到 AIS puriFlash 5.250 色谱仪的进样口处。step 2:puriFlash 5.250 通过仪器的 10 通阀,将原料交替切换注入到其中一个样品环中。step 3:两根相同的色谱柱:一个加载反应混合物,另一个用于平衡和执行色谱方法,确保样品环中的样品不损失。 step 4:使用 UV+ELSD 检测器监测并进行馏分收集。 ONE 实验关键点1、优化流动反应池的设置,以获得产品的最大产率;2、优化纯化方法,尽量减少离线实验中粗反应混合物纯化所需的时间;3、色谱方法与流动反应池的进料流速同步,以实现成功的耦合。ONE应用实例(A) 乙二醇和苯甲酰氯酯化反应的在线快速纯化流程示意图。 (B) 40 个连续分离的酯产物的色谱堆叠图。DMAP:4-(二甲氨基)吡啶,FBR:固定床反应器。 实验体系证明了流动化学集成 puriFlash 5.250 从粗反应混合物中同时分离两种产品(以克/小时为单位,纯度 99%)的潜力。在乙二醇和苯甲酰氯的连续流动酯化中,两种酯的产率分别为 9.9 和 7.6 mmol/h。ONE讨论 使用测试混合物(4-甲氧基苯酚和2,5-二溴对二甲苯,正己烷/乙酸乙酯体系)成功进行了原理验证研究,证明了流动化学-puriFlash5.250集成的可行性,并确认了 Advion Interchim Scientific Flash 柱的耐用性。 受到该方法成功的启发,另外几种不同的反应也得到了验证,连续分离出纯度为 97-99% 的产品。 除此之外,puriFlash 5.250 纯化制备系统还可以提供重要的辅助功能。 • 以4,7-二苯基-2,1,3-苯并噻二唑为均相光敏剂,催化 fmoc-l-蛋氨酸生成相应的亚砜为例,证明了均相催化剂在线回收的可能性。 • 可以实现 AIS puriFlash 纯化制备色谱系统与您的流动化学无缝集成,这种联合能够满足实验需求,有助于加速化学新反应的发现。
  • 关于举办“2024精细化工高纯化学品分离提纯精制 技术应用与装备开发论坛”的通知
    关于举办“2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛”的通知各有关单位:精细化工高纯化学品是我国现阶段化工生产高质量、高端化发展的关键,是化学工业中最具活力的新兴发展领域之一,是国内外产业界和学术界抢占的战略制高点。分离提纯精制技术是其生产工艺过程中的核心环节,是产品质量的重要保证。为了进一步促进国内精细化工高纯化学品领域的技术交流,我单位将于2024年6月28日-30日在南京召开“2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛”。本次大会将围绕精细化工高纯化学品的分离提纯、智能优化、分析检测、节能降耗及其关键设备等研究方向,涵盖精馏、结晶、吸附、膜分离、萃取、吸收、检测等分离技术在基础理论研究、工艺流程、工业化生产等相关进展,通过产学研用的结合,助力企业实现转型升级高质量发展,解决我国面临的“卡脖子”技术难题,推动精细化工高纯化学品和高端材料及下游应用。诚邀全国高等院校、科研院所、企事业单位在高纯化学品及相关领域工作的专家学者、科研人员、工程技术人员、管理人员等参会交流。现将有关事项通知如下:论坛主题: 展示最新应用成果助力行业高质量发展一、会议组织:主办单位:中国化工企业管理协会医药化工专业委员会中科凯晟(北京)化工技术研究院协办单位:招募中(欢迎来电咨询洽谈)赞助单位:北京日新远望科技发展有限公司宁波信远膜工业股份有限公司浙江汇甬新材料有限公司会议形式:专家演讲、案例分析、互动交流、仪器设备展示二、时间地点:时间:2024年6月28日—30日(28日全天报到)地点:南京市(具体地点通知给已报名人员)三、会议费用:会务费:2500元/人(含会议费、资料费等);同一企业报名2人以上2200元/人,高校科研单位1800元/人,收费住宿统一安排,费用自理。四、会议日程6月28日(全天):会议酒店报到;展商布展;6月29日(全天):论坛开幕、大会特邀报告、展览展示;6月30日(08:30-11:30):大会特邀报告、展览展示;6月30日(11:30-12:00):闭幕式!大会结束!五、出席嘉宾:龚俊波 天津大学教授——高纯化学品结晶技术李群生 北京化工大学教授——高纯/超高纯化学品精馏关键技术与应用姚克俭 浙江工业大学教授——高纯化学品分离工艺过程、装备和控制的研究和应用陈建新 河北工业大学——高纯精细化学品高效结晶精制与过程强化关键技术开发赵亚平 上海交通大学教授——基于超临界CO2的萃取精馏和模拟移动床分离技术及其应用陶金亮 河北工业大学教授——工业全逆流立体传质塔板在反应及催化精馏领域的特性及应用研究张 扬 华南理工大学教授——高纯化学品结晶分离过程中基于PAT优化结晶过程控制晶形与粒度的工业实例研究王荷芳 河北工业大学教授——高纯度电子级溶剂绿色催化精馏节能工艺开发与应用杨立斌 天津科技大学教授——熔融结晶技术在高纯产品中的实践应用魏玉峰 浙江华海药业股份有限公司高级总监——制药过程结晶工艺开发、转移中的常见问题马鹏程 中国科学院新疆理化技术研究所研究员 ——聚集诱导油水分离工艺张鹏伟 俱力(北京)科技发展有限公司总经理——超高压(HPP)在植物萃取上的优势张庆武 北京日新远望科技发展有限公司教授级高级工程师——高品质活性碳纤维膜在精细化工分离纯化中的应用王作荣 宁波信远膜工业股份有限公司总工程师 ——渗透汽化有机溶剂脱水技术应用案例分享张立峰 浙江汇甬新材料有限公司总经理——微波法第二代分子筛膜在高纯化学品提纯精制中的应用张春芳 