当前位置: 仪器信息网 > 行业主题 > >

化学纤维

仪器信息网化学纤维专题为您整合化学纤维相关的最新文章,在化学纤维专题,您不仅可以免费浏览化学纤维的资讯, 同时您还可以浏览化学纤维的相关资料、解决方案,参与社区化学纤维话题讨论。

化学纤维相关的资讯

  • 全国首个化学纤维大气污染物排放地方标准发布!
    为防治环境污染,改善生态环境质量,保障人体健康,加强浙江省化学纤维工业大气污染物的排放控制,促进企业生产工艺、污染治理技术的进步和可持续发展,浙江省人民政府近日正式印发实施《化学纤维工业大气污染物排放标准》(DB33/2563—2022)(以下简称《标准》)。《标准》规定了化学纤维工业大气污染物排放控制要求、监测和监督管理要求等,据了解,这是全国首个化学纤维工业大气污染物排放地方标准。该《标准》涵盖以下污染物:化学纤维(用天然或合成高分子化合物经化学加工制得的纤维,涵盖GB/T 4754—2017中化学纤维制造业(C28),包括纤维素纤维原料及纤维制造(C 281)、合成纤维制造(C 282)和生物基材料制造(C 283));再生纤维(以天然产物(纤维素、蛋白质等)为原料,经纺丝过程制成的化学纤维);合成纤维(以石油、天然气及煤等产品为原料,用有机合成的方式制成单体,聚合后经纺丝加工制成的纤维。主要产品有聚酯纤维(涤纶)、聚酰胺纤维(锦纶)、聚丙烯腈纤维(腈纶)、聚丙烯纤维(丙纶)、聚乙烯醇纤维(维纶)、聚氨酯弹性纤维(氨纶)以及其他芳香族聚酰胺纤维等);生物基化学纤维(以生物质为原料或含有生物质来源单体的聚合物所制成的纤维);循环再利用化学纤维(采用回收的废旧聚合物材料和废旧纺织材料加工制成的纤维);挥发性有机物 VOCs(参与大气光化学反应的有机化合物,或根据有关规定确定的有机化合物。在表征VOCs总体排放情况时,根据行业特征和环境管理要求,采用总挥发性有机物(以TVOC表示)、非甲烷总烃(以NMHC表示)作为污染物控制项目);总挥发性有机物TVOC(采用规定的监测方法,对废气中的单项VOCs物质进行测量,加和得到VOCs物质的总量,以单项VOCs物质的质量浓度之和计。实际过程中,应按预期分析结果,对占总量90%以上的单项VOCs物质进行测量,加和得出);非甲烷总烃NMHC(采用规定的监测方法,氢火焰离子化检测器有响应的除甲烷外的气态有机化合物的总和,以碳的质量浓度计);VOCs 物料(VOCs质量占比大于等于10 %的原辅材料、产品和废料(渣、液),以及有机聚合物原辅材料和废料(渣、液));油雾(工业生产过程中挥发产生的油剂(矿物油、植物油、动物油、合成油等)及其加(受)热分解或裂解产物);工艺废气(生产过程及其辅助配套设施排放的废气。包括浆粕生产、原液制备、酸站、精炼、溶剂回收、聚合、纺丝、后处理、组件等清洗等生产工序)。作为对大气污染物监控的要求,《标准》指出,企业应按照有关法律法规、《环境监测管理办法》和 HJ 1139 等规定,建立企业监测制度,制订监测方案,对大气污染物排放状况开展自行监测,保存原始监测记录。并且,企业安装污染物排放自动监控设备的要求,按有关法律法规和《污染源自动监控管理办法》等规定执行。 大气污染物的分析测定采用表7中所列的方法标准:
  • GB/T 6504-2017化学纤维 含油率试验方法
    p  GB/T 6504-2017化学纤维 含油率试验方法标准从2018年7月1日起开始实施,本标准代替GB/T6504-2008,由中国纺织工业联合会提出,由上海市纺织工业技术监督所归口。本标准规定了化学纤维含油率的试验方法:萃取法(方法A)、中性皂液洗涤法(方法B)、光折射率法(附录A)、核磁共振法(附录B)、快速挤压法(附录C)。适用于聚酯(涤纶)、聚酰胺(锦纶)、聚丙烯腈(腈纶)、聚乙烯(丙纶)、聚乙烯醇缩甲醛(维纶)、再生纤维素纤维(粘胶)化学纤维,其他种类化学纤维可参照使用。/ppstrong  附录B:核磁共振法/strong/pp  B.1 范围/pp  本方法适用于聚酯(涤纶)、聚酰胺(锦纶)、聚丙烯腈(腈纶)、聚乙烯(丙纶)、聚乙烯醇缩甲醛(维纶)、再生纤维素纤维(粘胶)化学纤维,其他种类化学纤维可参照使用。/pp  B.2 原理/pp  利用核磁共振波谱法(NMR),向纤维样品发射脉冲磁场,当磁场取消时,检测试样的回应磁信号,由于纤维发出的信号比纤维油剂发出的信号衰减快,从两者的差异可换算出试样的含油率。/pp  B.3 仪器/pp  本方法用到的仪器如下:/pp  ——核磁共振波谱仪:具备永久磁体,自动温控 /pp  ——天平:最小分度值0.1g/pp  B.4 试样制备/pp  随机均匀地抽取试样质量1g~5g,精确到0.1g。/pp  B.5 试验步骤/pp  B.5.1 工作曲线的制作/pp  B.5.1.1 根据产品的目标上油率,取5个试样,其含油率要能覆盖所有可能的变化范围,分布尽可能均匀,可参考表B.1确定,也可以根据实际上油情况,自行调整范围。/pp  表B.1 工作曲线制作的含油率及相应的取值参考范围/ptable style="border-collapse:collapse "tbodytr class="firstRow"td style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"品种/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"实际含油率/%/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"变化范围/%/td/trtrtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"涤纶预向取丝/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"0.4/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"0.2、0.3、0.4、0.5、0.6/td/trtrtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"涤纶牵伸丝/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"0.8/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"0.6、0.7、0.8、0.9、1.0/td/trtrtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"涤纶低弹丝/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"2.5/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"1.4、1.9、2.3、2.7、3.1/td/trtrtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"粘胶短纤维/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"0.2/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"0.00、0.15、0.20、0.25、0.30/td/trtrtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="117" valign="top"粘胶长丝/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="136" valign="top"0.3/tdtd style="border: 1px solid rgb(204, 204, 204) word-break: break-all " width="348" valign="top"0.0、0.2、0.3、0.5、0.8/td/tr/tbody/tablep  B.5.1.2 按本标准方法A或方法B测试5个试样的含油率。/pp  B.5.1.3 在核磁共振仪上检测试样的含油率,形成工作曲线。/pp  B.5.1.4 工作曲线完成后,可用仪器提供的标准物定期对仪器进行自动校准。/pp  B.5.2 检测/pp  B.5.2.1 将试样放入试管中,塞好塞子。/pp  B.5.2.2 将试样放入检测区,选择检测界面,对试样进行检测。/pp  B.6 结果计算/pp  试验结果以两个试样的算术平均值表示,两次平行测试的相对差异大于10%时,重新试验。/pp  B.7 数据修约/pp  同B.5.1.8/ppbr//p
  • 我司应邀参加2020年全国化学纤维标准化年会的《循环再利用PET回用料特性粘度测试方法》讨论
    11月24-26日,全国化学纤维标准化技术委员会成立大会暨2020年化纤行业标准化年会在江苏南京召开。杭州卓祥科技应邀参加2020年全国化学纤维标准化年会的《循环再利用PET回用料特性粘度测试方法》会议,与国内主要化纤生产企业、有关研究机构、高等院校、检测单位等化纤业界标准化工作者和专家一起参与讨论。
  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。  高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。  经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • 中国高性能纤维要做到“领跑”就必须主动创新——访东华大学材料科学与工程学院院长朱美芳教授
    p  span style="font-family: 楷体,楷体_GB2312,SimKai "2017年7月,“中国材料大会2017暨银川国际材料周”在宁夏国际会堂隆重召开。大会盛况空前,参会人员近5500人。作为大会组织委员会主任之一及“先进纤维与纳米复合材料”分会场的分会主席,朱美芳教授在大会报告及分会场均作了发言致辞。会议期间,仪器信息网编辑有幸就大会概况与朱美芳教授进行了简单交流,受益良多,在时间有限的情况下,会后以电话及邮件形式,请朱美芳教授就本次大会、先进纤维与纳米复合材料领域最新的发展动态、该领域涉及的分析仪器及表征手段、即将牵头成立纤维材料二级学会等进行了详细介绍与解读。/span/pp style="text-align: center"img style="width: 300px height: 423px " src="http://img1.17img.cn/17img/images/201708/insimg/dbaf8a26-f3e7-435d-8ff0-fb7e77ae815d.jpg" title="" height="423" hspace="0" border="0" vspace="0" width="300"//pp style="text-align: center "span style="font-family: 楷体,楷体_GB2312,SimKai "/spanspan style="font-family: 宋体,SimSun "strong东华大学材料科学与工程学院院长朱美芳教授/strong/span/pp  span style="color: rgb(255, 0, 0) "strong首次落地西北,带动地方经济;大众参与办会,激发青年学者责任感/strong/span/pp  以“新材料,新技术,新发展”为主题的“中国材料大会2017暨银川国际材料周”(以下简称大会)在银川宁夏国际会堂盛大开幕。本次大会由中国材料研究学会主办,宁夏旅游投资集团有限公司承办。大会得到了中国科协、中国科学技术部、中国科学院、中国工程院、国家自然科学基金委员会,宁夏回族自治区科协、经信委、科技厅等部门的大力支持。大会盛况空前,是中国材料研究学会组织的历年来规模最大的一届会议。会议在线注册人数5100余人,实际参会人数近5500人,共收到4000余篇论文摘要。/pp  大会落地银川市,是大会首次在我国西北地区举办,为地方经济发展注入活力和新的增长动力,对推广宁夏新材料、新技术、新工艺等“宁夏制造”具有重大意义。/pp  中国材料研究学会本着开放包容的办会理念,吸引和鼓励国内外优秀的材料科技工作者参与办会,通过办会,培养出了一大批具有社会责任感、长期活跃于国内外高端学术交流的中青年学者,激发了青年学生的创造力和对材料研究的热忱与责任感。本届大会从材料前沿交流到产业对接互动,都是一次内容丰硕,时间紧凑,富有成效的大会!/pp  “中国材料大会2017”设置有37个分会、1个材料教育专业论坛和2个国际分论坛:“2017中日韩纳米功能材料研讨会”和“一带一路材料论坛”。大会主题主要涵盖了能源材料、环境材料、先进结构材料、功能材料、材料基础研究等材料领域。共呈现2200余场口头报告,其中930人为邀请报告。/pp  span style="color: rgb(255, 0, 0) "strong纤维是老百姓未来“智能生活”的保障,中国高性能纤维要 “领跑”就必须主动创新/strong/span/pp  提到纤维,人们首先想到的肯定是衣服、纺织品等。实际上,纤维是当今人类不可或缺的最重要的材料之一。从航天器、导弹、飞机、高铁、汽车等高精尖装备,到衣服、帽子、袜子、手套等日常生活物品无一离得开纤维。“strong全世界70%的纤维由中国产出,而全国70%的纤维由长三角地区产出。纤维是国家经济发展的基础材料,是老百姓未来‘智能生活’的保障/strong。”东华大学材料科学与工程学院院长朱美芳如是说。/pp  strong东华大学材料科学与工程学院源于1954年我国著名纤维科学家和教育家钱宝钧、方柏容先生创建的新中国第一个“化学纤维”专业/strong,历经化学纤维研究室、研究所及化学纤维系的建立和发展,于1994年成立,可谓为国内材料学院中的“老字号”。拥有我国首批博士学位授予点(1981年)、首批国家重点学科(1986年)、首个纤维材料领域国家重点实验室(1992年)。/pp  学院依托纤维材料改性国家重点实验室等13个国家和省部级基地,坚持产学研用结合,在国防军工急需的三大高性能纤维材料,关乎民生的功能共聚酯、纳米复合功能纤维、大容量聚酯熔体直纺等通用纤维领域取得了系列标志性成果 在民用航空及汽车轻量化复合材料和光、电、热等能量转换功能材料领域已形成新的增长点。研究成果和专利转化效益惠及年产值达万亿的纤维材料行业,材料学科获得国家技术发明奖和国家科技进步奖16项、省部级科技奖项170余项,为我国跃升世界纤维生产第一大国并向世界强国迈进做出重大贡献。/pp  中国的纤维产业从无到有、从小到大,现在到了从大到强的转变阶段。在功能性纤维方面,源于70%的产量和广阔的市场潜力,中国的实力比较强,质和量上处于“并跑”和“领跑”地位 在生物质纤维方面,与国外处于“齐头并进”初步发展阶段,而strong在高性能纤维方面,中国还处于“跟跑”和“并跑”阶段,将来要做到“领跑”就必须主动创新。/strong高性能纤维的研发能力如何,直接关系到国与国之间的竞争实力。从上世纪80年代起至今,strong东华一代又一代的材料人围绕国家对高性能纤维与复合材料的迫切需求,海、陆、空全面出击,持续系统展开科研攻关/strong。功能性纤维方面,“行业急需依托大容量工程基础,促进常规产品优质化,提升产品附加值,实现通用纤维高品质多重功能化。”朱美芳认为。/pp  目前,纤维新材料目前已远远超出传统化学纤维的范畴,纤维成分应由单一向复合、简单向多重构筑发展,纤维功能研究应由被动适应向主动创新设计直至智能化方向发展,同时加强基础研究,为产品研发注入原动力,支持原创关键技术开发,加大多学科的交叉与融合。因此我们分会的名称为“先进纤维与纳米复合材料”,这也在参加分会的老师所作报告中得到了体现,如复旦大学彭慧胜教授在可发电储电供电的新能源纤维上取得了一系列进展,我们预计从事这个领域研究的科研工作者还会继续快速增加,从而带动传统纤维行业转型升级同时其中也孕育着无穷的创新创业机会。/pp  strongspan style="color: rgb(255, 0, 0) "科研是不断攀登高峰的过程,仪器设备则是认识者和认识对象之间的纽带/span/strong/pp  先进纤维与纳米复合材料领域是纤维材料改性国家重点实验室的研究内容之一,实验室建有仪器设备公共平台,拥有大精测试仪器48台(套)、工程试验线17条,实现24小时预约开放。为相关科学研究提供支撑,比如扫描电子显微镜、X-射线衍射仪、透射电镜、原子力显微镜、激光拉曼光谱仪、激光光散射仪、红外光谱仪等对纤维与复合材料微观结构的表征设备,以及热重分析仪、动态热机械分析仪、差示扫描量热仪、毛细管流变仪、电子万能材料试验机、单丝纱线强伸度仪等测试设备,另外,还开发了纤维声速仪、结晶动力学、小型湿法纺丝机、微型共混仪、微型注塑仪等自制设备。/pp  科学研究是一个不断攀登高峰的过程,为了提高先进纤维与纳米复合材料的研究水平,需进一步加强低维材料和先进纤维开发、复合材料表界面、微观结构与性能分析表征等多方面的仪器设备建设,完善纤维生物材料表征及微纳器件制备超净平台建设等。一些新型仪器设备也逐渐成为未来需求,如:基质辅助激光解析电离飞行时间串联质谱联用仪、多功能光热诱导纳米红外显微镜系统、高温旋转流变仪、纳米压痕仪、超景深三维显微镜、微流变仪、3D生物材料打印机、介电常数测试仪以及模块化功能型纺丝设备系统等。/pp  仪器设备,是为了实现科学认识目的而制造和使用的工具,它作为认识者和认识对象之间的纽带,在科学研究中是不可缺少的重要条件。仪器设备和科学研究两者相辅相成、密不可分,科学研究如果不依靠仪器设备提供的大量的客观材料,即使研究方法正确,也出不了好的成果,而仪器设备是观察现象的一种手段,只有在正确科学研究方向的指导下,才能对材料进行全面、客观、准确的认识,从而找出过程的本质和规律,对获得的结果做出正确的评价。/pp  strongspan style="color: rgb(255, 0, 0) "成立纤维材料二级学会,为纤维材料工作者提供学术交流的平台/span/strong/pp  材料是科技的先导,纤维材料领域的科技革新正推动纤维产业的颠覆性发展,催生新一代纤维。