当前位置: 仪器信息网 > 行业主题 > >

化学疗法

仪器信息网化学疗法专题为您整合化学疗法相关的最新文章,在化学疗法专题,您不仅可以免费浏览化学疗法的资讯, 同时您还可以浏览化学疗法的相关资料、解决方案,参与社区化学疗法话题讨论。

化学疗法相关的资讯

  • 外泌体创新疗法:机遇、挑战和应对策略
    外泌体创新疗法:机遇、挑战和应对策略多宁生物科技外泌体是细胞外囊泡的一种亚型,后者是源自细胞的脂质双层闭合结构,几乎由所有类型的细胞分泌,包括外泌体(30-150 nm)、微泡(150 nm 至 1 μm)和凋亡小体(1-5 μm)。长期以来,这些囊泡被认为是一种装载细胞代谢废物的方式,负责运输细胞产生的废物。直到80年代,科研人员在研究绵羊网织红细胞的发育时,才初步确定了一些30-150 nm的囊泡的作用,并命名为外泌体。在电子显微镜下观察,外泌体的形状一般呈杯状或球状,其在细胞间保护和递送功能性大分子,包括核酸、蛋白质、脂质和碳水化合物,将它们的“货物”转移到受体细胞。基于外泌体的临床试验的分析(J. Rezaie, et al., 2022)基于多年的研究,行业已经认识到了外泌体在多种应用中的潜力。在目前的临床试验中,外泌体被用作生物标志物、无细胞疗法(外泌体疗法)、药物递送系统以及抗肿瘤疫苗等。其来源包括间充质细胞、T 细胞和树突状细胞以及其它工程细胞系。外泌体作为药物递送载体具有不可替代的优势,包括低免疫原性、优异的生物相容性和生物稳定性。除了使用未经任何基因/化学修饰的天然外泌体外,对于将有效载荷载入外泌体,主要有两种方式:在直接方法中,外泌体在制备和纯化后装载治疗药物(外源性加载),而在间接方法中,适当的细胞经过基因工程处理或与治疗药物共培养以产生工程外泌体(内源性加载)。将不同有效载荷加载到外泌体中的策略。A. 未经任何基因/化学修饰的天然外泌体。B. 通过亲代细胞工程(树突细胞、间充质干细胞、成纤维细胞和其它细胞)将货物装载到外泌体中。这种策略能够通过在外泌体生物发生之前简单地增加它们在亲代细胞细胞质中的浓度来加载核酸、蛋白质和/或小分子量药物,从而将所需分子包装到新形成的外泌体的腔中。C. 通过膜透化或加载策略将货物加载到外泌体(分离后)。这种策略能够通过被动或主动载荷装载方法装载核酸、蛋白质和/或小药物。然后细胞外环境中的外泌体可以被受体细胞吸收。(D. Ferreira, et al., 2022)对于外源性加载,行业已经探索了各种策略,以将药物加载到外泌体中,最大化其递送潜力,包括简单的孵育以及电转、超声处理、冻融等。研究之间通常存在一些差异,归因于不同的亲本细胞的生物学行为和试剂特性。此外,外泌体天生就装载有天然蛋白质和核酸,这大大降低了所需的载荷装载效率。实现最佳装载的正确方法,又在一定程度上取决于载荷分子,必须事先仔细选择,并且应该考虑负载能力、药物保留和对外泌体特性的潜在影响。直接加载策略的局限性限制了基于外泌体的疗法在临床试验中的使用。创建和使用合理且目的性设计、具有高度定义和可再现属性、同时具有一个已知作用机制的工程外泌体是天然源性外泌体的一个令人信服的替代选择,因为天然源性外泌体通常具有较高的异质性,且作用机制不明确,而工程外泌体对于重要新药物的开发来说,是更加可行的基础。但工程方法需要在维持理想的外泌体理化特性和提高装载效率方面实现一定的改进。而另一个挑战在于,大部分用于外泌体工程的方法都难以在稳定载入所需载荷以及表面修饰 vs. 保持外泌体生物相容性之间找到平衡。基于外泌体的治疗产品的cGMP生产流程(J. Rezaie, et al., 2022)在将基于外泌体的疗法扩展到工业规模生产并随后进入临床的另一个瓶颈是大规模临床级外泌体的产生。外泌体的产量高度依赖于其亲本细胞,受限于细胞分泌外泌体的能力不同以及大规模细胞培养的高难度和高成本。对于药用外泌体行业,扩大到工业水平仍处于起步阶段,最重要的是尽早决定能够生产所需数量并含有治疗性有效载荷的外泌体的方法。大规模外泌体分离方法的低效性是临床级外泌体开发的另一个障碍。不同细胞类型释放的外泌体的数量、物理化学特征和组成可能不同。目前,基于不同原理的技术已用于外泌体分离,包括差速/超速离心、过滤、尺寸排阻层析、基于免疫亲和捕获、聚合物沉淀等。尽管已经开发并优化了一些外泌体纯化方法,但仍然很难找到一种特定的方法解决所有相关的挑战,如分离效率低、样品损失、外泌体回收率和纯度低、以及批次间差异。相应地,全面表征外泌体也至关重要,特别是在大小、形态、浓度、外泌体标记物/内容物的存在以及污染物的去除方面。常用的外泌体分离方法及其优、缺点虽然仍存在挑战和限制,但各种制药公司和初创企业已经铺平了临床级外泌体疗法的发展之路。越来越多的公司专注于开发此类基于外泌体的疗法,以解决各种疗法的药物输送问题,包括小分子、RNA 疗法、蛋白质、病毒基因疗法,甚至成簇规律间隔的短回文重复序列 (CRISPR) 基因编辑工具。其中一些公司也在寻求更加创新的外泌体工程方法来设计基于外泌体的治疗药物,以增加载药量,提高靶向能力。递送 RNA、蛋白质和化学药物的传统方法已经显示出一些局限性,而外泌体作为药物递送载体具有免疫原性低、长期安全和无细胞毒性等巨大优势,在基于外泌体的药物在临床转化、大规模生产、稳定的制备、存储方案和质量控制方面仍存在必须克服的挑战。进一步开发细胞衍生的工程外泌体及其分离、纯化和药物装载技术将有助于克服这些缺点。工程外泌体在提高生产力方面具有显著的商业优势。此外,通过将特定的表面分子锚定在外泌体上,可以增加外泌体在靶细胞或目标疾病部位的局部浓度,从而降低毒性和不良反应,并最大限度地提高治疗效果。未来,行业将可能开发新型多功能化工程外泌体来改善医疗保健,因此,需要进一步的研究来探索外泌体介导疗法的新策略。参考文献:D. Ferreira, J.N.Moreira, L.R. Rodrigues, New advances in exosome-based targeted drug delivery systems. Critical Reviews in Oncology / Hematology, 2022,172:103628.J.Rezaie, M. Feghhi, T.Etemadi, A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Communication and Signaling, 2022: 20:145.S.Bashyal, C.Thapa, S.Lee, Recent progresses in exosome-based systems for targeted drug delivery to the brain. Journal of Controlled Release, 2022, 348:723-744.
  • 国内首个基因编辑疗法临床试验申请获受理,治疗β 地中海贫血
    p style="text-indent: 2em "10月27日,记者从国内基因编辑领域先锋博雅辑因(EdiGene, Inc.)获悉,公司当天宣布中国国家药品监督管理局药品审评中心已经受理其针对输血依赖型β地中海贫血的基因编辑疗法产品ET-01(受理号:CXSL2000299),即CRISPR/Cas9基因修饰BCL11A红系增强子的自体CD34+造血干祖细胞注射液的临床试验申请。/pp style="text-indent: 2em "这是中国首个获药品审评中心受理的基因编辑疗法临床试验申请。据介绍,此项临床试验计划在输血依赖型β地中海贫血患者中评价ET-01单次移植的安全性和有效性。/pp style="text-indent: 2em "ET-01,即CRISPR/Cas9基因修饰BCL11A红系增强子的自体CD34+造血干祖细胞注射液,是处于研究阶段的、用于治疗输血依赖型β地中海贫血的产品。ET-01原液通过采集患者自体动员外周血单个核细胞,富集CD34+细胞群后用CRISPR/Cas9系统编辑BCL11A基因的红系增强子制成。/pp style="text-indent: 2em "此前的2018年,博雅辑因在广州南沙区建立了cGMP标准的基因编辑临床转化应用基地,并于2019年在第61届美国血液学年会(ASH)上发布了ET-01规模化生产及临床前安全性和有效性实验数据。/pp style="text-indent: 2em "地中海贫血是指一组由珠蛋白基因缺失或点突变致使珠蛋白肽链合成被部分或完全抑制的遗传性溶血性贫血疾病。临床上,最常见的为α地中海贫血和β地中海贫血,由组成正常成年人的血红蛋白(HbA, α2β2)的两种多肽链(α或β)之一减少导致。/pp style="text-indent: 2em "据2015年《中国地中海贫血蓝皮书》,中国地中海贫血病基因携带者高达3000万人,中重型地中海贫血病患者达30万人。β地贫患儿出生后病情进行性加重,除贫血症状外,易并发脾肿大、发育落后及免疫力低下导致的多器官功能受损50%重型地贫患者5岁之前夭折,如不进行有效治疗,很少能活过20岁。/pp style="text-indent: 2em "“我们非常高兴看到公司取得这一重要里程碑,继续将ET-01向临床试验阶段推进。”博雅辑因首席执行官魏东博士表示,“我们一直致力于将前沿的基因编辑技术转化为变革性疗法,为患者带去更优的治疗选择,并为一些疾病的患者带去一次性治愈的可能。我们期待ET-01的临床试验获得许可开展的时刻,更期望我们的产品能够真正改变患者的生活,帮助他们活得更健康长久。”/pp style="text-indent: 2em "值得注意的是,自2013年以来,基因编辑领域持续火热。埃马纽埃尔· 卡彭蒂耶(Emmanuelle Charpentier)和詹妮弗· 杜德纳(Jennifer A. Doudna)两位CRISPR基因编辑系统的开发者也最终摘得今年的诺贝尔化学奖。/pp style="text-indent: 2em "仅在过去的一年半中,就至少有11项基因编辑研发项目在美国、欧盟进入临床开发阶段,其中有6项基于CRISPR基因编辑系统。而在地中海贫血治疗方面,2018年,生物医药企业CRISPR Therapeutics和美国制药企业福泰制药(Vertex Pharmaceuticals)的CTX001获得了美国和欧洲监管机构的新药研究申请批件,这也是全球首个由制药公司发起的体外CRISPR疗法的新药临床试验,目前处于I/II期临床试验阶段。/pp style="text-indent: 2em "此外,基因编辑技术ZFN的持有者Sangamo Therapeutics公司针对地中海贫血使用ZFN技术针对造血干细胞进行修复,该项目是和赛诺菲子公司Bioverativ合作开发,现在也已经进入I/II期临床研究阶段。/pp style="text-indent: 2em "博雅辑因成立于2015年,总部位于北京,在广州以及美国剑桥设有分公司。官网介绍,博雅辑因是一家致力于通过国际前沿的基因组编辑技术,为多种遗传疾病和癌症加速药物研究以及开发创新疗法的生物医药企业。/pp style="text-indent: 2em "博雅辑因科学创始人为北京大学生命科学学院教授魏文胜。现年51岁的魏文胜出生于江苏,1991年获得北京大学生物化学学士学位,1999年获得密西根州立大学遗传学博士学位,之后赴斯坦福大学医学院从事博士后研究,师从美国科学院院士Stanley Cohen教授。魏文胜还担任北京大学生物医学前沿创新中心(BIOPIC)、北京未来基因诊断高精尖创新中心(ICG)及北大-清华生命科学联合中心(CLS)研究员以及北京大学基因组编辑研究中心主任等多项职务。/pp style="text-indent: 2em "值得一提的是,就在10月13日,博雅辑因宣布了完成4.5亿元人民币的B轮融资。这是国内基因编辑疗法研发企业中截至目前最大金额融资,也是首个B轮融资。2018年8月至今,博雅辑因在过去2年总融资金额达7亿元人民币。/ppbr//p
  • 免疫细胞疗法能否成为肿瘤的主要治疗方法?
    分享:基因编辑技术能否有助于将细胞疗法用于治疗实体瘤?珀金埃尔默旗下Horizon Discovery的乔纳森弗兰普顿 (Jonathan Frampton) 在给Laboratory News的一篇撰文中,介绍了如何利用碱基编辑技术来降低当前昂贵的治疗成本,使其成为治疗癌症的主流方法。开发同种异体细胞疗法还需解决一些挑战,包括如何避免破坏患者的免疫系统。目前有两种有效的细胞疗法能治疗“液体肿瘤”(白血病和淋巴瘤)。诺华研发的Kymriah和吉利德科学研发的Yescarta两种药物使用的细胞均属于嵌合抗原受体(CAR) T细胞——两者最初均表现出高反应率,这种高反应率会在部分患者中形成持久的临床反应。虽然这些疗法的前期效果良好,但如何让下一代细胞疗法能够有效治疗实体瘤,仍面临不少问题。2019年,美国新增约176,000名液体肿瘤患者,而实体瘤新增患者约为160万(几乎增长10倍)。此外,由于Kymriah和Yescarta 均属于自体疗法(使用患者体内的细胞用于药物生产),这种个体的治疗成本很高,分别为475,000美元(Kymriah)和373,000美元(Yescarta),这远远超出了大众可以承受的医疗预算范围。相比之下,如使用一般抗癌药物,患者每月的花费约为10,000 美元。这种情况下,需要作出哪些改变,才能让细胞疗法成为治疗癌症的主要方法呢?基因编辑技术—能否将细胞疗法用于治疗实体瘤?尽管细胞疗法是一种复杂的癌症治疗形式,但它可以直接靶向液体肿瘤。细胞疗法可以通过血液进入白血病和淋巴瘤细胞,从而不需要靶向特定的组织或器官,也无需在杂乱无章的毛细血管网络中进行导航以及长时间驻留在免疫抑制和缺氧的实体瘤微环境中。人们普遍认为,需要进一步完善细胞疗法才能应对和克服这些挑战,从而提高患者的生存率。 避免出现脱靶染色体易位要增加存活率、增殖率和持久性,需要精确调节治疗细胞,这可能涉及对多个基因进行编辑。虽然普遍使用的基因编辑器CRISPR-Cas 在改变单个遗传信息时具有很强的稳健性,但这一过程会使得DNA双链产生断裂 (DSB) ,导致细胞出现脱靶染色体易位。借助单编辑或双编辑技术,在正确的指引和谨慎使用下,就很少会出现遗传信息的改变;不过,如需要编辑多个基因,产生染色体易位和其他遗传畸变的风险就会增加,这种风险可能会引起致癌细胞的产生,对于患者来说这无疑是一种潜在的灾难。在需要对一个或两个基因进行编辑,如果可以精确地识别出用于患者治疗的已编辑过细胞,就可避免易位现象。然而,当需要编辑的细胞较多时,很难精确识别已编辑细胞,进而导致致癌易位风险的增加。碱基编辑器:避免出现双链断裂碱基编辑作为基因编辑领域一项相对较新的技术,正在受到人们的关注。碱基编辑器可以在不使用核酸酶来导入DNA 双链断裂的情况下,持续高效地在原代细胞中进行基因编辑。利用碱基编辑在DNA中形成一个缺口(或单链断裂)并借助脱氨酶改变特定的碱基对,这样就可以通过在早期编码外显子中引入终止密码子来实现高效的基因敲除。未来几年,碱基编辑会对细胞疗法的发展产生更明显的影响,尤其是对同种异体细胞、非自体细胞治疗的发展的影响。通用型同种异体细胞疗法?借助同种异体细胞疗法,可以将健康供体转换为通用型治疗细胞,可以大规模生产治疗细胞并集中储存,在治疗需要时可以随时获取。但要开发同种异体细胞疗法会面临一些挑战,包括如何才能避免破坏患者的免疫系统。为了克服这个问题,就必须改造现行的同种异体细胞疗法,使其具有隐身模式,在这种模式下,患者的免疫系统将它视为“自我”的一部分。要开发出这样的细胞,需要修改多个基因,而且这些基因很可能会被敲除。碱基编辑器将在编辑多个基因方面发挥关键作用,这样能够在不使用免疫抑制药物的情况下,延长同种异体治疗细胞在患者体内的存活时间。同种异体细胞疗法的供应链简单、易大规模生产,成本上比自体细胞疗法更低。相关医疗经济研究结果表明,如果能够实现规模经济,同种异体细胞疗法的费用可以降到每剂7500美元,毫无疑问这将有助于进一步推广细胞疗法,使其成为主流疗法。推广细胞疗法持久临床反应的高效细胞疗法是另一个可以实现的目标。它需要将免疫细胞的疗法在治疗液体肿瘤中的成功经验转应用于治疗实体瘤,它需要修改免疫细胞,使其能够适应更为复杂的实体瘤微环境,同时降低此类疗法的成本。这两个目标都可以通过应用高效的基因编辑技术开发同种异体细胞疗法来实现。目前人们正利用CRISPR-Cas进行细胞开发,随着安全性不断提高,未来的同种异体细胞疗法利用碱基编辑器来改变基因信息,将为真正的细胞疗法治疗肿瘤带来雨霖。作者: Jonathan Frampton,珀金埃尔默旗下Horizon Discovery业务发展合伙人(Corporate Development Partner)
