当前位置: 仪器信息网 > 行业主题 > >

化学交联

仪器信息网化学交联专题为您整合化学交联相关的最新文章,在化学交联专题,您不仅可以免费浏览化学交联的资讯, 同时您还可以浏览化学交联的相关资料、解决方案,参与社区化学交联话题讨论。

化学交联相关的资讯

  • 大连化物所利用原位化学交联—质谱技术解码细胞中蛋白质动态结构
    近日,大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组(1810组)赵群研究员和张丽华研究员等人与中国科学院精密测量科学技术创新研究院龚洲副研究员合作,提出了利用原位化学交联—质谱技术(in vivo XL-MS),解码细胞中蛋白质动态结构的策略。该策略将AlphaFold2的结构作为先验信息,结合in vivo XL-MS数据与多种结构计算方法评估结构与交联信息的匹配度,重构了细胞内多种蛋白质,尤其是多结构域蛋白质和固有无序蛋白质(intrinsically disordered protein,IDP)的原位动态结构。为深入研究蛋白质在细胞微环境中发挥功能的分子机制提供技术支撑。活细胞内蛋白质的原位动态结构对于揭示其生物学功能至关重要。随着深度学习算法助力蛋白质结构预测的发展迭代,AlphaFold2实现了对蛋白质结构的全面预测,然而该方法对柔性区域的结构预测仍面临挑战。近年来,in vivo XL-MS以高通量、高灵敏,且对蛋白质纯度要求低等优势,在解析活细胞内蛋白质的原位动态结构方面展示出重要潜力。张丽华团队一直致力于in vivo XL-MS新技术研究,实现了蛋白质原位构象和相互作用的规模化解析(Anal. Chem.,2020;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2022;Anal. Chem.,2023;Angew. Chem. Int. Ed.,2023;Nat. Commun.,2023)。   本工作中,针对多结构域蛋白质,研究团队提出了将结构域作为整体,利用结构域间的XL-MS数据对细胞内蛋白质动态结构建模,实现了三种多结构域蛋白质——钙调蛋白、hnRNP A1和hnRNP D0在细胞内的动态结构表征。此外,针对IDP,研究团队提出了两种互补的结构表征策略:一是将XL-MS信息直接转换为距离约束用于IDP的结构计算,二是首先使用全原子分子动力学模拟进行无偏采样,然后基于XL-MS数据对采样结构进行评估和筛选。利用这两种策略,研究团队解码了高迁移率组蛋白HMG-I/Y和HMG-17在细胞内的动态系综构象。   上述成果以“Decoding Protein Dynamics in Cells Using Chemical Cross-Linking and Hierarchical Analysis”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是1810组博士研究生张蓓蓉。该工作得到了国家重点研发计划、国家自然科学基金、中国科学院青促会等项目的资助。
  • 使用MaxLynx精确、高覆盖率地鉴定化学交联肽段
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Accurate and Automated High-Coverage Identification of Chemically Cross-Linked Peptides with MaxLynx,该文章的通讯作者是德国马普所的 Jürgen Cox 教授。交联质谱 (XL-MS) 能够提供有关蛋白质三维 (3D) 结构及蛋白质间相互作用 (PPIs) 的丰富信息。本文介绍了 MaxLynx ,一种集成到 MaxQuant 环境中的,用于 XL-MS 的计算蛋白质组学工作流程,它同时适用于质谱不可断裂和质谱可断裂的交联剂。此前,已经推广了 Andromeda 肽段数据库搜索引擎[1],以有效地进行蛋白质组学鉴定。在此基础上,对于不可断裂的交联肽,本文应用了一种新的双肽 Andromeda 评分,这是计算效率高的 N 平方搜索引擎的基础;对于质谱可断裂的交联剂,MaxLynx将标志峰得分与碎裂产物上的传统 Andromeda 得分相结合。此外,文章通过优化 MaxQuant 3D 峰值检测,以更加准确地鉴定交联产物。在合成肽的基准数据集上,MaxLynx在以上两种类型的交联剂上的数据和黑腹果蝇细胞断裂物的交联蛋白质组数据集上均优于所有其他测试软件。该工作流程还支持离子淌度增强的质谱数据。MaxLynx可在https://www.maxquant.org/.上免费获得。XL-MS 肽段鉴定算法可以根据其支持的交联剂的类型进行细分,如质谱可断裂 (MS-cleavable) 交联剂和质谱不可断裂 (noncleavable) 交联剂的检索算法。质谱不可断裂的交联剂在质谱分析期间保持了它的完整性,而质谱可断裂的交联剂由于其不稳定键而容易发生断裂。由于 N 平方问题[2,3],质谱不可断裂的交联剂通常应用于较小的蛋白质或蛋白质复合物,而质谱可断裂的交联剂可以实现在整个蛋白质组范围内 XL-MS 的应用。本文使用了由质谱不可断裂的交联剂和质谱可断裂的交联剂获得的交联合成肽数据集评估了MaxLynx,并将其性能与市面上的其他几个软件进行了比较。结果显示,在 1% 的错误发现率 (FDR) 下,MaxLynx 在质谱不可断裂的交联剂和质谱可断裂的交联剂数据集上的表现都优于其他软件。此外,文章还进行了一项复杂的全蛋白质组研究,并将其与 MeroX 已发表的结果进行了比较。结果显示,MaxLynx再次报告了更多的 CSM 以及更多独特的交联肽段。MaxLynx 工作流程MaxLynx 的算法在保留了大部分 MaxQuant 工作流程的基础上,加入了针对交联肽段的检索功能(图 1a)。此外,新颖的峰值优化功能(图 1b)可以改善由于噪声而导致的交联肽段的错误识别。根据所应用的交联剂是否为质谱可断裂或质谱不可断裂,使用两个专门的搜索引擎中的一个来进行检索(图 1c)。图1 MaxLynx的工作流程(a)MaxLynx主要算法步骤的简化框图。灰色的步骤与常规肽检索MaxQuant的工作流程保持不变,而蓝色的步骤是为交联搜索而新开发的。(b)新添加的峰值优化功能,目的是“修复”由于噪音而没有很好地鉴定的峰。(c)质谱可断裂或质谱不可断裂交联剂的检索模式。质谱不可断裂的交联肽段检索MaxLynx 为质谱不可断裂的交联肽段生成一个完整的搜索空间,并在其中执行详尽的搜索。第一步是根据 Andromeda 搜索设置生成初始肽,然后通过组合所有推定的肽来构建搜索空间。交联空间构建后的第二个主要步骤是 MS/MS 交联搜索,即将实验 MS/MS 谱图的前体质量与索引质量进行比较,当索引质量等于一定容差内的实验前体质量时,将生成理论交联肽谱。质谱可断裂的交联肽段检索在质谱分析过程中,可断裂的交联剂经过碎片化,将产生两个带有部分交联剂的肽段(图 1c)。两个肽中较长的用希腊字母 α 表示,较短的用 β 表示。因此,可断裂的交联剂通常会在质谱中生成具有特定质量差异(Δm)的特征双峰信号,也称为特征峰。在 MaxLynx 中,连续应用了三种方法来检测特征峰,即 ①严格质量差法、 ②最高强度法,和 ③放宽标准的质量差法。对于 MS/MS 谱图中的两对特征峰,严格质量差方法取决于观察同一条肽上断裂的交联剂剩余部分的长和短版本之间的质量差异(Δm)。最高强度方法检查 MS/MS 谱图中最高强度的峰是否可以解释为特征峰之一,而无需存在其他特征峰。在具有宽松标准的质量差方法中,只需要一对特征峰。在严格的质量差方法中,目标是找到所有四个特征峰,为此,该算法循环遍历 MS/MS 谱图中大于用户可定义的最小质量的所有峰,并假设它是具有较短交联剂残基的β -肽 (βs) 。然后,检查是否存在剩余相应的三个特征峰,它们分别是具有较长交联剂残基的 β -肽 (βl) 和两种形式的较长肽 ( αs 和 αl ),其质量由下式给出:其中 mp 为交联肽段的前体离子质量。严格的质量差异法的一个缺点是必须观察到四个特征峰。然而,并非所有这些都存在于谱中。此外,还可能存在同源二聚体肽,这意味谱图中仅存在有两个特征峰。为了克服这个问题,该算法实施了第二步,即根据最高强度峰选定特征峰。只要严格的质量差异法找不到解决方案,就会执行此操作。这里的假设是,特征峰属于最强峰。对于每个最强峰,假设它携带较长或较短的交联剂残基。如果上述两种方法都没有找到 MS/MS 谱图的候选肽解释,则算法将使用放宽标准的质量差异法进行第三轮,即只要找到具有特征质量差异的一对峰即可。合成交联肽库的基准测试本文重新分析了几个公开可用的数据集。对于质谱不可断裂的交联剂数据集,与其他算法相比,MaxLynx 在 FDR = 1% 时报告的 CSM 数量最多,平均有 852 个正确和 12 个错误 CSM(图 2)。同时,MaxLynx 报告的独特交联肽段的数量也多于其他软件(平均 230 个)。在质谱可断裂的交联剂数据集上,与其他搜索引擎(MeroX、XlinkX)相比, MaxLynx 报告在 FDR = 1% 时正确交联的数量最多,其中有 185 个正确的和 3 个不正确的独特交联肽段(图 3)。图2 MaxLynx与其他交联搜索引擎在质谱不可断裂的交联剂数据集上的比较(a)显示CSM的数量(b)显示FDR=1%的独特交联肽段的数量。图3 MaxLynx与其他交联搜索引擎在质谱可断裂的交联剂数据集上的比较(a)和(b)分别显示了FDR = 1 % 时的DSBU和DSSO数据集的独特交联肽段的数量。蛋白质组范围内的MS-可断裂交联剂数据的基准测试接下来,本文评估了 MaxLynx 分析大规模蛋白质组范围的交联数据集的能力。为此,文章重新分析了与 DBSU 交联的黑腹果蝇胚胎提取物的 PRIDE 数据集 PXD012546,并与已发表的结果进行了比较。在 FDR = 1% 时, MaxLynx 报告了总共 48,019 个 CSM 和 9035 个独特交联肽段,超过了 MeroX 最初报告的数量,在使用相同设置的情况下。虽然鉴定结果的三次生物学重复之间的重现性是 20%(图 4a),但正如 Götze 等所指出的,这种观察的原因可归因于实验和生物学条件[4]。接下来,文章考察了 MaxLynx 和 MeroX 软件之间重叠的独特交联肽段的数量,并观察到大约 42% 的独特交联肽段在这两者之间同时存在(图 4b)。图4 在大规模蛋白质组全交联搜索中,三次生物学重复的独特交联肽段的重叠(a)大规模交联试验分三次重复进行,并显示了绝对值和百分比。(b)比较了MaxLynx和MeroX的独特交联肽段的总数。离子淌度增强数据文章还考察了 CCS 值如何作为不同类型的交联产物的分子质量的函数(图 5)。结果所示,与线性肽相比,交联肽往往具有更高的 CCS 值以及更高的电荷状态和更高的质量。图5 timsTOF数据集的CCS值,CCS值与分子质量相对应针对DSBU的结果(a)。针对DSSO的结果(b)。重新处理中等大小的蛋白质复合物数据集最后,文章重新分析了一个中等大小的复杂数据集(PXD013947),结果表明,MaxLynx在此数据集上的表现依然很好。MaxLynx和pLink2的CMS数分别为2542和2335,独特交联肽段总数分别为315和287。从这些独特的交联中,MaxLynx报告了120个蛋白间的交联,而pLink报告了94个。独特交联肽段之间的重叠程度为60%。综上所述,MaxLynx 是一种新的 XL-MS 计算工作流程,已集成到 MaxQuant 软件中。本文展示了 MaxLynx 在 FDR = 1% 时优于检索质谱不可断裂的交联剂和质谱可断裂的交联剂数据集的其他软件。同时,它也适用于具有离子迁移淌度增强的数据集。除此之外,MaxLynx的成功还归于新添加的峰值优化功能。虽然,三次生物学重复之间的交联重叠百分比尚不理想,但这可以通过更好的采集策略和进一步的实验优化来克服,例如引入交联肽的匹配运行,以及对此类样本应用数据独立采集的方法。参考文献(1)Cox, J. Neuhauser, N. Michalski, A. Scheltema, R. A. Olsen, J. V. Mann, M. J. Proteome Res. 2011, 10, 1794−1805.(2)Liu, F. Heck, A. J. Curr. Opin. Struct. Biol. 2015, 35, 100−108.(3)Maes, E. Dyer, J. M. McKerchar, H. J. Deb-Choudhury, S. Clerens, S. Expert Rev. Proteomics 2017, 14, 917−929.(4)Götze, M. Iacobucci, C. Ihling, C. H. Sinz, A. Anal. Chem. 2019, 91, 10236−10244.
