当前位置: 仪器信息网 > 行业主题 > >

化学特征空间变化

仪器信息网化学特征空间变化专题为您整合化学特征空间变化相关的最新文章,在化学特征空间变化专题,您不仅可以免费浏览化学特征空间变化的资讯, 同时您还可以浏览化学特征空间变化的相关资料、解决方案,参与社区化学特征空间变化话题讨论。

化学特征空间变化相关的资讯

  • 英国科学家将差示扫描量热法与热显微镜相结合 用于分析材料的能量变化和光学特征
    英国哈德斯菲尔德大学的Gareth Parkes博士和英国Linkam Scientific Instruments的Duncan Stacey将差示扫描量热法与热显微镜相结合,用于分析材料的能量变化和光学特征。用于本研究的设备的标记照片。 A) 光学 DSC450,b) Linkam 成像站(立体显微镜),c) 高分辨率数码相机,d) 运行 LINK 的 PC,e) 控制器单元,f) 液氮泵单元,g) 触摸屏控制和 h) 液氮储罐© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353了解材料在不同条件下的行为方式对于优化它们在几乎所有应用中的使用至关重要,从工业聚合物到药物研发。热显微镜等热分析方法使研究人员能够观察材料在反应过程中的光学和物理转变。通过集成其他技术,例如差示扫描量热法(DSC),还可以测量能量变化(焓)。DSC是最广泛使用的热分析技术之一,用于测量与材料热转变相关的温度和热流。虽然它可以用来测量几乎任何随着能量变化而发生的反应,但DSC是非特异性的。因此,它必须与其他方法(如热显微镜)结合使用,以直接观察相变,如固-固转变以及聚变反应和分解。尽管结合DSC和热显微镜具有明显的优势,并且可以使用集成这两种方法的系统,但令人惊讶的是,使用同步DSC热显微镜分析各种材料的研究很少。数码显微镜质量的提高和实验室可用计算能力的提高可能会在未来几年引起人们对这项技术的更大兴趣。由Gareth Parkes博士领导的英国哈德斯菲尔德大学热方法研究中心(TMRU)的研究人员研究了将热通量 DSC板结合到热台中以允许对同一样品进行DSC-热显微镜测量的使用,同时。在本文中,我们探讨了这项技术在获取有关各种材料的光学和焓性质信息方面的优势——这些材料的选择是基于它们显示出光学跃迁和/或能量变化并涵盖广泛的系统这一事实。新型热系统在本研究中,最近引入的DSC-热显微系统用于研究硝酸铷的相变和聚乙烯的氧化。这是第一次在同一仪器上使用DSC和热显微镜分析这些材料。光学DSC450系统包括一个集成到热台中的热通量DSC板、一个T96-S温度控制器单元和LINK软件(如上图所示)。该系统在-150至450°C的温度范围内运行。热显微成像是通过与立体显微镜耦合的高分辨率数码相机获得的。聚合物的热稳定性聚乙烯为了更好地了解聚合物材料的氧化降解及其对高温稳定性的影响,TMRU小组对超高分子量聚乙烯 (UHMWPE)进行了氧化诱导时间(OIT)实验。采用光学DSC450系统将样品温度控制在30-205°C之间,并在惰性氮气气氛下分析OIT效应,然后在等温期间切换到干燥空气。在起始温度Tonset 109.9°C时观察到UHMWPE的熔化(如下图左所示),DSC曲线表明放热氧化的开始。同时使用热显微镜,光学显微照片能够以光学方式观察这些过程并与DSC曲线相关联。随着氧化降解的开始,研究人员可以看到液态聚合物熔化后表面质地的变化。OIT测试显示了预期的DSC曲线,但在氧化开始时发生的表面形态细微变化的其他信息通过光学方式揭示。正在对超高分子量聚乙烯(UHMWPE)样品进行氧化诱导试验。DSC曲线(蓝色实线)和温度程序(红色虚线)已绘制为时间的函数。垂直线表示气体何时从N2切换到空气。选定的显微照片(标记为t0和 a-c)链接到 DSC配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353使用DSC450(Linkam Scientific)分析硝酸铷。差示扫描量热法(DSC)(下)和感兴趣区域 (ROI)强度(上)曲线绘制为温度的函数。选定的显微照片(标记为a、b)链接到DSC和ROI配置文件© Ashton, G.P., Charsley E.L., Harding, L.P., and Parkes, G.M.B. Applications of a simultaneous differential scanning calorimetry — thermomicroscopy system. Journal of Thermal Analysis and Calorimetry, 2022 147: 1345-1353可视化相变硝酸铷显示出多种多晶型转变的材料通常是有用的温度校准标准,因为它们能够覆盖很宽的温度范围。在这项研究中,该小组评估了硝酸铷的多晶型转变,这是一种在150-280°C温度范围内具有三种不同固态转变的材料。 DSC曲线显示三个峰对应于固-固转变,最终峰对应于样品熔化(如上图左所示)。来自热显微镜的相应感兴趣区域(ROI)轮廓显示与由样品反射光强度(RLI)变化引起的一系列步骤相同的转变。这些结果表明,当样品保持无色时,在辨别相变时,将热显微术中的RLI与DSC结合使用的好处。TMRU的小组还使用DSC450研究了低温校准标准,阐明了温度循环对材料的影响。未来的应用本研究中的实验证明了DSC和热显微镜的互补性,以及同时热分析在揭示某些材料的复杂热过程方面的好处。DSC-热显微术可以在材料研究中提供更丰富的信息,因为光学图像有助于解释通常复杂和重叠的DSC曲线。预计该技术将在聚合物和制药领域变得越来越流行。TMRU的研究小组目前正在探索DSC450的独特设计是否有助于通过光学手段研究材料的导热性。
  • 质谱成像新科研动态:髓鞘疾病脑脂质体空间分布和组成变化定义
    美国 Abbvie (Cambridge)、Biogen 和 Moderna Therapeutics 生物技术公司*联合在最近一期的 JHC 期刊 (Journal of Histochemistry & Cytochemistry 2019, Vol. 67(3) 203–219) 发表了髓鞘疾病脑脂质体空间分布和组成变化定义的研究论文。本文的主要作者之一李晓萍(音译)是 Biogen 的研究人员,她带领的研究小组使用solariX MALDI 高分辨质谱成像(MALDI-IMS)、免疫组织化学(IHC)和液相色谱-电喷雾-质谱法(LC-ESI-MS)评价由 Shi 和 Cz 小鼠模型构建的髓鞘疾病的脑脂质成分变化。MALDI-IMS 结果显示出磺胺肽和磷脂酰胆碱物质在胼胝体白质区域空间分布减少,而在 Cz 小鼠模型中,这些脂质物种的变化在发病后得到一定程度的自发恢复。通过 IHC 肯定了脂质分布变化和局部形态变化的相关性,同时也被 LC-ESI-MS 分析所验证。这些发现强调了磺胺肽和磷脂酰胆碱物质在维持正常髓鞘结构中的作用。Biogen 的方法为定义髓鞘疾病相关的脂质组成异常提供了形态学基础。*Biogen 是位于马萨诸塞州剑桥的神经科学研究公司, 主要从事重度神经性和神经退行性疾病的发病机理和治疗方法研究,Moderna 和 Abbvie 分别是 mRNA 个体治疗方案和生物医药开发的公司。
  • ACP 陕科大陈庆彩课题组:太阳光照射条件下大气PM2.5的光化学反应特征和机理研究 | 前沿用户报道
    供稿:陈庆彩成果简介近日,陕西科技大学陈庆彩教授课题组,以关中地区大气污染治理中的不确定性环境因素为背景,探讨了西安市大气pm2.5在太阳光照射条件下的光化学反应特征和机理,确认太阳光光照可以增加大气pm2.5中的发色团的氧化状态,并影响它们的光化学反应活性。相关成果以《photodegradationof atmospheric chromophores: changes in oxidation state and photochemicalreactivity》为题发表在atmospheric chemistry and physics上。背景介绍大气气溶胶中存在具有吸光能力且可以促进光化学反应的发色团有机物质(棕碳,brc),从而对全球气候和大气环境质量具有潜在重大影响。目前对于大气颗粒物中brc的研究主要集中在光学特征的研究,对于其光化学反应特征研究则相对较少。发色团有机物质光化学反应特征表现在,在太阳光照射下,发色团发生光激发反应,驱动一系列活性氧物质(ros)的产生,进而对气溶胶中多相化学反应产生潜在影响。本研究试图探明com光降解对气溶胶中碳质组成、光学性质、荧光团组成和光化学反应的潜在影响。图文导读太阳光光照可以增加大气pm2.5中的发色团的氧化状态,并影响它们的光化学反应活性。具体如下:(1)光降解对气溶胶样品碳组分产生了显著影响。在poa中,水溶性和甲醇可溶性有机碳(wsoc和msoc)分别下降了22.1%和3.5%。结果表明, wsoc比msoc更容易被光降解。在环境pm中,wsoc几乎没有变化,msoc下降18.2%,与poa形成对比。poa是新鲜的,但环境pm经历了长期的气溶胶老化。结果表明,在环境pm中wsom发生光降解和矿化后,有机物(om)得到了充分的光降解,而高分子量的msoc不能被充分的光降解,因此在实验室中仍在进行光降解。不同阶段的oc比例下降趋势相似表明环境pm中不同分子量的om可能具有相似的光降解能力且光降解后om的分子量基本不变。图:光降解前后碳含量和组成的变化,∗和∗∗分别表示在0.1和0.01水平上的显著差异。(2)光降解对气溶胶样品光学性质产生了显著影响。光降解后,com的吸收系数和总荧光体积(tfv)均显著降低,说明com发生了光漂白。在poa中,tfv平均下降75%,wsom和msom的tfv的下降有显著的相似之处。燃烧木材的com的tfv仅下降了9%,而燃烧木材样品的msom的荧光体积几乎没有变化。这主要有两个原因:一方面,在燃烧木材的样品中,只产生少量的甲醇溶性om。另一方面,甲醇溶性木材燃烧com难以光降解。此外,荧光团的光降解还取决于光化学环境,如溶液ph、盐度、温度。因此,我们认为燃烧木材的com的光降解在很大程度上取决于光降解环境。在环境pm中tfv的衰减速率常数低于在poa中的衰减速率常数。在环境pm中,msom的tfv下降了79%,而wsom下降了27%。结果表明,在环境pm中,msom比wsom更容易被光降解。图:光降解过程中光吸收和荧光强度的变化。图(a)光吸收,散射图显示了350nm处的吸收系数;图(b)和图(c)分别显示了在poa和环境pm样品中荧光体积的衰减曲线。(3)光解改变了气溶胶样品中发色团含量和组成。结合水溶性和甲醇溶性样品建立parafac模型,以说明荧光团在wsom和msom中的分布。我们发现了四个荧光团,c1和c2的荧光峰出现在(ex./em.= 224/434 nm)和(ex./em. = 245/402 nm),分别与高氧化和低氧化的hulis相似。c3和c4的峰出现在(ex./em. = 220/354 nm)和(ex./em = 277/329 nm),这两个荧光团是蛋白质类有机物(plom-1和plom-2)。在光降解过程中,荧光团的含量发生显著变化。在poa的wsom中,高氧化的hulis(c1)相对含量增加了63.0%,低氧化的hulis (c2)相对含量减少了88.0%。比例变化表明,由于光氧化作用,低氧化的hulis (c2)可能转化为高氧化的hulis (c1)。plom(c3和c4)下降19.7%,表明c3和c4可被光降解。在poa的msom中,高氧化态hulis(c1)的含量增加了17.5%,这是由于光诱导的二次反应。在环境pm的wsom中,高氧化的hulis(c1)含量增加了6.9倍,低氧化的hulis (c2)含量减少了40.2%,其变化与poa相似。因此,高氧化hulis可用于跟踪气溶胶光老化程度。图:样品光降解前后生成1o2的变化:(a) poa和(b)环境pm。(4)光降解对气溶胶光化学反应活性有显著影响。通过3com∗和1o2的产率定量分析了光降解对光化学反应的影响。在环境pm中,光解样品对tmp的消耗速率常数(ktmp)比原始样品平均下降11%,相反,在poa中,光降解后ktmp平均增加75%。在光降解后,不同气溶胶中的三线态生成保持不变或增加。com可以产生三线态,并进一步产生1o2。1o2的产率在环境pm和poa中都下降表明com的光降解对光化学反应有抑制作用。在poa中,在光激发前,原始样品和光解样品中都很少有1o2;在黑暗60min后,原始样品和光解样品都产生了1o2,说明在poa中没有光激发也可以产生1o2,原始样品中1o2含量高于光解样品;经过60min的光激发后,与未经过光激发的样品相比,原始样品和光解样品中1o2的含量都增加了3倍。原始样品中1o2的含量也高于光解样品(高出42%),证明了com光降解对1o2的生成有抑制作用。当三线态被山梨酸淬灭时,1o2的含量几乎没有变化,表明低能量的3com∗可能是poa中1o2的主要前体且com光降解并不改变poa中低能量3com∗产生1o2的机制。在环境pm中,与poa中相似,在光激发前,原始样品和光解样品中1o2的含量非常低。而黑暗60 min后与poa不同1o2含量几乎没有变化表明如果没有光激发,在环境pm中不可能产生1o2。当三线态被山梨酸淬灭时不生成1o2,表明1o2的前体被淬灭,环境pm中1o2主要由高能3com∗产生。horiba aqualog 同步吸收-三维荧光光谱仪大气颗粒物中的发色团物质组分复杂,基于horiba aqualog 同步吸收-三维荧光光谱仪,使用a-teem方法可以有效鉴定和识别多种简单发色团类型,并能够提供构建光化学反应活性之间的结构-活性之间的关系,对于揭示具体种类发色团产生了光化学反应提供了重要方法途径。如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。 研究总结研究发现,经过7天的光降解,com的荧光强度和吸收系数分别降低了71%和32%。光降解对发色团的化学成分和气溶胶老化程度有影响,低氧化的腐殖质类物质(hulis)通过光氧化转化为高氧化的hulis。光降解也会改变光化学反应能力,在一次有机气溶胶(poa)和环境颗粒物(pm)中,光降解对光化学反应的影响是相反的,在环境pm中,光降解后三线态com (3com∗)的生成略有减少,但在poa中,3com∗的生成增加。然而,在poa和环境pm中,单线态氧(1o2)的生成都明显减少,这可能与1o2前体的光降解有关。关于气溶胶中com光降解的新认识,增加了研究与光化学和气溶胶老化相关的溶解性有机物(dom)的重要性。这项研究将有助于更好地了解com光解特性以及com光降解对气溶胶老化的影响。文献信息photodegradation of atmospheric chromophores: changes inoxidation state and photochemical reactivity文章署名作者:牟臻、陈庆彩*、张立欣、关东杰、李豪文章链接:https://doi.org/10.5194/acp-21-11581-2021扫码查看文献陈庆彩教授基本简介陈庆彩,教授、博导,陕西科技大学大气污染与控制研究团队负责人。毕业于名古屋大学,主要从事区域大气污染与控制、大气pm2.5健康效应等相关科研工作。入选陕西省“百人计划”、获陕西省青年科技新星称号、陕西省高校自然科学奖、日本大气化学学会奖、bruker和horiba企业科技奖、政府生态建设专家、名古屋大学特邀教员,担任environmental advances/research等期刊编辑/编委。主持国家和省部级课题6项,以第一或通讯作者发表学术论文40余篇,包括领域顶级期刊es&t论文8篇,授权国家专利和软著12项。