具有绿色、智能、多功能及超高性能、超高性价比、超高附加值的纤维材料将引领未来发展方向 纤维材料应用领域超越传统纤维,成为先进制造业、智能与功能消费品、医疗与健康、环保与防护、现代建筑业与农业、新能源等领域的关键基础和核心材料,成为国家供给侧结构性改革的重要突破口。材料作为现代文明的三大支柱之一,发达国家竞相在新一代纤维产业发展上布局谋篇,美国革命性纤维发展注重以智能纤维研发与生产为核心,并在纤维材料应用领域拓展与军转民等方面进行全面部署 欧盟着力于纤维产品高质化、专业化、可持续发展及技术创新机制 日本注重以高性能纤维材料为核心的整个产业链的研发。我国的传统纤维产量虽然占世界第一,但在高技术纤维、新一代纤维方面的研发相对滞后,导致部分纤维及高技术领域的相关零部件被发达国家垄断,极大地减缓了我国在未来纤维材料领域的发展动力,限制了我国科技和经济的持续高速发展。在“十三五”期间,纤维新材料的发展趋势是通过纤维学科与生物、电子、纳米技术等相关学科的交叉和渗透,研制与信息技术、生命科学、环保技术、新能源相关,且低碳、环保的新纤维、新技术,以满足服装、家用、产业用等各领域的需求。这种发展趋势主要体现在以下几个方向:纤维性能向高性能化、智能化发展,纤维品种向生态化、高功能化及结构功能一体化方向发展,纤维技术向高速、高效、短流程、全自动、规模化、清洁化方向发展,纤维成分由单一向复合、简单向多重构筑方向发展,纤维尺度向纳米化发展,功能智能与产业用纤维由被动适应向主动创新设计方向发展,成纤聚合物合成和成形技术向生物、仿生技术等方向发展,纤维原料向绿色化方向发展。/pp  纤维材料的发展为信息、能源、生物医用等高新技术提供关键性新材料,对我国整体技术水平的提高和整体实力的增强有着不可替代的作用。实现我国纤维材料产业向“大纤维”新材料的转型升级,将对我国能源、资源、环境、生态和国民经济相关领域的发展和科技进步产生重要影响,对国民经济的产业结构调整和升级,对国家的经济和国防安全以及我国人们生活质量的改善都具有重要的战略意义。纤维材料分会的成立将有助于提升我国在“大纤维”材料领域的基础研究与应用研究水平,有助于推动我国相关行业的快速发展。/pp  中国材料研究学会是致力于推进材料科学与工程领域的研发与产业化的国家一级学会,纤维材料是新材料的一种,也是充满活力的基础研究和产业应用方向,纤维材料的发展也为其它材料的发展和应用提供了强有力的支撑。当今正是纤维材料发展的高潮阶段,成立纤维材料二级学会不仅能为广大纤维材料工作者建立联系纽带,提供学术交流的平台,促进我国纤维材料的发展 而且能契合国家“十三五”在新材料、新能源、新型光电多个领域的重点支持。目前纤维材料分会成立的前期准备工作已经就绪,已经将相关材料报送至中国材料研究学会,等待学会根据章程及相关程序审批。/pp span style="color: rgb(255, 0, 0) "strong 第八届ICAFPM十月上海召开,“中日韩女科学家论坛”成亮点/strong/span/pp  先进纤维与聚合物材料国际会议(ICAFPM)由东华大学纤维材料改性国家重点实验室发起举办,旨在探讨与先进纤维和聚合物材料相关的各个领域的最新研究和进展,开拓纤维和聚合物研究领域前沿。自2002年举办第一届以来,已成功举办七届。/pp  第八届先进纤维与聚合物材料国际会议定于2017年10月8-10日在东华大学松江校区举办,会议由纤维材料改性国家重点实验室、纤维材料先进制造技术与科学创新引智基地、东华大学先进低维材料中心、东华大学材料科学与工程学院联合主办并承办,中国自然科学基金委、中国材料研究学会纤维材料分会(筹)、中国材料研究学会高分子材料与工程分会、中国女科技工作者协会、聚烯烃催化技术与高性能材料国家重点实验室协办。本次会议的主题是:下一代纤维:改变我们的生活(Next generation fibers:Changing our life)。并将围绕“新一代纤维”这一主题及相关子议题开展多项学术交流活动,其中包含学术会议、学术论文宣讲和墙展活动。此次分会主题包括A. 高性能纤维与复合材料、B. 纤维与纺织品中的化学与物理、C. 纳米技术在纤维和聚合物中的应用、D. 智能纤维、智能纺织品与可穿戴智能设备、E. 环保纤维与聚合物、F. 医用纤维与聚合物、G. 能源用纤维与聚合物、H. 天然纤维与仿生聚合物、I. 低维材料、J. 多功能与多组分纤维、K. 第八届中日韩女科学家论坛暨国际材料科技女性研讨会 。预计会议将有200余位来自美国、日本、德国、英国、法国、瑞士、印度、澳大利亚、瑞典、新加坡、葡萄牙等世界各国的知名学者参会,包括4名美国工程院院士、1名英国皇家工程院院士、1名欧洲科学与艺术学院院士、1名美国国家发明家科学院院士,以及亚洲聚合物协会主席、欧洲高分子联合会前任主席、日本纤维学会会长等。/pp  中日韩女科学家论坛于2008年由韩国女科技团体联合会发起,中国女科技工作者协会、日本女工程师和科学家国际网络组织以及韩国女科技团体联合会共同签署了关于三国轮值举办该论坛的备忘录。论坛至今已举办了七届,每届由中日韩三方分别轮流主办。围绕科技女性的发展状况、女性在科技领域的领导力、如何平衡女性事业与家庭关系以及各国政府在重视和积极开发女性科技人力资源的政策举措等方面进行广泛交流,相互借鉴经验 同时也进一步加强了中日韩三国女科技工作者间的创新与合作。/pp  在中国科协常委会女科技工作者专门委员会的支持下,第八届中日韩女科学家论坛暨国际材料科技女性研讨会作为2017年第八届ICAFPM第11个分会,将于10月7日召开。此次论坛由中国女科技工作者协会主办,东华大学纤维材料改性国家重点实验室、东华大学先进低维材料中心和东华大学材料科学与工程学院承办,主题为“科学中的女性:合作与创新”(Women in science: cooperation and innovation)。论坛分领导力、示范力、创新力三个分会,报告人有中日韩三方等知名女科学家和有关人员。届时,也将邀请出席2017年第八届ICAFPM其它分会有关代表到会参与讨论交流。/pp style="text-align: right "strong采访编辑/strongstrong:/strong杨厉哲br//pp strong 附:朱美芳简历/strong/pp  朱美芳,女,1965年生,博士、教授、博士生导师,教育部长江学者特聘教授。现任东华大学材料科学与工程学院院长,纤维材料改性国家重点实验室主任,纤维材料先进制造技术与科学创新引智基地主任。是国家杰出青年科学基金、首届全国创新争先奖、中国青年科技奖、中国青年女科学家奖、国家级有突出贡献中青年专家、新世纪“百千万人才工程”国家级人选获得者。作为团队带头人入选教育部创新团队、科技部创新人才推进计划重点领域创新团队。主要研究方向包括:聚合物纤维及纳米复合功能材料、有机/无机纳米杂化材料的应用基础和关键技术研究。近年主持及完成国家自然科学基金重点项目、国家重点研发计划等项目30余项。在Advanced Materials、Chemical Communication、Macromolecules等国内外著名期刊发表论文260余篇,编写专著6部(章) 授权国家发明专利100余件,成果在多家企业得到推广应用。以第一完成人曾获国家科技进步二等奖、上海市科技进步一等奖等10余项科技奖励。现(曾)任教育部高等学校材料科学与工程教学指导委员会委员、高分子材料与工程专业教学指导分委员会副主任委员,科技部十五“863”高技术计划新材料领域纳米材料专项总体组专家成员,中国材料研究学会副理事长,中国纺织工程学会化纤专业委员会副主任委员,上海新材料协会副会长,中国化学会高分子学科委员会委员 Progress in Natural Science: Materials International、Journal of Fiber Bioengineering and informatics、《高分子学报》、《纺织学报》、《合成纤维》等期刊编委。组织国际国内会议20余次,100余次作国际国内会议大会报告、邀请报告或担任会议主席。/p
  • 关于新标准纤维级聚己内酰胺(PA6)切片试验方法,您所不知道的那些事
    己内酰胺(PA6)是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。其中PA 纤维主要用于服装、装饰、地毯丝、帘子线、工业用布、渔网等;极少量用于热熔胶、精细化学品和制药等。2020年5月1号正式实施GB/T 38138-2019纤维级聚己内酰胺(PA6)切片试验方法。本标准适用于以己内酰胺为原料生产的纤维级聚己内酰胺(PA6)切片,其他差别化、功能性纤维级聚己内酰胺(PA6)切片可参照选用。标准中涉及到含水率、二氧化钛含量、氨基含量、羧基含量等指标测定,使用的方法是电位滴定法、卡尔费休法、分光光度法。01氨基和羟基的测定 - 电位滴定法1.1 为什么测端氨基和羧基?切片检测端羧基和端氨基可以计算高分子的平均分子量、可以反馈出在聚合时用什么进行封端氨基、可以反映出抗氧化能力及染色难易程度。1.2 标准方法解读标准中新增了A法-三氟乙醇体系,即将试样溶解在88%三氟乙醇溶液中,用盐酸-乙醇标准溶液进行电位滴定,滴定到等当点结束即得氨基含量。继续使用氢氧化钾-乙醇标准溶液进行滴定,滴定到两个等当点结束,以第二个等当点的体积计算羧基含量。B法是间甲酚-异丙醇体系,将试样溶解在间甲酚和异丙醇混合液中,用盐酸-乙醇标准溶液进行电位滴定。1.3 梅特勒托利多电位滴定仪的解决方案选择梅特勒托利多超越系列电位滴定仪,只需OneClick™ 一键启动,即可实现滴定分析。OneClick™ 一键滴定,即插即用和方法数据库。• 带 StatusLight™ (状态指示灯)的触摸屏终端• 触摸屏和 PC 软件的双通道控制模式实现更安全可靠的滴定• 扩展容量法或库仑法卡尔费休水分测定• 扩展 pH 和电导率的同时测量和滴定T7电位滴定仪+InMotion自动进样器02含水率的测定-卡尔费休法2.1 为什么测含水率?含水率的测定也是切片质量的重要指标,含水率在特定范围是为了保证纤维质量均匀提高结晶度、软化点。2.2 标准方法解读将试样在特定条件下加热,挥发出的水蒸气由干燥的氮气装入载有已平衡好的无水甲醇的滴定杯中吸收,用卡尔费休水分仪测定含水量。2.3 梅特勒托利多卡尔费休水分仪的解决方案根据含水量范围,选择梅特勒托利多卡尔费休容量法 V30S或库仑法 C30S加卡式炉 InMotion KF的方法进行测定,温度控制在 175±5℃,加热炉温度最高可达280℃,内置流量计可在操作面板轻松查看实际载气流速。InMotion™ KF• 一体式螺旋盖• 节省空间的设计• 数字式气体流量控制• 状态指示灯C30S+InMotion KFV30S+InMotion KF03二氧化钛含量-分光光度法3.1 为什么测二氧化钛含量?钛白粉消光剂的添加可对化学纤维的消光起作用,而且对纤维聚合物性能、机器磨损程度、过滤组件使用周期、纺丝的断头率、纤维的物料机械性能产生影响,因此二氧化钛的含量分析也是检测的重要指标。3.2 标准方法解读试样在加热条件下,用浓硫酸和适量过氧化氢消解,以四价离子状态存在的钛,在强酸溶液中过氧化氢形成络合物。用分光光度计在 410nm波长处测定其吸光度,计算二氧化钛含量。3.3 梅特勒托利多紫外可见分光光度计的解决方案UV7 超越系列仪器有效优化了分光光度计的工作流程,FastTrack™ 技术实现了快速可靠的测量。赖以信任的分光光度计性能结合了直观有效的 OneClick™ 操作。• 快速简单• 出色的性能• 紧凑的模块化结构• 直接测量和专用方法UV7紫外可见分光光度计与此同时,我们还可以选择梅特勒托利多的天平进行称重分析和 DSC 差示扫描量热仪进行熔点分析,为您提供纤维级聚己内酰胺纺织切片的综合专业的解决方案。梅特勒托利多分析仪器包含电位滴定仪、卡尔费休水分仪、密度折光、UV紫外可见分光光度计和pH计,均可选配InMotion自动进样器进行多样品分析, 高度的可拓展性可满足未来不断增加的需求。
  • 国标委再公布一批拟立项国家标准 含多项仪器分析方法
    7月8日,国家标准委发布《关于对2016年第二批拟立项国家标准项目征求意见的通知 》。  本次拟立项的国家标准项目共计236项,涉及多项仪器分析方法通则及检测标准,包括《近红外光谱定性分析通则》、《四极杆电感耦合等离子体质谱方法通则》以及《玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法》、《喷气燃料中芳烃总量的测定 气相色谱法》等。  为了便于仪器及分析测试行业的用户参考,仪器信息网编辑特别摘录如下:标准名称性质状态公示截止日前同位素组成质谱分析方法通则推制2016-07-25水中锶同位素丰度比的测定推制2016-07-25液相色谱-飞行时间质谱联用仪性能测定方法推制2016-07-25近红外光谱定性分析通则推制2016-07-25四极杆电感耦合等离子体质谱方法通则推制2016-07-25晶体材料X射线衍射仪旋转定向测定方法推制2016-07-25玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推制2016-07-25纺织品 消臭性能的测定 第3部分:气相色谱法推制2016-07-25喷气燃料中芳烃总量的测定 气相色谱法推制2016-07-25橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推制2016-07-25肥料中植物生长调节剂的测定 高效液相色谱法推制2016-07-25化学纤维 微观形貌及直径的测定 扫描电镜法推制2016-07-25硫化橡胶 样品和试样的制备 化学试验推修2016-07-25粒度分析 液体重力沉降法 第4部分:天平法推制2016-07-25纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推制2016-07-25纺织品 苯并三唑类物质的测定推制2016-07-25纺织品 定量化学分析 氨纶与某些其他纤维的混合物推制2016-07-25纺织品 过滤性能 最易穿透粒径的测定推制2016-07-25纺织品 干燥速率的测定推制2016-07-25纺织品 抗真菌性能的测定 第2部分:平皿计数法推制2016-07-25纺织品 抗真菌性能的测定 第1部分:荧光法推制2016-07-25农药水分散粒剂流动性的测定方法推制2016-07-25化学纤维 热分解温度试验方法推制2016-07-25化学纤维 二氧化钛含量试验方法推制2016-07-25炭黑 第25部分:碳含量的测定推制2016-07-25炭黑 第26部分:炭黑原料油中碳含量的测定推制2016-07-25
  • 复合纤维材料开启高端微波化学仪器的新时空
    复合材料一般泛指由两种或两种以上不同物质以不同方式组合而成的材料,在性能上互相取长补短,产生协同效应,使材料的综合性能优于原组成材料而满足各种不同的要求。复合纤维材料的出现堪称材料史上的一次革命。由于复合纤维材料具有高强质轻、耐高温、耐疲劳、优良的减振性、耐化学腐蚀和热膨胀系数小等特点,广泛应用于航空航天、现代工业、体育器材等领域,如神舟7号、嫦娥探月工程以及C919大飞机等重大项目中均见其身影。 目前,微波化学仪器已成为分析化学、材料科学等应用领域中一种高效的样品前处理和制备设备,然而反应容器的材质直接决定仪器承受高温、高压的性能。市场上流行的微波消解仪通常采用PTFE、PFA以及TFM加工成消解内罐,高端产品更青睐于TFM材质用作消解内罐(最高耐温315℃,最大承受压力12MPa),因此消解外罐的各项性能成为仪器发展和技术创新的&ldquo 瓶颈&rdquo 。早期的聚砜(PSF)或聚苯硫醚(PPS)消解外罐普遍用在普及型和低端微波消解仪上,但在使用过程中因反应条件或机械损伤很容易造成消解罐发生酸腐蚀、变形、产生裂缝,甚至爆裂,现在中高端微波消解仪中已很难见到了。大约在2005年初,国内一代微波消解系统逐渐采用耐高温、高压,尺寸稳定性以及良好耐化学性的聚醚醚酮(PEEK)设计制造压力反应罐外罐,其使用寿命和安全性得到大幅提高。随着用户对微波反应的要求越高(反应温度高于250℃,反应压力高达4MPa,反应罐体耐压能力超过6MPa),PEEK材料的外罐存在如此高温下易熔易燃,且易受高压损伤等缺陷;特别是高温硫酸蒸汽对其的影响而导致罐体开裂,从而大大降低了仪器设备的安全性能和提升了运行维护的成本。 上海新仪公司对目前市场上已有的国外高端产品经过长时间的市场调研和咨询国内先进材料专家,凝聚公司科研技术人员克服多重难关,引进并自主开发出全封闭防腐超强复合纤维材料,在2008奥运年一举攻克外罐材料的&ldquo 瓶颈&rdquo ,奠定开发高端微波化学仪器的技术基础。新型复合纤维材料外罐采用纤维一体化缠绕并外裹PFA材料工艺制作而成,强度高(80MPa)、耐高温(400℃)、质量轻巧和极低的热膨胀系数,耐受各种酸碱、有机溶剂,由于全封闭防腐技术的应用克服了国外同类现有产品的怕水或水蒸气浸蚀、不耐腐蚀等缺点。复合纤维材料的抗疲劳强度为其抗拉强度的60%左右,即使因疲劳断裂也是从基体开始,逐渐扩展到纤维和基体的界面上。因此,具备破坏前的预兆,可以及时检查发现,材料寿命比一般金属的长数倍。同时,复合纤维材料的基体中有成千上万根独立的纤维,当用这种材料制成的外罐即便因反应产生爆炸也能在极短时间内将载荷重新分配并传递到未破坏的纤维上,故整个外罐不至于在短时间内丧失承载能力,其安全性能超越目前已知的所有高分子工程塑料。经实际产品测验结果表明,爆不破炸不裂撕不碎的复合纤维材料外罐完全消除横向炸裂的可能,安全系数大大超过目前市场通用的有机改性PEEK材料,耐用性能为PEEK材质的20~100倍。 MDS-10高通量密闭微波消解· 萃取· 合成工作站和MASTER 40罐高通量密闭微波消解/萃取工作站均采用超高强度的复合纤维材料制成的外罐,同时配合专利的垂直爆破泄压结构,从真正意义上实现了&ldquo 垂直爆破&rdquo 理论,杜绝了由于反应罐的横向破裂造成仪器和人员伤害,极大限度地提高了操作人员的安全性,开启了微波化学超高温高压的新时空。有关仪器详情请浏览我公司网站:www.sineo.cn.