江南大学化学与材料工程学院教授报告主题:正在确认中(更多专家报告正在确认中,敬请关注……)六、主要交流内容:一)、高纯化学品分离纯化技术研究与装备1、高纯化学品分离纯化技术工艺研究思路2、高纯化学品分离纯化过程中存在的共沸、近沸和热敏损失问题3、新能源电子化学品痕量杂质分离技术4、精密精馏和层式熔融结晶耦合纯化技术及成套工艺包开发5、吸附-精馏-结晶耦合分离技术研究开发与应用6、连续色谱分离填料、装备和优化成套技术开发与应用7、二元醇系列高难物系产品分离过程与装备8、集成分离技术在多项光学级产品分离中应用9、高纯度化学品精馏过程强化关键技术开发应用及节能减排10、高纯/超高纯化学品精馏关键技术装备研发与工业应用11、熔融结晶技术在锂电化学品的提纯中应用二)、新型分离材料的开发与应用1、新型陶瓷膜材料的研究开发与应用2、高效分离有机溶剂的新型膜材料开发与应用3、有机功能性膜材料开发与应用4、分子筛膜分离技术的研究与应用5、功能性吸附分离材料研究及产业化6、高性能色谱分离材料和色谱柱的研制与应用7、无机离子交换材料的开发与应用8、新型高分子膜材料的开发与应用三)、高效分离设备的开发与反应分离耦合技术1、分离提纯过程节能装备及高效精馏装备开发与应用2、膜过滤系统和模拟移动床系统设备的开发与应用3、连续离交系统和浓缩干燥技术的开发与应用4、超级浮阀塔板装备与高效S型填料的装备的开发与应用5、多级萃取设备和结晶设备的开发与应用6、膜分离设备及固液分离装备的开发与应用7、多相氧化组合反应器与耦合分离新技术应用8、膜分离及膜反应分离一体化技术开发与应用9、LC高效层析分离技术设备开发与应用10、反应-膜分离耦合强化技术的研究与应用11、反应-渗透蒸发耦合技术与无机膜反应器的应用12、超临界流体技术与膜分离耦合技术★新装备与新仪器科技创新成果展示:会议期间将举办新装备与新仪器成果展示活动,欢迎各仪器、装备开发单位积极参加展台展示及技术推广报告。(详情请联系会务组咨询)七、参会对象:全国制药、精细化学品和有机合成产品的生产企业;从事分离纯化技术与工艺放大优化研究领域的相关科研院所、大专院校;分析检测、质量标准等部门的研究和工作人员;为企业提供分离纯化、工艺优化设计和技术服务的单位;与分离纯化、分析检测相关设备与仪器仪表生产企业及贸易公司等。八、论文征集:本次会议面向全国征集与主题相关的学术报告、论文、调研成果,印刷会刊(论文集)作为会议资料,提交人员于6月20日前将论文发送至邮箱zghg2012@126.com。要求论文字数不超过5000字,文件格式为word文档。九、联系方式:联系人:赵老师 电话:13001080157(同微信) 电子邮箱:zghg2012@126.com附 件:参会回执表中国化工企业管理协会医药化工专业委员会 二○二四年五月附件: 2024精细化工高纯化学品分离提纯精制技术应用与装备开发论坛参会回执表单位名称邮 编通讯地址联 系 人部 门职 称手 机电 话传 真参会代表 登记 姓 名性 别职务/称 手 机 电 子 邮 箱发票事宜发票单位名称:发票项目: □培训费 □会务费问题征集(以便报告专家在备课时更有针对性):银行汇款至:户 名:北京邦凯企业管理咨询有限公司开户行:中国工商银行北京玉泉路支行账 号:0200063009200050454签名/盖章:日 期:1、请您准确填写上表各项信息,以便我会制作代表证等相关培训资料。2、请您在回传此确认表后3个工作日内办理付款,汇款注明:南京纯化分离注册费用3、请您付款后把汇款底单发给联系人,款到后我们会给您邮寄正式发票。4、我们在会议前一周左右给您发第二轮报到通知。联系人:赵老师 电话:13001080157(同微信) 电子邮箱:zghg2012@126.com
  • 生物分离纯化:难跑的最后一棒
    科学家利用层析系统开发高效的蛋白分离介质。诺维信供图  注射疫苗出现副作用,使用血液制品感染疾病,热销的生物制品紧急召回……这样的消息接连见诸报端。这在国家生化工程技术研究中心(北京)首席科学家苏志国看来,出现上述问题的背后,可能都是生物分离纯化技术不过关在“捣鬼”。  “生物制药对纯度要求颇高,需要通过生物分离纯化技术将有害物质或杂质去除,但又不能破坏目标产物的活性,其过程十分复杂。”苏志国说,包括生物制药在内的生物技术各相关产业流程,到最后都绕不过分离纯化这一步。  业内人士更是形象地将分离纯化技术,比作为生物技术产业化的“最后一棒”,而跑过的人都知道这一棒的艰难程度。  不可替代的产业角色  根据业内人士的共识,生物技术有所谓的上、下游之分。习惯上,把由生物学家从事的工作,包括分子生物学、生物化学、生物物理学以及遗传、育种、细胞培养、代谢等的研究划分为上游技术,而把生物技术初级制品的进一步分离、纯化、精制,进而制成最终产品的过程统称为下游技术。  因此,生物分离纯化技术常常被称作生物技术的下游工程。  从工业流程上来看,分离纯化技术也是距离终端产品最近的关键一步。  在生物技术科研和生产过程中,存在着大量的蛋白质、多肽和核酸等生物大分子的分析、分离和纯化工作,需要高效快速的分析、分离和制备方法。  而生物分离纯化技术又有别于传统的化学分离方法。全球最大生物酶制剂生产商诺维信中国研发部高级经理吴桂芳向《中国科学报》记者表示:“与化学方法相比,生物分离纯化要保持生物分子的活性,通常需要低温、特定的酸碱度、渗透压等。”  苏志国进一步解释,化学分离法通常利用物质挥发度的不同,比如蒸馏、精馏,通过加热来分离 但对于生物分子,例如蛋白质,通过加热就容易失去活性,所以传统化工方法往往不适用于具有生物活性产物的分离纯化。因此,生物分离纯化技术具有不可替代的产业角色。  据吴桂芳介绍,在生物制品的生产流程中,分离纯化成本一般占总成本的60%以上,主要是因为分离过程中的选择性不高,有效成分损失多。对于一些对终产物纯度要求高的产品,分离步骤越多,产物的最终收率越低。  