  • 《海南省加快推进数字疗法产业发展的若干措施》出台,建设一批数字疗法临床试验中心
    继年初将数字疗法列入省级规划,日前,海南省人民政府又发布了一份《加快推进数字疗法产业发展的若干措施》,明确要在2-3年将海南建设成为全球数字疗法创新岛、创新资源集聚区和产业高地,将数字疗法打造成海南健康产业高质量发展的“新引擎”,推动海南卫生健康跨越式发展和“十四五”期间人均预期寿命提高两岁目标的实现。附全文:海南省加快推进数字疗法产业发展的若干措施为贯彻落实习近平总书记在庆祝海南建省办经济特区30周年大会上关于“海南要深化供给侧结构性改革,发挥优势,集聚创新要素,积极发展新一代信息技术产业和数字经济”的讲话精神,抢抓历史机遇,通过2—3年的努力将海南建设成为全球数字疗法创新岛、创新资源集聚区和产业高地,将数字疗法打造成海南健康产业高质量发展的“新引擎”,推动海南卫生健康跨越式发展和“十四五”期间人均预期寿命提高两岁目标的实现,特制定以下措施:一、建设全国领先的数字疗法临床科研示范基地(一)建设一批数字疗法临床试验中心。在全省选择一批具有优势学科的三级医院建立数字疗法临床试验中心,如博鳌乐城国际医疗旅游先行区数字疗法临床研究及转化基地、精神障碍数字疗法临床试验中心、儿童注意力缺陷与多动障碍及孤独症数字疗法临床试验中心、肿瘤数字疗法临床试验中心、眼科数字疗法临床试验中心、睡眠数字疗法临床试验中心等。(责任单位:省卫生健康委、省药监局、博鳌乐城国际医疗旅游先行区管理局;落实期限:2022年10月31日前)(二)鼓励开展数字疗法技术攻关与临床转化。鼓励医疗机构及高校院所开展数字疗法科学研究,推动临床转化。积极组织申报省重点研发专项、省自然科学基金等科技专项资金,探索通过“揭榜挂帅”等方式吸引优势力量进行数字疗法产业重点关键技术攻关。鼓励开展国际科研合作,发展数字疗法全球科研项目合作平台。支持数字疗法产品研发创新,可利用省生物医药产业研发券及省内其他研发创新支持政策,根据数字疗法产品研发及产业化的不同阶段性成果,分步给予企业、高校和医疗机构相应补助和奖励。支持医疗机构对积极开展和承接数字疗法临床研究的人员在岗位设置、职务晋升、评奖推优等方面给予一定的倾斜,在公立医院内部绩效分配时适当加大对数字疗法临床研究人员的倾斜,允许数字疗法职务科技成果转化现金奖励计入当年单位绩效工资总量,不受总量限制,不纳入总量基数,不作为社会保险缴费基数。(责任单位:省科技厅、省工业和信息化厅、省卫生健康委、省委人才发展局、省人力资源社会保障厅、省教育厅;落实期限:2022年12月31日前)(三)加快建设数字疗法公共服务和管理平台。在相关部门网站上建立数字疗法产业发展专项通道,支持企业、医疗机构、临床医生等数字疗法参与方提交临床试验需求,帮助各方快速对接和匹配资源。建立数字疗法临床试验公示系统,数字疗法企业及时上报临床试验具体情况和试验结果,相关信息可作为审批部门的凭证依据。引入一批数字疗法CRO、CDMO企业落户海南,支持海南数字疗法CDMO平台建设,支持CDMO等平台与海南实体医院、互联网医院进行临床试验和市场化合作。(责任单位:省卫生健康委、省药监局、省工业和信息化厅;落实期限:2022年10月31日前)二、加快数字疗法产品注册审批(四)制定数字疗法产品分类监管和注册审批指导文件。在部门网站上设置数字疗法专栏,列示数字疗法注册审批相关的监管政策和指导文件。依据国家药品监督管理局医疗器械软件类产品分类指导原则、移动医疗器械注册技术审查指导原则及国家标准管理中心分类界定结果等,形成数字疗法分类界定意见并于专栏公布;对数字疗法产品在临床试验、注册审评审批、更新迭代等关键环节可以适用的监管政策、监管文件和操作指引进行分类说明。(责任单位:省药监局;落实期限:2022年12月31日前)(五)建立第二类医疗器械数字疗法产品注册辅导专项通道。在相关部门网站公示数字疗法监管政策咨询专线及邮箱,建立第二类医疗器械数字疗法产品专项辅导快速响应机制,由专人负责数字疗法产品技术咨询,原则上在收到咨询后10个工作日内给予回复。针对企业申请数字疗法产品注册流程和政策开展培训,提升企业申报标准和质量,提高审批通过率。(责任单位:省药监局;落实期限:2022年10月31日前)(六)出台数字疗法鼓励发展目录,建立特定种类数字疗法绿色审批通道。优先鼓励发展一批循证依据坚实、技术成熟度高、海南临床急需、发展前景广阔的数字疗法产品,建立优先审批通道。制定数字疗法优先审批程序,明确适用优先审批程序需满足的条件及工作程序,在企业按医疗器械注册申报资料要求提交数字疗法产品注册申请后3个月内完成审评审批,其中企业补正资料、专家技术审评不计入时限要求。对未获批的,告知申请方未能通过原因及建议。(责任单位:省药监局;落实期限:2022年10月31日前)(七)探索数字疗法备案制,鼓励真实世界数据在产品注册审批和上市临床验证中的应用。对于风险低、适用于筛查、干预等公共卫生领域的数字疗法产品,在符合国家有关审评审批要求的前提下探索通过备案方式快速推广应用。鼓励真实世界研究,充分发挥国家药品监督管理局药品医疗器械监管科学研究基地和国家药品监督管理局海南真实世界数据研究与评价重点实验室的引领作用,以及特许医疗器械产品通过真实世界研究政策获批上市的经验,推进将真实世界数据用于数字疗法产品申报注册依据和数字疗法产品监管决策及上市后临床验证。(责任单位:省药监局;落实期限:长期推进)三、积极推广数字疗法产品应用(八)建设数字疗法推广基地。遴选符合条件的医疗机构作为首批数字疗法诊疗中心,逐步将数字疗法纳入所有符合条件医疗机构的疾病常规诊疗路径。结合海南省“2+3”健康服务包等工作,依托数字疗法提升基层医疗机构医疗服务供给能力和患者个人与家庭的疾病管理能力。鼓励医疗机构在院内推广宣传数字疗法,提高患者和公众对数字疗法的认知水平和使用能力。(责任单位:省卫生健康委;落实期限:2022年12月31日前)(九)促进数字疗法与互联网医院融合发展。鼓励医疗机构将数字疗法与互联网医院平台整合,赋予医生在互联网医院开具数字疗法处方的权限。推动互联网医院加大数字疗法产品应用,提升在专病防治和健康干预等领域的服务功能。鼓励医生将数字疗法作为院外管理患者的工具,并结合互联网医院复诊续方、处方流转、医药配送等功能,实现全方位的患者院外管理。通过海南省互联网医院监管平台实现对数字疗法的运营监管。(责任单位:省卫生健康委;落实期限:2022年12月31日前)(十)建设全国领先的数字疗法应用示范区域。将数字疗法引入海南医疗卫生改革发展全过程,协同海南分级诊疗制度建设、诊疗中心建设等改革发展工作,支持在城市医疗集团、县域医共体、胸痛中心等五大中心中推广应用临床需求急迫、临床价值突出的数字疗法产品。鼓励应用数字疗法产生的患者数据支持二级、三级医院医生对疑难重症的诊断,支撑基层医疗机构医务人员完成慢病患者管理和病情追踪。推进区域医疗信息化建设,打通数字疗法与区域电子病历数据库、电子健康档案数据库接口。依托海南省“三医联动一张网”平台,实现对数字疗法的综合监管。(责任单位:省卫生健康委;落实期限:2022年12月31日前)(十一)鼓励社会各方面加大数字疗法产品应用。鼓励相关部门、公益基金会等机构和组织采购数字疗法产品,围绕重点人群、疾病以及多元化、多层次数字健康需求,在更大范围内将数字疗法产品用于心理健康和行为认知等的治疗,有效提升慢性病干预和筛查效果,通过数字疗法技术赋能社区家庭医生,创新服务形式,提高居民健康干预能力。(责任单位:省卫生健康委、省残联;落实期限:2022年12月31日前)四、鼓励探索多种支付方式(十二)鼓励探索“数字疗法+商业保险”产品创新。在博鳌乐城国际医疗旅游先行区试点探索将数字疗法作为特药险的健康管理服务。鼓励保险公司依法合规将数字疗法作为用户健康管理服务工具,并根据数字疗法收集的真实世界数据按有关规定合理定价。探索开发海南惠民保升级版,将部分数字疗法产品作为健康管理服务纳入保险产品的保障范围。鼓励将数字疗法产品纳入保险机构的保险产品设计体系。支持保险机构产品开发人员参加医疗主管部门组织的数字疗法培训,提升对数字疗法的认知。(责任单位:银保监会海南监管局、省财政厅、省医保局、省卫生健康委、省税务局、博鳌乐城国际医疗旅游先行区管理局;落实期限:2025年12月31日前)(十三)鼓励将数字疗法纳入医疗服务项目技术规范和收费范围。探索数字疗法价格形成机制和医保支付模式。根据特定疾病实际诊疗需求,积极探索临床使用数字疗法价格形成机制,合理制定数字疗法收费标准,数字疗法医疗服务价格项目由医疗机构向省医保局提出申请,经组织论证和履行相关程序后公布执行;按照以与经济发展水平相适应为前提、以体现医保社会公平性为指导、以提升价值为核心的医保战略购买原则,研究将临床价值高、经济性评价优良、医保基金和参保人可承受的数字疗法产品或医疗服务纳入医保支付范围。将医疗机构使用的数字疗法产品纳入医疗服务收入范围。(责任单位:省医保局、省卫生健康委;落实期限:2022年12月31日前)(十四)支持探索数字疗法与医保支付方式改革相结合。结合全省医保支付方式改革进展情况,选取已经开展数字疗法并积累相关数据的医疗机构,支持数字疗法在医疗成本管控和健康管理中的应用,探索数字疗法与推进按病种付费相结合的有效形式,促进构建基于价值和数据高效管用的支付机制形成。(责任单位:省医保局、省卫生健康委;落实期限:2022年12月31日前)五、加强数字疗法宣传和产业集群建设(十五)高质量打造数字疗法产业集群。梳理国内外数字疗法企业和潜在意向企业,形成企业名录,实施全产业链精准招商。依托海南自由贸易港政策优势和数字疗法全周期政策支撑体系,以及电子处方中心等高水平数据平台,吸聚创新资源,结合博鳌乐城国际医疗旅游先行区、海南生态软件园、海口国家高新技术开发区、海口复兴城互联网信息产业园等重点园区的产业基础,打造海南自由贸易港数字疗法若干创新高地和产业集群。(责任单位:省卫生健康委、省发展改革委、博鳌乐城国际医疗旅游先行区管理局、海南生态软件园管理局、海口国家高新技术产业开发区管委会、海口复兴城互联网信息产业园、海南国际经济发展局等;落实期限:2023年12月31日前)(十六)积极引入海外数字疗法企业。针对海外不同类型的数字疗法企业采取针对性的政策措施,积极引导海外数字疗法企业与本地医疗机构开展合作,实现海外数字疗法与本地产业链条的深度融合。依托博鳌乐城国际医疗旅游先行区真实世界数据研究应用试点优势,引进一批海外高质量数字疗法产品在国内先行先试,支持其真实世界研究数据用于产品审批。(责任单位:省卫生健康委、省发展改革委、博鳌乐城国际医疗旅游先行区管理局;落实期限:2022年12月31日前)(十七)加快打造海南数字疗法创新岛品牌。在海南举办世界数字疗法大会,通过会议集聚政府政策、头部企业、资本力量、创新技术和人才等资源。发布年度世界数字疗法报告(多语种),建立数字疗法展示与体验中心,通过虚拟现实、全息投影、数字大屏、实物陈列等技术和手段打造具有一定规模、特色鲜明的数字疗法展馆。(责任单位:省卫生健康委、省商务厅、省发展改革委、海南生态软件园管理局、博鳌乐城国际医疗旅游先行区管理局;落实期限:2022年12月31日前)六、规范发展与其他保障(十八)吸引数字疗法相关协会或分支机构落地,制定行业标准,建立信息交流平台。设立数字疗法专家委员会或相关组织,研究制定数字疗法行业标准;定期举办数字疗法培训及学术讨论会议,增强临床医生等各方面对数字疗法的认知,逐步推动数字疗法纳入各类专科疾病诊疗、管理的专家共识。支持成立国际数字疗法产业联盟,组织国内外企业开展数字疗法政策法规、审评审批、医疗价值和医保支付等领域的研讨,为构建创新型商业模式提供国际最前沿的理论指导和实践经验。(责任单位:省卫生健康委;落实期限:2022年12月31日前)(十九)强化数据安全监管,加强数据资源利用。制定有关数字疗法数据安全的政策指引。鼓励利用省政务信息共享交换平台,在依法加强安全保障和隐私保护的前提下,将数字疗法产品采集的居民健康数据汇聚到全省“三医大数据资源中心”,稳妥推进健康医疗数据资源有序开放。加强对数字疗法产品有关用户信息保护技术审核等工作的专项指导,对发生数据泄露情况的严格追究责任。建立用户投诉通道和定期检查、抽查等机制,及时发现和依法处置相关违法违规行为。(责任单位:省委网信办、省大数据管理局、省卫生健康委;落实期限:2022年12月31日前)(二十)加强数字疗法人才保障。鼓励海南相关院校增设数字疗法课程和专业,支持相关交叉学科发展,加大互联网、大数据、人工智能、生物信息等交叉学科人才培养力度,为数字疗法产业发展提供人才支撑。依托海南医学院成立省数字疗法研究院。落实我省人才落户、购车、住房、医疗等服务保障政策,鼓励支持科研院校、企业积极引进海内外中高层次人才。积极组织数字疗法产业人才申报各级人才项目,支持数字疗法高端紧缺人才按照相关规定享受海南自由贸易港个人所得税优惠政策。(责任单位:省教育厅、省卫生健康委、省财政厅、省委人才发展局、省工业和信息化厅、海南国际经济发展局、海南大学、海南医学院;落实期限:2022年12月31日前)(二十一)发挥自贸港基金作用,采取股权投资方式支持数字疗法产业发展。充分发挥海南自由贸易港建设投资基金的杠杆作用,按照政府引导、市场化运作的方式与产业资本、金融资本合作,推动设立医疗健康领域子基金,投向数字疗法产业,支持海南数字疗法企业发展。(责任单位:省财政厅、省卫生健康委;落实期限:2022年12月31日前)
  • 17亿美元合作,打造治疗严重神经疾病的基因疗法
    p style="text-indent: 2em text-align: justify "近日,Neurocrine Biosciences和Voyager Therapeutics公司联合宣布达成战略合作,共同开发和推广Voyager公司的基因疗法项目,其中包括治疗帕金森病(Parkinson’s disease, PD)的主打在研疗法VY-AADC和治疗弗里德赖希共济失调(Friedreich’s ataxia)的VY-FXN01。这一合作将Neurocrine在神经科学和药物研发及推广方面的专长,与Voyager公司的创新基因疗法项目相结合,开发靶向严重神经疾病的新疗法。/pp style="text-indent: 2em text-align: justify "Voyager公司是一家专注于开发基因疗法的生物医药公司。该公司致力于选择和优化腺相关病毒(AAV)载体,为治疗不同疾病的基因疗法找到最匹配的递送工具。该公司的研发管线中拥有多款基因疗法。其中,治疗PD的VY-AADC是一款通过AAV2载体表达芳香族L-氨基酸脱羧酶(AADC)基因的基因疗法。AADC是将左旋多巴转化为多巴胺的重要代谢酶。在PD患者中,左旋多巴疗法逐渐失效的原因之一可能是患者的AADC水平下降。VY-AADC通过恢复AADC水平,可能提高左旋多巴的治疗效果。目前这一疗法已经开始关键性2期临床试验。/pp style="text-indent: 2em text-align: justify "根据合作协议,Neurocrine将支付Voyager公司1.65亿美元的预付款,并且资助VY-AADC的2-3期临床开发和VY-FAX01的1期临床开发。在VY-AADC获得2期临床试验和VY-FAX01获得1期临床试验结果时,Voyager公司可以选择与Neurocrine共同研发这两款疗法,或者给予Neurocrine全权开发这些产品的权利。除此以外,Neurocrine公司有权选择Voyager公司另外两款基因疗法项目进行研发。根据所有产品的研发,监管和推广里程碑,Voyager公司可能获得高达17亿美元的后续付款。/pp style="text-indent: 2em text-align: justify "“我们非常高兴能够与Voyager公司合作,共同开发治疗严重神经疾病,改善患者生活的疗法,”Neurocrine公司首席执行官Kevin Gorman博士说:“这一合作让我们能够利用Voyager公司在聚焦中枢神经系统的基因疗法方面的专长,开发出治疗PD和弗里德赖希共济失调的潜在疗法。这些领域仍然有很大未竟医疗需求。”/pp style="text-indent: 2em text-align: justify "“Neurocine公司是一个理想的合作伙伴,它在开发和推广神经疾病疗法方面经验丰富,”Voyager公司的总裁兼首席执行官Andre Turenne先生说:“这一合作将帮助我们成为行业领先,完全整合的基因疗法公司。我们很高兴与Neurocrine优秀和敬业的团队合作,推动这些研究项目的进展。”/p