  • 中科院纤维素化学重点实验室2011年开放基金开始申请
    据中国科学院广州化学研究所纤维素化学重点实验室网站消息,该实验室2011年开放基金已经开始申请,截止日期为2010年12月30日。  详情请见:纤维素重点实验室2011年开放基金申请指南
  • 我国化学品污染严重 多地区出现癌症村
    因化学污染个别地区出现“癌症村”  环保部近日公开发布《化学品环境风险防控“十二五”规划》(以下简称规划),规划显示,我国化学品污染防治形势十分严峻。  规划表示,我国有3 千余种已化学物质对人体健康和生态环境危害严重 个别地区甚至出现“癌症村”等严重的健康和社会问题。  规划称,“十二五”期间,我国将对化工污染进行全面防治 根据规划,将确定三种类型58种(类)化学品作为“十二五”期间环境风险重点防控对象。  发达国家淘汰毒化学品在我国仍使用  规划透露,发达国家已淘汰或限制的部分有毒有害化学品在我国仍有规模化生产和使用,同时,国家相关部门并不清楚化学品生产和使用种类、数量、行业、地域分布信息。  规划透露,我国现有生产使用记录的化学物质4 万多种,其中3 千余种已列入当前《危险化学品名录》,具有毒害、腐蚀、爆炸、燃烧、助燃等性质。具有急性或者慢性毒性、生物蓄积性、不易降解性、致癌致畸致突变性等危害的化学品,对人体健康和生态环境危害严重,数十种已被相关化学品国际公约列为严格限制和需要逐步淘汰的物质。同时,尚有大量化学物质的危害特性还未明确和掌握。  环保部表示,2010 年,环境保护部开展了沿江沿河环境污染隐患排查整治行动,检查化工石化企业近18000 家。  规划说,目前,我国化学品产业结构和布局不合理,环境污染和风险隐患突出,发达国家已淘汰或限制的部分有毒有害化学品在我国仍有规模化生产和使用,存在部分高环境风险的化学品生产能力向我国进行转移和集中的现象。  化学品环境管理基础信息和风险底数不清  “据2010 年环境保护部组织开展的全国石油加工与炼焦业、化学原料与化学制品制造业、医药制造业等三大重点行业环境风险及化学品检查工作结果显示,下游5 公里范围内(含5 公里)分布有水环境保护目标的企业占调查企业数量的23%,对基本农田、饮用水水源保护区、自来水厂取水口等环境敏感点构成威胁 周边1 公里范围内分布有大气环境保护目标的企业占51.7%,1.5 万家企业周边分布有居民点,对人体健康和安全构成危险。经初步评估,重大环境风险企业数量占调查企业数量的18.3%,较大环境风险企业占22%,环境风险隐患突出。”规划说,化学品环境管理法规制度不健全。化学品环境管理现有制度主要停留在有毒化学品进出口登记和新化学物质环境管理登记,而对于危险化学品的环境管理、释放与转移控制、重点环境风险源管理等方面缺乏规定,对高毒、难降解、高环境危害化学品的限制生产和使用等缺乏措施,针对性、系统性的化学品环境管理法规、制度和政策明显缺失。  此外,化学品环境管理基础信息和风险底数不清。相对于化学品环境管理需求,我国目前存在化学品生产和使用种类、数量、行业、地域分布信息不清,重大环境风险源种类、数量、规模和分布不清,多数化学物质环境危害性不清,有毒有害化学污染物质的排放数量和污染情况不清,化学物质转移状况不清,受影响的生态物种和人群分布情况不清等问题。与发达国家相比,我国化学品环境风险防控意识、水平、能力还存在较大差距。  3年环保部接报突发环境事件568 起  环保部认为,监测监管、预警应急、管理和科技支撑能力不足。  规划称,我国目前仍在生产和使用发达国家已禁止或限制生产使用的部分有毒有害化学品,此类化学品往往具有环境持久性、生物蓄积性、遗传发育毒性和内分泌干扰性等,对人体健康和生态环境构成长期或潜在危害。  规划坦陈,近年来,我国一些河流、湖泊、近海水域及野生动物和人体中已检测出多种化学物质,局部地区持久性有机污染物和内分泌干扰物质浓度高于国际水平,有毒有害化学物质造成多起急性水、大气突发环境事件,多个地方出现饮用水危机,个别地区甚至出现“癌症村”等严重的健康和社会问题。  同时, 近年来,由危险化学品生产事故、交通运输事故以及非法排污引起的突发环境事件频发。2008-2011 年,环境保护部共接报突发环境事件568 起,其中涉及危险化学品287 起,占突发环境事件的51%,每年与化学品相关的突发环境事件比例分别为57%、58%、47%、46%。  规划表示,每年约有数千种新化学物质在我国申报生产和进口,对其造成的人体健康和环境安全危害性尚不能完全掌握,环境管理和风险防控面临越来越大的压力与挑战。  “十二五”说,根据环境风险来源和风险类型的不同,确定三种类型58种(类)化学品作为“十二五”期间环境风险重点防控对象 “十二五”期间以石油加工、炼焦及核燃料加工业,化学原料及化学制品制造业,医药制造业,化学纤维制造业,有色金属冶炼和压延加工业,纺织业等六大行业以及煤制油、煤制天然气、煤制烯烃、煤制二甲醚、煤制乙二醇等新型煤化工产业为重点防控行业。
  • 国标委下发2016第二批国标制修订计划 又一批检测标准将出台
    9月20日,国家标准化管理委员会下达2016年第二批国家标准制修订计划(见附件)。本批计划共计224项,其中制定183项,修订41项 推荐性标准223项,指导性技术文件1项。  在这224项标准中,有数十条涉及仪器检测,包括质谱、高效液相色谱-质谱联用法、高效液相色谱法、电感耦合等离子体原子发射光谱、X射线衍射、扫描电镜等检测方法,仪器信息网摘取部分供参考。 计划编号 项目名称 标准性质 制修订 主管部门 归口单位 20161229-T-608纺织品 消臭性能的测定 第3部分:气相色谱法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161231-T-608纺织品 1,2-二氯乙烷、氯乙醇和氯乙酸的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161232-T-608纺织品 苯并三唑类物质的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161233-T-608纺织品 定量化学分析 氨纶与某些其他纤维的混合物推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161234-T-608纺织品 过滤性能 最易穿透粒径的测定推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161237-T-608纺织品 消臭性能的测定 第1部分:通则推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161238-T-608纺织品 抗真菌性能的测定 第2部分:平皿计数法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161240-T-608纺织品 抗真菌性能的测定 第1部分:荧光法推荐制定中国纺织工业联合会全国纺织品标准化技术委员会20161323-T-606肥料中植物生长调节剂的测定 高效液相色谱法推荐制定中国石油和化学工业联合会全国肥料和土壤调理剂标准化技术委员会20160920-T-609超薄玻璃硬度和断裂韧性试验方法-显微维氏硬度压痕法推荐制定中国建筑材料联合会全国工业玻璃和特种玻璃标准化技术委员会20161327-T-606光学功能薄膜 聚对苯二甲酸乙二醇酯(PET)薄膜 萃取值测定方法推荐制定中国石油和化学工业联合会全国光学功能薄膜材料标准化技术委员会20161295-T-469粒度分析 液体重力沉降法 第4部分:天平法推荐制定国家标准化管理委员会全国颗粒表征与分检及筛网标准化技术委员会20161283-T-469喷气燃料中芳烃总量的测定 气相色谱法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161284-T-469汽车手动变速箱同步器用润滑剂摩擦磨损性能测定 SRV试验机法推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161285-T-469石油和液体石油产品 储罐中液位和温度自动测量法 第2部分:油船舱中的液位测量推荐制定国家标准化管理委员会全国石油产品和润滑剂标准化技术委员会20161303-T-607玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定 高效液相色谱-质谱联用法推荐制定中国轻工业联合会全国玩具标准化技术委员会20161310-T-606硫化橡胶 样品和试样的制备 化学试验推荐修订中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161314-T-606炭黑 第26部分:炭黑原料油中碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161315-T-606橡胶配合剂 沉淀水合二氧化硅 电感耦合等离子体原子发射光谱仪测定重金属含量推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161316-T-606炭黑 第25部分:碳含量的测定推荐制定中国石油和化学工业联合会全国橡胶与橡胶制品标准化技术委员会20161346-T-306同位素组成质谱分析方法通则推荐制定科学技术部全国仪器分析测试标准化技术委员会20161347-T-306水中锶同位素丰度比的测定推荐制定科学技术部全国仪器分析测试标准化技术委员会20161348-T-306晶体材料X射线衍射仪旋转定向测定方法推荐制定科学技术部全国仪器分析测试标准化技术委员会20161361-T-334琥珀鉴定分类推荐制定国土资源部全国珠宝玉石标准化技术委员会20161363-T-334珠宝玉石 鉴定推荐修订国土资源部全国珠宝玉石标准化技术委员会20161226-T-608化学纤维 微观形貌及直径的测定 扫描电镜法推荐制定中国纺织工业联合会中国纺织工业联合会20161227-T-608化学纤维 热分解温度试验方法推荐制定中国纺织工业联合会中国纺织工业联合会20161228-T-608化学纤维 二氧化钛含量试验方法推荐制定中国纺织工业联合会中国纺织工业联合会
  • 中国化学会纤维素专业委员会完成换届,傅强任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。2022年10月19日,中国化学会纤维素专业委员会(以下简称“委员会”)成立大会在线上召开,来自全国高校、科研院所及企业的46个单位的60位代表参加。傅强教授向与会代表汇报了中国化学会纤维素专业委员会的相关工作报告。经与会代表无记名投票,选举四川大学傅强教授为委员会新一届主任委员,中国科学院化学研究所张军研究员、南京林业大学金永灿教授、华中科技大学杨光教授、武汉大学蔡杰教授为副主任委员。聘任武汉大学常春雨教授为秘书长。共有60人当选新一届委员会委员。中国化学会纤维素专业委员会委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:傅强副主任:张军、金永灿、杨光、蔡杰秘书(长): 常春雨委员:委员姓名工作单位蔡杰武汉大学常春雨武汉大学陈朝吉武汉大学陈礼辉福建农林大学陈文帅东北林业大学邸勇泰安赛露纤维素醚技术研究所段博武汉大学房桂干中国林业科学研究院林产化学工业研究所付时雨华南理工大学傅强四川大学贺盟盐城工学院黄进西南大学化学化工学院、软物质材料化学与功能制造重庆市重点实验室黄翔芬欧汇川(中国)有限公司黄勇中国科学院理化技术研究所蒋兴宇南方科技大学金永灿南京林业大学廖兵广东省科学院刘瑞刚中国科学院化学研究所刘石林华中农业大学刘守新东北林业大学罗晓刚武汉工程大学彭新文华南理工大学祁海松华南理工大学邵自强北京理工大学石志军华中科技大学孙剑北京理工大学孙平川南开大学陶友华中国科学院长春应用化学研究所田卫国中国科学院化学研究所王立军浙江科技学院王林格华南理工大学王莎南京林业大学王天富上海交通大学王小慧华南理工大学王志国南京林业大学吴凯四川大学吴敏中国科学院理化技术研究所伍强贤华中师范大学谢海波贵州大学徐坚深圳大学徐敏华东师范大学许凤北京林业大学闫立峰中国科学技术大学杨光华中科技大学杨桂花齐鲁工业大学杨鹏陕西师范大学杨全岭武汉理工大学应广东山东太阳纸业股份有限公司于海鹏东北林业大学余龙华南理工大学张凤山山东华泰纸业股份有限公司张建明青岛科技大学张军中国科学院化学研究所张振华南师范大学赵大伟沈阳化工大学郑明远中国科学院大连化学物理研究所钟春燕海南椰国食品有限公司周金平武汉大学朱宏伟岳阳林纸股份有限公司朱锦中科院宁波材料技术与工程研究所
  • 美研究团队:自来水中“微塑料”污染在全球蔓延
    p核心提示:美国明尼苏达大学等组成的研究团队日前调查发现,“微塑料”污染已成为一大问题,对13国的调查显示,自来水中“微塑料”的检出率高达81%,大部分呈纤维状,估计来自纤维制品。/pp  据日媒报道,美国明尼苏达大学等组成的研究团队日前调查发现,“微塑料”污染已成为一大问题,对13国的调查显示,自来水中“微塑料”的检出率高达81%,大部分呈纤维状,估计来自纤维制品。/pp  虽然目前尚不清楚微塑料对人类健康造成的影响,但研究团队发出警示称“日常生活中无法避开的自来水污染在全球蔓延非常令人担忧”。/pp  该调查分析了在美国、英国、古巴、印度等14个国家采集的159个自来水样本。除意大利以外的13个国家自来水中都发现了微塑料。/pp  美国的水样中检测出每升约60个微塑料,据各国之首。印度和黎巴嫩也数量较多。98%的微塑料呈纤维状,平均长度为0.96毫米。也存在0.10毫米的微塑料,估计很难用过滤设备完全去除。此外还存在小碎片及薄膜状的微塑料。/pp  此外,研究人员还从标注产地为欧洲、亚洲、美国等地的12种市售食盐以及在美国酿造的12种啤酒中全部检测出微塑料。美国的3种瓶装水样本也含有微塑料。/pp  根据美国人的标准消费量计算,每人每年从自来水、食盐、啤酒中摄入5800个微塑料。其中88%来自自来水。/pp  目前尚不清楚污染如何扩散,但有观点指出纤维状微塑料也可能是从化学纤维材料服装中通过洗涤等飞散到大气中。/pp  研究团队成员表示:“人类入口食物的微塑料污染日益严重。需要对塑料中含有或吸附的有害化学物质对人体的影响等进行详细调查。”/pp  微塑料是塑料垃圾等破碎后形成的直径5毫米以下的塑料,由其导致的海洋污染成为课题。/pp/p
  • 青岛市标准化协会立项《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》等三项团体标准
    各相关单位:按照《青岛市标准化协会团体标准管理办法》的规定,青岛市标准化协会《国内棉花残损鉴定技术规范》、《纺织品 定量化学分析氨纶或某些纤维素纤维与聚丙烯腈纤维的混合物(盐酸法)》和《秋月梨 感官定级评价规则》三项团体标准已通过立项论证,同意立项。请各有关单位尽快组织起草并完成标准的制定工作。青岛市标准化协会2023年4月7日
  • ABB赢得南非Sappi公司价值860万美元订单
    2012年3月1日,南非,内尔斯普雷特——全球领先的电力与自动化技术集团ABB赢得来自南非Sappi公司的一项大订单,为其提供电气集成和仪器仪表(E&I),以及分布式控制系统(DCS)。  ABB将负责为Sappi在南非内尔普斯雷特市的Ngodwana工厂设计、采购并供应设备。这是Sappi化学纤维工厂产能扩张项目Go Cell的一部分。此项订单是继ABB于2007年成功为Sappi Saiccor实施Amakhulu项目之后的又一次合作。  ABB的供货范围包括中压开关设备,融合了智能马达控制的低压马达控制中心,Profibus智能仪器仪表,变频器以及ABB领先的800xA控制系统。这些产品将帮助工厂实现提高效率,降低能耗的目标。  该项目规模较大,复杂度较高。为了能够按时交付项目,ABB将从南非、芬兰和新加坡的制浆造纸综合工厂调配专家,组合成立一个国际化的工作团队。该项目团队将确保在Sappi要求的期限内安装并完成全部电气与自动化设备(工厂预计于2013年投入生产)。  南非的Sappi是化学纤维生产的全球领先企业,其化学纤维产品广泛用于服装、塑料、食物和药品等多种消费品的生产。  ABB南非公司首席执行官Carlos Pone称:“ABB南非公司对Sappi Ngodwana的产能扩张和现代化做出贡献是ABB值得骄傲的成就,为这一行业巨擘提供服务也进一步证明了ABB在造纸行业拥有强大的实力。来自这两个公司的项目团队将会协同合作,共同促进Sappi在化学纤维生产流程的优化。”  ABB是位居全球500强之列的电力和自动化技术领域的领导企业。ABB致力于帮助电力、公共事业和工业客户提高业绩,同时降低对环境的影响。ABB集团业务遍布全球100多个国家,拥有13万名员工。
  • 《关于化纤工业高质量发展的指导意见》(附全文)