  • 大连化物所开发出基于糖苷键的质谱可碎裂型交联剂
    近日,中国科学院大连化学物理研究所生物技术研究部生物分子高效分离与表征研究组研究员张丽华团队,研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。   作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能,其中,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。化学交联技术(Chemical cross-linking mass spectrometry,CXMS),尤其是原位化学交联质谱技术(in-vivo CXMS)具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。然而,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。   本工作基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯(TDS)。该交联剂较目前已报道的可透膜型化学交联剂,展示了更优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。在此基础上,低能量的糖苷键-高能量的肽键的质谱选择性碎裂模式,可将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,降低了交联肽段谱图分析的复杂性,提高了交联肽段的鉴定效率与准确度。该团队从Hela细胞中鉴定到对应于3500对以上交联肽段的1453个蛋白质的构象以及843对蛋白质间的相互作用信息,实现了活细胞中蛋白质复合物的原位交联与规模化分析,为活细胞中蛋白质功能的调控提供了重要的技术支撑和关键的互作位点信息。   近年来,张丽华团队致力于原位化学交联质谱新技术研究,通过开发一系列新型多功能型化学交联剂,并系统建立深度覆盖的化学交联分析方法等,不断提升原位化学交联技术对于蛋白质复合物原位动态构象的深度捕获和精准分析能力。目前,该团队研制了多种类型的具有不同富集基团、正交反应活性基团的可透膜交联剂,并发展了相应的原位快速交联方法,低丰度交联位点的高效酶解和富集方法,以及基于化学交联距离约束的蛋白质原位构象和相互作用解析方法等,为蛋白质复合物功能状态下原位构象的规模化精准解析提供了关键技术支撑。   相关研究成果以A Glycosidic-Bond-Based Mass-Spectrometry-Cleavable Cross-linker Enables In vivo Cross-linking for Protein Complex Analysis为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院青年创新促进会等的支持。
  • 宁波材料所以“微交联法”创制高弹性铁电材料
    8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本征弹性化方法,即采用微交联法使铁电聚合物从线性结构转变为网络状结构,通过精准调控交联密度在实现弹性化的同时,降低结构改变对材料结晶性能的影响,开创性地同时将弹性与铁电性赋予同一材料。基于此,该研究创制了一种兼具弹性与铁电性,且具有较好的耐机械疲劳和铁电疲劳性能的弹性铁电聚合物。铁电材料是功能材料,通常是指在一定温度范围内具有自发极化且极化方向可随外加电场改变进行翻转或重新定向的晶体材料,其核心为自发极化。极化是极性矢量,由于晶胞中原子构型使得正负电荷重心沿该方向发生相对位移,形成电偶极矩,使得整个晶体在该方向上呈现极性,这个方向称为特殊极性方向。这对晶体的点群对称性施加了限制,在32个晶体点群中只有10个具有特殊极性方向,即1(C1)、2(C2)、m(Cs)、mm2(C2v)、4(C4)、4mm(C4v)、3(C3)、3m(C3v)、6(C6)、6mm(C6v)。只有属于这些点群的晶体才具有自发极化,即铁电材料必为晶体材料。这种特殊的晶体点群赋予了铁电材料诸多性能,使其在数据存储和处理、传感和能量转换以及非线性光学和光电器件等方面有诸多应用。而晶体在受到应力时能够产生的弹性回复是极小的,通常小于2%,这是传统铁电材料多表现为脆性(无机)或塑性(有机)的原因。可穿戴设备、柔弹性电子和智能感知等领域的快速发展,对于使用的材料提出了越来越高的要求即需要在复杂形变下依旧保持稳定的性能。电子器件使用的材料根据导电性可分为导体、半导体和绝缘材料,而导体和半导体目前已实现弹性化。而铁电材料作为绝缘材料中性能最丰富的功能材料之一,目前尚未实现弹性化,这限制了铁电材料在柔弹性电子等领域的应用。铁电材料的铁电性主要来源于其结晶区,但晶体本身几乎不具备弹性,因而铁电性和弹性难以在同一种材料中兼顾。铁电材料的弹性化方法通常有三种——结构工程、共混和本征弹性化。通过结构工程制备的样品只能在预应变值范围内进行形变,需要复杂的制造技术且难以降低器件尺寸。在采用无机铁电材料与弹性体共混方式制备的复合材料中,无机铁电材料的铁电畴杂乱无章,需要经过有效极化后才能表现出铁电性。由于无机铁电与弹性体的电阻率相差较大,在极化过程中电场主要施加在电阻率更大的弹性体中,导致弹性体相的电击穿和电机械击穿。因此,本征弹性化可能是铁电材料弹性化的唯一途径。本征弹性化能够促进材料的发展,使其具备可大规模溶液制备的能力、提高设备密度和材料的耐疲劳性等。有机铁电材料包括有机小分子铁电材料和以PVDF(聚偏氟乙烯)为代表的聚合物铁电材料。铁电聚合物的铁电性主要来源于分子链两侧由极性相差较大的原子或基团形成由一侧指向另一侧的偶极子。铁电聚合物的特点是具有高柔韧性、易于制造成复杂形状、机械坚固性和极性活性。聚合物中的铁电性是20世纪70年代在聚偏氟乙烯中发现的,是电能、机械能和热能之间有效交叉耦合的平台。因此,兼具铁电性和柔韧性的铁电聚合物可能是铁电弹性化的最佳候选对象。在过去几年,化学交联法在导体和半导体的本征弹性化过程中取得了显著进展。由于强的铁电响应需要高的结晶度,而好的弹性回复需要低的结晶度,因此传统的化学交联方法很难同时兼顾铁电响应和弹性回复。为此,该团队提出了“弹性铁电材料”的概念,设计了精确的“微交联法”在铁电聚合物中建立网络结构。选择聚(偏氟乙烯-三氟乙烯)(P(VDF-TrFE),55/45mol%)作为反应基体材料,选择带有软而长链的聚氧化乙烯二胺(PEG-diamine)作为交联剂材料,使用低交联密度(1%~2%)赋予线性铁电聚合材料弹性的同时保持较高的结晶度。研究表明,交联后的铁电薄膜结晶相以β相为主,结晶均匀分散在聚合物交联网络中。在受力时,网络状结构能够均匀地将外力分散并且更多地承受应力,避免结晶区受到破坏。实验结果显示,交联后铁电薄膜在70%的应变下依旧具有较好的铁电响应,剩余极化约4.5μC/cm2并在拉伸过程中能够保持稳定,且具有较好的耐机械和铁电翻转疲劳性,提高了可靠性和使用寿命,拓展了使用范围。可见,“微交联法”是实现铁电弹性化行之有效的方法。该方法利用简单的化学反应实现了铁电性与弹性的良好匹配,为铁电材料弹性化提供了新思路。未来,研究团队将扩展此类方法,探索微交联法对于材料弹性化研究的普适性,并对制备的弹性铁电材料在可穿戴电子设备以及能量转换和存储、介电驱动等方面的应用进行探索。研究工作得到卢嘉锡国际合作团队项目、国家自然科学基金、浙江省钱江人才计划和浙江省尖兵领雁项目等的支持。铁电材料专家、东南大学教授熊仁根受邀在同期《科学》PERSPECTIVE专栏发表评论文章,认为这是突破性的工作,开辟了“弹性铁电”这一全新学科,并展望了弹性铁电材料可能的应用场景和未来的发展方向。图1. 弹性铁电的概念和合成策略示意图图2. 应变下弹性铁电的铁电响应。A为全弹性器件;B、C为全弹性器件在0%和70%的应变;D为在1kHz下0~70%应变下的P-E回滞曲线;E为不同应变下的名义Pmax、Pr和Ec和校正后的真实Pr。实验表明交联铁电薄膜在不同拉伸应变下均具有稳定的铁电响应。
  • 破译蛋白质结构的秘诀:利用富含炔基的羧基选择性交联剂增加交联覆盖率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Alkynyl -Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures,该文章的通讯作者是中国科学院大连化学物理研究所的赵群和张丽华研究员。化学交联结合质谱技术 (CXMS) 的交联覆盖范围对于决定其破译蛋白质的结构的能力具有重要意义。目前,交联质谱技术中最常用的交联剂的类型为针对赖氨酸侧链的N-羟基琥珀酰亚胺 (NHS) 酯基交联剂。然而,此种交联剂存在一定的局限性,尤其是对于含有赖氨酸数目较少的蛋白质;其他类型的氨基酸残基,如羧基等,也可以进行交联反应,以补充赖氨酸残基的局限性并提高 CXMS 的交联覆盖率,然而,羧基的低固有化学反应活性损害了羧基选择性交联剂在复杂样品中的应用。鉴于此,本文开发了三种具有不同反应基团(如酰肼、氨基和氨氧基)的富含炔基的羧基选择性交联剂,以此提高针对酸性残基的交联效率并实现复杂样品的深入交联分析。文章要点:(1)本工作系统地评估了三种交联剂的交联效率,给出了氨基功能化交联剂 BAP 的最佳反应性。此外,结合BAP交联剂于高效的交联富集策略对大肠杆菌裂解物进行交联分析。在 ≤1% 的错误发现率 (FDR) 下,共鉴定出 392 种蛋白质中涉及到的 1291 个 D/E-D/E 交联。(2) 研究结果显示,BAP 与赖氨酸靶向交联剂具有明显的结构互补性,这提高了CXMS 进行蛋白质结构解析的能力。本工作是羧基选择性交联剂首次实现全细胞裂解物的全蛋白质组交联分析。总的来说,这项工作不仅扩展了一个针对酸性残基的十分具有前途的 CXMS 工具包,同时还为提高羧基选择性交联剂的性能提供了有价值的指导。图1 三种交联剂BHP、BAP和BOP的化学性质。(A) 三功能交联剂的化学结构:两个反应性基团用红色表示,一个可修饰的手柄用橙色表示。三种交联剂的Cα原子之间的最大距离约束利用软件Chem3D 19.0计算得出。(B) 利用软件pLink 2.0分析三种交联剂与蛋白质进行交联质谱实验的MS/MS谱。(C) 三种交联剂的反应效率直方图。(D) 酰胺化反应的机理。图2 三种交联剂BHP、BAP和BOP在BSA蛋白质、六蛋白混合物和E. coli 70S ribosome结构分析中的性能。(A) 三种交联剂与BSA的反应中鉴定出的交联的维恩图。(B) 交联的Cα−Cα 距离分布的直方图,通过映射到BSA的晶体结构来验证。(C) BSA中交联残基分布的二维 (2D) 热图。颜色插入表示交联的距离分布。(D) 六蛋白混合物的环形二维交联图。黑线表示蛋白质内的交联,红线表示蛋白质间的交联。(E) 将交联映射到TXN2 (UniProtID:Q99757,PDB:1W4V)、CA2 (UniProtID:P00921,PDB:6SKS)和E. coli 70S ribosome (PDB:5KCS)的X射线晶体结构上,由BAP(红线)和BSP(黄线)鉴定。图3 基于BAP的交联平台,用于大肠杆菌裂解液的全蛋白质组分析,包括蛋白质复合物交联、点击化学、链霉亲和素富集、分馏和LC-MS/MS分析。图4 通过BAP对大肠杆菌裂解液的全蛋白质组分析。(A)富集前后鉴定的谱图数目的比较。黑色和红色分别对应于常规肽和交联肽的谱图。(B)将由BAP(红线)和BSP(黄线)鉴定的交联映射到蛋白质的X射线晶体结构上。(C)将交联映射到由BAP专门鉴定的蛋白质的X射线晶体结构上。 (D)使用Xplor-NIH软件包对hns (UniProtID:P0ACFID) 和grcA (UniProt ID:P68066) 的AF2预测结构进行细化。用BAP和BSP鉴定出的交联分别用红色和黄色标记。在本工作中,作者开发并表征了三种新的可富集的羧基选择性交联剂,它们具有不同的反应基团酰肼、氨基和氨基氧基。其中,氨基功能化交联剂 BAP 对于所有不同复杂度的蛋白质样品均表现出最佳的交联反应活性和鉴定覆盖率。此外,BAP扩展到大肠杆菌裂解液的交联分析与高效的交联富集相结合。本工作首次使用羧基选择性交联剂,以实现全细胞裂解液的全蛋白质组范围内的交联分析。因此,以上所有结果表明,本工作开发的 BAP 是一个很有前途的工具包,可以提高蛋白质结构分析的交联覆盖率。此外,本项工作还可以为提高羧基选择性交联剂的性能提供有价值的指导。参考文献:Gao H, Zhao Q, Gong Z, et al. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures [published online ahead of print, 2022 Aug 29]. Anal Chem.2022 10.1021/acs.analchem.2c02205. doi:10.1021/acs.analchem.2c02205
  • 德国应用化学:蛋白质复合物原位解析新技术
    作为生命活动的执行者,蛋白质通过相互作用形成复合物等形式行使其特定的生物学功能。近日,中国科学院大连化学物理研究所研究员张丽华、研究员赵群等研制了一种基于糖苷键的质谱可碎裂型交联剂,显著地提高了交联信息的检索通量和鉴定准确度,同时具有良好的两亲性和生物兼容性,实现了活细胞内蛋白质复合物原位交联和规模化精准解析。相关成果发表在《德国应用化学》上。大连化物所供图  细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合物结构和功能至关重要。而化学交联技术,尤其是原位化学交联质谱技术具有规模化分析蛋白复合物原位构象和相互作用界面的优势,已成为活细胞内蛋白质复合物解析的重要技术。但是,目前活细胞原位交联面临着细胞扰动大、交联肽段谱图复杂程度高等问题。因此,如何实现活细胞低扰动下的原位快速交联是蛋白质原位构象和相互作用精准解析的先决条件。  本工作中,团队基于糖分子的高生物兼容性和糖苷键的质谱可碎裂特征,将糖苷键引入到功能交联剂的骨架设计中,筛选并获得了高生物兼容性的海藻糖作为骨架分子,研制了质谱可碎裂型交联剂——海藻糖二琥珀酰亚胺酯。该交联剂较目前已报道的可透膜型化学交联剂,展示了更加优异的细胞活性维持能力,可在低扰动状态下实现细胞内蛋白质复合物的高效交联。  在此基础上,低能量的糖苷键—高能量的肽键的质谱选择性碎裂模式,可以将“工字形”的交联肽段数据分析降幂为常规交联剂片段修饰的线性肽段数据检索,极大地降低了交联肽段谱图分析的复杂性,显著地提高了交联肽段的鉴定效率与准确度。
  • 董梦秋:技术与学科深度交融 质谱培育生物学硕果
    p style="text-align: justify "strong 仪器信息网讯/strong 近年来,随着质谱技术的发展,从最早的无机质谱到现在有机、生物、医学质谱广泛应用,质谱从一个前沿的科研仪器设备越来越多的参与到我们日常的生活当中。以往,各类质谱学术交流活动虽然很多,但多集中于学科内部交流,不同领域之间的交流较少。所以,需要一个统一的质谱学术会议来聚合各领域的质谱同仁,相互交流合作,共同推动中国质谱的发展。br//pp style="text-align: justify " 为此,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办的新一届的“2018年中国质谱学术大会”将于2018年11月23-26日在广州市举办。本次大会,作为三大学会第一次联合举办的质谱大会,标志着中国质谱发展迈入新时代。/pp style="text-align: justify " 在大会举办前夕,仪器信息网特别采访了北京生命科学研究所董梦秋研究员,请她谈谈质谱技术在结构生物学研究中的应用以及运用信息化的手段提高质谱数据的解析能力。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201810/uepic/60318570-c972-4ce9-9069-00953b47220b.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center "北京生命科学研究所董梦秋研究员/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 20px color: rgb(128, 100, 162) "化学交联质谱 解开结构生物学难题/span/strong/pp style="text-align: justify " 质谱技术,是现代科学中应用范围最广的分析技术之一,几乎每天都会有关于质谱的新方法、新应用诞生。一直以来质谱技术就是用来鉴定蛋白质种类、蛋白质组成的强有力工具,随着技术发展,质谱也开始用于探究蛋白质结构和动态,在结构生物学领域的重要性愈发凸显。/pp style="text-align: justify " 传统结构生物学主要是通过物理的手段,包括X-射线、核磁共振、电镜等,来确定生物大分子的三级结构,以及生物大分子如何组装成更大的复合体(四级结构),从而探讨生物大分子或其复合体的工作原理。董梦秋介绍说,现在结构生物学研究的蛋白质复合体越来越大,种类、状态越来越多,即使有强大的电镜和晶体学手段也不一定能看清所有的关键性的结构细节、状态间的差异。另外,建立结构模型往往需要先确定组成亚基的化学计量比。这些需求带动了交联质谱、native MS和氢氘交换等技术的应用和发展。“看看结构文章的作者名单就知道,很多都有质谱专家的身影。”/pp style="text-align: justify " 化学交联质谱(CXMS),主要通过在蛋白质样品中添加化学交联试剂,使蛋白质中两个氨基酸发生交联反应,通过酶切获得多种多样的交联肽段。由于交联反应的发生需要满足交联试剂的特异性以及空间距离的要求,因此,获得的交联位点对信息为结构计算提供了距离约束,可以帮助判断蛋白质或蛋白质复合体的结构。/pp style="text-align: justify " 董梦秋表示,她的团队一直致力于化学交联质谱相关研究工作,开发出了一整套基于高分辨质谱的化学交联肽段的分析方法,并把它拓展到蛋白质二硫键以及蛋白质溶液构象的动态分析上。同时,她的团队也积极与人合作,不断地将这种最新的蛋白质结构分析方法应有于具体的生物学研究当中。为了满足实际应用中遇到的各种需求,董梦秋实验室还与计算机软件设计团队以及有机合成实验室通力合作,不断完善化学交联多肽的质谱鉴定软件和开发新型化学交联剂,相关成果多次发表在Nature Methods等顶级期刊。