当前位置: 仪器信息网 > 行业主题 > >

化学成像分析

仪器信息网化学成像分析专题为您整合化学成像分析相关的最新文章,在化学成像分析专题,您不仅可以免费浏览化学成像分析的资讯, 同时您还可以浏览化学成像分析的相关资料、解决方案,参与社区化学成像分析话题讨论。

化学成像分析相关的资讯

  • 更清晰的化学成像和更快的分析速度,尽在安捷伦
    p  ----突破系统限制,带来全新方法br//pp  2018年10月11日,北京——安捷伦科技公司(纽约证交所:A)日前推出一种新的化学成像方法,可为制药、生物医学、食品和材料科学领域带来更高的清晰度和更快的分析速度。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/743ebe64-e3fb-4813-a740-517636724f16.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strongAgilent 8700 激光直接红外化学成像系统/strong/pp  Agilent 8700 激光直接红外 (LDIR) 化学成像系统是化学成像和光谱分析领域的一项突破。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/b0bfd7ce-7c8e-4cb1-ab08-71e92a96e228.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "strongAgilent 8700 激光直接红外化学成像系统, 简单易用的Clarity 软件及标配切样器/strong/pp  安捷伦副总裁兼光谱事业部总经理 Phil Binns 谈道:“这一‘无人值守’的解决方案可使高分辨率化学成像更快速、更准确,有助于分析片剂、层压材料、生物组织、聚合物和纤维中的成分。根据这些信息,科学家可以在几分钟之内更详细地分析更多样品,以往这个过程需要几个小时。”/pp  Binns 指出,新系统将对制药实验室产生重大影响,“科学家们可在更短时间内,在产品配方开发和故障排除方面做出更明智的决策”。/pp  科学家利用 8700 LDIR,可获得有关活性药物成分、赋形剂、多晶型、盐类和缺陷的有用信息,使用户能够快速找出并解决药物开发过程中遇到的问题。简而言之,8700 有潜力帮助实验室加速药品上市并对配方更具信心。/pp  8700 LDIR 将独特的量子级联激光器 (QCL) 技术与快速扫描光学元件和直观的 Agilent Clarity 软件相结合。重要的是,系统的成像无激光相干伪影,可提供大面积的高分辨率图像。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/77e0d826-b9cf-4805-8659-dc4505a1b1f2.jpg" title="3.jpg" alt="3.jpg"//pp style="text-align: center "strong系统操作极其简单 ,“上样即可测试”/strong/pp  8700 LDIR 系统结构紧凑、无需液氮、可自动化操作,使各种水平的操作人员均可轻松获得高分辨率的化学成像。现在,用户大大缩短样品分析和数据审查花费的时间,从而提高分析效率。加载即可用的简单方法还可节省时间,是商业和学术环境下无人值守应用的理想选择。/p
  • AZtecLive 实时化学成像——如影随形
    新版AZtecLive简介AZtecLive真正的实时化学成像,新版更新后,元素面分布图及叠加图如影随形,移动更加流畅,元素配色自动鲜明,特征突出。以往我们使用SEM做显微分析时,通常的工作流程是先扫描电子图像——找到某位置停留——调节聚焦、亮度对比度等参数——采集能谱,进行点或面分析。若非理想位置,还需多次反复以上过程才可找到合适采集区做更多详细分析。在反复求索、重复工作中浪费过多时间及精力。自2017年牛津仪器推出AZtecLive实时化学成像系统后,很多从业人员已然改变了工作习惯,直接通过AZtecLive浏览样品,在同时获得的元素面分布图中寻找合适的采集区域,极大地提高了工作效率,尤其检测BSE下衬度也很接近的样品,仅通过电子图像难以找到合适的采集区域,而通过实时获得的元素分布图即可清晰辨别。如今2021年, AZtecLive新版焕然一新,推出 ColourHiQ——优化实时化学成像的新技术,可以自动快速分析并同时显示电子图像、元素面分布图及叠加图,为能谱分析提供全新解决方案。如图1所示。图1 AZtecLive检测3D打印粉末,真正实时显示谱图、元素面分布图,同时元素叠加图与电子图像如影随形,如需对任意位置感兴趣,稍加停留即可收集更多信号,立刻保存完成元素分析ColourHiQ技术主要包括:1. 数据处理优化算法2. AutoLayer智能叠加图3. 和峰修正数据处理优化算法主要通过数据通讯技术升级,实现数据并行处理,极大地缩短脉冲处理器及成像系统间的通信时间,有效提高帧速率,使元素X射线信号响应及发生尽量接近于二次电子图像或背散射图像,实现二者同步展现。图2 脉冲处理器-图像电子元件-处理引擎及软件算法更新优化单元AutoLayer技术经算法分析每个元素的分布位置,并自动赋予差异更大或近似的颜色并选择合适的元素叠加至电子图像上,获得颜色更加绚丽、特征更加突出的叠加图。具体来讲,系统会自动选择分布图中突出的元素赋予红色(Hue = 0),之后其他元素与之相比,分布位置类似则自动赋予相同或相近的颜色,分布差异大者着以对比色,且噪音更低的元素分布图将优先选入叠加图中。经算法自动优化颜色选择后,叠加图更加直观易读,美轮美奂。图3 AutoLayer自动为元素选择合适颜色并叠加至电子图像,使叠加图颜色更加鲜明,特征突出和峰修正技术和峰是指当2个或2个以上信号同时到达晶体阳极时,如系统无法区分,则会在谱图中看到众多莫名其妙的谱峰或本不存在的元素标识,会对样品分析造成较大的误判。当计数率较高时,该问题尤为明显。而牛津仪器优化的和峰修正方法可以对静态样品进行和峰修正,同时在样品移动过程中,也可以对实时采集到的谱峰进行和峰修正。进一步优化的和峰修正方法,对样品移动过程中遇到复杂相区域时,也可以对其进行和峰修正,具体方法是首先对成分相同区域的谱图逐一进行修正,之后合并至完整区域谱图后,再进行自动识别元素,此时在实时化学成像中即可看到修正后的效果,元素识别更准确。图4 多相区域做普通和峰修正(左);实时化学成像中进行动态及多相 混合的和峰修正,结果更准确(右)经过ColourHiQ算法优化,AZtecLive实时化学成像功能进一步加强,自动获得更加流畅的图像、元素分布图,更重要的是可以通过元素叠加图做样品扫描、倍数调整,在感兴趣位置略加停留累计更多信号,获得高质量元素分布图,即刻保存。从开机到完成样品分析,也许就是几分钟的事。如下展示更多案例,AZtecLive适合多种样品或应用需要,尤其对导电性不佳、束流敏感型样品更可快速获得足够多信号实现元素分析,减小样品损伤。图5 更多AZtecLive实时化学成像案例,地质样品(左),半导体器件样品(右)
  • MALDI质谱成像首次用于单细胞3D化学成像
    近日,美国爱荷华州立大学的研究人员,用高空间分辨率基质辅助激光解吸电离(MALDI)- 质谱成像(MSI)来绘制和可视化了新受精的斑马鱼胚胎单细胞中磷脂类——磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)以及磷脂酰肌醇(PI)的三维空间分布。这是MALDI-MSI首次应用于单个细胞的三维化学成像。相关研究成果已经发表在Scientific Reports上。斑马鱼(Danio rerio)原产于东南亚,是一种小型热带观赏鱼。由于体外受精和光学透明,受精斑马鱼胚胎可在发育的所有阶段进行观察和操作。此外,斑马鱼很容易获得,价格低廉,健壮,易于护理,并且每周可以产下数百个卵。这些独特的遗传特点与实验胚胎优势相结合,使得斑马鱼成为研究早期发育的理想选择。斑马鱼已被广泛用作脊椎动物系统模型,用于研究脂质代谢、脂质在疾病中的作用以及胚胎发育中的脂质动力学。最近,Fraher等人使用LC-MS法进行脂质组学研究,结果显示胆固醇、磷脂酰胆碱(PC)和甘油三酯是斑马鱼胚胎中最丰富的脂质。他们证明,在调动到胚胎体之前,脂质在蛋黄内被加工。电喷雾电离质谱(DESI-MS)也被用于直接的MS分析和单个斑马鱼胚胎中脂质的成像、跨胚胎发育(受精后0,24,48,72和96小时)。研究人员对斑马鱼中的代谢组学和脂质组学研究非常感兴趣,因为这些化合物具有关键的生物学功能,例如作为能量储存源、参与细胞信号传导、并作为细胞膜的必要成分。探索如何调节代谢物和脂质是理解生物系统中发生的生物途径和发育过程的关键。传统分析方法研究小代谢物和脂质需要大量的样品制备、费力的提取、衍生化以及先期对目标化合物的了解。由于样品制备方案和仪器的发展,质谱成像(MSI)已成为这些研究中广泛使用的分析工具。MSI可实现生物分子空间分布的二维可视化,而无需提取、纯化、分离或标记分析物。此外,单个MSI实验可以同时检测许多不同类别的化合物,包括未知物,这使得其可以高分辨率和高通量方式直接对生物分子进行细胞或亚细胞作图。由于生物学在三维生物体中发生,3D成像对生命科学中的许多挑战产生了值得注意的影响并不奇怪。最近,使用质谱成像对完整生物分子进行成像已扩展到3D分析,以确定组织样本、琼脂平板和3D细胞培养物中的体积分子分布。使用质谱法最常见的3D成像方法包括收集样品的连续部分,使用传统的二维质谱成像分别分析每个部分,然后使用计算方法从多个二维集合堆叠和重建最终的3D成像MS数据集等步骤。美国爱荷华州立大学的研究小组(以下简称“研究小组”)开发了高空间分辨率的基质辅助激光解吸电离(MALDI)-MSI,分辨率低至5μm,并将其用于植物代谢物的细胞或亚细胞水平成像。在这里,研究小组利用这种高空间分辨率呈现了新受精的个体斑马鱼胚胎的3D MALDI-MSI。这是用MALDI获得的单个细胞的3D MSI的首次演示,揭示了各种脂质化合物的亚细胞水平定位。(a)受精斑马鱼胚胎在单细胞阶段的奇数编号光学图像。 (b)PE(22:6-16:0)在m / z 762.509和(c)PI(18:0-20:5)在m / z 883.535处的假彩色二维MALDI-MS图像。 通过覆盖所有2D图像,右侧显示投影图像。 所有物种均被检测为去质子化的[M-H] - 。在此分析中,研究小组通过获取62个连续横截面组织切片交替的正离子和负离子模式的MS成像数据,对单个斑马鱼受精卵进行3D MALDI-MSI。这可以对单个细胞中全面的脂质种类进行3D可视化。研究结果显示,所有三种磷脂类都存在于胚盘内的对称分布,以及蛋黄的边界,但每种都显示出不同的区域;PE显示在胚盘中心高度丰富的异质亚细胞区域,除了胚盘外,PC分子种类存在于蛋黄内部,而蛋黄中的PE和PI种类大多不存在。另外,还比较了四种不同的归一化方法以确定当将2D MSI与3D体积重建进行比较时,这些方法中的哪一种可以提供更具代表性的结果。此外,在不同细胞阶段(1-,2-,4-,8-和16-细胞阶段)获得胚胎的全扫描MSI和MS / MS,以研究斑马鱼成长早期阶段磷脂分布的变化。TOF-SIMS已报道被用于单个细胞的3D MSI,特别是结合深度剖析作为实现z方向信息的方式。然而,由于显著的碎裂,可以通过TOF-SIMS分析的高质量化合物主要限于外源性药物化合物。该研究小组所述的研究工作首次证明高分辨率MALDI-MSI可应用于单个细胞的三维化学成像,他们未来的研究将集中在揭示胚胎发育的细节,具有更高的空间分辨率和小代谢物的可视化,以及荧光显微镜的多模态成像等。在MALDI质谱成像方面,融智生物于2017年推出QuanTOF质谱成像系统,该系统集合了新一代宽谱定量飞行时间质谱平台QuanTOF,拥有5,000-10,000Hz长寿命半导体激光器,自主开发的数据采集软件。2018年7月,融智生物宣布实现可达500像素/秒的成像速率,提升MALDI-TOF MS成像速率达10倍以上,普通样本成像只需几十分钟,使得质谱成像实现了“立等可取”。 经过进一步的研发,目前QuanTOF质谱成像系统已经实现高达1000像素/秒的成像速率,5-10微米的高空间分辨率,且仍然保持了极高的灵敏度,使得质谱成像真正可使用于临床病理分析、术中分析等应用。
  • 从几小时到几分钟,安捷伦分子光谱推出划时代化学成像产品
    安捷伦科技公司(纽约证交所:A )日前推出一种新的化学成像方法,可为制药、生物医学、食品和材料科学领域带来更高的清晰度和更快的分析速度。Agilent 8700 激光直接红外化学成像系统Agilent 8700 激光直接红外 (LDIR) 化学成像系统是化学成像和光谱分析领域的一项突破。Agilent 8700 激光直接红外化学成像系统,简单易用的 Clarity 软件及标配切样器安捷伦副总裁兼光谱事业部总经理 Phil Binns 谈道:“这一‘无人值守’的解决方案可使高分辨率化学成像更快速、更准确,有助于分析片剂、层压材料、生物组织、聚合物和纤维中的成分。根据这些信息,科学家可以在几分钟之内更详细地分析更多样品,以往这个过程需要几个小时。” Binns指出,新系统将对制药实验室产生重大影响,“科学家们可在更短时间内,在产品配方开发和故障排除方面做出更明智的决策”。科学家利用 8700 LDIR,可获得有关活性药物成分、赋形剂、多晶型、盐类和缺陷的有用信息,使用户能够快速找出并解决药物开发过程中遇到的问题。简而言之,8700 有潜力帮助实验室加速药品上市并对配方更具信心。8700 LDIR 将独特的量子级联激光器 ( QCL ) 技术与快速扫描光学元件和直观的 Agilent Clarity 软件相结合。重要的是,系统的成像无激光相干伪影,可提供大面积的高分辨率图像。系统操作极其简单 ,“上样即可测试”8700 LDIR 系统结构紧凑、无需液氮、可自动化操作,使各种水平的操作人员均可轻松获得高分辨率的化学成像。现在,用户大大缩短样品分析和数据审查花费的时间,从而提高分析效率。加载即可用的简单方法还可节省时间,是商业和学术环境下无人值守应用的理想选择。 关于安捷伦科技公司安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有 50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在 2017 财年,安捷伦的营业收入为 44.7 亿美元,全球员工数为 14200 人。如需了解安捷伦公司的详细信息,请访问 www.agilent.com。
  • 药典委公示《化学成像指导原则标准草案》,涉及近红外、中红外、远红外和拉曼等