    两部委关于化纤工业高质量发展的指导意见工业和信息化部 国家发展和改革委员会关于化纤工业高质量发展的指导意见工信部联消费〔2022〕43号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化、发展改革主管部门:化纤工业是纺织产业链稳定发展和持续创新的核心支撑,是国际竞争优势产业,也是新材料产业重要组成部分。为贯彻落实《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》《“十四五”制造业高质量发展规划》有关要求,推动化纤工业高质量发展,形成具有更强创新力、更高附加值、更安全可靠的产业链供应链,巩固提升纺织工业竞争力,满足消费升级需求,服务战略性新兴产业发展,现提出以下意见:一、总体要求(一)指导思想坚持以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,完整、准确、全面贯彻新发展理念,以高质量发展为主题,以深化供给侧结构性改革为主线,以科技创新为动力,以满足纺织工业和战略性新兴产业需要为目的,统筹产业链供应链的经济性和安全性,加快关键核心技术装备攻关,推动产业高端化智能化绿色化转型,实现高质量发展。(二)基本原则创新驱动,塑造优势。坚持创新在化纤工业发展中的核心地位,面向科技前沿、面向消费升级、面向重大需求,完善创新体系,塑造纺织工业发展新动能、新优势。优化结构,开放合作。优化区域布局,加强国际合作,推进数字化转型,依法依规淘汰落后产能和兼并重组,培育龙头企业,促进大中小企业融通发展,巩固提升产业竞争力。绿色发展,循环低碳。坚持节能降碳优先,开展绿色工厂、绿色产品、绿色供应链建设,加强废旧资源综合利用,扩大绿色纤维生产,构建清洁、低碳、循环的绿色制造体系。引领纺织,服务前沿。增加优质产品供给,优化高性能纤维生产应用体系,培育纤维知名品牌,拓展纤维应用领域,从原料端引领纺织价值提升,服务战略性新兴产业发展。(三)发展目标到2025年,规模以上化纤企业工业增加值年均增长5%,化纤产量在全球占比基本稳定。创新能力不断增强,行业研发经费投入强度达到2%,高性能纤维研发制造能力满足国家战略需求。数字化转型取得明显成效,企业经营管理数字化普及率达80%,关键工序数控化率达80%。绿色制造体系不断完善,绿色纤维占比提高到25%以上,生物基化学纤维和可降解纤维材料产量年均增长20%以上,废旧资源综合利用水平和规模进一步发展,行业碳排放强度明显降低。形成一批具备较强竞争力的龙头企业,构建高端化、智能化、绿色化现代产业体系,全面建设化纤强国。二、提升产业链创新发展水平(一)筑牢创新基础。打通理论研究、工程研发、成果转化全链条,形成企业为主体、市场为导向、产学研深度融合的科技创新体系。发挥高校、科研院所原始创新主力军作用,开展前瞻性纤维材料研究。增强国家级、省级先进功能纤维创新中心服务能力及企业技术中心创新能力。加强关键装备、关键原辅料技术攻关,推动生物基化纤原料、煤制化纤原料工艺路线研究和技术储备,增强产业链安全稳定性。(二)优化区域布局。落实区域发展战略,在符合产业、能源、环保等政策前提下,鼓励龙头企业在广西、贵州、新疆等中西部地区建设化纤纺织全产业链一体化基地,与周边国家和地区形成高效协同供应链体系。引导化纤企业参与跨国产业链供应链建设,鼓励企业完善全球产业链布局。(三)培育优质企业。鼓励企业通过兼并重组优化生产要素配置,加快业务流程再造和技术升级改造。支持龙头企业集聚技术、品牌、渠道、人才等优质资源,增强供应链主导力,为服装、家纺、产业用纺织品行业提供共性技术输出和产业链整体解决方案。促进大中小企业融通发展,培育专精特新“小巨人”企业和单项冠军企业。三、推动纤维新材料高端化发展(一)提高常规纤维附加值。实现常规纤维高品质、智能化、绿色化生产,开发超仿真、原液着色等差别化、功能性纤维产品,提升功能纤维性能和品质稳定性,拓展功能性纤维应用领域,推进生物医用纤维产业化、高端化应用。加强生产全流程质量管控,促进优质产品供给,满足消费升级和个性化需求。专栏1 纤维高效柔性制备和品质提升1.纤维高效柔性制备技术装备提升。突破功能纤维原位聚合、多组分高比例共聚、在线添加及高效柔性化纺丝以及锦纶6熔体直接纺丝成形等技术,提升纳米纤维宏量制备、智能纤维设计制备水平。2.差别化、功能性品种开发。开发新型功能性聚酯、高品质化学单体及超仿真、阻燃、抗菌抗病毒、导电、相变储能、温控、光致变色、原液着色、吸附与分离、生物医用等功能性纤维品种。3.关键材料辅料助剂研发。研发功能纤维用关键材料、辅料以及阻燃剂、改性剂、母粒、催化剂、油剂等添加剂。 (二)提升高性能纤维生产应用水平。提高碳纤维、芳纶、超高分子量聚乙烯纤维、聚酰亚胺纤维、聚苯硫醚纤维、聚四氟乙烯纤维、连续玄武岩纤维的生产与应用水平,提升高性能纤维质量一致性和批次稳定性。进一步扩大高性能纤维在航空航天、风力和光伏发电、海洋工程、环境保护、安全防护、土工建筑、交通运输等领域应用。专栏2 高性能纤维关键技术突破和高效低成本生产1.高性能碳纤维。攻克48K以上大丝束、高强高模高延伸、T1100级、M65J级碳纤维制备技术,突破高精度计量泵、喷丝板、牵伸机、收丝机、宽幅预氧化炉、高低温碳化炉、宽口径石墨化炉等装备制造技术,研发自动铺放成型和自动模压成型等复合材料工艺技术装备,开发碳纤维复合材料修补及再利用技术。2.芳纶。研发对位芳纶原料高效溶解、纺丝稳定控制、高温热处理、溶剂回收等关键技术,大容量连续聚合、高速纺丝、高稳定高速牵引、牵伸等设备制造技术。攻克间位芳纶纤维溶剂体系、纺丝原液高效脱泡、高速纺丝等关键技术,开发高强、高伸长间位芳纶产业化技术。3.其他高性能纤维。提升耐热、抗蠕变、高强度、高耐切割、耐腐蚀、耐辐射超高分子量聚乙烯纤维,细旦、异形截面聚苯硫醚纤维,细旦、防火防核用聚酰亚胺纤维等生产技术水平。突破芳香族聚酯纤维、聚对苯撑苯并二噁唑纤维、聚醚醚酮纤维等单体合成与提纯、高速稳定纺丝等关键技术。开发玄武岩纤维规模化池窑、多品种差异化浸润剂等技术装备,研发第三代连续碳化硅纤维制备技术,突破氧化铝纤维、硅硼氮纤维、氧化锆纤维等制备关键技术。4.高性能纤维创新平台。推进高性能纤维及复合材料创新平台建设,围绕高性能纤维及复合材料行业共性关键技术和工程化问题,形成基础化工原材料-高性能纤维/高性能聚合物-复合材料及制品成型加工-产品检测及评价-产品应用的全产业链。(三)加快生物基化学纤维和可降解纤维材料发展。提升生物基化学纤维单体及原料纯度,加快稳定、高效、低能耗成套技术与装备集成,实现规模化、低成本生产。支持可降解脂肪族聚酯纤维等可降解纤维材料关键技术装备攻关,突破原料制备和高效聚合反应技术瓶颈,加强纤维可降解性能评价,引导下游应用。专栏3 生物基化学纤维和可降解纤维材料技术攻关与产业化1.生物基化学纤维原料。突破莱赛尔纤维专用浆粕、溶剂、交联剂以及纤维级1,3-丙二醇、丁二酸、1,4-丁二醇、呋喃二甲酸、高光纯丙交酯等生物基单体和原料高效制备技术。2.生物基化学纤维。提升莱赛尔纤维、聚乳酸纤维、生物基聚酰胺纤维、对苯二甲酸丙二醇酯纤维、聚呋喃二甲酸乙二醇酯纤维、海藻纤维、壳聚糖纤维等规模化生产关键技术。研究离子液体溶剂法(ILS法)、低温尿素法等纤维素纤维绿色制造技术。3.可降解纤维材料。攻克PBAT(己二酸丁二醇酯和对苯二甲酸丁二醇酯共聚物)、PBS(聚丁二酸丁二酯)、PHBV(聚羟基丁酸戊酸酯)、FDCA基聚酯(呋喃二甲酸基聚酯)、PHA(聚羟基脂肪酸酯)、PCL(聚己内酯)等制备技术。有序开展聚3-羟基烷酸酯(PHA)、聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)等材料产业化推广应用。四、加快数字化智能化改造(一)加强智能装备研发应用。推进大集成、低能耗智能物流、自动落筒、自动包装等装备研发及应用,提升纤维自动化、智能化生产水平。加快涤纶加弹设备自动生头装置及在线质量监测系统的研发及应用,提高涤纶、氨纶、锦纶的纺丝、卷绕装备智能化水平。(二)推进企业数字化转型。推动人工智能、大数据、云计算等新兴数字技术在化纤企业的应用,提升企业研发设计、生产制造、仓储物流等产业链各环节数字化水平。应用数字技术打通企业业务流程、管理系统和供应链数据,实现组织架构优化、动态精准服务、辅助管理决策等管理模式创新,提升企业经营管理能力。(三)开展工业互联网平台建设。鼓励重点企业打造主数据、实时数据、应用程序、标识解析、管理信息系统、商务智能一体化集成的工业互联网平台,支撑企业数字化转型与产业链现代化建设。推动产业链上下游企业通过工业互联网平台实现资源数据共享,加强供需对接,促进全产业链协同开发和应用。专栏4 智能制造协同创新与系统化解决方案1.构建智能制造标准体系。开展化纤工业智能装备、互联互通、智能车间、智能工厂等标准研究制定,优先在涤纶、锦纶、氨纶、再生纤维素纤维、再生涤纶等行业加强智能制造标准体系建设。2.提升智能制造关键技术水平。提升智能原料配送、智能丝饼管理、生产数据分析、智能立体仓库等技术水平。提升三维设计与建模、数值分析、工艺仿真、产品生命周期管理(PLM)、集散式控制(DCS)、制造执行(MES)、企业资源管理(ERP)、数据采集与视频监控(SCADA)等工业控制软件和系统水平。3.提高智能化服务水平。采用云服务、智能分析等技术,收集分析客户反馈信息,在解决客户问题的同时,反馈并指导企业改善产品设计、生产、销售等环节,提高客户满意度。五、推进绿色低碳转型(一)促进节能低碳发展。鼓励企业优化能源结构,扩大风电、光伏等新能源应用比例,逐步淘汰燃煤锅炉、加热炉。制定化纤行业碳达峰路线图,明确行业降碳实施路径,加大绿色工艺及装备研发,加强清洁生产技术改造及重点节能减排技术推广。加快化纤工业绿色工厂、绿色产品、绿色供应链、绿色园区建设,开展水效和能效领跑者示范企业建设,推动碳足迹核算和社会责任建设。(二)提高循环利用水平。实现化学法再生涤纶规模化、低成本生产,推进再生锦纶、再生丙纶、再生氨纶、再生腈纶、再生粘胶纤维、再生高性能纤维等品种的关键技术研发和产业化。推动废旧纺织品高值化利用的关键技术突破和产业化发展,加大对废旧军服、校服、警服、工装等制服的回收利用力度,鼓励相关生产企业建立回收利用体系。(三)依法依规淘汰落后。严格能效约束,完善化纤行业绿色制造标准体系,依法依规加快淘汰高能耗、高水耗、高排放的落后生产工艺和设备,为优化供给结构提供空间。加大再生纤维素纤维(粘胶)行业和循环再利用化学纤维(涤纶)行业规范条件的落实力度,开展规范公告,严格能耗、物耗、环保、质量和安全等要求。专栏5 绿色制造和循环利用1.推广清洁生产技术与装备。推广聚酯装置余热利用技术,PTA余热发电技术,再生纤维素纤维生物法低浓度废气处理技术,再生纤维素纤维生产-回收碱液及提取半纤维素技术,锦纶-6、锦纶长丝、干法氨纶节能减排技术。推进生产技术密闭化、连续化、自动化,有机溶剂减量化。推广使用低(无)VOCs含量原辅材料,提升污染治理水平。2.突破循环利用技术。开展废旧纺织品成分识别及分离研究,提升丙纶、高性能纤维回收利用关键技术,突破涤纶、锦纶化学法再生技术,腈纶、氨纶再生技术,棉/再生纤维素纤维废旧纺织品回收和绿色制浆产业化技术。推进瓶片直纺再生涤纶长丝高品质规模化生产。3.建设绿色制造体系。鼓励纺纱、织造、服装、家纺等产业链下游企业参与绿色纤维制品认证,推进绿色纤维制品可信平台建设,提升绿色纤维供给数量和质量。培育一批绿色设计示范企业、绿色工厂标杆企业和绿色供应链企业。六、实施增品种提品质创品牌“三品”战略(一)优化供给结构。以技术为核心,以需求为导向,开发性能和品质优异的产品,为消费者提供个性化、时尚化、功能化、绿色化产品,持续扩大中高端产品有效供给。开展纤维流行趋势研究和发布,向下游企业和消费者推广技术含量高、市场潜力好的纤维新品种。推广再生化学纤维、生物基化学纤维、原液着色化学纤维等绿色纤维,引导绿色消费。(二)强化标准支撑。加快功能性、智能化、高技术纤维材料领域的标准制定,支撑行业品种、品质和品牌提升。完善国标、行标、团标、企标协调发展的化纤标准体系,充分发挥团体标准引导产业发展、激发创新活力的作用。加强标准化人才队伍培养,提升企业从纤维到面料(复合材料)直至终端制品的标准研制和检测能力。推进国际标准化工作,推动技术、标准和认证体系的国际合作与互认。(三)推进品牌建设。利用国际纺织纱线展等平台,借助发布会、新媒体网络等手段,扩大“中国纤维流行趋势”和“绿色纤维”等工作影响力,提升消费者对中国纤维和企业的认知度。鼓励企业建立品牌培育管理体系,加强品牌管理团队建设,培育功能性纤维品牌,发挥纤维品牌在服装、家纺等终端产品中的增值作用。七、保障措施(一)强化政策支持引导。准确定位化纤工业鼓励和限制领域,加大对高性能纤维、生物基化学纤维、再生化学纤维及可降解纤维材料等领域支持力度。鼓励科研院所、高校、企业联合申报国家专项,加快技术研发和成果转化,支持企业建设国家级重点实验室等创新平台。(二)加大财政金融支持。统筹现有渠道,加大对化纤技术创新、绿色发展、数字化转型、公共服务等方面支持力度。引导银行业金融机构按风险可控、商业可持续原则,加大对化纤企业贷款支持力度。发挥国家产融合作平台作用,构建产业信息对接合作服务网络。推进高技术型化纤企业上市融资,支持符合条件的化纤企业发行债券融资。(三)完善公共服务体系。充分发挥政府、集群、企业、协会等机构合力,提升公共服务水平和能力。培育产业技术基础公共服务平台,提升试验检测、成果转化及产业化等支撑能力,构建知识产权保护运用公共服务平台,激发创新活力。引导企业建设数字化服务平台,创新服务方式。(四)优化人才队伍结构。依托重大科研和产业化项目,培养学术、技术和经营管理领军人物。支持行业开展杰出人才评选等活动,壮大高技能人才队伍。支持行业培养具备技术、经贸、管理等知识的复合型人才,建立化纤人才智库,鼓励科技人员参与国际合作。(五)发挥行业协会作用。支持行业协会协调推动指导意见贯彻落实,开展实施效果评估,为政府部门提供支撑。鼓励行业协会加强信息发布,引导企业资金投向,促进行业规范发展。鼓励行业协会加强行业自律、平台建设、品牌培育、技术交流、人才培训等方面工作,促进行业健康发展。工业和信息化部国家发展改革委2022年4月12日
  • 冠亚塑料水分仪入驻深圳东港新材料科技有限公司
    深圳东港新材料科技有限公司,属中外合资股份制企业,是专业生产PP(聚丙烯)发丝、PA(尼龙)洋娃娃发丝及假发用化学纤维的大型企业,现有员工180余人,发丝生产线16条,年生产能力3500吨。产品工艺精湛、品种齐全,畅销美国、欧洲、日本、东南亚和港澳台地区,在国际市场上享有较高的声誉。本公司采用先进的技术设备,可生产单丝直径从50μm**110μm,支数从12支**70支,曲发曲度从1分**14分等不同规格,还可生产混色、夜光、感光变色、感温变色等特殊品种发丝。产品具有手感柔软、舒适,色泽鲜亮,颜色稳定,易于梳理成型,便于使用及后加工等特点。 冠亚塑料水分仪可以对各种PP,PA等各式假发用化学纤维进行快速检测。根据纤维特性,有专利的调节测试空间的快速水分仪
  • 199万!原位纳米电化学显微镜采购项目
    项目编号:SZDL2022000808(0868-2242ZD424H)项目名称:原位纳米电化学显微镜采购项目预算金额:199.6000000 万元(人民币)采购需求:序号货物名称数量单位备注1原位纳米电化学显微镜1套接受进口合同履行期限:签订合同后 180 天(日历日)内交货本项目( 不接受 )联合体投标。
  • 《化纤工业“十三五”发展指导意见》(附全文)
    工业和信息化部 国家发展和改革委员会关于印发《化纤工业“十三五”发展指导意见》的通知工信部联消费[2016]386号各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门、发展改革委,有关行业协会、有关单位:  为深入贯彻落实《中华人民共和国国民经济和社会发展第十三个五年规划纲要》和《中国制造2025》,引导化纤工业加快转型升级,依据《纺织工业发展规划(2016-2020年)》,工业和信息化部、国家发展和改革委员会联合制定《化纤工业“十三五”发展指导意见》。现印发给你们,请结合实际认真贯彻落实。  附件:化纤工业“十三五”发展指导意见  工业和信息化部 国家发展和改革委员会  2016年11月25日化纤工业“十三五”发展指导意见  化纤工业是我国具有国际竞争优势的产业,是纺织工业整体竞争力提升的重要支柱产业, 也是战略性新兴产业的重要组成部分。近年来,我国化纤工业持续快速发展,化纤产量占全球三分之二以上。常规化纤产品生产技术居世界先进水平,但产能结构性过剩,行业盈利能力下降。行业自主创新能力较弱,高附加值、高技术含量产品比重低,不能很好适应功能性、绿色化、差异化、个性化消费升级需求。高性能纤维制造成本高,质量不稳定,难以满足航空航天等领域发展需求。化纤是纺织工业的主要原料,也是纺织工业创新发展的基础,为落实《中国制造2025》,引导化纤工业加快转型升级,建设纺织强国,特编制《化纤工业“十三五”发展指导意见》(以下简称《指导意见》)。  一、总体要求  (一)指导思想  全面贯彻落实党的十八大和十八届三中、四中、五中、六中全会精神,深入贯彻习近平总书记系列重要讲话精神,牢固树立创新、协调、绿色、开放、共享的发展理念,着力推进供给侧结构性改革,落实《中国制造2025》,以提升创新能力为着力点,加强重点领域关键技术攻关 以推动转型升级为出发点,积极推广智能制造和绿色制造 以实施提质增效为落脚点,大力实施“三品”战略。坚持市场导向,需求引领,创新驱动,协调发展,构建竞争新优势,为基本建成化纤强国奠定坚实基础。  (二)发展原则  创新驱动,升级发展。加快完善化纤工业创新体系,推进跨行业跨领域融合创新。以企业为中心,加强产学研用协同创新。大力发展高性能纤维和生物基化学纤维,提高化学纤维的功能化、差别化水平。推进化纤生产智能化、柔性化、网络化改造。加快发展服务型制造和生产性服务业。  控制总量,平衡发展。坚持优化存量,从严控制新增产能,依法淘汰落后产能,加快化解过剩产能。优化企业组织结构、产品结构和区域结构,加大兼并重组力度,推动产业集聚,提升行业综合竞争能力。  绿色制造,持续发展。坚持低能耗、循环再利用,加快推广应用先进节能减排技术和装备,完善绿色制造的技术支撑体系。积极推广绿色纤维标志产品,全面推进行业清洁生产认证和低碳认证体系建设,提高资源综合利用水平,加快制造方式的绿色转型。  开放合作,共同发展。落实国家“一带一路”战略要求,推进化纤工业装备、技术、标准、服务的国际化。加强国际合作交流,积极引进高端技术、先进管理经验以及高素质人才,加快形成化纤工业国际化发展的新格局。  (三)发展目标  “十三五”期间,化纤工业继续保持稳步健康增长,化纤差别化率每年提高1个百分点,高性能纤维、生物基化学纤维有效产能进一步扩大。自主创新能力明显提升,到2020年,大中型企业研发经费支出占主营业务收入比重由目前的1%提高到1.2%,发明专利授权量年均增长15%,涤纶、锦纶、再生纤维素纤维等常规纤维品种技术水平继续保持世界领先地位,碳纤维、芳纶、超高分子量聚乙烯纤维等高性能纤维以及生物基化学纤维基本达到国际先进水平,形成一批具有国际竞争力的大型企业集团。绿色制造水平进一步提升,单位增加值能耗、用水量、主要污染物排放等达到国家约束性指标和相关标准要求,循环再利用纤维总量继续保持增长,循环再利用体系进一步完善。  二、主要任务  (一)加快结构调整,实现转型升级  控制总量规模,优化产能结构。坚持控制总量、优化存量、拓展应用,提高发展质量和效益,深化差别化、功能化技术融合,推动行业发展模式由“成本和规模”向“高附加值、专业化与系统化”转变、由生产型制造向服务型制造转变,严格能耗、物耗、环保、质量和安全等标准,加大淘汰落后产能力度,严格控制常规化纤产品新增产能,化解部分过剩产能,为优化供给结构提供空间。  