  • 新型植物性“模拟肉”产品的研究——人造肉的物理化学表征、FTIR光谱和结构特征分析
    目前的研究旨在用脉冲蛋白取代肉蛋白,并确定植物蛋白-肉类似物商业化的加工方法的适用性。采用碱性/等电沉淀法从青豌豆、马豌豆和豇豆中提取脉冲蛋白浓缩物(PPCs)。对PPCs进行物理化学、形态、GC–MS和热分析。将青豌豆、马豌豆与豇豆的PPCs按(20:20:20)T1、(30:15:15)T2和(15:20:15)T3的比例制备油炸肉丸。所有PPC都表现出塌陷和褶皱的表面。马豌豆蛋白浓缩物表现出最高变性温度(Td°C)89.50 ± 2.57和焓(ΔH(J g−1))(287.73 ± 9.64),与其他样品相比,迭代出更好的热稳定性。FTIR光谱表明,羊肉油炸丸子存在O–H伸缩宽带(3321.22 cm−1)和植物油炸肉丸(3288.28 cm−1),而PPC在(3275–3278)cm−1区域)。在1600–1700区域观察到两条C-H带和PPCs的主要二级结构成分,如α-螺旋、β-片状、β-转弯和无规螺旋 cm−1.酰胺N–H弯曲(1400–1500 cm−1)和C–O伸缩带(1000–1300 cm−1)。以20:20:20(T1)的比例配制的植物性油炸肉丸在感官特性(颜色、质地、多汁性和整体可接受性)、颜色特性(L*和b*)以及质地特性(如硬度、粘附性和内聚性)方面与羊肉油炸肉丸密切相关。这些发现将开辟这一领域的新研究视野,并为肉类替代品的商业化铺平道路,这将减少对环境的影响和碳足迹。Penchalaraju,M,Poshadri,A,Swaroopa,G等人。利用印度脉冲蛋白制作植物性模拟肉III:肉类似物的物理化学表征、FTIR光谱和质地特征分析。国际食品科学技术杂志2023。https://doi.org/10.1111/ijfs.16828• 文章来源:Leveraging Indian pulse proteins for plant-based mock meat III: physicochemical characterisation, FTIR spectra and texture profile analysis of meat analogue(利用印度脉冲蛋白制作植物性模拟肉III:人造肉的物理化学表征、FTIR光谱和质地特征分析). Wiley Online Library供稿:符 斌
  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • Science子刊| 多色免疫荧光标记联合转录组测序助力解析宫颈癌的单细胞分子特征
    宫颈癌是全世界女性第四大常见恶性肿瘤,每年可造成30多万人死亡。宫颈鳞癌(CESC)作为宫颈癌主要病理类型约占75%,通常经历由正常宫颈到宫颈上皮内瘤变再到CESC的发生和进展过程。然而,CESC进展过程中上皮和微环境细胞相互作用关系及其关键分子途径的发展尚不清楚。2023年1月27日,山东省肿瘤医院于金明院士、岳金波教授团队与解放军总医院第五医学中心刘兵研究员团队合作在Science Advances杂志上发表了题为Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression的研究论文。为宫颈癌的诊疗提供了疾病诊断与预后的生物标志物和潜在的治疗靶点。为了阐明了宫颈上皮细胞的转录致瘤轨迹并揭示了 CESC 启动和进展中涉及的关键因素,文章作者对来自对四组13例不同病变阶段的宫颈组织(包括NC、CIN、早期CESC和晚期CESC)的起始和进展过程中,上皮细胞、巨噬细胞、NK和T细胞、内皮细胞、成纤维细胞的转录组变化及亚群特征进行了深入探索。该研究通过单细胞转录组测序,进行了单细胞RNA测序(scRNA-seq)构建了宫颈鳞癌发生和进展过程中的细胞和分子特征图谱,发现了大量肿瘤发生和进展相关的新的细胞亚群和分子。在此基础上,提出了针对“CESC生态系统“进行分析的必要性,尤其是考虑到免疫系统是作为一个动态的整体,简单对于单个细胞亚型的描述不足以展现更大的”全景“。围绕这个目标,在文章中通过大量的转录组数据,研究者发现几个细胞簇的相对丰度显示与较短的存活期显着相关:CCL20 +Mac、APOE+Mac、epi7、CD56+NK、TH17、耗尽的CD8 +T、PODXL+EC、TNFRSF9高Treg和 mCAF。相反,其他细胞簇的丰度与更长的存活率显着相关:pDC、CD16+NK、GZMK+CD8+T、ZNF683+CD8+T、CLEC9A+DC、epi8和肥大细胞。 实验部分除了转录组测序相关之外,作者使用TissueGnostics公司TissueFAXS Plus全景组织细胞定量分析系统获取图像。在长存活率相关的因素中,作者重点提出了CESC中的epi8的高相对丰度可以促进我们观察到的高水平T细胞浸润从而增强与肿瘤细胞的串扰。文中作者表示,尽管对 CESC 进行了大量的转录组分析,但这些方法无法提供对主要细胞参与者、它们的相互作用伙伴以及驱动疾病发生和发展的关键分子途径的高分辨率洞察,尤其是CAF,作为肿瘤微环境中的关键组成部分,其通过多种机制促进恶性生长和侵袭 ,而且空间 CESC 信息对于理解细胞簇的位置及其相互作用很重要,但在 scRNA-seq 分析的解离过程中存在丢失。多重免疫荧光标记与转录组测序为了揭示了 mCAF 和 vCAF 的两个主要亚群,作者选择使用TissueFAXS Cytometry技术了,通过多重免疫荧光标记验证了它们在人类 CESC 中的存在,发现 mCAF 表达高水平的与促肿瘤途径相关的基因(主要位于富含胶原蛋白的基质条纹内),以及细胞间相互作用分析表明,mCAF 可主要通过 NRG1/ERBB3途径促进 CESC 进展,该途径参与抗雄激素对前列腺癌的抗性,在之前的研究中尚未报道。这部分内容也是TissueGnostics公司的TissueFAXS Cytometry技术在关键领域取得的最新科研进展之一。Fig 1 CESC样本组织切片中的T细胞(PAN-CK(红色)、HLA-DR(蓝色)、IDO1(绿色)和CD3(灰色))的多重免疫荧光标记图像。在较短存活期显著相关的因素中,作者研究了CESC进展过程中基质癌相关的呈现为细胞(mCAF)的亚群特征,发现mCAF可能促进CESC的进展,并进一步发现其作用机制是通过NRG1/ERBB3 通路来实现的。Fig 2 多重免疫荧光CESC组织样本中mCAF和vCAF上的特异性标记物。Fig 3 mCAF肿瘤特异性配体-受体对的多重免疫荧光标记,包括NRG1-ERBB3和Wnt5A-FZD6。&bull 单细胞测序技术完成了细胞水平的组学研究,但是获取的信息内缺失了细胞的空间分布信息。如果想要补充细胞的空间位置表型,就需要引入多重免疫荧光技术。多色免疫荧光技术通过单细胞分辨率的组织成像,能够多靶点、可视化地描绘细胞的复杂空间位置信息,从而揭示细胞间的相互作用关系,细化微环境的空间结构。&bull 单细胞测序技术与多重免疫荧光技术的结合能够多层次、多角度、多组学地研究肿瘤微环境及免疫微环境,同时获悉胞间联系、基因空间变化等信息,并赋予关键基因的细胞分布信息和组织分布信息,从而更加精准地研究疾病相关分子机制并探索潜在的治疗靶点。同时作者也在讨论部分,使用TissueFAXS Cytometry技术生成的数据,可以针对人体组织进行更详细的研究,以回答 scRNA-seq 无法解决特定问题。
  • NASA将往空间站发射新仪器 以监测地表作物温度变化
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201806/insimg/9716cbcd-f5e6-4408-a908-e3a05298aa3b.jpg" title="New-NASA-instrument-on-ISS-to-track-plant-water-use-on-Earth.jpg"/  /pp  据外媒报道,为了更好地跟踪地球植物的用水情况,NASA正准备在国际空间站安装一种新仪器。该仪器被称为ECOSTRESS,或空间站上的星载热辐射计实验ECO系统,它将测量地球表面植物的温度变化。/pp  为了避免过热,植物会像人类出汗一样发生蒸腾作用,即通过根系吸收水分并通过植物毛孔释放水分的过程,该过程可以降低植物的温度。/pp  当水分不足时,植物会闭合毛孔以避免干燥。但是,毛孔对于植物摄取二氧化碳也是必不可少的,用于植物生产细胞燃料的光合作用。如果植物遭受长时间的“水压力”,它最终会饿死或过热,并死亡。/pp  美国宇航局喷气推进实验室ECOSTRESS首席研究员Simon Hook在一份新闻稿中表示:“当植物受到过度压力而变成棕色时,它往往为时已晚,无法恢复。” “测量植物的温度可以让你看到植物在到达这一点之前受到的压力。”使用ECOSTRESS,科学家和农业机构可以通过观察作物田间温度升高,发现日益严重的水压力迹象 - 干旱的开始。尽早认识到水资源压力可以让农民和其他方面制定解决方案并做出相应的规划。科学家以前曾试验过使用电子叶片传感器来监测植物的水分摄入量。/pp  美国农业部ECOSTRESS科学小组成员Martha Anderson表示:“ECOSTRESS将使我们能够监测田间水平的作物压力快速变化,从而能够更早,更准确地估算产量将受到怎样的影响。 “即使是在作物生长的关键阶段出现短期水分胁迫,也会显着影响生产力。”/pp  新仪器将在下一次补给任务中运往空间站,计划于6月29日由SpaceX从佛罗里达州卡纳维拉尔角空军基地发射。该仪器将在一天中的不同时间产生小片农田的高分辨率图像。 并将每隔几天对相同的小目标进行成像,监测温度的变化。/pp  “随着水资源对我们不断增长的人口变得更加重要,我们需要准确地追踪我们的作物需要多少水,”JPOS的首席科学家Josh Fisher说。 “我们需要知道植物何时变得易受干旱影响,我们需要知道生态系统的哪些部分因水分压力而更脆弱。”/pp  当与美国航天局其他地球观测卫星收集的数据(包括与地球水循环,植被变化和降水模式有关的数据)相结合时,ECOSTRESS测量可帮助科学家更好地了解不同气候模式如何影响区域水压力。/p
  • Neuro Oncol . | 汤富酬教授/文路副研究员与合作者揭示垂体瘤转录组特征
    垂体是最重要最复杂的内分泌腺体之一,主要由五种激素细胞组成,包括生长激素细胞、催乳素细胞、促甲状腺素细胞、促肾上腺皮质激素细胞和促性腺激素细胞,在生长发育、代谢调节、生殖以及应激等生理过程中发挥重要作用。每种激素细胞都有可能异常增殖形成肿瘤,即垂体神经内分泌肿瘤(Pituitary neuroendocrine tumors,PitNETs),又称垂体腺瘤或垂体瘤,是第二大常见的颅内肿瘤,大约占颅内肿瘤的10%~16%。基因组学研究发现40~60%的生长激素瘤有GNAS基因突变,40~60%促肾上腺皮质激素瘤有USP8突变,但60%垂体瘤未发现基因突变,病因不明。垂体瘤细胞中哪些基因的表达水平发生了异常变化?传统转录组学未能有效解决这个问题。这是由于正常垂体组织中,五种类型的激素细胞互相混杂,传统的群体细胞转录组学所检测到的实际是“平均激素细胞”。由于缺乏正常对照信息,群体细胞转录组学难以准确鉴定垂体瘤细胞中发生的基因表达变化。另外,多激素垂体瘤和侵袭性垂体瘤是否存在瘤内细胞异质性,也是尚未研究清楚的问题。北京大学生物医学前沿创新中心汤富酬教授和文路副研究员,与北京天坛医院神经外科周大彪主任合作,于2021年4月28日在Neuro-Oncology杂志在线发表题为《 Single-cell transcriptome and genome analyses of pituitary neuroendocrine tumors》的研究论文。该研究对21个病人的23例垂体瘤组织样本进行了单细胞转录组测序(2679个细胞),并对其中5例组织进行了单细胞多组学测序(238个细胞),为深入理解上述问题提供了新的视角(图1)。该研究论文的主要发现包括:图1 垂体瘤病人临床信息1)通过单细胞转录组的无监督式聚类可区分所有垂体瘤亚型,与临床基于免疫组织化学的分类结果一致(图2)。单细胞转录组测序还提供了一些新的有趣信息。例如,一例垂体瘤(P11)同时表达促肾上腺皮质激素细胞关键转录因子T-PIT(TBX19)与促性腺激素细胞关键转录因子SF-1(NR5A1),其细胞在线性降维空间中位于两个谱系之间,显示其处于一种中间状态。另一例垂体瘤(P14)被临床诊断为零细胞垂体瘤,与促性腺激素瘤聚类,提示其细胞来源可能是促性腺激素细胞。图2 所有肿瘤细胞及重要转录因子的表达在PCA图中的映射2)我们分离鉴定出了三种正常垂体内分泌细胞:生长激素细胞、催乳素细胞和促性腺激素细胞,首次获得这些成体垂体激素细胞类型的单细胞转录组图谱。与相应肿瘤细胞类型比较,我们全面鉴定了生长激素垂体瘤、促性腺激素垂体瘤和催乳素垂体瘤的肿瘤差异表达基因谱(图3A-3D)。生长激素瘤的差异表达基因以上调为主(76.1%, 283/372),而促性腺激素瘤的以下调为主(84.3%, 542/643)。生长激素瘤上调的基因中富集分泌相关基因如SCG3,可能与该肿瘤类型的功能亢进特征有关。促性腺激素瘤下调基因中包括LHB和GNRHR等激素相关基因,与该肿瘤类型往往功能沉默有关;下调基因中还富集细胞周期负向调控基因如CDKN2A,表明该肿瘤类型发生了细胞增殖失调。值得指出,研究鉴定出了新的垂体瘤相关基因,如AMIGO2,在生长激素瘤与促性腺激素瘤中表达显著增高(图3E)。图3 A-D,垂体瘤肿瘤细胞和相对应的正常细胞的差异表达基因(A-C)和GO分析(D)。E,垂体瘤肿瘤相关基因在所有细胞中的表达水平3)通过单细胞转录组分析,证实多激素垂体瘤中,多种激素相关基因及转录因子在单个细胞中共表达,未发现瘤内异质性(图4)。在侵袭性瘤中,也未发现明显的瘤内异质性。图4 PIT-1谱系垂体瘤和多激素垂体瘤中单细胞水平的激素相关基因表达4)单细胞多组学分析表明,即使是基因组拷贝数紊乱的垂体瘤,单细胞层次也具有基本一致的拷贝数变异模式,表明其为单克隆起源(图5A)。但我们也鉴定到了少量的瘤内基因组拷贝数变异异质性(图5B)。图5 P20(A)和P21(B)垂体瘤患者肿瘤细胞中的基因组拷贝数变异(CNV)情况总之,本研究首次从单细胞水平上对垂体瘤转录组和基因组进行了较全面分析,解析了瘤间与瘤内异质性,鉴定了新的垂体瘤相关基因,为阐释垂体瘤发病机理与发现治疗靶点提供了新的线索。北京大学生物医学前沿创新中心崔月利博士、博士生蒋振寰、博士后张书博士和北京天坛医院博士生李超为本文共同第一作者。北京大学未来基因诊断高精尖创新中心、生物医学前沿创新中心、生命科学学院汤富酬教授和文路副研究员,与北京天坛医院神经外科周大彪主任为该论文的共同通讯作者。该研究项目得到了国家自然科学基金委和北京大学未来基因诊断高精尖创新中心的支持。论文链接:https://academic.oup.com/neuro-oncology/advance-article/doi/10.1093/neuonc/noab102/6256973
  • 科学家揭示近20年青藏高原水体的碳源汇特征