  • 美国FDA批准首个基因疗法 癌症治疗迎来新篇章
    p  新华社华盛顿8月30日电 美国政府30日批准一种基于改造患者自身免疫细胞的疗法治疗白血病,这是第一种在美国获得批准的基因疗法。专家认为,这开辟了癌症治疗的新篇章。/pp  美国食品和药物管理局当天发表声明说,瑞士诺华公司的新疗法已获得批准,用于治疗25岁以下的复发难治型B细胞急性淋巴细胞白血病患者。这是一个“历史性动作”,将“迎来治疗癌症和其他危及生命的重病的新方式”。/pp  新疗法是近年来发展迅速的一种嵌合抗原受体T细胞(CAR-T)疗法,它先从患者自身采集在免疫反应中发挥重要作用的T细胞,然后重新“编程”,所得T细胞含有嵌合抗原受体,能识别并攻击癌变细胞,因此可重新注入患者体内用于治疗。/pp  一项涉及63名患者的临床试验结果显示,83%的患者在接受新方法治疗3个月后,病情得到缓解。患者接受治疗1年后的复发率为64%,存活率为79%。/pp  美药管局局长斯科特· 戈特利布评价说:“有能力重编程病人自身细胞,用它攻击致死性癌症,意味着我们正在进入医学创新的新疆域。诸如基因疗法和细胞疗法这样的新技术拥有变革医学的潜力,成为治疗乃至治愈许多棘手疾病的转折点。”/pp  B细胞急性淋巴细胞白血病是一种难以治疗和容易复发的白血病类型,过去的治疗方案较为有限,儿童和青少年患者5年无复发存活率仅为10%至30%。/pp  诺华公司表示,新疗法是一次性治疗,定价为47.5万美元,但如果第一个月见不到效果将不用患者付费。相比之下,白血病常用疗法骨髓移植在美国第一年的收费介于54万至80万美元之间。诺华公司还计划今年在美国和欧洲申请利用该方法治疗成人B细胞淋巴瘤,明年在美国和欧洲外的地区申请该疗法上市。/pp  CAR-T疗法先驱之一、美国宾夕法尼亚大学教授卡尔· 琼说,批准新疗法上市是个人化癌症疗法向前迈出的“巨大一步”。下一步他们将与诺华继续合作,推动用这一疗法治疗其他类型的癌症。/pp  目前除诺华外,美国风筝制药公司与朱诺治疗公司也在研发CAR-T产品。但今年早些时候,因临床试验中数名患者脑水肿死亡事件,朱诺治疗公司正式终止了针对成年人复发难治型B细胞急性淋巴细胞白血病的基因疗法临床试验。/pp  美国血液学学会主席肯尼思· 安德森在一份声明中说,这一批准“标志着血癌治疗范式的重要转变”,但目前它只被批准用于治疗少数年轻患者,重要性不宜夸大。总体而言,CAR-T疗法尚需更多研究,确保它能有效治疗更广泛的人群,并减少副作用。/pp style="text-align: right "记者:林小春/p
  • 福布斯深度文章:基因疗法时代的反思
    pstrongspan style="color: rgb(153, 153, 153) "/span/strong/pp style="text-indent: 2em "近日,知名医学博客作者David Grainger博士在Forbes发表了一篇名为“The Cult Of DNA-centricity”的长文,分享了他对于基因疗法时代迷思的一些思考。在这篇文章中,我们也将整理Grainger博士的观点,供大家一道思考和讨论。/ppstrongspan style="color: rgb(153, 153, 153) "/span/strong/pp style="text-align: center "span style="color: rgb(153, 153, 153) "img alt="" src="http://img1.17img.cn/17img/images/201802/uepic/44516bc1-f6a1-4761-b1e8-93e8f17d115a.jpg"/br//span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong知名医学博客作者David Grainger博士(图片来源:Forbes)/strong/span/pp style="text-indent: 2em "了解DNA在生物学中的地位可以说是二十世纪最重要的科学进步,没有之一。这是我们了解遗传的分子基础,并逐步了解遗传密码如何翻译成蛋白质,从而为人体的运作机制提供全新的见解。/pp style="text-indent: 2em "遗传的基本单位是基因,一段包含了制造一种蛋白所需信息的DNA。多种遗传疾病如囊性纤维化和杜氏肌营养不良症的起因是单个基因的DNA序列中的错误。/pp style="text-indent: 2em " 20世纪的最后几十年中,由于DNA测序技术的快速发展,最终使得我们在千年之交得到了第一个完整的人类基因组序列。基于此,新的分子遗传学研究确定了数以千计的造成人类疾病的基因突变。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/images/201802/uepic/c10da634-6184-4944-9994-028a4e8062c9.jpg"/br//pp style="text-indent: 2em " 即使在今天,基因组革命依然在发挥涟漪效应。现在,第一个被批准用于治疗遗传病的基因疗法已经上市,为RPE65基因突变的个体提供额外的正常拷贝,从而使患者可以合成正确的蛋白质,从而治疗遗传性视觉退化症。/pp style="text-indent: 2em "编码正常凝血所必须的蛋白质因子VIII的基因突导致A型血友病。这种缺陷的遗传基础在20世纪80年代被发现后,Genentech的科学家克隆了该基因的正常拷贝并将其插入到培养的细胞中,从而制备因子VIII。将纯化的因子VIII注射给A型血友病患者,可以有效地治愈该疾病。但是患者本身不能生产有效的因子VIII,因此需要周期性地接受注射。/pp style="text-indent: 2em "下一步的目标很明显,那就是将基因的正常拷贝直接放入病人体内。然而实现这一步花费了三十年的时间,才逐步克服了将新的DNA序列引入人体的各种技术挑战。但是现在基因疗法已经成为现实,有多家公司正在争相推进“治疗一次使用终生”的治疗方案,给病人一个正常的基因拷贝,这样他们就可以持续生产自己的因子VIII。/pp style="text-indent: 2em "基因治疗的旅程到这里还没有结束。随着CRISPR的发现,生物学家可以直接编辑有缺陷的基因。下一代工具有可能可以像安装新软件一样简单地进行DNA编辑。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/images/201802/uepic/64928371-db20-4fab-b943-925dd77483a6.jpg"//pp style="text-indent: 2em "面对这样喜人的进展,DNA在生物学中被放在核心地位也就并不奇怪了。读取序列可以确定疾病的起因,纠正序列错误可以治愈病人。同时,分子生物学语言也在支持这种以DNA为中心的观点,分子生物学中心法则 “DNA → RNA → 蛋白质”深入人心。这使人们觉得,如果我们能够克服剩下的技术障碍,让我们能随意编辑DNA,就可以实现没有疾病的乌托邦了。/pp style="text-indent: 2em "但是,这个以DNA为中心的叙述是否准确?/pp style="text-indent: 2em "针对基因突变的基因治疗的确令人振奋,但纠正DNA这个方法本身也有其局限。首先,这种以DNA为中心的框架在揭示所谓的“罕见疾病”(即一个或两个基因的缺陷导致的早发性遗传性疾病)的机制方面很成功,但却并不能推广到对于随着年龄增长而影响我们几乎所有人的迟发性退行性疾病上。治疗“罕见疾病”的惊人进展与治疗老年病方面几乎完全没有进展(更不用说治愈疾病)形成鲜明对比。对于2型糖尿病,自身免疫性疾病和神经变性疾病如阿兹海默病,我们依然束手无策。/pp style="text-indent: 2em "由于在基因组革命早期发现了“罕见疾病”背后的遗传基础,我们普遍的假设认为老龄相关疾病基本上也是以相同的方式引起的,只是涉及的基因数量较多(可能是几十甚至上百个基因),这些基因可能分布于两个或三个相互作用的生物途径上。全基因组关联研究(GWAS)是一种用于鉴定与生物学特性(如疾病)相关的DNA序列改变的统计学框架,所有人都焦急地等待着通过这些研究来了解年龄相关的退行性疾病的原因。几乎二十年过去了,我们还在等待。/pp style="text-indent: 2em "今天,显而易见,答案将不会来自于全基因组关联研究。但是,以DNA为中心的思想如此强大,大多数科学家似乎不愿质疑这些迟发病的原因必须来源于基因变化的这一基本假设。/pp style="text-indent: 2em "第二个限制也是显而易见的:DNA和数据一样,本身不能做任何事情。你的计算机上的数据需要应用程序来解释它,屏幕和扬声器来展示它,键盘和触摸屏与它进行交互。类似地,DNA序列信息(尽管它存在于物理对象中,即DNA分子,就像计算机数据驻留在硬盘上一样)在将其转换成可执行功能的蛋白质之前是无法有所作为的。/pp style="text-indent: 2em "而蛋白质是执行这些功能的关键,包括维护DNA序列(每次复制都会出现错误,蛋白质必须在这些错误被永久地整合到序列中之前迅速修复),在每个细胞分裂时复制DNA,以及翻译更多蛋白质中的DNA序列。中心法则是不完整的,它应该是:DNA → RNA → 蛋白质,而蛋白质又能制造DNA。沃森和克里克(Watson & Crick)的表述将DNA置于层级的顶端,而实际上它是生命圈中的平等伙伴。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/images/201802/uepic/1e217e13-b83d-4e79-8072-b77c9c06bd86.jpg"//pp style="text-indent: 2em "这个定义的改变看起来很细微,但却非常重要。所有疾病(甚至所有的生物学特征)都是由蛋白质的差异引起的,正如A型血友病是由于因子VIII蛋白质缺乏引起的一样。在这一遗传病的例子中,因子VIII蛋白质水平的差异恰好是由编码它的DNA序列的突变引起的。/pp style="text-indent: 2em "但蛋白质序列不仅仅是由基因序列决定的。蛋白质不是一成不变的,它们是由氨基酸分子组成的,而这些分子容易发生变化,无论是受控的还是意外的变化。生物学家对蛋白质的受控改变(例如磷酸化)非常熟悉,然而,意外的损害虽然可能同样频繁,但却或多或少地被忽略了。氨基酸可以在一系列令人眼花缭乱的化学反应中发生改变,从空气中的氧化反应到与葡萄糖反应,形成所谓的高级糖化终产物(缩写为AGEs,它随着年龄积累,并且与老龄一词恰好重合)。/pp style="text-indent: 2em "与DNA的研究相比,对于蛋白质不稳定性的研究缺乏激情,因为人们普遍认为DNA序列位于层次结构的顶端。毕竟,如果一种蛋白质被损坏了,那又如何呢?它将在一段时间内被一个刚刚依据DNA蓝图翻译出的闪亮的新副本取代。理论上,只要编码的DNA序列保持健康,损坏的旧蛋白质就会被完美的新蛋白质取代。/pp style="text-indent: 2em "大多数情况下,这个假设是正确的。很难想象一个人由于蛋白质受损而导致某种遗传性疾病。从一开始,进化已经选择了相对稳定的蛋白质序列,除此之外,我们还有一系列清除旧的受损蛋白质的机制。如血友病这样的遗传性疾病,虽然由蛋白质功能的丧失引起,但是实际上根源来自DNA序列的改变。/pp style="text-indent: 2em "那么,如果蛋白质的损伤增加了它的稳定性呢?情况就不同了,即使有一个完美的正常基因序列来合成完美的蛋白质新副本,但是因为损坏版本的寿命更长,它会随着时间的推移逐渐积累。最终,功能改变的受损蛋白质的量可能变得足够高,从而改变细胞或组织的功能。此时,我们观察到的则是由毒性增加而不是由功能丧失引起的特征或疾病。/pp style="text-indent: 2em "这就解释了为什么阿兹海默病,糖尿病或自身免疫等与年龄有关的疾病常常需要几十年才能发生(即使您的基因组序列与您出生的那天相同)。 受损蛋白质的潜在积累是个缓慢的过程,这也解释了为什么GWAS研究未能找到这些疾病的诱因的原因——因为答案从来不在DNA序列中。/pp style="text-indent: 2em "“老化和与年龄相关的退行性疾病,是由蛋白质损伤而不是由DNA损伤引起的。”在以DNA为中心的科学界,克罗地亚斯普利特地中海生命科学研究所(MedILS)的Miroslav Radman博士提出的这一假说,没有被给予足够的重视。对于新一代的生物学家来说,中心法则已经印在他们的大脑上,是与生俱来不可置疑的,他们很难想象不是源于DNA序列的疾病机制。/pp style="text-indent: 2em "然而,这一切都不应该让人吃惊——大多数让你成为一个独特个体的东西是编码在身体细胞和蛋白质的三维模式中,而不是在你的DNA中。例如,你的记忆没有DNA的基础——它们存在于你大脑的神经联系中。你的皱纹,如果有的话,不是由基因组编码,而是积累变化的皮肤蛋白质老化的结果。你是你的基因产物,但也是你环境历史在你的蛋白质上留下持久印记的产物。/pp style="text-indent: 2em "一旦中心法则被扩展为一个循环,老化对基因组和蛋白质组损害的必然重要性就会变得明显。基因疗法,无论是传统的体细胞基因转移还是下一代的基因编辑策略,不足以实现人们希望实现的目标。但要说服科学界相信这一点,还需要很多工作。/pp style="text-indent: 2em "好在,积极的一面是,这种想法开辟了一个新的领域——蛋白质组损伤研究。通过寻找在与年龄有关的疾病中累积的受损蛋白质变体(Radman博士称之为超稳定危险变体),科学家们可能揭示阿兹海默病和2型糖尿病等疾病的真正原因,研发新的药物。蛋白质组不稳定革命比基因组革命承诺着更大的医学进步。/pp style="text-indent: 2em "而我们必须克服对DNA的崇拜。/ppstrong参考资料:/strong/pp[1] a href="https://www.forbes.com/sites/davidgrainger/2018/01/24/the-cult-of-dna-centricity/#7607b1ae202b" target="_blank"The Cult Of DNA-centricity/a/p
  • 艾滋病基因疗法动物实验获成效
    在“世界艾滋病日”到来之际,英国《自然》杂志网站11月30日刊登研究报告说,美国研究人员探索出的一种艾滋病基因疗法在动物实验中取得成效。实验证明感染大剂量艾滋病病毒的实验鼠也可受到保护。  美国加州理工学院等机构的研究人员报告说,通过使用一种经过改造的腺病毒,可以在实验鼠肌肉细胞的基因序列中加入一段代码,使得肌肉细胞能够生成和分泌一些抗体。这些抗体具有帮助机体抑制艾滋病病毒的作用,最初是在一些对艾滋病有抵抗力的患者体内分离得到的。  研究人员用这种基因疗法测试了5种不同抗体的效果,结果发现,两种代号为B12和VRC01的抗体效果尤其良好。即使对实验鼠施加比天然感染艾滋病所需病毒量高出100倍的病毒剂量,这两种抗体也能起到完全且持续的保护效果,实验鼠在接受治疗一年后仍能避免发病。这是因为实验鼠的肌肉细胞在基因序列被改变后,会持续生成相关抗体并释放到血液中。  参与研究的戴维巴尔的摩说,动物实验的成功为接下来开展人类临床试验铺平了道路。虽然通常只用基因疗法治疗遗传病,但目前在与艾滋病的斗争中还没找到完全有效的疗法,因此基因治疗艾滋病值得一试。  据介绍,这种疗法可能导致相关细胞的基因序列永久性改变,或许会带来副作用。研究人员希望能在临床试验中确定该基因疗法是否有副作用并找到规避方法。(来源:新华网 黄堃)
  • 魏则西走了两年,免疫疗法却得了诺奖?