/ppstrongspan style="font-size: 20px font-family: 楷体, 楷体_GB2312, SimKai color: rgb(128, 100, 162) "跨界合作 提高质谱数据的解析水平/span/strong/pp style="text-align: justify " pLink,是董梦秋团队与中科院计算机所贺思敏教授领导的pFind团队合作开发的交联质谱鉴定软件。董梦秋介绍说,在这款软件的开发中,她的团队主要负责前端和后端的工作。前端主要是确立质谱分析方法和构建用来训练软件的标准数据集,后端主要是在一轮又一轮复杂度不断增加的测试中找出可能存在的问题,协助提升软件性能、拓展适用范围。两个团队深入交流合作,反复优化软件。“最开始肯定需要人来提炼总结出初步的特征,所以要求对相关的研究特别熟悉,包括最基本的分析、碎片离子代表的肽段类型等。在有一定的积累后,再与编写软件的人分享相关的规律。然后他们以此为基础,进行大规模的统计分析,判断人眼看到的特征是否成立、还有没有其它特征、、出现的频率、在软件中如何使用,等等。”/pp style="text-align: justify " 董梦秋表示,pLink软件的目的是成为探索性研究的有力工具,帮助研究人员更准确高效地鉴定交联肽段。所以它需要一个标准数据集,需要大量的已知答案的谱图,去找寻规律并进行软件测试。他们的团队采集了大量的合成肽段的交联质谱数据,将其中的一部分用于训练软件,其余部分用于测试软件的速度和准确度,有多少错判漏判等等。董梦秋也表示,从单一蛋白到蛋白质复合体,再到经过初步纯化甚至未经纯化的蛋白样品,复杂程度不断提升,对软件的要求也在不断提高。除了分析化学水平上的验证,还需要得到生物学层面上的验证。得到有生物学意义的结果是终极目标。/pp style="text-align: justify " pLink软件的开发,需要两个团队密切的合作。在刚开始合作的时候,两个团队每个月都要一起开会,针对软件的使用程度、需求等进行交流。直到现在,pFind团队每周都有学生过来交流,还经常对上游实验设计提出很有价值的建议。pLink软件从发表之日起,一直有免费下载,供大家使用。今年年初pFind团队推出了升级版pLink2 (http://pfind.ict.ac.cn/software/plink/),三个季度内已有628个用户注册下载,极受欢迎。/ppstrongspan style="font-family: 楷体, 楷体_GB2312, SimKai font-size: 20px color: rgb(128, 100, 162) "学术“减负” 开启中国质谱新时代/span/strong/pp 董梦秋的课题组有两个研究方向,除了质谱技术以外,还做很多衰老生物学方向的研究。她表示,质谱技术是个工具,它要服务的对象是生物、化学、物理、医学等学科,质谱的发展也不能脱离这些学科。把 “用户学科”的需求放在首位,尽力帮助它们解决问题,质谱技术自然就获得了发展的推动力;而质谱技术不断发展,也必然带动化学、物理、工程和计算科学等相关领域的研究不断推进,形成一个正循环。她认为,质谱技术影响力的提升,一句话总结来说就是:“努力使自己更加有用,服务于他人;越有用,越重要,越有影响。”/pp 对于本次中国质谱大会,董梦秋表示,物理学会和化学学会的质谱会议合二为一,诞生2018年中国质谱学术大会,开启了学术交流“瘦身健体”的新时代。当前科研人员会议负担过重,以至于有人感叹“不是在开会,就是在去开会的路上,”没有足够的时间沉静下来做科研。学术会议太多,表面上看热热闹闹一片繁荣,实则干扰到正常工作。中国科研就像一个青春期的孩子,快速成长,但也有虚胖的成分。瘦身健体,减负前行,更有利于发展。/pp 为了支持中国质谱的发展,董梦秋认为把实验室的技术分享给其他人也是非常重要的。她表示,作为今年8月第五届中国计算蛋白质组学研讨会(CNCP-2018)的一部分,实验室跟pFind 团队一起举办了第二届交联质谱分析实验培训,用三天的时间手把手培训了来自来全国各地的十位学员。他们自己动手制样、上机、分析数据,完整体验每一个环节。把经验都分享出去,效果很好。另外,中科院大连化物所许国旺老师的实验室10月份举办代谢组学高级培训班,也给大家提供了很好的学习机会。/pp 在采访的最后,董梦秋也表示,预祝2018年中国质谱学术大会圆满成功! 为中国质谱新时代、新风尚点赞!向幕后的促成者、组织者致敬!/ppbr//p
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • 对于人类蛋白质相互作用网络的结构解析
    大家好,本周为大家分享一篇发表在Nat. Struct.上的文章,Towards a structurally resolved human protein interaction network,该文章的通讯作者是瑞典斯德哥尔摩大学的Petras Kundrotas、Arne Elofsson和欧洲分子生物学实验室的Pedro Beltrao。蛋白质-蛋白质相互作用(PPIs)的表征对于理解形成功能单位的蛋白质组和细胞生物学研究的基础是至关重要的。同时,蛋白质复合物的结构表征是理解蛋白质的功能机制、研究突变的影响和研究细胞调控过程的关键步骤。最近,基于神经网络的方法已经被证明了准确预测单个蛋白质和蛋白质复合物的结构的能力;然而,其在大规模预测人类复杂结构中的应用尚未得到有效测试。在此,本文测试了应用AlphaFold2在预测人类蛋白质相互作用结构上的潜力和局限性,并通过实验提示了界面残基中潜在的调节机制。除此之外,本文还提供了使用预测的二元复合物来构建高阶组装的案例,以此拓展了对于人类细胞生物学的理解。人类蛋白质相互作用的结构预测本文基于AlphaFold2的FoldDock管道对65484对来源于HuRI与hu.MAP V.2.0数据库中实验测定的PPIs的结构进行预测。文章合并了一个pDockQ分数,该分数可以根据置信度对模型进行排序。结果显示,已知相互作用蛋白的pDockQ往往高于随机集;对于hu.MAP数据集显示出平均比HuRI数据集更高的可信度,这表明,高可信度模型集中在具有高亲和力和直接相互作用的蛋白质相互作用区域。实验表明,AlphaFold2可以预测大型复合物中直接相互作用的蛋白对的结构(图1)。图1 | AlphaFold2复合物预测在大规模人类PPIs数据集上的应用影响预测置信度的特征如图1a所示,相较于HuRI和hu. MAP数据库中的蛋白质对,出现在蛋白质数据库(PDB)中的蛋白质对更加富集于高分模型部分。为了更好地理解这种差异,本文首先研究了一个由大型(10链)异质蛋白复合物构建的额外数据集。通过实验,结果显示直接相互作用对与间接相互作用对之间pDockQ分数的差异是显著的,这表明与间接相互作用对相比,即使直接相互作用对是大型复合体的一部分,也往往能够被预测。除此之外,由于HuRI数据库中的许多蛋白质间相互作用很可能是短暂的,而AlphaFold2无法可靠地预测这种相互作用(图2)。图2 | 影响预测置信度的蛋白质和相互作用特征:不同数据集的分析预测的复合物结构在化学交联上的验证化学交联结合质谱分析是一种识别蛋白质对中邻近的活性残基的方法,可以用来帮助确定可能的蛋白质界面。为了确定预测的复合物结构是否满足这种正交空间约束,本文获取了528对具有预测模型的蛋白质对的残基对的交联集合。在此章节中,文章提供了多个案例证明了化学交联验证的有效性(图3)。图3 | 对于预测复合物模型的化学交联支持复合物界面上与疾病相关的错义突变与人类疾病相关的错义突变可以通过多种机制改变蛋白质的功能,包括破坏蛋白质的稳定性、变构调节酶活性和改变PPIs。为了确定预测结构的有效性,本文汇编了一组位于界面残基上的突变,这些突变之前曾被实验测试过对于相应相互作用的影响。文章使用FoldX预测突变时结合亲和力的变化,并观察到破坏相互作用的突变强烈影响了结合的稳定性;另外,本文就在一系列生物学功能中具有界面疾病突变的蛋白质网络簇进行了举例说明(图4)。图4 | 蛋白质复合物界面残基的疾病突变蛋白质复合物界面的磷酸化调节蛋白质磷酸化可以通过改变修饰残基的大小和电荷来调节结合亲和力来调节蛋白质的相互作用,将磷酸化位点定位到蛋白质界面可以为它们在控制蛋白质相互作用中的功能作用产生机制假说。本文使用了最近对人类磷酸化蛋白质组26的鉴定,在高置信度模型中鉴定出了界面残基上的4,145个独特的磷酸化位点。实验表明,某些界面可能受到特定激酶和条件的协调调控。虽然不是所有界面上的磷酸位点都可能调节结合亲和力,但这一分析为特定扰动后的相互作用的潜在协调调控提供了假设(图5)。图5 | 界面残基上磷酸化位点的协同调控来自二元蛋白质相互作用的高阶组装蛋白质既能够同时与多个伙伴相互作用组成更大的蛋白复合物,又能够在时间和空间上分离。这也反映在文章的结构特征网络中,即蛋白质可以在群体中被发现,如蛋白质相互作用全局网络视图所示(图6)。由于使用AlphaFold2预测更大的复合物组装可能受到计算需求的限制,文章测试了蛋白质对的结构是否可以迭代结构上对齐。文章在上述网络中覆盖的一组小的复合物上测试了这一过程,并将一个实验确定的结构与预测的模型进行对齐,展示了该过程的潜力和局限性。受测试例子的鼓励,本文定义了一个自动化过程,通过迭代对齐生成更大的模型。总之,文章发现可以迭代地对齐相互作用的蛋白质对的结构来构建更大的组装,但同时也发现了目前限制这一过程的问题。图6 | 对高阶组装的蛋白质复合物的预测结论本文通过一系列的实验评估了应用AlphaFold2预测已知人类PPIs的复杂结构的潜力与局限性。分析结果表明,由亲和纯化、共分馏和互补的方法组合支撑的蛋白质相互作用能够产生更高置信度的模型。文章证明,可以使用模型指标(如pDockQ评分)对高置信度模型进行排序,为大规模PPIs和稳定复合物的详细研究提供支持;而来自交联质谱实验的数据为进一步验证这些预测提供了理想的资源。除此之外,本文用疾病突变和磷酸化数据证明了蛋白质界面的结构模型对于理解分子机制以及突变和翻译后修饰的影响至关重要;最后,文章提出了从预测的二元配合物出发构建更大的组件结构模型的想法。后续仍需要更多的工作来确定确切的化学计量学,设计方法和评分系统来构建如此更大的复杂组件,以及预测具有弱和瞬态相互作用的蛋白质之间的相互作用。参考文献(1) Burke DF, Bryant P, Barrio-Hernandez I, et al. Towards a structurally resolved human protein interaction network [published online ahead of print, 2023 Jan 23]. Nat Struct Mol Biol. 2023 10.1038/s41594-022-00910-8. doi:10.1038/s41594-022-00910-8
  • 一种膜渗透的、固定化金属亲和色谱富集的交联试剂用于推进体内交联质谱分析
    大家好,本周为大家分享一篇发表在Angew. Chem. Int. Ed.上的文章,A Membrane-Permeable and Immobilized Metal Affinity Chromatography (IMAC) - Enrichable Cross-Linking Reagent to Advance In Vivo Cross-Linking Mass Spectrometry,该文章的通讯作者是德国莱布尼茨分子药理学研究所的Fan Liu教授。交联质谱 (XL-MS) 已被用于在全蛋白质组范围内表征蛋白质的结构和蛋白间相互作用。目前,由于能够穿透完整细胞的交联试剂和富集交联肽的策略的缺乏,体内交联质谱研究的深度远远落后于细胞裂解液的现有应用。为了解决以上限制,本文开发了一种含膦酸盐的交联剂-tBu PhoX,它能够有效地渗透各种生物膜,并且可以通过常规的固定化金属离子亲和色谱 (IMAC) 进行稳定富集。 文章建立了一个基于 tBu-PhoX 的体内 XL-MS 分析流程,在完整的人类细胞中实现了较高的交联识别数目,并大大缩短了分析时间。总的来说,本文开发的交联剂和 XL-MS 分析流程为生命系统的全面交联质谱表征铺平了道路。细胞蛋白质组通过广泛的非共价相互作用网络进行组织,表征蛋白质-蛋白质相互作用 (PPIs) 对于了解细胞的调节机制至关重要。交联质谱 (XL-MS) 是系统研究细胞 PPIs 的一种强有力的方法,在 XL-MS 中,天然蛋白质接触通过交联剂共价捕获,交联剂是一种由间隔臂和两个对特定氨基酸侧链具有反应性的官能团组成的有机小分子,交联样品经过蛋白酶水解后,可以通过基于质谱的肽测序来定位氨基酸之间的交联。由于交联剂具有确定的最大长度,检测到的交联揭示了蛋白质内部或蛋白质之间的氨基酸的最大距离。以上这些信息提供了对蛋白质构象、结构和相互作用网络的见解。虽然最初仅限于纯化的蛋白质组装,但如今 XL-MS 已经可以应用于复杂的生物系统——这是通过开发先进的交联搜索引擎、样品制备策略和交联剂设计而实现的。特别是,已进行的几项全蛋白质组范围的 XL-MS 研究表明,可以通过使用可富集的交联剂来改进交联产物的鉴定,例如,通过添加生物素或叠氮化物/炔烃标记,使得消化混合物中的交联肽段能够基于亲和纯化或点击化学富集。最近,一种基于膦酸的交联剂 PhoX 被引入作为现有生物素或叠氮化物/炔烃标记试剂的高效和特异性替代品。PhoX 可通过固定化金属离子亲和色谱 (IMAC) 实现交联富集,这是一种非常快速和稳健的富集策略。 然而,尽管 PhoX 已被证明可用于从细胞裂解液中进行交联鉴定,但它无法渗透细胞膜,因此不适合体内的 XL-MS检测。基于以上讨论,本文开发了交联剂 tBu-PhoX ,其中,膦酸羟基被叔丁基保护以掩盖负电荷(图 1)。为了检测 tBu-PhoX 的膜通透性,文章交联了各种膜封闭的生物系统,包括人 HEK293T 细胞、从小鼠心脏分离的线粒体和革兰氏阳性枯草芽孢杆菌,并在 SDS-PAGE 上监测了蛋白质条带的变化(图 2)。在SDS-PAGE中,观察到在交联剂浓度为0.5和1.0mM时,蛋白质向更高分子量的浓度依赖性迁移,这表明了有效的膜渗透和交联。相比之下,将 PhoX 应用于完整的 HEK293T 细胞将产生与非交联对照相同的条带模式。图1 tBu-PhoX交联剂图2 PhoX或tBu-PhoX交联HEK293T细胞的SDS-PAGE在证明了 tBu-PhoX 可渗透各种生物膜系统后,文章接下来开发了一种基于 tBu-PhoX 的体内 XL-MS 工作流程,相比于之前的全蛋白质组 XL-MS 策略,该工作流程提高了样品处理和交联富集的速度和效率(图 3)。首先,按照标准蛋白质消化方案将交联蛋白质消化成肽;其次,使用 IMAC 珠对消化混合物进行预清除步骤以去除内源性修饰(特别是磷酸化);第三,预清除的消化混合物(从 IMAC 流出)在稀释三氟乙酸 (TFA) 溶液中孵育以去除叔丁基并暴露膦酸基团以进行二次 IMAC 富集。第四,使用标准 IMAC 程序丰富交联产物,最后通过 LC-MS 分析以进行交联产物鉴定。图3 与tBu-PhoX进行体内交联和后续样品处理的工作流程接下来,文章优化了体内 XL-MS 工作流程的几个分析参数,以最大限度地提高交联检测的效率。首先,通过使用 IMAC 珠预清除评估了去除磷酸肽的效率;之后,使用 tBu-PhoX 交联完整的 HEK293T 细胞,经酶切成肽后,并应用预清除 IMAC 步骤去除内源性磷酸肽。在去保护步骤之后,利用 IMAC 富集交联,并通过单次 120 min LC-MS 运行测量富集的样品。通过测量 IMAC 洗脱液中磷酸肽和交联产物的数量,发现第二个 IMAC 中只有数百条磷酸肽,而预清除 IMAC 中有 4,128 条磷酸肽,这突出了通过预清除 IMAC 步骤去除磷酸肽的效率。此外,与单阶段 IMAC 结果相比,使用预清除 IMAC 的工作流程鉴定了 22% 以上的交联(1165 对 952 交联),证明了该两阶段工作流程去除干扰修饰肽的好处(图 4A)。其次,文章在肽水平上研究了膦酸盐去保护的功效。使用 tBu-PhoX 制备了体内交联的 HEK293T 样品,并分析了在不同的酸度(TFA 浓度)和孵育时间下,去保护后交联的数量如何变化。结果显示,不同浓度的 TFA 下获得了相似数量的交联。为简化处理(即在接下来的IMAC富集步骤中保持相对较低的样品体积),选择 0.5% TFA 的去保护条件,持续两个小时(图 4B,C)。第三,文章测试了 Orbitrap Tribrid 质谱仪的不同采集参数如何影响交联识别,即在高场非对称波形离子迁移率质谱法 (FAIMS) 中应用的电荷态选择和补偿电压 (CVs)。当考虑电荷状态 +3 和更高时,确定了最多数量的 tBu-PhoX 交联肽(图 4D)。图4 样品处理和LC-MS参数的优化文章将优化参数后的体内 XL-MS 工作流程应用于完整的 HEK293T 细胞。使用 180 min的 LC 梯度和优化后的分析参数,文章从体内 tBu-PhoX 交联的 HEK293T 细胞中获得了 9,547 个交联(图 5A)。基因本体分析表明,交联蛋白参与了广泛的分子功能、生物过程和细胞成分,表明 tBu-PhoX 可以揭示所有细胞区域的 PPIs(图 5A)。另外,文章还考察了完整细胞的体内 XL-MS 是否捕获了与细胞裂解液的 XL-MS 不同的 PPIs。为了验证这一点,从 HEK293T 细胞中制备 tBu-PhoX 交联裂解液,并使用与体内 XL-MS 实验相同的工作流程处理样品。 结果显示,从五个 SEC 部分中确定了 9,393 个交联。这表明 tBu-PhoX 允许以类似的效率进行裂解和体内 XL-MS。比较本文的体内和裂解数据表明,在体内 XL-MS 实验中,蛋白质间交联的数量更高,从而产生了更加相互关联的 PPI 网络(图 5B,C)。这种效应可以通过细胞环境的拥挤来解释,其中蛋白质紧密堆积并参与多种相互作用,这些相互作用被细胞裂解和稀释部分破坏。文章在 8 种选定蛋白质复合物的已知 3D 结构上可视化了 145 个体内检测到的交联(图 5C),另外,还观察到 96.6% 的交联在 35 Å 的最大距离限制内(图 5D),表明此 XL-MS 工作流程对内源性蛋白质复合物的体内结构分析的适用性。最后,文章比较了 tBu-PhoX 与 PhoX 在表征细胞裂解液的 PPI 网络方面的性能。使用与上述 tBu-PhoX 裂解液交联实验相同的交联条件从 HEK293T 细胞制备 PhoX 交联裂解液。为了去除内源性磷酸肽,在单阶段 IMAC 富集之前,用碱性磷酸酶处理消化的肽两小时。使用与 tBu-PhoX 相同的 LC-MS 方法进行 LC-MS 分析。该实验产生了 2,117 个交联,与使用 tBu-PhoX 识别的交联数量(1,942 个交联)相比略高。然而,基于 PhoX 的 XL-MS 流程需要更长的样品制备时间,因为需要进行碱性磷酸酶再处理和之后的额外脱盐步骤。行体内交联综上所述,本文开发并应用了一种新型的、可富集的、用于体内 XL-MS 的膜渗透交联剂 tBu-PhoX。在广泛使用的交联条件下(交联剂浓度为 1-5 mM),tBu-PhoX能够有效地穿透各种生物膜,为完整的细胞器和活细胞提供交联的机会。tBu-PhoX上的叔丁基基团使得高效的两阶段IMAC样品制备方案成为可能;首先,使交联剂对 IMAC 呈惰性,以促进基于 IMAC 快速而彻底地提取不需要的磷酸化肽,然后,通过去除叔丁基暴露膦酸基团,从而有效地二次 IMAC 富集交联剂修饰的肽。通过随后的 SEC 分馏,可以进一步富集交联肽段以进行 LC-MS 分析。XL-MS 在表征生命系统中的蛋白质结构和相互作用方面发挥着越来越重要的作用。为了促进这一发展,迫切需要有效的体内 XL-MS 方法。文章报告的体内 XL-MS 工作流程满足了这一需求,提供了与之前基于裂解液的 XL-MS 研究类似的交联识别能力,但需要的测量时间不到之前报告的十分之一。这一结果突出表明,本文开发并应用的 tBu-PhoX 交联剂和集成样品制备流程为推进体内相互作用组学和结构生物学提供了一种非常有前景的化学方法。