    近日,国家药典委发布《关于化学成像指导原则标准草案的公示》的通知,公示期自发布之日起三个月。本指导原则主要适用于基于振动光谱(例如,近红外、中红外、远红外和拉曼光谱)的化学成像系统,但也适用于其他成像技术。起草单位为浙江大学、浙江省食品药品检验研究院,参与单位为中国食品药品检定研究院。充分获取药品的化学成分及物理形态信息,对于准确评价药品质量至关重要。化学成像可同时提供样品的成分信息与空间信息,能可视化分析样品表面的分布特征,可实现不同样品之间的快速和无损比较,是传统光谱分析方法的重要补充,已收载于欧洲药典和英国药典。本指导原则围绕药学实践应用需求,参考欧洲药典、英国药典和其他相关技术要求,旨在通过建立统一的技术指南,为化学成像在药品成分鉴别、含量分布评估、物理形态表征等应用中提供指导,实现该技术在我国制药行业的规范和广泛应用,促进我国药品质量控制与国际接轨。制修订的主要内容如下:征求意见稿附件1 化学成像指导原则公示稿(第一次).pdf附件2 化学成像指导原则增订说明.pdf点击原文链接进行公示反馈 。
  • QD中国邀您体验SPECIM高光谱化学成像工作站SisuCHEMA真机
    2016年5月3日,Quantum Design中国子公司从芬兰SPECIM公司引进的高光谱化学成像工作站(SisuCHEMA)在Quantum Design北京样机实验室成功安装并开始对外开放。Quantum Design此次建立的SisuCHEMA样机实验室,可对相关领域感兴趣的科学工作者提真机体验服务。欢迎广大学者拨打010-85120280,或者给specim@qd-china.com写信预约SisuCHEMA真机体验。Quantum Design公司SisuCHEMA高光谱化学成像系统样机实验室 SPECIM是上早提供商用高光谱分光器的制造商,至今已有二十余年高光谱产品生产历史,产品多样,覆盖范围广泛,包含工业高光谱相机、实验室高光谱成像系统以及机载高光谱遥感系统,产品涵盖可见光到热红外全部波段,为用户提供全面的高光谱成像解决方案。 Quantum Design公司此次引进的SisuCHEMA高光谱化学成像系统,可以采集可见光至短波红外(400-2500nm)的全谱段光谱数据。SisuCHEMA采集的数据具有高的光谱分辨率和空间分辨率,可以的分析样品化学成分的含量以及分布,广泛的应用于药品、食品、农业物料等众多领域化学成分的定性和定量分析。与此同时,SisuCHEMA采用推扫式(pushbroom)成像技术、线照明单元和激光对准装置等技术,使其具有高速成像、低照明热负荷以及数据等优势。因此,SisuCHEMA应用范围涵盖实验室至工业实时检测,可以满足不同用户的需求,是广大客户的得力助手。SisuCHEMA高光谱化学成像系统的典型应用1、SisuCHEMA进行在线药品成分检测2、SisuCHEMA进行农作物成分检测3、SisuCHEMA进行甜甜圈成分检测相关产品SisuCHEMA高光谱化学工作站:http://www.instrument.com.cn/netshow/C160497.htmSisuROCK 高光谱矿石成像工作站:http://www.instrument.com.cn/netshow/C160538.htm?AISA 高光谱航空遥感成像系统:http://www.instrument.com.cn/netshow/C160539.htmArtScanner艺术品高光谱成像系统:http://www.instrument.com.cn/netshow/C237971.htm关于Quantum Design Quantum Design是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。2007年,Quantum Design并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。中国地区是Quantum Design公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国科研的进步提供了先进的设备以及高质量的服务。
  • 影像未来,见所未见|第一届化学成像前沿科技及应用高端论坛成功举办
    仪器信息网讯 12月1日,由振电科技与苏州路演中心联合主办、HORIBA集团科学仪器事业部、道远资本和姑苏区委人才办联合协办的第一届化学成像前沿科技及应用高端论坛在苏州成功举办。本届论坛聚焦化学成像前沿科技及应用,中国科学院院士、昌平实验室主任谢晓亮与波士顿大学讲席教授程继新领衔,18位国内外知名专家学者围绕生命科学、植物学、合成生物学、电化学、免疫组学等前沿热门领域进行学术分享与讨论,共同促进行业进步与发展。苏州市委常委,苏州国家历史文化名城保护区党工委书记、姑苏区委书记方文浜,保护区管委会主任、姑苏区政府区长陈羔,保护区党工委委员、姑苏区委常委、组织部部长陆德峰,保护区党工委委员、姑苏区委常委雷波,保护区党工委委员、姑苏区委常委杨国栋等领导,以及HORIBA科学仪器事业部中国区总经理濮玉梅、振电(苏州)医疗科技有限公司首席执行官王璞等企业高管出席本次论坛。活动现场会议伊始,苏州国家历史文化名城保护区管委会主任、姑苏区政府区长陈羔致欢迎辞。陈羔 苏州国家历史文化名城保护区管委会主任、姑苏区政府区长技术改变生活,科学塑造未来。陈羔区长表示,化学成像技术作为一种跨学科先进技术,具有非常强大的渗透性、扩散性和颠覆性,展现了巨大的应用前景和赋能潜力。他指出,当下的姑苏正焕发着新时代的发展生机,相信在不久的将来,化学成像技术能够取得更多重要成果和创新突破,得到更加广泛应用。同时,也希望科研领域专家、企业合作伙伴以及相关从业人员能够齐心协力,强化联动,共同谱写化学成像领域发展新阶段。最后,陈羔区长祝愿本届论坛圆满成功,向各位专家和参会嘉宾致以诚挚的问候和热烈的欢迎。基础研究是科技创新的源头。本届论坛特别举行了“先进化学成像联合实验室”落地签约仪式和振电科技和HORIBA战略合作签约仪式。先进化学成像联合实验室签约仪式(前排:金阊新城(白洋湾街道)党工委书记 邱炜(左),苏州威邦震电光电技术有限公司总经理 杨彬(中),北京航空航天大学医用光子学研究所教授、振电(苏州)医疗科技有限公司CEO王璞(右);后排:保护区管委会主任、姑苏区政府区长 陈羔(左),中国科学院院士、北京大学李兆基讲席教授、昌平实验室主任 谢晓亮(中),苏州市委常委,保护区党工委书记、姑苏区委书记 方文浜(右))振电科技和HORIBA战略合作签约仪式(前排:振电(苏州)医疗科技有限公司销售总监 李锐(左),Horiba科学仪器事业部中国区副总经理 遇聪(右);后排:北京航空航天大学医用光子学研究所教授、振电(苏州)医疗科技有限公司CEO 王璞(左一),HORIBA法国策略总监暨科学仪器事业部主管 Denis CATTELAN(左二),波士顿大学讲席教授 程继新(右二),HORIBA科学仪器事业部中国区总经理 濮玉梅(右一))随后,进入报告环节。中国科学院院士、昌平实验室主任谢晓亮、波士顿大学讲席教授程继新等18位国内外知名专家学者,围绕化学成像技术在生命科学、植物学、合成生物学、电化学、免疫组学等领域的前沿进展进行探讨与交流。报告人:谢晓亮 中国科学院院士、昌平实验室主任报告题目:20年受激拉曼成像20年人类基因组引发的医学变革谢晓亮院士首先回顾了拉曼技术的发展历史,拉曼光谱是以印度物理学家Sir Chandrasekhara Raman的名字命名,1928年,Sir Chandrasekhara Raman用水银灯照射苯液体时发现了新的辐射谱线,后来被称为拉曼谱线。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率,成为拉曼光谱的理想光源。随后,谢晓亮院士分享了在相干拉曼散射显微成像技术领域取得的一系列重要研究成果。谢晓亮院士作为生物物理化学基础科学研究的国际领军人物,近年来大力推动了无标记光学成像技术和新型单细胞基因组测序技术在医学中的应用。2012年,他带领团队在单细胞全基因组学研究有了突破性进展,开发了单细胞全基因组均匀扩增的新方法—多重退火循环扩增法(MALBAC)。2014年9月19日,世界上第一例“MALBAC婴儿”在北医三院诞生,标志着中国胚胎植入前遗传诊断技术处于世界领先水平。迄今为止,中国有4000多对患有单基因疾病地夫妇成功避免了将有这种疾病传给新生儿,证明了无创产前遗传筛查治疗单基因甚至多基因疾病的前景。最后,谢晓亮院士就如何应对未来大流行病开展了介绍,首先要对新病原体进行测序、鉴定关键的宿主细胞结合蛋白;其次通过高通量B细胞测序鉴定数百种中和抗体以及高通量深度突变扫描技术识别可能使病毒逃逸免疫反应的逃逸突变;根据对进化病毒的预测,开发抗体药物和多价mRNA疫苗,以识别逃逸突变;最后用预测出的新变种制造假病毒。谢晓亮院士研究团队基于ACE2亲和力和抗体逃逸数据,成功构建了SARS-CoVer-2 RBD演化预测模型,其可行性已经在全球范围内得到多次验证。报告人:程继新 波士顿大学讲席教授报告题目:Bond-selective chemical imaging: A new window for life science化学键成像通过提供对分子扰动最小的化学信息,为生命科学和材料科学打开了一扇窗户。虽然红外和拉曼显微镜被广泛使用,但由于空间分辨率差或成像速度慢而受限制。近年来相干反斯托克斯拉曼散射和受激拉曼散射显微镜虽然实现了高速化学成像,但它们的性能受到非共振背景或交叉相位调制的限制进而影响了应用范围。振动激发和随后的弛豫有效地产生热量,使光热检测成为成像化学键的自然而灵敏的手段之一。程继新教授报告中介绍了一种新的化学显微镜——振动光热显微镜,模式包括中红外光热(MIP)、受激拉曼光热(SRP)和短波红外光热(SWIP)显微镜,并围绕振动光热显微镜的结构原理、仪器特点以及在生命科学领域中前沿应用等展开了分享。报告人:崔丽 中科院城市环境研究所研究员报告题目:基于单细胞拉曼的环境微生物研究针对环境微生物安全监测和资源挖掘方法挑战,尤其是原位性和功能性研究上的难题,发展单细胞拉曼与稳定同位素标记、先进算法、分子生物学联用技术成为一种新兴方向,通过搭建单细胞分选平台和原位装置,克服培养限制,以实现关键微生物的原位识别、单细胞分选、测序全链条研究。崔丽研究员报告中主要从建立环境活跃抗生素抗性监测新技术平台、发展抗性传播跟踪和风险定量新方法以及创新功能微生物研究新策略新平台三方面展开介绍。报告人:闵玮 哥伦比亚大学教授报告题目:The other side of Raman scattering受激拉曼散射(SRS)显微镜在生物医学成像中产生了广泛的影响。虽然从经典模型中似乎可以很好地理解基本物理,但绝对SRS信号的预测和解释仍然是一个挑战。为此,闵玮教授团队提出了一种量子电动力学方法的SRS显微镜,他从量化过程、自发与受激“系数”关系研究、全量子力学推导以及应用探索四方面展开介绍。最后,闵玮教授表示该方法的建立不仅为SRS显微镜提供了定量的理论框架,而且为拉曼散射的基本性质提供了新的线索。报告人:张驰 普渡大学助理教授报告题目:光学精准控制细胞内生物分子的化学过程显微镜技术的进步已经使人们对生物样品实现了超高分辨率、超强灵敏度以及高化学选择性的检测。然而,对样品内化学反应的控制技术,尤其是精确控制化学变化的方法,却尚未发展。张驰教授团队发明了一种实时精确光控制(RPOC)技术,利用扫描激光显微镜和实时闭环反馈技术实现了能够只在需要的位点精确控制化学过程,精确度可以达到亚500纳米。报告人:Haonan Lin 波士顿大学研究员报告题目:Single-Cell Profiling of Biofuel Production from Engineered Bacteria with Longitudinal Stimulated Raman Scattering Microscopy随着对可持续和环境友好的生物制造需求的不断增加,利用合成生物学技术合成化学品受到越来越多的关注,其核心内容之一是高效微生物细胞工厂的设计与构建,这也对单细胞代谢产物定性和定量分析提出了更高要求。为此,Haonan Lin研究员开发了一种纵向高光谱受激拉曼散射(SRS)化学成像方法,能够提供单细胞的化学成分组成等信息,比如可直接观察大肠杆菌中的游离脂肪酸,进而分析活细胞中脂肪酸的链长和不饱和度。报告人:石玲燕 加州大学圣地亚哥分校助理教授报告题目:Super-Resolution Multimodal Imaging of Altered Metabolism in Aging and Diseases代谢是生物体内全部有序化学变化的总称,涉及生物分子合成(合成代谢)、维持或分解(分解代谢)的各种复杂生物化学反应。能够评估引起代谢变化的各种信号转导活动和化学反应,是理解正常细胞生理和疾病的关键。石玲燕教授将受激拉曼散射(SRS)成像技术成功转化为具有A-PoD和PRM算法的超分辨多模显微镜,并将其应用于研究衰老和疾病中的代谢动态,比如揭示了果蝇大脑和脂肪体在衰老过程中的脂质代谢动态。报告人:沈微微 北京林业大学博士报告题目:植物细胞壁主要成分的单细胞水平无损原位表征植物细胞壁是一个极其复杂的动态结构网络,也是植物细胞区别于动物细胞的最重要特征之一。植物细胞壁是构成支持植物体的骨架,具有增强细胞机械强度、抵御病虫害伤害等功能。沈微微博士围绕植物细胞壁及其利用、成像及检测技术和基于受激拉曼散射显微技术取得重要研究成果展开介绍。报告人:季敏标 复旦大学教授报告题目:受激拉曼散射显微镜的交叉科学研究探索受激拉曼散射(SRS)显微镜是一种新型的相干拉曼散射成像技术,利用光学相干性和非线性来实现振动信号增强,具有无标记、分子特异性和快速成像等优势。季敏标教授对近年来受激拉曼散射成像技术的发展以及在生物医学和环境科学等交叉学科领域的应用研究展开介绍,包括基于深度的无标记受激拉曼数字病理辅助诊断和环境为颗粒物三维化学表征等。报告人:岳蜀华 北京航空航天大学教授报告题目:Lipid metabolic profiling via quantitative stimulated Raman scattering imaging opens up new avenues for precision medicine受激拉曼散射显微成像是一类新兴的无需荧光标记的分子成像技术,近年来为肿瘤代谢和诊断的研究提供了有力手段。岳蜀华教授通过结合受激拉曼散射、二次谐波、双光子荧光显微成像技术,以及脂质不饱和度量化分析新方法,在单细胞水平上定量绘制了肝纤维化进程中关键生物分子在组织原位上的空间异质性分布。报告人:孔令杰 清华大学副教授报告题目:面向病理诊断的介观高光谱显微成像目前基于H&E染色切片的病理诊断金标准存在着耗时、低效的缺点。孔令杰副教授研究团队在介观显微镜的基础上,引入光谱成像技术,搭建了介观高光谱显微成像系统,并探索其在病理诊断中的应用。报告人:王楠 西安电子科技大学助理研究员报告题目:计算拉曼光谱与成像基于拉曼散射效应和投影断层成像技术的发展,将投影断层成像策略与拉曼光谱技术相结合,可实现大体积复杂系统的高速、无标记和高分辨率的体积化学成像。王楠助理研究员分享了三维显微成像技术、低成本CARS系统和贝塞尔光拉曼三方面研究工作以及在临床样本和中药样本进行的相关应用探索。报告人:王平 昌平实验室教授报告题目:相干拉曼应用于代谢产物和特定蛋白的化学成像王平教授报告中分享了突破光学衍射极限的超分辨相干拉曼分子成像技术,可在细胞和组织水平获得110nm分辨的分子共振拉曼图像。