    近日,《科学通报》发表的一项研究阐明了青藏高原湖泊CO2交换通量及碳源汇特征, 揭示了青藏高原水体碳交换过程的驱动机制。该研究由中科院院士于贵瑞、中科院地理科学与资源研究所研究员高扬、中科院青藏高原所研究员汪亚峰等合作完成。我国有一半湖泊都位于青藏高原,随着人类活动和气候变化日益加剧,围绕青藏高原湖泊碳源汇之争悬而未决。为此,研究团队通过现场监测和数据整合,探讨了近20年青藏高原水体碳交换过程和特征。他们发现湖泊CO2交换通量表现出显著的时间差异,即2000年代和2010年代的交换通量显著高于2020年代。青藏高原湖泊CO2年排放量从2000年代的1.60 Tg C a-1增加到2010年代的6.87 Tg C a-1,然后在2020年代下降到1.16 Tg C a-1。西部和南部区域的湖泊CO2交换通量较高,东部和北部地区则较低。然而,当结冰期包含在年度碳预算估算中时,青藏高原湖泊通常充当碳汇。因此,青藏高原湖泊正逐渐向碳汇演变,一些小型淡水湖泊以及部分中低海拔的咸水湖具有固碳功能。碳交换通量估算的高度不确定性,青藏高原湖泊的碳汇容量可能被低估。研究团队还发现,自1980年代以来,青藏高原经历了广泛的气候变化,主要包括气温升高和湿度增加、太阳变暗和风速降低。气温升高将继续对青藏高原产生显著影响,加速水体生物物理化学过程,促进水-气界面的碳交换。然而,全球变暖也会延长无冰期和融雪期,增加青藏高原湖泊的数量和面积,降低湖泊盐度水平,促进浮游植物生长,最终增加湖泊CO2吸收,逐渐融化的湖冰和冻土也会释放碳到水体中。此外,他们还发现,太阳变暗导致水体自养生物光合作用减少,CO2吸收减少。风速降低导致气体扩散速度变慢,温室气体排放降低。该研究表明,全球气候变化正在共同改变青藏高原湖泊,使其从一个大的碳源变成一个碳汇。这为准确评估生态系统碳库提供重要数据支持,并为如何应对全球气候变化提供了科学依据。
  • 广州地化所、深地科学卓越中心揭示离子吸附型稀土矿床的可见光-近红外光谱特征
    离子吸附型稀土矿床是我国独具特色的战略金属资源,主导了全球的重稀土供给。随着高新科技的发展,重稀土的消耗量迅猛攀升,发现新的离子吸附型稀土矿床成为国家的重大需求。近日,中国科学院广州地球化学研究所何宏平研究员和谭伟博士与香港大学的周美夫教授等合作,通过对含稀土的黏土矿物和典型离子吸附型稀土矿床剖面可见光-近红外光谱特征的系统研究,确定了能够有效指示离子吸附型稀土矿床矿体风化程度、稀土含量以及原岩性质的光谱参数,为快速探查离子吸附型稀土矿床新方法的构建提供了理论基础。研究发现,离子吸附态的Nd3+、Dy3+、Ho3+、Er3+和Tm3+在730-870、805、641、652和684nm波段出现特征峰(图1),且稀土元素Nd在740和800nm等波段吸收强度的二阶导数与风化壳中稀土元素含量呈现正相关关系,可以作为评价风化壳稀土品位的有效光谱参数;光谱曲线中1396和1910nm波段强度及其比值(M1396_2nd/M1910_2nd)与化学蚀变指数(CIA)明显相关,是野外圈定风化壳内稀土矿体位置的有效参数。图1 含有不同稀土离子的高岭石的可见-近红外光谱特征研究还发现,由均一原岩形成的风化壳的光谱参数具有连续性变化特征,因而M1396_2nd、M1910_2nd、M1414_2nd和M1396_2nd/M1910_2nd等光谱参数沿风化剖面变化趋势可作为识别风化壳原岩变化的判定依据(图2),也是有效示矿指标之一。图2 仁居稀土矿床剖面中指示粘土矿物中种类和含量的光谱参数该研究得到了国家重点研发计划、广东省基础与应用基础研究重大项目、中国科学院地质地球所重点部署项目等项目的联合资助。相关研究成果近期发表在Economic Geology和Applied Clay Sciences期刊上。
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟.制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在0001方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 我国科学家揭示离子吸附型稀土矿床的可见光-近红外光谱特征
    近日,中国科学院广州地球化学研究所研究员何宏平、博士谭伟与香港大学等合作,通过对含稀土的黏土矿物和典型离子吸附型稀土矿床剖面可见光-近红外光谱特征的系统研究,确定了能够有效指示离子吸附型稀土矿床矿体风化程度、稀土含量以及原岩性质的光谱参数,为快速探查离子吸附型稀土矿床新方法的构建提供了理论基础。  研究发现,离子吸附态的Nd3+、Dy3+、Ho3+、Er3+和Tm3+在730-870、805、641、652和684nm波段出现特征峰,且稀土元素Nd在740nm、800nm等波段吸收强度的二阶导数与风化壳中稀土元素含量呈现正相关关系,可作为评价风化壳稀土品位的有效光谱参数;光谱曲线中1396nm、1910nm波段强度及其比值(M1396_2nd/M1910_2nd)与化学蚀变指数(CIA)明显相关,是野外圈定风化壳内稀土矿体位置的有效参数。  研究还发现,由均一原岩形成的风化壳的光谱参数具有连续性变化特征,因而M1396_2nd、M1910_2nd、M1414_2nd和M1396_2nd/M1910_2nd等光谱参数沿风化剖面变化趋势可作为识别风化壳原岩变化的判定依据,也是有效示矿指标之一。  相关成果发表在Economic Geology、Applied Clay Sciences上。研究得到国家重点研发计划、广东省基础与应用基础研究重大项目、中科院地质与地球物理研究所重点部署项目等资助。  论文链接:1 2
  • XPS数据处理必备 | 原理、特征、分析
    01 XPS简介XPS(X-ray Photoelectron Spectroscopy),译为X射线光电子能谱,以X射线为激发光源的光电子能谱,是一种对固体表面进行定性、定量分析和结构鉴定的实用性很强的表面分析方法。XPS是一种高灵敏超微量表面分析技术,样品分析的深度约为20埃,可分析除H和He以外的所有元素,可做定性及半定量分析。定性:从峰位和峰形可以获知样品表面元素成分、化学态和分子结构等信息 半定量:从峰强可以获知表面元素的相对含量或浓度▲ XPS测试过程示意图 ▲02 功能和特点(1)定性分析--根据测得的光电子动能可以确定表面存在哪些元素,a. 能够分析除了氢,氦以外的所有元素,灵敏度约0.1at%,空间分辨率为 100um, X-RAY 的分析深度在 2 nm 左右,信号来自表面几个原子层,样品量可少至10的-8次方g,绝对灵敏度高达10的-18次方g。b. 相隔较远,相互干扰较少,元素定性的相邻元素的同种能级的谱线标识性强。 c.能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。(2)定量分析--根据具有某种能量的光电子的强度可知某种元素在表面的含量,误差约20%。既可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。(3)根据某元素光电子动能的位移可了解该元素所处的化学状态,有很强的化学状态分析功能。(4)结合离子溅射可以进行深度分析。(5)对材料无破坏性。03 基本原理当单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用: 1)光致电离产生光电子;2)电子从产生之处迁移到表面;3)电子克服逸出功而发射。用能量分析器分析光电子的动能,得到的就是X射线光电子能谱。▲ 基本原理 ▲这方面很多书上都介绍了,归根结底就是一个公式:E(b)= hv-E(k)-WE(b): 结合能(binding energy)hv: 光子能量 (photo energy)E(k): 电子的动能 (kinetic energy of the electron)W: 仪器的功函数(spectrometer work function)通过测量接收到的电子动能,就可以计算出元素的结合能。铝靶:hv=1486.6 eV镁靶:hv=1253.6 eV04 具体定性分析步骤A:对化学成分未知的样品——全谱扫描(0-1200eV)图谱分析步骤:1、在XPS谱图中首先鉴别出C1s、O1s、C(KLL)和O(KLL)的谱峰(一定存在且通常比较明显)。 2、鉴别各种伴线所引起的伴峰 3、确定主要元素的最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。 4、辨认p、d、f自旋双重线,核对所得结论。鉴别通常采用与XPS数据库和标准谱图手册的结合能进行对比的方法:XPS数据库一般采用NIST XPS database:https://srdata.nist.gov/xps/selEnergyType.aspx通过这个网站你可以查到几乎xps所需的所有数据包括:对双峰还应考虑两个峰的合理间距、强度比等。▲ 网站截图 ▲XPS表征手册一般采用:Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1995.还可以对比XPS电子结合能对照表进行查找(文末资源包内含),有了这些表,你就可以指导每个元素分峰的位置。▲ 结合能对照表部分内容 ▲B:分析某元素的化学态和分子结构——高分辨谱测化学位移扫描宽度通常为10-30eV,以确保得到精确的峰位和良好的峰形。05 具体定量分析步骤经X射线辐照后,从样品表面出射的光电子的强度(I,指特征峰的峰面积)与样品中该原子的浓度(n)有线性关系,因此可以利用它进行元素的半定量分析。简单的可以表示为:I = n*SS称为灵敏度因子(有经验标准常数可查,但有时需校正)对于对某一固体试样中两个元素i和j, 如已知它们的灵敏度因子Si和Sj,并测出各自特定谱线强度Ii和Ij,则它们的原子浓度之比为:ni:nj=(Ii/Si):(Ij/Sj)06 数据处理这里小编向大家推荐三款软件Xpspeak、Avantage以及我们最常用的origin篇幅有限,作图过程在这里就不详细说了07 常见问题解答1、XPS样品制备:粉末制样• 压片• 粘到双面胶带上• 分散到挥发性有机溶剂中,形成悬浊液滴到硅片等固体基片、金属箔或滤膜、海绵等基底上纤维细丝(网)样品• 缠绕或压在架子或回形针上,或样品台的孔中 央,分析区域内纤维丝悬空,避免基底元素干 扰分析结果;• 包裹在有孔的铝箔中,用小束斑XPS分析孔内样品;液体、膏状样品• 滴到Si片、聚乙烯/聚丙烯、金属片、滤膜、树 脂、海绵等固体基片上晾干或冷冻干燥2、H和He为什么不能测XPS主要原因有三点:1) H和He的光电离界面小,信号太弱;2) H1s电子很容易转移,在大多数情况下会转移到其他原子附近,检测起来非常困难 3) H和He没有内层电子,其外层电子用于成键,H以原子核形式存在。所以用X射线去激发时,没有光电子可以被激发出来。3、什么是荷电校正,如何进行荷电校正XPS分析中,样品表面导电差 样品表面导电差,或虽导电但未有效接地。此时,当X射线不断照射样品时,样品表面发射光电子,表面亏电子, 出现正电荷积累(XPS中荷正电),从而影响XPS谱峰,影响XPS分析。在用XPS测量绝缘体或者半导体时,需要对荷电效应所引起的偏差进行校正,称之为“荷电校正”。最常用的,人们一般采用外来污染碳的C1s作为基准峰来进行校准。以测量值和参考值(284.8 eV)之差作为荷电校正值(Δ)来矫正谱中其他元素的结合能。具体操作:1) 求取荷电校正值:C单质的标准峰位(一般采用284.8 eV)-实际测得的C单质峰位=荷电校正值Δ;2)采用荷电校正值对其他谱图进行校正:将要分析元素的XPS图谱的结合能加上Δ,即得到校正后的峰位(整个过程中XPS谱图强度不变)。将校正后的峰位和强度作图得到的就是校正后的XPS谱图。4、磁性元素对XPS有没有影响有,磁性样品最好进行退磁、消磁处理也可在测试中采用磁透镜模式或静电透镜模式
  • 烟熏液样品气味特征分析方法
    德国AIRSENSE公司的PEN3电子鼻可以对烟熏液样品具有明显的应答,不仅可通过气味对烟熏液进行区分,还可以分析几个样品之间气味差异主要体现在哪些组分上。测试过程非常简单,也很容易操作,每个样品的测试周期大约3-5分钟样品信号采集稳定,结果明显。烟熏液样品的电子鼻主要响应的传感器一致,但各样品在的传感器响应强弱上存在一定的差异,故可将其完全区分开来。此次试验数据清晰直观,具有很强的可靠性、稳定性和重复性。 通过电子鼻采集样品的气味信息,经过电子鼻自带的分析软件进行分析,本次实验主要做的是样品之间的聚类分析,通过PCA、LDA和Loading来分析样品之间的气味是否存在差异,且判定气味的差异主要来源于哪类气味成分。德国 AIRSENSE PEN3 型电子鼻数据处理方法1、传感器响应值本实验在对每个样品的数据采集过程中,通过查看每个传感器响应信号的变化曲线、 每个时间点的信号值及星型雷达图或柱状指纹图,可以清晰考察各个传感器在实验分析过程中的响应情况。并通过传感器选择设置可以查看在不同数量的传感器情况下的响应情况。2、聚类分析由于每个传感器对某一类特征气体响应剧烈,可以确定样品分析过程中样品主要挥发出了哪一类特征气体。对于样品区分分析,本实验提取10个传感器的特征值,然后采用主成分分析法(PCA),线性判别法(LDA)和传感器区别贡献率分析法(Loadings)作为主要区别分析方法。3、未知样的判定通过区别判定DFA、欧氏距离 EUCLID、马氏距离MAHALANOBIS和相关性分析CORRELATION等方法,有效判定未知样归属于哪一类,达到一个用电子鼻验证未知样的实验结果。4、PLS 定量预测PLS运算用来通过传感器信号来计算量化表达式,依据PLS偏最小二乘法建立的气味浓度综合值分析模型。应用一个先前训练的模型和一个量化值可以对一个给定的变量计算测量值(向量)。根据使用的需要,可以定义不同的量化变量。例如,在食品分析中定义香气浓郁度、根据气味判定食品的货架期或在环境监管中定义恶臭强度时均十分有用。
  • 上海卢湘仪设计离心机法测量土壤水分特征曲线