  • 基于镜像酶正交酶切的蛋白质复合物规模化精准分析新方法
    蛋白质作为生命活动的执行者,通过自身结构的动态改变,以及与其他蛋白质相互作用组装为蛋白质复合物,调控各种生物学过程。因此,如何实现蛋白质复合物的精准解析已成为当前生命科学的研究热点。化学交联结合质谱(CXMS)技术作为蛋白质复合物解析的新兴技术,利用化学交联剂将空间距离足够接近的蛋白质分子内或分子间的氨基酸残基以共价键连接起来,再利用液相色谱-质谱联用对交联肽段进行鉴定,实现蛋白质复合物的组成、界面和相互作用位点的解析。该技术具有分析通量高、灵敏度高、可提供蛋白质间相互作用的界面信息、普遍适用于不同种类和复杂程度的生物样品等优势,已成为X射线晶体衍射、低温冷冻电镜、免疫共沉淀等蛋白质复合物研究技术的重要补充。化学交联位点的鉴定覆盖度和准确度决定着该技术对于蛋白质复合物结构的解析能力。目前,为了实现蛋白质复合物的高覆盖度交联,研究人员发展了可用于共价交联赖氨酸(K)的氨基、谷氨酸(E)/天冬氨酸(N)的羧基、精氨酸(R)的胍基以及半胱氨酸(C)的巯基等多种活性基团的新型交联剂。进而,为了提高低丰度交联肽段的鉴定灵敏度,体积排阻色谱法、强阳离子交换色谱法,及亲和基团富集策略被提出用于交联肽段的高选择性富集,如可富集型化学可断裂交联剂——Leiker,与不具备富集功能的交联剂相比,通过亲和富集可以将交联位点鉴定数目提高4倍以上。胰蛋白酶镜像酶(LysargiNase)的酶切位点与胰蛋白酶互为镜像,可特异地切割赖氨酸和精氨酸的N端。由于LysargiNase的N端酶切特点,电荷主要分布在交联肽段的N端,在碰撞诱导裂解(CID)和高能诱导裂解(HCD)模式下产生以b离子为主的碎片离子,与胰蛋白酶酶切肽段以y离子为主的碎片离子互为镜像补充,为胰蛋白酶酶解肽段在质谱鉴定中b离子缺失严重的问题提供了很好的解决办法。由于具有较高的酶切特异性和酶活性,镜像酶已经成功地应用于蛋白质C末端蛋白质组鉴定、磷酸化蛋白质组研究、甲基化蛋白质组鉴定等方面,然而在CXMS中的应用仍未见报道。为进一步提高对蛋白质复合物结构及相互作用位点的解析能力,本文发展了LysargiNase与胰蛋白酶联合酶切的方法,基于镜像酶正交切割的互补特性,通过产生赖氨酸及精氨酸镜像分布的交联肽段,以增加特征碎片离子数量和肽段匹配连续性,从而提升交联肽段的谱图鉴定质量,达到提高交联位点的鉴定覆盖度和准确度的目的。通过分别对牛血清白蛋白及大肠杆菌全蛋白样品的交联位点鉴定结果的考察,评价该策略对单一蛋白样品和复杂细胞裂解液样品蛋白质复合物表征的应用潜力。蛋白质样品制备称取牛血清白蛋白粉末,以20 mmol/L 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES, pH 7.5)作为缓冲体系,配制0.1 mmol/L牛血清白蛋白溶液。大肠杆菌细胞(种属K12)在37 ℃下采用Luria-Bertani(LB)培养基培养24 h,然后于4 ℃以4000 g离心2 min,收集细胞沉淀。细胞沉淀采用磷酸盐缓冲液(PBS)清洗3遍后,悬浮于细胞裂解液(含20 mmol/L HEPES和1%(v/v)蛋白酶抑制剂)中,冰浴超声破碎180 s(30%能量,10 s开,10 s关)。匀浆液于4 ℃以20000 g离心40 min,收集上清,采用BCA试剂盒测定所得蛋白质含量。稀释大肠杆菌蛋白裂解液至蛋白质含量为0.5 mg/mL。化学交联样品制备以20 mmol/L HEPES(pH 7.5)为溶剂配制浓度为20 mmol/L 的BS3交联剂母液 将交联剂母液加入牛血清白蛋白的缓冲溶液及大肠杆菌蛋白裂解液中,使交联剂的终浓度为1 mmol/L,在室温条件下反应15 min 通过添加终浓度为50 mmol/L的淬灭溶液NH4HCO3进行交联反应淬灭,并在室温下孵育15 min 在冰浴条件下,将交联样品逐渐滴入8倍体积的预冷丙酮中,于-20 ℃静置过夜 在4 ℃条件下,以16000 g转速离心,去除丙酮,然后将交联蛋白用预冷丙酮清洗2次,去除上清液后,于室温挥发掉残余的丙酮 以8 mol/L尿素溶液复溶蛋白质沉淀 将牛血清白蛋白交联样品以5 mmol/LTCEP作为还原剂,于25 ℃下反应1 h进行变性和还原 将大肠杆菌样品以5 mmol/LDTT作为还原剂,于25 ℃下反应1 h进行变性和还原,避免大肠杆菌蛋白在酸性条件下发生变性 添加终浓度为10 mmol/L的碘乙酰胺(IAA),在黑暗中,于室温下反应30 min 以50 mmol/LNH4HCO3稀释样品至尿素浓度为0.8 mol/L后,将样品均分为两份,一份以蛋白样品与蛋白酶的质量比呈50:1的比例加入胰蛋白酶,于37 ℃酶解过夜,另一份加入终浓度为20 mmol/L的CaCl2,以蛋白样品与蛋白酶的质量比呈20:1的比例加入LysargiNase,并在37 ℃温度下酶解过夜。液相色谱-质谱鉴定及数据搜索上述所有样品经过除盐,使用0.1%甲酸(FA)溶液复溶,用超微量分光光度计测定肽段浓度,进行反相高效色谱分离和质谱分析。牛血清白蛋白样品采用Easy-nano LC 1000系统偶联Q-Exactive质谱仪平台进行质谱分析。流动相A: 2%(v/v)乙腈水溶液(含0.1%(v/v)FA) 流动相B: 98%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~10 min, 2%B~7%B 10~60 min, 7%B~23%B 60~80 min, 23%B~40%B 80~82 min, 40%B~80%B 82~95 min, 80%B。Q-Exactive质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 300~1800,分辨率为70000(m/z=200),自动增益控制(AGC)为3×106,最大注入时间(IT)为60 ms,母离子分离窗口为m/z 2。MS/MS扫描的分辨率为17500(m/z=200),碎裂模式为HCD,归一化碰撞能量(NCE)为35%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms,仅选择电荷值为3~7且强度高于1000的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。大肠杆菌样品采用EASY-nano LC 1200系统偶联Orbitrap Fusion Lumos三合一质谱仪平台进行质谱分析。流动相A: 0.1%(v/v)甲酸水溶液 流动相B: 80%(v/v)乙腈水溶液(含0.1%(v/v)FA)。梯度洗脱程序:0~28 min, 5%B~16%B 28~58 min, 16%B~34%B 58~77 min, 34%B~48%B 77~78 min, 48%B~95%B 78~85 min, 95%B。Orbitrap Fusion Lumos三合一质谱仪采用数据依赖性模式,Full MS扫描在Orbitrap上实现,扫描范围为m/z 350~1500,分辨率为60000(m/z=200), AGC为4×105, IT为50 ms,母离子分离窗口为m/z 1.6。MS2扫描的分辨率为15000(m/z=200),碎裂模式为HCD, NCE为30%, MS2从m/z 110开始采集,MS2的AGC为5×104, IT为60 ms。仅选择电荷值为3~7且强度高于2×104的母离子进行碎裂,并将动态排除时间设置为20 s。每个样品分析3遍。质谱数据文件(*.raw)采用pLink 2软件(2.3.9)对交联信息进行检索和鉴定。使用从UniProt于2019年4月27日下载的牛血清白蛋白序列和大肠杆菌序列,搜索参数如下:酶切方式为胰蛋白酶(酶切位置:K/R的C端)、LysargiNase(酶切位置:K/R的N端) 漏切位点个数为3 一级扫描容忍(precursor tolerance)2.00×10-5 二级扫描容忍(fragment tolerance)2.00×10-5 每条肽段的质量范围为500~1000 Da 肽段长度的范围为5~100个氨基酸 固定修饰为半胱氨酸还原烷基化(carbamidomethyl [C]) 可变修饰为甲硫氨酸氧化(oxidation [M])、蛋白质N端乙酰化(acetyl [protein N-term]) 肽段谱图匹配错误发现率(FDR)≤5%。映射胰蛋白酶与LysargiNase酶解样品的交联位点在牛血清 白蛋白晶体结构(PDB: 3V03)的映射 LysargiNase与胰蛋白酶酶解样品的交联位点对及单一交联位点的互补性LysargiNase与胰蛋白酶酶解样品共同得到的交联位点鉴定打分比较b+/++与y+/++离子碎片分别在α/β-肽段的碎片覆盖度LysargiNase与胰蛋白酶酶解的交联肽段质谱图大肠杆菌样品中LysargiNase与胰蛋白酶酶切鉴定蛋白质复合物信息互补性带点击了解原文:https://www.chrom-china.com/article/2022/1000-8713/1000-8713-40-3-224.shtml
  • 布鲁克在USHUPO 2021大会最新成果发布
    ——深度无偏向性血浆蛋白质组学、PaSER 1.1软件和新型交联耗材的新成果  牛津大学Roman Fischer教授展示了高通量4D-蛋白质组学技术,只需10~20分钟即可在未去高峰度蛋白的血浆样本中检测出大于350种蛋白质,实现了高通量、高度可靠性的生物标记物发现。  OmicEra诊断集团实现了在单台timsTOF Pro系统上,以每天60个样品的分析速度,仅用时12天,实现了对源于31名COVID-19患者的720个未去高峰度蛋白的血清样本检测,成功定量分析了502种蛋白质,发现其中116种蛋白质在表达水平上具显著变化。  使用Seer Proteograph™ 产品套件对血浆样本处理后,在TIMS/PASEF分析时可得到前所未有覆盖深度、高通量和高扩展性结果——鉴定出超过1,700种蛋白质。  PaSER软件1.1版本正式发布,内容包括性能增强和4D-蛋白质组学在淌度辅助质量对齐(MOMA)分析的可视化。  推出了可富集的PhoX交联剂和三个可裂解交联剂,MaxQuant和XlinkX支持分析分析来自timsTOF的交联数据,可用于结构蛋白质组学和蛋白质-蛋白质相互作用(PPI)相关研究。  2021年3月8日,布鲁克在第17届美国HUPO线上会议(US HUPO 2021)上宣布了深度、无偏向性血浆蛋白质组学方面等多项合作进展,这些合作展现了timsTOF Pro在4D-蛋白质组学研究中的高灵敏度和高动态范围。  布鲁克与科罗拉多大学安舒兹医学中心Kirk Hansen教授的最新合作成果于美国东部时间3月9日下午在美国HUPO大会上进行的布鲁克线上研讨会中发表。Hansen教授在报告中介绍了COVID-19患者血浆蛋白质组学的研究,以及创伤患者血浆蛋白质组学变化的大队列比较。  Hansen教授对每个样品进行成千上万次测量,揭示了急性损伤和疾病状态下蛋白质的动态变化,通过开展更大范围的临床研究,团队阐明了两者之间的分子关系与机制,该研究具有超越当前诊断方法的潜力。  Hansen教授说:“因为timsTOF Pro的高扫描速度,高灵敏度和高通量的特性,我们最近才重新进入血浆蛋白质组学领域。结合Evosep One系统,两者搭建的系统提供了几年前不可能实现的高可靠性和高通量。”  2021年初,布鲁克与Mann教授团队发表的论文,突破性地展示了无偏差定量分析的真单细胞蛋白质组学,其可以解决单细胞生物学和病理生物学中的重要问题。布鲁克计划在2022年初推出单细胞专用的timsTOF系统,用于单细胞蛋白质组学的无偏差定量分析。  布鲁克最近与Mann和Theis团队共同在《Nature Communications》发表了最新成果,该研究涉及大规模肽段的碰撞截面(CCS)测量和4D-蛋白质组学机器学习的优势。利用机器深度学习,可以预测来自任何生物体中,任何肽段的CCS值,充分利用额外的第四维CCS信息为更先进的4D-蛋白质组学工作流程奠定了基础。图1:用TIMS和PASEF进行大规模肽段CCS测量来源:www.nature.com/articles/s41467-021-21352-8  PaSER 1.1 实时蛋白质组学搜索  布鲁克发布了PaSER软件v.1.1,该软件在3月9日美国HUPO研讨会上,由布鲁克公司蛋白质组学业务开发总监Chris Adams博士做了详细介绍。PaSER是在布鲁克收购的IP2软件基础上,基于GPU计算的蛋白质组学数据库实时搜索软件。PaSER是Parallel Search Engine In Real-time的缩写,是在GPU上进行并行化、多线程的实时搜索,比常规的数据采集能更快地获得结果。在实验完成后,就可以“实时”获得肽段和蛋白质的鉴别结果,实现高通量4D-蛋白质组学分析。  除了性能增强之外,PaSER 1.1还增加了4D数据的可视化,包括MOMA特征功能和搜索结果。4D-蛋白质组学分析的一个强大功能是淌度辅助质量对齐(MOMA)分析,在常规3D-蛋白质组学中无法区分的共洗脱同分异构体,利用精确的CCS值进行淌度分离。  化学交联用于结构蛋白质组学和蛋白质-蛋白质间相互作用(PPI)研究  布鲁克宣布推出用于研究蛋白质结构和相互作用研究的新款蛋白质化学交联(XL-MS)耗材和软件。在获得乌特勒支大学许可后,由Albert Heck和Richard Scheltema团队开发的PhoX交联剂将于今年春季由布鲁克进行商业化。PhoX是一种具有磷酸酯基团的可富集交联剂,利用金属磁珠,可以在XL-MS反应产生的复杂混合物中进行亲和纯化。这种富集极大地增强了检测交联肽的能力,Albert Heck、Richard Scheltema和布鲁克之间的合作研究表明,通过使用caps-PASEF进行TIMS分离,可以显著增强交联肽段检测能力(MCP,2020年7月20日,19(10):1677-1687)。布鲁克在春季还将推出3种可裂解交联剂,由于在MS/MS实验中,交联剂的裂解便于检测到分子间的特征质量差异,该优势使这3种交联剂在某些研究小组中被列为首选。  化学交联数据分析非常复杂,需要自动分析软件。来自德国马克斯普朗克研究所的Juergen Cox教授团队开发的新版MaxQuant软件中,已经支持分析timsTOF Pro系统中XL-MS数据。目前团队正在进行beta版测试,预计将于2021年4月发布。  深度、无偏向性血浆蛋白质组学的研究进展  最近,几个研究小组使用多种方法对血浆蛋白质组学研究并得到了令人兴奋的结果。2021年2月,牛津大学纳菲尔德分校医学院的Roman Fischer教授,在Genetic Engineer & Biotech News上发表了“High-Throughput Proteomics During a Pandemic”该项研究成果。Fischer教授使用高通量4D-蛋白质组学研究了数百个来自不同患病程度的COVID-19患者血浆样品、健康人群以及患有其他疾病(如败血症)患者的血浆样本。  同样在2021年2月,来自德国Planegg的OmicEra诊断集团的研究人员在MedRxiv上发表了预印稿“High-resolution longitudinal serum proteome trajectories in COVID-19 reveal patients-specific seroconversion”。研究中31名样本患者在31天里进行纵向追踪,并使用高通量4D-蛋白质组学分析。这项研究采用OmicEra自动化蛋白质组学流程,搭配在Evosep One色谱系统上运行21分钟的洗脱梯度,可达到每日60个样本的分析通量。  使用这个方法,OmicEra在单台timsTOF Pro系统上分析了720个未去高峰度的血清样本,历时12天,总共定量分析了502种蛋白质,发现约116种蛋白质在表达水平上发生了变化。在US HUPO上,布鲁克将与OmicEra联合发布血清蛋白质组学的相关应用说明。  Seer(www.seer.bio)在US HUPO 2021上展示了与布鲁克合作成果的海报。海报展示了Seer制造的纳米颗粒与TIMS/PASEF方法相结合的独特分析功能。该研究使用90分钟梯度的DDA nanoLC-TIMS-MS/MS方法鉴定出了1,700多个蛋白,实现了无偏差、高覆盖深度、高扫描速度的血浆蛋白质组分析。Seer的Proteograph产品套件与TIMS/PASEF方法的结合,为无偏差、深层蛋白质组学提供了扩展性的解决方案,几乎所有实验室都可以使用。  布鲁克蛋白质组学业务发展总监Chris Adams说:“我们很高兴看到血浆蛋白质组学领域正在快速发展,我们期待该领域在液体活检多组学转化研究和生物标志物验证中迅速发展。TIMS/PASEF方法的高通量、高稳定性以及4D-蛋白质组学独特的选择性和灵敏度等优势,使血浆蛋白质组学在深层、无偏差分析方面取得了实质性的进步。”
  • 锐拓RT7流池法溶出系统应用案例——眼用凝胶的体外释放度研究