特别是用于临床的生物医药产品,不仅要达到很高的纯度,而且还要在分离过程中最大限度地保持其生物活性,因为一旦失活,不仅失效,甚至可能产生有毒有害物质。苏志国认为,不合格疫苗等生物制品在人体出现副作用,其背后往往存在生产企业生物分离纯化技术不过关的问题。  令学者又爱又怵  据苏志国观察,很多学生非常愿意学习生物分离纯化技术,甚至从其他专业“投奔”过来。“因为产业需求大,很多企业都需要这方面人才,毕业生好找工作。”  而与此形成鲜明对比的是,国内长期在这一领域从事研究的学者却并不多。  苏志国对《中国科学报》记者说:“有别于大多数基础科学研究,生物分离纯化技术的应用性很强,需要产业实践来检验,很难出理论成果,也不容易在国际一流期刊上发论文。”  该领域的科研人员还需要直面来自企业的压力。花了真金白银的企业不会在乎学者发了多少文章,而是看能不能解决产业化问题。因此,研究者对于从事生物分离纯化技术研究的矛盾心理也就不难理解了。  那么,生物分离纯化技术到底难在哪?  马宁宁来自北京义翘神州生物技术有限公司。该公司以蛋白和抗体生产见长,去年还被世界知名生物技术公司Life Technologies选为战略合作伙伴。身为研发副总经理的他对于生物分离技术之难深有体会。  据他介绍,生物活性物质对外界很敏感,具有天生的不稳定性,对分离条件要求高,从而限制了分离的手段,而同时其分离和纯化又是一个非常复杂的过程。  例如,生物合成的发酵液或反应液是很复杂的多相体系。它含有微生物细胞、细胞碎片、代谢产物、未用完的培养基等,杂质含量较高,而目标产物的浓度却非常低,常常不到百分之一甚至千分之一 有的杂质还具有与产物非常相似的化学结构及理化性能,很难去除 目标产物具有生理活性物质,极不稳定,遇热或遇某些化学试剂极易失活或分解,还容易受到环境微生物的污染,因此常常要求在无菌条件下进行分离纯化。  受制于人的局面必须打破  生物分离纯化的复杂性,直接导致了其工艺流程长、需要的设备多,对原材料要求高等特点。  而在生物分离纯化领域,我国生物产业却面临着受制于国外厂商的尴尬局面。  马宁宁表示,有些设备和原材料看似简单,但对精度和GMP规范符合程度的要求很高,国内还不能生产,只能从国外进口。  “例如色谱柱,国内产品精度和强度能达到生物制药生产要求的很难找到。”他对《中国科学报》记者说,“再比如分离介质,进口产品在国内的售价要比在原产国高出50%~100%。”  苏志国认为,这意味着我国具有战略意义的生物产业,其命脉却掌握在别国手中。“长期以来我国生物分离纯化关键技术、设备和部分原材料依靠国外引进,这是发展阶段所决定的,但我们若想实现生物技术新产品的创制,就必须打破这一局面。”  他建议,应加强生物分离纯化技术的基础研究,“因为基础科学是原动力,而如何在复杂系统中分离生物产品,其中某些科学规律还不清楚”。  而各个被访者均重点阐述的,就是要攻克在设备和原材料方面的难题,其中又以分离介质为甚。  吴桂芳表示,应针对特定的产品开发高选择性的分离纯化介质,从而缩短分离流程,提高产品得率。这需要材料学、化学、生物技术及化学工程的紧密合作,并与终端市场需求、生产企业需求的紧密结合。  据马宁宁观察,分离纯化介质虽然附加值高,但由于用量低,并且技术要求高,对于习惯生产低端大宗工业品的企业不具吸引力,还需依靠有技术优势的中小企业来开发,但这些企业又因规模小不受国家重视。  他认为,国家在选择扶持对象时,应该更多关注专于某个细分领域的小企业,“这样的企业非常重要,没有它们,现代化的生物技术产业链就无法建立,这些小公司不该被忽视”。  记者手记  产业化长跑不能倒在冲刺阶段  科技产品从基础研究到投放市场,会经历漫长的过程。如果把这比作长跑,那生物技术产业化就是马拉松。  这段时间记者接连跑了两家生物技术企业,其负责人无不感慨生物产业的煎熬:多少品种在中试阶段表现良好,结果一放大生产就功亏一篑。  而生物分离纯化正是产业化冲刺阶段的关键技术。  我们常说,不要输在起跑线上。经过近些年的努力,我国在生物技术基础研究上的成果可谓丰硕,已成为在国际顶级期刊上发表论文的常客。  而在距离产业化最近的生物分离纯化阶段,我们同样需要强大的合力共同攻坚。  与大多数基础科学不同,生物分离纯化技术研究的应用性很强,需要产业实践来检验,很难出理论成果,也不容易在国际一流期刊上发论文,不少学者望而却步或者来了又走。  那么,能不能针对这一特点调整科研评价体系,把更多优秀学者吸引过来呢?  生物分离纯化过程复杂,涉及多种设备和原材料,其中有些虽然附加值高,但由于用量低,并且技术要求高,对于习惯生产低端大宗工业品的企业不具吸引力,还需依靠有技术优势的中小企业来开发,但这些企业往往规模小,抗风险能力差,一个订单被国外抢走就可能倒闭。  它们就像机器上的一颗颗螺丝钉,易被忽视但又不可或缺。它们期盼扶持政策的甘霖。国家能否鼓励更多的中小企业专于某一细分领域,给起跑不久的它们推上一把,这样,生物产业的整体才能尽早抵达终点。
  • CBPT2018第五届中国生物制药分离纯化技术创新发展论坛通知