    土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标,研究土壤水分特征曲线具有重大意义。笔者获悉,近期,上海卢湘仪离心机仪器有限公司研发了一款测定土壤pF曲线专用离心机——H1400pF土壤用高速冷冻离心机,该离心机的成功研发将可助攻于农业科技领域的发展。一、产品简介 土壤检测离心机,用于土壤含水量对应的pF(水势)值的曲线测试,是表达土壤水势和土壤水分含量关系。 二、产品特点 土壤水分特征曲线通常采用压力膜(室)和离心机等方法进行测定。离心机法比其他方法操作简单、省时,可测定较宽的吸力范围,广泛应用于土壤水分动态模拟。这款离心机用于测量土壤含水量对应的pF(水势)值。 三、离心机设计 上海卢湘仪设计了特有的土壤水特性曲线专用水平转子,达到水平转子在测试中的转速14000转/分,相对离心力25220*g ,设计有接水器、过滤板、过滤膜、离心套筒、离心上盖、密封圈等,土壤离心机转子设计保正了在做测定土壤水特性pf曲线数据时高速旋转无渗漏,有效保证了所收集的水准确无误,使计算参数和依据得到了保证。 为了避免因空气和转子在高速旋转时产生温升过高而造成水分挥发损失,离心机设置制冷系统和温度调节系统,使工作腔温度恒定在4度左右,可根据客户需求进行调整温度。电气方面采用变频交流调速,电脑控制,离心机设有门盖,不平衡,超温,超速安全保护措施,保证高速旋转下的安全性。据相关工作人员表示,该离心机是卢湘仪技术团队倾力打造的一款离心机产品,具有多方面的技术优势。 四、离心操作方法 操作离心机前首先检查离心机电源,打开离心机总开关,取出转子上4组离心筒组件,准备土壤,准备水、天平、打开离心套筒组件,根据使用说明书要求安装稀释好的土壤,称重配平,安装离心套筒组件,检查4个组件对称放置,关上离心机门盖,设置参数,启动离心机,离心机倒计开始运转时间为0停机,打开门盖,取出离心完的离心套筒,取出接水器,将水倒入并记录水量。 五、土壤水分特征曲线概念不同质地土壤水分特征曲线有所不同 土壤水的基质势(或土壤水吸力)随土壤含水量的变化而变化,其关系曲线称为土壤水分特征曲线,英文名称为soil water characteristic curve。 一般,该曲线以土壤含水量Q(以体积百分数表示,比如土壤含水量为10%,那么在横坐标上就是对应的数字10)为横坐标,以土壤水吸力S(以大气压表示)为纵坐标。有了横坐标和纵坐标就可以绘制出不同土壤的水特性曲线图了。 六、研究土壤水分特征曲线的意义 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 关于上海卢湘仪离心机仪器有限公司 上海卢湘仪离心机仪器有限公司是中国一家获得美国FDA认证的专业离心机企业,生产历史悠久、技术力量雄厚、生产设备精良、检测设备齐全。其以设计精巧、造型新颖、工艺精良而闻名,生产的离心机产品质量可靠、性能稳定、规格齐全,广泛应用于高等院校,科研单位,生物制药,医疗,石油化工等领域。 经过四十多年的发展,卢湘仪已先后设计生产各种领域的离心机产品,本次研发生产的H1400pF土壤用高速冷冻离心机是一款专业测定土壤pF曲线的离心机产品,该产品将对于农业发展以及教学方面具有重要意义。
  • ASD | ASD Fieldspec 4地物光谱仪在了解火星上的斜长石VNIR特征方面的应用
    从明朝的万户飞天,到前苏联的宇航员尤里加加林登上太空,再到如今的天问一号火星探测。人类对宇宙的探索从未停止,始终激发着我们的好奇心和无限想象力。宇宙,是一个神秘而广袤的领域,它孕育着无数的星球、星系和星云,仿佛是一个巨大的宇宙图书馆,等待着我们去阅读其中的每一页。火星,与地球相似度极高,具有相似的地貌环境、大气环境和季节变化,都拥有卫星和环形山。在太阳系内被认为是除了地球之外,第二个最适合人类居住的星球。众多的科幻影视作品中有不少涉及到火星,实际上火星也是人类对地外星球探索的一个重点。随着科技的发展和进步,人类对火星探索的技术也在升级,今天推荐给大家的文章就与此相关。ASD Fieldspec 4地物光谱仪在了解火星表面斜长石VNIR特征方面的应用卫星上的遥感仪器有助于了解行星表面的地质情况。火星遥感任务以前利用火星全球勘测者、火星轨道相机、MGS火星轨道激光高度计、火星快车高分辨率立体相机和火星奥德赛热辐射成像系统等设备发现了水流特征,而利用火星快车观测站光谱成像仪探测到了水合矿物。最近,火星勘测轨道飞行器上的紧凑型勘测成像光谱仪在可见光-近红外(VNIR)范围内检测到了火星表面的斜长石特征。火星表面斜长石的检测引发了对行星上运作的基本过程问题的思考,这些特征的确切起源(即含长石岩石的性质)对理解火星的形成和演化具有明显不同的意义。之前基于可见光-近红外反射光谱研究了富含钙长石的斜长岩粉末,研究表明,当斜长石长石结构中包含亚铁(Fe2+)时,可以检测到斜长石。在对二元粉末混合物进行的研究中发现,当添加了10%或更多的镁铁质矿物时,不再可见斜长石的光谱特征。根据这些研究,岩石组成中至少需要90%的斜长石含量,才能在总岩石光谱上显示出其独特的光谱特征。然而,使用大型斜长石和辉石晶体的二元混合物进行的另一项研究表明,可能需要高达50%的镁铁质矿物来掩盖斜长石的光谱特征,研究者的关键观点是,长石的组成及岩石中颗粒的大小都会影响斜长石的光谱特征和可检测性。因此,对整块岩石的分析似乎非常重要,除了之前对粉末和颗粒的二元混合物的研究外,还可以与火星遥感观测进行比较(其观测显示出类似斜长石的特征)。基于此,本研究的目标是确定是否可以在未破碎的含斜长石的陆地岩浆岩(从镁铁质到长英质)中检测到如在火星上观察到的斜长石的光谱特征(1.3 μm吸收带)。在本研究中,来自洛林大学岩相学和地球化学研究中心和克莱蒙特奥弗涅大学岩浆和火山实验室的一组研究团队,①选择了五个不同地理来源含长石的宏观岩石样品(均是火山或深成岩),分别是NJ2(英安岩)、NJ11(花岗岩)、NM6(斜长岩)、NR1(玄武岩)和NR2(玄武岩)。②通过光学显微镜观察,了解样品显微结构和矿物组成。通过地球化学分析,确定元素含量。通过化学成分的映射分析,观察不同矿物的分布情况。此外,还进行了长石矿物化学成分的定量分析。③获取样品的光谱反射率(ASD Fieldspec 4地物光谱仪)和高光谱图像。④对光谱数据进行归一化处理等,使用ENVI软件进行化学成分的分析和矿物分类。并与美国地质调查局(USGS)的参考光谱库进行比对,识别矿物特征。⑤分析长石矿物的化学成分和光谱特征之间的相关性,探讨长石的光谱特征与其组成的关系。并讨论样品中颗粒大小和伴生矿物对长石光谱特征的影响。⑥总结研究结果,并对火星上的长石特征进行讨论和解释。结果用电子探针显微分析仪对5个含长石的宏观样品的薄片进行点分析的结果5种含长石样品的反射光谱,连续去除前(a)后(b)结论本研究使用光学显微镜、扫描电子显微镜(SEM)、电子探针显微分析(EPMA)和反射光谱(点光谱仪和高光谱相机)对五个含长石的宏观样品进行了分析。对样品进行了光谱、岩石学和地球化学表征,以详细描述样品,并试图将其近红外光谱特征与其中一种斜长石联系起来。结果表明,尽管这些宏观样品中斜长石的含量不同(约 30% ~ 80%),但在它们的近红外光谱上仍然可见斜长石的吸收带,但在相应的粉末样品中不一定可见。使用高光谱相机对矿物类平均光谱进行分析,证实了在1.3 μm附近观测到的特征与斜长石矿物有关,尽管橄榄石或黑云母等伴生矿物往往会重叠并影响总岩石光谱中产生的信号。将该吸收带的位置与斜长石的化学成分进行了比较,更准确地说,将其与铁和钙长石的含量进行了比较。结果表明,FeO和An含量与斜长石吸收带中心位置之间存在相关性,通常随着An含量的增加而增加(除在先前研究中提到的拉长石外)。为了更准确地理解这些趋势,还需要对更大规模的样本进行实验室分析。研究结果还表明,在解释斜长石的VNIR光谱特征时,必须考虑到粒度、斜长石组成和相关伴生矿物,这一发现有助于理解最近在火星上发现的矿物。总之,研究人员对地球上的样品进行了多种分析方法的综合研究,以深入理解长石的光谱特征,这对于解释火星上的长石特征具有重要意义,这些特征可能对应于一系列含长石的岩石,因此可以提供有关火星地壳形成的信息,并为火星上的矿物研究提供了重要参考。
  • 应用案例 | J200 LIBS元素分析仪在植物组织元素空间分布研究中的应用
    化学元素空间分布制图(Mapping)及深度剖析分析法在生物组织、法证分析、生物医学等领域,有着十分广泛的应用前景,如植物修复(利用绿色植物来转移、容纳或转化环境中的污染物,是当前植物学、生态学、环境科学等领域研究的热点)。基于激光剥蚀技术的激光诱导击穿光谱(LIBS)法成功地应用于生物样品化学元素空间分辨分析,实现多种元素同时检测,且不需或仅需简单样品制备,同时避免了污染物的产生及误差的引入。Kaiser等采用LIBS和LA-ICP-MS技术(J200 Tandem系统)检测处理后的向日葵叶片上元素Pb、Mg、Cu的空间分布情况,来探寻和验证样品元素分布研究手段。 1 实验方法 将向日葵水培,按0、100、250、500 μM的浓度梯度加入Pb-乙二胺四乙酸溶液进行处理,处理后的幼苗定期进行取样。采用LIBS和LA-ICP-MS方法对叶片的Pb、Mg、Cu元素分布进行测量,并采用AAS对三种元素的总量进行检测。 2 实验结果 下图为LIBS光谱图a)及LA-ICP-MS信号图b)。在LIBS光谱中,选择283.31nm及277.98nm分别作为Pb和Mg的特征峰,用以检测两种元素。 下图为Pb和Mg在样品取样区域内的元素分布情况。处理过的叶片,在叶脉周围组织中有更高的目标元素的含量。LIBS和LA-ICP-MS两种方法得到的元素分布有所不同,这是由于他们的剥蚀采样方式不同造成的。 Kaiser对不同时期收获的样品,分别进行了LIBS和LA-ICP-MS累计定量分析,得到元素的平均信号强度。下图显示Mg含量随着Pb含量的变化而变化。 下图为空白处理叶片上1×1cm取样区域内Cu元素分布情况。采用的Cu的特征峰为324.75nm。在取样区域内,进行20×20的单次剥蚀。 Kaiser认为LIBS激光技术非常适合样品的元素空间分析工作,例如用于监测元素在植物样品中的迁移及空间分布等研究。
  • 华中农业大学在稻米重金属污染特征分析及健康风险评价方面取得新进展
    近日,华中农业大学资源与环境学院国家环境保护土壤健康诊断与绿色修复重点实验室土壤化学与环境团队在稻米重金属污染特征分析及健康风险评价方面取得重要进展,相关研究成果以“Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health”发表在Communications Earth & Environment。 食品安全关乎人类健康和社会福祉。稻米是世界上一半以上人口的主食,极易受重金属污染。为了最大限度降低健康风险,国际组织和各国政府制定了稻米重金属的最大可接受浓度(MAC)。然而,食用人群的个体差异也会对人体健康风险产生重要影响,致使长期暴露于低于MAC浓度的稻米仍可能对部分人群存在健康风险。 针对受体和区域饮食习惯差异对健康风险的影响尚不清晰这一问题,土壤化学与环境课题组联合概率和模糊方法,精准识别了全国32个省份的关键受体,并测算了相应健康风险的超标概率,评估了不同省份5种重金属(镉、砷、汞、铅、铬)对健康风险的贡献率。研究结果表明,长期食用符合食品安全国家标准的稻米仍会可能造成不可忽视的健康风险,而长期暴露的儿童和幼儿最为严重。这种健康风险主要来自砷与镉。由于贸易发生空间转移等因素的影响,土壤重金属污染区与健康高风险区空间分布并不完全吻合。本研究近一步提高了重金属污染人体健康风险评估的精准性,为食品安全标准优化与农业污染治理规划提供理论支撑。图1重金属健康风险的概率分布以及贡献华中农业大学资源与环境学院硕士研究生魏仁皓为论文第一作者,陈畅副教授为通讯作者。资源与环境学院谭文峰教授、王真教授、刘朝阳副教授、湖北省生态环境科学研究院蔡俊雄教授等参与了研究工作。该研究得到了国家自然科学基金、湖北省自然科学基金和湖北省创新研究岗位项目的资助。论文链接:https://www.nature.com/articles/s43247-023-00723-7
  • 威斯康星大学李灵军自然通讯最新成果:胰腺蛋白质组的质谱定量分析揭示癌症相关特征
    仪器信息网讯 胰腺是人体最重要的器官之一。它产生胰岛素来调节血糖和帮助消化食物。如果胰腺失控,糖尿病、癌症或其他疾病就会威胁生命。然而,关于胰腺如何使人们保持健康以及器官如何衰竭,还有很多未知之处。数以万计的蛋白质控制着胰腺的工作方式:它如何生长和发育,如何产生消化酶以及如何分泌胰岛素。因此,科学家需要进一步了解蛋白质结构如何随时间变化,以帮助开发针对糖尿病或癌症的治疗方法。  基于此,威斯康星大学麦迪逊分校药学院与化学系的李灵军课题组与医学和公共卫生移植外科医生Jon S Odorico合作开展了追踪从出生前到成年后期胰腺蛋白质组(整套蛋白质)变化的相关研究。研究团队还开展了细胞外基质(extracellular matrix,ECM)的研究和分析,该物质能够指导细胞分化、迁移、形态和功能,对于在实验室细胞培养和器官移植过程中生长和支持胰腺细胞至关重要。但在人类胰腺研究中,目前尚未系统研究过不同发育阶段的ECM蛋白质组。该研究中,科学家们应用了基于质谱的定量蛋白质组学策略,并描述了四个年龄组的全蛋白质组和ECM特异性变化:胎儿(妊娠18-20周),青少年(5- 16岁),青年(21-29岁)和老年(50-61岁)。研究团队鉴定了3523种蛋白质,其中包括185种ECM蛋白质,并对其中的117种进行了定量。课题组检测了胰腺发育和成熟过程中以前位置的蛋白质组和基质组的特征。他们还使用免疫荧光染色观察特异性CEM蛋白质,并研究CEM在胰岛和腺泡间的定位变化。该研究全面的蛋白质组学分析有助于深入了解CEM在人类胰腺发育和成熟过程中所起的关键作用。  成果表明,胰腺在人类整个童年时期都会显著重塑其蛋白质,最终在成年阶段稳定。值得一提的是,与癌症相关的蛋白质之间存在明显的年龄特异性变化,这一发现有助于研究人员加深对胰腺癌的了解。  该成果于2月15日发表在《自然通讯》杂志上,论文题目为“Proteome-wide and matrisome-specific alterations during human pancreas development and maturation”。论文链接:https://www.nature.com/articles/s41467-021-21261-w关于研究团队:威斯康星大学麦迪逊分校 李灵军教授    李灵军教授在神经肽和功能性肽组学研究领域取得了开拓性的成果。她所带领的课题组针对神经生物学中的关键性课题,开发了一系列的基于质谱和微分离技术的研究平台,对由分子、细胞水平认识神经肽的功能以及神经退行性疾病生物标志物的发现作出了突出的贡献。据仪器信息网跟踪报道,李灵军教授曾荣获美国质谱学会颁发的Biemann奖章,是世界质谱领域的最高荣誉之一,授予那些长期在质谱学研究领域做出突出贡献的学者。此外,2016年英国分析科学家网站公布了全球50位最具影响力女性分析科学家名单,李灵军教授也荣誉获选。  在以往的采访中,李教授也曾表示:”我最热衷于开发新型分析工具和策略来解决具有挑战性的生物问题。我们很高兴开发一套用于发现神经肽功能的多功能质谱工具,并使用这些技术来提高我们对大脑工作原理的理解。最近,我们正致力于开发用于定量MS分析和系统生物学中高通量测量的新型化学标签。我也热爱培训和指导研究生和博士后,并帮助他们过渡到成功的职业生涯的这个过程。”课题组官网: https://www.lilabs.org/  团队合照
  • 科研人员利用红外和拉曼光谱识别赖氨酸乙酰化特征
    近期,中科院合肥研究院智能所黄青研究员课题组利用红外和拉曼光谱识别赖氨酸乙酰化特征,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。相关研究成果发表在国际光谱专业期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy上。 乙酰化是生物学中常见且极其重要的蛋白质修饰,在细胞代谢中都起着关键性的调节作用。蛋白质乙酰化有两种方式,一是赖氨酸残基特有的乙酰化,二是多种氨基酸残基都可发生的N-末端乙酰化。目前一般用N-末端乙酰转移酶来标记判断赖氨酸残基是否发生乙酰化,但该方法的准确性仍存在争议。在分子水平识别蛋白质乙酰化是目前研究挑战之一,其关键是对赖氨酸的乙酰化进行准确定位表征,由此获得清晰和系统的认识。 针对这种情况,研究团队通过红外和拉曼光谱实验以及密度函数理论(DFT)计算,系统地研究L-赖氨酸三种乙酰化类型(、和)的结构变化及相应的振动光谱特征,发现酰胺基、羧基等基团的红外和拉曼特征谱带能用于有效识别不同的乙酰化类型。换言之,从红外和拉曼光谱特征即可判断赖氨酸是否乙酰化,也可判断赖氨酸发生了 乙酰化,还是 乙酰化,或者同时乙酰化。同时,研究团队对乙酰化的振动光谱识别策略在多肽模型中也得到验证。基于此,该项研究工作提供乙酰化赖氨酸的振动模式解析,并提出赖氨酸乙酰化的光谱识别和新的表征方法,为生物系统中蛋白质乙酰化结构分析提供了理论和实验基础。   该研究工作得到了国家自然科学基金和安徽省自然科学基金的资助。赖氨酸和三种乙酰化赖氨酸的分子结构Lys-G4多肽及其赖氨酸残基乙酰化的理论计算红外光谱(红色为乙酰基,蓝色为乙酰基)