    滴眼液是目前临床上治疗眼部疾病最常用的剂型,但会很快从眼表面流失,其药物生物利用度通常小于5%。而使用原位凝胶作为眼用载药系统,则可以延长药物在眼部的滞留时间、降低给药频率、提高生物利用度,达到缓释长效的目的。原位凝胶在体外环境下为液体状态,给药后由于受到温度、pH 值、离子强度等影响,在用药部位发生相转变,由液态转化形成非化学交联半固体凝胶,可分为温度敏感型、pH 敏感型和离子敏感型。近年来,眼用凝胶在眼部给药系统中的应用受到国内外药物研究者的高度重视。但是由于本身剂型的特殊性,如何有效地进行眼用凝胶的体外释放度研究一直是个技术难题。本文将分享使用锐拓RT7流池法溶出系统研究眼用凝胶的体外释放度的案例,希望能给您带来帮助和启发。实验方法流池法(USP Apparatus 4)溶出系统:锐拓RT7流池法溶出系统流通池:22.6mm 内径 药典标准流通池测试参数:技术保密取样时间点:5,10,20,30,60,90,120,180,240分钟实验结果下图为某眼用凝胶两个不同生产工艺批次(Sample 1 和 Sample 2)的体外释放度曲线,测试结果取多组平行测试数据的平均值。 测试结果重复性良好,Sample 1 和 Sample 2 最终溶出率的相对标准偏差分别为:0.66%和0.88%。另外,测试结果显示,本流通池测试方法和条件能够区分不同生产工艺批次之间的释放度差异。我们可以明显地观察到,Sample 2 的释放速度比Sample 1 快。结果讨论眼用原位凝胶制剂在室温条件下是呈液体状态,用药后在眼部发生相转变成非化学交联半固体凝胶,并持续缓慢释放主药成分。所以,在进行体外释放度测定时如何对液体进行上样,如何确保液体状态的样品能够完整地转变成半固体凝胶,如何让半固体凝胶状的样品在更加平缓更加近似人体的环境中释放,如何真实地反映样品的缓慢释放过程,这些都是眼用凝胶体外释放度测定方法开发时需要考虑的。随着流池法的研究深入和逐步成熟,我们可以利用流池法来研究越来越多类似眼用凝胶这些特殊剂型的体外释放度。而得益于流池法的优势,我们可以摆脱传统溶出方法的束缚,让体外释放度测定更加满足药物研发者的对测试结果
  • 上海比朗BLUV07-II紫外交联仪 新品上市
    上海比朗仪器有限公司生产产品有:小型喷雾干燥机、无菌均质器、光化学反应仪、超声波细胞粉碎机、紫外交联仪、分子杂交仪、分液漏斗振荡器、氙灯光源、 超声波清洗机、索氏提取器、制冰机、低温冷却液循环泵、高速组织捣碎机、低温恒温循环器、高低温循环器、高温循环器、电热恒温鼓风干燥箱、电热恒温水槽、 水浴恒温振荡器、恒温金属浴、恒温器、回旋振荡器等等。  BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。BLUV07-II紫外交联仪  紫外交联仪参数及应用,现在紫外交联仪分为3种波长的:254nm 312(302)nm 365nm 一长寿命滤光片,312 nm和365 nm下可终身使用,254 nm下,寿命为3000小时。对于312nm波长的紫外交联仪,312nm紫外光是目前EB/DNA复合凝胶电泳荧光显色的最佳光源,因为它灵敏度高且能产生了最大的荧光量。  与254nm波长紫外线相比,312nm能把光损伤,光切割及光二聚体作用的程度降至最低,应用如:克隆和染色体作图。另外,312nm波长紫外线过于暴晒而老化,从而保护UV传输装置的原有性能。  紫外交联:为使核甘酸固定在膜上,传统方法是将膜置于真空烘箱中在80℃下烘2小时,而在紫外光下照射几秒即可 信号强度的提高,紫外照射可使杂交信号比传统烘烤法提高5~10倍  紫外用途:琼脂糖凝胶中DNA的切割,RecA突变筛选,胸腺二聚体产生的部分限制性内切酶消化,UV 灭菌消除PCR污染。  紫外交联仪操作方法:将紫外交联仪设备水平放在工作台上。确保有足够的空间,在前面开门。插入电源线的母头到交联剂。插头插入正确接地的电源插座中。(交联剂的正确的工作电压是产品信息的标签上找到。注:对于230V型号,或那些需要特殊的电源线连接器,确保男性的连接器或插头已经正确的配置已正确连接电源线。)打开ON / OFF开关到ON的位置。(注:当交联剂的默认转向上次使用的紫外线曝光设置)。最后的紫外线照射的设置将显示在LED上。其中最后一个函数设置将会在发光显示面板上的红点(S)上指出。将您的样品进入会议厅的要求曝光。
  • “蛋白质动态学新技术”成功解析蛋白复合体结构
    近日,中国科学院武汉物理与数学研究所研究员唐淳课题组利用基于973重大科学研究计划“蛋白质动态学研究的新技术新方法”建立的研究技术,协助华中农业大学教授殷平课题组首次解析了N6腺嘌呤甲基转移酶METTL3-METTL14蛋白复合体结构,该研究成果发表于《自然》杂志。  该工作揭示了RNA N6腺嘌呤甲基化修饰过程中的结构基础,是表观遗传学领域的一项重大突破。唐淳、武汉物数所副研究员龚洲和博士后刘主参与该项目,利用课题组发展的新技术新方法,通过结合小角X光散射与计算机模拟的手段,为该蛋白复合体的结构解析提供了研究方法上的帮助。  经过近3年的努力,唐淳课题组发展、建立了包括核磁共振波谱、小角X光散射、化学交联质谱分析、单分子荧光检测和成像等技术在内的多种生物物理化学手段,并开发相应的整合计算方法,用于蛋白质动态结构及其转换过程的研究。课题组除了完成自身的科研项目外,积极开展广泛的合作与交流,与国内外同行共享研究技术和方法。目前,得益于“蛋白质动态学研究的新技术新方法”项目的实施,课题组已助力多个重要蛋白质结构的解析,取得了一系列的研究成果,研究成果发表于《自然—化学生物学》、eLife 等国际一流杂志。
  • 第七届全国原子光谱及相关技术学术会议在丹东召开
    仪器信息网讯 2023年4月12日,第七届全国原子光谱及相关技术学术会议在辽宁省丹东市召开。本届会议由中国仪器仪表学会分析仪器分会原子光谱专业委员会主办,东北大学、环境化学与生态毒理学国家重点实验室、辽东学院、丹东市科学技术协会共同承办,辽宁省分析科学研究院、辽宁省分析测试学会协办。会议现场中国科学院大连化学物理研究所张玉奎院士、中国科学院生态环境研究中心江桂斌院士、中国科学院精密测量科学与技术创新研究院刘买利院士、加拿大阿尔伯塔大学乐晓春院士,以及国内外从事原子光/质谱及相关学术与技术研究的专家学者、技术人员和仪器厂商、媒体等370余人参加了此次会议。会议开幕式上,东北大学校长冯夏庭、丹东市副市长杨松、辽东学院校长马殿荣、原子光谱专业委员会主任委员&中国科学院生态环境研究中心江桂斌院士分别致辞,开幕式由东北大学王建华教授主持。东北大学校长冯夏庭丹东市副市长杨松辽东学院校长马殿荣原子光谱专业委员会主任委员&中国科学院生态环境研究中心江桂斌院士东北大学王建华教授今年正值东北大学建校100周年,致辞嘉宾纷纷表示庆祝。丹东市副市长杨松特别表示仪器仪表是丹东市优势产业之一,希望各位专家学者在丹东创新创业、科研成果在丹东落地生根开花结果,合作共赢。原子光谱专业委员会主任委员&中国科学院生态环境研究中心江桂斌院士在致辞中特别回顾了全国原子光谱及相关技术学术会议的历史脚步,2010 年第一届全国原子光谱及相关技术学术会议在成都召开,得到了专家学者、仪器企业等各方的大力支持,高起点快发展,10多年来原子光谱队伍发展壮大;原子光谱技术也因其独特的特点而具有不可替代性,在社会民生的方方面面都得到了广泛应用;而且为了展现了我国原子光谱分析领域的科研工作进展,多位委员共同发力撰写出版了《原子光谱分析前沿》一书。大会报告环节,中国科学院大连化学物理研究所张玉奎院士、加拿大阿尔伯塔大学乐晓春院士、中国科学院精密测量科学与技术创新研究院刘买利院士、中国科学院生态环境研究中心江桂斌院士、香港大学孙红哲教授分别分享了原子光谱及相关技术领域的发展现状、趋势和前沿动向。报告题目:蛋白质机器分析技术进展报告人:中国科学院大连化学物理研究所 张玉奎院士蛋白质是生命活动的执行者,其含量、变体形式、翻译后修饰及相互作用的变化都可能引起生物功能的改变,甚至是引发疾病。蛋白质机器是能够独立完成某一分子生物学过程的生物大分子复合体,超大分子复合体的解析是破解生命奥秘的关键。张玉奎院士报告中介绍了相关的技术发展历程,并重点介绍了蛋白质复合物的研究技术之一——化学交联质谱研究的关键——化学交联剂的商品化情况及其局限;针对这些瓶颈,张玉奎院士课题组研究出BSP可富集可透膜型交联剂,报告中详细介绍了不同类型交联剂及其应用情况。报告题目:CRISPR technology and analytical applications报告人:加拿大阿尔伯塔大学 乐晓春院士乐晓春院士报告中介绍了CRISPR/Cas体系的构成及其生物学活性机制,尤其是CRISPR技术在基因编辑和分子检测领域的应用。针对COVID-19病毒,其课题组将CRISPR和核酸常温扩增技术很好地结合在一起,开发了COVID-19快速灵敏测定的分析方法。 CRISPR体系在核酸识别上展现出的高特异性,使其成为一种极具潜力的分子诊断工具。报告题目:生物磁共振波谱分析报告人:中国科学院精密测量科学与技术创新研究院 刘买利院士磁共振不断催生新技术、新学科、新领域,促进了科学发展。核磁共振是典型的多学科交叉领域,其发展趋势体现在超高磁场、超高灵敏度、高效方法、动态变化、分子过程、分子成像等方向。灵敏度低限制了核磁共振的发展,因此磁共振对高灵敏度的追求永无止境。高磁场之外,超极化是重要的实现途径之一,刘买利院士报告中介绍了课题组在这一方向的仲氢诱导核极化、激光抽运、低温-动态核极化等研究成果及其在生物NMR的应用。报告题目:金属形态与原子光谱报告人:中国科学院生态环境研究中心 江桂斌院士金属是地壳元素的重要组成部分,是生命的必需,但金属污染也导致了环境与健康问题。金属形态决定其环境迁移与毒性,我们需要从不同维度理解金属形态,而原子光谱是金属形态分析的最佳技术选择。不过,江桂斌院士也指出,原子光谱并不是万能的,随着技术进步,我们需要不断发展新的仪器装置。江桂斌院士团队针对甲基汞形态分析与仪器厂商合作研制GC-AFS、LA-AFS等产品;并研发成功高通量多功能组成毒理学分析仪,目前其小型化、市场推广是重点。报告题目:整合金属组学揭示金属和金属蛋白质在新发传染性疾病的作用报告人:香港大学 孙红哲教授 孙红哲教授团队建立了一个独特的液相色谱凝胶电泳电感耦合等离子体质谱系统,能够在大肠杆菌和金黄色葡萄球菌等细菌中匹配金属与蛋白质。例如,使用多组学方法,包括金属蛋白组学、代谢组学、生物信息学和系统生物学,描述了Ag+在病原体中的动态抗菌作用。通过ICP-MS和大规模细胞术对COVID-19患者进行了全面的血清金属蛋白组学和免疫蛋白组学分析,发现严重的SARS-CoV-2感染诱导了最明显的铁蛋白调制,并提出了一个相关参数,可作为预测COVID-19严重程度的生物标志物。报告题目:丹东市人才引进政策介绍-鸭绿江英才计划中共丹东市委组织部副书记 张运成为全面贯彻习近平总书记关于新时代人才工作的新理念新战略新举措,深入落实中央、省委人才工作会议精神,深入实施“鸭绿江英才计划”,加快推进人才强市,丹东市制定了若干政策措施。中共丹东市委组织部副书记张运成在本次会上详细解读了相关政策措施情况。本次会议为相关仪器厂商设立仪器展览区域,以展示新产品新技术和最新的解决方案。本次会议为期2天,大会报告之外,还设置了原子光谱/质谱的生命分析应用、原子光谱/质谱分析新原理新方法、原子光谱/质谱相关技术及应用三个分会场,邀请了多位国内外著名专家做专题报告,展示各自在原子光谱/质谱及相关技术领域中的仪器研制、方法开发、分析应用等最新成果,并探讨相关研究领域间的交叉融合和共同发展。全国原子光谱及相关技术学术会议每两年举办一次,已连续举办了六届,分别由四川大学(成都)、东北大学(沈阳)、广西师范大学(桂林)、武汉大学(武汉)、 厦门大学/华侨大学(泉州)、四川大学/大理大学(大理)等单位承办,此次是第七届。全国原子光谱及相关技术学术会议已经发展成为我国原子光谱及相关技术领域的学术盛会,为原子光谱及相关技术领域的科技人员和分析仪器厂商提供了一个良好的交流机会。
  • 大连化物所提出基于功能化纸基比色传感器的农残快检新策略
    近日,中科院大连化学物理研究所化学传感器研究组(106组)冯亮研究员团队在纸基光化学传感器的信号放大研发中取得新进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔的应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。本工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。相关研究成果以“Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是中科院大连化学物理研究所106组博士研究生王枫雅。上述工作得到中科院科研装备研制等项目的资助。
  • 大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
    近日,中国科学院大连化学物理研究所研究员冯亮团队在纸基光化学传感器的信号放大研发中取得进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。   纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。该工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。   相关研究成果以Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor为题发表在《分析化学》(Analytical Chemistry)上。大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
  • Orbitrap闪耀椰城 ---为植物蛋白质组学提供全流程解决方案
    随着人类基因组计划的完成,生物学研究时代进入蛋白质研究时代。功能蛋白的深入研究,是后基因组时代的重要研究方向。由中国植物学会主办,中国细胞学会染色质与蛋白质组专业委员会协办,海南大学、中国热带农业科学院、海南师范大学共同承办的“第六届全国植物蛋白质研究大会暨第二届植物蛋白质组最新研究技术培训班”于2016年12月18日-20日在海南省海口市召开。整合各种生物学研究技术,深入解析蛋白质的结构和功能,植物组学研究得到了越来越多的业界关注,多种植物全基因组测序的完成,为各种植物蛋白质组展开提供了条件。 朱玉贤院士做大会报告匡廷云院士做大会报告 赛默飞积极参与此次全国植物蛋白研究大会,在大会上披露了最新的Orbitrap 植物蛋白质组学全流程解决方案。赛默飞色谱质谱应用工程师蒋好在此次大会分会场环节,为与会者带来了题为“基于交联质谱技术的完整分析流程用于功能蛋白质组学研究”的精彩报告。随着蛋白质组学研究的不断深入,传统的蛋白质组学研究已经转向对蛋白质功能的研究,即在前期蛋白质及其翻译后修饰的鉴定基础上,去研究不同蛋白的表达、结构和相互作用网络,来解析蛋白质行使其功能的途径。采用基于化学交联的方法(DSS和DSSO),将存在相互作用的位点或者蛋白进行共价键合,结合不同碎裂模式的质谱技术进行大规模的交联肽段分析,实现对生物体内目标功能体系的蛋白相互作用网络绘制,显著提高整个分析流程的速度和鉴定结果的可靠性。他为与会者介绍了相较于传统的结构生物学研究方法,如X-ray、NMR和CryoEM,对样品的要求和分析流程的难度大大降低,并能够结合不同的结构生物学方法提供全面的蛋白结构与相互作用信息。赛默飞应用工程师蒋好做分会场报告基于Orbitrap 植物蛋白质组学全流程解决方案 赛默飞色谱质谱应用工程师孙佳楠在会后的培训班上作了“基于TMT的定量蛋白质组学完整分析流程”的报告。她介绍了在目前非靶向相对定量蛋白质组学技术日趋成熟的阶段,然而随着质谱技术的不断发展,为了定量的更加准确通量更高,相对标记定量方法也在不断的被开发,SPS-MS3质谱方法使定量结果更加接近于真实比例。质谱是高通量靶向蛋白质定量必不可少的技术手段,TOMAHAQ靶向标记定量方法,具有高的灵敏度、重现性、定量准确等特点,其最大的优势是通量得到非常大的提高,缩短我们实验的周期。赛默飞应用工程师孙佳楠在培训 赛默飞Orbitrap Fusion Lumos三合一高分辨质谱仪在会场外的展台展示时,引起了与会者的兴趣。优异的性能,以及最新的Orbitrap 植物蛋白质组学全流程解决方案,吸引了不少的目光。参会代表纷纷走进赛默飞展台,与工作人员咨询与交流。 参会代表在赛默飞展台咨询相关应用技术
  • 交联质谱与冷冻电镜技术联用前沿解析:推动结构生物学进入新时代