    p style="text-align: center "img width="1000" height="240" title="1.jpg" style="width: 626px height: 122px " src="http://img1.17img.cn/17img/images/201804/noimg/7c793287-8b93-47bf-b86e-9a0d493ffd1a.jpg"//pp  【时间】2018年9月7日-8日/pp  【地点】广州花都皇冠假日酒店/pp  【会议规模】 600人/pp  大会背景/pp  春秋九月,鲜花盛开。《CBPT2018》第五届中国生物制药分离纯化技术创新发展论坛将于2018年9月7日-8日在美丽的羊城广州花都皇冠假日酒店召开。作为中国领先的生物制药技术推广平台,由北京中航环宇国际文化交流中心创办的《CBPT中国生物制药分离纯化技术创新发展论坛》在生物医药行业专家领导和朋友的支持下,已连续成功举办了四届。是生物医药技术领域规模最大、学术水平最高、科研成果最新和专业性最强的年度行业盛会,共计超过1800多名专业人士参加。经过3年的努力与发展“CBPT生物论坛”在众多知名权威专家学者的齐心协力下,集思广益,开拓创新,一直致力于为生物制药界同仁切磋技艺、百家争鸣提供广泛的交流平台,并不断扩大会议规模和学术影响力,对中国生物医药技术发展起到了重要的推动作用。/pp  一组织机构/pp  主办单位:中国医药产业技术创新联盟/pp  协办单位:武汉东湖国家自主创新示范区生物医药行业协会/pp  承办单位:北京中航环宇国际文化交流中心/pp  二、参展费用/pp  标准展位(2m× 3m=6m):15800元人民币/pp  1、统一配置:三面隔板(高度250cm,可用高度246cm)一块楣板(标注公司Logo 与名称)地毯、两盏射灯、一张洽谈桌、两把椅子、220V电源插座。/pp  三、参展范围/pp  1、生命科学与生物技术产品 /pp  2、、疫苗、抗体、诊断试剂、实验室设备 /pp  3、生物药品质量分析仪器、酶标仪、培养基 /pp  4、生物制药分离纯化技术解决方案厂商 /pp  四、参会人员/pp  诚挚邀请各生物制药企业高管、研发负责人、质量负责人。高校科研院所、CRO/CMO企业,从事分离纯化的管理人员及专家、学者、工程技术人员和相关分离纯化解决方案的厂商、/pp  五、大会组委会-联络方式/pp  联系人:范老师15910266159/pp  电 话:010-59494941 大会官方网站www.swjslt.com/pp  论坛日程安排/pp  2018 年9月7日上午/pp  .............................................................................................................................................../pp  07:30-09:00 参会代表报到/pp  09:00-09:15 开幕式 :/pp  09:15-09:45 中国生物医药现状与发展趋势/pp  09:45-10:15 蛋白质组学分离分析方法进展/pp  10:15-10:30 中场休息 参观展览/pp  10:30-11:00 生物类似药在中国的挑战与应对策略/pp  11:00-11:30 美国、欧洲生物类似物相关法规及审批程序/pp  11:30-12:00 生物技术药物质量控制研究/pp  12:00-13:30 自助午餐/pp  9月7日下午 专题论坛一 抗体/ 疫苗生物大分子分离纯化技术/pp  .............................................................................................................................................../pp  13:30-14:00 新型层析分离介质促进生物大分子药物及疫苗分离纯化的创新/pp  14:00-14:30 单抗工艺开发过程中难点剖析/pp  14:30-15:00 疫苗分离纯化工艺开发及优化/pp  15:00-15:30 抗体药物下游工艺开发与产业化关键技术/pp  15:30-15:45 中场休息 参观展览/pp  15:45-16:15 单克隆抗体ATF高密度细胞培养的下游纯化工艺开发/pp  16:15-16:45 生物制药过程的效率和效益:过程模拟和评价/pp  16:45-17:15 抗体药物偶联分子设计与工艺纯化分析的挑战/pp  17:15-17:45 蛋白药下游工艺的难点分析与解决方案/pp  9月8日中午 专题论坛二 蛋白/多肽分离纯化技术/pp  .............................................................................................................................................../pp  09:00-09:30 多肽药物的研究进展/pp  09:30-10:00 复杂生物样品中低丰度蛋白质与多肽分离纯化与鉴定/pp  10:00-10:30 高效液相色谱在合成多肽分离与纯化中的技术应用/pp  10:30-10:40 中场休息 参观展览/pp  10:40-11:10 多肽药物化学合成与纯化工艺/pp  11:10-11:40 重组蛋白和多肽的分离纯化技术/pp  11:40-12:10 化学合成多肽的分离纯化方法/pp  9月 8日下午 专题论坛三 天然产物分离纯化技术/pp  .............................................................................................................................................../pp  13:30-14:00 中药活性成分分离纯化新技术新进展/pp  14:00-14:30 手性药物色谱分离技术应用和发展/pp  14:30-14:45 中场休息 参观展览/pp  14:45-15:15 高速逆流色谱及其在天然产物分离制备中的应用/pp  15:15-15:45 膜分离技术在中药分离纯化中的应用与进展/pp  15:45-16:15 天然产物提取分离新技术新方法/pp  .............................................................................................................................................../pp  1,参展商确定参展请与组委会联系索取“参展申请表”/pp  温馨提示:参展企业须尽早报名,以便获得相对优越位置。/pp/p