此外,在超快领域,王平教授团队应用双飞秒激光技术顺利研制成功2000幅/秒超快分子成像显微镜,可以跟上剧烈的高分子聚合反应速度,帮助研究人员量化测量自由基触发的水凝胶分子聚合反应动力学过程。报告人:王小召 浙江大学博士后研究员报告题目:正常和OA关节的骨软骨界面高清结构解析及其病理演变机制研究人体膝关节的“骨-软骨”界面组织,结构成分复杂,受力严酷易发生材料失效,进一步可引发骨关节炎(OA)。王小召博士后研究员利用多种微纳米分析技术,探究了正常和OA组织中骨软骨界面的结构解析及病理演变机制,为潜在的治疗靶向策略提供新方向。报告人:施立雪 复旦大学青年研究员报告题目:Super-multiplexed vibrational imaging for 3D spatial biology了解生命体结构和功能复杂性是目前生物学一项重大挑战,开发在三维空间大尺度上对多靶点同时成像的工具将大大提升解析复杂脑神经网络的能力。施立雪青年研究员在报告中分享了超多色振动成像技术以及在三维空间蛋白组学应用探索。报告人:张德龙 浙江大学教授报告题目:Pushing the Limit of Vibrational Imaging Resolution through Temporal Features张德龙教授在报告中介绍了一种新型显微镜技术,通过光热弛豫实现非荧光分子的超分辨率成像(PEAR),摆脱了传统超分辨成像技术对于荧光标记的依赖。此外,他还分享了中红外区分子振动光谱在脂质和蛋白质的特征峰的成像能力,和以金纳米颗粒为代表的电子吸收光谱在可见光区的成像能力。报告人:张尹馨 天津大学副教授报告题目:高分辨率光谱仪及高光谱超分辨显微成像光谱测量及分析在诸多领域应用广泛,宽光谱、高分辨率是商用光谱分析仪的重要发展目标。为此,张尹馨副教授和团队开发了扫描式和直读式高分辨率光谱分析仪,并提出了多次衍射双级联单色器分光方法,在宽光谱范围内波长扫描实现了皮米量级的超高光谱分辨率。在显微成像领域,张教授团队又提出了基于像切分的高光谱结构光超分辨率显微成像方法(HS-SIM),实现了31个光谱通道的快照式超分辨SIM显微成像,并在动态多维度无损解析样本方面进行了相关探索。报告人:洪维礼 北京航空航天大学副教授报告题目:相干拉曼快速药敏检测方法微生物耐药的发展和增加已成为人类健康的全球威胁,部分原因是目前的抗微生物诊断方法无法在疾病早期提供准确有效的结果。洪维礼副教授的报告中分享了一种基于相干拉曼散射成像技术快速测定微生物耐药性方法,利用代谢变化作为生物标记物,可在数小时内确定细菌和真菌的抗菌药物敏感性。论坛期间,振电(苏州)医疗科技有限公司特别举办了UltraView MK-II多模态非线性光学显微成像系统新品发布会。UltraView MK-II多模态非线性光学显微成像系统UltraView MK-II多模态成像系统具有多种成像方式,在支持无标记成像的同时,可以进行传统的三维高分辨荧光成像以及二次谐波成像。成像模态包含相干拉曼(CRS)、二次谐波(SHG)、双光子(TPEF)等。适用于合成生物学、病理组织检测、药物研发、植物学等研究领域。合影留念
  • 重大仪器研制项目“高分辨多功能化学成像系统”顺利验收
    p  6月20日至21日,国家自然科学基金委员会在京对中国科学院化学研究所承担的重大仪器研制项目“高分辨多功能化学成像系统”进行了结题验收。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、化学所相关人员、项目组全体成员等70余人参加了项目验收会。项目验收专家组由包括仪器测试组、财务验收组、档案验收组等在内的18位专家组成,中科院院士柴之芳担任验收专家组组长。结题验收会由国家自然科学基金委员会化学学部常务副主任陈拥军主持。/pp  国家自然科学基金委员会副主任姚建年在发言中指出,重大仪器研制项目的设立符合国家创新驱动发展战略的需求,仪器创新是科研创新的源头。陈拥军介绍了“高分辨多功能化学成像系统”项目的立项过程,并对验收工作提出了具体要求。中科院条件保障与财务局副局长曹凝介绍了中科院的监理制度和监理情况,对基金委长期以来对中科院仪器创新工作的支持表示感谢。/pp  项目负责人、中科院院士万立骏对“高分辨多功能化学成像系统”项目的完成情况进行了详细汇报。该系统包括超分辨光学STED成像模块、CARS成像模块、AFM成像模块、共聚焦激发的MALDI-MS成像模块、SIMS质谱成像模块等,能够在各模块单独工作的基础上,实现各模块之间的联用成像,在纳米尺度和分子水平对复杂体系界面结构进行形貌和化学组成表征。仪器测试专家组在验收会前对仪器进行了现场严格测试,全部技术指标达到或优于任务书预定的要求。利用研制的化学成像系统,项目组在能源材料和生物体系的表界面结构与功能等领域取得了系列研究成果,申请国际国内发明专利40余件,授权国际专利4件,国内专利14件,发表了一批高水平论文。在项目执行过程中,项目组在技术人才培养方面探索出了新的机制,形成了一支有特色的多学科交叉的科学仪器研制团队。/pp  验收专家组现场查看了研制系统的运行情况,并对财务和档案进行了验收。验收专家组听取了监理报告、仪器测试报告、档案验收报告和财务验收报告。通过现场考察和听取汇报,验收专家组认为,该项目完成了实施方案规定的研制任务,达到了项目预期目标,一致同意项目通过验收。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/d317e9ca-86a6-4da7-9af0-f79f022f8745.jpg" title="iVGd-fyhskrp7666782.jpg"/  /pp style="text-align: center "验收会主会场br//ppbr//p
  • 重大仪器专项“高分辨多功能化学成像系统”顺利通过验收
    p  6月20日至21日,国家自然科学基金委员会在京对中国科学院化学研究所承担的重大仪器研制项目“高分辨多功能化学成像系统”进行了结题验收。国家自然科学基金委员会相关负责人、中科院条件保障与财务局相关负责人、项目验收专家组、项目监理组、化学所相关人员、项目组全体成员等70余人参加了项目验收会。项目验收专家组由包括仪器测试组、财务验收组、档案验收组等在内的18位专家组成,中科院院士柴之芳担任验收专家组组长。结题验收会由国家自然科学基金委员会化学学部常务副主任陈拥军主持。/pp  国家自然科学基金委员会副主任姚建年在发言中指出,重大仪器研制项目的设立符合国家创新驱动发展战略的需求,仪器创新是科研创新的源头。陈拥军介绍了“高分辨多功能化学成像系统”项目的立项过程,并对验收工作提出了具体要求。中科院条件保障与财务局副局长曹凝介绍了中科院的监理制度和监理情况,对基金委长期以来对中科院仪器创新工作的支持表示感谢。/pp  项目负责人、中科院院士万立骏对“高分辨多功能化学成像系统”项目的完成情况进行了详细汇报。该系统包括超分辨光学STED成像模块、CARS成像模块、AFM成像模块、共聚焦激发的MALDI-MS成像模块、SIMS质谱成像模块等,能够在各模块单独工作的基础上,实现各模块之间的联用成像,在纳米尺度和分子水平对复杂体系界面结构进行形貌和化学组成表征。仪器测试专家组在验收会前对仪器进行了现场严格测试,全部技术指标达到或优于任务书预定的要求。利用研制的化学成像系统,项目组在能源材料和生物体系的表界面结构与功能等领域取得了系列研究成果,申请国际国内发明专利40余件,授权国际专利4件,国内专利14件,发表了一批高水平论文。在项目执行过程中,项目组在技术人才培养方面探索出了新的机制,形成了一支有特色的多学科交叉的科学仪器研制团队。/pp  验收专家组现场查看了研制系统的运行情况,并对财务和档案进行了验收。验收专家组听取了监理报告、仪器测试报告、档案验收报告和财务验收报告。通过现场考察和听取汇报,验收专家组认为,该项目完成了实施方案规定的研制任务,达到了项目预期目标,一致同意项目通过验收。/p
  • 科学家将拉曼效应用于光热显微镜,实现超灵敏振动光谱化学成像
    “我们开创了受激拉曼光热成像[1]这个全新的方向,这是化学成像领域的一个新突破,这项技术未来一定会发展成为能够被广泛应用的产品。”美国波士顿大学程继新教授如是说。图丨程继新(来源:程继新)在这次研究中,程继新团队利用一种新的物理机制,即受激拉曼本质上是一个化学键振动吸收过程,吸收的能量变成热形成焦点局部升温,升温改变焦点周围样品的折射率。由此,他们开发出受激拉曼光热(Stimulated Raman Photothermal,SRP)显微镜。该技术突破了此前受激拉曼散射(Stimulated Raman Scattering,SRS)成像的检测极限,将调制深度提高了 500 倍,极高的调制深度为更高灵敏度的检测奠定了基础。那么,与 SRS 相比,SRP 有哪些不同呢?具体来说,SRS 显微镜直接测量光被吸收后强度的变化,并提供光谱和空间信息;而 SRP 显微镜则是测量由样品热膨胀引起的光散射或由热透镜引起的折射,观察样品本身的温度、折射率等变化,进而提供光谱和空间信息。化学成像技术能够“追踪”细胞中的分子信息,但该领域最大的瓶颈之一是灵敏度。SRS 显微镜在揭示复杂系统中的分子结构、动力学和耦合方面显示出巨大的潜力。然而,由于其较小的调制深度和脉冲激光的散粒噪声,SRS 的灵敏度难以突破毫摩尔级,这导致其无法对低浓度分子的观察及对相关信息的追踪。此外,不可忽视的是,在使用 SRS 成像时,研究人员必须使用高倍物镜来收集信号。如果想得到高分辨成像,就必须将两个高倍物镜挤在一起,这在操作上带来极大的不便。而 SRP 的优势在于操作简单、方便,只需要低倍物镜就能够测量相关信号,且检测物镜和样品之间可以保持一定的距离。由于 SRP 显微镜非常灵敏,可以通过它观测不同的分子、不同的化学键,填补了该领域的数据空白。该技术有望应用于环境科学、材料科学、生命科学等领域,例如环境中微塑料检测、绘画作品成份分析、病毒单颗粒谱学、单细胞和生物组织成像等。一次“因祸得福”的聚会开启了一个新方向该技术背后的科研故事要从一次“因祸得福”的聚会说起。2021 年,在程继新 50 岁生日时,举办了一次课题组聚会,其中的主题之一是篮球比赛。组内成员博士研究生朱一凡在运动时不小心受伤了,因此需要在家休养 2 个月。于是,程教授交给他一个计算方面的任务:在受激拉曼散射成像时,聚焦焦点的温度变化具体是多少?根据朱一凡的模拟结果,在大概 10 微秒的时间里,相关温度上升了 2 至 3 摄氏度,这个结果很快引起了程教授的高度关注。“这个范围的瞬态温度变化不会损害细胞。于是,我们开始探索拉曼效应用于光热显微镜这个全新的方向。”程继新说。图丨SRP 显微镜设计(来源:Science Advances)从计算方面确定了温度升高的数据,那么,如何在实验上证实温度升高呢?研究人员想到,可以用对温度很敏感的荧光染料来做温度计。具体来说,把荧光染料加入样品,在受激拉曼激发的同时进行荧光测量。实验结果证明荧光强度呈下降趋势,以此在实验上确认了受激拉曼导致的温度升高(如下图)。图丨受激拉曼光热效应的理论模拟和实验观察(来源:Science Advances)但是,荧光测试是有标记的测量,而他们更想通过无标记(label-free)的方式测量光热信号。于是,研究人员用“第三束光”测折射率的变化,可以在纯液体中得到同样的信息,而且这种做法不受脉冲激光噪音的影响。最终,他们突破了此前 SRS 成像的检测极限,将调制深度提高 500 倍。组内成员博士研究生殷嘉泽以中红外光热显微镜(Mid-infrared photothermal microscopy)为主要研究方向,于 2021 年发展了一种新方法,用快速模数转换直接提取光热信号[2]。该方法同样适用于 SRP 显微镜,从而有效地提高了其检测灵敏度。图丨生物样品在水溶液环境中的 SRP 成像(来源:Science Advances)此外,组内成员博士研究生戈孝伟为本次开发 SRP 显微镜提供了 SRS 的实验基础。由此可见,研究是一个逐渐积累的过程,并需要团队成员发挥各自的优势,这充分体现了“众人能移万座山”的精神。图 丨相关论文(来源:Science Advances)近日,相关论文以《受激拉曼光热显微镜实现超灵敏化学成像》(Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging)为题发表在 Science Advances [1]。波士顿大学博士研究生朱一凡为该论文第一作者,程继新教授为论文通讯作者。16 年磨一剑1999 年,程继新在香港科技大学从事第一个博士后研究,他选择了一个技术较为成熟的研究方向——超快光谱学(ultrafast spectroscopy)。同年,诺贝尔化学奖颁予飞秒时间分辨的超快光谱学技术。2000 年,他加入国际单分子生物物理化学的奠基人之一、哈佛大学谢晓亮教授(现北京大学李兆基讲席教授)课题组,从事第二个博士后研究。在那里,程继新和其他同事开发了可实现高速振动光谱成像的相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)显微镜。2014 年,诺贝尔化学奖颁予超分辨率荧光显微技术。但是,荧光显微镜不能解决生物成像领域中所有的问题,例如,荧光染料标记会改变胆固醇、氨基酸等小分子的生物功能。因此,生命科学需要无荧光染料标记的分子成像技术。程继新表示,“选键成像很好地解决了分子选择性的问题,其不仅能看到各种分子,又不需要对分子进行荧光染料标记。”梦想很美好,现实却充满挑战。能不能通过发明新技术,去做荧光显微镜做不到事情?“继新”人如其名,从学生时代就喜欢啃“硬骨头”的他,继续探索。博士后研究工作结束后,程继新于 2003 年来到美国普渡大学任教,在那里,他将分子光谱学与生物医学工程融合,致力于化学成像这一新兴领域。2007 年,该课题组报道了一个有趣的发现:由于受激拉曼增益和损耗,一部分能量从光子转移到分子[3]。因为脉冲式的能量吸收可以产生声波,该发现促使其团队开发出受激拉曼光声显微镜(stimulated Raman photoacoustic microscope)。然而,由于当时的光声测量不是很灵敏,他们没测到受激拉曼光声信号。幸运的是,在一个意外的实验中,他们发现了基于泛频激发的光声信号[4],并开发了检测血管内壁胆固醇的振动光声内窥镜。图丨中红外光热选键成像的原理(左)及产品展示图(右)(来源:程继新)为寻找增强化学键成像信号的方法,他们再次调整研究方向。通过“thinking out of the Raman box”,开启了中红外高分辨光热成像这一全新的方向。由于分子振动吸收的能量在皮秒的时间尺度上全部转化为热能,程继新意识到,光热效应可以用来“看”细胞里的化学键。2016 年,他们报道了高灵敏度中红外光热显微镜 (Mid-infrared photothermal microscope),突破性地实现中红外超分辨三维动态成像。通过用可见光来测量光热效应,该技术能够以亚微米分辨率“看见”活细胞中的化学组分,首次使单细胞红外显微成像成为可能[5]。2017 年,程继新加入波士顿大学担任光学中心的 Moustakas 光学及光电子学讲席教授。他的团队致力于精准医学光子学技术的研发,研究覆盖了化学成像、神经调控、光学杀菌等三个方向。