    p  近来,结构生物学领域发现了研究蛋白质机构和相互作用的两种非常互补的分析技术——交联质谱(XL-MS)技术和荣获诺贝尔奖的冷冻电镜(cryo-EM)技术,两种技术被结合应用于蛋白质机构和相互作用的研究中。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 253px " src="https://img1.17img.cn/17img/images/201906/uepic/1db47922-dd4e-4a74-9689-d8dc5825a5c3.jpg" title="1.jpg" alt="1.jpg" width="450" height="253" border="0" vspace="0"//pp  作为一对“强大”的技术,XL-MS和cryo-EM在结合运用中在共同弥补着各自的缺点不足。当cryo-EM图像中分子区域定义不太清晰明确时,XL-MS就会介入,提供关于特定氨基酸残基关键信息,从而可以识别蛋白质并准确推断蛋白质结构。以下,让我们详细探讨一下这两种技术的发展情况,以及它们如何共同推动结构蛋白质组学领域进入一个新的时代。/pp  span style="font-size: 18px "strong蛋白质结构:“组装机器的计划蓝图”/strong/span/pp  蛋白质及其复合物是生物细胞的生物“主力”,调节着细胞功能不可或缺的过程,如细胞生长、细胞死亡以及细胞生命周期的各个阶段。/pp  “我喜欢将蛋白质结构与组装机器的蓝图进行比较,”荷兰格罗宁根大学高分辨率cryo-EM实验室助理教授Cristina Paulino在最近的一次采访中谈到,“虽然遗传学和生物化学有助于理解蛋白质的生理作用,但结构生物学揭示了这些纳米机器的外观以及它们的连接方式。”/pp  因此,对这种“连接方式”的了解为科学家们提供了修复、设计和复制蛋白质,或潜在地阻断蛋白质功能的机会——蛋白质组学的应用,预计将成为个性化医学和现代药理学不可或缺的组成部分。/pp  span style="font-size: 18px "strong关于XL-MS技术应用/strong/span/pp  生物学的一个基本原理是蛋白质由氨基酸残基通过肽键连接形成多肽。除了肽键外,还存在非共价键,如范德华力、静电和疏水相互作用。在结构生物学中,这些键很难检测到,在原子水平上研究蛋白质结构时增加了额外的复杂性。在过去的十年中,蛋白质组学领域见证了MS技术逐渐增加丰富的一系列令人深刻的技术,其中。XL-MS技术是已证明对结构蛋白质组学不可或缺的技术之一。[1]/pp  图1总结了典型XL-MS的工作流程,其中,蛋白质(或其邻近)之间的非共价键相互作用(或接近它们)通过用交联试剂溶解天然蛋白质转化为人工共价键。由于赖氨酸残基的广泛存在、在水溶液中的稳定性和高反应活性,赖氨酸残基的伯胺基团或蛋白质的N-末端是交联剂的常见靶标。最常用的是同位功能交联剂包括辛二酸二琥珀酰胺(DSS)和辛二酸(磺基琥珀酰亚胺基)。[2]在交联阶段之后,蛋白质被蛋白酶加工成肽段。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/05df0100-7766-418e-b884-48a3df737aec.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "图1:通用XL-MS工作流程。图片来源:乌得勒支大学Heck实验室Richard Scheltema/span/pp  “随后通过MS测量混合物进行鉴定——在大多数情况下,可以指定交联中涉及的氨基酸,用间隔臂的长度和两侧链的长度定义的距离进行约束” 乌特勒支大学Heck实验室Richard Scheltema博士解释说,“这些距离限制提供了关于蛋白质如何折叠(两种来自相同蛋白质的肽段)或蛋白质相互作用的有价值的信息,以及这种相互作用的界面位于何处(两种来自不同的蛋白质肽段)。”/pp  通常情况下,XL-MS实现的结构分辨率在15-50埃米,其分辨率无法与X射线晶体学、核磁共振(NMR)光谱学、cryo-EM等其他结构生物学技术的分辨率相匹敌。因此,这些技术必须相互补充使用。[3]/pp  span style="font-size: 18px "strongcryo-EM:提供的进一步解决方案/strong/span/pp  冷冻电镜(cryo-EM)是由透射电镜(TEM)发展而来的,它通过二维(2D)图像投影来确定三维(3D)结构,同时保持样品的完整性和结构接近原始状态。这是通过研究玻璃化状态下的样品来实现的。在玻璃化状态下,样品的薄片迅速浸入液态乙烷溶液中,低温保存并保护其免受TEM内的真空和辐射损伤。[4]Paulino也进一步讨论了cryo-EM与其他结构生物学技术相比的优势。/ppscript src="https://p.bokecc.com/player?vid=2D0A61DE3EBDEABB9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=5B1BAFA93D12E3DE&playertype=2" type="text/javascript"/scriptbr//ppimg src="https://img1.17img.cn/17img/images/201906/uepic/df940b25-54db-4467-9ea6-bf2efb791961.jpg" title="0.jpg" alt="0.jpg" style="max-width: 100% max-height: 100% "/br//pp  近年来,cryo-EM技术已经取得了长足的进步,这意味着许多样品现在可以用近原子分辨率(通常为3-5埃)进行分析。[5]不幸的是,在这个分辨率范围内,科学家们仍然难以区分和表征蛋白质复合物中所有氨基酸侧链,这意味着重新构建模型是一项复杂的任务。“cryo-EM的使用正在大幅增加,从这项技术记录的蛋白质结构轮廓来看,很难确定哪些蛋白质相互关联,以及它们在整个结构中是如何排列的。而这就是XL-MS介入的地方。/pp  XL-MS中的交联数据描述了肽段中两个特定氨基酸残基之间的最大距离。将提出的蛋白质结构模型及其结构域插入由cryo-EM重构获得的三维体中,并整合交联数据,以验证蛋白质复合物内特定肽的位置和方向。/pp  将蛋白质整合到三维体中是一项艰巨而复杂的任务,需要对所涉及的蛋白质复合物及其子成分有透彻的理解。因此,Sali团队开发了集成建模平台(IMP),这是一个希望将XL-MS和cryo-EM结合起来的研究人员的通用工作流程平台。/pp  span style="font-size: 18px "strongXL-MS和cryo-EM在结构生物学中被配合应用/strong/span/pp  最近,Henry等人确定了载脂蛋白E4(ApoE4)的活性结构和结合机制。ApoE4与阿尔茨海默病(AD)和心血管疾病(CVD)有关,是载脂蛋白(ApoE)的脂质化同种型,ApoE是一种蛋白质,通过充当细胞表面受体的配体,促进富含胆固醇的脂蛋白的内化。采用结合XL-MS,cryo-EM和生物信息学建模工具的混合方法,Henry等表明ApoE4存在于两种不同的确证中,指向依赖于调节其受体结合区可及性的激活机制。作者指出,这些发现可能对于解释蛋白质在AD和CVD中的作用以及随后潜在治疗方法的发展具有重要价值。[6]/pp  Schmidt和Urlaub在2017年全面综述中概述了类似的令人印象深刻的研究,包括Lü hrmann和Stark组对剪接体的结构表征。/pp  2019年1月,荷兰科学研究组织(NWO)向一个名为“细胞中蛋白质社会行为的监测和可视化”的项目拨款160万欧元的资助,其中XL-MS和cryo-EM技术以及其他分子方法,被综合使用。项目可视化了蛋白质之间的相互作用,该项目的主要研究人员包括Albert Heck、John van der Oost、Alexandre Bonvin、Friedrich Foerster和Scheltema等人。/pp  “在这个项目中,我们的目标是使用(一种cryo-EM的专门应用),在选定的一组嗜热菌中不偏倚地发现所有的蛋白质复合物。在这里,XL-MS被用来提供识别复合物内蛋白质的身份、空间顺序(通常不能直接从断层扫描数据中得到答案),以及结构模型来填补最终的空白。” Scheltema说,“之所以选择嗜热菌,是因为这些微生物是具有生物化学用途的蛋白质复合物的潜在宝库。”/pp  span style="font-size: 18px "strong重新定义限制,继续前进/strong/span/pp  总之,XL-MS和cryo-EM为结构蛋白组学领域提供了巨大的发展潜力。然而,每种技术都面临着自己的局限性,必须克服这些局限性才能形成完美的配合使用。/pp  “Cryo-EM不断重新定义其局限性,但我们仍然面临着一些挑战,”Paulino评论道,“对于X射线晶体学来说,获得完全可操作和维护的同步加速器束流线基本上是免费的,而cryo-EM的高成本和操作显微镜所需要的专业知识水平便成为一个障碍。” 在一定程度上(但并非全部),政府实施对Cryo-EM设备的补贴政策的解决了这一问题。/pp  “冷冻断层扫描提供了一种相对较低分辨率的蛋白质复合物视图,直接解释很困难。” Scheltema补充说,“另一方面,来自XL-MS的数据提供了解决方案中包含所有空间信息的视图。然而,我认为将这两者联系起来是最大的挑战,因为XL-MS提供了样本中所有蛋白质的信息, 这需要以某种方式过滤掉由断层扫描揭示的复合物内的蛋白质。”/pp  strong参考文献/strong/pp  1. Rappsilber, Juri. 2011. The Beginning of a Beautiful Friendship: Cross-Linking/Mass Spectrometry and Modelling of Proteins and Multi-Protein Complexes. Journal of Structural Biology. https://doi.org/10.1016/j.jsb.2010.10.014./pp  2. Yu and Huang. 2017. Cross-Linking Mass Spectrometry (XL-MS): An Emerging Technology for Interactomics and Structural Biology. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b04431./pp  3. Schmidt and Urlaub. 2017. Combining Cryo-Electron Microscopy (Cryo-EM) and Cross-Linking Mass Spectrometry (CX-MS) for Structural Elucidation of Large Protein Assemblies. Current Opinion in Structural Biology. https://doi.org/10.1016/j.sbi.2017.10.005./pp  4. Murata and Wolf. 2019. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. Biochimica et Biophysica Acta (BBA). https://doi.org/10.1016/j.bbagen.2017.07.020./pp  5. Lyumkis. 2019. Challenges and Opportunities in Cryo-EM Single-Particle Analysis. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.REV118.005602./pp  6. Henry N., et al. 2019. Lipidated apolipoprotein E4 structure and its receptor binding mechanism determined by a combined cross-linking coupled to mass spectrometry and molecular dynamics approach. Plos Computer Biology. doi: 10.1371/journal.pcbi.1006165./p
  • 上海比朗新品紫外交联仪 2013隆重推出
    上海比朗仪器BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。2013年初又推出新品,产品品质更加稳定可靠。产品核心电子元件都采用国外进口,来自日本,欧美等国家。  为使核苷酸固定在杂交膜上,传统的方法是将膜置于80℃真空烘箱中烘2小时,而比朗紫外交联仪上仅需在254nm紫外光下照射几秒钟即可。紫外照射可使杂交信号比传统烘烤法提高5-10倍。由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/c㎡),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  紫外交联仪主要特点:  ①为使核苷酸固定在杂交膜上,传统的方式是将膜于80℃真空烘箱中烘2小时,而在紫外交联仪上仅需在254nm紫外光下照射几秒种即可。  ②紫外照射可使杂交信号比传统烘烤法提高5-10倍。  ③由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/cm2),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  ④关机信息不丢失,中文液晶屏显示。  ⑤可触摸键盘,UV遮挡视窗。  ⑥不锈钢紫外曝光室。  紫外交联仪技术指标:  ●UV波长:254nm(根据用户需求另配,254nm 312nm, 365nm灯)  ●曝光时间测量范围:0-999.9(分钟),功率60W  ●UA光源:5个10W灯管 关机信息不丢失  ●9个曝光能量设定并可保存 汗化液晶屏显示  ●9个曝光时间设定并可保存 可触摸键盘  ●UV曝光能量手动设置 UV遮挡视窗  ●UV曝光时间手动设置 大型不锈钢紫外曝光机  ●外部尺寸:360mm× 340mm× 310mm  ●曝光室尺寸:长340mm× 宽260mm× 高150mm上海比朗仪器始终贯彻&ldquo 质量是企业的生命力&rdquo 这一方针,引进国外先进技术,打造一流品牌,追求客户满意,提供优良服务。欢迎新老客户莅临订购。更多紫外交联仪产品信息:http://www.bilon.cc
  • 岛津解析独家技术,献策生物医药色谱大会
    爽爽贵阳,无限春光,2018年4月17日第十二届全国生物医药色谱大会盛大召开。全国生物医药色谱及相关技术学术交流会是两年一届的系列学术会议,为广大生物医药色谱行业内人士提供了交流、学习和展示的平台。本次会议由中国化学会色谱专业委员会和北京色谱学会主办,贵州医科大学、贵州省药学会、北京理化分析测试技术学会协办,就生命科学、生物技术、医药、食品及环境等相关领域中的色谱理论与技术应用进行广泛研讨。参会的主要专家有大会主席北京大学刘虎威教授、贵州医科大学党委书记林昌虎研究员、中国色谱协会副理事长许国旺研究员、中国科学院江桂斌院士、中国科学院刘国诠研究员、西北大学耿信笃教授等来自全国各地的专家。大会现场 会议开幕式由大会主席刘虎威教授首先致辞,此次大会受到广大专家和行业人士的广泛支持,刘教授为此深表感谢,也期望未来大会能持续热度,为生物医药色谱领域提供便捷的学术平台。贵州医科大学党委书记林昌虎研究员和中国色谱学会副理事长许国旺研究员也分别为大会致辞祝贺,对于全国色谱领域的发展寄予期待。报告会首先由中国科学院生态环境研究中心江桂斌院士带来了关于《中药中微量元素的形态与分析质量控制》的研究内容。报告中讲到,科学评价重金属药物的安全性和潜在的健康风险需要由三个方面来说明:1.不同种类的药物中重金属的总量和形态分析;2.中药中重金属含量的生物可给性和有效性;3.科学评价中药中重金属的潜在风险。例如:砷和汞等重金属在中药中的毒性总量降低,随之生物有效性亦会减损。另外,可以通过3D打印技术来提高接口效率,用CE-ICP-MS联用技术做更精准的分析。最后江院士满载情怀的表示,中医药学作为中华国粹,既要传承其精华,又要完善市场制度,合理的将中医药研究应用到广泛领域。来自中科院大连化学物理研究所的张丽华研究员带来题为《基于化学交联-质谱技术的蛋白质相互作用新方法研究》的精彩报告。内容为:通过研制带有可富集、质谱可碎裂、具有不同交联臂长度和不同活性基因的交联剂,可以提高规模化蛋白质相互作用位点鉴定的覆盖度,以及蛋白质复合体结构解析的精准度。这种新方法的是对蛋白质相互作用研究的各种技术的重要补充。 中国科学院生态环境研究中心江桂斌院士中科院大连化学物理研究所的张丽华研究员在大会第二日,岛津公司分析测试仪器市场部张歆媛老师为大会带来了岛津独家技术,题为《岛津独有的nSMOL技术在抗体药物生物分析中的新应用》的精彩报告。岛津nSMOL(nano-surface and molecular-orientation limited proteolysis.),可以抗体类药物的生物分析提供具有极佳的准确性和重现性的定量分析方法。传统使用ELISA的分析方法常常会受到诸如ADA(anti-drug antibodies)的内源性配体的严重影响。而nSMOL方法不仅可以应用于抗体药物药代动力学的研究,还能应用于治疗相关的ADA。岛津公司分析测试仪器市场部经理张歆媛岛津公司分析测试仪器市场部曹磊部长在岛津之夜对出席的各位专家老师表示由衷感谢,同时介绍了公司目前的发展情况。生物医药领域关系着国民健康,作为仪器类企业也同样期望贡献一己之力,同共创新进步。岛津公司分析测试仪器市场部曹磊部长关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 生物物理所重大进展:90S核糖体前体冷冻电镜结构获解析
    核糖体是由RNA和大量蛋白质构成的大型分子机器,负责地球上所有生物的蛋白质合成。在真核生物中,核糖体组装是个非常复杂的过程。核糖体在成熟过程中需要和大量的组装因子暂时结合,形成了一系列核糖体前体复合物。小亚基核糖体在组装过程中形成两个主要的中间体:早期的90S和晚期的pre-40S前体。90S前体是个巨大的复合物,除了含有核糖体RNA和蛋白质组分,还含有约50个非核糖体蛋白质和U3 snoRNA,分子量高达5百万道尔顿。  中国科学院生物物理研究所叶克穷实验室利用冷冻电镜和单颗粒重构技术获得了出芽酵母90S核糖体前体的3个电子密度图,其中最好的密度图的整体分辨率达到4.5埃。研究人员利用已知的晶体结构、从头建模和化学交联质谱数据构建了接近完整的90S结构模型。  90S的结构显示新生核糖体小亚基折叠形成多个分离的亚结构,并和大量组装因子结合。核糖体前体RNA的5' 间隔区域、U3 snoRNA和大量组装因子形成巨大的基座,支撑新生核糖体的结构。结构还揭示了U3 snoRNA和核糖体前体RNA结合的新颖方式。该结构对理解核糖体小亚基的早期组装原理和组装因子的功能具有里程碑的意义。  报道该工作的论文Molecular architecture of the 90S small subunit pre-ribosome 于2月28日在eLife 杂志在线发表。  叶克穷是该论文的通信作者,孙奇、朱星、奇佳和安卫东是共同第一作者。合作者董梦秋和谭丹以及叶克穷课题组多位研究人员对该研究也有重要的贡献。中科院生物成像中心为该研究提供关键的冷冻电镜研究设备和技术支持。该研究得到了国家自然科学基金委、中科院战略性先导科技专项(B类)、科技部和北京市政府的资助。  文章链接 90S核糖体前体的冷冻电镜结构
  • 国家能源集团低碳院研发失效反渗透膜pH响应改性修复技术
    8月29日,国家能源集团北京低碳清洁能源研究院(以下简称低碳院)膜分离技术团队针对失效反渗透膜研发的pH响应改性修复技术相关研究成果发表在SCI水资源一区TOP期刊《Desalination》。   反渗透膜在工业废水处理等领域的长期运行过程中,聚酰胺膜表面会不可避免地发生膜污染,造成膜性能下降。当膜产水水质无法满足应用指标时,就需要对膜元件进行更换,导致废弃的反渗透膜数量日益增多。废弃反渗透膜通常作为固废垃圾被直接填埋,不仅给环境带来巨大压力,更造成资源的浪费。膜性能修复可有效延长反渗透膜的使用寿命,但目前的改性方法还存在长期使用性能有限、无法直接应用于膜元件等问题,因此,亟需开发一种简便、高效并可直接应用于失效反渗透膜元件的改性修复技术,以进一步提高修复膜的使用寿命。   研究团队以聚丙烯酸作为修复剂,对失效反渗透膜表面断裂的酰胺键进行修复改性处理。通过活化反应使修复剂与膜表面活性基团发生化学交联反应,有效提升失效反渗透膜的脱盐率,同时引入具有pH响应性的羧酸基团,用于通过工业常规碱/酸清洗来调节修复膜的脱盐性能。为进一步验证应用效果,研究团队对6支矿井水处理5年的废弃反渗透膜元件进行了聚丙烯酸改性修复,修复后的膜元件脱盐率平均从92.68%提高至97.26%。修复膜在矿井水处理现场连续运行的185天里,通过及时的酸洗调控使得修复膜性能满足现场需求,验证了修复膜的性能稳定性和脱盐率可控性。   膜分离技术是低碳院开展的诸多前沿技术研究之一,应用领域涉及水处理、二氧化碳捕集等。作为国家能源集团直属的前沿研究院,低碳院坚持需求牵引和问题导向,瞄准战略性新兴产业和未来产业,开展应用基础研究和前沿引领技术开发,为集团公司加快建设世界一流清洁低碳能源领军企业贡献科技力量。