  • 【研究应用分享】蛋白质分离纯化技术及具体步骤
    蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。 蛋白质分离纯化的一般程序可分为以下几个步骤——01 材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。5. 酶法如用溶菌酶破坏微生物细胞等。02 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。03 蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。04 样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。05 蛋白质的分析测定通过物理或化学方法对蛋白质含量进行测定。蛋白质的分析纯化,不仅仅是选择合适的方法,必备的工具,例如微量均质器、干燥器、抗体保存盘等,也很重要。Bel-Art蛋白质分析纯化工具推荐本篇我们根据不同耗材在蛋白质分析纯化过程中的不同作用,分类为大家推荐几款合适的耗材。细胞裂解 热门优选 微量均质器-手持式货号:F65000-0000研磨组织和破碎细胞层析 热门优选 磁珠分离架货号:F19900-000分离结合在磁珠上的蛋白质以快速纯化透析热门优选 透析袋夹持器货号:F18237-0000测定热门优选贝塔盾货号:F24976-0001在进行C14分析时减少接触电泳热门优选 Spindrive&trade 轨道摇床平台货号:F37041-0001提供彻底、温和的凝胶混合,同时*限度地扩大实验室空间
  • 超大孔填料在蛋白质分离纯化中的应用
    p /pp  层析纯化技术由于其高选择性、灵活性、易放大性等优点,已经成为蛋白质药物纯化中不可或缺的技术。传统的层析填料为多糖基质,孔径一般在100 nm以下。1970年代出现了大孔和微孔无机材料硅填料,虽然增大了孔道、提高了层析的分辨率和流速,但只能在PH2-7.5范围内稳定,不利于分离纯化在碱性范围内稳定的蛋白质或是需要碱性层析条件的分离,从而限制了其在大规模快速分离蛋白质层析上的应用。多孔聚合物微球由于其高的比表面积、高的机械强度和多样的表面特征,常被用作层析分离纯化的填料。目前已发展出了多种表面基团、基质种类的层析填料,成功用于疫苗、病毒、抗体、酶、细胞因子等的分离纯化。/pp span style="color: rgb(0, 176, 240) "strong 层析纯化病毒、病毒样颗粒等生物大分子的瓶颈问题/strong/span/pp  随着病毒、病毒样颗粒在疫苗、肿瘤治疗、免疫治疗中的地位越来越重要,这类复杂生物大分子的分离纯化需求也逐渐增加。然而传统填料由于孔径较小,蛋白质只能以扩散方式通过填料,传质速率慢,处理量低,造成分离时间长、容易失活等问题[1]。当蛋白质体积较大时,填料表面在吸附一层蛋白后,由于体积位阻以及静电排斥作用,会阻碍其它的蛋白质进一步进入孔内,造成填料的载量下降。另一个限制是病毒或疫苗,尤其是带有包膜的病毒或疫苗,在狭窄的填料孔径内发生吸附时非常容易发生结构变化,破坏其整体结构。在乙肝病毒表面抗原(HBsAg)的纯化中发现这种病毒样颗粒在层析时会发生解聚[2],经过离子交换层析分离后,疫苗的回收率通常不到50%[3, 4]。而抗原的结构发生变化以后,就会对其免疫原性产生影响,所以需要在纯化过程中尽可能维持抗原的结构。/pp  为了解决针对病毒及病毒样颗粒纯化的瓶颈问题,目前已有采用膜色谱、超大孔贯穿孔颗粒填料及整体柱的策略进行纯化的案例,成功纯化了包括人乳头瘤病毒、番茄花叶病毒、流感病毒、腺病毒、慢病毒及各种病毒样颗粒。/ppspan style="color: rgb(0, 176, 240) "strong  病毒及病毒样颗粒的分离纯化/strong/span/pp  根据文献报道,超大孔填料相比传统层析填料不仅在载量及处理速度上有极大的优势,还更有利于病毒及病毒样颗粒的结构保持。/pp  例如,在重组乙肝病毒表面抗原的分离纯化中,采用具有120nm及280nm超大孔径的离子交换填料DEAE-AP-120 nm和DEAE-AP-280 nm(商品名为中科森辉的Giga系列)具有比传统填料DEAE-FF高7倍以上的动态载量[1]。此外,采用ELISA测定抗原收率,发现采用超大孔填料能够减少重组乙肝病毒表面抗原在层析过程中的裂解,从而显著提高活性抗原的收率。