  • 2020版药典∣中药增修订指纹、特征图谱、含量测定项目解决方案
    2020版药典实施在即,岛津对药典一部中药增修订项目变化进行了汇总。津津老师发现多个品种标准【含量测定】项目发生了较大变化,另外部分药材、饮片及植物提取物各论下增订了指纹图谱和特征图谱。为了帮助广大用户更好应对即将实施的新版药典,做好相关检测项目调整,岛津对增修订标准做了梳理,并提供分析仪器、色谱柱选型、应用文集一体化解决方案。 中药指纹图谱、特征图谱、含量测定项目变化汇总表 中药增修订项目应对方案 分析仪器色谱柱 应用实例 银杏叶提取物“检查”项下【指纹图谱】测定供试品和对照提取物指纹图谱相似度比较(S1:对照品 S2:供试品) 参照药典【指纹图谱】项下“方法二”条件,岛津建立了银杏叶提取物指纹图谱的UHPLC测定方法。该方法分析时间仅为17.5分钟,相比HPLC法节省近60分钟。供试品和银杏叶提取物中17个主色谱峰分离效果良好。全峰相似度在0.927以上,满足药典中不低于0.90的规定。6针重复性测试显示,17个目标物保留时间和峰面积RSD分别在0.106%-0.636%和0.152%-2.601%之间,仪器精密度良好,可作为银杏叶提取物的质量控制方法。 天麻【特征图谱】测定 供试品溶液色谱图 对照药材参照物溶液色谱图 参照药典【特征图谱】项下条件,采用色谱柱Shim-pack GISS C18(4.6×250 mm,5 μm)。对对照药材参照物溶液、对照品参照物溶液和供试品溶液进行分析,结果显示规定的 6 个特征峰在供试品溶液中均有呈现,且与对照药材参照物溶液特征图谱中的 6 个特征峰相对应,其中峰 1、峰 2 与天麻素对照品和对羟基苯甲醇对照品参照物保留时间相一致,且重现性良好。此方法可为天麻特征图谱分析提供参考。 地黄【含量测定】项下“地黄苷D”测定 供试品溶液色谱图 按照 2020 版《中国药典》中色谱条件,建立了地黄中地黄苷 D 的 HPLC 测定方法。结果表明,采用色谱柱 SHIMSEN Ankylo C18 分析地黄苷 D,地黄苷 D 的理论塔板数为13909(药典要求在5000以上),且与相邻杂质峰能达到基线分离,重复性测试表明保留时间RSD和峰面积RSD分别达到0.17%和0.18%,样品中地黄苷D含量计算值为0.101%,满足《中国药典》要求(不低于0.10%)。此方法可为地黄中地黄苷 D 的检测提供参考。 薄荷中“薄荷脑”含量测定 供试品溶液色谱图 按照 2020 版《中国药典》中色谱条件,建立了薄荷中薄荷脑含量测定方法。结果表明,采用色谱柱 SK-WAX分析薄荷中的薄荷脑,峰形对称,理论塔板数按薄荷脑峰计算远高于 10000,且各目标物峰与相邻杂质峰能达到基线分离,重复性测试表明保留时间RSD和峰面积RSD分别达到0.07%和1.71%,样品检测薄荷脑计算值为2.38%,满足《中国药典》要求(不低于0.20%)。此方法可为薄荷中薄荷脑的含量检测提供参考 注:篇幅所限,仅列举检测实例部分内容,完整应用报告请点击下方“阅读原文”获取。
  • 【涨知识】跟水质特征有关的哪些术语
    茂默科学以客户为本、合作共赢的理念,致力于帮忙客户提供整体实验方案。力求解决行业内客户对科学仪器选型难、维护难的处境。通过不断优化公司运作和提升服务质量,目前已赢得业内人士和广大客户广泛认可,拥有广泛而稳固的合作伙伴和客户群体。现介绍一些跟水质特征有关的术语。1 α系数 alpha factor在活性污泥污水处理设备中,混合液与清洁水中氧传递系数之比。2 氨的汽提 ammonia stripping通过碱化和曝气去除水中氨化合物的一种方法。3 半致死浓度 lethal concentration,LC50在一定时间的连续暴露下,使受试生物半数致死的毒物浓度。4 β系数 beta factor在活性污泥污水处理设备中,混合液中溶解氧饱和值与同一温度和气压下清洁水中溶解氧饱和值之比。5 测试组 test batch在遗传毒性测试中培养基、接种体和稀释系列的混合物。6 超载 surcharge在靠重力流动的污水管中,当满管后流量再增加时所造成的状况。这可能引起过量污水从检查井溢出。7 初级生物降解 primary biodegradation在微生物的作用下,化合物的结构发生变化,导致一些特性丧失。8 初级厌氧生物降解 primary anaerobic biodegradation由于厌氧微生物的作用,受试化合物仅发生结构改变,而未达到终矿化的生物降解阶段。9 粗滤池 roughing filter在有机物含量或水力负荷比正常情况高得多的条件下工作的生物滤池,用以降低高强度污染工业废水中易降解有机物的过高浓度。10 大型植物 macrophytes大型水生植物,包括挺水、沉水和浮水植物。11 淡水 fresh water含盐量低的天然水,或一般认为便于抽取和处理产生饮用水的水。12 氮平衡 nitrogen balance参见114,质量平衡。13 氮循环 nitrogen cycle自然界中氮及其化合物被利用和转化的循环过程。14 DNA损伤 DNA damage不影响细胞复制的各种DNA变化。15 点突变 point mutation;基因突变 gene mutation基因中单碱基对(核苷酸对)改变引起的突变,包括缺失、插入、移码突变、核苷酸序列的改变。16 毒性试验 toxicity test使某种物质在一定浓度下与特定的生物接触,以确定该物质对生物的毒性影响。16.1 流水毒性试验 flow-through toxicity test;动态毒性试验 dynamic toxicity test试验水体在连续流动情况下所进行的毒性试验。16.2 半静态毒性试验 semi-static toxicity test;定期更换受试液的毒性试验 toxicity test with intermittent renewal以较长时间间隔(如12 h或24 h)来分批更换大部分试液(大于95%)的毒性试验;或定期(一般每隔24 h)将受试生物转移到毒物浓度与起始相同的新配试液中的毒性试验。16.3 静态毒性试验 static toxicity test;不更换试液的毒性试验 toxicity test without renewal在试验周期内,不更换试液的毒性试验。17 对照组 control batch是试验过程的一部分,表明无待测物质存在时基质条件对检测系统的影响。注:在遗传毒性紫外致突变(umuC)试验中,对照组包括不含待测菌的培养基、只含蒸馏水和接种物的培养基、含接种体和溶剂的培养基等。18 多氯联苯 polychlorinated biphenyls,PCBs多氯取代的联苯类化合物的总称,也包括一氯联苯。19 反冲洗 backwashing用水以逆流方向清洗滤池的操作过程,常需辅以空气冲刷。20 腐、败 putrefaction有机物受厌氧微生物作用无控制地分解,并产生臭味。21 腐、败的 septic由于缺乏溶解氧而产生腐、败的现象。22 腐生的 saprobic与有机物腐、败有关的。23 腐殖污泥 humus sludge生物滤池脱落的微生物膜。通常在后沉淀池中分离出。24 附聚(作用) agglomeration絮凝体或悬浮颗粒物聚结形成更大的絮凝物或更易沉降、浮起的颗粒物。25 隔夜培养 overnight culture下午开始,培养过夜(通常约16 h),以备第二天早晨进行的预培养接种使用。26 光合作用 photosynthesis在有光的条件下生物借助光化学反应将二氧化碳和水合成有机物。27 哈森色标 Hazen number表示水色度的值。一个标准单位为每升水中1 mg铂[以六氯铂(Ⅳ)酸的形式存在],或2 mg六水氯化钴(Ⅱ)存在下所产生的颜色。28 含水层 aquifer由具有渗透性的岩石、砂或砾石构成的能够提供大量水的含水床或含水层。29 河段 reach有一定上游和下游界限的河道。30 核苷酸 nucleotide基因组的组成成分(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶),通过糖和磷酸基团连接而形成核酸链,其顺序决定着基因组的遗传密码。31 核酸 nucleic acid重要的遗传物质,由核苷酸按一定的顺序连接而成的双螺旋结构,决定遗传编码。32 核糖核酸 ribonucleic acid,RNA构成遗传物质的重要组分之一。在RNA病毒中是基因组的组成成分。注:RNA与DNA不同,在核苷酸序列中,尿嘧啶(U)取代了胸腺嘧啶(T)(参见DNA,83)。33 后氯化 post-chlorination水(或废水)处理后再进行氯化。34 弧菌Vibrio sp.好氧、无孢子生殖的革兰氏阴性细菌,广泛分布于地表水中。某些种系致病菌,如霍乱菌、副溶血性弧菌。35 化学示踪剂 chemical tracer人为添加或天然存在于水中,用于示踪水流的化学物质。36 回流 recirculation经过初级或完全处理的部分废水,由处理系统的某一单元返回到前面单元的过程。37 汇水区 catchment area;汇水盆地 catchment basin水能自然地排到水道或某一点所形成的区域。38 混合液 mixed liquor在活性污泥曝气池或氧化沟内进行循环或曝气的活性污泥与污水的混合物。39 混合液悬浮固体 mixed liquor suspended solids,MLSS混合液中固体物质的总浓度,通常规定以干重计。40 活菌 viable bacteria具有代谢和(或)繁殖能力的细菌。41 活性炭处理 activated carbon treatment用活性炭吸附去除水和废水中溶解的或胶态的有机物的过程。例如用以改善水的味、臭和色。42 积水 ponding由于生物滤池滤料间隙堵塞,在池面上出现的水。43 基因组 genome细胞中编码遗传信息的所有遗传物质(核酸、DNA、RNA)。44 交叉连接 cross connection指管道之间的连接有可能使受污染水进入饮水供水系统,从而给公众健康带来危害。也用于描述不同配水系统之间的一种规范连接。45 接种 seeding人为引入合适的微生物而对生物系统进行接种。46 接种体 inoculum;接种材料 inoculation material向新鲜培养基中加入的微生物(或经预培养,处于指数生长期的菌悬液)。47 菌胶团膜 zoogloeal film含有大量细菌、原生动物和真菌的黏液基质,覆盖在成熟的生物滤池、慢速砂滤池滤料的润湿表面或污水管内壁。48 矿化作用 mineralization有机物完全分解成二氧化碳、水,以及其他元素的氢化物、氧化物和矿物盐。49 理想的自然群落 expected natural community在河道中仅有自然胁迫,而人为干扰较小的生物群落。50 磷平衡 phosphorus balance参见114,质量平衡。51 浓度-效应关系 concentration-effect relationship某种物质或几种物质混合物,在一定浓度梯度下,导致某种诊断标志物产生响应的剂量的相关性。注:在遗传毒性紫外致突变(umuC)试验中,umuC基因的诱导取决于受试样品中遗传毒物的浓度。52 排水区 drainage area水排至一点或多点的区域,区域边界由主管部门限定。53 培养基 culture medium支持微生物生长的液态或固态营养物质。54 贫营养水 dystrophic water含营养物甚少而含腐殖质浓度高的水。55 潜水面 water table静止的或自然流动的地下水的水面。在该水面下,除了不透水的地方外,蓄水层被水饱和。56 倾析 decantation悬浮固体沉淀或与高密度液体分离后倾出上清液。57 清洗生物 scouring organisms一些生物,例如蠕虫、昆虫幼虫和其他无脊椎动物,它们能通过摄食或移动以去除生物滤池滤料表面的细菌团膜(细菌块膜)。58 泉水 spring自然涌出地表的地下水。59 三级处理 tertiary treatment为进一步减轻污染影响,对经过初级和二级处理的污水进一步处理的过程。包括:深度物理处理、化学处理和生物处理。60 排水的深度处理 effluent polishing采用深度物理或生物方法对二级处理排水进行的三级处理。61 设定点 designated site(生物学分类的河流)在水体某一段中所选定的某个具体点,该点的水质能够代表该段水体的水质。62 生态系统 ecosystem通过不同组成的生物和其周围环境间的相互作用,形成物质循环和能量交换的系统。63 生态学 ecology研究生物及其相关环境之间相互关系的一门学科。64 生物降解 biodegradation在水介质中由于活生物的复杂作用引起的有机物的分子降解。65 生物降解阶段 biodegradation phase试验中从延滞期结束至达到大生物降解率的90%所经历的时间。66 生物矿化 biomineralization由生物活性引起的矿化作用。67 生物量 biomass给定水体中生命物质的总质量。68 (砂滤)生物膜 biofilm(of a sand filter)由活的、死的和垂死的生物在慢速砂滤池或其他生物滤池介质表面形成的膜。69 生物群 biota水生生物系统中的所有活的组分。70 生物指数 biotic index描述水体生物群的数值,用以表示水体的生物质量。71 受试样品 test sample经过所有前处理步骤(如离心、过滤、匀浆、pH调节和离子强度测定)的待测样品。72 熟化塘 maturation pond大型浅水池,用于进一步处理已经生物处理过的污水,并去除该过程中形成的固体。73 水文测量 hydrometry水流的测量与分析。74 水文地理学 hydrography研究与测量海洋、湖泊、河流和其他水域的一门应用科学。注:在一些国家中此术语等同于海洋物理化学。75 水文学 hydrology研究降水、径流或渗滤及储存、蒸发和再降这一水循环的应用科学。76 淘析 elutriation一种污泥调节工艺。用清洁水或污水厂的出水淘洗污泥,以减小污泥的碱度,特别是除去氨的化合物,从而减少混凝剂的需用量。77 停留期 retention period;滞留时间 detention time按规定的流速计算,水或废水在特定单元或系统内停留的理论时间。78 透光层 euphotic zone透光程度足以维持光合作用的上层水体。79 突变 mutation;染色体突变 chromosomal mutation生物体或病毒的遗传物质(DNA或RNA)永、久性地改变,通常是一个基因中,表现为遗传物质(一个或多个核苷酸)的缺失、易位、转导,导致遗传编码的改变,从而改变基因功能。80 推流系统 plug-flow system至少理论上(如果实际无法达到)在渠道横断面可达到充分混合,而沿水流方向又无混合或扩散的一种系统。