  • 姜小姐采购紫外交联仪 比朗对该产品详细解答
    昨日,来这南京的江小姐须采购紫外交联仪到本公司进行了解,本公司技术顾问张先生对器做了详细解答。  &ldquo 你们公司紫外交联仪有什么用途么&rdquo 江小姐问道,&ldquo 我们公司BLUV07-II紫外交联仪是一种多用途的254mm紫外辐射系统,主要用于将核酸交联于膜上。还可用于琼脂糖凝胶中DNA的切割、RecA突变筛选、嘧啶二聚体产生的部分限制性内切酶消化、UA灭菌消除PCR污染等。在紫外灭菌、聚合物紫外处理等方面也有应用价值。&rdquo 张技术员回答道。  紫外交联仪有了解过,大部分都一样,你们公司的产品也是如此吧,江小姐问到。技术张笑着说起,紫外交联仪仪器特点:为使核苷酸固定在杂交膜上,传统的方式是将膜于80℃真空烘箱中烘2小时,而在紫外交联仪上仅需在254nm紫外光下照射几秒种即可,紫外照射可使杂交信号比传统烘烤法提高5-10倍。  由于紫外交联仪配置了一种紫外能量程序设计系统(Joules/cm2),即其中的时间积分仪连续检测紫外光的照射。当能量吸收值达到设定值时,照射将自动停止。所以不管紫外光源强弱与否、时间差异与否,照射循环均有很好的重复性。  还有,关机信息不丢失,中文液晶屏显示,可触摸键盘,UV遮挡视窗,不锈钢紫外曝光室。  听到张技术顾问这样详细的介绍,江小姐对本公司紫外交联仪很满意,订购8台,并且已经提前支付货款,今日进行发货。上海市闵行区北松公路588号16号楼仓储中心、联系电话:021-52965776
  • 张丽华:“1+12” 合作共赢,推动中国质谱发展
    p strong仪器信息网讯 /strong近年来,随着质谱技术的发展,从最早的无机质谱到现在有机、生物、医学质谱广泛应用,质谱从一个前沿的科研仪器设备越来越多的参与到我们日常的生活当中。以往,各类质谱学术交流活动虽然很多,但多集中于学科内部交流,不同领域之间的交流较少。所以,需要一个统一的质谱学术会议来聚合各领域的质谱同仁,相互交流合作,共同推动中国质谱的发展。/pp 为此,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办的新一届的“2018年中国质谱学术大会”将于2018年11月23-26日在广州市举办。本次大会,作为三大学会第一次联合举办的质谱大会,标志着中国质谱发展迈入新时代。/pp 在大会举办前夕,仪器信息网编辑特别采访了大连化学物理研究所生物分子高效分离与表征研究组的组长张丽华研究员,请她谈谈质谱技术在蛋白质组学研究中的应用以及围绕蛋白质组学所做的质谱技术研发工作。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/628b2e28-e500-492f-8163-3f8cdeb946a8.jpg" title="图片 1.png" alt="图片 1.png"//pp style="text-align: center " 中科院大连化学物理研究所张丽华研究员/ppspan style="color: rgb(75, 172, 198) "strongspan style="font-size: 18px "蛋白质组研究离不开质谱技术/span/strong/span/pp 蛋白质组学是研究细胞、组织或生物体蛋白质组成及其变化规律的科学,是近来生命科学领域研究热点方向之一。张丽华的课题组一直致力于蛋白质组分析新方法的研究。她表示,蛋白质组是一个复杂体系,而质谱技术是研究蛋白质组必不可少的工具。/pp 每个蛋白质组样本所包含的信息都是海量的。如果考虑到蛋白质的翻译后修饰和可变剪切,其蛋白质种类可达上百万种。除了种类繁多,样本中不同蛋白质丰度的分布范围也很广,且会随着时空动态不断改变。所以,要对蛋白质组进行定性定量分析,亟需高精准、高灵敏和高通量方法,而质谱技术在其中起到了不可替代的作用。/pp 张丽华表示,目前她的团队主要开展蛋白质组的定性、定量以及蛋白质与蛋白质之间相互作用的新方法研究。这些都离不开质谱。在定性研究方面,通过肽段在质谱上的鉴定,将碎片离子与数据库进行匹配,就可以告诉我们待测样本中有哪些蛋白,有哪些翻译后修饰,甚至翻译后修饰的位点在什么地方;在定量研究方面,根据二级质谱上的特征碎片离子的信号强度,我们就可以知道蛋白质含量的变化;在蛋白质间相互作用的研究方面,利用化学交联质谱技术,就可以获得蛋白质间相互作用的界面信息。“在我们团队的每个研究阶段,都需要质谱技术的支撑。”/ppspan style="color: rgb(75, 172, 198) "strongspan style="font-size: 18px "合作研发新技术,支持中国质谱发展 /span/strong/span/pp 从1997年第一次接触生物大分子有机质谱开始,张丽华已经和质谱技术打了20多年交道。她表示,从事方法学研究,不能仅仅为了开发方法而开发,更应该瞄准一些具体的科学问题,有针对性地开发相应的质谱方法。张丽华的团队通过引入化学反应,建立了诸多质谱相关的分析新方法,提高了质谱检测的灵敏度、定量的准确性以及相互作用位点确认的覆盖度。对此,张丽华表示:“希望通过厚积薄发,发展一些变革性技术,推动蛋白质组分析进程。” /pp 针对蛋白质组分析需求,张丽华的团队研发了很多可提高质谱性能的新技术新方法。研制带有纳米金涂层喷针的一体化毛细管液相色谱柱,可将肽段在质谱上的响应提高20-40%;与浙江好创合作,利用离子源气氛调节,提高了蛋白质鉴定的覆盖度;利用质量亏损原理对肽段进行稳定同位素标记,发展了基于二级质谱特征碎片离子的定量方法,提高了分析结果的精准度;设计了同时含有反应基团、质谱可碎裂基团和富集标签的化学交联试剂,可以获得更多的到蛋白质相互作用信息。/pp 除了自己团队发展新技术外,张丽华表示,她非常期待与国内更多不同领域的专家团队合作,一起把国产质谱仪器做好。虽然这条路可能并不平坦,但为了扭转高端质谱受制于人的“卡脖子”的局面,我们必须坚定地走下去。此外,只有基于自主研发的高端质谱,才有可能为我们提供更大的创新空间,有利于科研工作者做出原创性的高水平成果。/ppspan style="font-size: 18px "strongspan style="color: rgb(75, 172, 198) "跨学科交流,引领质谱走向新时代/span/strong/span/pp 现阶段,质谱作为一种重要的分析仪器,尤其是面对复杂体系时,在生命科学、环境、食品安全等领域拥有自己的优势。但是质谱技术并不完美,在原理、硬件设计、配套的方法学等方面还有很大的提升空间。而随着近几年质谱应用范围越来越广,国家在质谱上投入越来越多,相关的从业人员也越来越多。张丽华认为,这是一个积极的变化,有越多的人从事质谱相关的工作,通过交流合作,一定会碰撞出很多新的想法,未来质谱技术和仪器的提升空间也就越大。/pp 张丽华表示,她以往参加的质谱会议多集中在与化学、生物领域,但是质谱硬件的开发和物理技术息息相关。这次质谱大会的召开,可以把不同学科的研究人员汇聚在一起,有利于更加全面了解质谱领域的最新进展。通过积极推动各学科优势互补,促进我国质谱事业的蓬勃发展。/pp span style="font-size: 14px color: rgb(89, 89, 89) " 2018年11月23日开幕的中国质谱学术大会上,我们将有望一睹中国质谱事业新风采。仪器信息网作为大会合作媒体,届时将带来精彩报道,敬请期待。 /span/ppbr//ppbr//p
  • 乌得勒支大学和布鲁克合作开发4D结构蛋白组学方法
    近日,布鲁克宣布与 Utrecht University(乌得勒支大学,荷兰)合作,共同推进质谱技术在蛋白质3-D结构与相互作用方面的研究工作。乌得勒支大学的Albert Heck实验室在蛋白质组学、用质谱研究蛋白质结构和相互作用方面,具有20多年的丰富经验,在国际上一直遥遥领先。在Richard Scheltema博士加入乌得勒支大学后,领导一个科研小组集中围绕蛋白质组学结构和相互作用的交联质谱(XL-MS)展开研究。Albert Heck和Richard Scheltema的研究小组附属于乌得勒支大学附属的科学学院,工作重心是基于质谱的先进蛋白质组学技术的开发和应用,并以其基于质谱的结构生物学、天然质谱的开拓性方法和交联质谱方面的专业知识而闻名。该小组负责协调欧洲蛋白质组学研究基础设施,并领导荷兰X-Omics计划(www.x-omics.nl)的蛋白质组学核心。布鲁克和乌得勒支大学的合作聚焦于将捕集离子淌度(TIMS)和同步累积连续碎裂(PASEF)的优势与化学交联质谱(XL-MS)技术相结合,进一步拓展4D-蛋白质组学的应用,将timsTOF Pro质谱系统独特的大规模、精准CCS测定的优势应用于结构生物学研究中。该突破性的研究成果刚刚在《Molecular and Cellular Proteomics》上发表,题目为《Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry》1。布鲁克计划将这项研究成果商业化,形成基于XL-MS进行蛋白质结构和相互作用研究的完整解决方案。该方案通过将Heck和Scheltema开发的新颖、可富集的PhoX交联剂2与timsTOF Pro质谱平台上高通量与高灵敏度的PASEF方法相结合,可以发现更多的交联产物,从而得到有关蛋白质结构和相互作用的更多信息。先进的分析软件也是关键,相较典型的鸟枪法蛋白质组学实验,XL-MS获得了更复杂也更丰富的数据信息。Scheltema正致力于开发创新的 XlinkX 软件能够处理TIMS/PASEF数据,并将其提供给timsTOF Pro的用户群。乌得勒支大学Albert Heck教授表示:“我们很高兴同布鲁克合作进一步开发XL-MS的工作流,利用PASEF的快速、独特的大规模精确CCS数据来增强XL-MS中的交联检测。我们很开心在MCP上发表初步成果,并期待着XL-MS的进一步发展。同时我们对利用timsTOF Pro离子淌度分离和CCS值在糖蛋白组学和Top-Down蛋白质组学中的应用也很感兴趣。”乌得勒支大学 Albert Heck布鲁克蛋白质组学副总裁Gary Kruppa博士说:“2001年,我在桑迪亚国家实验室亲身参与了早期XL-MS的相关概念性的工作,我相信Heck团队所取得的研究进展将能够使timsTOF Pro应用于结构生物学研究变成更常规的方法。我们和乌得勒支大学的合作将使XL-MS在结构及相互作用蛋白质组应用得到更快推广。”乌得勒支大学Richard Scheltema教授表示:“我们团队打算通过基于对CCS值的测定和利用,来设置数据采集时的PASEF离子选择界线,从而增强XL-MS工作流程。我们在使用 XlinkX 软件分析XL-MS数据并获得生物信息学方面有了重大进展3,4。我们很高兴因timsTOF Pro采用开放的数据格式架构,XlinkX 开发的代码能将大规模并准确测定的CCS值用于交联肽的鉴定,从而进一步提升了错误发现率(FDR)的计算。”乌得勒支大学 Richard Scheltema参考文献:Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry. Steigenberger B, Van den Toorn H, Bijl E, Greisch JF, R?ther O, Lubeck M, Pieters RJ, Heck AJR, Scheltema RA., Mol Cell Proteomics, 2020 Jul 21:mcp.RA120.002094. doi:10.1074/mcp.RA120.002094. Online ahead of print.PhoX: An IMAC-Enrichable Cross-Linking Reagent. Steigenberger B, Pieters RJ, Heck AJR, Scheltema RA. ACSCent Sci. 2019 Sep 25 5(9): 1514-1522.Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Liu F, Rijkers DT, Post H, Heck AJ. Nat Methods. 2015 Dec 12(12):1179-84. doi:10.1038/nmeth.3603Klykov, O., Steigenberger, B., Pekta?, S. et al. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat Protoc 2018 Dec 13,2964–2990. https://doi.org/10.1038/s41596-018-0074-x
  • 大连化物所提出基于功能化纸基比色传感器的病毒检测新策略
    近日,大连化物所化学传感器研究组(106组)冯亮研究员团队与蛋白质折叠化学生物学创新特区研究组(02T5组)刘宇研究员团队合作在病毒核酸快速检测研究中取得新进展。团队发展了一种低成本、快速和便携式病毒检测策略,该策略依赖蛋白功能化修饰的纸基对荧光信号的生物正交富集,辅以实验室自制的微型DNA加热装置和手持荧光检测仪,可以实现对病毒核酸阴阳性的快速区分。   实时荧光定量PCR(qPCR)以及一些恒温扩增检测手段(RPA、LAMP等)在病毒检测的准确性和灵敏度方面都具有很大的优势,然而,其操作高度依赖昂贵的分析仪器和训练有素的工作人员,极大阻碍了在发展中国家以及资源有限地区的应用。纸基比色传感器以其成本低廉,构建简单,检测快速等优势引起研究者们的广泛关注。 本工作中,合作团队提出一种基于功能化纸基比色传感器的病毒检测新策略,通过在纸基上修饰以TR512多肽为核心的融合蛋白,创新性的将TR512多肽与Texas red荧光团之间的生物正交化学反应,转化为功能化纸基上的信号放大,并将该功能化纸基与自制的微型扩增加热装置和手持式荧光检测仪相结合,实现了对预扩增核酸溶液的生物正交富集,提高了检测灵敏度,极大缩短了检测周期。团队将该策略成功应用于不同的病毒核酸(HBV、ASFV、HPV16、HPV18等)阳性序列的检测中,以及乙肝病毒核酸(HBV)实际样品的检测中。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建富含苯基的硅胶溶胶凝胶微孔通道,实现三氯杀螨醇农药残留的微量检测(Food Chem.,2022);通过物理包埋方法在纸纤维表面包埋显色剂形成三点纸基检测阵列,实现自来水中Cu2+,Fe2+,Cl-的同时快速检测(Sens. Actuators B: Chem.,2019)。   相关研究成果以“A Novel Virus Detection Strategy Enabled by TR512-Peptide-Based Bioorthogonal Capture and Enrichment of Preamplified Nucleic Acid”为题,发表在《分析化学》(Anal. Chem.)上。该工作的第一作者是106组博士研究生朱明珍。上述工作得到中科院科研装备研制等项目的资助。
  • 2019年北京质谱年会召开 聚焦质谱与生命科学