推动兼并重组,促进协调发展。支持企业通过横向联合与垂直整合,实现存量资产的重组和优化。对规模大、实力强的精对苯二甲酸-聚酯企业、己内酰胺-锦纶企业可通过产业链延伸,实现炼化、化纤及纺织的一体化生产,提高产业链掌控能力和综合竞争力。引导企业向市场便利、资源丰富、产业链配套完善以及环保治理集中的地区集聚,促进产业集群式、园区化发展。形成一批产品技术含量高、品种丰富、具有较强综合竞争力的大型化纤集团。同时发展一批“专、精、特、强”中小型企业,提供个性化、差异化和多功能的产品和服务,满足服装、家纺以及产业用领域个性化和多样化的需求。  加强国际合作,构建产业链竞争优势。积极参与全球资源配置和国际产业分工,深化行业国际交流与合作,培育化纤跨国公司,结合“一带一路”等国家重大战略实施,加强与国外高技术纤维及复合材料等生产企业的合作,提升我国化纤的制造和应用水平。推动重点企业积极开展国际产能合作,利用中亚、中东等地区油气资源布局原料加工,依托东南亚市场,利用我国领先的化纤制造技术和装备,形成产业链上下游的配套,主动构建具有竞争优势的全球分工体系、研发创新体系和营销体系。推进产品、技术和标准的国际化合作与互认,提升在化纤国际标准领域的话语权。提高我国化纤工业利用外资的水平和质量,支持在设计、核心制造、营销和咨询服务等环节开展国际合作,鼓励跨国企业在国内设立研发机构。  (二)推动科技进步,提高创新能力  搭建创新平台,完善创新体系。充分发挥产业技术创新战略联盟作用,借助高校、科研院所优势,重点引导和支持创新要素向产业及应用推广体系集聚,建立以龙头企业为主体、产学研用一体化的技术创新体系和产业创新平台,推进企业技术中心、重点行业工程中心和技术服务平台建设,促进上下游产业链集成开发。加快推动在关键领域拥有知识产权的核心技术成果的工程化推广和产业化应用。继续支持开展优秀学术论文评选等行业学术活动,支持以实现产业化为导向的工业应用基础研究,为化纤新品种和新产品的开发提供理论基础和技术支持。  优化产品结构,提升产品质量。着力提高常规化纤多种改性技术和新产品研发水平,重点改善涤纶、锦纶、再生纤维素纤维等常规纤维的阻燃、抗菌、耐化学品、抗紫外等性能,提高功能性、差别化纤维品种比重 加快发展定制性产品,满足市场差异化、个性化需求。加快发展工程塑料、膜等非纤用切片及产品,扩大应用领域。加强从原料采购、生产过程到仓储销售的全流程质量管控,提高产品全生命周期质量追溯能力。采用先进适用技术改造提升传统化纤工艺和装备,实现柔性化生产和产品的优质化。实施精细化质量管理,推广在线计量检测控制系统应用,提高产品质量稳定性和一致性。  突破关键技术,推进高技术纤维产业化。高性能纤维及其复合材料,重点加强高附加值、低成本关键工艺及装备工程化技术研究。间位芳纶、超高分子量聚乙烯等纤维,重点开发新品种,拓展应用领域。碳纤维、聚苯硫醚纤维和连续玄武岩纤维等产品,重点攻克低成本、高稳定性制造技术和装备,开发适用不同领域需求、不同档次的纤维品种,碳纤维要以汽车轻量化和大飞机制造等国家重大工程为契机,重点攻克高端纤维及复合材料生产技术。聚酰亚胺纤维、对位芳纶和聚四氟乙烯纤维等品种,重点研制成套装备、解决工程化放大的技术问题。  突破替代石油资源的生物基原料和生物基化学纤维绿色加工工艺、装备集成化技术,实现产业化、低成本生产。重点提高生物基合成纤维聚合及纺丝单线规模和整体技术水平,优化海洋生物基纤维原料多元化及规模化生产技术。加大市场推广力度,拓展生物基化学纤维应用领域。  推进智能制造,加快两化融合。着力突破数字化、智能化化纤成套装备及制造等关键技术,突破现有化纤装备设计瓶颈,实现模块化生产。满足多品种、高品质、低能耗、清洁化的生产要求,鼓励支持开发面向化纤企业生产的制造执行系统(MES)、企业能源管理体系、企业管理信息系统(ERP)、电子商务服务平台和物联网系统。加强在线检测、远程诊断以及运行维护等功能的开发应用。开发和推广数字化工艺设计、数字化全流程制造技术、数字化生产管理技术,实现大容量多批号产品的信息自动化及产品可追溯性。推动在涤纶、锦纶等行业建立智能车间和智能工厂示范,研究大数据、云计算在化纤生产全流程中的应用。  (三)发展绿色制造,推进循环利用  推广绿色技术,提高节能减排水平。推动绿色设计、绿色制造、回收再利用等技术的开发和应用。重点开发锦纶熔体直纺、再生丙纶直纺等新技术。推广绿色制浆技术,提升原液着色技术生产水平,拓展应用领域,发展纤维绿色后加工工艺技术。编制节能低碳技术目录,积极推广节能环保技术装备,持续推动清洁生产,深化污染治理,确保稳定达标排放,培育行业内能效领跑者企业。  推进再生循环体系建设,促进绿色消费。建立与发展废旧纺织品、废弃聚酯瓶等资源回收和产品梯度循环利用体系,进一步扩大高附加值再生化纤及制品的比重。研究制定行业绿色采购标准,规范采购、生产和销售,提升产品质量、行业信誉和品牌度,促进循环再利用化纤产品的消费。推进生物基化学纤维、循环再利用纤维、原液着色纤维等“绿色纤维”标志认证体系建设,提升“绿色纤维”产品的市场认知度。设立以化纤企业和协会为主体的行业绿色发展基金,鼓励和引导绿色消费,实现绿色转型。  完善行业规范和评价体系建设,提高绿色制造水平。继续做好再生纤维素纤维、循环再利用纤维等行业规范条件宣传和符合规范条件企业名单公告管理工作,适时进行规范条件修订。进一步完善清洁生产评价指标体系,建立健全评价制度和标准,加强清洁生产审核和绩效评估,扩大适用领域。  (四)创新发展模式,提升行业软实力  加强品牌建设,扩大优质纤维影响力。继续组织中国纤维流行趋势发布,培育中国纤维品牌。建立具有行业特色的新产品推广模式,以技术创新和品牌建设为内涵,推动纺织全产业链共同参与纤维新产品推广,培育纤维品牌,扩大需求。加强企业品牌建设,重点培育一批具有较强国际影响力的品牌企业,推动企业品牌国际化。  加快标准化建设,提升质量水平。进一步增强标准化体系建设的系统性和完整性,加强标准化组织机构建设,完善化纤国家标准、行业标准、团体标准体系,提高标准在产品创新、质量提升、品牌建设和绿色发展中的基础性支撑作用 紧密围绕产业发展需要和科技创新趋势,进一步完善化纤协会团体标准,加快新产品和新技术成果标准转化。提高标准国际化水平,积极参与国际标准制修订工作。  加强人才培育,夯实行业基础。适应化纤行业转型发展的新趋势,依托高校与骨干企业,集聚专业师资队伍,推进课程体系与培养基地建设,采取多种方式加强对实用工程人才、卓越工程师和复合型专业技术人才培养,全面提高人才综合素质。大力培养创新型企业家和高级管理人才,加强在国际投资、法律法规、标准认证等领域的人才储备,注重工程化技术团队的培养。优化人才发展环境,引导高端人才向企业流动。加强交叉学科、新兴学科领域专业人才培养,促进高等院校、科研院所与企业联合培养科技人才。  推动服务型制造发展,创新企业经营模式。引导化纤企业将服务嵌入制造和营销的各个环节,鼓励企业从加工制造环节向研发、设计、品牌、物流等服务环节延伸。为客户提供系统和增值服务。利用“互联网+”思维,提供柔性化、小批量、定制化服务,创新经营模式,整合资源,构建全方位的供应链管理服务模式,提高企业服务化水平,建设高水平的服务型制造旗舰企业。  三、发展的重点领域和方向  (一)纤维新材料  新型功能性纤维开发与品质提升。开发聚合与纺丝一体化装备的设计与制备技术,实现模块化生产 开发新一代差别化、多功能纤维产品,实现规模化生产与应用,进一步拓展纤维产品在功能性服装、功能性家纺和工业、环保等领域的应用。加强生产全流程质量管控,促进优质产品供给,满足消费升级和个性化需求。专栏1 差别化、多功能纤维品质提升1.大容量聚合纺丝设备开发。开发高效节能的大容量聚酯聚合和熔体直纺的设备和工艺技术,突破锦纶环吹风技术,提升大容量锦纶装备水平,进一步降低常规纤维的生产成本。利用模块化技术实现差别化、功能性纤维的规模化生产。2.新型纤维品种开发。开发新一代共聚、共混、多元、多组分在线添加等技术,实现深染、超细旦、抗起球、抗静电等差别化纤维的规模化生产。开发新型中空纤维膜以及阻燃、抗熔滴、抗紫外、抗化学品、抗菌等功能性纤维的制备和应用技术,进一步提高化纤产品在工业及家纺领域的应用比例。3.柔性制造技术。建设化纤高效柔性制造技术创新平台,提高工程技术及产品的开发能力,提升关键核心技术的自主创新水平,系统解决产业发展技术瓶颈。  高性能纤维产业化。进一步提升与突破高性能纤维重点品种关键生产和应用技术,进一步提高纤维的性能指标,拓展高性能纤维在航空航天装备、海洋工程、先进轨道交通、新能源汽车和电力等领域的应用。专栏2 高性能纤维产业化1.高性能纤维稳定化、低成本化生产。扩大单线产能、优化控制过程,实现T300级和T700级碳纤维、芳纶1313、超高分子量聚乙烯纤维、聚苯硫醚纤维、连续玄武岩纤维等高性能纤维的批量化和低成本生产,强化产品质量标准的制定和执行,全面提高产品质量的稳定性,进一步增强产品的市场竞争力。2.高性能纤维新品种开发和系列化发展。提升碳纤维、芳纶、聚酰亚胺纤维和聚四氟乙烯纤维等高性能纤维品种的系列化,以满足下游用户的需求。突破高强高模型碳纤维、连续碳化硅纤维、硅硼氮纤维、聚芳醚酮纤维等新型高性能纤维制备及产业化的关键技术。3.高性能纤维创新体系建设。建设高性能纤维及复合材料研发和应用的公共服务平台,为行业提供技术支撑和培育高质量技术人才。  生物基化学纤维产业化。突破生物基化学纤维产业化关键装备的制造,攻克生物基化学纤维及原料产业化技术瓶颈,实现生物基化学纤维规模化生产,着力拓展在服装、家纺和产业用纺织品等方面的应用。专栏3 生物基化学纤维产业化1.生物基再生纤维。突破溶剂法纤维素纤维(Lyocell)关键装备制造的技术瓶颈及高效低能耗溶剂回收等自主创新技术,实现规模化生产;拓宽原料来源,建成示范生产线。2.生物基合成纤维。突破生物基合成纤维原料的产业化制备技术,重点发展非粮食资源的生物基纤维原料生产,提升聚乳酸、聚对苯二甲酸丙二醇酯及生物基聚酰胺的聚合、纺丝和染整产业化技术水平。3.海洋生物基纤维。开发国产虾(蟹)壳、海藻等海洋生物基纤维原料,建立海藻纤维的原料基地;进一步提高单线产能,降低生产成本,拓展应用领域。  (二)绿色制造  开发推广纺前原液着色、绿色制浆、高效绿色催化等先进绿色制造技术,研发废旧瓶片和废旧纺织品高效分选回收技术,建立高水平循环再利用体系,提高化纤行业绿色化生产水平。专栏4 绿色制造和循环利用1.绿色制造技术和装备。推广和发展绿色制浆、酸站闪蒸一步提硝等再生纤维素纤维生产技术,聚酯装置乙醛回收利用技术、聚酯无锑催化剂聚合技术,大型锦纶聚合装置己内酰胺回收利用技术,公用工程节能增效技术、挥发性有机物处理技术等,推广大容量高效浸渍设备、催化调聚脱色设备、低温连续滞留设备和高效脱水设备,研究和攻克非重金属绿色催化剂技术。2.废旧瓶片和废旧纺织品的高效分选回收技术。研发快速高效的废瓶或瓶片的分选、清洗技术和装备,研究开发废旧纺织品的预处理与组分分离技术。3.高值化循环再利用纤维生产技术及装备。开发醇解、杂质分离、聚合、纺丝连续化再生纤维制备的产业化技术及装备;提升大容量物理法循环再利用纤维生产技术水平,开发具有高附加值的产品,拓展应用范围。4.原液着色产业化关键技术。完善原液着色功能性纤维的产业化纺丝技术,开发高性能、高浓缩功能性色母粒的清洁生产技术,完善原液着色纤维标准和色标体系。  (三)智能制造  研发智能化化纤成套生产线,根据化纤生产工艺特点,应用信息技术,采用先进控制方法、感知技术、智能化技术,实现从纺丝到仓储的智能化管理,推动建立涤纶、锦纶等智能车间和智能工厂示范。专栏5 智能制造1.数字化纤维全流程生产技术。强化工艺设计与制造数字化技术,优化生产工艺和流程;运用大数据、云计算等数据分析技术,建立智能化控制系统及模型控制系统,形成化纤生产过程模拟、优化与控制一体化方案。2.产业链智能生产追溯系统。建立包括原料制备、纤维制造、质量检测、包装、仓储、物流等全流程的生产工艺数据采集系统和中央数据库,实现化纤生产全流程信息可追溯;运用先进检测和控制技术,开发连续性、均匀性和稳定性的生产过程控制系统。3.化纤生产智能物流系统。开发集仓储、物流、包装、标签打印于一体的智能物流系统,采用自动化输送设备、机器人、立体库、自动包装设备、自动控制系统,优化库存结构,降低库存成本和平衡物流。4.智能示范工厂和智能车间。突破原料、纺丝、检测、包装、仓储、物流等单元智能化以及集成智能化关键技术与装备,建立推广聚酯、聚酰胺、再生纤维素纤维等柔性化全流程化纤智能生产车间和智能化生产工厂。  (四)品牌与质量提升  加强质量管理,完善和规范质量的评估、认证体系,研究进一步扩大纤维流行趋势发布的品牌影响和效果,开展“绿色纤维”标志认证的推广和培育工作,加强品牌宣传,推进行业、区域、企业、产品品牌的培育,充分发挥品牌在行业发展中的引领作用。专栏6 品牌培育与质量提升1.制定品牌建设标准和价值评价体系。制定《化纤行业品牌培育管理体系适用要求》和《化纤行业品牌价值评价》标准,建设品牌培育体系和价值评价制度,加大宣传和推行力度。2.加强纤维品牌推广。加强纤维品牌整体宣传推广,扩大纤维流行趋势、“绿色纤维”标志认证的影响,推进上下游新产品应用开发对接,提升消费者对纤维品牌的认知度,制定行业品牌拓展路径,推进中国纤维品牌的国际化。3.标准和质量体系建设。研究制定新型纤维产品标准和功能性纤维检测方法标准,加强化纤产品全流程质量管控,推广在线检测和质量追溯体系,推进实验室国际互认,建设一批高水平的国家产品质量监督检验中心、重点实验室和评价实验室。  四、政策措施  (一)加强对行业转型升级的支持力度  在国家《产业结构调整指导目录》、《外商投资产业指导目录》、《鼓励进口技术和产品目录》等产业政策中准确定位化纤工业鼓励和限制的领域,正确引导产业发展方向。聚焦《中国制造2025》,通过现有政策渠道对符合条件的化纤重点工程予以支持,研究制定高新技术纤维在推广应用等方面的有关政策措施,支持化纤企业建设在国内具有影响力的技术中心、工程中心、重点实验室等技术创新平台。推动财税、金融等有关优惠政策在化纤行业的落实。支持企业扩大直接融资,鼓励地方政府加大对化纤企业改造升级的支持。  (二)鼓励兼并重组淘汰落后产能  中央及地方政府要支持企业兼并重组,落实好国家关于纳税人资产重组增值税、所得税的相关优惠政策,鼓励企业通过兼并重组优化生产要素配置,实施业务流程再造和技术升级改造。加强行业规范管理,提高节能、环保、质量、安全等标准,引导和倒逼过剩产能兼并重组,充分利用国家淘汰落后产能的相关组合政策,推动僵尸企业破产退出。落实完善国际产能合作的相关政策。  (三)提高对外开放水平  鼓励国内化纤行业使用政策性金融、开发性金融和商业性金融等工具,灵活利用社会资本支持的市场化运作基金,促进企业在有条件的国家和地区投资设厂,实行海外并购,建立研发、物流和销售中心。加大对境外投资化纤企业在融资、保险、救济等方面的政策支持。鼓励有实力的化纤行业机构开展中介咨询服务,为企业“走出去”提供项目设计、风险评估、融资机制、运营模式等全产业链咨询服务。鼓励和支持化纤企业在对外贸易和投融资活动中使用人民币计价结算,降低汇率风险,减少企业的汇兑成本。  (四)优化市场发展环境  转变政府职能,改善市场环境,激发企业活力。加强行业运行和统计监测,加强对行业重大问题的跟踪分析和调查研究,引导行业规范发展。完善行业预警机制,引导行业资金投向。适时发布产能利用、市场需求等信息,积极应对国际贸易摩擦,维护行业安全和发展利益。强化知识产权保护,加强行业标准、检测体系建设,建立全行业公共服务平台和区域公共服务平台。  (五)发挥社会组织作用  支持行业协会研究行业发展的重大问题,为政府部门决策提供支撑。加强行业自律,及时反映企业诉求。把握行业发展需求,加强产业联盟建设并不断提高重点联盟的运作水平。为企业提供信息咨询、成果推广、人才培养等专业化服务,为特色集群、基地提供专业、定制化服务。  (六)加强组织实施  工业和信息化部、国家发展和改革委员会统筹负责《指导意见》的组织实施,加强《指导意见》的宣传和相关配套措施的落实,增强行业、企业和社会实施《指导意见》的主动性和积极性。加强《指导意见》的动态评估和实施的阶段性成果监测,及时掌握实施进度和存在的问题。各地区可结合当地实际制定落实方案,加强与本地区国民经济和社会发展的统筹与协调。相关行业协会和中介组织要充分发挥桥梁和纽带作用,创新服务方式和内容,积极参与相关工作,协同推动《指导意见》的贯彻落实。
  • 2019中国民企500强榜单发布 附TOP100