    p style="text-indent: 2em "(来源:科学网)北京时间10月1日下午5时30分,2018年度诺贝尔生理或医学奖获得者揭晓。今年该奖项颁给了美国得州大学奥斯汀分校免疫学家詹姆斯· 艾利森(James P. Allision)和日本京都大学教授本庶佑(Tasuku Honjo),以表彰他们发现了抑制免疫调节的癌症疗法,两人将分享900万瑞典克朗的奖金。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/c5ace2f9-8840-4cc3-a4a6-fbc885e6c788.jpg" title="1.jpg" alt="1.jpg"/br//pp style="text-indent: 2em "詹姆斯· 艾利森,美国免疫学家,美国国家科学院院士,霍华德?休斯医学研究所研究员。他在德州大学奥斯汀分校获得微生物学学士学位,后又获生命科学博士学位。2014年获生命科学突破奖、唐奖生技医药奖、霍维茨奖、盖尔德纳国际奖、哈维奖、2015年获拉斯克临床医学研究奖。/pp style="text-indent: 2em "本庶佑,日本免疫学家,美国国家科学院外籍院士,日本学士院会员,现任京都大学高等研究院特别教授。他因PD-1、活化诱导胞苷脱氨酶的有关研究举世闻名,曾获得首届唐奖生技医药奖、京都奖以及华伦?阿波特奖等重要荣誉。/pp style="text-indent: 2em "有意思的是,2016年两人曾共同获得过复旦大学的“复旦-中植科学奖”,获奖理由是“他们对肿瘤负性免疫调节的抑制治疗方法”。/pp style="text-indent: 2em "国内权威专家对该成果的详细解读/pp style="text-indent: 2em "Q:请评价一下两位获奖者及其获奖原因?/pp style="text-indent: 2em "中国科学院北京基因组研究所研究员于军:/pp style="text-indent: 2em "一直以来,这两个重要的检查点基因功能的发现和应用会得奖,大家其实期待已久。/pp style="text-indent: 2em "研究发现这两个免疫抑制基因和背后的科学原理,可以作为药物来治疗癌症。/pp style="text-indent: 2em "尽管目前还没有证据证明这种方法可以应用于治疗所有的癌症,但这是一个很好的开端,并且目前临床应用发现此方法已经延长了很多患者的寿命。/pp style="text-indent: 2em "为什么会给这两位科学家呢?/pp style="text-indent: 2em "因为诺奖只颁给最早发现者,其他人虽也有很多贡献,但不是最早的发现人。/pp style="text-indent: 2em "复旦大学药学院研究员朱棣:/pp style="text-indent: 2em "我比较熟悉艾利森,他是非常资深的肿瘤免疫专家,从上世纪80年代就开始做T细胞免疫方面的研究。/pp style="text-indent: 2em "上世纪90年代他发现了CTLA-4在T细胞的抑制效应,从此他在这个领域持续耕耘了30多年,至今仍然在积极地研究这个分子。/pp style="text-indent: 2em "其实这个分子最初发现时还不被人重视。但随着它的治疗性抗体表现出明确、稳定的疗效,人们才意识到这是一个开创新的成就。/pp style="text-indent: 2em "本庶佑是第一个发现PD-1的人,我认为他获奖也是当之无愧的。/pp style="text-indent: 2em "不过PD-1领域的重要研究者很多。但是本庶佑和艾利森一样,都是各自领域的第一个发现者,也都数十年如一日地在耕耘这个领域。/pp style="text-indent: 2em "Q:CTLA-4和PD-1到底是干啥的?/pp style="text-indent: 2em "北京大学肿瘤医院院长季加孚:/pp style="text-indent: 2em "T细胞上有两类已知免疫检查点,PD-1抑制T细胞扩增,CTLA-4削弱其杀伤力并缩短其寿命。本庶佑主要研究前者,艾利森的研究针对后者。/pp style="text-indent: 2em "以后者为例,CTLA-4能够抑制T细胞的活化,而肿瘤细胞能够将CTLA-4锁定,使T细胞失去攻击性,为肿瘤细胞有恃无恐地疯长提供环境。/pp style="text-indent: 2em "艾利森猜想,如果能将CTLA-4与相应的分子通路阻断,是否就能让T细胞对癌症发起攻击?/pp style="text-indent: 2em "他们研究开发了一种可以将CTLA-4活性屏蔽的抗体,并将该抗体用于一系列实验中,包括动物实验。/pp style="text-indent: 2em "实验发现,肿瘤细胞受到抑制,实验结果证明了猜想的科学性。/pp style="text-indent: 2em "此项研究发现就像为之前影响肿瘤治疗的一把锁,找到了一把能够开启它的钥匙。/pp style="text-indent: 2em "朱棣:/pp style="text-indent: 2em "我们的免疫系统天然具有攻击癌症细胞的能力,但是我们的人体系统非常巧妙,同样进化出来一套能够抑制免疫系统的系统,防止免疫系统过度激活,这个里面就包括CTLA-4和PD-1。/pp style="text-indent: 2em "如果这个系统没有被很好的抑制,我们就有可能患上一些自身免疫疾病;但如果这个抑制过强,就可能就会无法识别出肿瘤细胞,那么也是一件不好的事情。/pp style="text-indent: 2em "Q:癌症免疫疗法经过了怎样的发展历程?/pp style="text-indent: 2em "复旦大学附属肿瘤医院肿瘤内科教授吴向华:/pp style="text-indent: 2em "癌症免疫治疗是利用人体的免疫系统,通过增强或恢复抗肿瘤免疫力来杀伤和控制肿瘤的一种新的治疗模式。/pp style="text-indent: 2em "1891年美国医生William Coley用链球菌来治疗晚期癌症的研究引领癌症治疗进入了免疫治疗的启蒙时期,科学家们经过长达一个多世纪的不懈探索,在癌症免疫治疗领域取得了一些里程碑式的进展。/pp style="text-indent: 2em "从1985年生物治疗概念的提出,直到2010年第一个治疗性疫苗的问世,以及2011年免疫检查点抑制剂相继被FDA批准治疗恶性黑色素瘤、肺癌、肾癌、膀胱癌等多种恶性肿瘤,肿瘤免疫治疗取得了飞速发展。/pp style="text-indent: 2em "季加孚:/pp style="text-indent: 2em "该研究起源于上世纪末,在研究界属于“新鲜”的研究。/pp style="text-indent: 2em "近几年,免疫疗法治疗肿瘤登上世界舞台,这是肿瘤治疗的进步。这两位科学家在肿瘤免疫治疗领域具有原创性研究和进展,这些研究发现对后续的用于肿瘤治疗的免疫疗法具有启迪和推动作用。/pp style="text-indent: 2em "Q:目前肿瘤免疫治疗领域有何进展?主要的研究热点是什么?/pp style="text-indent: 2em "吴向华:/pp style="text-indent: 2em "近几年来,在国际免疫细胞治疗领域,基因工程修饰的免疫细胞治疗血液系统肿瘤的临床试验结果令人鼓舞。/pp style="text-indent: 2em "另外,基于新抗原的个性化肿瘤治疗性疫苗在初步的临床试验中也取得了令人振奋的效果,进一步推动了肿瘤免疫治疗的发展进程。/pp style="text-indent: 2em "肿瘤免疫治疗将发展成为除手术、放疗、化疗及分子靶向治疗外又一新的有广阔前景的治疗手段。/pp style="text-indent: 2em "当前,肿瘤的免疫疗法主要集中在五个领域,细胞因子等生物反应调节剂疗法、抗体及抗体藕连药物、免疫检查点抑制剂、基因工程修饰的细胞免疫疗法,以及肿瘤治疗性疫苗。/pp style="text-indent: 2em "免疫检查点CTL-A4及PD-1的发现及其相应的抗体药物在肿瘤免疫疗治疗中具有里程碑式的意义,运用非常广泛。/pp style="text-indent: 2em "朱棣:/pp style="text-indent: 2em "还有一个新兴的领域是免疫联用。/pp style="text-indent: 2em "虽然免疫疗法有很好的效果,但在癌症的综合的响应效率是有限的,也就是说只有大约百分之二十的癌症病人能够对这种疗法出现响应。/pp style="text-indent: 2em "所谓免疫联用,就是通过改善T细胞的生存,改善T细胞的侵润等,以此来提高免疫的疗效。这是未来的免疫治疗发展趋势。/pp style="text-indent: 2em "魏则西在罹患重疾之后,正是因为在百度上搜索了“生物免疫疗法”,误入“莆田系医院”而延误病情,不幸去世。/pp style="text-indent: 2em "朱棣研究员说:“魏则西治疗的失败,第一,其采用的DC-CIK疗法并未获得药监局的上市批准,第二,该疗法在美国临床实验目前全部失败,至今没有获得上市许可;第三,还有其它原因。我并不觉得该疗法是免疫疗法的主流,也不能说明这是肿瘤免疫疗法导致的问题。该事件不能代表肿瘤免疫疗法的发展方向。”/pp style="text-indent: 2em "害死魏则西的不是科学,而是那些打着科学旗号坑蒙拐骗、草菅人命的骗子。/pp style="text-indent: 2em "这次诺奖出来,会不会再有人标榜着所谓的“诺奖技术”去害人呢?/p
  • 我国细胞和基因疗法注册和临床情况盘点
    细胞治疗一般包含干细胞治疗和免疫细胞治疗。间充质干细胞和造血干细胞是目前临床研究和治疗应用最广泛的干细胞类型,诱导多能干细胞(iPSC)则因其不存在传统干细胞存在的伦理问题,而成为干细胞领域最具前景的干细胞类型之一。CAR-T疗法是当前免疫细胞治疗领域最炙手可热的领域,此外,TCR-T、TIL、NK等免疫细胞疗法也是当前免疫细胞疗法的主要类型。载体介导的基因疗法是目前基因治疗的主要形式,主要包括病毒载体和非病毒载体,广义的基因治疗还包括核酸药物、溶瘤病毒疗法等。本文将重点盘点国内以CAR-T为代表的免疫细胞疗法、以间充质干细胞为代表的干细胞疗法以及基因疗法等临床和注册情况。01 干细胞2004年至今,CDE共承办了62项干细胞药物申请,包括2项进口药品申请和60项国产药品申请,目前已有35项临床申请获得了临床批件或临床默示许可,另有8项申请终止了审批程序或不被批准。从药物注册分类来看,62项干细胞药物申请中共有42项1类新药申请,从2018年至今呈现逐年增长情况,2021年较上一年同比增速超120%,2022年前四个月已有10项1类干细胞药物申请,全年有望以超过50%的增速再创新高。 图1:我国历年1类干细胞药物申请数量 数据来源:CDE从干细胞类型来看,间充质干细胞(包括间充质祖细胞、间充质前体细胞等)共有47项,主要来源包括脐带、胎盘、宫血、脂肪、骨髓、牙髓等;胚胎干细胞、造血干细胞、前体细胞、肌母细胞等其他类型干细胞申请仅15项,包括泽辉生物的人胚干细胞产品CAStem、仙荷医学的支气管基底层细胞产品REGEND001,以及两款基因编辑的干细胞产品——康景生物的CG001和辑因医疗的CRISPR/Cas9 基因修饰BCL11A红系增强子的自体CD34+造血干祖细胞注射液。 从临床试验来看,目前在中国临床试验注册中心登记开展的干细胞相关临床试验多达600余项,而在CDE药物临床试验登记与信息公示平台上登记开展的以药物上市为目的的临床则有20项,其中进度最快的仅推进至临床II期,离推进至上市仍有很长一段距离。表1:以上市为目的登记开展的干细胞药物临床试验数据来源:药物临床试验登记与信息公示平台由研究者发起的干细胞临床研究方面,截至目前我国医学研究登记备案信息系统和卫健委公布的干细胞临床研究备案项目已超100项,批准设立的干细胞临床研究备案机构已达133家(含部队医院)。其中,上海交大附属仁济医院、中山大学附属第三医院分别以6项和5项干细胞临床研究备案项目位居前二,仁济医院备案项目涉及神经系统疾病、骨科疾病和风湿免疫性疾病,中山大学附三医院开展3项针对脊髓损伤的干细胞临床研究,南京大学附属鼓楼医院、郑大一附院、中南大学湘雅医院均以4项干细胞临床研究备案项目并列第三。02 免疫细胞截至2022年5月,全国已有累计131项免疫细胞疗法申请获得CDE受理,其中CAR-T疗法84项、TCR-T疗法8项、TIL疗法4项、CAR-NK疗法2项,其他类型免疫细胞疗法共33项。其中,共有75项免疫细胞治疗产品申请获得临床批件/临床默示许可,包括CAR-T疗法独(56项)、TCR-T疗法(3项)、CAR-NK疗法(1项)、其他免疫细胞治疗(15个)。 图2:我国免疫细胞疗法申请与获批临床情况 数据来源:CDECAR-T领域,我国已上市的瑞基奥仑赛提交的新适应症(成人复发或难治性滤泡淋巴瘤)上市申请被纳入优先审评序列,其以明聚生物申报的用于成人复发难治性套细胞淋巴瘤的JWCAR029也别纳入突破性治疗药物程序。在此之前,已先一步上市的另一款CAR-T产品阿基仑赛的新适应症(复发或难治性惰性非霍奇金淋巴瘤)上市申请也率先被纳入突破性治疗药物程序。从靶点来看,除北恒生物的UCAR-T产品之外,CD19仍是当前扎堆最为严重的赛道,靶向CD19的CAR-T产品共有56个药物申请,其次为BCMA靶点的11个,CD20、CD30、CD70、TGF-β、GPC3、Claudin 18.2、B7-H3等其他单靶点CAR-T疗法。此外,另有4项双靶点CAR-T疗法申请获得CDE受理,分别为赛比曼的CD19/CD20和驯鹿医疗的CD19/CD22双靶点CAR-T疗法。 图3:我国CAR-T疗法靶点分布情况 数据来源:CDE 从临床试验情况来看,目前在CDE药物临床试验登记与信息公示平台上登记开展的CAR-T疗法临床试验共48项。其中,诺华的进口产品CTL019在国内开展的临床试验进度最快,已进入临床Ⅲ期,其他国产1类CAR-T疗法均未进展至Ⅲ期。表2:国内临床阶段CAR-T疗法进展数据来源:药物临床试验登记与信息公示平台其他免疫细胞疗法方面,香雪旗下TAEST16001、TAEST1901和星汉德生物的SCG101三款TCR-T疗法已获得临床默示许可,君赛生物、智瓴生物和沙砾生物各有一款TIL疗法获得CDE受理,国健呈诺的靶向间皮素嵌合抗原受体NK细胞注射液是目前唯一一款进入临床阶段的CAR-NK疗法。03 基因治疗截至2022年5月,国内共有27项基因疗法申请获得CDE受理,其中已有9项申请获得临床批件/临床默示许可,包括诺华的进口腺相关病毒(AAV)基因疗法OAV101注射液。同时,共有6项基因疗法临床试验在CDE药物临床试验登记与信息公示平台登记开展。从载体类型上看,AAV基因疗法(包括重组腺相关病毒)占据主导,共有17项。表3:国内IND阶段的基因治疗产品(除CAR-T)数据来源:火石创造数据库另外,国内目前还有64个溶瘤病毒疗法获得CDE受理,其中已有30项获得临床批件/临床默示许可,主要以疱疹病毒和腺病毒为主要病毒类型,临床进展最快的为达博生物的重组人内皮抑素腺病毒注射液,已进入临床Ⅲ期。
  • 美国批准第一种针对遗传病的基因疗法
    p  美国食品和药物管理局19日宣布,已批准美国火花基因疗法公司的Luxturna基因疗法,用于治疗特定遗传性眼疾的儿童和成人患者。这是第一种治疗遗传性疾病的基因疗法在美国获准上市,此前获批上市的基因疗法主要用于癌症治疗。/pp  美药管局局长斯科特· 戈特利布在一份声明中说:“今天的批准标志着基因疗法领域的又一个‘第一次’,这既是指全新的作用机理,也是指把基因疗法的使用范围扩展至癌症治疗之外,用于治疗视力受损。这个里程碑凸显了这种突破性方法在治疗一系列广泛的挑战性疾病方面的潜力。”/pp  根据这份声明,Luxturna疗法将用于治疗与双等位基因RPE65突变相关的遗传性视网膜营养不良疾病。该病损害患者的视力,甚至导致特定患者完全失明,美国约有1000到2000名患者,但此前一直没有有效治疗方法。/pp  该疗法的使用方式是直接向患者视网膜细胞注射RPE65基因的正常拷贝,让这些细胞产生能将光信号转换成视网膜电信号的正常蛋白质,从而改善患者视力。/pp  一项涉及31名RPE65基因突变患者的临床试验表明,与对照组相比,接受该治疗的患者视力得到明显提高。/pp  火花基因疗法公司称,将于明年1月提供Luxturna的价格等更多信息。/pp  迄今,美药管局一共批准三种基因疗法,另两种疗法于今年早些时候获批。与Luxturna不同的是,另两种均为嵌合抗原受体T细胞免疫疗法(CAR-T),通过改造患者自身免疫细胞来清除癌细胞的方式,分别用于治疗特定白血病患者和特定淋巴癌患者。/pp  戈特利布认为,基因疗法现在正处于一个“转折点”,“我相信基因疗法将成为治疗甚至治愈许多重病难病的支柱”。/p
  • 新装置能操控分化阶段干细胞 或引发新一代基因疗法
    科技日报讯 美国西北大学开发出一种新型电穿孔微流控装置,能对分化中的干细胞进行电穿孔操作,在细胞生命的最重要阶段能够进行分子输送。这提供了研究神经元等原代细胞所必要的条件,为探索神经疾病致病机制打开了一扇门,可能会引发新一代的基因疗法。  电穿孔技术是分子生物学中强有力的技术手段。利用电脉冲在细胞膜上创建一个临时的纳米孔洞,研究人员就能将化学品、药物和DNA(脱氧核糖核酸)直接输送到单个细胞中。  但是,现有的电穿孔技术要用很高的电场强度来保持细胞悬浮在溶液中,打断了细胞通路,使敏感的原代细胞处在恶劣的环境中。因此,研究人员要在细胞持续分化和扩大过程中研究细胞的自然属性几乎没有可能。  据物理学家组织网近日报道,这个新型装置的英文缩写为LEPD,适用于在人工衬底而非自由浮动的培养基中生长的贴壁细胞,这类细胞的生长必需有可以贴附的支持物表面,细胞依靠自身分泌的活培养基中提供的贴附因子才能在该表面上生长和繁殖。  研究人员说:&ldquo 不破坏分化却能推送分子进入贴壁细胞的能力,是生物技术学研究者进一步了解相关基础知识的必要条件,尤其有利于进行最先进的干细胞研究。在生物学和医学研究领域,对细胞进行正确环境下的无损操作是非常关键的技术。&rdquo   相关成果发表在《英国皇家化学学会》杂志上。
  • 最新!葛兰素史克双药艾滋病疗法在中国获批
    今日(10月21日),中国国家药监局(NMPA)官网最新公示,由葛兰素史克(GSK)提交的双药HIV疗法——多替拉韦利匹韦林片的新药上市申请已获得批准。根据中国国家药监局药品审评中心(CDE)优先审评公示,此次获批的适应症为治疗特定成人人类免疫缺陷病毒1型(HIV-1)感染患者。值得一提的是,该药也是首款获得FDA批准针对病毒学抑制的患者进行维持治疗的双药疗法。相比含有不少于3款药物的HIV治疗方案,限制HIV疗法中的药物数量有望减少对患者的毒性。截图来源:NMPA官网多替拉韦利匹韦林是ViiV Healthcare公司(GSK拥有主要股权)推出的一款双药HIV疗法。其中,多替拉韦(dolutegravir)是一种HIV-1整合酶链转移抑制剂(INSTI),能够阻止HIV病毒进入细胞,可与其他抗逆转录病毒药物联合使用,治疗感染HIV-1的成人患者。利匹韦林(rilpivirine)是一种体积很小(25mg)的口服非核苷逆转录酶抑制剂(NNRTI),具有疗效确切,安全性与耐受性良好等特点。2017年11月,多替拉韦利匹韦林在美国获批上市,用于治疗感染HIV-1的特定成人患者(商品名为Juluca)。根据FDA当时发布的新闻稿,多替拉韦利匹韦林为那些病毒已得到抑制的患者提供了双药维持疗法,这些患者会从这种每日一次的无核苷酸类HIV逆转录酶抑制剂方案中获益。它的批准能给感染HIV的患者带来治疗范式上的改变,限制HIV疗法中的药物数量能减少对患者的毒性。在中国,葛兰素史克在2021年1月提交了多替拉韦利匹韦林片的新药上市申请。该申请随后被CDE纳入优先审评,拟用于治疗成人HIV-1感染患者,他们先前接受稳定的抗逆转录病毒治疗方案达到病毒学抑制(HIV-1 RNA小于50拷贝/mL)至少6个月,且无病毒学失败史,对NNRTI或整合酶抑制剂没有已知或疑似耐药性。截图来源:CDE官网多替拉韦利匹韦林治疗HIV-1感染患者的安全性与有效性,已在两项名为SWORD 1和SWORD 2的研究中得到评估。这两项研究招募了1024名志愿者,他们的病毒感染状况在当下的抗HIV疗法中已经得到了有效控制。这些志愿者被随机分为两组,一组继续接受目前的抗HIV疗法,另一组则使用多替拉韦利匹韦林。研究表明,多替拉韦利匹韦林能有效抑制HIV病毒,效果与这些志愿者曾使用的抗HIV疗法相当。在SWORD 1和SWORD 2研究的汇总分析和单独分析中,与三药或四药方案相比,多替拉韦利匹韦林方案在48周时实现了非劣效的病毒抑制,治疗组之间的抑制率相似。ViiV Healthcare曾在新闻稿中表示,过去很长时间以来,人们一直认为需要三种或更多种药物来维持病毒学抑制作用,但SWORD研究提供了令人信服的数据,即可以通过多替拉韦和利匹韦林这两种药物治疗来维持抑制作用。使用抗病毒“鸡尾酒”疗法治疗HIV感染是医学领域在过去25年中取得的最重要进展之一。目前,全球抗HIV病毒的药物主要包括CCR5拮抗剂、融合抑制剂、逆转录酶抑制剂、整合酶抑制剂、蛋白酶抑制剂等。并且,已经有多种有效控制HIV-1病毒增殖的单片复方治疗方案,只要患者坚持每日服药,他们的寿命与健康人没有显著区别。此次GSK公司多替拉韦利匹韦林片在中国获批,有望为更多HIV感染患者带来新的治疗选择。
  • 解锁免疫疗法研究新进展与可转化性探讨,热点先览!