    p style="text-align: justify "strong仪器信息网讯 /strong2019年3月29日-30日,由北京理化分析测试技术学会北京质谱学会主办,北京质谱中心协办的“2019年度北京质谱年会”在中国科学院大学(雁栖湖校区)隆重召开,约400位来自科研院所、高校、政府实验室及仪器公司等单位的代表参加了此次会议。会议为期两天,同往届惯例,本届会议交流形式包括大会报告、学术沙龙、质谱技术及应用培训。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/b43eaef2-72ae-43ad-bb55-16bafce90d43.jpg" title="图片 1.png" alt="图片 1.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "会议现场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/a4970a51-69c7-4c28-94e5-fbb5b15b027c.jpg" title="图片 2.png" alt="图片 2.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "北京质谱学会理事长 张新荣/pp style="text-align: justify " 北京质谱学会理事长张新荣为本届北京质谱年会致开幕辞。张新荣在致辞中表示,一年一度的北京质谱年会在基金季之后如期举行,本届北京质谱年会的主题是“质谱与生命科学”。 北京质谱年会,一直以来保持着优良的传统,首先,会议特别邀请了活跃在我国的青年专家、知名专家作高水平的质谱前沿技术与应用新进展报告;同时,为了帮助广大青年学者及学生更好地从事质谱相关研究工作,会议提供了技术培训,包括有机质谱培训、无机质谱培训。另外,会议也得到了广大质谱厂家的大力支持,众多企业进行了新产品技术报告及仪器展示。本届会议的宗旨是为大家提供一个信息分享的交流平台,推动质谱技术交流与推广。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/60a07cf5-5f6a-4e4f-9da8-fe585f155f07.jpg" title="图片 3.png" alt="图片 3.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "北京质谱中心主任 汪福意致辞/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/b37b196f-c5fc-4ae2-8bd5-db189e9d4301.jpg" title="图片 4.png" alt="图片 4.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "军事医学科学院放射与辐射医学研究所研究员 钱小红/pp style="text-align: center "报告题目:生物质谱技术与肝细胞癌蛋白质组研究/pp style="text-align: justify " 钱小红在报告中分享了生物质谱技术在肝细胞肝癌蛋白质组研究中应用的的进展。报告首先介绍了蛋白质组学相关的研究背景和进展以及生物质谱技术近年来的发展。蛋白质组组成复杂、具有时空特性、同时分子量较大,对分析手段提出很高的要求,而质谱技术的突破推动了蛋白质组学的发展,可用于蛋白组定性、定量研究。报告重点分享了课题组针对肝癌蛋白质的研究,通过对125例早期肝细胞癌样本的蛋白质组进行研究,改进了高通量蛋白质组分析技术,发现了能够将临床病人精细分类的蛋白质特征分子(群)、疾病发生发展过程中起重要作用的信号通路和可能用于疾病诊断的生物标志物群,对于疾病的基础研究、临床诊断好人精准医疗提供了重要的理论依据和数据支撑。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/8e8f714e-f544-46ff-b095-43354a8d285e.jpg" title="图片 5.png" alt="图片 5.png" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp style="text-align: center "中国科学院大连化学物理研究所研究员 张丽华/pp style="text-align: center "报告题目:基于化学交联质谱的蛋白质结构和相互作用解析新方法/pp style="text-align: justify " 蛋白质的结构和其功能密切相关,研究蛋白质结构非常必要。目前,研究蛋白质结构研究的方法包括X射线、冷冻电镜、核磁共振等均存在一些缺陷。而近年来发展起来的化学交联质谱技术可以提供蛋白质结构和相互作用界面信息,是研究蛋白质结构方法的有效补充。但化学交联质谱技术也面临着一些科学问题,报告主要介绍了课题组基于化学交联质谱的蛋白质结构和相互作用解析方法的研究工作,包括新型交联剂的研究、原位交联的蛋白质相互作用解析以及离子液体辅助的膜蛋白复合体提取等工作。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/0b692ae2-50f1-46a6-b9e3-6dede72184b1.jpg" title="图片 6.png" alt="图片 6.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "中央民族大学副校长兼药学院院长 再帕尔· 阿不力孜/pp style="text-align: center "报告题目:敞开式质谱成像技术与应用新进展/pp style="text-align: justify " 再帕尔· 阿不力孜在报告中介绍了课题组一直以来从事的代谢组学与质谱分子成像技术的相关研究。质谱成像技术与代谢组学相结合,可获得全面、原位的分子时空动态变化信息,实现不同分子的同时直观可视化分析,为药物或候选新药的药效及毒理作用机制的研究、原位标志物的发现及疾病筛查等提供新颖的研究手段。再帕尔· 阿不力孜还介绍了其课题组研发的免标记、便捷、高覆盖、高灵敏的AFAI-MSI技术,可从代谢物和代谢酶两个水平上认识肿瘤代谢。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201903/uepic/5973a99c-799d-433d-b6f4-549e5d044447.jpg" title="22.png" alt="22.png" width="600" height="400" border="0" vspace="0" style="width: 600px height: 400px "//pp style="text-align: center "中国科学院生态环境研究中心研究员 刘倩/pp style="text-align: center "报告题目:辩微识源:颗粒物的同位素指纹分析/pp style="text-align: justify " 颗粒物是现在一类重要的环境污染物,其来源广泛,包括天然来源以及人工合成,颗粒物来源甄别对与污染风险评价及污染控制有着重要作用。但是现有对颗粒物的鉴别技术主要有形貌鉴别及化学组分鉴别等,对于颗粒物来源鉴别能力较差。天然同位素指纹是一种强大的溯源指示物,报告主要介绍了课题组对同位素指纹揭示颗粒物来源方面的相关研究。开发了一种Si稳定同位数分析方法,建立了不同来源的纳米二氧化硅的硅-氧二维同位素指纹。并进一步研究了基于同位素指纹对PM2.5来源的解析。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d49dc338-c278-4c49-ba8e-2c1a8d779946.jpg" title="图片 8.png" alt="图片 8.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "北京大学副教授 白玉/pp style="text-align: center "报告题目:基于信号放大策略的生物标志物质谱超灵敏检测新方法/pp style="text-align: justify " 白玉在报告中讲述了其课题组针对重要的蛋白质疾病标志物以及肿瘤发展过程中重要的糖蛋白末端糖开展的工作,利用信号放大策略和常压质谱技术,分别建立了超灵敏分析方法以及质谱成像方法。白玉介绍道,针对临床蛋白标志物的检测,课题组基于抗体/适配体的特异性识别特点以及一系列结构类似的有机分子作为质谱信号分子,构建了针对目标物的特异性探针方法,该探针可同时实现细胞的荧光成像和质谱检测双功能。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/a5da2118-f63b-49c2-bd20-6c7577af734a.jpg" title="图片 9.png" alt="图片 9.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "中国科技大学教授 黄光明/pp style="text-align: center "报告题目:单细胞质谱揭示大脑神经元活动的分子机制/pp style="text-align: center "——按需研发的质谱分析/pp style="text-align: justify " 神经活动异常以及神经相关疾病,通常与代谢通道的变化有关系,代谢物的异常会引起神经元信号传递异常。因此,理解大脑活动机制对诊疗具有非常重要的价值。单细胞代谢通道分析方法面临许多挑战。黄光明及其课题组长期从事敞开式离子源的研发,及其在快速/实时质谱分析应用的相关工作。针对分析方法面临的挑战,其课题组建立的单细胞质谱分析平台,具有可分析单细胞、高通量、可同时获得化学和生物信息等特点。基于此,黄光明课题组进一步开展了质谱定性能力相关的研究,检测到了脑神经元中尿刊酸的存在、发现了神经元新的谷氨酸合成通路、鉴定了合成通路上的所有代谢中间体。得到“适度”晒太阳可增强运动学习能力等研究结论。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/f94dbeea-f824-44a1-8632-31daa60631e6.jpg" title="图片 21.png" alt="图片 21.png" width="600" height="399" border="0" vspace="0" style="width: 600px height: 399px "//pp style="text-align: center "南京大学教授 江德臣/pp style="text-align: center "报告题目:电注射器辅助电喷雾质谱法用于单细胞酶活性分析/pp style="text-align: justify " 江德臣在报告主要介绍了课题组在单细胞酶活性质谱分析方面的研究。主要包括提取出单个活细胞中的酶分子相关技术,纳通道减缓酶扩散和溶液挥发以及质谱分析底物和产物等方面的探索。/pp style="text-align: justify " 岛津、沃特世、Schauenburg Analytics、赛默飞、北京艾飞拓科技等质谱厂商也带来了最新技术的分享。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/2358a72a-f79d-422c-82c4-ecec9e50bbb4.jpg" style="width: 600px height: 399px " title="图片 11.png" width="600" height="399" border="0" vspace="0" alt="图片 11.png"//pp style="text-align: center "岛津企业管理(中国)有限公司邓力/pp style="text-align: center "报告题目:岛津全新高分辨液质联用Q-TOF助力未知物鉴定和多目标高通量筛查/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/17263823-8f89-4d61-b78d-937fec416052.jpg" style="width: 600px height: 399px " title="图片 12.png" width="600" height="399" border="0" vspace="0" alt="图片 12.png"//pp style="text-align: center "沃特世科技(上海)有限公司市场部质谱产品总监 舒放/pp style="text-align: center "报告题目:新理念,新质谱/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/2364d263-f1e1-4098-be83-10605fcabb29.jpg" style="width: 600px height: 399px " title="图片 13.png" width="600" height="399" border="0" vspace="0" alt="图片 13.png"//pp style="text-align: center "Research and Development Manager of Mass Spectrometry and Data Processing Schauenburg Analytics Ltd. Dr P B Grosshans/pp style="text-align: center "报告题目:Soft Ionisation in GCMS : Applications of a variable soft EI source operated in Tandem with classical 70eV ionisation/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/54623247-cb1e-4365-a149-266cbb8340d6.jpg" style="width: 600px height: 399px " title="图片 14.png" width="600" height="399" border="0" vspace="0" alt="图片 14.png"//pp style="text-align: center "赛默飞世尔科技(中国)有限公司 范超/pp style="text-align: center "报告题目:去芜存菁,让您的分析更精准,赛默飞全息多组学奥秘/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201903/uepic/d29aafe9-49f7-4bdb-804b-615a4ad836fb.jpg" style="width: 600px height: 399px " title="图片 15.png" width="600" height="399" border="0" vspace="0" alt="图片 15.png"//pp style="text-align: center "北京艾飞拓科技有限公司/pp style="text-align: center "报告题目:TOF-SIMS,原理和结构/pp 岛津、赛默飞、沃特世、IONTOF、上海磐合、安捷伦、耶拿、镤镦实验室、普兰德、安泰瑞科、布鲁克、东西分析、诚驿恒仪、上海中科新生命、成都奥普乐、美国力可等质谱仪器制造商及相关仪器耗材企业在会议期间设有展位,提供质谱仪器及应用的相关信息。/pp 本届会议还设立了食品与环境、医药与生命科学、无机质谱技术及应用、质谱新方法与新技术四个分组学术沙龙,供参会者根据兴趣选择参与。br//ppbr//p
  • 使用 CRIMP 2.0 对交联肽进行高灵敏度蛋白质组规模的搜索
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0,该文章的通讯作者是卡尔加里大学的David C. Schriemer教授。  交联质谱(XL-MS)是一种在蛋白质空间中生成点对点的距离测量值的有价值的技术。然而,基于细胞的XL-MS实验需要高效的软件来灵敏及错误率可控地检测交联肽。已经有许多算法通过过滤策略,在进行交联搜索之前达到缩减数据库的大小的效果,但也有人担心使用这些策略可能会降低灵敏度。  本文提出了一种新的评分方法,使用快速预搜索方法和受计算机视觉算法启发的概念来解析来自其他冲突反应产物的交联。对几个精选的交联数据集的搜索显示了很高的交联检测率,即使是最复杂的蛋白质组水平的搜索(使用不可断裂或可断裂的交联剂)也可以在传统的台式计算机上高效地完成。通过在评分方程中包含组成项,蛋白质−蛋白相互作用的检测增加了两倍。该组合功能可在软件Mass Spec Studio中作为CRIMP 2.0提供。  CRIMP 2.0 集成了改进的库缩减引擎和新的评分算法,可解决所有类别命中(例如游离肽、单链和交联)的谱图冲突。文章中修订后的误差估计方法考虑了在其他搜索工具中大多被忽略的跨类别的谱图冲突,并支持检测蛋白质-蛋白质相互作用的新方法。本文证明了库缩减策略确实可以提供高灵敏度,并支持不可断裂和可断裂实验类型的全蛋白质组分析,并且只需使用很少的计算资源。  图1 概述了搜索MS2数据集以寻找肽交联证据的典型方法的示意图。单通道方法从假定的交联肽的前体质量开始,并通过一个涉及α肽质量、β肽质量和交联剂质量的简单的三项加和来限制数据库搜索。然后,在MS2谱图中搜索组合。双通道方法由MS2谱图开始并结束:首先,在MS2数据中发现了候选α和β肽,此时,前体质量才用于限制组合,以便对MS2数据进行更详尽的搜索。  图2 使用Beveridge等人研究的DSS交联剂的复制数据集测试交联灵敏度。以(A)为5%和(B)为1%的计算FDR值对Cas9数据库进行了分析。分段Cas9数据库的结果在(C)为5%和(D)为1% FDR,显示为蛋白内和蛋白间搜索结果。使用多个添加的数据库显示诱饵数据库的效果,并注意到蛋白质的复杂性。真实的%FDR展示为标注数字。  图3 使用 DSSO 作为交联试剂和阶梯式HCD MS2 方法进行数据采集的平均交联肽段数目。上述算法的所有结果均来自添加了 CRIMP 2.0 的 Matzinger 等人,预期 FDR 为 1%(成对的左条),并使用分数后截止显示校正结果以达到实验验证的 FDR 1%(成对的右条)。  图4 合成肽基准数据集2中检测到的 PPI 数量,来自Matzinger 等人的研究。  蓝色条表示以估计的 5% FDR 进行的搜索,橙色条表示以估计的 1% FDR 进行的搜索。检索基准中的所有三组数据,并在搜索数据库中使用指示数量的蛋白质来探索诱饵的影响。真实的%FDR展示为标注数字。  图4 使用两种交联试剂交联大肠杆菌蛋白质组的 PPI 搜索结果。大肠杆菌蛋白质组使用两种交联试剂。(A)以目标5%FDR进行的搜索和(B)以目标1%FDR进行的搜索。结果基于Lenz等人研究中建立的近似PPI数据库,使用成分知情PPI评分方法。图底部的百分比显示了基于库组成的计算出的 FDR 值。  本文的结果表明,双通道数据库简化方法可以返回复杂样品中交联组成的灵敏测量。控制数据库限制的程度允许用户调整搜索速度以满足实验的需要,而不会引起对极大的灵敏度损失,因为对搜索参数的依赖性是适度且可预测的。通过对关键搜索词(如N,Eα和Eβ)进行细微的调整,即使是人类蛋白质组和密集的数小时LC - MS / MS运行也可以在一天或更短的时间内在一台台式计算机上进行处理,例如本研究中使用的那样。对于高度复杂的系统,蛮力穷举方法可能被证明不如双通道方法敏感。数据库的不必要扩展可能会产生嘈杂的搜索,就像蛋白质组学搜索使用过多的变量修改进行参数化时所做的那样。CRIMP允许对可裂解和不可裂解的交联剂进行强健的搜索,而不可裂解试剂在原位应用中应得到更多关注。这些试剂更容易合成,并且在这种规模上显然是互补的。此外,这些试剂产生跨肽片段离子,这可能是验证命中值的必要条件,特别是在探索相互作用由翻译后修饰定义的高度复杂状态时。总而言之,本文提出的 CRIMP 2.0 提供了此类活动所需的灵敏度和搜索速度。  撰稿: 聂旻涵编辑: 李惠琳  原文: High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0  参考文献  1. Crowder DA, Sarpe V, Amaral BC, Brodie NI, Michael ARM, Schriemer DC. High-Sensitivity Proteome-Scale Searches for Crosslinked Peptides Using CRIMP 2.0. Anal Chem. 2023 95(15):6425-6432. doi:10.1021/acs.analchem.3c00329
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制