81 脱落 sloughing菌胶团膜物质以腐质污泥的形式从生物滤池的滤料上连续脱离。82 春蜕膜 vernal sloughing;spring sloughing春季由于生物活动增强,从而使生物滤池中新的菌胶团膜滋生而旧生物膜大量脱落。83 脱氧核糖核酸 deoxyribonucleic acid,DNA构成除RNA病毒外所有生物基因组的遗传物质。与RNA不同的是,DNA核苷酸序列中含有胸腺嘧啶,而不是尿嘧啶。84 稳定期 plateau phase生物降解阶段结束到试验结束这段时间。85 稳定性 stability处理前后,废水或污泥抗腐、败的能力。86 稳定性试验 stability test;亚甲蓝试验 methylene blue test对经过生物处理污水的一种检验。试验时,向生物处理过的出水中加入亚甲蓝染料,在隔绝空气的条件下,通过染料褪色所需的时间评估水稳定性。87 污泥龄 sludge age在排泥率恒定的情况下,活性污泥处理厂排放全部活性污泥所需的天数。计算方法是用活性污泥厂污泥的总排放量除以每天排放的污泥量。88 污泥膨胀 sludge bulking活性污泥法处理系统中,通常由于丝状菌的存在,引起活性污泥体积膨胀和不易沉降的现象。89 污泥压滤 sludge pressing采用机械加压去除污泥中液体的方法,使之形成易于处置的固体物。90 无观察效应浓度 no observed effect concentration,NOEC统计学上略低于低观察效应浓度的实验浓度。91 稀释系列 dilution series预设受试样品与稀释基质(例如水或缓冲液)配比的一系列测试用混合物。92 延迟期 lag phase从试验开始到用于降解的微生物驯化适应和选择完成所经历的时间,此时化合物或有机物的降解程度达到大生物降解率的10%。93 沿岸带 littoral zone即水体边缘浅水带,阳光可直接透射到水底,根生植物占优势。94 盐跃层 halocline在分层的水体中,含盐浓度梯度大的一层。95 氧饱和值 oxygen saturation value与大气(天然系统)或纯氧(纯氧废水处理系统)处于平衡的溶解氧浓度。它随温度、氧分压和盐度而变化。96 养分去除 nutrient removal在水和废水处理中,专为除去含氮和含磷化合物而使用的生物、物理和化学方法。97 氧化沟(渠) oxidation ditch(channel)通常为若干平行沟渠在终点相连,形成闭合循环,装有曝气装置用于处理原污水或澄清污水的系统。98 氧亏 oxygen deficit在水系统中,实际溶解氧浓度与其饱和浓度值之差。99 氧平衡 oxygen balance参考114,质量平衡。100 遗传毒性 genotoxicity通常指由导致突变的物理或化学因素引起的基因组特异性改变的毒性效应。101 遗传毒性试验 genotoxicity test确定DNA损伤或DNA修复等遗传毒性作用的试验系统。102 引水 abstraction将水从任何水源永、久地或暂时地转移到其他地方,使其不再是该地区水资源的一部分,或者转移到该地区内的另一水源。103 英霍夫锥形管 Imhoff cone容积通常为1L,刻度接近尖端,可用来测定水中可沉降物体积的圆锥形透明容器。104 营养物的去除 nutrient removal在水和废水处理中,专为去除含氮和含磷化合物而使用的生物、物理和化学方法。105 umuC操纵子 umuC-operon调控umuC基因诱导的基因序列。106 umuC紫外致突变及化学修复 umuC UV mutagenesis and chemical repair在遗传毒性实验中,使用umuC基因研究受试菌株的DNA损伤。umuC基因的表达受到DNA损伤的诱导。107 油状膜 slick漂浮在海面或者其他水体上的一层物质,例如石油膜。108 预暴露 pre-exposure在添加化合物或有机物的实验条件下,对接种体进行预培养。目的是通过微生物的适应和选择,增强接种体对受试物的降解能力。109 预活化 pre-conditioning在适宜培养条件下对受试生物进行预培养。该过程中不添加化学药品或有机物质。微生物在此过程中适应实验中培养条件,可改善实验效果。110 预培养 pre-culture在适宜培养条件下培养(已活化的)微生物,以促进其适应实验中培养条件。是特定试验(如遗传毒性试验)的一部分。111 原生水 connate water与周围岩石或地层具有同一地质年代的间隙水。水质往往不良,不适于正常使用(例如饮用、工农业使用)。112 原种培养 stock culture一定条件下(如在适合的培养基中冻存)生物菌株的培养,目的是保持原有的特性,如核酸序列。113 真空过滤 vacuum filtration污泥经滤布,藉真空抽滤的一种脱水方法。114 质量平衡 mass balance在一确定系统内(例如湖泊、河流或污水处理厂),特定物质输入量和输出量(包括该物质在系统中的形成或分解)之间的相互关系。115 中温消化 mesophilic digestion污泥在20~40℃下的厌氧消化,在该温度范围内有利于微生物生长。116 中营养水 mesotrophic water天然的或由于营养累积形成的中等营养状态的水,介于贫营养和富营养之间。117 自养细菌 autotrophic bacteria;化能自养细菌 chemolithotrophic bacteria能利用无机物作为碳源和氮源而繁殖的细菌。118 总固体浓度 total solids concentration在一定条件下,已知体积的活性污泥烘干后的重量。119 大生物降解率 biodegradation maximum level试验中,一种化合物或有机物不再继续发生生物降解时的大生物降解程度(以百分率表示)。120 低可观察效应浓度 lowest observed effect concentration,LOEC与对照相比,观察到显著效应(p≤0.05)时受试物的低浓度。121 低无效应稀释度 lowest ineffective dilution,LID(一定稀释度下废水的毒性测试)试验中无抑制效应或不产生特定值以上效应的大浓度稀释值。122 终好氧生物降解 ultimate aerobic biodegradation在有氧条件下,化合物或有机物被微生物降解成CO2、H2O和元素形态的矿物盐,并同化成微生物的一部分。123 终需氧量 ultimate oxygen demand,UOD有机物完全矿化和氨氮、亚硝态氮氧化所需要的氧的理论计算值。124 终厌氧生物降解 ultimate anaerobic biodegradation在无氧条件下,化合物或有机物被微生物降解成CO2、CH4、H2O和元素形态的矿物盐,并同化成微生物的一部分。(来源:HJ 596.3-2010)
  • 北大研究者发布探索蛋白质相互作用特征的新技术
    北京大学的研究人员报告称,他们开发出了一种遗传编码蛋白质光交联剂,其带有可转移的、质谱可识别的标签。这一研究成果发布在7月27日的《自然通讯》(Nature Communications)杂志上。  北京大学化学与分子工程学院的陈鹏(Peng R. Chen)研究员与王初(Chu Wang)研究员是这篇论文的共同通讯作者。  蛋白质以其自身结构和与其他蛋白质之间的相互作用为基础发挥功能,因此,研究蛋白质的结构和相互作用抑制是生命科学的重要方向。  检测蛋白质相互作用的传统方法,如酵母双杂交、亲和色谱和免疫共沉淀等有着各自的局限性。酵母双杂交可以揭示蛋白质间的直接相互作用,甚至通过大规模筛查发现未知的相互作用,但酵母细胞未必能为异源表达的其他物种蛋白提供合适的相互作用条件。亲和色谱技术和免疫共沉淀技术其通量比较低,背景结合蛋白质与特异性结合蛋白质有时难以区分,直接与间接相互作用也通常难以区分。另外,这三种方法对于瞬间、微弱的相互作用,比如信号转导过程中松散变化的蛋白质复合物,都很难获得有效信息。  近年来,科学家们一直在不断地发展发现及描绘生理条件下蛋白质相互作用特征的技术,其中化学与光亲和交联策略获得越来越多的关注。将生物分子间的非共价相互作用转变为共价交联,使得能够捕获到时常出现在自然界中微弱且短暂的蛋白质相互作用。光交联剂结合质谱技术是近年发展起来在活体系统中研究蛋白质相互作用的一种有力的工具,但它仍然存在着高假阳性鉴别率及无法提供相互作用界面信息等缺点。  在这篇文章中研究人员报告称,他们开发出了一种遗传编码光亲和非自然氨基酸,可在光交联及猎物蛋白-诱饵蛋白分离后将一个质谱可识别的标签(MS-label)导入到捕获的猎物蛋白中。这一叫做IMAPP的策略使得能够直接鉴别出采用传统的遗传编码光交联剂难以揭示的光捕获底物肽。利用这一MS-label,IMAPP策略显著提高了鉴别蛋白质相互作用的可信度,使得能够同时鉴别捕获的肽和确切的交联位点,对于揭示靶蛋白及绘制活体系统中蛋白质相互作用界面具有极高的价值。  来自多伦多大学Lunenfeld-Tanenbaum Research Institute (LTRI)和Donnelly中心的一组研究人员,开发出一种新技术,可以将细胞内的DNA条形码拼接在一起,以同时搜寻数百万个蛋白质配对,用以分析蛋白质相互作用。相关研究结果发表在2016年4月22日的《Molecular Systems Biology》杂志上(研究蛋白质相互作用的新技术)。  斯克里普斯研究所(TSRI)的科学家们开发出了一种强大的新方法来寻找结合特定蛋白质的候选药物。发表在2016年6月Nature杂志上的这种新方法是一个重大的进展,它可以同时应用于大量的蛋白质,甚至直接应用于自然细胞环境中成千上万不同的蛋白质。一些小分子可以用来确定它们靶蛋白的功能,并可充当药物开发的起始复合物。TSRI的研究人员证实这一技术为许多过去认为无法很好结合这些小分子的蛋白质找到了“配体”(结合伴侣蛋白)(Nature发布突破性蛋白质新技术)。  蛋白质是自然界的机器。它们供给氧气为我们的肌肉提供动力,催化一些帮助我们从食物中提取能量的反应,抵御细菌和病毒的感染。数十年来,科学家们一直在寻找方法设计可以满足某些医学、研究和工业特定用途的新蛋白质。现在,北卡罗来纳大学医学院的研究人员开发出了一种方法,通过将已存在蛋白质的片段拼接在一起来生成新蛋白质。这一叫做SEWING的技术发表在2016年5月的Science杂志上(Science发布突破性蛋白质技术)。
  • Nature:成像质谱流式细胞术发现肿瘤微环境特征预测肺癌结果
    来自麦吉尔大学和多伦多大学等研究人员已经开发出一种方法,可以仅通过一个微小肿瘤组织样本来预测肺癌患者在手术后的发展状况。研究人员将成像质谱流式细胞术与深度学习技术相结合,分析了400 多名来自肺腺癌患者的肺癌样本的肿瘤微环境。肿瘤微环境已被确定为影响治疗进展的异质性来源。通过在空间和单细胞水平上表征肿瘤微环境,研究人员揭示了与临床特征(如生存率)相关的不同细胞状态和特征。正如他们在Nature杂志上报道的那样,他们使用了人工智能来识别肿瘤微环境的某些特征来高精度地预测疾病进展。  Fig. 1: IMC defines the spatial landscape of LUAD.  “总的来说,这些数据表明空间分辨的单细胞转录组在未来可能具有非常大的价值,有助于为个性化的围手术期护理计划提供有价值的信息,以最大限度地减少那些能被治愈的人在治疗过程中产生的毒副作用,或提高那些会复发的人的治愈率”,麦吉尔大学的共同资深作者 Daniela Quail 和 Logan Walsh 以及拉瓦尔大学的 Philippe Joubert 领导的研究人员在论文中写道。研究人员使用 Fluidigm(现为 Standard BioTools)企业的成像质谱流式细胞技术系统,分析了 1996 年 2 月至 2020 年 7 月期间收集的 426 名肺腺癌患者的小组织核心样本。他们使用 35 重抗体组来识别各种细胞他们样本的成分,包括癌细胞本身以及基质细胞、适应性和先天性免疫细胞。研究人员总共检测到超过 160 万个细胞,并发现了 14 个不同的免疫细胞群。他们特别关注免疫细胞群与患者的临床数据之间的关联。例如,肥大细胞与延长生存期有关,虽然它们在非吸烟者和患有早期疾病的患者中更为常见。研究人员进一步注意到某些免疫细胞的频率与特定临床亚组之间的联系—例如,CD4 阳性辅助性 T 细胞在女性患者的样本中富集,她们往往会有更好的总体存活率,而老年患者的肿瘤内 CD8 较少- 阳性 T 细胞。与此同时,他们探索了肿瘤微环境中不同的细胞表型如何与生存相关,例如,发现 H1F1-α 阳性中性粒细胞将会产生不利于生存的环境。观察具有相似局部细胞类型组成的区域(邻近细胞),研究人员进一步指出,不同的组织结构与生存差异有关。例如,富含 B 细胞的邻近细胞与存活显着相关,尤其是 CN-25 邻近细胞,它也富含 CD4 阳性辅助性 T 细胞。通过应用深度学习方法,研究人员发现他们生成的空间信息可以改善对临床结果的预测。他们报告说,创建的模型(包括空间信息)预测进展的准确率高达 95.9%,而基线评分的准确率为 75%,而且他们仅仅使用了一个 1 mm²的肿瘤样本。此外,研究人员使用成像质谱流式细胞术分析了 60 名原发性肺腺癌患者的单独验证队列,并在数据集中发现该模型以 94% 的准确度预测进展。研究人员将他们模型的预测能力追溯到六个标记的组合:CD14、CD16、CD94、αSMA、CD117 和 CD20。总体来讲,准确率为 93.3%,精密度和召回率为 95.6%。研究人员写道:“我们的研究结果代表了对使用临床和病理变量的现有预测工具的重要进步,并且可以更有效地利用不断增长的围术期辅助系统来改善癌症结果。”  来源:  1.Sorin, M., Rezanejad, M., Karimi, E. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature (2023). https://doi.org/10.1038/s41586-022-05672-3.  2.基因网
  • 美国开发出检测纳米材料磁性特征新方法
    美国仁斯里尔工业学院12月8日宣布,研究人员成功地将直径为1纳米至10纳米的钴纳米结构团镶嵌于多层碳纳米管中,开发出了一种检测纳米材料磁性特征的新方法。  在经过一系列实验之后,研究人员最终确定,他们获得的由钴纳米材料和碳纳米管组成的混合结构具有足够的导电性灵敏度,可用来探测钴纳米结构这样微小的磁性材料的磁行为。据悉,这是研究人员首次展示利用独立的碳纳米管实现探测微小磁性材料磁场的技术。相关报道刊登在新出版的《纳米快报》上。  当人们常见的材料小到纳米级时,它们展示出了有趣和有用的新特征。纳米技术面临的一个重要的挑战就是要了解这些新特征,即特性的变化。磁性材料的磁性变化同材料本身的尺寸大小变化密切相关,过去纳米材料磁性变化的难以测量影响了人们对该课题的深入研究。  “由于在我们的混合材料中,钴纳米结构团是镶嵌在碳纳米管中而不是在其表面上,因此它们不会引起电子散射,从而不会影响碳纳米管宿主的传导特性。”仁斯里尔工业学院物理、应用物理和天文系助理教授兼研究带头人斯瓦斯迪克卡尔表示,“从根本上讲,这种混合纳米结构属于一类新的磁性材料。”  同系副教授萨偌吉纳亚克认为,这种新的混合纳米结构不仅为基础和应用物理研究开创了新方法,而且还有望帮助人们利用磁性自由度,为增加碳纳米管电学功能铺平道路。该混合结构的潜在应用包括新型纳米级导电传感器、新的电子存储器件、自旋电子器件和人体定向药物微型输送器组件等。