其课题组在全球首次通过光声信号来刺激、调节神经细胞(如下图)。最近,他们设计了一种用于无创神经刺激的高精度(0.1 毫米)光致超声器件,并在小鼠模型成功验证,第一次利用非遗传途径进行超高精度的无创神经调节[6]。此外,他们还发明了一种通过光解色素来杀死抗药性超级细菌的方法[7]。图丨光致超声神经刺激工作原理图和横向声场压强分布(来源:程继新)程继新认为,真正原创的工作不是被设计出来的,而是实现了从来没想过会发生的事情。“原创的科学是由直觉推动的,并得益于长期不懈的努力和积累,所谓的‘突破’其实是一个量变到质变的过程。”他总结道。不止于科学技术的创新,在推进技术产业化落地的过程中,更是让他感叹“应用范围超乎了最初的想象”。据悉,程继新拥有 30 多项国际专利,并作为联合创始人或科学顾问参与了多项技术的产业化。2015 年,基于分子振动光声技术,程教授和学生们共同创立了 Vibronix Inc.,该公司致力于振动成像技术研发和医疗设备创新,现位于苏州工业园区。2018 年,作为科学顾问参与建立了光热光谱公司(Photothermal Spectroscopy Corp.)。该公司位于美国加州,基于程教授的中红外光热成像专利开发了一款名为“海市蜃楼(mIRage)”的显微镜,寓意为“信号来自于折射率的变化”。据了解,该产品目前已销往世界各地百余实验室。2019 年,程继新联合创立了 Pulsethera 公司,旨在通过内源发色团的光解作用杀死超级细菌。2022 年,程继新成为法国巴黎 AXORUS 公司的科学顾问,该公司致力于光声神经刺激技术的医学转化。谈及技术的推进产业化落地的经验,程继新表示,在发展某项技术时,可能最开始只聚焦在生命科学领域的某个细分方向,但将技术真正发展为产品,其应用范围之广可能是当初没有想到的。他举例说道:“mIRage 现在被应用在半导体领域,用来检测芯片中的污染。芯片中的污染多数是有机物,因此能够通过化学键成像来检测芯片的质量,这完全超乎了我的想象。”图丨2023 年 8 月,程继新课题组的部分成员合影于首届化学成像 Gordon Research Conference(来源:程继新)回顾三十年的科研之路,程继新认为,最有回味的事情是每个阶段都有新惊喜。化学成像领域每经过大约 8 年就要进行一次技术革新,从 1999 年的 CARS 显微镜到 2008 年的 SRS 显微镜,到 2016 年的中红外高分辨光热成像,再到 2023 年的 SRP 技术。“几年前还觉得是天方夜谭的事情,都通过发明新的技术实现了,由此一步步将领域发展向前推进。”程继新说。下一步,该团队将继续发展无荧光标记的化学成像,进一步提升灵敏度,同时发展深组织的高分辨化学成像技术。他们希望,能够利用高能量的激光器将 SRP 的灵敏度提升到接近于荧光显微镜的微摩尔级别。同时,他们计划尽快将该技术发展为产品。据悉,美国加州的Photothermal Spectroscopy Corp.及中国苏州的威邦震电公司(Vibronix Inc.)正在推进相关的产业化进程。从 2007 年观测到受激拉曼过程的能量转移,到 2023 年报道 SRP 显微镜,对程继新来说,这是一次历经 16 年的科研旅程。在本次的 SRP 论文发表后,他在朋友圈这样写道:“科学很酷,生命短暂。我的下一个 16 年会是什么样呢?”
  • 第一届化学成像前沿科技及应用高端论坛第二轮通知
    由振电科技与苏州路演中心联合主办、HORIBA集团科学仪器事业部、道远资本和姑苏区委人才办联合协办的第一届化学成像前沿科技及应用高端论坛将于2023年11月30日至12月2日在江苏省苏州市召开。本次会议采取线上线下同步模式,线上参加请通过本页面注册会议,线下参加请点击链接报名。链接为:https://dwz.cn/LQZ9pdsr本届论坛将结合化学成像前沿科技及应用,聚焦拉曼和红外成像技术应用赋能,围绕生命科学、植物学、合成生物学、电化学、免疫组学等前沿热门领域展开。论坛将邀请国内外十余名行业内知名专家学者进行主题报告。我们希望借此论坛为您提供一个学习研讨、沟通交流及合作的专业平台,促进行业进步发展。振电科技、苏州路演中心、HORIBA、道远资本和姑苏区委人才办共同期待与您相聚苏州,影像未来,见所未见!振电(苏州)医疗科技有限公司苏州路演中心HORIBA集团科学仪器事业部道远资本管理(北京)有限公司 中共苏州市姑苏区委员会人才工作领导小组办公室会议安排会议时间:2023年11月30日 – 12月2日会议地点:江苏/苏州/南园宾馆主办单位:振电(苏州)医疗科技有限公司 苏州路演中心协办单位:HORIBA集团科学仪器事业部 道远资本管理(北京)有限公司 姑苏区委人才办承办单位:苏州奈斯会议会展服务有限公司技术主题:相干拉曼 中红外光热 多模态成像应用主题:生命科学 植物学 合成生物学 电化学 免疫组学主讲嘉宾(持续更新……)会议日程08:45–08:50致欢迎辞王璞振电科技-08:50–09:00领导致辞苏州领导苏州市-09:00–09:05签约仪式-苏州化学成像产业实验室-09:05–09:10签约仪式-振电科技和HORIBA-09:10–09:40待定谢晓亮昌平实验室院士09:40–10:10Vibrational Photothermal (VIP) Microscopy:A New Window for Life ScienceJi-Xin ChengBoston University首席科学家10:10–10:40待定崔丽中科院生态环境研究中心研究员10:40–11:00茶歇---11:00–11:30Quantum electrodynamics theory of Stimulated Raman Scattering microscopyWei MinColumbia University教授11:30–11:50Chemical-specific optical manipulation of biochemical processes in live cellsChi ZhangPurdue University助理教授11:50–12:10Single-Cell Profiling of Biofuel Production from Engineered Bacteria with Longitudinal Stimulated Raman Scattering MicroscopyHaonan LinBoston University研究员12:10–12:20振电科技新品发布会-UltraView Mk - II-12:30–13:30午宴---13:30–13:50待定Lingyan ShiUniversity of California San Diego助理教授13:50–14:10植物细胞壁主要成分的单细胞水平原位表征林金星北京林业大学教授14:10–14:30受激拉曼显微镜的交叉科学研究探索季敏标复旦大学教授14:30–14:50Lipid metabolic profiling via quantitative stimulated Raman scattering imaging opens up new avenues for precision medicine岳蜀华北京航空航天大学教授14:50–15:10面向病理诊断的介观高光谱显微成像孔令杰清华大学副教授15:10–15:30计算拉曼光谱与成像陈雪利西安电子科技大学教授15:30–15:50茶歇---15:50–16:10相干拉曼应用于代谢产物和特定蛋白的化学成像王平昌平实验室教授16:10–16:30待定王小召浙江大学博士后研究员16:30–16:50Super-multiplexed vibrational imaging for 3D spatial biology施立雪复旦大学青年研究员16:50–17:10Pushing the limit of vibrational imaging resolution through temporal features张德龙浙江大学教授17:10–17:30相干拉曼快速药敏检测方法洪维礼北京航空航天大学副教授缴费标准(以付款信息为准)上述费用为本论坛会议费含税价格(此价格包含食宿费)振电科技提供协议酒店,若需确保协议酒店价格,需在11月24日(09:00前)完成报名缴费。报名成功后,因个人原因取消参会,会议前7个工作日内取消,可退70%收费;会议前3个工作日内取消则不予退款报名方式(微信扫描下方二维码或点击链接即可报名)https://dwz.cn/LQZ9pdsr联系我们报名咨询:黄女士 电话:15301544885(同微信)其他咨询:杨女士 电话:15224785923(同微信)第一届化学成像前沿科技及应用高端论坛,期待与您相聚苏州!振电(苏州)医疗科技有限公司苏州路演中心HORIBA集团科学仪器事业部道远资本管理(北京)有限公司中共苏州市姑苏区委员会人才工作领导小组办公室
  • 中南大学化学成分分析中心通过CMA计量认证复评审
    4月24-25日,由湖南省质量技术监督局认评处杨敏处长、张立梅副处长带队,长沙市质量技术监督局刘尹丹处长、长沙市环境监测站易建平站长、省国土资源厅曹建高工等组成的评审专家组,对中南大学化学成分分析中心进行了综合评审。  在听取中心关于质量管理体系建立及运行情况的汇报后,专家组参观了中心相关实验室,审阅了质量管理体系文件,抽查了近两年来的质量运行记录和相关技术档案资料,并进行了现场盲样测试,对中心授权签字人的进行了技术培训和考核,在各项综合考核基础上,认为化学成分分析中心以中南大学化学实验教学中心(国家示范实验教学中心)为依托,经过4年多的建设,软、硬件条件已经符合CMA认证标准,组织管理机构健全,质量管理体系完善,分析检测设施齐备,技术力量雄厚,可以通过CMA认证复评审(含扩项)。  相关资料链接:  中南大学化学成分分析中心的前身是中南矿冶学院分析室,成立于1957年6月,迄今已有50余年的历史。2000年中南大学成立后,该中心由中南大学化学化工院负责管理。为更好地开展对外分析检测服务工作,分析中心所有的分析仪器通过了湖南省计量研究院的计量检定。分析中心对外出具的分析报告具有社会公信力。中心现有分析技术人员15人,拥有气质联用分析仪、高效液相色谱仪、气相色谱仪、分子荧光光谱仪等近千万元的各类分析仪器设备。资质范围涵盖资源、土壤、环境(水质、大气、噪声等)金属材料、化工产品中常见元素的分析检测服务。分析中心具有样品加工的能力,也可提供分析技术人员的技能培训、分析实验室的筹备与建设、分析方法的改进、新的分析方法的研究等与分析相关的技术服务。
  • 印度“月船”搭载光谱仪获俄协助 分析月球表面化学成分
    据spacedaily2017年2月17日报道,印度航天研究组织(ISRO)已经开始为月球表面软着陆器进行一系列传感器和作动器性能的地面测试。  ISRO选择俄罗斯JSC公司为其提供放射性同位素锔-244(Cm-244),用于确定任何岩石和土壤的化学成分。由JSC公司提供的同位素源将安装在阿尔法质子X射线光谱仪(APXS)上,旨在“月船”2号任务中分析月球表面化学成分。  类似的俄罗斯同位素源已经提供给美国NASA的3个探索任务:“火星探路者”(1997年)、“机遇”号(2004年)、“好奇”号(2012年),致力于探索火星上的岩石化学成分。Cm-244的生产目前只有俄罗斯和美国开展。  “月船”2号由轨道器、着陆器和巡视器组成。到达月球轨道100千米后,携带巡视器的着陆器将从轨道器上分离。受控下降后,着陆器将软着陆在月球表面的指定地点并释放巡视器,巡视器上的仪器将收集数据以分析月球土壤。目前已经开展了着陆器传感器性能测试,月球地形试验设施也为着陆器跌落试验和巡视器机动试验做好准备。“月船”2号计划2018年第一季度发射,任务成本预计为9100万美元。
  • 820万!中国科学技术大学高分辨多功能化学成像系统-飞行时间二次离子质谱仪采购项目
    一、项目基本情况项目编号:OITC-G230320050项目名称:中国科学技术大学高分辨多功能化学成像系统-飞行时间二次离子质谱仪采购项目预算金额:820.000000 万元(人民币)最高限价(如有):820.000000 万元(人民币)采购需求:1、采购项目的名称、数量:包号货物名称数量(台/套)是否允许采购进口产品1高分辨多功能化学成像系统-飞行时间二次离子质谱仪1是 投标人须以包为单位对包中全部内容进行投标,不得拆分,评标、授标以包为单位。2、技术要求详见公告附件。合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月28日 至 2023年10月11日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录东方招标平台www.oitccas.com注册并购买。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:安徽省合肥市金寨路96号         联系方式:0551-63602706       2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:(北京):北京市海淀区丹棱街1号互联网金融中心20层、(合肥):合肥市高新区创新大道2809号置地创新中心28层2815室            联系方式:(北京)窦志超、曹山、王琪 010-68290502、(合肥):郑文彬、李文海0551-66030322            3.项目联系方式项目联系人:窦志超、曹山、王琪、郑文彬、李文海电 话:  010-68290502/0551-66030322
  • 多元素分析仪针对钢材的化学成分检测优势