/pp style="text-align: center "img width="576" height="450" title="1.jpg" style="width: 415px height: 282px " src="http://img1.17img.cn/17img/images/201808/insimg/3b67db18-4291-4ab6-9874-209cd57644af.jpg"/  /pp style="text-align: center "重组乙肝病毒表面抗原在不同孔径离子交换填料上/pp style="text-align: center "  的吸附动力学[1]/pp style="text-align: center "img width="497" height="345" title="2.jpg" style="width: 387px height: 289px " src="http://img1.17img.cn/17img/images/201808/insimg/07fdf233-77a5-4c30-8d20-faf7f044b54a.jpg"/ /pp style="text-align: center " 重组乙肝病毒表面抗原从不同孔径的填料上洗脱下来的/pp style="text-align: center "  ELISA回收率[1]/pp  对病毒的分离纯化同样有类似的效果。例如在灭活口蹄疫病毒的纯化中,DEAE-FF导致严重的病毒裂解。而采用具有100nm以上孔径的超大孔填料,不仅载量提高10倍以上,还能显著提高病毒在填料上吸附时的热稳定性,从而减少病毒的裂解,具有更高的收率。最终的分离纯化单步收率达90%以上[5]。/pp style="text-align: center "  span style="font-size: 14px "strong灭活口蹄疫病毒在传统填料与超大孔填料上的吸附解离过程/strong/span/pp  与商品填料的小孔道填料相比,超大孔结构可能从以下几方面提高对蛋白质构象的稳定性:/pp  1)增大孔道(受限空间):根据蛋白质折叠行为计算显示,蛋白质的折叠速率与空腔大小、形状密切相关,也即当填料孔道与蛋白的相对尺寸超过某一阈值后,蛋白的折叠行为将不受空腔大小影响。与数十纳米中孔结构的传统填料的相比,数百纳米超大孔结构会因孔道增大、与蛋白接触面积减小,从而对某一尺寸下蛋白质的变构行为有所改善。/pp  2)界面曲率:小孔径填料孔道曲率大,填料与蛋白质接触面积大,因此受更大吸附力影响,蛋白质二级结构变化越严重。而曲率更大的超大孔孔道对蛋白二级结构的保护比狭窄孔道更有优势。/pp style="text-align: center " span style="font-size: 14px "strong 表面曲率变化对蛋白接触面积的影响/strong/span/pp  3)改善配基与蛋白活性区域的接触面积:超大孔微球内部数百纳米孔道在修饰配基后可能会有效改善传统填料狭窄孔道内由于配基拥挤造成的蛋白质失活现象。/pp  4)减少蛋白在孔道内的静电排斥作用:有研究者认为,在离子交换填料上蛋白质起初会在孔道入口处形成一圈静电层,这一静电层会对后来蛋白继续进入孔道产生排斥作用从而使孔道关闭,动态载量下降。如果将超大孔填料修饰为离子交换树脂,由于孔道尺寸显著扩大可能会有效改善蛋白吸附静电层对孔道的封闭作用,从而有效引导蛋白质进入超大孔道,提高回收率。/ppspan style="color: rgb(0, 176, 240) "strong  快速分离蛋白质及pDNA/strong/span/pp  除了应用于病毒及病毒样颗粒的分离纯化的分离纯化,利用超大孔填料传质速度快的优势,将超大孔填料镀上亲水表层,再接上不同配基制成多种形式的层析填料,用于快速高分辨率的纯化蛋白混合物或质粒。超大孔填料制备成的亲和层析、反相层析和离子交换层析填料广泛的应用在蛋白质的分离纯化方向,显示出超大孔填料比传统分离填料高速高分辨率的蛋白质纯化优势。/pp  例如以肌红蛋白、转铁蛋白和牛血清白蛋白的混合溶液为模拟体系,考察不同流速下超大孔聚苯乙烯阴离子交换介质(DEAE-AP,商品名为Giga系列)的分离效果,并与DEAE 4FF介质进行了对比。实验结果(图2)显示,作为对照的DEAE-4FF介质在流速达到361 cm/h时,分离效果已明显降低,而超大孔介质可以在流速高达1084 cm/h的条件下操作,分离效果良好,能够在6 min内实现三种生物大分子的快速分离。/pp style="text-align: center "img width="588" height="170" title="3.jpg" style="width: 473px height: 144px " src="http://img1.17img.cn/17img/images/201808/insimg/65df31ac-bd00-4a08-8a5a-feedfa1aa990.jpg"//pp span style="color: rgb(0, 176, 240) "strong 超大孔填料应用前景与展望/strong/span/pp  近年来,随着生命科学的发展,生物样品越来越复杂,如人的血样、尿样、组织样品等,对生物分离分析技术提出更高的要求。根据超大孔填料固有的诸多优点,通过合成不同种类的超大孔固定相及在固定相上做不同功能的衍生,超大孔填料已经被广泛应用于生物分离分析中,但也存在一些问题。因此,发展新的制备手段,优化制备条件和过程,探索制备和分离机理,对于开辟新的应用领域以及开展实际样品的分离分析有更大的理论和现实意义。/pp  根据已有的文献报道,我们可以预测今后几年的相关工作仍会集中在以下几个方面:/pp  (1)规则的聚合物整体材料内部形态。如获得规则的3D网络骨架,可控的孔径尺寸和分布。/pp  (2)继续在微分离系统中扩展其应用。如在加压电色谱、微流控芯片材料、微流色谱和纳流色谱系统,甚至纳米器件开发等诸多方面大显身手。/pp  (3)表面物理化学性质的调控向功能化、智能化方向发展。如基于分子印迹技术、温度响应以及pH响应的表面智能化的整体材料。/pp  (4)制备规模整体柱的开发及其在生物下游技术中的应用。