    从力求放大T细胞免疫应答以消灭病变细胞的"免疫增强"疗法,到设法恢复免疫系统因病变细胞诱导而失去免疫功能的“免疫正常化”治疗,走过近百年历程的免疫学研究为新型免疫疗法提供了理论创新的原动力。本期转化医学系列讲座,Cytiva联合仪器信息网特别邀请到国内2位免疫学前沿领域的学者,与Cytiva细胞治疗和实验室层析技术专家一起,与您共同探讨免疫学热门词汇调节性T细胞、TIL、TCR-T细胞及其相关免疫疗法的新进展和新技术。会议时间:2022年6月24日 9:00-11:00报告先览(点击参会):1.重点介绍FOXP3+调节性T细胞功能可塑性及稳定性分子机制研究新进展,以及组织特异性Treg, 特别是自身免疫病,肥胖及衰老相关糖尿病以及肿瘤微环境中FOXP3+Treg功能与免疫疗法相关新进展2.通过研究免疫系统和肿瘤之间的相互作用,鉴定肿瘤特异的免疫细胞,尤其是识别肿瘤抗原的T细胞,以及肿瘤细胞抵抗免疫攻击的逃逸机制,从中发现新的治疗靶标,建立高效的肿瘤免疫治疗新方法3.肿瘤浸润淋巴细胞TIL疗法的进展与挑战、生产解决方案4.Cytiva层析技术助力肿瘤免疫学研究:发生机制、抗肿瘤药物疗法
  • 罗氏与Inovio达成4.2亿美元免疫疗法全球授权
    9月10日,罗氏(Roche)与Inovio制药联合宣布,双方已签署了一项全球独家许可协议,研究、开发、商业化Inovio制药高度优化的、多抗原DNA免疫疗法INO-5150和INO-1800,分别用于前列腺癌和乙型肝炎的治疗。  目前,INO-1800和INO-1800均处于临床前开发阶段,在动物模型中,已显示出能够诱使强大的T细胞反应。  根据协议,罗氏将支付1000万美元的预付款,及潜在高达4.125亿美元的开发和商业化里程碑款项,获得这2种免疫疗法的全球独家授权,以及利用Inovio制药CELLECTRA电穿孔技术递送疫苗的权利。同时,罗氏还将拥有一项选择权,获得与所合作研究项目相关的额外疫苗机会。此外,Inovio制药还将有资格获得未来产品销售高达2位数的特许权使用费。  Inovio制药的技术,能够刺激机体免疫系统,并帮助免疫系统识别和杀死癌细胞,该公司也计划利用机体免疫系统来治疗B型肝炎。  INO-5150是一种双抗原、人工合成DNA疫苗,针对前列腺特异性膜抗原PSMA和前列腺特异性抗原PSA。在猴子中开展的一项研究表明,INO-5150接种后,能够产生强大稳健的T细胞免疫反应,是目前基于PSA免疫疗法在动物研究中所观察到的最强大的免疫反应。  INO-1800是一种乙型肝炎免疫疗法,临床前研究数据表明,该疫苗能够产生强大的T细胞和抗体反应,并在小鼠模型中引发了针对性的肝细胞清除。这些结果表明,在人类中,该DNA疫苗具有治疗乙型肝炎的潜力,并有望阻止乙型肝炎进一步发展成肝癌。在一项临床前研究中,研究人员发现,疫苗特异性T细胞表现出了杀伤功能,能够迁移并驻留在肝脏,引发靶细胞的清除。该研究首次证明,肌注免疫能够诱使杀伤性T细胞迁移至肝脏并清除靶细胞。  免疫疗法(immunotherapy),即利用机体的免疫系统来对抗癌症,并具有将一些癌症转化为类似于慢性疾病的潜力,在临床研究中,正获得越来越多的喜人数据。  今年5月,罗氏公布了其实验性免疫疗法MPDL3280A的积极数据,在I期临床试验中,该疗法针对数种肿瘤均表现出了令人印象深刻的疗效,同时耐受性良好。该药已被认为是罗氏最有前途的新一代免疫疗法之一。德意志银行(Deutsche Bank)分析师Tim Race在一份研究报告中称,手握MPDL3280A,罗氏潜在地拥有了一个市值超50亿美元且具有横跨数种肿瘤持续性利益的产品。  MPDL3280A是一种基因工程抗体,靶向于肿瘤细胞上的一种名为PD-L1的蛋白,肿瘤利用这种防御机制欺骗机体免疫系统中的T细胞,使之保持失活(inactive)状态。一旦T细胞能够识别肿瘤,它们能够生长和繁殖并更有效地攻击癌细胞。所提供的数据显示,到目前为止,MPDL3280A在黑色素瘤、肺癌、肾细胞癌中的响应率分别为31%、22%、13%。目前,该项研究已经被扩大至结肠癌、膀胱癌、头颈部癌症患者。
  • 罗氏旗下基因泰克7000 万美元投入可编程细胞疗法
    2022 年 9 月 27 日,可编程 CAR-T 细胞疗法公司 “Arsenal Biosciences” 宣布:其已与罗氏旗下的 “基因泰克” 达成一项多年的合作协议,双方将联合部署 ArsenalBio 的专有技术用于 T 细胞的工程化及高通量筛选,以确定 T 细胞疗法中的有效基因电路。 作为交易的一部分,Arsenal 将在接下来的合作中获得潜在的 7000 万美元收益,包括预付款以及在研究、开发和商业进程中的里程碑付款。Arsenal Biosciences Arsenal Biosciences,成立于 2019 年,是一家致力于利用合成生物技术编程 T 细胞以开发下一代疗法的生物技术公司。就在不久之前的 9 月 6 日,ArsenalBio 刚刚完成了 2.2 亿美元的 B 轮融资,投资者中便包括了百时美施贵宝。成立至今,ArsenalBio 已经获得超过 3 亿美元的资金。 根据 ArsenalBio 方面的介绍,其正在构建业界最大的治疗增强型基因电路的 DNA 文库,这其中包含了 “用于改进肿瘤靶向性的逻辑门控” 和 “支持多种药物功能的合成线路”。之后通过 CRISPR 系统,将设计的基因电路导入细胞当中,以生成多功能 T 细胞药物。 “通过基因电路赋予细胞对所处细胞环境进行感知、计算、决策以及响应的能力”,可编程的细胞疗法,是合成生物学之于医药领域的关键应用之一。在该方向上的代表性公司还有着 Timothy Lu 的 Senti Bio,其在 6 月刚刚于纳斯达克成功上市。 可编程细胞疗法(来源:Senti Bio) 基于自身的可编程细胞疗法平台,ArsenalBio 正在推进用于卵巢癌的临床管线 AB-1015,以及针对于肾、前列腺和其他癌症适应症的早期开发候选者。而据报道,此次与罗氏和基因泰克在基因电路上的合作研发,将重点围绕 “肿瘤微环境” 所展开。 “虽然 T 细胞疗法在血液恶性肿瘤的运用已经取得了重大进展,但是实体瘤上有着额外的挑战,如对抗性的肿瘤微环境,这限制了过继性 T 细胞疗法的有效性。” 在报道当中,ArsenalBio 方面这样介绍道。 “ArsenalBio 的工程平台整合了多项技术,包括基于 CRISPR 的高通量基因编辑、合成生物学和计算生物学,用以创建新的合成生物学编程项目,旨在增强 T 细胞功能,使它们能够克服存在于实体瘤及其周围的复杂免疫防御系统。” 罗氏(来源:ANP) 对于罗氏方面,这则是其在持续的细胞疗法布局当中的一部分。相较于诺华、吉利德、百时美施贵宝等,罗氏在 CAR-T 方面的入局则非常之晚,其一直到去年才加入行动,与 Adaptimmune Therapeutics 达成潜在的 30 亿美元 T 细胞疗法交易。 根据合作条款,ArsenalBio 和基因泰克将部署基因电路来研究对于 T 细胞的有效修饰,并通过临床前分析来获取对其影响的新认知。两家公司都将利用这些经验来开发未来的候选治疗药物。 “通过与 ArsenalBio 合作,我们正在获取强大的技术,以促进对 T 细胞生物学编程的理解,对于为难以治疗的癌症提供重要疗法来说,这可能至关重要。” 罗氏制药外部合作全球负责人 James Sabry 这样说道。参考链接:[1] https://www.businesswire.com/news/home/20220927005014/en/Arsenal-Biosciences-Announces-Joint-Discovery-Collaboration-with-Genentech-to-Identify-Features-of-Successful-T-Cell-Therapies-for-Oncology[2] https://www.fiercebiotech.com/biotech/genentech-pays-70m-access-arsenals-armoury-t-cell-tools-quest-solid-tumor-car-t[3] https://www.businesswire.com/news/home/20220906005150/en/Arsenal-Biosciences-Closes-220-Million-Series-B-Financing-to-Advance-Programmable-Cell-Therapy-Programs-into-Clinical-Development[4] https://mp.weixin.qq.com/s/v1ebx_t55XNTI0VapeGegA
  • 尘埃落定!首个“靶向突变”的基因疗法获批上市!
    p  LUXTURNA™ (voretigene neparvovec)由Spark Therapeutics公司研发,用于治疗由RPE65基因突变导致的遗传性视网膜病变。/pp  2016年,LUXTURNA获得FDA孤儿药资格与突破性疗法认定。2017年,LUXTURNA被纳入优先审评通道,并于10月以16:0的投票结果获得FDA专家团的一致认可。两个月后的今天,FDA批准LUXTURNA上市,适用于患有特定遗传性眼疾的儿童和成人患者。/pp  纠正缺陷基因,治疗遗传性眼疾/pp style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/4f953efd-d66a-448b-82b7-5209c0b59cf4.jpg"//pp style="text-align: center "strongLUXTURNA(图片来源:Spark公司官网)/strong/pp  RPE65基因负责编码一种对视力不可或缺的酶,一旦发生突变会损伤眼睛对光的反应,最终导致视网膜感光细胞失活,所以患者多表现出先天性弱视、甚至于失明的症状。/pp  作为首个治疗遗传性视网膜病变的制剂,LUXTURNA填补了这一疾病的治疗空白。它的核心机制在于“纠正错误的基因”,通过直接注射携带正常RPE65基因的腺相关病毒载体(AAV)进入患者研究,促使RPE65蛋白的正常表达和功能发挥。患者只需要接受一次制剂注射,视力就能够得到显著改善。/pp  在最新的临床试验中,LUXTURNA表现出良好的治疗效果——相比于对照组,接受治疗的患者视力得到显著改善,并很好地通过一项特殊的视觉障碍测试。而且,这种效果能够持续一整年。鉴于这一积极数据,FDA认为该疗法益大于弊,大大促成了它的获批上市。/pp  基因疗法又一个“第一次”/pp  LUXTURNA不但拥有全新的作用机理,还验证了基因疗法应用于非癌症疾病的可行性。它的获批上市标志着基因疗法领域的又一个“第一次”,进一步强调了该疗法广泛应用的潜能。/pp  2017年,基因疗法领域成果显著——成功延长了15名身患严重遗传性疾病1型脊髓性肌萎缩症(SMA1)患儿的生命,让他们有机会重获健康 借助于转基因干细胞,成功挽救一名患有毁灭性皮肤病的小男孩,使其拥有全新的皮肤 成功治疗10名B型血友病患者,点燃实现血液类疾病 “一次性治疗、永久性获益”终极目标的希望!/pp  美国FDA委员Scott Gottlieb博士认为,当下基因疗法正处于一个转折点。FDA正致力于建立正确的政策框架,促使更多的科研技术造福更多的患者。/pp  参考资料:/pp  FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss/pp  FDA Approves Spark Therapeutics’ LUXTURNA™ (voretigene neparvovec-rzyl), a One-time Gene Therapy for Patients with Confirmed Biallelic RPE65 Mutation-associated Retinal Dystrophy/pp/p
  • 吉利德CAR-T新疗法遇冷:天价药谁买单?
    p style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/5d986cc0-5903-4f93-a482-5c890d250672.jpg"//pp strong 天价药:药企与患者的双输/strong/pp  Yescarta是吉利德豪掷120亿美元收购的凯特制药(Kite)的产品,于2017年10月获FDA批准上市,是第二款上市的CAR-T疗法。Yescarta是一种一次性疗法,在其推出之时广受好评,除了一个缺点——售价太高。/pp  美国媒体纷纷批评吉利德给Yescarta的定价过高,认为这会让很多需要这种救命药的病人承受不起。David Mitchell是一名淋巴瘤患者,也是“让病人用得起药”( Patients for Affordable Drugs)抗议团体的主席,声称Yescarta的定价“奇高,我们患者根本用不起”。/pp  华尔街分析师原先预计2017年Yescarta将给吉利德带来970万美元的收入。如果要达成这个目标,Yescarta还得再卖出20份——显然今年是不可能完成了。/pp  2017年10月19日,吉利德旗下凯特制药的产品Yescarta获美国FDA批准,用于既往接受二线或多线系统治疗的复发性或难治性大B细胞淋巴瘤(LBCL)成人患者的治疗。CAR-T的基本原理就是利用病人自身的免疫细胞来清除癌细胞,被认为是最有前景的肿瘤治疗方式之一。/pp strong 医疗保险能解决问题吗?/strong/pp  也有人认为,问题的关键不在于售价多高,而在于医疗保险支付方是否能将Yescarta纳入医保支付范围。由于美国联邦医疗保险和医疗补助服务中心(CMS)和不少私营保险公司并没有关于制定覆盖CAR-T疗法的条款,患者只能等待而得不到Yescarta的治疗。如果医疗费全由患者承担,总费用将高达50万至100万美元。/pp  吉利德一名发言人表示,他们正在积极与医保支付方协商,目前绝大部分商业保险支付方都已承诺覆盖这种新疗法,并争取纳入老年医疗保障(Medicare )。/pp  第一种上市的CAR-T疗法是诺华(Novartis )的Kymriah,售价47.5万美元,比吉利德的Yescarta售价更高。然而,诺华已经与美国联邦医疗保险和医疗补助服务中心(CMS)达成协议,联邦医保支付方将覆盖一个月以内的Kymriah治疗。/pp  strong参考资料:/strong/pp  Is Gilead’s new CAR-T overpriced or is payer bureaucracy to blame for slow pickup?/pp/p
  • IVIS视角:“饿死”那些癌细胞——饥饿疗法在肿瘤治疗领域的应用
    肿瘤在体内只有一个目标,就是不停地生长!生长!生长!在生长的过程中不可避免的要消耗掉大量的氧气和营养物质,所以肿瘤会构建自身的血管网络系统用于养分和氧气的输送,这些肿瘤内部搭建的血管就是肿瘤的能量供应站。因此切断肿瘤的主动营养供应,破坏肿瘤的能量代谢系统,就能抑制肿瘤细胞的增殖,从而“饿死”癌细胞。但是,这种能量切断不是广义上的让病人减少进食,或者少吃营养的东西,这样会使正常组织得不到足够的能量导致免疫力下降。真正的饥饿疗法具有选择性,可以特异性的抑制肿瘤细胞的代谢过程(图1),实现对肿瘤的精准致命打击。图1 特异性抑制肿瘤细胞能量代谢级联纳米酶靶向肿瘤“饥饿”环境通过级联纳米催化药物的设计,将葡萄糖氧化酶(GOx)和过氧化氢酶(CAT)通过pH响应的聚合物交联形成级联纳米酶,通过血清蛋白将纳米酶和抗肿瘤前药复合形成纳米药物。肿瘤的酸性环境可以将纳米酶释放,COx迅速消耗肿瘤细胞内的葡萄糖和氧气,产生饥饿和缺氧环境,切断肿瘤能量供应的同时提升前药系统的化学治疗效果,并且消耗葡萄糖产生的毒副产物H2O2也可以快速被CAT分解,以避免产生全身毒性。这种结合靶向饥饿环境并结合缺氧化学治疗的方案可以有效抑制肿瘤细胞的增殖,不会产生毒副作用,通过小动物光学成像可以清楚的看到级联纳米酶颗粒在肿瘤部位的富集随时间的变化情况,以及48小时后纳米酶颗粒在各个脏器中的分布情况。图2 基于级联纳米酶的纳米药物设计以及在体内的靶向分布情况参考文献Ma Y, Zhao Y, Bejjanki N K, et al. Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity[J]. ACS nano, 2019, 13(8): 8890-8902.光照诱导肿瘤能量代谢阻断通过新型纳米颗粒的构建,利用肿瘤细胞高表达组织蛋白酶B的特性,设计酶剪切开关,将载有光敏剂的介孔纳米硅和和定位序列修饰的氧化钨颗粒偶联在一起形成行星-卫星结构。被肿瘤细胞摄取后纳米颗粒可以被高表达的组织蛋白酶B剪切,行星-卫星结构分开,配合不同波段的光照同时引发光动力和光热效应,切断肿瘤氧化磷酸化和糖酵解过程,阻断能量供应,抑制肿瘤的增殖。通过小动物活体光学成像进行肝部转移肿瘤的体内表征,实验结果表明这种纳米颗粒配合光照可以有效诱导肿瘤细胞产生“饥饿”环境,通过抑制肿瘤细胞能量供应清除体内的转移肿瘤。而正常细胞内组织蛋白酶B含量不足,行星-卫星结构无法分开,在光照过程中光动力产生的单线态氧可以进一步氧化纳米氧化钨颗粒,阻碍光热反应的发生,不会影响到正常组织的代谢过程,证实了可以基于能量代谢的肿瘤选择性精准治疗策略的可行性。图3 光照切断肿瘤细胞能量供应参考文献Huo D, Zhu J, Chen G, et al. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion[J]. Nature communications, 2019, 10(1): 1-17.