  • 全球医药创新生态十大特征与中国市场十大趋势
    p  当下的“中国”已成为全球科技界的“热词”之一:国际顶级学术期刊为中国科研制作特辑 世界知识产权组织称赞中国专利“井喷” “新四大发明”在海外“圈粉”无数……中国创新成为反哺全球医药的新动力,世界意义更加凸显。特别是两办发布的关于深化药品审批制度改革、鼓励药品创新和器械创新的意见,吹响了中国医药创新的号角,我们迎来了医药创新的黄金时代。/pp  11月9日上午,秋色宜人的江苏常州,第29届全国医药经济信息发布会上,一堂关于医药创新生态变革与趋势研判的头脑风暴,刷新着逾千名医药界人士对产业未来的认知。CFDA南方医药经济研究所副所长、《医药经济报》总编陶剑虹博士在《全球医药创新特征与中国趋势研判》的主题报告中,首次提出了中国医药创新步入黄金时代的研判,且让我们随着她共同开启新时代的大门,探看未来医药创新蓝图。/pp  strongspan style="color: rgb(0, 112, 192) "全球医药创新生态十大特点/span/strong/pp  在陶剑虹看来,支撑中国医药创新跃升的社会环境和产业基础已经日臻完善。一方面,中国医药卫生事业获得长足进展,卫生总费用占GDP的比重提高到6%以上,人均卫生费用增长2倍,医保覆盖率超过98%,以临床价值为导向的研发共识已经形成。另一方面,十八大以来的五年,我国医药工业规模不断扩大,医药工业总产值占GDP比重也从3.2%增长至4.3%。制药百强不单追求规模扩大,也更加关注创新投入,尤其是一些创业型研发企业的涌现,成为当下产业创新的活力基因。中国式的创新融入全球产业变迁中,新的特点格外耐人寻味。/pp  strongspan style="color: rgb(112, 48, 160) "1 全球医药市场增速加快,新兴市场领军新增长/span/strong/pp  预计2017-2022年,世界处方药市场将受到又一轮新药上市潮的拉动,保持6.5%的年均增长,总规模到2022年将突破一万亿美元。/pp  过去十年,全球制药企业的研发成本增加了80%以上,而新产品的推出量却减少了43%。全球顶级战略咨询公司德国罗兰贝格管理咨询公司发布的《医药行业如何盈利》报告显示,被调查的企业中,75%表示他们正经历战略危机,而重点发展将放在高增长的新兴市场。全球医药经济的增长已经从发达国家转向新兴市场国家。/pp  strongspan style="color: rgb(112, 48, 160) "2 国内外药审提速,中国企业迅速跟进FDA新批药物/span/strong/pp  截至2017年10月30日,FDA共批准了35个新药,其中4个已在国内CDE有申报。从2016年以来,中国新药注册申报量已经占到药品注册申报总量的55%。基本消除了药品注册申请积压,等待审评的药品注册申请已由2015年8月的21,668件降至2017年8月的3000件。抗生素和疫苗临床试验申请、中药民族药注册申请已实现按时限审评。/pp  strongspan style="color: rgb(112, 48, 160) "3 国际多中心临床加快推开,中国迎来第二次进口药浪潮/span/strong/pp  新制度下对进口新药境内上市注册进行调整,由原先的“三报三批”改为“两报两批”。进口新药审评审批加速,2016年共批准22个,2017年1-10月共批准51个。截至2017年8月14日,纳入优先审评的进口受理号有144个。进口丙肝新药集中登陆中国,截至目前,BMS、强生、吉利德、AbbVie的口服丙肝新药已在国内上市,美国的丙肝市场经历急速爆发和迅速萎缩,价格竞争日趋激烈,也将给国内仿制企业带来一定压力。/pp  strongspan style="color: rgb(112, 48, 160) "4 中国加入ICH开启全球研发新格局,制药巨头持续加码研发投入/span/strong/pp  2017年6月CFDA成为ICH正式成员,通过标准和指南同步,中国的药品审评审批标准将越发接近发达国家。数据显示,2017年制药研发公司的地理分布整体向东部迁移:在华新药研发企业数量占全球比例从2016年的4%增长至2017年的5%,中国已成为亚洲最大的新药研发国。/pp  制药巨头药企持续加码研发投入,2017年前20强的合计销售收入占世界药品市场的比重为41.7%,2017年前20强企业平均研发强度为19.6%。/pp  strongspan style="color: rgb(112, 48, 160) "5 新药“买来主义”重新流行,大手笔并购扩充研发管线/span/strong/pp  由于研发的高投入、高风险性,近年来新药的“买来主义”又倍受关注。其中大型外资企业更是大刀阔行这一措施。如罗氏通过并购驱动公司发展,其收购的药品销售额占总销售额比例从2014年的77%提升至2017年的84%。BMS通过外购潜力品种成为增速最快的公司,预计2020年将有61%的销售额来自于收购药品。陶剑虹提示:并购一般用于企业想要进入新领域的时候,对于企业短期收入提升的贡献是巨大的,也能分担过于依赖主营研发方向的风险。但是,企业要基业长青,在自己主营业务上的研发投入也是必须的。罗氏能长年有如此稳定的表现,就和自己多年来在肿瘤药领域的持续投入分不开,仅2016年罗氏就有5个抗肿瘤新药获得FDA批准。/pp  strongspan style="color: rgb(112, 48, 160) "6 外企调整传统早期研发模式,与创新型小药企合作注入新活力/span/strong/pp  近年,外资药企关闭或出售中国研发中心日渐频繁。其主要原因在于大型制药企业的研发效率不高,传统研发模式开始变革,转而与研发效率更高的早期研发型小企业合作。在中国,创新药企与国外药企交易合作也逐渐增多,2000-2016年,中国药企对外交易合作年平均增长率为19%。/pp  strongspan style="color: rgb(112, 48, 160) "7 MAH衔接初创企业与制药业,全球医药外包需求上涨/span/strong/pp  目前,全球前10的大药厂基本都是外部购买创新早期项目、进行后期开发为主。在中国,制药前50大企业,也纷纷涉足创新药领域。现阶段,中国实施的上市许可人制度(MAH)推动初创企业与制药企业的协同创新。如BGB-A317注射液,申请人和持有人是百济神州,受委托企业为勃林格殷格翰生物药业(中国)。华领医药的HMS5552及其片剂,其受委托企业为合全药业、迪赛诺生物医药。国内CMO/CDMO市场由2011年的18亿美元增长至今年的50亿美元,复合增速达到18.6%。预计到2020年,国内市场规模将达到85亿美元,约占全球市场比重的9.7%。/pp  strongspan style="color: rgb(112, 48, 160) "8 仿制药行业降价压力增大,“突破性”仿制药加快上市进程/span/strong/pp  仿制药将继续面临降价压力。以梯瓦为例,其股价在2017年8月下跌24%,其核心产品多发性硬化症药物格拉替雷面临专利挑战,很可能因此失去独家产品地位,此外梯瓦还受到同类竞品Tecfidera的有力竞争。特朗普政府多次抨击药品价格过高,FDA开始大大加快仿制药审批,优先接受超过100种“突破性”仿制药的申请,这一举措增强了市场竞争,同时也降低了药品价格,预测2017年底美国仿制药平均降价9%。/pp  陶剑虹着重指出,CDE公布了首批专利过期还没有仿制药品的目录,在激发创新活力的同时,国内适合型药企可以作参考。/pp strongspan style="color: rgb(112, 48, 160) " 9 生物仿制药市场方兴未艾,中国在研产品数量领先/span/strong/pp  目前在世界范围内,有近850种生物仿制药开发或销售,其中约125个在临床试验。有超过515种改良型生物仿制药开发或销售,其中200多个在临床试验。大约五年内,生物仿制药将超过其他创新产品。目前,在研生物类似药的主要分布地区排名第一的是中国大陆,美国位居第三。一方面反映了中国巨大的市场需求,也反映了中国生物类似药的激烈竞争。/pp  全世界有80%的在研生物类似药的适应症是自身免疫病和肿瘤相关疾病。不论是中国还是从全球范围看,单抗占在研生物类似药的比例都是最高的,中国达到40.7%。目前,国内不少药企都在生物类似药上布局。据汤森路透的报道,2016年苏州康宁杰瑞在研生物类似药的数目已有28个之多,齐鲁制药在研生物类似药数量也达到10个。/pp  2016年全球药品销售额Top10中6款单抗药分别为:贝伐珠单抗、阿达木单抗、曲妥珠单抗、利妥昔单抗、英夫利西单抗和依那西普单抗。其专利在欧盟和美国即将到期(部分在欧盟于2015年和2017年专利已到期)。目前这6款单抗在我国均已有在研企业,贝伐珠单抗类似药在研企业共14家、阿达木单抗类似药在研企业共15家、曲妥珠单抗类似药在研企业共13家、利妥昔单抗类似药在研企业共6家、英夫利西单抗类似药在研企业共3家、依那西普单抗类似药在研企业共7家。/pp  strongspan style="color: rgb(112, 48, 160) "10 孤儿药研发迎合临床价值导向,中国罕见病用药迎来政策利好/span/strong/pp  现阶段全球超过6000种罕见病,获批的孤儿药仅有400多个,罕见病用药缺口较大。陶剑虹分析说,孤儿药研发具有自身优势。一是所需病人较少,不少在Ⅱ期临床完成后就可以上市。二是孤儿药研发的成功率三倍于一般药物研发。三是上市后的商业推广费用低,加上7~10年的独占期,使其他仿制药厂无法跟随。四是孤儿药在上市后可以拓展新的适应症,商业价值很大,易变为重磅产品。/pp  据预算,全球孤儿药的销售总额在2022年将达2090亿美元。中国2017年也将通过发布罕见病目录、优先审评审批、条件性允许境外新药上市以及医保准入等加速孤儿药研发上市。开放孤儿药将是国内企业值得关注的领域。/pp  strongspan style="color: rgb(0, 112, 192) "小结 /span/strong/pp  strongspan style="color: rgb(112, 48, 160) "医药创新进入黄金时代/span/strong/pp  陶剑虹在梳理全球医药创新生态十大特征之后指出:中国医药创新正步入黄金时代,这个内涵具体包括:/pp  伴随着未来人口老龄化、居住城市化、人们健康意识增强以及疾病谱变化,医药需求将持续增长。未来5~10年是医药发展的关键时期,也是大有可为的战略机遇期。/pp  未来医药研发将进一步发生价值链重构,资源全球配置。从实验室到临床研究,从药企到研发外包,从资本孵化到上市,需要形成多方融合的创新生态系统。故新药的“买来主义”重新流行,大手笔并购扩充研发管线。/pp  鉴于仿制药特征,“突破性”仿制药加快上市进程,生物类似药大品种市场方兴未艾,中国市场通过“质量和疗效一致性”的仿制药将成主流。/pp  中国加入ICH将开启全球研发新格局,研发投入持续加码,国内外药审提速,新药上市加快以满足临床需求。/pp  中小型生物医药公司的崛起,致使某些大型药企调整传统早期研发模式,与专注研发型公司注资委托授权合作。/pp  与国际主流对比,差距与挑战依然存在,中国将迎来第二次进口药品热潮,市场竞争会变得愈发激烈,进口替代,超越竞争的新模式随之而生,在竞争中成长和成熟。/pp  strongspan style="color: rgb(112, 48, 160) "聚焦凸显临床价值三大品类/span/strong/pp  strong抗肿瘤用药:/strong/pp  免疫疗法异军突起/pp  全球肿瘤药市场预计达1500亿美元,预测肿瘤药花费到2020年的年增长率为7.5%~10.5%。从全球不同地区的抗肿瘤市场来看,美国最大,其次是欧盟和日本市场,含中国在内的新兴市场则保持逐年扩增。在中国医院用药市场,抗肿瘤药物的销售规模近几年来稳步增长,2016年中国肿瘤药市场销售1069亿元,增长10.2%。/pp  从研发进展来看,2017年1-10月FDA批准上市的抗肿瘤药有12个,国内批临床的抗肿瘤1类新药有15个。现阶段PD1/PDL1市场增长迅速,2016年市场份额约60亿美元。该类原研药也逐渐进入我国市场,与此同时,研发继续呈现火热。/pp  肿瘤的CAR-T疗法让肿瘤治疗进入崭新时代。美国是CAR-T疗法的发源地,不仅上市了首款CAR-T疗法,其临床试验进行数量也遥遥领先(97项)。中国已跻身CART研发第一团队,以66项临床试验数量位居第二,目前国内已有多家企业CAR-T 研发项目推进至临床阶段。未来CAR-T全球血液肿瘤市场有望达117 亿美元,国内血液肿瘤市场有望达111亿元。/pp  strong降血脂用药:/strong/pp  PCSK9抑制剂方兴未艾/pp  降血脂用药医院销售集中度较高,他汀类制剂占降血脂用药的91.8%,以外企为主,阿托伐他汀和瑞舒伐他汀合计占整个他汀类近八成市场。/pp  PCSK9 抑制剂是“后立普妥时代”最强大的降脂新药。2015年7月24日FDA首个批准上市的PCSK9抑制剂商品名为Praluent(通用名:阿利库单抗),原研厂家是赛诺菲/再生元。欧盟首个上市PCSK9抑制剂是在2015年7月22日,商品名为Repatha(通用名:依伏库单抗),原研厂家是安进,同年8月27日获得美国FDA批准。安进的依伏库单抗已于2015年9月在中国获得临床批件,赛诺菲/再生元的阿利库单抗也于2015年12月获得临床批件,目前都在我国进行国际多中心Ⅲ期临床研究。此外,国内同类品种西威埃的CVI-LM001片已于2016年3月拿到临床批件,君实生物的PCSK9单抗注射液在2017年7月拿到临床批件。/pp  strong糖尿病用药:/strong/pp  胰岛素长盛不衰/pp  到2040年,糖尿病相关医疗费用将突破8020亿美元。目前,糖尿病用药已跃居全球药品销售排行第二位,仅次于肿瘤用药。根据IMS统计,2015年全球糖尿病药物市场中,胰岛素产品约占56%、GLP-1受体激动剂类药物约占10%、DPP-4抑制剂类药物占24%、SGLT-2抑制类药物占5%、其他传统小分子降糖药占4%。/pp  我国口服糖尿病用药中,列汀类属DPP4抑制剂,是近年来较受关注的分支领域,现临床基本为外企产品。国内多家企业已纷纷进行研发,如江苏恒瑞的瑞格列汀、江苏豪森的贝格列汀、山东绿叶的艾格列汀等,均在申报中,未来会有较多相关产品获批上市。格列奈类在临床上现仅有3个品种,国内企业竞争力在不断提升。/pp  strongspan style="color: rgb(112, 48, 160) "医药产业未来研判十大趋势/span/strong/pp  陶剑虹对医药创新从宏观到微观的分析,吸引了与会代表的极大关注,她对中国医药产业未来十大趋势的研判,进一步揭示了一个创新年代的活力图景。陶剑虹指出,随着云计算、物联网、大数据、人工智能等新技术登上舞台,中国已经站在了第四次产业崛起领跑者的位置上。新一轮技术变革的核心是智能化与信息化。消费升级触发上游裂变,以智能化为核心的新制造,以O+O为路径的新零售,在融合中催化中国医药经济的重构升级。/pp  互联网+大健康、新实业+新技术、新制造+新零售、传统与新锐、科技与人文、智能与匠心,正在变革中共振,拓展着中国医药产业的向上空间!/pp  在2017年的深秋,我们不难感受到下一个暖春的气息。