    “2019中国民营企业500强峰会”于8月22日至24日在青海省西宁市召开,在大会上公布了2019年中国民营企业500强报告,其中华为连续第四年蝉联榜单第一位置,海航集团、苏宁控股分别排名第二和第三。在TOP100榜单中,从事化学、化工、金属类行业的企业共有27家,包括化学原料和化学制品制造业共3家、化学纤维制造业共3家、石油加工、炼焦和核燃料加工业共3家、有色金属冶炼和压延加工业共8家、黑色金属冶炼和压延加工业共10家。以下是2019年中国民营企业500强前100的榜单:排名企业名称省份行业营收(万元)1华为投资控股有限公司广东省计算机、通信和其他电子设备制造业721202002海航集团有限公司海南省综合618292893苏宁控股集团江苏省零售业602456244正威国际集团有限公司广东省有色金属冶炼和压延加工业505118265恒大集团有限公司广东省房地产业466196006京东集团北京市互联网和相关服务462019767碧桂园控股有限公司广东省房地产业379079008恒力集团有限公司江苏省化学原料和化学制品制造业371736169联想控股股份有限公司北京市计算机、通信和其他电子设备制造业3589196810国美控股集团有限公司北京市零售业3340984611浙江吉利控股集团有限公司浙江省汽车制造业3285208812大商集团有限公司辽宁省零售业3002918613万科企业股份有限公司广东省房地产业2976793314山东魏桥创业集团有限公司山东省有色金属冶炼和压延加工业2844872815雪松控股集团有限公司广东省商务服务业2688259616美的集团股份有限公司广东省电气机械和器材制造业2618196417江苏沙钢集团有限公司江苏省黑色金属冶炼和压延加工业2410017818青山控股集团有限公司浙江省黑色金属冶炼和压延加工业2265014619中南控股集团有限公司江苏省房地产业2225433520阳光龙净集团有限公司福建省综合2208959321信发集团有限公司山东省有色金属冶炼和压延加工业1919133622新疆广汇实业投资(集团)有限责任公司新疆维吾尔自治区零售业1889420223大连万达集团股份有限公司辽宁省综合1807699924小米通讯技术有限公司北京市综合1749154325海亮集团有限公司浙江省有色金属冶炼和压延加工业1736421026泰康保险集团股份有限公司北京市保险业1649153827正荣集团有限公司福建省综合1458000128浙江恒逸集团有限公司浙江省化学纤维制造业1447220029盛虹控股集团有限公司江苏省纺织业1434796530天能集团浙江省电气机械和器材制造业1321233831新希望集团有限公司四川省农业1311771832比亚迪股份有限公司广东省汽车制造业1300547133浙江荣盛控股集团有限公司浙江省化学原料和化学制品制造业1285995834中天钢铁集团有限公司江苏省黑色金属冶炼和压延加工业1250325035重庆市金科投资控股(集团)有限责任公司重庆市房地产业1238282536南通三建控股有限公司江苏省房屋建筑业1223560337超威集团浙江省电气机械和器材制造业1203238338北京建龙重工集团有限公司北京市黑色金属冶炼和压延加工业1202781139海澜集团有限公司江苏省纺织服装、服饰业1200586640新奥集团股份有限公司河北省燃气生产和供应业1161350041龙湖集团控股有限公司重庆市房地产业1157984642东方希望集团有限公司上海市有色金属冶炼和压延加工业1137605143TCL集团股份有限公司广东省计算机、通信和其他电子设备制造业1134474444万向集团公司浙江省汽车制造业1121004345协鑫集团有限公司江苏省电气机械和器材制造业1118164846青拓集团有限公司福建省黑色金属冶炼和压延加工业1103640247东岭集团股份有限公司陕西省批发业1096569448复星国际有限公司上海市综合1093516449南山集团有限公司山东省有色金属冶炼和压延加工业1086961750西安迈科金属国际集团有限公司陕西省商务服务业1086262751河北津西钢铁集团股份有限公司河北省黑色金属冶炼和压延加工业1082348952上海均和集团有限公司上海市综合1040436153百度公司北京市互联网和相关服务1022762054亨通集团有限公司江苏省计算机、通信和其他电子设备制造业1019822855山东东明石化集团有限公司山东省石油加工、炼焦和核燃料加工业1018202056福晟集团有限公司福建省综合1002684457长城汽车股份有限公司河北省汽车制造业992299958上海钢联电子商务股份有限公司上海市互联网和相关服务960550959日照钢铁控股集团有限公司山东省黑色金属冶炼和压延加工业953672160新华联集团有限公司湖南省综合952958561万达控股集团有限公司山东省石油加工、炼焦和核燃料加工业923153662深圳顺丰泰森控股(集团)有限公司广东省邮政业909426963敬业集团有限公司河北省黑色金属冶炼和压延加工业901137564中天控股集团有限公司浙江省房屋建筑业900828565杭州锦江集团有限公司浙江省有色金属冶炼和压延加工业889937766雅戈尔集团股份有限公司浙江省纺织服装、服饰业879258367九州通医药集团股份有限公司湖北省批发业871363668阳光保险集团股份有限公司广东省保险业865728369江阴澄星实业集团有限公司江苏省化学原料和化学制品制造业863408170奥克斯集团有限公司浙江省电气机械和器材制造业860034371利华益集团股份有限公司山东省石油加工、炼焦和核燃料加工业853790572福中集团有限公司江苏省综合853786573传化集团有限公司浙江省综合851326774腾邦集团有限公司广东省综合845148475宁波金田投资控股有限公司浙江省有色金属冶炼和压延加工业839897376华夏幸福基业股份有限公司河北省房地产业837985977卓尔控股有限公司湖北省综合822630878神州数码集团股份有限公司广东省批发业818580579广厦控股集团有限公司浙江省房屋建筑业812684680中融新大集团有限公司山东省装卸搬运和运输代理业807599081内蒙古伊利实业集团股份有限公司内蒙古自治区食品制造业795532882唯品会(中国)有限公司广东省零售业794783583宁夏天元锰业集团有限公司宁夏回族自治区有色金属冶炼和压延加工业793468884正邦集团有限公司江西省农业780253785广州富力地产股份有限公司广东省房地产业768576886弘阳集团有限公司江苏省综合763235787河北新华联合冶金控股集团有限公司河北省黑色金属冶炼和压延加工业758176688融侨集团股份有限公司福建省房地产业753575089华泰集团有限公司山东省造纸和纸制品业737815090荣盛控股股份有限公司河北省房地产业728424191浙江桐昆控股集团有限公司浙江省化学纤维制造业719350492通威集团有限公司四川省农副食品加工业705618193永辉超市股份有限公司福建省零售业705166594正泰集团股份有限公司浙江省电气机械和器材制造业704635395深圳市怡亚通供应链股份有限公司广东省商务服务业700720796蓝思科技集团湖南省计算机、通信和其他电子设备制造业697408697隆基泰和实业有限公司河北省房地产业692361398天津荣程联合钢铁集团有限公司天津市黑色金属冶炼和压延加工业690014099三房巷集团有限公司江苏省化学纤维制造业6755443100玖龙纸业(控股)有限公司广东省造纸和纸制品业6733885扫码关注【3i生仪社】,解锁生命科学行业新鲜资讯!
  • 《化纤工业"十二五"规划》中期评估公布
    《化纤工业“十二五”发展规划中期评估报告》(以下简称《报告》)近期公布。满分100分,及格60分,中国化学纤维工业协会会长端小平会给《化纤工业“十二五”发展规划》的中期落实情况打多少分?  端小平说:“化纤工业总产值与产量的完成情况可以打100分,而产业向中西部转移、‘走出去’战略等方面的工作可能稍显不足。因此,总体而言,我给出85分的成绩。”  《报告》显示,2012年,我国规模以上化纤企业实现工业总产值6888.5亿元,比2010年增长39.2%,年均增长18% 化纤产能达到4021万吨,比2010年增长14.2%,年均增长6.9% 化纤产量3792.16万吨,比2010年增长22.7%,年均增长10.8%。而《化纤工业“十二五”发展规划》计划要达到的目标是,到2015年,化纤工业增加值年均增长8%,化纤产能达到4600万吨,产量4100万吨。因此,我国化纤工业很好地完成了这方面的阶段性任务。  化纤工业将自主创新作为保障实施《化纤工业“十二五”发展规划》的核心和提高综合竞争力的关键。行业在量的积累上,加快质的提升。转型升级工作成效显著。《报告》显示在重点任务的完成方面,常规产品优质化进一步推进,产品附加值不断提升 高性能纤维产业化取得新突破,总体达到国际先进水平 生物基化学纤维及原料加快发展步伐,具有完全自主知识产权的新型溶剂法纤维素纤维技术研发已实现产业化突破。  产业转移工作也在有序推进中,然而并没有达到预期的进程。端小平认为,东部沿海地区由于具备区位优势、经济优势及产业链配套优势,因而依然是化纤产业最为集聚的地区。化纤产业向中西部产业转移的落脚点在于产业的整体布局和产业链的配套,后续的发展需要发挥转移地区内的油气煤电方面的优势,并实现相应的下游产业链配套。  端小平同时表示,“走出去”战略由于受到国际政治环境等不确定因素的影响有些放缓,但是同时应看到,在人造纤维原料、石油炼化等项目上取得了向产业链上游整合的成功突破。  同时,端小平认为,如何将十八届三中全会的精神贯彻到化纤工业“十二五”后期的工作中,是一个值得研究的课题。他说,新一轮的改革毫无疑问将会释放巨大的红利,然而改革需要一个过程,需要时间,行业与企业应该对此给予更多信心与耐心。因此,在当前形势下,要做好长时间“过冬”的心理准备。  《报告》从中期目标完成情况、重点任务完成情况、政策措施实施情况等方面对我国化纤工业“十二五”以来的发展全局作出了深入的分析,并在总结经验的基础上,为今后两年的发展提出了具体建议。文章转载自:中国纺织报
  • 第一届原位电化学显微分析论坛在厦门成功召开
    --蔡司携手超新芯发布创新原位液体电化学显微解决方案2023年4月6日,由中国化学会电化学专业委员会会刊《电化学》、蔡司显微镜与超新芯科技公司联合举办的第一届原位电化学显微分析论坛于厦门成功召开。本次论坛以“探微寻真‘液’视界”为主题,聚焦电化学与新兴的高时空分辨原位显微技术的结合。中科院院士、《电化学》期刊主编、厦门大学化学化工学院孙世刚教授,福建省化学会理事长、《电化学》期刊常务副主编、厦门大学化学化工学院林昌健教授,蔡司大中华区副总裁、显微镜事业部负责人张育薪博士,蔡司显微镜事业部材料科研解决方案总监黄铭刚先生,超新芯(CHIPNOVA)创始人、厦门大学化学化工学院廖洪钢教授与现场来自全国各地的电化学研究领域杰出青年学者共同探讨电化学显微分析研究创新成果与前沿技术。会上,蔡司显微镜携手超新芯(CHIPNOVA)发布了创新型原位液体电化学显微解决方案。此次双方合作,将定制化的原位液体电化学系统,与场发射扫描电镜集成,研发出兼具高品质成像和先进分析功能的原位液体电化学扫描电镜解决方案。该方案克服了液相密封安全性、液相对电子束的成像干扰、电学测量精准性、液相流控稳定性等方面的局限,实现了样品在液氛中电化学反应过程的实时动态高分辨表征,填补了电子显微领域原位电化学工况表征应用的空白。孙世刚院士表示,电化学是达成“双碳”目标的重要支撑学科,发展新能源最快的两大方向是储能和新能源汽车,这对电化学来说是一个很大的黄金时期。廖洪钢教授团队发展的方法,通过自己设计的芯片反应池和伺服系统,引入热场、流体场、电场等,不仅可以帮助我们认识电化学反应过程中的微观结构变化,还可以看到反应过程、传递过程,对发展电化学体系及力学、材料等都有非常重要的推进作用。希望大家以本次合作为契机,进一步推动国内基础研究,与产业和仪器公司密切合作,共同发展中国原创的新技术和方法,为全球的新能源产业发展贡献中国方案。林昌健教授表示,电化学作为百年发展的学科,随着新能源、双碳目标、芯片制造等高新科技的紧迫需求和国家战略意义,电化学迎来新一轮的黄金发展。对电化学过程的原位显微分析将进一步促进电化学的发展。张育薪博士表示,此次蔡司与超新芯的强强联合是蔡司中国本土化创新战略的落地,也是蔡司与国内新兴前沿技术的又一次深度合作,相信此次合作一定能促进海内外先进技术的融合,服务好国内用户的同时推向全球,惠及更多的国内外科研人员。 廖洪钢教授表示,经过10余年来不断的迭代提升,超新芯的原位显微设备已经覆盖液体、气体、力学、加热、冷冻五大系列,是一家原位显微领域全链条研究的创新科研公司。超新芯此次与蔡司合作,将充分利用双方在研发、技术、市场等各自优势领域的资源,将该技术推向全球,力争为更多电化学研究领域的用户提供专业服务,在高端科研仪器领域贡献中国力量。会上,与会人员围绕科研和产业发展需求进行了深入的交流和探讨。谷林、廖洪钢、曾志远、王得丽、王翀、王宇、袁一斐、王贤浩等专家分别介绍了钠电、锂电相关微观结构与电化学性能的关系,铂基、钯基等金属化合物在催化领域的新应用,电镀铜技术在芯片等行业的最新进展与挑战等,与会学者并对电化学技术在相关领域的应用前景进行了热烈的讨论。 本次论坛为电化学领域的资深专家、青年学者与仪器开发企业搭建了良好的交流平台,对深化相关领域产学研深入交流与合作,推动电化学学科更好更快地发展具有重要意义。【关于《电化学》期刊】1995年由厦门大学田昭武院士创办,现任主编为厦门大学孙世刚院士。《电化学》期刊是中国化学会电化学专业委员会会刊,由中国科协主管,中国化学会与厦门大学共同主办,是中国第一个、也是唯一的融基础理论研究与技术应用为一体的电化学专业学术期刊。【关于蔡司和蔡司显微镜】蔡司是全球光学和光电领域的先锋,致力于开发、生产和行销测量技术、显微镜、医疗技术、眼镜片、相机与摄影镜头、望远镜和半导体制造设备。蔡司显微镜作为一家全套解决方案提供者,产品涵盖光学显微镜、电子显微镜、X射线显微镜以及成像和分析软件等完整产品线。蔡司通过这些解决方案,为生命科学、医学诊断、材料研究和工业等领域提供全方位、高品质的技术与服务。 在一百多年的时间里,蔡司共协助36位科学家站上诺贝尔奖的领奖台,领域涉及化学、物理学、生理学和医学等多个方面,促进了现代科学的进步。【关于超新芯(CHIPNOVA)】超新芯(CHIPNOVA)是早期原位芯片技术开发研究者、拥有MEMS芯片制造和原位电镜方面的资深团队,10余年来技术不断迭代升级,在电镜中实现了液、气体微环境引入及光、电、力、热等外场控制与高时空分辨显微研究。相关系统在材料、能源、环境、化学、生物等领域广泛应用,推动了相关领域的科技进步。
  • PerkinElmer红外及拉曼显微化学图像技术进展及国内外最新应用高级研讨会
    特聘请国内外知名专家授课,集中讲解有关红外及拉曼显微化学图像技术的理论、应用和实验。近年来,随着红外及拉曼光谱仪器购置数量逐年增加,仪器的智能化、综合化程度也不断提高。为充分开发仪器功能,提升仪器使用者的能力,使红外光谱仪在各行业的应用和研究中发挥更大的效益,PerkinElmer 11月中旬将在北京、成都和上海连续举办三场【红外及拉曼显微化学图像技术进展及国内外最新应用】高级研讨会。特聘请国内外知名专家授课,本次高级研讨会注重理论、应用和实验结合的方式,给参会人员真正带来理论与应用的提高。具体内容如下:授课专家Morimoto Mitsuhiko 教授: PerkinElmer日本公司资深红外应用专家,加入公司20多年来,在红外及拉曼应用中有极高的造诣。日本目前已有我公司上百台红外显微化学图像系统,在电子、农业、环境、医疗、药物、材料、刑侦、科研等领域拥有广泛的应用。冯计民:公安部二所微量物证鉴定中心资深红外专家,在20多年物证检验经验的基础上,对分析过的约3万张红外光谱图,经分析、整理、归纳, 编写了由化学工业出版社2010年出版的《红外光谱在微量物证分析中的应用》一书。内容简介:微量物证检验是法庭科学的重要组成部分。塑料、纤维、橡胶、涂料、印泥是微量物证检验的重要内容。这些看似平常的物质在成为物证材料(共混/共聚后的物品)后,其红外光谱比均聚物和纯净物的红外光谱复杂得多,谱图解释也复杂、困难得多。《红外光谱在微量物证分析中的应用》是书中内容由三部分构成: 1. 常见塑料、纤维、橡胶、涂料、印油等均聚物; 2. 塑料、纤维、橡胶、涂料、印泥等常用染料、颜料、填料、增塑剂; 3. 上述两类物质的共聚物、共混物;分别介绍了这些作为微量物证物质的组成、性能和红外光谱,并对红外光谱进行了解释。 书的内容可供从事法庭科学红外光谱检验的同行参考,也可供相关专业从业人员参考,尤其适合熟悉红外光谱仪使用,但不熟悉法庭科学中微量物证红外光谱检验的从业人员参考。 研讨内容(1) 红外及拉曼显微化学图像- 红外及拉曼显微化学图像的原理与进展- 红外及拉曼显微化学图像在环境领域的最新应用- 红外及拉曼显微化学图像在农业领域的最新应用- 红外及拉曼显微化学图像在电子领域的最新应用- 红外及拉曼显微化学图像在食品领域的最新应用- 红外及拉曼显微化学图像在医药领域的最新应用- 红外及拉曼显微化学图像在电子领域的最新应用- 红外及拉曼显微化学图像在材料领域的最新应用- 红外及拉曼显微化学图像在刑侦领域的最新应用(2) 多联机技术的最新进展与应用- TGA/FTIR/GC-MS联用- Raman-DSC联用- 在线与遥测技术(3) 微量物证红外光谱鉴定法- 微量物证的勘察提取- 微量物证样品制备技巧- 微量物证红色印泥、印油的红外光谱鉴定法- 微量物证红色汽车漆的红外光谱鉴定法- 微量物证混合物样本的红外光谱鉴定法- 微量物证真假珠宝、玉石等的红外光谱鉴定法与会对象各企事业单位负责化学分析及红外拉曼光谱仪器的负责人及工程技术人员,以及对此技术感兴趣的业内人士。会议时间、地点有关地点详情,请留意此网页。 2010年11月15日 北京 2010年11月17日 成都 2010年11月19日 上海 报名事宜报名者请尽快提交回执,名额有限,先到先得!【高级研讨会报名回执】传真或 E-mail 报名者: 报名传真:021- 50791310 报名邮件:xiao-Huan.he@perkinelmer.com咨询电话:021-38769510转3226 (联系人:何晓欢) 会前一周,我们会向您函发正式会议通知。报到时间、地点及有关事宜将在正式报到通知中说明。
  • 化学分子or美食 显微镜下的食物美得很艺术
    作为厨师都知道,每顿饭背后都是一系列复杂的化学反应。前微软CTO纳森梅尔沃德带领团队,创作出令人大开眼界的现代美食主义图书。这就是现代主义烹饪,颠覆大众对厨房的理解。  这么多蔬菜的切面看起来是不是很像一幅画。胡萝卜或土豆,也变得文艺起来。这是显微镜下的维生素C,呈现了复杂的几何形状  这是显微镜下的切片芹菜这是用锅蒸西兰花的横切图  贻贝。是不是有点像眼球?鸡蛋爆炸的瞬间微波炉加热的爆米花
  • 工信部拟立项826项行业标准