  • 英国议会批准“三亲线粒体”基因疗法
    英国下议院以压倒性多数通过决议,允许英国研究人员继续开展一种可以防止某些类型遗传疾病的新生育疗法。这种被称为线粒体DNA替代疗法的技术,能让线粒体基因中携带致病突变的女性产下基因上相关但没有线粒体疾病的孩子。该项举措一直颇具争议,尤其是因为它会改变胚胎DNA,而且这种方式能传递给下一代。一些科学家和非政府组织认为,目前对该技术应用于人类患者可能造成的负面影响了解得并不够充分。“我们认为下议院犯了一个严重错误,希望不会导致可怕的后果。”美国遗传学与社会中心执行主任Marcy Darnovsky在一份声明中表示。该举措的支持者很快开始了庆祝。“我很高兴议会成员投票通过决议,允许将线粒体转移技术引入临床治疗。”英国医学科学院院长John Tooke表示。线粒体是细胞的能量引擎。这些细胞器包含一套自己的基因,名为mtDNA。当线粒体无法正常工作时,会导致各种症状,引发一些很难辨别和诊断的线粒体疾病。有些生下来便携带缺陷线粒体的婴儿,会在数月内死亡。还有些人直到生命晚期才表现出症状。为此,研究人员提出了一种方法,将来自携带缺陷线粒体卵细胞的遗传物质转移到拥有健康线粒体的捐献者卵子内。产生的胚胎携带来自母亲和父亲的核DNA以及来自卵子捐献者的线粒体DNA。一些科学家认为,捐献者的mtDNA与受移植者的核DNA之间潜在的不匹配,会引发一些预想不到的问题。然而,在英国开展的很多伦理和科学审查以及一次民意征询,均支持人类受精与胚胎管理局对在人类身上开展该技术的试验性应用授予许可。该举措还必须获得上议院通过。即使获批,也并不意味着该技术将会被使用。生育诊所将不得不申请执照来使用此项技术,而且每份申请都会基于自身优劣获得评判。美国监管部门也在考虑是否允许使用该技术。去年,美国食品药品监督管理局(FDA)就mtDNA替代科学进行了两天的听证。他们还要求美国医学研究所发起一项关于该技术所引发伦理和社会政策问题的共识研究。1月27日,FDA委员会举行了第一次会议。后续会议计划在3月和5月举办。热门标签:
  • 美国FDA局长发表关于基因疗法新政策的演讲
    p  2018年5月22日,美国FDA局长Scott Gottlieb博士在华盛顿举行的再生医学年会上发表了关于基因疗法的演讲。他回顾了FDA基于细胞的再生医学疗法的政策,以及计划发布的关于基因疗法的政策,特别提到了再生医学先进疗法认定(RMAT)。Gottlieb博士表示,产生持久疗效的基因疗法属于更大的再生医学产品的一部分。传统的药物审评中,80%的审查都集中在临床部分,20%会专注产品自身的问题,这个普遍原则在细胞和基因疗法方面几乎完全颠倒过来。对于基因疗法监管方面,FDA打算发布一套指导文件草案,阐明基因疗法产品的制造和临床开发框架。下面是Gottlieb博士的完整演讲。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/69446802-2b37-418d-bb80-b8a397fa8912.jpg"//pp style="text-align: center "▲FDA局长Scott Gottlieb博士近日发表了关于再生医学产品和基因疗法的演讲/pp style="text-align: center "(图片来源:FDA官网)/pp strongspan style="color: rgb(31, 73, 125) " 我们正处于细胞和基因治疗的关键时刻/span/strong。这些疗法有望治疗成百上千种罕见疾病和常见疾病。在很长一段时间里,基因疗法主要存在于理论上。现在,它们变成了现实。我预计基因疗法很快就会成为人类治疗各种疾病的主要方式。/pp  我们已经到达了科学的转折点,为这些应用机会打开了大门。strongspan style="color: rgb(31, 73, 125) "其中之一就是基因的有效载体的出现。这一突破的意义可以参考单克隆抗体领域的技术进步历史。/span/strong开发完全人源化抗体的能力是一个科学转折点,它推动了抗体最终成为药物治疗的主要手段。在这种情况下,产品创新彻底改变了治疗机会。同样的概念也适用于基因疗法。可靠载体的出现是基因疗法和CAR-T细胞疗法发展的一个转折点。/pp  但基因疗法也带来了新的挑战。/pp  为了拥抱这一技术进步,并应对这些挑战,FDA正在进行细胞和基因治疗的新型临床试验设计的应用科学研究。我们也在努力通过使用所有的监管途径制定药物加快开发计划。这包括使用”突破性疗法”认定,以及最近的strongspan style="color: rgb(31, 73, 125) "再生医学先进疗法认定,也称为RMAT(Regenerative Medicine Advanced Therapy designation)认定。/span/strong/pp  作为2017年11月发布的再生医学框span style="color: rgb(0, 0, 0) "架的一部分,FDA提出了如何应用RMAT认定以及其他加快新产品开发的新举措的指导草案/spanstrongspan style="color: rgb(31, 73, 125) "。我们将很快发布一个类似的框架,讨论如何解决基因疗法产品的制造和开发途径。/span/strong/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/c153bc6a-fe41-4d4c-a857-8a710047873b.jpg"//pp style="text-align: center "▲2017年11月发布的再生医学框架草案中,FDA提到将采取5种途径加快再生医学产品审批/pp style="text-align: center "(图片来源:FDA官网)/pp  我今天想谈两件事。首先,我想回顾一下FDA去年推进的基于细胞的再生医学疗法政策,这些努力涉及我想谈的第二个主题——我们计划发布关于基因疗法的政策。/pp  我们2017年11月发布的再生医学框架阐明了现有的组织法规,并描述了我们对这些产品的合规和监督政策。我们的目标是促进开发和提供安全有效的再生医学产品。以及在必要时集中执法行动的框架,以确保不安全的产品不会被非法销售给病人。/pp  strongspan style="color: rgb(31, 73, 125) "这个框架为实现这些目标提供了推动力和拉动力。/span/strong它梳理了满足FDA上市前许可条款(pre-market licensing provisions)的条件,并描述了开发这些产品并寻求FDA批准的有效途径。/pp  根据FDA的建议,只要小型开发者遵循通用的制造协议,就可以将他们的数据汇集起来。这将使小型机构能够更有效地满足批准程序的证据要求,为他们获得个人产品许可提供一条途径。/pp  strongspan style="color: rgb(31, 73, 125) "该框架还描述了如果上市前许可产品一旦被非法销售并使病人处于危险之中,FDA打算如何采取执法。/span/strong最近,FDA向法院寻求永久禁令,阻止两家干细胞诊所在未经FDA批准的情况下销售干细胞产品,这两个干细胞诊所的生产与目前的GMP要求有很大差距。/pp  再生医学领域继续扩大,我们致力于根据需要调整政策,以确保我们正在评估的这些产品所带来的不断变化的风险和受益。自该计划于2016年12月开始实施以来,截至今年4月底,共有62份RMAT认定材料提交,FDA颁发了19个认定。在这19种产品中,有14种也获得了孤儿药认定。表明该计划如何促进了罕见疾药物的开发。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/78b5ec50-0989-422c-b359-4a4ab867e361.jpg"//pp style="text-align: center "图片来源:123RF/pp  谈到基因疗法,让我想起了我们正在做的上述事情。某些基因疗法可能符合RMAT认定。strongspan style="color: rgb(31, 73, 125) "产生持久疗效的基因疗法可能是更大的再生医学产品的一部分。/span/strong基因疗法的发展速度惊人。麻省理工学院发表的一篇论文基于2017年的930种在研产品线预测,strongspan style="color: rgb(31, 73, 125) "到2022年底,将有约40种基因疗法产品获得FDA批准。/span/strong麻省理工学院还预测,这些批准的基因疗法中45%都将用于治疗癌症。/pp  我不知道他们预测的数量是否准确。strongspan style="color: rgb(31, 73, 125) "但我知道从趋势上,这个预测是正确的。/span/strong就在去年,我们看到了前三种基因疗法获得批准: 两种治疗血液癌症的基于细胞的基因疗法,以及治疗一种遗传性视网膜萎缩症的直接型基因疗法。基因疗法正在从承诺变成现实。这些最近批准的产品只是冰山一角。/pp style="text-align: center "img title="4.png" src="http://img1.17img.cn/17img/images/201805/insimg/57cc7562-3c66-4b4a-ac76-e7807e480b8a.jpg"//pp style="text-align: center "▲FDA批准的3种基因疗法(信息来源:FDA官网)/pp  FDA共收到了500多个涉及基因治疗产品的新药申请(NDA)。仅去年一年,我们就收到了100多份这样的申请。充分表明了这一研究领域的热度。/pp  这些都是非凡的进展。这些产品有可能治愈一些最难治的遗传性疾病。这些进步为广大人群带来希望,如罕见代谢疾病患儿的父母,以及患有更常见的疾病的人,如糖尿病和心脏衰竭。/pp  在监管方面,为了在基因疗法的开发方面取得进展,正如我先前提到的,strongspan style="color: rgb(31, 73, 125) "FDA打算发布一套指导文件草案,阐明基因疗法产品的制造和临床开发框架。/span/strong许多新的指导意见将集中在与产品有关的问题上,但这些指导也将为其他领域的临床开发提供建议。/pp  传统的药物审评中,80%的审批都集中在临床部分,20%会专注产品自身的问题,strongspan style="color: rgb(31, 73, 125) "我认为这个普遍原则在细胞和基因疗法方面几乎完全颠倒过来。/span/strong最初的临床疗效往往是在早期就建立起来的,有时是在一小部分病人身上。更具挑战性的问题是产品的制造和质量控制,以及改变或者扩增的问题,在基因插入前需要放到一个载体上,这会改变载体的构象,从而从根本上改变整个产品的安全性或效果。/pp  strongspan style="color: rgb(31, 73, 125) "还有一个问题是反应的持久性,任何具有合理规模的上市前试用都往往不能完全回答这个问题。/span/strong对于某一些产品,即使在批准时也会有一些不确定性。但是这些产品最初的目标是治疗严重疾病,其中许多还是缺乏治疗手段的致命疾病。在这些情况下,strongspan style="color: rgb(31, 73, 125) "FDA一直愿意接受更多的不确定性,/span/strongstrongspan style="color: rgb(31, 73, 125) "以便于及时获得有希望的疗法,/span/strong通过加速批准、突破性疗法认定或RMAT认定这些举措,这是美国国会给予FDA的方向。/pp  当我们采用这些方法来加速开发和批准具有高潜力、但其安全性或疗效有一些不确定性的治疗方法,以实现未满足的临床需求时,我们通常会遵循严格的审评标准。strongspan style="color: rgb(31, 73, 125) "这些疗法需要在上市后采取后续研究,以回答可能仍然存在的产品风险或长期有效性的问题。/span/strong/pp  strongspan style="color: rgb(31, 73, 125) "加速审批有助于实现这种谨慎的平衡。/span/strong这使FDA有机会在药物开发过程的早期就批准非常有前景的产品,基于可合理预测临床益处的替代指标。与此同时,它也给予FDA强有力的权力,要求进行上市后研究证实这些疗效。/pp  因此,作为我们综合性政策框架的一部分,strongspan style="color: rgb(31, 73, 125) "我们将推出的指导性文件中包含将为某些基因疗法产品设计潜在的加速审批终点的文件。/span/strong我们关注的第一个治疗领域是血友病,基因疗法能让凝血因子的产量变得正常,在某些情况下,凝血因子的产量可能足以作为基因疗法益处的替代指标。/pp  strongspan style="color: rgb(31, 73, 125) "在这些情况下,出血率下降的证据可以在批准后得到证实/span/strong,因为我们继续研究产品的长期安全性和耐用性。我们将发布的其他指导文件,涉及与基因治疗产品相关的特殊制造和临床问题。/pp  通过向开发者提供制造参数,安全措施和临床开发路径,FDA希望促进基因疗法领域更大的创新发展。一旦这些指导文件草案发布,我们将期待大家参与讨论。我们重视知情的利益相关方,例如再生医学联盟(Alliance for Regenerative Medicine)的加入。/pp style="text-align: center "img title="5.png" src="http://img1.17img.cn/17img/images/201805/insimg/6531759a-0d93-4ce4-a535-e350de081a4a.jpg"//pp  strongspan style="color: rgb(31, 73, 125) "我们看到的与基因疗法产品相关的挑战是我们可以通过合作解决的问题。/span/strong虽然基因疗法有可能同时治疗常见疾病和罕见疾病,但目前它对于7000多种罕见疾病的患者来说希望更大。为这些从最少不足一百,到多则上万患者的每一种罕见疾病开发产品,对于我们所有人来说充满挑战。/pp  显然,我们要利用现有的所有创新方法进行临床开发,包括使用新颖的以患者为中心的终点和试验设计。此外,我们要运用所有现有的工具,作为FDA加快开发计划的一部分,以促进及时开发安全有效的产品,包括使用扩大的规定获取确认证据,以便通过《21世纪治愈法案》的再生医学规定加速批准治疗方法。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201805/insimg/c13dad26-375a-41bc-9447-45440e787f8d.jpg"//pp style="text-align: center "▲21st Century Cures Act(图片来源:FDA官网)/pp  在这方面,注册管理机构和真实世界证据(real-world evidence)的使用可能会发挥越来越重要的作用。因此,作为2019财政年度预算申请的一部分,我们正在寻求新的资源来扩大我们在新药上市后收集数据的能力。我们的一个目标是建立新产品批准后能对其安全问题进行更多实时监控的系统。/pp style="text-align: center "img title="7.png" src="http://img1.17img.cn/17img/images/201805/insimg/662dd583-3e52-4354-a94b-6e8f2c623da2.jpg"//pp style="text-align: center "▲FDA公布的真实世界证据的来源(图片来源:FDA官网)/pp  尽管针对小众人群的药品临床开发显然具有挑战性,但目前似乎还有另一个更大的挑战正在减缓基因疗法的发展。这一挑战是细胞和基因疗法制造能力的局限。/pp  更具体地说,有两个问题需要解决。第一个是技术性的,第二个主要是概念性的。我想依次解决这两个问题。/pp  首先,关于技术问题: 目前生产基因治疗载体(慢病毒和腺病毒)的过程效率相对较低。这导致了制造能力不足和成本高昂。在临床试验中,一个病人的治疗费用高达25万美元以上。/pp  这些挑战推迟甚至阻碍了更广泛地开发可能挽救生命的医疗产品。我们需要的是更有效和标准化的生产过程,以开发基因治疗载体。/pp  为此,strongspan style="color: rgb(31, 73, 125) "FDA正在内部采取行动,并通过各种合作伙伴关系,帮助提高生产基因治疗载体的细胞系的产量。/span/strong我们也在采取措施研究先进制造技术的应用,例如连续制造。我们希望帮助提供各种工具,以加快该领域药物的开发进程。另外,我们正在积极寻求新的投资,以扩大连续制造平台的使用,这在细胞和基因疗法方面尤其重要。我们有一个关于如何扩大连续制造能力的提案,作为我们2019年预算申请的一部分。/pp  需要解决的第二个问题主要是概念上的,尽管涉及到一些技术方面的问题。/pp  细胞和基因疗法领域正在使用医药行业的生产模式,即早期开发过程中的药物采用中试生产。一旦早期开发成功,才进行商业化生产工艺开发,用于支持后期临床开发和最终的市场销售。/pp  当最终只有十或二十分之一的产品进入市场,并且最终的市场规模是成千上万或数百万人的时候,这种模式运行良好,可以节约时间和金钱。我们现在所处的环境是,用临床试验证明细胞和基因疗法的安全性和有效性,可能只需要几十个人来证明这些产品是安全有效的。/pp  例如:一种替代缺陷蛋白质的基因疗法,改变患者的感受、功能和存活方式。这种基因疗法从中式工艺过渡到商业化工艺的需求可能大大拖延产品进入市场,甚至导致放弃开发,因为制造过渡可能代价高昂且困难重重。/pp  strongspan style="color: rgb(31, 73, 125) "我们现在鼓励生产商,特别是那些针对小规模患者群体的生产商,开发具有内在质量属性的可扩展的制造工艺,这些过程可能有助于扩大规模和获得许可。/span/strong一种技术上可以实现的方法是使用制造" 基因盒" 为数量有限的个人生产出足够的产品,比如说10或20个人,这可能足以供应一个初步的临床试验。如果产品很有前景,那么进一步的开发和最终完全许可可以简单使用多个基因盒实现。/pp  或者,可以开发一种连续制造技术,具有足够的放大能力,以支持从临床试验转向商业生产。我们已经看到一些致力于基因疗法产品的开发者开始投资能适应这些连续平台的技术。/pp  很明显,这些新技术将改变医学和人类健康。几十年前,基因疗法在很大程度上还只是一个理论。现在我们不仅可以期望这些产品能够治愈疾病,而且也应该能够实现这个目标。这一领域正在迅速发展,FDA的科学家们正积极应对制造业和临床开发方面的挑战。/pp  FDA对于从再生医学联盟等组织获得的所有支持表示感谢。通过共同努力,我们有可能治愈曾经被认为无法治疗的疾病,给病人带来新的希望 。/p
  • 艾滋病基因疗法首例人体试验启动,有望实现“一次治疗、终身治愈”
    据外媒报道,近日,一项针对艾滋病毒(HIV-1)的突破性基因编辑疗法EBT-101开始进行全球首次人体试验,首位试验参与者已完成单次静脉给药,目前研究人员正观察其安全性和效果。如果成功,则意味着未来人们有望实现艾滋病的一次性治愈,而不需要进行长期的抗病毒治疗。艾滋病,又称获得性免疫缺陷综合征,由艾滋病毒(HIV)感染所致,病毒主要攻击T淋巴细胞使人体丧失免疫功能。同时,当人体感染HIV后,病毒会将其基因组复制到细胞DNA中形成病毒库,继而源源不断地产生病毒。在这种状态下,病毒可有效地躲避抗HIV药物和人体免疫反应。目前的抗逆转录病毒治疗(ART)可阻止新病毒的产生,但不能消除病毒库,因此需要持续服药来抑制病毒,此外,长期的ART也会产生一定副作用。EBT-101由美国坦普尔大学Lewis Katz医学院以及Excision生物治疗公司共同开发,是一种通过腺相关病毒(AAV)来传递CRISPR-Cas9进行基因编辑的体内基因疗法。同时,EBT-101使用针对HIV基因组不同区域的多个单向导RNA,从人类细胞基因组中切割HIV DNA,从而最大限度地减少潜在的病毒逃逸,最终实现对艾滋病的治疗和治愈。此外,由于该疗法靶向的是病毒DNA而不是人类基因,因此脱靶编辑的风险也较小。EBT-101目前正处于 1/2 期临床试验阶段,这是一项开放标签、多中心单次递增剂量研究,旨在评估 EBT-101 在9名艾滋病毒携带者中的有效性、安全性和耐受性等。试验将在给药后的第 12 周对受试者进行综合评价,以评估单剂量 EBT-101的有效性、安全性和耐受性,此外还将进行生物分布、药效学评估等。48周后,所有受试者将被纳入长期随访方案进行长达15年的监测。目前,首位试验者已经完成了单次静脉给药,研究人员正在密切跟踪和观察这一基因编辑疗法的初步疗效,如果出现符合停止抗逆转录病毒治疗的条件,将很快对其进行病毒反弹评估。研究人员表示,如果EBT-101如预期的那样起作用,那么患者将不再需要进行抗逆转录病毒治疗。