如何在下一轮周期波动中拐点向上?政策红利与转型压力,考验着中国医药经济的韧性 而日益活跃的创新平台与资本流量,为产业发展增添了张力。具体表现在:/pp  strong1 消费升级是值得期待的风口/strong/pp  消费逐渐成为经济增长的第一驱动力,2016年最终消费对经济增长贡献率达到64.6%,未来提升空间仍然巨大。最近十年大量的医保投入和居民收入的增加,使得“因病致贫”大量减少,肿瘤从治疗角度、心脑血管从早期预防与治疗角度已有很大改观,未来市场需求将继续提升。同时,消费升级使得专科用药市场受益,专科药物就诊量小,药品利润高,例如:类风湿在我国发病人群每年在500万以上,属于不死的癌症,在发达国家治疗概率非常高,而在国内治疗率也仅仅在10%,还有很大的成长空间。/pp  strong2 VR和AI刷新研发效率/strong/pp  越来越多的高科技被药企应用于新药研发领域,借此探索提高新药研发效率、节省更多成本的路径。如:应用于药物研发项目的辉瑞365平台上描述的VR系统名为辅助虚拟环境(CAVE),用投影仪打造虚拟现实场景,让研究人员更快捷地探索数据。强生伦敦创新中心将一些处于试验中的小分子化合物转交给BenevolentAI公司进行开发,利用人工智能系统指导临床试验的进行和数据的收集。日本的盐野义制药等近50家日本企业将参加利用人工智能推进新药开发的项目。/pp  3strong 医药新实业转型重塑/strong/pp  医药新实业的转型需提高三大能力:整合营销能力、供应链能力、金融资本能力。同时,制药工业与工业4.0逐步融合。“工业4.0”使制造业模式可以从传统的“以产品为中心”向“以用户为中心”转变,其中包括生产模式从大规模流水线生产向定制化规模生产转变。但是,由于制药行业产品(药品)的特殊性,一般不可能依据消费者(患者)的喜好来定制化生产。不过,制药装备就可以有定制化的需求,尤其3D打印技术在医药领域的运用发展较快。/pp  4 供应链创新促医药流通升级/pp  2017年10月,国务院办公厅印发《关于积极推进供应链创新与应用的指导意见》,指出“推动流通创新转型、推进流通与生产深度融合和提升供应链服务水平”。药品流通企业利用物联网、区块链等技术,建设供应链一体化管理平台,打通物流、资金流和信息流的隔阂 向供应链上下游提供市场开发、价格谈判、在线支付、金融支持等增值服务及综合解决方案,借助云计算、大数据等技术挖掘数据的价值,辅助企业及终端客户的经营决策,从根本上解决信息孤岛问题。/pp  strong5 O+O全渠道开启医药新零售时代/strong/pp  信息技术的充分发展为新零售提供强大保障,电商巨头借助信息技术实现消费者为中心的线上线下数据全面打通已经成为可能,也为新零售模式下以消费者为中心重构人、货、场提供强大保障。由此,医药O+O将逐渐成为中国零售药店转型的主流选择。/pp  随着处方外流加速,国内DTP药房将迎来发展良机。预计到2020年,DTP的市场容量将接近400亿元。随着创新药加速上市,慢病和肿瘤等自费治疗性用药比例提升,DTP药房逐步由经营新特药向专科药演变,将凭借其专业的用药咨询服务等优势,成为处方外流的主要承接方之一。/pp  strong6 工商企业大融合时代到来/strong/pp  陶剑虹把上游工业企业,按照科技含量和产品价格的维度,切出了五类医药企业,分别是2000~3000家僵尸企业、低成本高质量的加工能力强的生产企业、有独特产品的特异性中小型企业、综合性大型企业、大型外企。这五类医药企业其实都已完成了自己的定位。中国企业战略资源的配置是重视营销和生产的配置,而国际大中型企业典型的资源配置是重视研发和营销的配置。“两票制”“营改增”的时代,是工商企业高度融合的时代!战略理念的契合匹配是持续发展走得更远的基础。边界正在消失,研发和营销可以是一体的,一个有创新力的企业一定是富有营销活力的企业!/pp  strong7 研发创新产业集群形成,湾区经济将凸显/strong/pp  在全球范围内,医药研发产业集群正在逐步形成和聚合。湾区经济作为重要的滨海经济形态,是当今国际经济版图的突出亮点,是世界一流滨海城市的显著标志。2017年“粤港澳大湾区”首次出现在《政府工作报告》。相比纽约湾区、东京湾区、旧金山湾区等世界著名的几大湾区,粤港澳大湾区的GDP总量还不够大,人均GDP更少,梯度差异仍然明显。粤港澳大湾区将成为新的驱动发展模式、改革开放的升级版。/pp  strong8 高性能医疗器械产业发展图景逐渐清晰/strong/pp  《中国制造2025重点领域技术路线图》提出,到2030年我国医疗器械产业规模要达到3万亿元并完成1万亿元的出口目标,则未来15年该行业至少将保持约16.39%的复合增速。我国医疗器械消费占比远低于国际平均水平,具有广阔的成长空间。预计在国家对医疗器械国产化政策的大力推动下,高端国产医疗器械将获得长足发展。基层和非公立医疗机构的医疗器械市场空间广阔,家用医疗器械市场预计也将快速增长。/pp  strong9 中国大健康产业蓬勃发展/strong/pp  美国健康产业是近十年来增速最快的产业,占GDP的比重为8.8%。中国大健康产业占GDP的比重为5.6%。陶剑虹指出:与美国相比,中国的大健康产业处于初创期,医药产业尤其是医药制造部分的占比很重,健康服务产业发展还有很大空间,在产业细分以及结构合理化方面需要更大的提升和完善。/pp  特医食品是大健康产业的下一场盛宴。《特殊医学用途配方食品注册管理办法》 2016年7月1日正式实施,海外特医食品巨头、国内企业尤其是制药企业跃跃欲试,特医食品迎来了其发展的新机遇。随着中国社会老龄化加速,中国特医食品未来的市场规模将超过100亿元。/pp  strong10 “健康中国”带动医养结合快速发展/strong/pp  陶剑虹在最后指出,令人倍感振奋的是,十九大报告提出“健康中国”战略。明确了人民健康是民族昌盛和国家富强的重要标志。“大健康”理念将从理论付诸实践、医疗卫生体制改革将全面破解世界难题、从田野到餐桌的食品安全防线将全面构建,为全体国民描绘“健康中国”的实施路线图。未来,国家将积极应对人口老龄化,构建养老、孝老、敬老政策体系和社会环境,推进医养结合,加快老龄事业和产业发展。智慧养老将是医药企业值得关注的跨界整合领域。/pp  strongspan style="color: rgb(112, 48, 160) "重拾创新初心的“漂亮”哲学/span/strong/pp  陶剑虹如此全景式地展望中国医药产业的广阔前景,令医药人心潮起伏,但她同样也提示大家直面中国医药创新的冷峻现实。创新没有完美的终点,需要在压力下优雅前行。创新需要外部的激励,更需要参与创新的人不断给自己激励。陶剑虹娓娓道来:“关于这一点,我想说两个有趣的故事,传说蜗牛从前是没有壳的,但他爬到上苍那里去,祈求上苍赐给它一个壳。为什么一定要装美丽的壳呢?虚伪还是自欺欺人?蜗牛沉思片刻,郑重回答:为了仅此一次的生命。在激烈的市场竞争中,中国企业还没有自信承受多次的研发失败,因为太多的不确定性让企业没有足够的定力,为了创新仅此一次的生命,让我们给新药研发更好的孵化器,让脆弱的药物创新受到多一些保护。”/pp  在陶剑虹看来,创新这条路并不欢迎悲情英雄,新药研发的探索者要有一种牵着蜗牛散步的豁达。借用“反脆弱”的理念,就是要勤于实验,广泛播种,着眼长期,灵活转向,简胜于繁,总结反思。/pp  而她援引的另一个故事描述的是原本善于飞翔的蜗牛获得飞行比赛的冠军之后,不思进取,自我陶醉,结果翅膀退化,奖杯成了坚硬的外壳,只能在地上爬行。她意味深长地说:“这是一个警醒,即使在研发的道路上你已经走得很远,也不能忘记当初为何出发。既然选择了远方,便只顾风雨兼程 我们只需确定,守住最初的浪漫,要赢就赢得漂亮。”/ppbr//p
  • 从沃特世新品看热分析发展的两个特征
    p  近期,美国TA仪器发布了两款热分析仪新品a href="https://www.instrument.com.cn/news/20200313/533842.shtml" target="_self"多样品Discovery X3差示扫描量热仪/a和a href="https://www.instrument.com.cn/news/20200315/533891.shtml" target="_self"TAM IV Micro XL微量热仪/a。其中, 多样品Discovery X3差示扫描量热仪能够提供多达3个样品的测试,而TAM IV Micro XL微量热仪则聚焦于锂离子电池的寄生反应。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/bc3129ca-c274-4c20-8362-420ae3345938.jpg" title="多样品Discovery X3差示扫描量热仪.png" alt="多样品Discovery X3差示扫描量热仪.png"//pp style="text-align: center "多样品Discovery X3差示扫描量热仪/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/4abb9506-43f0-414a-b8f9-55d560eb6994.jpg" title="TAM IV Micro XL微量热仪.png" alt="TAM IV Micro XL微量热仪.png"//pp style="text-align: center "TAM IV Micro XL微量热仪/pp  从两款热分析仪新品出发,折射出了热分析技术发展的两个特征:/pp  1. 高通量检测、集成技术与自动化/pp  传统DSC一般一次只能检测1个样品,然而随着对于材料研究领域的火热兴起以及热分析技术的普及,热分析测试的需求不断增加。这对于热分析仪而言,意味着检测压力越来越大,使得研究人员检测和等待的时间被不断延长。检测人员越来越需要能在相同时间内检测更多样品的热分析仪,这意味着节省时间并提高效率。/pp  其中,高通量检测又涉及到集成技术和自动化。多台仪器固然可以实现多个样品的同时测定,但是对于大多数实验室而言,实验室空间可谓是寸土寸金,且对于每套设备而言存在诸多附件,更是加剧了占用空间问题。因此,如何实现功能的集成具有重要的意义。/pp  此外,大批量样品的检测同时带来的是7*24小时的不间断检测问题,频繁更换试样对于自动化也提出了更高的要求。/pp  2. 聚焦细分领域‘/pp  对于热分析仪器而言,其实本身能够通用于多个领域,但对于细分领域的使用者而言,仅仅这样是远远不够的。使用者更希望能够得到切合自身领域的使用细则和手册,从而更好地利用仪器完成自己的分析测试目的。因此,更加专门化的仪器成为了发展的必然。尤其对于热门领域而言,随着热门领域的发展,其对于检测也提出了更苛刻的要求,通用仪器可能越来越难于满足其需要。此外,热门领域的发展使得检测设备的迭代速度加快,促进仪器厂商开发出新的产品来满足该领域使用者新的需要。/ppbr//p
  • Picarro | 青藏高原冰川湖中CO2和CH4同位素组成及排放特征
    青藏高原是全球最大的高原,也是世界上最大的冰川聚集地之一。然而,近年来,随着全球温室气体排放的增加和降水量的减少,青藏高原的冰川融化速度加快,引起了广泛关注。青藏高原的冰川融化对环境和人类社会产生了广泛的影响。不仅导致水资源供应不稳定,还加剧了洪水和干旱的风险。同时,冰川融化减少了冰川的蓄水功能,使得干旱时期的水资源供应更加困难。此外,冰川融化还会影响有机/无机碳和CO2之间的碳平衡,但其中缘由,目前尚不清楚,科研学者对此进行了相关研究。青藏高原冰川湖中CO2和CH4同位素组成及排放特征河流、湖泊、湿地和水库等内陆水域被认为是大气中温室气体 (GHG) 的重要来源。内陆水域排放的二氧化碳 (CO2) 和甲烷 (CH4) 会影响当地大气中的温室气体水平,并影响不同生态系统之间的热交换。冰冻圈融化产生的温室气体排放在全球范围内引起了广泛关注,但目前对冰川化地区的研究有限。青藏高原 (TP) 的冰川面积在低纬度和中纬度最大,平均海拔高于 4000 m,由于快速变暖和降水模式的变化,TP的冰川正在经历严重的融化和迅速退缩。这就导致了大量冰川湖的形成和发展。从2008年到2017年,TP中的冰川湖数量以306个/年的速度增加,2017年有15,348个湖泊。在TP的冰川化地区进行的多项研究表明,冰川大量融化期间,会释放CH4并主要吸收CO2,这对全球碳预算具有重要影响。但是,目前尚不清楚冰川湖的形成会如何影响有机/无机碳和CO2之间的碳平衡,以及CH4和CO2的产生和消耗途径。基于此,研究人员于2022年5月首次对青藏高原13个冰川湖温室气体特征进行了调查。通过顶空平衡法测量了CO2和CH4浓度及其同位素组成(δ13C)( Picarro G2201-i碳同位素分析仪),估计了CO2和CH4通量,并计算了CO2和CH4的碳同位素分馏(ac),利用贝叶斯混合模型(MixSIAR)确定CO2源分配。收集水面下10 cm深度的水样,测定溶解有机碳(DOC)和溶解无机碳(DIC)浓度及其碳同位素组成和主要阳离子。原位测量了水pH、电导率、DO,TDS、温度、222Rn以及气温和风速。旨在了解青藏高原冰川湖CO2和CH4的排放特征,探索其潜在的生产和消耗途径。每个冰川区域所研究的冰川湖的位置。【结果】CH4 (a) 和 CO2 (b) 通量。CO2 和 CH4 的稳定同位素。基于MixSIAR 结果的青藏高原冰川湖中大气输入、DOC再矿化和CH4氧化对CO2的贡献百分比。【结论】本研究调查了青藏高原冰川湖中CH4和CO2的排放通量和同位素组成。结果表明了冰川湖CO2汇和CH4源的不同作用。CO2消耗率与北极冰川河流和湖泊相当,这表明CO2消耗可能是冰川地区的普遍现象。CO2消耗归因于化学风化。在气候变暖的情况下,随着冰川融化的加剧,冰川下的化学风化率预计会增加,因此,如果冰川湖是一致的CO2汇,碳封存将比本研究中估计的大。同时,TP气温升高可能会影响冰川湖中某些细菌的相对丰度,从而进一步影响温室气体排放或消耗。尽管在所研究的三个湖泊中捕获到了冒泡现象,但TP其余冰川湖通常都在轻微地释放CH4,且这种碳排放可能会被CO2消耗所抵消,从而对全球变暖产生负面影响。潜在的CH4厌氧氧化和低DOC含量可以部分解释这种低CH4排放。CH4产热起源仍需进一步使用δD-CH4或clumped isotopes进行限制。作为冰川湖CO2和CH4排放及同位素组成的首次原位调查,本研究中的湖泊代表了青藏高原的一个小型冰川流域,未来应对大型冰川区域进行长期调查以了解冰冻圈的碳相互作用和反馈。
  • 150万!清华大学材料特征微区原位拉伸形貌分析仪购置项目
    项目编号:BIECC-22ZB0952/清设招第2022433号项目名称:清华大学材料特征微区原位拉伸形貌分析仪购置项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:用于对各类材料在施加力情况下分析其显微形态学变化,微区拉伸、压缩下材料各个位置状态变化,从而了解材料在不同载荷的失效情况。对于材料服役条件下的性能可以进行深入了解分析。进而为材料设计工艺改进,新产品研发具有很大帮助。具体要求详见第四章。包号名 称数量01材料特征微区原位拉伸形貌分析仪1套合同履行期限:合同签订后270日内交货本项目( 不接受 )联合体投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制