/pp  目前,已经有一部分整体柱实现了商品化,但种类有限,还无法与种类繁多的颗粒型填充柱相提并论,也远未能满足分离分析的需求。而颗粒型的超大孔填料,由于其制备较困难、批次间重复性较差、价格昂贵等,也没有得到广泛的应用。相对于超大孔填充柱,有机相整体柱存在因流动相变会发生溶胀或收缩、机械强度差、比表面积小、柱容量差以及聚合过程中产生的微孔不利于小分子样品的分析等问题,现有报道大都用于生物大分子的分离。硅骨架整体柱也存在必须预先聚合好装入套管中,制备繁琐,比表面积较小的问题。因此,如何以更简便、有效的方式制备高效新型的超大孔填料并将其应用于实际样品的分离分析仍然是今后工作的重心。在实际工作中所面临的层出不穷的问题也是推动新型超大孔填料制备技术和方法发展的源源不竭的动力,在诸多的尝试中很可能就会出现某些性质优良的超大孔填料,这也预示着将来商品化的超大孔会越来越多。/ppspan style="color: rgb(0, 176, 240) "strong  部分商品化的超大孔层析介质/strong/span/pp  strong超大孔填料因其具有独特的多孔结构,与传统填料相比具有更加优良的渗透性和传质速率,可以在较低的操作压力下实现高效和快速的分离,已成为继多聚糖、交联与涂渍、单分散之后的第四代分离填料。可以预测,随着制备技术的不断提升,超大孔填料在生命科学、医药、环境和化学化工等领域必将大有可为。/strong/pp  参考文献/pp  [1] M.R. Yu, Y. Li, S.P. Zhang, X.N. Li, Y.L. Yang, Y. Chen, G.H. Ma, Z.G. Su, Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: Advantages of gigaporous media beyond enhanced binding capacity, Journal of Chromatography A, 1331 (2014) 69-79./pp  [2] P.M. Kramberger P, Boben J, Ravnikar M, ?trancar, A.S.m.c.a.b. in, p.a.f.q.o.t.m. virus., J. Chromatogr. A 1144(1)./pp  [3] W. Zhou, J. Bi, J.-C. Janson, A. Dong, Y. Li, Y. Zhang, Y. Huang, Z. Su, Ion-exchange chromatography of hepatitis B virus surface antigen from a recombinant Chinese hamster ovary cell line, Journal of Chromatography A, 1095 (2005) 119-125./pp  [4] W. Zhou, J. Bi, J.C. Janson, Y. Li, Y. Huang, Y. Zhang, Z. Su, Molecular characterization of recombinant Hepatitis B surface antigen from Chinese hamster ovary and Hansenulapolymorpha cells by high-performance size exclusion chromatography and multi-angle laser light scattering, Journal of Chromatography B, 838 (2006) 71-77./pp  [5] S.Q. Liang, Y.L. Yang, L.J. Sun, Q.Z. Zhao, G.H. Ma, S.P. Zhang, Z.G. Su, Denaturation of inactivated FMDV in ion exchange chromatography: Evidence by differential scanning calorimetry analysis, BiochemEng J, 124 (2017) 99-107./pp/p
  • 中药研究系列专题——中药有效成分分析
    中药中的有效成分是中药发挥药效作用的物质基础,认识和研究这些成分是实现中药现代化的关键所在。成分分析是一项复杂而困难的工作,岛津的色谱系统提供了充分的灵活性、分离度,同时易于操作使用。这些技术能够可靠地描述中药中多组分的特征,适用于研究和质量控制。 Nexera LC-40超高效液相色谱仪★ 可靠性最大化,停机时间最小化 ★ 远程监控以及实验室一体化管理 ★ 快速、可靠的流动相自动配置 ★ 双进样模式支持样品同时分析 应用案例 Nexera LC-40用于银杏叶提取物指纹图谱分析 指纹图谱分析是中药分析领域进行宏观监测的有效措施,它可以全面地反映中药中所含的化学成分种类、数量以及相互间比例关系,从而有效表征其内在质量。银杏叶提取物由于成分较多,采用常规液相分析耗时较长,因此目前也普遍采用指纹图谱的研究方式。 采用Nexera LC-40高效液相色谱系统建立银杏叶提取物指纹图谱的测定方法,供试品和银杏叶对照提取物中17个主色谱峰能够在较短的分析时间内获得良好的分离效果,且全峰相似度在0.927以上。 参照物芦丁色谱峰 银杏叶对照提取物指纹图谱 供试品和对照提取物指纹图谱相似度比较(S1:对照品 S2:供试品) Nexera-e全二维液相色谱仪 全二维液相色谱法是针对复杂样品的一种新分离方法,Nexera-e全二维液相色谱仪联合两个独立的分离系统,极大地扩大了色谱的应用范围、增加峰容量。使用Nexera-e 对中药中的天然产物等复杂样品进行分析,可以从中得到新的发现,并对待测中药有更深入的理解。 ★ 基于超高效液相色谱的超快速全二维分离★ 不同的分离条件的组合实现更高的分离度 应用案例 Nexera-e全二维液相色谱测定葛根汤 葛根汤主要由葛根、麻黄、甘草和芍药等中药材组成,其中包含的麻黄碱、甘草酸和肉桂酸对抑制各类感冒症状非常有效。在生药的质量管理和研究过程中,需要同时识别药物中存在的多种成分,使用全二维液相色谱仪Nexera-e可以对复杂的中医方剂成分进行高度分离。二维自动梯度功能可以为全二维色谱带来良好的峰形,通过对甘草酸进行定量分析,保留时间和峰面积均能获得出色的重复性。 有无自动梯度功能时的葛根汤全二维分离对比(红箭头所指为甘草酸) 甘草酸标准曲线(R2=0.9998) 定量分析5次甘草酸的重复性