  • 安捷伦推创新细胞分析解决方案 助力免疫疗法研究
    p style="text-align: justify "  2019年5月9日至13日,美国免疫学家协会(AAI)第 103 届年会 Immunology 2019在美国加利福尼亚州圣迭戈成功举办,大会期间strong安捷伦科技公司/strong宣布为免疫疗法研究人员推出统一的产品组合并展示该创新解决方案。br//pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/5715b9df-a310-4ffe-817a-fbc0b54cf991.jpg" title="AAI大会官网首页.png" alt="AAI大会官网首页.png"//pp style="text-align: center "strongImmunology 2019官网主页/strong/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong安捷伦科技公司细胞分析事业部高级总监David Ferrick博士/strong/span表示:“免疫疗法正在改变癌症治疗的格局,但大多数可用工具都经过了调整,因为它们并非专为这种以细胞为中心的工作流程而设计。因此,我们非常重视基于细胞的创新解决方案的组合和统一。我们想要帮助研究人员和开发人员克服重重挑战,在这一快速发展的领域中攫取先机。”/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong宾夕法尼亚大学佩雷尔曼医学院和艾布拉姆森癌症中心免疫疗法教授、医学博士Carl June/strong/span谈道:“现在,通过安捷伦提供的工具,我们可以在流式细胞术、活细胞代谢的动力学测量以及量化T细胞在一段时间内杀死靶标的能力等方面开展研究,寻找我们需要的答案。任何一种基于细胞的分析方法,只要能够提高获得有效细胞结果的概率,都将是人们所期望和需要的。”/pp style="text-align: justify "  细胞分析业务是安捷伦的关键战略规划之一,其对于理解疾病和发现潜在治疗方法至关重要。安捷伦致力于成为细胞分析行业的领军者,积极推动生物产业发展。安捷伦的这款新产品包括四款专门设计的组成部分,它们相辅相成以提供最佳性能:/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strongAgilent SureGuide 化学合成 sgRNA/strong:/span 提供最佳向导,充分发挥 CRISPR 在细胞工程和免疫疗法中的潜力。/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strongNovoCyte Quanteon 流式细胞仪/strong:/span使用市面上最灵敏的硅光电倍增检测器技术,通过多达 25 个荧光通道快速准确地进行免疫表型分析。体验流式细胞术的新标准。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 428px height: 217px " src="https://img1.17img.cn/17img/images/201905/uepic/1ab75ca7-3dba-4408-9782-2c1e618a23de.jpg" title="quanteon流式细胞仪.jpg" alt="quanteon流式细胞仪.jpg" width="428" height="217"//pp style="text-align: center "stronga href="https://www.instrument.com.cn/zt/liushixibaoyi" target="_blank"NovoCyte Quanteon 流式细胞仪(点击进入流式细胞仪专题)/a/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 14px color: rgb(12, 12, 12) "该流式细胞仪具备以下特点:1、检测能力大大扩展,多至27个参数;2、超群的FSC/SSC和荧光分辨率,可以用于尺寸小至0.1μm的颗粒检测,可以轻松识 别和分析血小板,细菌和各种亚微米颗粒;3、无需微球,直接进行绝对计数,既不需要对液路系统进行复杂的校准也不需要昂贵且需要数量换算的计数微球;4、具备智能化设计简化工作流程。内置质量控制:快速运行每日QC,自动生成全面的QC报告,并通过Levey-Jennings图表方便地跟踪仪器性能。 自动化质量控制测试不仅可以确保日常的性能监测,而且可以对仪器性能进行长期监测。/span/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strongxCELLigence RTCA eSight/strong:/span 捕获动态细胞行为,追踪费时费力的终点测定可能无法检测到的生物学行为,从而实时定量分析癌细胞杀伤等重要事件。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 471px height: 314px " src="https://img1.17img.cn/17img/images/201905/uepic/c58843e9-ea5f-4b33-8821-a89cf01bae52.jpg" title="xCELLigence RTCA eSight细胞分析仪.png" alt="xCELLigence RTCA eSight细胞分析仪.png" width="471" height="314"//pp style="text-align: center "stronga href="https://www.instrument.com.cn/list/sort/126.shtml" target="_blank"xCELLigence RTCA eSight无标记细胞分析系统(点击进入细胞生物学仪器专场)/a/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 14px color: rgb(12, 12, 12) "该款仪器主要特点如下:1、可以使活细胞成像和实时生物传感器测量可以在相同的细胞群上进行;2、xCELLigence技术采用专利E – Plate板,在每个板的底部嵌入微金电极,非侵入性地量化细胞行为;3、测量速度非常快,提供精确的时间分辨率,因此所有相关响应都可以用秒、分钟、小时或天来测量。/span/pp style="text-align: justify "  span style="color: rgb(0, 112, 192) "strong安捷伦 Seahorse XF 分析仪/strong:/span研究并调谐免疫细胞代谢,以获得持久且可靠的抗肿瘤反应。XF 分析仪是市面上针对此类工作的领先仪器。以下为三款Seahorse XF分析仪:/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/83fbe92b-b5c6-4922-a854-bd0a71a9910c.jpg" title="安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg" alt="安捷伦Seahorse XFe96细胞能量代谢分析仪.jpg"//pp style="text-align: center "stronga href="https://www.instrument.com.cn/netshow/C279107.htm" target="_blank"安捷伦Seahorse XFe96细胞能量代谢分析仪(点击查看该仪器信息)/a/strong/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/343b0082-aadc-4f71-b95a-adecc9bc1b37.jpg" title="安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg" alt="安捷伦Seahorse XFe24 细胞能量代谢分析仪.jpg"//pp style="text-align: center "a href="https://www.instrument.com.cn/netshow/C279108.htm" target="_blank"strong安捷伦Seahorse XFe24 细胞能量代谢分析仪(点击查看该仪器更多信息)/strong/a/pp style="text-align: center"a href="https://www.instrument.com.cn/netshow/C279109.htm" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/36f6995b-78fa-4d1f-802c-c0385d73dbce.jpg" title="安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg" alt="安捷伦Seahorse XFp 细胞能量代谢分析仪.jpg"//a/pp style="text-align: center "stronga href="https://www.instrument.com.cn/netshow/C279109.htm" target="_blank"安捷伦 Seahorse XFp 分析仪(查看仪器更多信息)/a/strong/pp style="text-align: justify text-indent: 2em "span style="font-size: 14px "Seahorse XF 分析仪通过测定多孔板中活细胞的耗氧率 (OCR) 和胞外酸化率 (ECAR) 审查线粒体呼吸和糖酵解等关键细胞功能。XF 分析仪可实时进行化合物添加和混合,免标记分析检测,并自动测定 OCR 和 ECAR。(信息源:安捷伦科技)/span/pp style="text-align: justify "  strong关于安捷伦科技公司/strong/pp style="text-align: justify "  安捷伦科技公司(纽约证交所: A)是生命科学、诊断和应用化学市场领域的全球领导者,拥有50多年的敏锐洞察与创新,我们的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。在2018财年,安捷伦的营业收入为49.1亿美元,全球员工数为14800人。/pp style="text-align: center "span style="text-decoration: underline " /spanbr//pp style="text-align: center "span style="text-decoration: none color: rgb(0, 112, 192) "strong扫码关注span style="text-decoration: none color: rgb(192, 0, 0) "3i生仪社/span,解锁更多生命科学相关资讯/strong/span/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/87876a06-cb72-4e5d-ab6a-d4a74455ab30.jpg" title="小icon.jpg" alt="小icon.jpg"//pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201905/uepic/bf7fe01d-8654-45d0-9383-6f068d6752fd.jpg" title="企业微信截图_20190520102956.png" alt="企业微信截图_20190520102956.png"//p
  • 23亿!为保“老大位置”,BMS又为免疫疗法“花大钱”了
    p  8月3日,据官网消息,免疫疗法巨头BMS将支付3亿美元预付款以及高达20亿美元的里程碑付款给一家名为IFM Therapeutics的公司。/pp  据悉,总部位于波士顿的IFM成立于2015年,是一家开发精准靶向先天免疫系统药物的生物制药公司,去年刚刚完成2700万美元的A轮融资。/pp  IFM称,目前免疫疗法的大部分进展主要集中在靶向适应性免疫系统。尽管很多药物能很好的发挥作用,但这种治疗益处只体现在少数的疾病中。先天免疫系统是机体免疫反应的第一道防线。借助先天免疫系统有望能够产生新一代用于炎症疾病和癌症治疗的药物。/pp  此次收购将使BMS获得IFM临床前STING激动剂和NLRP3激动剂项目的全部权利。这两个项目旨在通过增强先天免疫反应来治疗癌症。/pp  FierceBiotech网站的报道称,对于IFM来说,仅仅靠一些早期的候选产品,A轮融资1年后就与巨头达成如此重量级的交易,真是如“童话故事”一般。/pp  不过,对BMS来说,这一交易是其丰富早期I-O(Immune-Oncology)产品线的重要一步棋。过去的一年中,公司的“王牌药物”Opdivo(PD-1抗体)遭受了一些挫折,使其在同类产品中的竞争优势有所下降。/pp  笔者注意到,Opdivo本周也收获了一个 “好消息”:拿到了FDA批准的第七个适应症——结直肠癌。Opdivo获批的其它6个适应症包括:黑色素瘤、非小细胞肺癌、肾细胞癌、经典型霍奇金淋巴瘤、头颈癌、膀胱癌(尿路上皮癌)。/pp  据统计,Opdivo去年全年销售额达37.74亿美元。而BMS公司7月27日公布的2017年度半年报显示,今年上半年Opdivo累计销售额已达23.22亿美元。尽管这一“成绩”较去年同期上涨了50%,但“对手”默沙东的PD-1抗体Keytruda表现出了更加强劲的增长势头。/pp  Keytruda被批准的六大适应症(图片来源:Keytruda官网)/pp  根据默沙东公司7月28日公布的半年报显示,Keytruda今年上半年累计销售额达14.65亿美元(第二季度销售额为8.81亿美元),较去年同期增长160%。(备注:去年全年Keytruda累计销售额为14.02亿美元)。/pp  就适应症来说,Keytruda共拿下了6个,包括黑色素瘤、非小细胞肺癌、头颈癌、经典型霍奇金淋巴瘤、膀胱癌(尿路上皮癌)以及携带微卫星不稳定性高(MSI-H)或错配修复缺陷(dMMR)的实体瘤。其中,一线治疗非小细胞肺癌是Keytruda的极大优势。/pp  不久前,Evaluate Pharma的一份报告公布了2022年有望卖的最好的5款“抗癌药”,Opdivo和Keytruda都在其中。前者2022年预计销售额为99亿美元,后者2022年预计销售额为95亿美元。目前来看,癌症免疫疗法无疑是生物制药领域的“金矿产业”。全球大小制药企业都在盯着这块“蛋糕”。究竟将来市场格局会有怎样的变化,我们拭目以待吧。/p
  • 新型血检可预测尖端免疫疗法能否抗癌
    p  /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/e82232bb-6b38-4064-b1f2-b9a37729c4dd.jpg" title="03.jpg"//pp 一些癌症会产生自我毁灭的种子。在快速分裂的肿瘤细胞中积累的某些随机突变,可刺激免疫系统攻击该类癌症。研究人员现在了解到,这种突变程度可预测一种癌症是否会对强大的、基于免疫的新疗法产生反应。最近公布的一项针对这种叫作肿瘤突变负担(TMB)的血液检测或有助于成为指导癌症治疗的实用工具。br//pp  癌症研究人员已经可通过对生物活体组织中所选择的一组基因进行测序来检测TMB,这种方法最近在大型肺癌试验中显示出很强的预测能力。一些癌症医生现已在某些病例中实施组织TMB检测。对人体血液循环中脱落的肿瘤DNA进行分析的微创血液检测,或可在对组织检测不起作用的许多患者体内发现TMB。美国哥伦比亚大学医学中心肿瘤学家Naiyer Rizvi说:“我们会看到越来越多的TMB。”尽管如此,他补充说,TMB检测目前在日常临床实践中花费过长时间,癌症研究领域的一些人质疑它最终会有多大的用处。/pp  预测免疫疗法能否在患者体内发挥作用的检测为当下所迫切需要,特别是对于检查点抑制剂来说,它会对免疫细胞释放出抑制作用,并使其攻击肿瘤。自从美国食品和药物管理局(FDA)在2014年批准第一种靶向“检查点”蛋白PD-1的抗体药物以来,这类药物已让癌症治疗发生改变。加州大学洛杉矶分校肿瘤学家Antoni Ribas指出,到今年5月,他所在医院有一半癌症患者过去半年在服用检查点抑制剂。“我们在以非常高的比例使用这些药物,这应该引起注意。”他说。有些病人的反应非常显著,但大多数人仍未能受益,还有一些人则从来没有服用过相关药物。除了肿瘤存在特定DNA修复缺陷的4%的患者之外,医生并不能确定谁会从中受益。/pp  由此,TMB检测来了。大多数分析通过对肿瘤DNA中有限数量的基因进行测序,估计肿瘤中改变蛋白质的突变数量 这一数据或可反映癌细胞表面突变蛋白片段(即新抗原)的密度。这些片段并不能帮助肿瘤生长 它们只是容易出错的肿瘤细胞分裂的副产品。但它们对免疫系统来说的确是外来的——新抗原越多,免疫疗法越有可能使肿瘤缩小并抑制其生长。/pp  在4月于伊利诺伊州芝加哥美国癌症研究协会(AACR)年会上报道的肺癌试验中,研究人员发现,肿瘤组织中的突变负荷预测了检查点抑制剂组合能否比常规化疗更好地帮助肺癌患者。超过40%的肺癌显示出较高的TMB,而平均来看,存在该类肿瘤的患者在免疫治疗方面表现得更好。Rizvi说,对1739名患者进行的III期试验将会获得FDA的批准,该试验由马萨诸塞州剑桥市基础医学公司开发,旨在进行肺癌治疗。(6月中旬,瑞士制药巨头罗氏公司已承诺收购该公司)/pp  在6月于芝加哥召开的美国临床肿瘤学会(ASCO)年会上,更多证据显示了TMB的预测价值。加州大学戴维斯分校肿瘤学家David Gandara报告了对检查点抑制剂Tecentriq在肺癌、膀胱癌、黑色素瘤和其他肿瘤中7项不同试验的回顾性分析。正如同样的组织检测所显示的那样,当TMB较高时,肿瘤对药物的反应速度加倍。“TMB的未来现在已经开启。”Gandara在ASCO会议上说。/pp  然而,组织TMB检测“非常昂贵。它需要大量的组织,而且不是标准化的”。耶鲁大学病理学家David Rimm说。在AACR会议上报告的试验中,医生只能从58%的患者身上获得足够的肿瘤组织。Rizvi补充说,整个过程可能需要3周,对新确诊的患者来说等待的时间太长了。/pp  同样来自基础医学公司的血液TMB测试或可证明与组织测试一样有效。在ASCO会议上,俄亥俄州克利夫兰诊所的Vamsidhar Velcheti报告了对接受TMB血液检测的肺癌患者进行Tecentriq前瞻性试验的初步结果。这种药物使高突变负荷肿瘤缩小了超过36%,但对低TMB肿瘤来说仅缩小了6%。高TMB肿瘤患者的癌症复发时间比低TMB肿瘤患者长两倍。/pp  但宾夕法尼亚州费城福克斯大通癌症中心肿瘤学家Hossein Borghaei在会议上警告说,Velcheti仅报告了第一批58名患者的情况。目前,包括580名患者在内的另一项试验正在展开。Rimm同意初始结果需要验证。/pp  今年4月,FDA认为血液TMB测试是一种值得优先评估的“突破性设备”。但无论是血液检查还是活检,目前尚不清楚TMB能否给医生和病人带来他们所渴望的结果。Rimm指出,试验尚未显示高TMB患者接受免疫疗法比化疗的存活时间更长。Ribas预测,TMB将成为未来复合生物标志物的一个组成部分。/pp style="text-align: center"br//ppbr//p
  • I型Treg细胞:造血干细胞移植疗法的伴侣?