    近日,工信部发布了2016年第二季度行业标准制修订计划征求意见稿,此次制修订计划含826项行业标准,目前处于公示和征求意见期,如对拟立项标准项目有不同意见,请在公示期间填写《标准立项反馈意见表》(见附件3)并反馈至工业和信息化部科技司,电子邮件发送至KJBZ@miit.gov.cn(邮件主题注明:标准立项公示反馈)。  仪器信息网编辑对此批标准进行了梳理,整理出与仪器和分析测试相关的标准目录,供网友参考。其中包括超声硬度计、多种无损检测仪器、便携式水质重金属检测仪、在线溶解氧监控系统、在线微量溶解氧分析仪等多款仪器标准。目录如下:序号 申报号 项目名称 性质 制修订 完成年限 部内主管司局 技术委员会或技术归口单位 主要起草单位 备注 1JCJNZT0595-2016弹性铺地材料有害物质释放量测试方法推荐制定2018节能与综合利用司中国建筑材料联合会中国建材检验认证集团股份有限公司基础2YSJNZT0597-2016再生锌原料化学分析方法 第11部分:锗量的测定 电感耦合等离子体原子发射光谱法推荐制定2018节能与综合利用司全国有色金属标准化技术委员会云南驰宏锌锗股份有限公司一般3YSJNZT0599-2016二次电池废料化学分析方法 第1部分:镍量的测定 丁二酮肟分离-EDTA滴定法推荐制定2018节能与综合利用司全国有色金属标准化技术委员会广东邦普循环科技有限公司一般4YSJNZT0600-2016二次电池废料化学分析方法 第2部分:钴量的测定 电位滴定法推荐制定2018节能与综合利用司全国有色金属标准化技术委员会广东邦普循环科技有限公司一般5YSJNZT0601-2016二次电池废料化学分析方法 第3部分:锰量的测定 电位滴定法推荐制定2018节能与综合利用司全国有色金属标准化技术委员会广东邦普循环科技有限公司一般6YSJNZT0602-2016二次电池废料化学分析方法 第4部分:锂量的测定 火焰原子吸收光谱法推荐制定2018节能与综合利用司全国有色金属标准化技术委员会广东邦普循环科技有限公司一般7JBCPXT0701-2016超声硬度计推荐修订2018装备工业司全国试验机标准化技术委员会长春机械科学研究院有限公司、北京时代之峰科技有限公司、上海市计量测试研究院一般8JBCPZT0705-2016无损检测仪器 激光超声波可视化检测仪推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司、西安金波检测仪器有限责任公司一般9JBCPZT0706-2016无损检测仪器 远场涡流检测仪推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般10JBCPZT0707-2016无损检测仪器 涡流测厚仪推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般11JBCPZT0708-2016无损检测仪器 涡流电导率检测仪推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般12JBCPZT0709-2016无损检测仪器 远场涡流检测探头推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般13JBCPZT0710-2016无损检测仪器 氧化皮堆积电磁检测仪推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般14JBCPZT0711-2016无损检测仪器 金属磁记忆检测探头推荐制定2018装备工业司全国试验机标准化技术委员会爱德森(厦门)电子有限公司一般15JBCPZT0750-2016复印品耐久性的要求及测试方法推荐制定2018装备工业司全国复印机械标准化技术委员会天津复印技术研究所、国家办公设备及耗材质量监督检验中心、珠海天威飞马打印耗材有限公司等基础16JBCPZT0788-2016数控机油泵转子车床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会浙江陀曼精密机械有限公司、沈阳机床(集团)有限责任公司等重点17JBCPZT0790-2016数控双刀架立式刹车盘车床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会浙江陀曼精密机械有限公司、芜湖陀曼精机科技有限公司重点18JBCPZT0792-2016微型球轴承套圈自动车床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会浙江陀曼精密机械有限公司、沈阳机床(集团)有限责任公司等一般19JBCPZT0795-2016数控磨车机床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会长沙金岭机床有限责任公司、沈阳机床(集团)有限责任公司等重点20JBCPXT0798-2016花键轴磨床 第2部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会上海机床厂有限公司基础21JBCPXT0800-2016剪切刀片刃磨床 第1部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会江西昌大三机科技有限公司基础22JBCPXT0804-2016卡规磨床 第1部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会咸阳机床厂基础23JBCPZT0805-2016数控滑板式螺旋锥齿轮铣齿机 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会天津第一机床总厂、重庆机床(集团)有限责任公司、陕西秦川机械发展股份有限公司重点24JBCPZT0806-2016螺纹磨床 第4部分:砂轮架移动式机床 精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会陕西汉江机床有限公司基础25JBCPZT0807-2016滚车复合机床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会重庆机床(集团)有限责任公司、南京二机齿轮机床有限公司、天津第一机床总厂重点26JBCPXT0808-2016内螺纹磨床 第1部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会陕西汉江机床有限公司基础27JBCPXT0810-2016蜗杆磨床 第1部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会陕西汉江机床有限公司基础28JBCPZT0813-2016数控旋转圆锯床 第1部分∶精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会石家庄威锋机械制造有限公司、湖南湖机国际机床制造有限公司基础29JBCPXT0814-2016滚珠直线导轨副 第2部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会陕西汉江机床有限公司、山东博特精工股份有限公司、大连高金数控集团有限公司、广东高新凯特精密机械有限公司、南京工艺装备制造有限公司、国家机床质量监督检验中心基础30JBCPZT0817-2016数控旋转立式带锯床 第1部分∶精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会浙江晨龙锯床股份有限公司基础31JBCPZT0821-2016数控旋转卧式带锯床 第1部分∶精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会浙江锯力煌锯床股份有限公司基础32JBCPZT0822-2016螺母驱动式滚珠丝杠副 第2部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会山东博特精工股份有限公司基础33JBCPZT0825-2016门式摩擦传动车轮车床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会青海华鼎重型机床有限责任公司、北京京铁车辆装备制造有限公司、武汉重型机床集团有限公司重点34JBCPZT0829-2016数控重型龙门移动镗铣床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会武汉重型机床集团有限公司、齐重数控装备股份有限公司、北京北一机床股份有限公司等重点35JBCPZT0833-2016数控落地铣镗床 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会武汉重型机床集团有限公司、齐齐哈尔二机床(集团)有限责任公司、沈阳机床(集团)有限责任公司等重点36JBCPXT0834-2016机床电器运行可靠性要求和试验方法推荐修订2018装备工业司全国金属切削机床标准化技术委员会苏州电器科学研究院股份有限公司基础37JBCPZT0837-2016精密翻板卧式加工中心 第1部分:精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会济南二机床集团有限公司、武汉重型机床集团有限公司等重点38JBCPZT0841-2016精密翻板卧式加工中心 第3部分:翻板工作台精度检验推荐制定2018装备工业司全国金属切削机床标准化技术委员会济南二机床集团有限公司、武汉重型机床集团有限公司等重点39JBCPXT0846-2016卧式精镗床 第2部分:精度检验推荐修订2018装备工业司全国金属切削机床标准化技术委员会云南丽江建福机床集团有限公司基础40JBCPZT0855-2016袋式除尘器用滤料耐折性能测试方法推荐制定2018装备工业司机械工业环境保护机械标准化技术委员会厦门三维丝环保股份有限公司、华侨大学化工学院、中机生产力促进中心重点41JBCPZT0883-2016便携式水质重金属检测仪推荐制定2018装备工业司机械工业环境保护机械标准化技术委员会绍兴市质量技术监督检测院、绍兴科灵标准技术服务中心、江苏天瑞仪器股份有限公司等重点42JBCPXT0893-2016振动筛 试验方法推荐修订2018装备工业司全国矿山机械标准化技术委员会鞍山重型矿山机器股份有限公司基础43JBCPZT0894-2016矿井提升机和矿用提升绞车 变频传动电控设备 检验规范推荐制定2018装备工业司全国矿山机械标准化技术委员会中信重工机械股份有限公司基础44JBCPZT0896-2016直流传动矿井提升机电控设备 检验规范推荐制定2018装备工业司全国矿山机械标准化技术委员会中信重工机械股份有限公司基础45JBCPZT0898-2016矿井提升机和矿用提升绞车 盘形制动系统 检验规范推荐制定2018装备工业司全国矿山机械标准化技术委员会中信重工机械股份有限公司基础46JBCPZT0930-2016柴油机 全速全负荷试验方法推荐制定2018装备工业司全国内燃机标准化技术委员会广西玉柴机器股份有限公司、东风朝阳朝柴动力有限公司基础47JBCPZT0932-2016柴油机 全速超负荷试验方法推荐制定2018装备工业司全国内燃机标准化技术委员会广西玉柴机器股份有限公司、东风朝阳朝柴动力有限公司基础48JBCPZT0934-2016柴油机 SCR催化转化器耐久性检测试验方法推荐制定2018装备工业司全国内燃机标准化技术委员会凯龙高科技股份有限公司、上海内燃机研究所等基础49JBCPZT0936-2016柴油机 气缸盖热疲劳试验方法推荐制定2018装备工业司全国内燃机标准化技术委员会北京理工大学、潍柴动力股份有限公司基础50JBCPZT0939-2016柴油机 共振耐久试验方法推荐制定2018装备工业司全国内燃机标准化技术委员会东风朝阳朝柴动力有限公司、上海内燃机研究所、辽宁工业大学基础51JBCPXT0941-2016内燃机 铸造铝活塞 金相检验推荐修订2018装备工业司全国内燃机标准化技术委员会山东滨州渤海活塞股份有限公司、上海内燃机研究所等基础52JBCPZT0944-2016在线溶解氧监控系统推荐制定2018装备工业司全国工业过程测量控制和自动化标准化技术委员会北京大华融源环保科技有限公司一般53JBCPZT0945-2016在线微量溶解氢分析仪推荐制定2018装备工业司全国工业过程测量控制和自动化标准化技术委员会北京华科仪科技股份有限公司一般54HBJNXT0947-2016硝盐槽的的节能监测推荐修订2017节能与综合利用司中国航空综合技术研究所中国航空综合技术研究所一般55QBCPXT0949-2016肥皂试验方法肥皂中氯化物含量的测定推荐修订2018消费品工业司全国表面活性剂和洗涤用品标准化技术委员会中国日用化学工业研究院[国家洗涤用品质量监督检验中心(太原)]、联合利华(中国)有限公司基础56QBCPZT0956-2016吸尘器除螨功能技术要求和试验方法推荐制定2018消费品工业司全国家用电器标准化技术委员会中国家用电器研究院等基础57QBCPZT0957-2016空气净化器测试用试验舱技术要求和评价方法推荐制定2018消费品工业司全国家用电器标准化技术委员会中国家用电器研究院、清华大学、北京亚都环保科技有限公司等基础58QBCPZT0958-2016空气净化器用空气质量监测系统推荐制定2018消费品工业司全国家用电器标准化技术委员会中国家用电器研究院、清华大学、 北京卫家环境技术有限公司等一般59QBCPZT0998-2016鞋用勾心纵向刚度测定仪推荐制定2018消费品工业司全国轻工机械标准化技术委员会皮革机械分技术委员会中国皮革和制鞋工业研究院(晋江)有限公司一般60FZFFZT1007-2016纺织品 聚苯硫醚纤维与聚四氟乙烯纤维定量分析 差示扫描量热法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会中纺院(天津)科技发展有限公司、中纺院(天津)滤料技术检测有限公司基础61FZFFZT1008-2016纺织品 己二酸二酰肼的测定 液相色谱-串联质谱法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会深圳市计量质量检测研究院、安莉芳(中国)服装有限公司基础62FZFFZT1009-2016纺织品 耐平磨色牢度 金刚砂法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会中纺标(深圳)检测有限公司、纺织工业标准化研究所等基础63FZFFZT1010-2016纺织品 耐平磨色牢度 金属丝网法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会中纺标(深圳)检测有限公司、纺织工业标准化研究所等基础64FZFFZT1011-2016纺织品 织物触感检测与评价方法 多指标集成法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会纺织工业标准化研究所、香港理工大学、中纺标(北京)检验认证中心有限公司等基础65FZFFZT1012-2016纺织品 接触凉感性能试验方法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会武警后勤装备研究所基础66FZFFZT1013-2016纺织品 织物刺痒感性能试验方法推荐制定2018消费品工业司全国纺织品标准化技术委员会基础标准分会江苏出入境检验检疫局、纺织工业标准化研究所等基础67FZFFZT1038-2016汽车内饰件用天然纤维复合材料VOC测试方法推荐制定2018消费品工业司全国纺织品标准化技术委员会产业用纺织品分会中国产业用纺织品行业协会、国家高值特种生物资源产业技术创新战略联盟、长春博超汽车零部件股份有限公司、广州纤维产品检验研究院基础68FZJCXT1043-2016棉及化纤纯纺、混纺印染布检验规则推荐修订2018消费品工业司全国纺织品标准化技术委员会印染制品分会上海市纺织工业技术监督所、鲁泰纺织股份有限公司、新天龙集团有限公司、广东溢达纺织有限公司、中国印染行业协会等。基础69FZJCXT1055-2016棉及化纤纯纺、混纺本色纱线检验规则推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会上海市纺织工业技术监督所、南通双弘纺织有限公司、福建省长乐市金源纺织有限公司、中国棉纺织行业协会等基础70FZJCXT1058-2016棉及化纤纯纺、混纺本色布检验规则推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会上海市纺织工业技术监督所、江苏大生集团有限公司、中国棉纺织行业协会等基础71FZFFXT1060-2016服装衬布氯损强力试验方法推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会长兴三伟热熔胶有限公司、圣山集团有限公司、上海市纺织工业技术监督所、中国产业用纺织品行业协会、上海市服装研究所等基础72FZFFXT1061-2016服装衬布吸氯泛黄试验方法推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会浙江金三发新纺织集团有限公司、浙江盛邦化纤有限公司、上海市纺织工业技术监督所、中国产业用纺织品行业协会、上海市服装研究所等基础73FZFFXT1062-2016服装衬布烫焦试验方法推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会维柏思特衬布(南通)有限公司、浙江盛邦化纤有限公司、浙江越大实业集团有限公司、上海市纺织工业技术监督所、中国产业用纺织品行业协会、上海市服装研究所等基础74FZFFXT1063-2016粘合衬热熔胶涂布量试验方法推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会上海天洋热熔粘接材料股份有限公司、上海市纺织工业技术监督所、中国产业用纺织品行业协会、上海市服装研究所等基础75FZFFXT1064-2016粘合衬剥离强力试验方法推荐修订2018消费品工业司全国纺织品标准化技术委员会棉纺织品分会南通海汇科技发展有限公司、上海天洋热熔粘接材料股份有限公司、上海市纺织工业技术监督所、中国产业用纺织品行业协会、上海市服装研究所等基础76FZCPZT1079-2016滚箱式织物起毛起球性能测试仪推荐制定2018消费品工业司全国纺织机械与附件标准化技术委员会中国纺织机械协会、宁波纺织仪器厂、南通宏大实验仪器有限公司、温州大荣纺织仪器有限公司、温州方圆仪器有限公司、南通三思机电科技有限公司等一般77FZFFZT1137-2016染色机浴比试验方法推荐制定2018消费品工业司全国纺织机械与附件标准化技术委员会纺纱、染整分会杭州智能染整设备有限公司、浙江方正轻纺机械检测中心有限公司、浙江省纺织测试研究院、浙江省纺织机械标准技术化委员会、邵阳纺织机械有限责任公司等基础78FZFFZT1085-2016生丝 鲜干茧丝鉴别 高效液相色谱法推荐制定2018消费品工业司全国丝绸标准化技术委员会浙江出入境检验检疫局丝类检测中心、浙江理工大学基础79FZFFXT1086-2016蚕丝含油率试验方法推荐修订2018消费品工业司全国丝绸标准化技术委员会浙江丝绸科技有限公司、苏州大学、广东出入境检验检疫局、国家丝绸及服装质量监督检验中心基础80FZFFZT1092-2016再生纤维素纤维结晶程度试验方法 