    多元素分析仪针对钢材的化学成分检测优势 钢材中除了主要化学成分铁(Fe)以外,还含有少量的碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、钛(Ti)、钒(V)等元素,这些元素虽然含量少,但对钢材性能有很大影响: 南京麒麟科学仪器集团有限公司专业研发的QL-S3000C型电脑红外全能联测多元素分析仪针对钢铁材料检测,由红外和比色原理的精确检测,将理化实验室的配置搭配得尽善尽美,其对性能、质量及精度的要求完全达到了国际化标准,而投资的总价即实在又超值!采用计算机实现程序控制和数据处理。能快速、准确地测出钢铁和有色金属中多种元素的质量分数,自动化程度高,首创元素分析仪不定量称样功能,准确可靠,方便用户操作。 电脑红外全能联测多元素分析仪钢材的化学成分检测及其对钢材性能的影响1.碳。碳是决定钢材性能的最重要元素。碳对钢材性能的影响如图6-3所示:当钢中含碳量在0.8%以下时,随着含碳量的增加,钢材的强度和硬度提高,而塑性和韧性降低;但当含碳量在1.0%以上时,随着含碳量的增加,钢材的强度反而下降。随着含碳量的增加,钢材的焊接性能变差(含碳量大于0.3%的钢材,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。一般工程所用碳素钢均为低碳钢,即含碳量小于0.25%;工程所用低合金钢,其含碳量小于0.52%。多元素分析仪针对钢材的化学成分检测优势2.硅。硅是作为脱氧剂而存在于钢中,是钢中的有益元素。硅含量较低(小于1.0%)时,能提高钢材的强度,而对塑性和韧性无明显影响。3.锰。锰是炼钢时用来脱氧去硫而存在于钢中的,是钢中的有益元素。锰具有很强的脱氧去硫能力,能消除或减轻氧、硫所引起的热脆性,大大改善钢材的热加工性能,同时能提高钢材的强度和硬度。锰是我国低合金结构钢中的主要合金元素。4.磷。磷是钢中很有害的元素。随着磷含量的增加,钢材的强度、屈强比、硬度均提高,而塑性和韧性显著降低。特别是温度愈低,对塑性和韧性的影响愈大,显著加大钢材的冷脆性。 磷也使钢材的可焊性显著降低。但磷可提高钢材的耐磨性和耐蚀性,故在低合金钢中可配合其他元素作为合金元素使用。5.硫。硫是钢中很有害的元素。硫的存在会加大钢材的热脆性,降低钢材的各种机械性能,也使钢材的可焊性、冲击韧性、耐疲劳性和抗腐蚀性等均降低。6.钛。钛是强脱氧剂。钛能显著提高强度,改善韧性、可焊性,但稍降低塑性。钛是常用的微量合金元素。7.钒。钒是弱脱氧剂。钒加入钢中可减弱碳和氮的不利影响,有效地提高强度,但有时也会增加焊接淬硬倾向,钒也是常用的微量合金元素。 南京麒麟科学仪器集团有限公司检测中心2016.06.22更多资料请登陆以下网站高频红外碳硫分析仪 http://www.jqilin.com红外碳硫仪 http://www.qilinyiqi88.com元素分析仪 http://www.qlfxy.com多元素分析仪 http://www.jqilin.net火花直读光谱仪 http://www.njqlyq.com碳硫分析仪器 http://www.njqilin.com
  • 美法科学家交付火星化学成分分析仪
    美国洛斯阿拉莫斯国家实验室表示,美、法两国科学家合作研究小组9月21日将研制的、名为“ChemCam”的仪器交付给了喷气推进实验室。该仪器将安装在计划于2011年发射的火星探测车“好奇”(Curiosity)上,其作用是帮助人们了解火星上的化学元素。  据悉,未来新的火星探测车抵达火星表面开始工作时,“ChemCam”仪器带有的激光器会向距离火星探测车7米处的目标发射激光,并利用激光诱导分解光谱(laser-induced breakdown spectroscopy)技术检测被激光照射目标物质所含的化学成分或元素。  具体分析过程是,首先用激光束轰击分析目标,轰击点仅为针头大小。在激光的作用下,被轰击的物质发生蒸发。随即利用光谱分析仪捕捉和分析蒸发物质发出的闪光。由于原子在激光作用下转变成电离原子时将发出光波,而不同的原子在电离时发出的光波波长不同,因此“ChemCam”可以通过将观察到的光波波长与自身携带的原子光谱数据库的数据进行比较,从而推断出被轰击目标物质中所含的原子或元素。  研究人员表示,即使岩石目标被灰尘遮盖也难不倒“ChemCam”分析仪,因为它可以先用激光清理掉灰尘或其他覆盖物,再对岩石样品进行分析。洛斯阿拉莫斯国家实验室“ChemCam”仪器研制负责人罗杰维恩斯说,他们汇集了众多的新理念才将该仪器变为现实。  “ChemCam”仪器法国参与人员负责人斯尔维斯特莫瑞斯认为,该仪器如同地质化学观察仪,将为人们提供有关火星的组成成分数据,以了解它过去、现在或将来是否适于居住。同时该仪器还将帮助火星探测车控制组选择最有价值的目标,供探测车上的其他仪器进行研究。未来,美、法联合研究小组将共同操控“ChemCam”在火星上的元素分析活动,并解释获得的数据。  “好奇”火星探测车是迄今为止针对火星探测最大且能力最强的机器人。它采用核动力驱动,自身重量超过了900公斤,尺寸大小如同小汽车。搭载它进入火星大气层的太空舱的大小甚至超过了当年搭载3名宇航员的“阿波罗”登月舱。包括“ChemCam”在内,“好奇”探测车上所要携带的仪器总数为10台。其他的仪器能够帮助人们了解火星矿产、嗅出有机物质、观察气象和辐射环境、钻探火星岩石(深度为数厘米)。根据原定计划,“好奇”探测车将于2011年11月从佛罗里达航天中心发射,2012年8月抵达火星。
  • 德国耶拿收购生命科学成像公司UVP
    2013年4月2日,德国耶拿分析仪器公司(以下简称耶拿)宣布,其签署了一份协议收购生命科学成像公司UVP,收购价格没有披露。  该交易预计4月5日结束,并且除了收购UVP,耶拿还将购买UPV位于英国剑桥全资子公司Ultra-Violet Products Ltd。  UVP提供数字成像系统,应用于蛋白质组学、基因组学、植物和动物科学。UVP的成像系统包括凝胶成像和化学发光成像,以及荧光成像和比色成像。  耶拿表示,UVP集2012年收入1720万美元,全球拥有109名员工。耶拿预计收购UVP对营收带来影响将在2013财年下半年及2014财年才会体现,这部分业务预计销售将超过4000万欧元(约5130万美元)。(编译:杨娟)
  • 北京大学生物动态光学成像中心成立
    12月21日,北京大学生物动态光学成像中心(BIOPIC)成立仪式在北京大学举行。  BIOPIC是北大在985工程中重点建设的一个跨学科实体研究中心,也是推动多学科交叉合作的一项重要举措。来自校内外的一百多位嘉宾出席了会议,与会专家一致认为,多学科交叉是21世纪科学发展的重要趋势,BIOPIC的成立适应了科学发展的潮流,可以充分利用北大作为一所综合性大学在多学科交叉研究中的独特优势,在从细胞到组织等多个层次上开展分子成像关键技术与材料的研究和开发,为推动我国基础科学与高新技术发展、提升产业结构、改善医学诊断提供支持。BIOPIC 的成立也是北京大学在建设世界一流大学进程中迈出的重要一步,必将大大促进我校在前沿交叉领域的深入合作,并推动光学成像技术和高通量测序技术在生命科学领域的应用。  十一届全国政协副主席、九三学社中央副主席、中国科学院生物物理研究所研究员王志珍院士,教育部科技司陈盈晖副司长,科技部基础司张先恩司长等领导莅临会场并做了即兴发言。北京大学常务副校长林建华主持了本次仪式,王志珍院士、周其凤院士、许智宏院士和谢晓亮教授共同为中心揭牌。  北大长江讲座教授谢晓亮在报告中展示了近年来位于国际前沿领域的单分子研究及光学成像技术的发展状况,强调其对于生命科学的重要影响。之后他详细介绍了BIOPIC的发展规划。他强调,BIOPIC的目标是发展和利用最先进的生物成像和基因测序手段,在单分子和单细胞水平上进行生命科学与医学研究。BIOPIC将利用和发展这些新兴手段从事生物化学、生物物理学、分子生物学和细胞生物学的基础研究,以及致力于解决干细胞、癌症、感染性疾病及代谢疾病的一些重大医学问题。BIOPIC希望通过跨学科、新手段的研究及校内外、国内外的合作来促进生命科学的发展。  据了解,BIOPIC已经组成了国际评审委员会,他们是北大生命科学院院长饶毅、北京生命科学研究所所长王晓东、清华大学生命科学院院长、医学院常务副院长施一公、哈佛大学教授庄晓薇、斯坦福大学教授Stephen Quake,巴黎高等师范大学教授David Bensimon,以及加州理工学院Beckman研究所所长Barbara Wold。  出席仪式的北大学校领导和专家还有许智宏、张彦、李岩松、王恩哥、李晓明,饶毅、吴凯、陈十一、肖瑞平、程和平、汤超等以及来自学校各个职能部门的领导。来自校外的众多生命科学领域的专家如王晓东、施一公,中科院生物物理所所长徐涛、华中科技大学副校长骆清铭、清华大学医学院兼职教授张奇伟等也专程出席并做了精彩的发言。
  • 活体生物光学成像技术的应用
    作为一项新兴的分子、基因表达的分析检测技术,在体生物光学成像已成功应用于生命科学、生物医学、分子生物学和药物研发等领域,取得了大量研究成果,主要包括: 在体监测肿瘤的生长和转移、基因治疗中的基因表达、机体的生理病理改变过程以及进行药物的筛选和评价等。1、在体监测肿瘤的生长和转移利用在体生物光学成像技术,通过荧光素酶或绿色荧光蛋白标记肿瘤细胞,可以实时监测被标记肿瘤细胞在生物体内生长、转移、对药物的反应等生理和病理活动,揭示肿瘤发生发展的细胞和分子机制。Contag 等[1] 将荧光素酶和绿色荧光蛋白作为报告基因,对肿瘤细胞进行活体成像,探讨了使用报告基因在细胞分子水平研究肿瘤的前景,并指出在体生物光学成像技术具有较高的灵敏度,尤其在监测肿瘤细胞的生长方面具有较大优势。Yang等[2,3] 首先利用光学成像系统对表达绿色荧光蛋白的肿瘤实现了实时非侵入性成像,记录了肿瘤的转移过程,开辟了在整体水平上无创、在体、实时跟踪肿瘤发生、发展和转移等生物学行为的崭新领域。Jenkins 等[4] 将标记了荧光素酶基因的人类前列腺癌细胞注射到小鼠体内,利用在体生物光学成像系统,实时、在体监测了前列腺癌细胞化疗后的复发和转移情况。基于绿色荧光蛋白的在体生物光学成像也在肺癌、大肠癌、前列腺癌、胰腺癌、黑色素瘤、脑胶质瘤和乳腺癌等多种肿瘤的生长转移等研究中得到了越来越广泛的应用[2,3,5,6]。2、在体监测基因治疗中的基因表达随着后基因组时代的到来和人们对疾病发生发展机制的深入了解,在基因水平上治疗肿瘤、心血管疾病、AIDS 和分子遗传病等恶性疾病已经得到国内外研究人员越来越广泛的关注。如何客观地检测基因治疗的临床疗效判断终点,有效监测转基因在生物体内的传送,并定量检测基因治疗的转基因表达,已经成为基因治疗应用的关键所在。通过荧光素酶或绿色荧光蛋白等报告基因,在体生物光学成像技术能够进行基因表达的准确定位和定量分析,在整体水平上无创、实时、定量地检测转基因的时空表达[7]。McCaffrey 等[8] 将荧光素酶标记在靶基因上,应用siRNA 及shRNA 减弱了小鼠转染的荧光素酶的表达,在活体动物体内首次实时观察到siRNA 对特异靶基因表达的阻断作用。以病毒[9,10](如腺病毒及腺相关病毒等) 作载体,将荧光素酶基因或绿色荧光蛋白等作为报告基因加入载体,采用在体生物光学成像,能够实时观察病毒在动物体内的侵染活动,获取病毒侵染部位等相关信息。3、揭示机体的生理病理改变过程目前,在体生物光学成像技术已成功应用于干细胞移植、肿瘤免疫、毒血症、风湿性关节炎、皮炎等发病机制的研究中,可以实时监测生物机体的生理病理改变过程,具有重要的临床意义。应用转基因鼠,Wang等[11] 将荧光素酶基因转导于人类造血干细胞(Hematopoietic stem cells,HSC) 中,并将其植入脾及骨髓,利用在体生物光学成像技术,揭示了HSC 在小鼠骨髓腔中植活、增殖等动态信息,实时监测HSC 的后代在小鼠体内的生长等。Kim等[12] 将荧光素酶基因转染于神经前体细胞(Neuralprogenitor cell,NPC),并注射入小鼠脑梗模型中,在体生物光学成像系统显示神经前体细胞迅速游走聚集至梗塞病灶处。风湿性关节炎和类风湿性关节炎的动物模型研究表明: 荧光报告基因在患关节炎的关节局部产生荧光信号,在健康组织周围未见荧光信号,能够动态观测关节炎的发生和发展,对关节炎疾病的治疗具有重要意义。另外,在体生物光学成像技术在生物大分子间相互作用及细胞凋亡的研究中也取得了一定进展。Paulmurugan 等[13] 将胰岛素样生长因子与胰岛素样生长因子结合蛋白分别用绿色荧光蛋白及Renilla 荧光素酶基因融合,研究它们之间在活体小动物体内的相互作用。4、药物的筛选和评价目前,转基因动物模型已大量应用于病理研究、药物研发、药物筛选和药物评价等领域。 通过体外基因转染或直接注射等手段,将荧光素酶或绿色荧光蛋白等报告基因标记在生物体内的任何细胞(如肿瘤细胞、造血细胞等) 上,采用在体生物光学成像技术对其示踪,了解细胞在生物体内的转移规律,不仅能够检测转基因动物体内的基因表达或内源性基因的活性和功能,而且能够对药物筛选及疗效进行评价。Zhang 等[14] 利用转基因鼠,研究可诱导的NO 合成酶在急慢性免疫反应中的作用,并以此对多种化合物进行抗免疫反应的测试和筛选。肺癌、前列腺癌、黑色素瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌和脑癌的原位GFP 肿瘤的整体荧光成像模型已经建立[15],利用转移鼠和血管鼠实现了抗肿瘤生长转移和血管生成的在体药物筛选和评价(http://www.metamouse.com)。基于绿色荧光蛋白的在体荧光成像揭示了肿瘤发生发展的细胞和分子机制,非侵入性在体评价抗肿瘤药物的疗效[1]。参考文献1、 Contag C H,Jenkins D,Contag P R,Negrin R S. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia,2000,2(1-2): 41~522、 Yang M,Baranov E,Jiang P,Sun F X,Li X M,Li L. Whole-body optical imaging of green fluorescent protein expressing tumors and metastases. Proceedings of the National Academy of Sciences of the United States of America,2000,97(3): 1206~12113、 Yang M,Baranov E,Wang J W,Jiang P,Wang X,Sun F X. Direct external imaging of nascent cancer,tumor progression,angiogenesis,and metastasis on internal organs in the fluorescent orthotopic model. Proceedings of the National Academy of Sciences of the United States of America,2002,99(6): 3824~38294、 Jenkins D E,Yu S F,Hornig Y S,Purchio T,Contag P R. In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clinical and Experimental Metastasis,2003,20(8): 745~7565、 Hasegawa S,Yang M,Chishima T,Miyagi Y,Shimada H,Moossa A R. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene Therapy,2000,7(10): 1336~13406、 Bouvet M,Wang J W,Nardin S R,Yang M,Baranov E,Jiang P. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pan creatic cancer orthotopic model. Cancer Research,2002,62(5): 1534~15407、 Vassaux G,Groot-Wassink T. In vivo noninvasive imaging for gene therapy. Journal of Biomedicine and Biotechnology,2003,2003(2): 92~1018、 McCaffrey A P,Meuse L,Pham T T,Conklin D S,Hannon G J,Kay M A. RNA interference in adult mice. Nature,2002,418(6893): 38~399、 Sato M,Johnson M,Zhang L Q,Zhang B,Le K,Gambhir S S. Optimization of adenoviral vectors to direct highly amplied prostate-specific expression for imaging and genetherapy. Molecular Therapy,2003,8(5): 726~73710、 Tseng J C,Levin B,Hunado A,Yee H,de Castro I P,Jimenez M. Systemic tumor targeting and killing by Sindbis viral vectors. Nature Biotechnology,2004,22(1): 70~7711、 Wang X,Rosol M,Ge S,Peterson D,McNamara G,Pollack H. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood,2003,102(10): 3478~348212、 Kim D E,Schellingerhout D,Ishii K,Shah K,Weissleder R. Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke,2004,35(4): 952~95713、 Paulmurugan R,Gambhir S S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Analytical Chemistry,2003,75(7): l584~158914、 Zhang N,Weber A,Li B,Lyons R,Contag P R,Purchio A F. An inducible nitric oxide synthase-luciferase reporter system for in vivo testing of anti-inflammatory compounds in transgenic mice. The Journal of Immunology,2003,170(12):6307~631915、 Hoffman R M. Green fluorescent protein imaging of tumour growth,metastasis,and angiogenesis in mouse models. The Lancet Oncology,2002,3(9): 546~556
  • 超多学术大牛!2月9日磁学成像线上会议重磅来袭
    Magnetic Imaging Conference 磁学成像会议2021年2月9号 | 线上会议挑战,技术 & 磁学成像新科研动态纳米磁性材料总是展现出许多有趣的和新兴的现象,使得纳米磁学成为当前活跃的科研领域之一。表征这类材料的关键是提高测量设备的分辨率和灵敏度,这也大推动了基于扫描探针的磁学成像技术的发展。在本次磁学成像线上国际会议中,来自全球众多著名高校的多位知名科学家将分别介绍,利用不同的磁学成像技术所取得的、并发表在Nature、Science等有影响力期刊上前沿科研成果,内容包括:磁力显微成像(MFM)、NV色心显微成像(NVM)和扫描SQUID成像等,欢迎大家注册参加!部分报告人简介:1. 沈健 教授(复旦大学,上海,中国),报告题目:“Physical origin of complex magnetic domain structures in manganites”.研究兴趣:纳米磁性、自旋电子学、低维物理、复杂体系强关联效应。Investigation of emerging phenomena at surface, in reduced dimensionality, and at nanometer scale. Specific interest includes magnetism and electronic transport of nanostructured materials, and their underlying physical mechanism. 2. Patrick Maletinsky 教授 (巴塞尔大学, 巴塞尔, 瑞士) ,报告题目:“Single-spin nanoscale imaging of atomically thin magnets”.研究兴趣:Our research is driven by the goal to establish and employ innovative and powerful quantum technologies for nanoscale quantum sensing and imaging. Our group specialises on applying such approaches to problems in condensed matter physics with a particular focus on mesoscopic systems. Our current focus lies on the use of Nitrogen-Vacancy (NV) center spins for such sensing applications. 3. John Kirtley 教授 (斯坦福大学, 美国),报告题目:“Determining the vibrations between sensor and sample in SQUID microscopy”.研究兴趣:Scanning SQUID microscopy: For the past twenty years I have developed the technique of scanning SQUID microscopy and used the resulting novel instruments for fundamental studies. These studies included: Phase sensitive pairing symmetry tests,Interlayer tunneling model,Interacting p-loop arrays,Quench cooled superconducting rings, Angle-resolved phase sensitive measurements of the in-plane gap symmetry in YBCO. 注册报名您可通过扫描下方二维码或点击此处报名注册参与两部分的学术报告会(报告之后含问答环节)。后还有关于磁学成像未来的小组讨论,领域的权威的人士将会参与讨论。扫描扫描上方二维码,即刻报名参与本次讲座会议程序册(详见下表)以下为CST时间(北京)部分:3:40 - 3:55 p.m. Mirko Bacani (attocube systems AG, Haar, Germany) | attocube systems as your partner in low-temperature magnetic imaging4:00 - 4:25 p.m. Jan Seidel (University of New South Wales, Sydney, Australia) | Variable temperature MFM measurements of magnetic oxide materials4:30 - 4:55 p.m. Jian Shen (Fudan University, Shanghai, China) | Physical origin of complex magnetic domain structures in manganites5:00 - 5:25 p.m. Eli Zeldov (Weizmann Institute of Science, Rehovot, Israel) | topological currents and twist-angle disorder in magic-angle graphene5:25 - 5:45 p.m. Virtual Coffee Break5:45 - 6:15 p.m. Jörg Wrachtrup (University of Stuttgart, Stuttgart, Germany) | Nanoscale probing of functional 2D materials6:20 - 6:45 p.m. Vincent Jacques (University of Montpellier, Montpellier, France) | antiferromagnetic order with a single spin microscope6:50 - 7:15 p.m. Christian Degen (ETH Zurich, Zurich, Switzerland) | Towards mK magnetometry of electronic transport in condensed matter systems二部分:9:10 - 9:40 p.m. Stuart Parkin (Max Planck Institute for Microstructure Physics & Martin Luther University Halle-Wittenberg, Halle Germany) | Chiral non-collinear spin textures imaged using magnetic force microscopy and lorentz transmission electron microscopy9:45 - 10:00 p.m. Samuel Seddon (University of Warwick, Coventry, UK) | Real-space Observation of Ferroelectrically Induced Magnetic Spin Crystal in SrRuO310:05 - 10:30 p.m. Patrick Maletinsky (University of Basel, Basel, Switzerland) | Single-spin nanoscale imaging of atomically thin magnets10:30 - 10:45 p.m. Virtual Coffee Break10:45 - 11:10 p.m. Ruslan Prozorov (Iowa State University & Ames Laboratory, Ames, USA) | Probing quantum criticality using optical NV magnetometry11:15 - 11:40 p.m. John Kirtley (Kirtleyscientific.com, Stanford, USA) | Determining the vibrations between sensor and sample in SQUID microscopy小组讨论:12:00 - 1:00 a.m. future of magnetic imaging: What are key challenges in applications, and which techniques are going to solve these best?Host: Khaled Karraï (attocube systems AG, Haar, Germany)Participants:Thierry Debuisschert (Thales Research & Technology, Palaiseau, France)Hans Josef Hug (Empa - Swiss Federal Labs for Materials Science and Technology, Dübendorf, Switzerland)Kathryn Ann Moler (Stanford University, Stanford, USA)Stuart Parkin (Max Planck Institute for Microstructure Physics & Martin Luther University Halle-Wittenberg, Halle, Germany)Jörg Wrachtrup (University of Stuttgart, Stuttgart, Germany)持续产生科学影响德国attocube公司产品助力您的磁学成像研究attoDRY2100特的低振动可变温磁体系统,专为光学和扫描探针显微镜设计。attoAFM-MFM I基于悬臂梁的原子力显微镜,基于激光干涉测量,用于低温条件下MFM、PFM、KPFM、EFM、c-AFM的测量attoAFM/CFM结合原子力显微镜与共聚焦显微镜,用于低温下光学探测磁共振成像。LT-APO 低温物镜专为低温环境设计,消色差物镜,高数值孔径。mK 设备与平台为接近零度的基础科研提供解决方案。低温纳米精度位移台基于压电陶瓷驱动,适用低温环境,纳米精度。
  • 2018年光学成像技术市场将达19亿美元
    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。  虽然光学成像技术仍然处于发展的初期,但是它有许多重要的优势超过现有的放射成像技术。例如,光学成像技术是非扩散性的,无电离辐射,与传统的放射技术相比可以节约可观的成本,而且光学成像技术可以提高诊断的分辨率,它可以得到眼睛、表面组织、粘膜、胃肠道和血管系统等清晰的深层结构图像,能更好地促进诊断在临床医学中的应用。  该报告中的光学成像技术包括光学相干断层扫描技术(OCT)、光声层析成像技术(PAT)、超光谱图像技术(HSI)和近红外光谱技术(NIRS),这些技术在未来五年将推动整个光学成像技术的市场。  当前,OCT占领光学成像技术市场的70%,从2013年到2018年,OCT的市场将按照4%的年均复合增长率增长。OCT被广泛地应用在眼睛、牙齿、心脏和皮肤等的临床诊断,并且现在还将其的应用领域扩展到癌症检测。卡尔蔡司和圣犹达医疗是这项技术的先驱,且几乎所有的设备都与OCT技术有关。  此外,HSI、NIRS和PAT在光学成像技术市场属于新兴的技术。其中,HSI和NIRS目前在皮肤和神经领域被用于生物医学研究和药物开发,而PAT被用于癌症检测。(编译:邓雅静)