  • 汉邦科技举办《制备液相色谱分离纯化及应用技术研讨会》
    2012年11月6日&mdash 9日,江苏汉邦科技有限公司在淄博、济南、石家庄三地举办了《制备液相色谱分离纯化及应用技术研讨会》,300多位制药等领域的专家、学者到会。江苏汉邦科技有限公司是主要从事液相色谱设备研制、生产和应用技术开发的高新技术企业,现已形成液相色谱分析仪器、液相色谱制备分离设备、模拟移动床连续色谱系统和超临界液相色谱装备等的分离纯化产品集群,同时专注于化学药物、植物药物、多肽药物等有效成分的分离纯化工艺的开发,是中国最大的液相色谱纯化设备研发和制造商。会议报告:《天然产物的分离纯化》《高压、中低压液相色谱分离纯化设备和应用技术》 《模拟移动床(SMB)色谱及其应用技术研究》 《反相色谱在合成肽分析、纯化中的应用》
  • 真空控制在旋蒸分离纯化中的应用
    在使用旋转蒸发仪过程中,分离纯化过程中,所用的温度和真空度是重要的设置参数。物质的饱和蒸气压是温度和真空度控制的参考标准(见附表)。* 什么是饱和蒸气压? 无论是液体还是固体,时时刻刻都存在蒸发(升华)、凝结过程,而气化后的气体分子会对物质表面形成压力。而蒸气压指的就是液体或固体表面存在着的该物质的蒸气,这些蒸气对液体或固体表面产生的压强。  饱和蒸气压就是指在密闭条件中、一定温度和气压下,物质的蒸发(升华)与凝结处于动态平衡状态时,那个时候该物质的蒸气压。 以常见的水为例(纯水),密闭容器中,抽走空气,水会不断蒸发,随着温度的不同,其蒸气形成的饱和蒸气压也会不同。如果温度稳定在100℃,那蒸气就会不断形成,直至蒸气压到101.32kPa,也就是那个时候水的饱和蒸气压。这个时候如果温度不再升高,101.32kPa的蒸气压下,随后蒸气虽然在继续产生,但同时也会有等量的蒸气重新凝结为水,形成平衡,压力不再升高;如果温度为30℃,那么水蒸汽形成的蒸气压就不会超过4.2455kPa;20℃时,饱和蒸气压就是2.3388kPa。* 真空控制与旋蒸分离纯化 旋转蒸发仪在进行分离纯化的过程中,要考虑到目的产物在高温下会出现变性或分子结构损坏的情况。因此需要到较低的温度下进行分离纯化。在较低的温度下形成分离试剂的饱和蒸气压,需要借助真空泵进行抽真空。通过对真空度的控制,可以在目的产物变性的安全温度以下对混合溶剂进行快速分离提纯。* WIGGENS防腐蚀真空控制器 WIGGENS的DVR480 型防腐蚀真空控制器,专用于旋蒸的真空度控制。最低可控制真空度达到0.1mabr ,支持最多5 段编程控制,可以高效自动地实现多种溶剂的回收。接触气体材料均为PTFE 或高性能陶瓷,可耐受酸、碱、以及各种有机溶剂气体。数字式显示,按键控制,具有USB 数字接口,以及模拟输入输出接口。可以连接泵电源控制,在达到稳定真空度后暂时关停泵电源,节能环保;也可工作在泵的常开状态。* 附表:常用有机溶剂饱和蒸气压(40℃)需要的真空度溶剂分子式40℃(104℉)下的饱和蒸汽压 (mbar)摩尔质量 (g/mol)水H2O7418.0四氯化碳CCl4285153.8三氯甲烷CHCl3477119.4甲酸CH2O211446.0二氯甲烷CH2Cl2~atm.84.9甲醇CH4O35232.0四氯乙烯 (PCE)C2Cl453165.8三氯乙烯C2HCl3191131.4五氯乙烷C2HCl514202.3反式-1,2-二氯乙烯C2H2Cl277796.9顺式-1,2-二氯乙烯C2H2Cl248896.91,1,2,2-四氯乙烷C2H2Cl419167.81,1,1-三氯乙烷C2H3Cl3307133.4乙腈C2H3N22941.1乙酸C2H4O24760.01,2-二氯乙烷C2H4Cl221499.0乙醇C2H6O17846.1丙酮C3H6O56358.1二甲基甲酰胺(DMF)C3H7NO1373.1正丙醇C3H8O7060.1异丙醇C3H8O13660.1四氢呋喃 (THF)C4H8O40272.1丁酮C4H8O26572.1(1,4-)二氧己环C4H8O210288.1乙酸乙酯C4H8O225188.1正丁醇C4H10O2574.1异丁醇C4H10O4274.1叔丁醇C4H10O14074.1乙醚C4H10Oatm.74.1二乙胺C4H11N58173.1吡啶C5H5N6079.1正戊烷C5H12atm.72.2正戊醇C5H12O1188.2甲基叔丁基醚C5H12O59788.2异戊醇C5H12O1488.2氯苯C6H5Cl34112.6苯C6H623678.1环己烷C6H1225084.2乙酸丁酯C6H12O235116.2己烷C6H1437386.2二异丙醚C6H14O372102.2甲苯C7H87792.1正庚烷C7H16124100.2二甲苯C8H1027106.2
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制