    一部分血液系统恶性肿瘤患者需要进行造血干细胞移植 (hematopoietic stem cell transplantation,HSCT) 才有治愈机会,而这些患者中只有大约50%有完全匹配的供体,其余患者需要来自不完全匹配的HSCT治疗。这些不匹配的供体HSCT中有近60%会导致移植物抗宿主病 (graft-versus-host disease,GvHD)。而T-allo10疗法可有望降低GvHD的发病概率,其通过1型调节T细胞(Type 1 regulatory cell,Tr1 cell)以抑制同种异体反应【1】。Tr1细胞一般存在于外周血中,是CD4+ T细胞的亚群,可诱导和维持外周免疫耐受 【2】。一般来说,Tr1细胞可分泌抑制性细胞因子 IL-10 和 TGF-β 【3】,表达抑制性受体CTLA-4【4】,但目前尚不明确Tr1细胞在T-allo10疗法的具体作用机制,亟需系统探索。2021年10月27日,美国斯坦福大学医学院Maria Grazia Roncarolo教授研究组在Science Translational Medicine上发表题为Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients的研究论文,描绘了Tr1 细胞的独特分子表型和作用机制,对深入理解Tr1 的细胞生物学特征及设计新型造血干细胞移植临床策略具有一定意义。在这项研究中,研究者利用T-allo10构建了稳定的、可重复的CD45RA - CD49b + LAG3 + Tr1细胞,并验证其表达Tr1特异的细胞因子(如IL-10、TGF-β、IL-22、IFN-γ),且具有同种抗原特异性。作者采用TCR-seq系统表征Tr1细胞,发现Tr1 细胞分化可能导致其TCR免疫组库的多样性降低。为了探索Tr1细胞的转录组特征,作者利用RNA-seq测序并发现了其若干特征基因,包括IL10、LAG3、ITGA2 (CD49b)、IFNG、PRF1、GZMB、GZMA等。Tr1细胞亦高表达Treg细胞相关基因,如CTLA4、LGMN (legumain)、TNFRSF4 (OX40) 、TNFRSF18等。为了进一步探索如何靶向同种异体抗原特异性 Tr1 细胞,作者基于转录组测序结果推测CTLA-4 或 PD-1 通路可能对于Tr1 细胞至关重要。因此,作者阻断了这些通路,发现CTLA-4 阻断几乎完全消除了 T-allo10 介导的对应答Teff细胞增殖的抑制,PD-1/PD-L1 阻断也具有类似的效果。最后,作者研究了体外培养产生的Tr1 细胞的临床意义。研究者综合利用了正在进行I期临床试验(NCT03198234)【5】 的前三名患者的临床样本。结果表明,T-allo10细胞治疗过继转移后的24小时内,患者2和3外周血中的 Tr1 细胞频率达到峰值。在治疗后第 28 天,患者1的Tr1细胞比例仍达11.6%。作者进一步利用TCR-seq发现外周血循环的部分Tr1细胞携带与T-allo10疗法输入时的Tr1 细胞相同的TCR克隆型,表明过继转移的 Tr1 细胞可能在体内长期存在。综上,该工作系统探索了CD45RA- CD49b+ LAG3+ Tr1细胞的免疫表型、免疫组库、活化的分子及通路特征,并发现阻断CTLA-4/PD-1可作为Tr1 细胞的潜在抑制剂。值得一提的是,在能够反映患者真实情况的临床样本中,研究者发现T-allo10疗法过继转移的 Tr1 细胞可在体内长期存在,这对基于Tr1的造血干细胞移植新型治疗策略的设计和追踪提供了重要线索。原文链接:https://www.science.org/doi/10.1126/scitranslmed.abf5264
  • 科学家开发出治疗疾病的新型细胞疗法
    博士Eric T. Ahrens表示,起初我们想观察这种技术联合作用对于新型细胞疗法的效果,而我们可以通过反馈细胞活性、改善剂量等途径来改善细胞疗法的效率;当前并没有有效的方法对人类机体中的细胞进行成像,早先可以利用基于金属离子的血管MRI对比制剂和放射性同位素来成像,但是其在体内就不能够对细胞进行有效区分了。hz-E10044human soluble cluster of differentiation 28,sCD28 ELISAkit 人可溶性CD28(sCD28)检测试剂盒hz-E10045Human lymphocyte factor ELISAkit人淋巴细胞因子检测试剂盒hz-E10046Human thymus activation regulated chemokine,TARC ELISAkit人胸腺活化调节趋化因子(TARC/CCL17)检测试剂盒hz-E10047Human Neural cell adhesion molecule ligand 1,NCAM-L1 人神经细胞粘附分子配体1(NCAM-L1/CD171)检测试剂盒ELISAkithz-E10048Human Cobra venom neuronal protective factor,CVNPF ELISAkit人神经保护因子(CVNPF)检测试剂盒hz-E10049Human soluble Tumor Necrosis Factorαreceptor,sTNFαR 人可溶性肿瘤坏死因子α受体(sTNFαR)检测试剂盒ELISAkithz-E10050Human soluble cytokine receptor,sCKR ELISAkit人可溶性细胞因子受体(sCKR)检测试剂盒hz-E10051Human soluble Factor-related Apoptosis ligand,sFASL/Apo-1 人可溶性凋亡相关因子配体(sFASL)检测试剂盒ELISAkithz-E10052Human inhibitor of apoptosis,IAP ELISAkit人细胞凋亡抑制因子(IAP)检测试剂盒hz-E10053Human colony-stimulating factor,CSF ELISAkit人集落刺激因子(CSF)检测试剂盒hz-E10054Human monocyte interferon gamma inducing factor,MIGF 人γ干扰素诱导单核细胞因子(MIGF/CXCL9)检测试剂盒ELISAkithz-E10055Human Interferon inducible T-cell Chemoattractant,I-人干扰素诱导T细胞趋化因子(ITAC/CXCL11)检测试剂盒TAC ELISAkithz-E10056Human cluster Of differentiation,CDl4 ELISAkit人CD14分子(CDl4)检测试剂盒hz-E10057Human apoptosis inducing factor,AIF ELISAkit人凋亡诱导因子(AIF)检测试剂盒hz-E10058Human leukocyte common antigen,LCA/CD45 ELISAkit人白细胞共同抗原(LCA/CD45)检测试剂盒hz-E10059Human cluster Of differentiation,CD4 ELISAkit人CD4分子(CD4)检测试剂盒hz-E10060Human Placenta Cadherin,P-cad ELISAkit人P钙黏蛋白/胎盘钙黏蛋白(P-cad)检测试剂盒hz-E10061Human Keratinocyte Growth Factor,KGF ELISAkit人角化细胞生长因子(KGF)检测试剂盒hz-E10062Human Platelet-Derived Growth Factor-BB,PDGF-BB ELISAkit 人血小板衍生生长因子BB(PDGF-BB)检测试剂盒hz-E10063Human CXC-chemokine ligand 16,CXCL16 ELISAkit人CXC趋化因子配体16(CXCL16)检测试剂盒研究者表示,这项研究中他们利用全氟碳化合物(PFC)示踪技术和非侵入性磁共振成像成技术进行结合来直接检测标记细胞的氟原子,自然状态下氟原子在机体中的浓度极低,这就可以利用MRI技术对氟标记的细胞进行观察;而本文中研究者首次通过患者的白细胞制备了被修饰和标记的树突细胞,随后研究者将这些细胞注入到4期结直肠癌患者的机体中来刺激机体抗癌T细胞免疫反应。
  • 癌症免疫疗法斩获2018诺奖,细胞治疗时代倾轧而来!
    导 读:100 多年来,科学家一直试图让免疫系统参与抗击癌症的斗争。在两位获奖者的开创性发现之前,仅有有限的临床研发。而检查点治疗现在已经彻底改变了癌症治疗方法,从根本上改变了我们对癌症治疗方式的看法。——诺贝尔奖官网癌症免疫疗法2018年斩获诺贝尔奖!在免疫治疗炙手可热的当口,无疑更添一笔旺火。 2018 年诺贝尔生理学或医学奖授予James P. Allison 和 Tasuku Honjo(中文翻译:本庶佑),以表彰他们在癌症免疫领域中做出的贡献。 “通过刺激患者自身的免疫系统攻击肿瘤细胞的能力”——人类抗击癌症的斗争中的一个重大里程碑 癌症每年夺去数百万人的生命,是人类最大的健康挑战之一。通过刺激我们的免疫系统的内在能力来攻击肿瘤细胞,今年的诺贝尔奖获得者为癌症治疗建立了一个全新的原则。 20世纪90年代,艾利森在加利福尼亚大学的实验室对已知蛋白——细胞毒性T细胞相关蛋白-4(Cytotoxic T lymphocyte associate protein-4,简称CTLA-4)进行了深入研究。艾利森发现,CTLA-4可以起到抑制免疫系统的作用,相当于患者免疫系统的“刹车器”。 抑制CTLA-4分子,则能使T细胞大量增殖、攻击肿瘤细胞。他意识到,如果解除这种抑制,患者的免疫细胞可以再次获得攻击肿瘤的防御能力。 与此同时,本庶佑在淋巴细胞膜上发现了一种免疫球蛋白受体,当时认为与细胞程序性死亡有关,故命名为PD-1(Programmed cell Death 1)。仔细研究它的功能后,最终揭示该蛋白也是作为一个“刹车器”,但作用机制不同。 詹姆斯 艾利森(左)本庶佑(右) 艾利森和本庶佑多年的研究展示了如何解除患者自身免疫系统的“刹车器”来治疗癌症。在他们两人取得重大发现之前,癌症临床研究陷入了瓶颈,他们的开创性发现被认为是人类抗击癌症的斗争中的一个重大里程碑,并为彻底治愈癌症带来了曙光。 医学界的bian革,正式走进细胞治疗时代! 类似癌症免疫疗法已经给某些类型癌症的治疗带来了“ge命”,让一些患者以前无法治疗的肿瘤萎缩到近乎零。 与干细胞疗法一样,免疫治疗也基于一个变革性的理念:人类与其借助与药物治疗疾病,更应尝试“控制”细胞,让它们发挥或加强原有的作用,达到更好的疾病治疗目的——正是这样革新的理念,推动着医学界的变革,带领我们走进了细胞治疗时代。
  • 世界首个CRISPR基因疗法即将进入临床试验
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201712/insimg/609fe7d5-d448-4711-8cdf-a5808f869398.jpg" title="001.jpg"//pp  12月7日,CRISPR Therapeutics 宣布提交了CTX001 的CTA临床试验申请。CTX001是由CRISPR Therapeutics与Vertex Pharmaceuticals联合开发的一种基于CRISPR的基因编辑疗法,用于治疗严重的β地中海贫血和镰刀型细胞贫血。此次CTA临床试验申请一旦通过,将成为首个进入临床试验阶段的商业化CRISPR基因编辑疗法。/pp  CTX001通过对病人自体造血干细胞的基因改造和回输,使病人红细胞高表达胎儿血红蛋白HbF,提高病人红细胞供氧量,达到治疗目的。HbF是一种可以携带大量氧的血红蛋白,通常在出生时表达,成年后被置换为成人血红蛋白。而如果患者成人血红蛋白出现问题,就有可能出现β-地中海贫血、镰刀型细胞贫血等严重疾病。而通过HbF的高表达,则可以代替成人血红蛋白,为机体供氧。/pp  CTX001在欧洲的临床试验预计2018年开始,用于评估CTX001对成年β地贫患者的治疗效果和安全性。同时CRISPR Therapeutics计划于2018年向美国FDA提出NDA新药应用申请,将CTX001用于镰刀型细胞贫血的临床试验。/ppbr//p
  • Nature综述:全球癌症免疫疗法有哪几大趋势?
    p  /pp style="text-align: center "img title="Trends.jpg" alt="Trends.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/d7615d78-d7c5-408c-bda4-d35c9052469a.jpg"//pp style="text-align: center "img title="201810220940558352.jpg" alt="201810220940558352.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/2afe12a4-d8a2-4810-82cb-ba8d966349f7.jpg"//pp全球管线快速扩增/pp  该综述指出,在2017年9月到2018年9月这短短1年的时间里,全球免疫疗法管线激增67%。2017年,相应的研究项目共有2031个。到了2018年,这一数字已经飞速增加到了3394。/pp  但研究人员们也指出,这一增长态势并非均衡分布。如果我们按照种类进行区分,则肿瘤免疫疗法大致可以被分成6类——靶向T细胞的免疫调节药物(如针对PD-1或CTLA4的单克隆抗体)、其他免疫调节药物(如靶向TLR或IFNAR1)、癌症疫苗、细胞疗法(如CAR-T疗法和TCR-T疗法)、溶瘤病毒、以及靶向CD3的双特异性抗体(如blinatumomab)。/pp style="text-align: center "img title="trends2.jpg" alt="trends2.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/a04ca3cc-f142-4e20-869c-7baa423ee694.jpg"//pp  其中,细胞疗法的增长幅度最大,达到了113%。事实上,它也超过了癌症疫苗,成为了癌症免疫疗法的第一大类,占所有疗法的四分之一。而溶瘤病毒则增长甚微,一年只增长了16%。/pp  创新层出不穷/pp  研究人员们在综述里指出,过去一年里,癌症免疫疗法的靶点增长了约50%,总数目达到了417。从涉及的研究项目来看,越来越多的新靶点正得到研发人员的关注——去年,一半的研发管线来自23个热门靶点。今年,这一数字上升到了48,是去年的2倍有余。/pp style="text-align: center "img title="trends3.jpg" alt="trends3.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/9b80e72e-b4df-460e-a368-012aeda6b548.jpg"//pp  值得一提的是,人们并没有满足于重复过去的成功。综合来看,那些已经有获批新药的靶点,尽管还能够吸引新的研发项目,但总体的增长幅度不如那些尚未有获批新药的靶点。举例来说,上文中我们提到细胞疗法项目的增长幅度为113%,但其中靶向CD19的细胞疗法,只增加了37%,不如新兴的细胞疗法。而在另一方面,靶向肿瘤新抗原的研发管线则在一年里增加了133%。/pp  研究人员们指出,这些数据表明未来,我们有望看到更多类型的癌症免疫疗法获批上市。/pp  谁在研发免疫疗法?/pp  2018年,共有655个公司与机构正在积极研发免疫疗法,这一数字较去年同期增长42%。如人们所料,最为活跃的公司与机构榜单上,前8名均为大型医药企业。但值得一提的是,学术科研机构也正在扮演越来越重要的角色。在这份榜单的前15名里,有4家属于科研机构,其中三家来自中国,它们分别是深圳市免疫基因治疗研究院(Shenzhen Geno-Immune Medical Institute),中国人民解放军总医院(China PLA General Hospital),以及第三军医大学第一附属医院(Third Military Medical University Hospital One)。/pp style="text-align: center "img title="trends4.jpg" alt="trends4.jpg" src="https://img1.17img.cn/17img/images/201810/uepic/8e72c806-e44b-45c5-becd-7de65532bf40.jpg"//pp  当然,这一年虽然增加了许多癌症免疫疗法,但大多还处于研发早期——这些管线中,处于临床前阶段的疗法共有2107个,比去年同期增长97%,且要高于处于临床阶段的疗法(1287个)。这虽然体现了创新疗法的研发,但也表明距离这些免疫疗法问世,可能还需要一定的时间。/pp  总结/pp  在综述的最后,作者们也指出,尽管癌症免疫疗法在近年来取得了一系列突破,但IDO1抑制剂等新靶点在研发上的失利也表明,科学转化成疗法的道路上存在一定风险。往前方看,为了带来更多疗法,科学证据必须是首要的考虑因素。如果我们能找到预示患者良好预后的生物标志物,并综合成功与失败的临床试验进行分析,那无疑能让我们距离成功更近一步。/pp  本文题图来自pixabay。/pp  参考资料:/pp  [1] Jun Tang et al., (2018), Trends in the global immuno-oncology landscape, Nature Reviews Drug Discovery, DOI: https://doi.org/10.1038/nrd.2018.167/pp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制