  • 小菲课堂|声学成像技术在局部放电监测中的应用(二)
    声学成像仪在高压局部放电中的应用原理小菲在上周的文章中提到一部分没看到的小伙伴戳这里:小菲课堂|声学成像技术在局部放电监测中的应用(一)下面继续为大家详细解说声学成像仪:智能除噪,结果准确电气承包商选择检测局部放电的工具本身,也可能会导致人们对局部放电的识别效果产生误解。比如,局部放电以40 kHz的频率恒定地发出超声波,许多声学成像设备就只有这个频率的范围,尽管这些设备在某些情况下可能有用,但在大多数情况下,选择这些设备可能大大削弱检测的灵敏度。例如,在远距离工作时(如户外变电站),使用更宽的频率范围(10 kHz-30 kHz)可以产生更好的结果。目前,声学成像已迅速发展成对维护供电基础设施正常运行不可或缺的技术。越来越多的状态监测管理人员开始把FLIR Si124之类的声像仪加入工具箱。此类设备可以快速、轻松地发现问题,降低维修成本,减少意外停机,很快就能带来投资回报。 当高压设备内有悬浮导体时(比如用垫片隔开),就有可能产生悬浮放电,悬浮放电被认为是最常见的局部放电类型。导线(如输电线)周围作为绝缘材料的空气在高湿度或污染环境下会丧失部分绝缘能力,进而发生空气放电。这会导致电流进入空气中,进一步降低近处的空气质量和导线的性能。分析声学图像可能需要一定的培训和学习,尤其是在理解不同类型的局部放电时。了解问题及其严重性有助于制定更好的报告、维修建议和更明智的后续行动。FLIR Si124声学成像仪采用人工智能算法分析局部放电,可助电气承包商一臂之力。用户可以将声学图像上传到FLIR Acoustic Camera Viewer云服务,后者会自动将这些图像与数千张局部放电图像进行比较。先进的人工智能服务有助于减少误差,加快报告制作,成为客户检查业务的关键优势。简单易用的特性也有助于使更多工人加入声学成像检测队伍,共同开展状态监测或预防性维护工作。声学成像仪重点检测区域对于局部放电易发生的区域,主要包括:★ 导线和母线★ 发电机★ 输配电设备★ 变电站★ 定子、电机和线圈★ 开关设备★ 变压器声学成像可以检测到超声波的能力,已成为公用事业组织用于确定是否存在局部放电的有效方法。它使专业人士能够执行更多例行预防性维护,有助于提供对即将发生的会导致关键系统停机的电气故障的关键初步预警。所以,电气供应商们要与时俱进,选择更有效、更快捷的工具检测电气设备的局部放电哦~想要了解更多详情。
  • X射线成像让科学成为艺术
    上面这幅图是一只南非晰蜴的x射线CT扫描仪成像,它完整展示了动物的骨骼结构。  CT扫描通常用在医学上,它可以显示对象内部的结构。科学家们用它来扫描标本,就可以在避免物理损坏的情况下得到标本的3D合成图像。  一条毒蛇  x光成像显示佛像内部有某神秘物件  用药水和颜料染色制作的透明鱼  紫外线成像拍摄的蝎子,科学家用这种方式来判别物种差异   显微镜下的水蛭  珊瑚特写,发光的是带有荧光蛋白的细菌    用x射线、染料、显微镜及其他工具来观测肉眼无法看到的化学成分,红色代表镁、绿色和蓝色是钙铝。这四组图是四颗陨石的电子扫描图片。
  • 石墨烯-钙钛矿新型X射线探测器问世,灵敏度比同类最佳医学成像设备提高四倍
    近日,瑞士洛桑联邦理工学院的研究人员通过使用3D气溶胶喷射打印,开发了一种生产高效X射线探测器的新方法。这种新型探测器可以很容易地集成到标准微电子设备中,从而大大提高了医疗成像设备的性能。研究成果发表在美国化学学会科学月刊《ACS Nano》上。这种新型探测器是由洛桑联邦理工学院基础科学学院福罗带领的研究小组研发的,其由石墨烯和钙钛矿组成。利用瑞士电子学与微电子科技中心的气溶胶喷射打印设备,研究人员在石墨烯基底上3D打印钙钛矿层。其想法是,在设备中,钙钛矿充当光子探测器和电子放电器,而石墨烯则放大输出的电信号。研究中开发的气溶胶喷墨打印方法的示意图(图片来源:物理学家组织网)此外,报道称,研究人员使用了甲基碘化铅钙钛矿,由于其引人入胜的光电性能以及低廉的制造成本,最近这种钙钛矿备受关注。该研究小组的化学家恩德雷霍瓦特说:“这种钙钛矿含有重原子,这为光子提供了高散射截面,因此使其成为X射线探测的完美候选材料。”结果表明,这种方法生产的X射线探测器具有破记录的高灵敏度——比同类最佳医学成像设备提高了4倍。“通过使用带有石墨烯的光伏钙钛矿,对X射线的响应大大增加。”福罗说,“这意味着,如果我们在X射线成像中使用这两者的组合材料,成像所需的X射线剂量可以减少1000多倍,从而降低这种高能电离辐射对人体健康的危害。”福罗说,钙钛矿-石墨烯探测器的另一个优点是它不需要精密的光电倍增管或复杂的电子设备,因此它让医学成像变得很简单。报道称,该项研究中使用的气溶胶喷射打印技术是一种相当新颖的技术,可用于制造3D打印的电子元件,如电阻、电容、天线、传感器和薄膜晶体管,甚至还可在特定基材上打印电子产品,如手机外壳。除了X光照片外,X射线医疗用途还包括透视、癌症放射治疗和电子计算机断层扫描。而这种新型探测器易于合成,应用领域更加前沿,可广泛应用于太阳能电池、LED灯、激光器和光电探测器等。
  • 小菲课堂|声学成像技术在局部放电监测中的应用(一)
    高压局部放电局部放电是电力设备绝缘在足够强的电场作用下局部范围内发生的放电,每一次局部放电对绝缘介质都会产生一些影响,使绝缘强度下降,造成高压电力设备绝缘损坏,甚至会造成人安全隐患。目前,预防性维护人员已经开始使用声学成像技术定位局部放电,甚至能在设备过热之前就发现设备特有的声音特征。与FLIR红外热像仪配合使用,像FLIR Si124之类的声学成像仪是必不可少的设备,可以有效地发现局部放电,避免出现设备故障、代价高昂的损坏和意外停机等问题。局部放电的过程与危害根据IEC 60270的正式描述,局部放电指“只是局部地桥接导线间绝缘体的局部放电现象,可能发生在导线附近,也可能发生在其他地方。通常,局部放电是局部电应力在绝缘体或绝缘体表面集中的结果,一般表现为持续时间远远小于1毫秒的脉冲。电流总是趁人不注意时试图逃逸、跳离导线、徒劳地尝试桥接附近的电极。在寻找逃逸路线时,它首先会从老化的绝缘体上的裂缝开始。如果是架空电线,则是从因多年积污的电线表面开始。也许是在高压电缆的纸绕组上戳一个小孔,也可能隐藏在老化的液体电介质中形成的气泡附近。在电压正弦波的每个波峰和波谷,它都会持续不断地尝试(局部放电)。电流就这样日复一日地试图穿越到相邻的导线上,肉眼却无法看到这类局部放电。受持续性高压应力影响,附近的绝缘材料会在某个时刻失效,丧失对电流的约束。最终,电流会分流进入另一导线。这种情况发生时,导线会完全失效。这会对线路上连接的电气设备、开关设备、机械或设施造成了极大的破坏,代价高昂。局部放电有可能损坏工厂设备或灼伤敏感的电子设备。严重时,局部放电可能导致社区停电数小时,闲置设备,浪费宝贵的生产力。声学成像仪是预防性维护的必要工具局部放电检测是状态监测(CBM)或预防性维护(PdM)计划切实发挥作用的必要条件。越早发现,局部放电对绝缘体的损坏就越少,设备故障和后续停机风险也就越低。追踪局部放电问题有着简单的经济动机:发现问题,安排停机,然后在局部放电现场修复和更换绝缘体及电气接头,其成本和破坏性要低得多。为了准确定位局部放电,电气承包商、检查人员和专业维护人员可以使用多种诊断技术。绝缘测试仪提供了绝缘体的有效性或电阻的数值读数。FLIR红外热像仪可以定位并识别电气设备产生的阻热,通过逐像素的温度读数在可视图像中精确定位问题所在。还可以将热成像技术与声学成像技术结合起来,确定局部放电的严重程度。温度升高和声学特征可以表明绝缘设备的完整性遭到破坏。FLIR Si124满足声像仪的所有需求作为整个诊断生态系统的一部分,FLIR在红外热像诊断方案以外,还推出了声学成像解决方案。FLIR Si124工业声学成像仪是一款基于声学原理的解决方案,它可以定位和分析工业故障、老化以及缺陷如局部放电等。研究发现,在元件发热到能被红外热像仪检测到之前,局部放电会导致声音异常。这就为我们额外提供了一层提示,帮助我们提前检测到潜在的故障。虽然我们经常能在电线附近听到嗡嗡声,但人耳通常是听不到局部放电的,因此局部放电人耳很难定位,尤其是在过于嘈杂的工作场所。借助手持式声学成像仪(FLIR Si124),用户可以扫描一整个区域,在被检组件的声像图上看到局部放电产生超声波的位置,即使人耳听不到、背景噪声很大也没关系。虽然在声学成像方面,电工有许多工具可选,但从便携性到精度,需要考虑多种因素。首先,虽然大多数声学成像工具都很轻便,但要选择便于换场作业的款式。选择一台简单易用、单手可握、携带方便,符合人体工学设计且便于瞄准的手持式成像仪。很显然,FLIR Si124工业声波成像仪很好地满足了以上所有要求!麦克风更多,检测速度快10倍科技领域有一条通用法则:越多越好。从这个意义上讲,声学成像仪中增加麦克风的数量对形成细节丰富的声学图像至关重要。同样在科技领域,对于麦克风本身而言,(体积)大不一定好,因此使用MEMS(微机电系统)类型的麦克风。这类麦克风的性能达到了良好的平衡,能在不同环境下稳定地工作,功耗低,支持小体积电池,续航时间长。另外,体积小意味着更容易把它们紧凑地布置在手持工具上。更多的麦克风,都有哪些优势呢?灵敏度:FLIR Si124声学成像仪搭载了由124个MEMS麦克风精心布成的阵列,这些麦克风相互配合,使灵敏度达到高水平。麦克风越多越可以降低“空间混叠”的可能,也就是降低图像上声源错位的可能。检测范围与访问:增加麦克风的另一个优势是可以扩大检测范围。声音在空气中的传播距离每增加一倍就会衰减6分贝(距离声源15米处听到的声音比30米处听到的声音强6分贝),中型局部放电的分贝值约为40分贝。为了检测范围更广,声学成像仪制造商通过增加麦克风的数量来扩大检测范围。FLIR Si124声学成像仪将麦克风增加三倍,从而使检测范围扩大一倍。出于安全考虑,许多电气设备周围都有栅栏,或者离地较高,很难接近访问。这种访问限制也可能与时间有关,比如需要客户联系人在场时才能进入。鉴于这些访问限制,远距离也能精确定位局部放电的工具就显得至关重要。处理能力:FLIR Si124会产生124个音频数据流,这些数据流经过处理后可转换为视觉图像。这款声像仪搭载了自动音频频率筛选功能,既不牺牲性能,也简化了操作过程。数据和图形处理能力的进步使得将如此大量的声学数据,瞬间整合成屏幕上易于理解的图像成为可能。如果用户选用搭载较少麦克风或老款处理器的成像仪,结果只能得到较低品质图像、较低的分辨率、以及较慢的刷新率。就生产效率而言,像FLIR Si124这样先进的声学成像仪在发现问题的速度方面比其它可用工具快10倍。配备124个麦克风的FLIR声学成像仪不仅检测速度快人一步麦克风频率还会影响检查效果想知道关于声学成像仪的更多理论知识持续关注我们
  • 第三届怀柔论坛 生物医学成像:未来技术与未来科学家
    成像技术作为生物医学最重要的研究工具之一,已经成为生命科学和临床医学研究发展的核心动力。北京大学联合多家单位在怀柔科学城建设“十三五”国家重大科技基础设施——多模态跨尺度生物医学成像设施,为复杂生命科学问题和重大疾病的研究提供成像组学研究手段,对生命体结构与功能进行跨尺度可视化描绘与精确测量,进而破解生命与疾病的奥秘。为充分发挥成像设施作为国家设施的示范引领与辐射带动作用,助推生物医学成像前沿科学与技术发展,促进我国高端生物医学成像装备的自主创新,我们创办了“怀柔论坛”,集各领域生物医学研究者智慧,利用多模态跨尺度先进系统成像能力推动原创性重大科学问题研究以及技术创新,为人类健康事业提供更多解决方案。第三届“怀柔论坛”计划于2023年11月3日(星期五)至5日(星期日)在北京怀柔科学城举办,论坛主题为“生物医学成像:未来技术与未来科学家”。本届论坛由北京大学联合北京市科学技术协会共同主办。一、会议时间:2023年11月3日-5日二、会议地点:北京怀柔日出东方酒店三、会议主题:生物医学成像:未来技术与未来科学家四、组织单位:主办单位:北京大学 北京市科学技术协会协办单位:中国科学院生物物理研究所 北京科技国际交流中心承办单位:北京大学国家生物医学成像科学中心 北京大学未来技术学院五、日程安排:11月3日13:30-14:30开幕式14:30-16:55主题报告16:55-19:00成像设施参观19:00-21:00晚宴11月4日08:30-18:00主题报告及圆桌讨论11月5日08:30-17:50主题报告及圆桌讨论六、会议规模:线下约200人七、特邀报告嘉宾(姓名首字母排序)• Stefan W. Hell,2014年诺贝尔化学奖获得者,德国国家科学院院士,美国科学院外籍院士,马克思普朗克多学科科学研究所、医学研究所所长• 杜江峰,中国工程院院士,浙江大学校长• 戴琼海,中国工程院院士,清华大学教授• Jan Ellenberg,德国国家科学院院士,欧洲分子生物学实验室(EMBL)所长,Euro-Bioimaging总协调人• Yale E. Goldman,美国国家科学院院士,美国国家艺术与科学院院士,宾夕法尼亚大学教授• Jennifer Lippincott-Schwartz,美国国家科学院院士,霍华德休斯医学研究所珍妮莉亚研究园区(HHMI Janelia Research Campus)教授,4D Cellular Physiology科学计划负责人• 骆清铭,中国工程院院士,海南大学校长• Lihong V. Wang,美国国家工程院院士,加州理工学院教授• 谢晓亮,美国国家科学院院士,中国科学院外籍院士,昌平实验室主任,北京大学未来基因诊断高精尖创新中心主任、讲席教授• 徐涛,中国科学院院士,中国科学院生物物理研究所生物大分子国家重点实验室主任八、报告嘉宾(姓名首字母排序)• Xiaoyuan Chen,新加坡国立大学终身讲席教授• 方宁,厦门大学化学化工学院教授• 郭强,北京大学生命科学学院助理教授• 韩铭,北京大学定量生物学中心助理教授• Julian Kompa,马克斯普朗克医学研究所博士• 刘贝,北京大学国家生物医学成像科学中心助理教授• Rong Li,新加坡国立大学机械生物学研究所所长、特聘教授• W Jonathan Lederer,马里兰大学医学院生物医学工程与技术中心主任、教授• 刘颖,北京大学未来技术学院副院长、教授• Hanchuan Peng,艾伦脑科学研究所研究小组负责人、教授,东南大学脑科学与智能技术研究院院长• 齐志,北京大学定量生物学中心研究员• 孙赫,北京大学国家生物医学成像科学中心助理教授• Longsheng Song,爱荷华大学卡佛医学院心血管内科终身教授,Edith King Pearson心血管研究主席• Lingyan Shi,加州大学圣地亚哥分校助理教授• Till Stephan,马克斯普朗克多学科科学研究所博士后• Zheng Shi,罗格斯大学助理教授• 田华,北京大学医学部副教授• Jin Wang,纽约州立大学石溪分校化学和物理学系教授• Micheal Weber,马克斯普朗克多学科科学研究所博士后• Yingxiao Wang,南加州大学生物医学工程系主任、教授• 熊汗青,北京大学国家生物医学成像科学中心助理教授• Sheng Xu,加州大学圣地亚哥分校纳米工程系副教授• Miao Yu,美因茨大学博士后• Yaoheng Yang,圣路易斯华盛顿大学博士后• 郑鹏里,北京大学生命科学学院助理教授九、会议网站及报名:https://mp.weiqihd.com/msite/site/11269/
  • ACAIC 2023 | 生物光学成像技术创新论坛圆满落幕
    第八届中国分析仪器学术大会(ACAIC 2023)于2023年11月28日-30日在浙江杭州召开,本届大会主题为“分析仪器创新进展、挑战及对策”,为促进行业的沟通与交流,会议邀请了院士、知名学者、青年科技工作者和科技管理人员参会并作学术报告。11月30日下午,生物光学成像技术创新论坛(分论坛九)顺利举行。会议现场邀请到了中国科学院生物物理研究所研究员纪伟、中国科学院苏州生物医学工程技术研究所研究员史国华、上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志、潘安 中国科学院西安光学制密机械研究所副研究员/中心主任潘安、华东师范大学教授陈建刚、复旦大学附属浦东医院科主任/主任医师游庆华六位专家学者为现场观众作精彩报告。为现场观众带来超分辨成像、介观显微镜、人工智能生物光学成像仪、高通量数字成像、超声AI、国产医疗设备创新等精彩报告。报告题目:单分子定位超分辨成像技术进展报告人:纪伟 中国科学院生物物理研究所 研究员报告伊始,纪伟研究员首先向介绍了干涉定位的成像原理,并向大家介绍了ROSE显微镜提升侧向(XY)分辨率、ROSE-Z显微镜提升轴向(Z)分辨率;基于笼式结构的超稳冷冻定位显微镜介绍了冷冻荧光成像的优势,同时介绍了冷冻电子断层成像技术、细胞纳米结构三维成像、结构生物学应用等多项创新技术。纪伟研究员介绍道,基于干涉定位技术研制ROSE显微镜,可实现5纳米XY分辨率量;研制ROSE-Z显微镜,可实现5纳米Z分辨率;ROSE&ROSE-Z显微镜可用于细胞纳米结构解析。基于冷冻定位技术研制冷冻定位显微镜,可实现光电融合成像;冷冻显微镜可用于引导冷冻电镜数据收集;冷冻显微镜可用于引导冷冻电镜样品减薄制备。报告题目:介观显微物镜研究进展报告人:史国华 中国科学院苏州生物医学工程技术研究所 研究员光学在生物医学上具有多种强大的成像模态,这些模态目前都取得了重大进展,对疾病的理解和临床治疗具有重大的影响。随着科研的发展和生物成像需求,人们对光学成像的要求逐渐向更深程度发展,2016年英国的University of Strathclyde提出一种特殊设计的物镜,可实现6mm成像视场下,分辨率达到0.6um,被评为当年度全球物理十大突破,介观显微物镜逐渐进入人们的视野。介观显微介于宏观与微观之间,需要复杂的光学系统设计,专用性强,可以理解为低放大倍率,高数值孔径的物镜,可以对宏观的对象实现微观分辨率。随后史国华研究院介绍了这项技术在以英国、美国、日本等国家为代表的国际领域取得的进展,以及相应的应用领域。目前,医工所也在相关领域取得了一定的进展,并产出了相应的物镜,相比同类型产品检测难度有所降低,更易使用。介观显微镜目前重要的应用领域为智能化数字病理诊断,能够解决临床重大问题,如恶性肿瘤的检测。随后史国华研究员介绍了智能数字式半自动显微镜(Leica DM 4000M)、VENTANA 数字病理切片扫描仪(Roche)等设备,指出介观显微镜主要服务于基础生物技术研究、数字医疗教学、临床病理诊断等领域。最后,史国华研究员也表达了对物镜发展的期待,未来将和课题组成员继续努力,为医疗诊断行业贡献力量。报告题目:人工智能生物光学成像仪器研发与应用报告人:康怀志 上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志主任从图像显示、光学系统、变倍放大、运动控制、实时图像分类、实时图像拼合融合、自动聚焦算法等几个部分介绍了智能生物成像仪器及关键技术。同时指出了高清光学成像系统对设备的光源、透镜、滤光器、探测器等方面的要求。自动变倍放大技术对透镜组的数量和布局、透镜的属性、自动调焦机构等几个方面做出了相应的要求。目前优质的生物光学成像仪器结构具有实时自动扫描、信息网络化、智能一体、服务临床场景等四个方面的功能特点,在主机上方面可以做到结构简单、性能稳定、体积小、操作简单,进而做到独立模块化运作、可拓展、可调配、操作简单。扫描成像及图像拼接可以通过图像匹配技术计算用于匹配参考图像和待匹配图像的特征点,基于特征点进行特征点匹配,最后通过匹配的特征点进行图像融合。仪器主要应用于基础生物技术研究、数字医疗教学、临床病理诊断等方面,是一项重要的诊断工具。报告题目:傅里叶叠层显微成像技术:从高通量数字成像到大规模高内涵药物筛选报告人:潘安 中国科学院西安光学制密机械研究所 副研究员/中心主任高通量数字显微镜在科学研究、医疗健康、药物筛选领域是刚需仪器,数字医疗+人工智能无疑是医疗行业的重要发展趋势。如何在诊疗过程实现高质量读片无疑是一项重要的课题。相比于检验,影像科室,病理科的人员素质要求高,培养周期长,人工读片效率低。而AI病理分析则为这一困境提供了破局之策,相比于人工读片,AI病理分析可以节省70%的时间,成功率平均达到50-60%,但是目前市场上缺乏病理科高质量读片仪器。光学成像的诞生与发展是时代的必然产物。千百年来,人们对长驻影像的渴望和对影像记录和信息传播分享的需求,推动了光学成像技术的变革。可以说,其从无到有、从黑白到彩色、从静态到动画,依托的便是光学成像技术的变革。傅里叶叠层显微成像术证明了并非只有干涉才能记录相位,分辨率可以突破系统行射限制,一个算法完成相位恢复、合成孔径、上采样。傅里叶叠层显微成像术依托光场调控和非干涉相位恢复算法,能够应用于病理学和光学遥感。报告题目:超声AI在临床多科室的应用研究报告人:陈建刚 华东师范大学 教授陈建刚从背景与原理、数字病理学、药物筛选应用、下一步计划等四个方面基于高质量病理重构结果的AI分类与识别。针对术中病理制片时间长,提出基于相位的虚拟染色方法推动科研最后一公里,研发高通量显微镜,服务科学仪器与医疗市场。超声人工智能肺炎辅助诊断技术可以应用于超声人工智能肺炎辅助诊断技术、超声气胸自动诊断技术、下腔静脉自动测验技术、B线自动检测、视神经鞘直径测量、基于流体动力学模型的无创颅内压监测等急救急症,同时,该技术还可适用于麻醉、骨科、中医、肿瘤、消化、产科等领域,具有丰富的适用场景。报告题目:从临床医疗实践角度浅述国产医疗设备的创新方向及系统性评估报告人:游庆华 复且大学附属浦东医院 科主任/主任医师随着人口老龄化和健康意识的提高,预防和早诊早治逐渐成为医疗领域的主旋律,分级分层治疗已是必然,医院端诊疗地位逐渐下降,而医院前端和医院后端医疗市场成为医疗持续增长的最大引擎,但国产化医疗设备却不能满足市场需求,处于尴尬的境地。目前的科学仪器主要用于基础科学研究、实验和分析,极少直接用于临床诊疗。游庆华主任坦言国产医疗设备存在设计工艺差、性能不稳定、准确率不高、缺乏定期疫准和检测等问题。接着,他从技术瓶颈难以克服、资金投入的缺乏、政策支持力度不足等三个方面分析了国产医疗设备面临的困境。同时他指出,国产医疗设备仪器厂商在设计时应面对市场需求,对应用场景和系统性要素评估,不能“闭门造车”,切实满足市场需求。他期待未来医疗检测的筛查数据和结果能够及时上传形成医疗大数据库,为政府和主管部门制定相关政策提供有效的科学支撑。
  • 高能所等应用同步辐射纳米分辨谱学成像技术揭示氧化还原反应的相变过程
    p style="text-align: justify " 中国科学院高能物理研究所多学科中心X射线成像实验站副研究员袁清习和国内外课题组合作,建立了基于同步辐射纳米分辨谱学成像技术追踪氧化还原反应相变过程的方法,并成功应用于锂离子电池电料相变过程的研究。研究成果近期发表在《自然-通讯》(Nature Communications)期刊上。/pp style="text-align: justify " 同步辐射谱学成像(XANES imaging)是利用特定元素对X射线能量的不同响应特性来获得样品内部对应元素的化学价态三维分布。基于波带片全场成像方法的纳米分辨谱学成像技术可以获得高空间分辨的形貌和化学信息,近年来受到了越来越多的重视,在材料科学领域尤其是在能源材料领域的研究中表现出重要潜力。/pp style="text-align: justify " 针对纳米分辨谱学成像方法学和应用研究,高能所多学科中心X射线成像实验站近年来开展了大量的工作。其中,袁清习和国内外多个同步辐射装置建立紧密联系,在技术研发、科研应用等方面开展了广泛的合作。近期,袁清习联合美国斯坦福同步辐射光源研究员刘宜晋课题组、弗吉尼亚理工大学教授林锋课题组提出了应用同步辐射纳米分辨谱学成像技术研究氧化还原反应的不均匀相变过程的新方法。这个联合团队成功将他们提出的新方法应用于Li(NixMnyCoz)O2(NMC) 三元正极材料的研究中,揭示了该材料热稳定性的一系列问题。该项工作发表于Nature Communications9, 2810,2018,共同第一作者为弗吉尼亚理工大学博士穆林沁和高能所袁清习。/pp style="text-align: justify " 以NMC正极材料中的应用为实例,该实验方法的工作流程如下:首先,为了研究该材料体系在不同温度下的行为,开展原位实验,利用谱学成像获得大量空间分辨的吸收谱数据;其次,提取Ni元素K边吸收能量表示相应的化学状态,高能量代表高价态(相对氧化态),低能量代表低价态(相对还原态)。进而使用样品在不同温度条件下的化学价态分布结果来表征氧化还原相变过程;第三,选择特定的Ni元素价态(例如,选择氧化还原反应最剧烈的能量点代表的价态),利用所采集的大量数据来描绘Ni元素等价态面的三维分布,对比不同反应条件下的等价态面分布来表征相变的发生、发展及相变前沿的推进过程;最后,引入等价面局域曲率(反应界面局域曲率)的概念,来描绘成核生长及整个相变的复杂过程。/pp style="text-align: justify " 图1为Ni的价态随NMC材料加热过程的变化,其中的每一条曲线代表了相应条件下基于全部像素的Ni价态的分布情况,可以看出化学反应从开始到结束全过程Ni元素价态分布的演变情况。图2给出了四个特定反应条件下Ni等价态面的发生、发展过程,所选择的Ni价态为8341eV对应的价态。从图1可以看出,8341eV代表的价态可以代表是化学反应最剧烈情况。图3中用不同颜色表示了镍元素的吸收边能量代表的镍元素的价态。受由晶粒边界和其局域的化学环境(不同组分和缺陷)所影响,相变过程通常非常复杂,如图3a所示,镍阳离子三维的形貌由不同的价态组成,从相对还原态(低能量态)到相对氧化状态(高能量态)。这些三维的价态推进前端提供了一个直观的三维立体多面体。还原态和氧化态分别代表了子相和母相,相变反应的推移前端从图3a到图3c。同时,作者将这些三维多面体每个局域的曲率计算出来,并分别用红色和蓝色代表局域曲率为正值和负值。从图3d、e可以看出相变过程中局域价态曲率的演化过程。br//pp style="text-align: justify " 这项工作不仅对锂离子电极材料的热稳定性和热致相变给出了详细的描述,还为下一步的储能材料优化提供了一些思路。研究工作所使用的方法可以推广到更加广阔的研究领域,尤其是复杂体系的非均匀相变过程等的研究中。特别是考虑到下一代同步辐射光源的发展,更高的亮度将会大大降低实验的时间,从而能够更好地捕捉到相变过程中的非稳定状态,为能源材料、环境科学等研究领域提供有力的工具。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/863601e7-f186-445f-b8b1-ff31fd5d1984.jpg" title="图1111.jpg"//pp style="text-align: center "图1 NMC样品中镍元素的价态随加热过程的变化。(a)为镍元素的局域价态直方图。(b-e)为原位观测镍价态信息示意图。镍的价态由Ni 的K吸收边能量表示,高能量和低能量分别代表了高价态和低价态。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/974970c5-2fc2-4129-beeb-217abf22612c.jpg" title="图2222.jpg"//pp style="text-align: center "图2 NMC样品不同反应条件下Ni等价态面的产生、发展及推进过程/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/d29d8585-987d-4cf3-9540-9ad6e2f158af.jpg" title="图3333.jpg"//pp style="text-align: center "图3 局部镍元素价态曲率随相转变的演化。(a,b,c)分别代表了不同能量(8339, 8340 和8341 eV)的Ni K-edge的等值面形成的三维曲面。图d和e表示了在不同能量范围内价态曲率随着能量值的变化。/ppbr//p
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 2020年全球光学成像市场将达17.5亿美元
    日前,Reportlinker的一份研究报告显示,2015—2020年期间全球光学成像市场将以强劲的复合年增长率增长(12.1%),估计2020年该市场将达到17.5亿美元。制药和生物技术行业科研投入的增加,健康意识的增强而导致的对非侵入性和更安全治疗和诊断方式需求的增加,以及光学成像技术在医学诊断和治疗领域的成功应用等是这个市场的主要驱动力。然而,高成本和大量数据对新技术的要求、医疗设备的严格监管、报销的压力、数据验证的缺乏,以及熟练的操作员的缺乏等阻碍了这个市场的发展。  按照技术原理划分,光学成像市场主要包括光学相干断层扫描(OCT)、高光谱成像(HIS)、近红外光谱(NIRS)和光声层析成像技术(PAT)。光学成像产品市场覆盖成像系统、摄像机、软件、透镜、照明系统和其他光学成像产品。成像系统市场还可以进一步分为光学成像系统和光谱成像系统。  在预测期内,OCT技术将继续主导光学成像市场。OCT的增长主要是由于其成功的临床应用,尤其是在眼科的应用。此外, 药品和生物制药行业药品配方和其他应用中对光学成像技术日益增长的需求也将推动预测期间光学成像市场的增长。  到2020年,北美将占全球光学成像市场最大的份额,其次是欧洲,亚太。相比亚太市场,北美和欧洲等发达地区很可能以较低的复合年增长率增长。预计预测期间,亚太地区市场增长速度最快。  光学成像市场的主要厂商包括Carl Zeiss Meditec (德国), Topcon Medical Systems (美国), Bioptigen(美国), St. Jude Medical (美国), Philips N.V. (荷兰), Canon (日本), Perkinelmer (美国) 等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制