着色法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位上海市质量监督检验技术研究院、上海市纺织工业技术监督所基础81FZFFZT1093-2016化学纤维 散热性能试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位上海市质量监督检验技术研究院、上海市纺织工业技术监督所基础82FZFFZT1094-2016化学纤维 短纤维亲水性能试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位滁州安兴环保彩纤有限公司、中国石化仪征化纤有限责任公司、上海市纺织工业技术监督所等基础83FZFFZT1095-2016低熔点聚酯(PET)复合短纤维 粘结温度试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位上海市纺织工业技术监督所、宁波大发化纤有限公司等重点84FZFFZT1096-2016氨纶长丝 预牵伸度试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位浙江华峰氨纶股份有限公司、上海纺织工业技术监督所、烟台泰和新材料股份有限公司等基础85FZFFZT1097-2016氨纶长丝 抱合性能试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位长乐恒申合纤科技股份有限公司、上海市纺织工业技术监督所、烟台泰和新材料股份有限公司等基础86FZFFZT1098-2016氨纶长丝 酸性染料上色率试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位烟台泰和新材料股份有限公司、浙江华峰氨纶股份有限公司、上海市纺织工业技术监督所等重点87FZFFZT1099-2016碳纤维 灰分含量试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位中科院宁波材料技术与工程研究所、上海市纺织工业技术监督所等重点88FZFFZT1100-2016碳纤维原丝 含油率试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位中科院宁波材料技术与工程研究所、上海市纺织工业技术监督所等重点89FZFFZT1101-2016碳纤维 碱金属及碱土金属含量试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位中科院宁波材料技术与工程研究所、上海市纺织工业技术监督所、中国化学纤维工业协会等重点90FZFFZT1102-2016碳化硅纤维 成分分析方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位中科院宁波材料技术与工程研究所、上海市纺织工业技术监督所、中国化学纤维工业协会等重点91FZFFZT1103-2016碳化硅纤维 氧含量试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位中科院宁波材料技术与工程研究所、上海市纺织工业技术监督所、中国化学纤维工业协会等重点92FZFFZT1104-2016聚酰亚胺短纤维耐热、耐紫外光辐射及耐酸性能试验方法推荐制定2019消费品工业司纺织工业化学纤维标准化技术归口单位长春高琦聚酰亚胺材料有限公司、江苏省高性能纤维产品质量监督检验中心、上海市纺织工业技术监督所等重点93SJCPZT1155-2016光伏组件用镀膜玻璃膜层耐久性测试方法推荐制定2018电子信息司全国半导体材料和设备标准化技术委员会国家太阳能光伏产品质量监督检验中心重点94SJCPZT1158-2016光伏用紫外老化试验箱辐照性能测试方法推荐制定2018电子信息司全国半导体材料和设备标准化技术委员会福建省计量科学研究院重点95YDCPZT1255-2016集成式光功率检测器(IPM)推荐制定2018信息通信发展司中国通信标准化协会中兴通讯股份有限公司,武汉烽火科技集团有限公司(武汉邮电科学研究院),深圳新飞通光电子技术有限公司,中国信息通信研究院(工业和信息化部电信研究院)一般96YDCPZT1270-2016信息通信设备振动适应性检测规范推荐制定2018信息通信发展司中国通信标准化协会保定泰尔通信设备抗震研究所、中国移动通信集团设计院有限公司、中兴通讯股份有限公司、华为技术有限公司(由中国通信企业协会通信工程建设分会组织编制)一般97YDCPXT1282-2016移动通信基站设备抗地震性能检测规范 第1部分:基站部分推荐修订2018信息通信发展司中国通信标准化协会保定泰尔通信设备抗震研究所(由中国通信企业协会通信工程建设分会组织编制)一般98YDCPZT1283-2016LTE Diameter信令网路由代理(DRA)设备测试方法推荐制定2018信息通信管理局中国通信标准化协会中国移动通信集团公司,中国联合网络通信集团有限公司,中国电信集团公司,中国信息通信研究院(工业和信息化部电信研究院),中兴通讯股份有限公司,华为技术有限公司,上海贝尔股份有限公司重点99YDCPZT1284-2016LTE FDD数字蜂窝移动通信网直放站技术要求和测试方法推荐制定2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),中国电信集团公司,国家无线电监测中心检测中心,中国移动通信集团公司,中国联合网络通信集团有限公司,京信通信系统(中国)有限公司,武汉烽火科技集团有限公司(武汉邮电科学研究院),福建三元达通讯股份有限公司,三维通信股份有限公司,华为技术有限公司,中兴通讯股份有限公司,西安通和电信设备检测有限公司,成都泰瑞通信设备检测有限公司,中国电子科技集团公司第七研究所凯尔实验室重点100YDCPZT1285-2016TD-LTE数字蜂窝移动通信网直放站技术要求和测试方法推荐制定2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),中国移动通信集团公司,国家无线电监测中心检测中心,京信通信系统(中国)有限公司,武汉烽火科技集团有限公司(武汉邮电科学研究院),福建三元达通讯股份有限公司,三维通信股份有限公司,西安通和电信设备检测有限公司,中兴通讯股份有限公司,华为技术有限公司,中国联合网络通信集团有限公司,成都泰瑞通信设备检测有限公司,中国电子科技集团公司第七研究所凯尔实验室重点101YDCPZT1300-2016数据中心交换机设备VxLAN协议一致性测试方法推荐制定2018信息通信管理局中国通信标准化协会中国电信集团公司重点102YDCPZT1305-2016移动通信终端无障碍测试方法推荐制定2018信息通信管理局中国通信标准化协会工业和信息化部电信研究院、中国残疾人联合会,联想移动通信科技有限公司,天津三星通信技术有限公司,海信集团有限公司,中兴通讯股份有限公司,华为技术有限公司基础103YDCPXT1306-2016车载窄带语音通信设备传输性能要求和测试方法推荐修订2018信息通信管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),天津三星通信技术有限公司,深圳酷派技术有限公司重点104YDCPZT1307-2016车载通信终端语音识别功能技术要求和测试方法推荐制定2018信息通信管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),天津三星通信技术有限公司,深圳酷派技术有限公司重点105YDCPZT1309-2016接入网设备测试方法 超高速数字用户线(G.fast)推荐制定2018信息通信管理局中国通信标准化协会武汉烽火科技集团有限公司(武汉邮电科学研究院),华为技术有限公司,上海贝尔股份有限公司,中国信息通信研究院(工业和信息化部电信研究院)重点106YDCPZT1318-2016LTE用户驻地设备(CPE)测试方法推荐制定2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),华为技术有限公司一般107YDCPXT1320-20162GHz WCDMA 数字蜂窝移动通信网无线接入子系统设备测试方法(第七阶段) 增强型高速分组接入(HSPA+)推荐修订2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),中国联合网络通信集团有限公司,华为技术有限公司,中兴通讯股份有限公司,诺基亚通信(上海)有限公司,上海贝尔股份有限公司,南京爱立信熊猫通信有限公司一般108YDCPZT1326-2016无线多系统接入平台(POI)网管接口测试方法推荐制定2018信息通信管理局中国通信标准化协会中国铁塔股份有限公司,中国信息通信研究院(工业和信息化部电信研究院),武汉烽火科技集团有限公司(武汉邮电科学研究院),国家无线电监测中心检测中心,京信通信系统(中国)有限公司,深圳国人通信股份有限公司,中国电子科技集团公司第七研究所凯尔实验室,成都泰瑞通信设备检测有限公司,三维通信股份有限公司,西安通和电信设备检测有限公司,中兴通讯股份有限公司,华为技术有限公司一般109YDCPZT1327-2016公众无线局域网用户驻地设备(CPE)技术要求和测试方法推荐制定2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),中国电信集团公司,中国联合网络通信集团有限公司,国家无线电监测中心检测中心,武汉烽火科技集团有限公司(武汉邮电科学研究院),中兴通讯股份有限公司一般110YDCPZT1343-2016智能光分配网络管理系统测试方法推荐制定2018信息通信管理局中国通信标准化协会中国联合网络通信集团有限公司,中国移动通信集团公司,中国信息通信研究院(工业和信息化部电信研究院),武汉烽火科技集团有限公司(武汉邮电科学研究院),深圳市科信通信技术股份有限公司,南京普天通信股份有限公司重点111YDCPZT1344-2016智能光分配网络管理终端测试方法推荐制定2018信息通信管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),中国联合网络通信集团有限公司,武汉烽火科技集团有限公司(武汉邮电科学研究院),深圳市科信通信技术股份有限公司,南京普天通信股份有限公司重点112YDCPZT1356-2016通信用阀控式密封铅碳蓄电池技术要求与试验方法推荐制定2018信息通信管理局中国通信标准化协会双登集团股份有限公司,中国信息通信研究院(工业和信息化部电信研究院),中国铁塔股份有限公司,浙江南都电源动力股份有限公司,华为技术有限公司,江苏理士电池有限公司,中国联合网络通信集团有限公司,中国电信集团公司重点113YDCPZT1358-2016LTE终端电磁干扰技术要求和测量方法 第2部分:FDD LTE终端推荐制定2018信息通信管理局、无线电管理局中国通信标准化协会中国信息通信研究院,中国电信集团公司、中国联合网络通信集团有限公司、中国移动通信集团公司、北京中科国技信息技术有限公司、天津三星通信技术有限公司、联想移动通信科技有限公司重点114YDCPZT1359-2016电信设备环境试验要求和试验方法 第9部分:风力试验推荐制定2018信息通信管理局中国通信标准化协会中国电信集团公司,华为技术有限公司、中兴通讯股份有限公司、深圳日海通讯技术股份有限公司一般115YDCPZT1405-20169kHz-30MHz短距离微功率设备射频测试方法推荐制定2018无线电管理局中国通信标准化协会国家无线电监测中心检测中心重点116YDCPZT1407-201630MHz-1GHz短距离微功率设备射频测试方法推荐制定2018无线电管理局中国通信标准化协会国家无线电监测中心检测中心重点117YDCPZT1409-20161-40GHz短距离微功率设备射频测试方法推荐制定2018无线电管理局中国通信标准化协会国家无线电监测中心检测中心重点118YDCPZT1410-20165725-5850MHz无线电设备射频技术要求和测试方法推荐制定2018无线电管理局中国通信标准化协会国家无线电监测中心检测中心重点119YDCPZT1411-2016车载移动通信终端导航定位射频性能技术要求和测试方法推荐制定2018无线电管理局、信息通信管理局中国通信标准化协会中国信息通信研究院(工业和信息化部电信研究院),深圳电信研究院,大唐电信科技产业集团,中国联合网络通信集团有限公司重点120AHCPZT1169-2016柴油中脂肪酸甲酯含量测定 红外光谱-衰减全反射法推荐制定2017安徽经信委全国化学标准化技术委员会有机化学分技术委员会国家石油化工产品质量监督检验中心(安庆)一般
  • 布鲁克公司发布完整的扫描电化学显微镜解决方案
    完整的SECM电化学显微镜解决方案 布鲁克独有的PeakForce SECM™ 模块是全球首创的完备商用解决方案,在基于原子力显微镜的扫描电化学显微镜上实现了小于100纳米的空间分辨率。通过创新性探针设计,可实现纳米级分辨率的基于原子力显微镜的扫描电化学显微镜目前已广泛应用于新兴研究领域,如化学动力学,生物化学信号传导和环境化学等。此外,此技术可以纳米级横向分辨同时获取形貌、电化学、电学和机械性能等图谱。PeakForce SECM™ 充分利用峰值力模式的优势从根本上重新定义了在液下能实现哪些电学和化学过程的纳米尺度的观察。 PeakForce SECM首次实现了:(1)以往无法获得的100 nm 空间分辨率的电化学信息(2)同时实现液相下电化学、电学和机械性能等图谱(3)专为SECM设计的可靠而简单易用的商用原子力探针(4)在Dimension Icon原子力显微镜上实现最高分辨的SECM和原子力显微成像Au上的一个甜甜圈型图案,使用PeakForce SECM在微压印SAM(自组装)样品上成像。(A) 形貌图中高度差仅几个纳米;(B) 黏附力图清晰地显示出两种化学性质不同的区域; (C) 电流图显示出SAM因其绝缘特性降低了针尖的法拉第电流。 Image courtesy of A. Mark and S. G?drich, University of Bayreuth.了解更多详情请进入布鲁克公司官网。
  • 观察分子反应像数星星 新型化学显微镜拥有超高分辨率
    教科书上的化学反应均以单分子形式进行概念描述,但实验中得到的却是大量分子的平均结果。一瓶380毫升的水,约含有10的25次方个水分子,投入金属钠会产生激烈的反应。不妨试想,宏观可见的化学现象,具体到单个分子是怎样的表现?  单分子实验是从本质出发解决许多基础科学问题的重要途径之一。近年来,虽已有单分子荧光显微镜技术,冷冻单分子电镜技术等诺贝尔奖级别的成果问世,观察、操纵和测量最为微观的单分子化学反应仍是科学家面对的长期挑战。  8月11日,浙江大学化学系冯建东研究员团队在国际顶级期刊《自然》发表封面文章。浙大团队以电致化学发光反应为研究对象,发明了一种可以直接对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术可实现更清晰的微观结构和细胞图像,在化学成像和生物成像领域具有重要应用价值。  捕获分子发光信号 1秒内连拍上千张图片  电致化学发光,是指具有发光活性的物质在电极表面通过化学反应实现发光的形式,可令分子产生光信号,在体外免疫诊断、成像分析等领域已有应用。  “在溶液体系还难以开展单分子化学反应的直接光学捕捉。”冯建东介绍,单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。  如何实现微弱乃至单分子水平电致化学发光信号的测量和成像?如何在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像?3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。  “团队通过搭建灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立捕获到了单分子反应后产生的发光信号。” 论文第一作者、浙大化学系博士生董金润介绍。  从空间上,研究团队通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最快在1秒内拍摄1300张,消除邻近分子间的相互干扰。  利用这套光电控制和测量平台,团队首次实现单分子电致化学发光信号的空间成像,其成像特点在于无需借助外界光源,可在暗室操作。  多重曝光合成叠加 实现纳米级超高分辨率  现如今,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“但能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术非常有限。”冯建东提到,主要在于受到光的衍射极限限制,光学成像分辨力不足,即相邻很近的两个点难以分辨。  为此,冯建东团队在获取单分子信号图像基础上,着手研究电致化学发光的超分辨成像。受到超分辨荧光显微镜技术的启发,研究团队利用通过空间分子反应定位的光学重构方法进行成像。  “好比人们夜晚抬头看星星,可以通过星星的‘闪烁’将离得很近的两颗星星区分开一样。”冯建东介绍,技术原理即通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,就能构建出化学反应位点的“星座”。  为验证这一成像方法的可行性以及定位算法的准确性,研究团队通过精密加工的方法,在电极表面制造了一个条纹图案作为已知成像模板,并进行对比成像,条纹间隔为几百个纳米。  记者看到,该微纳结构的单分子电致化学发光成像与电镜成像结果高度吻合。而且,单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。  研究团队进而将该成像技术应用于生物细胞显微成像,以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化,成像结果与荧光超分辨成像可关联对比,其分辨率也可与荧光超分辨成像相媲美。  “相比于荧光成像技术,电致化学发光成像不需要对细胞结构做标记,意味着不易影响细胞状态,对细胞可能是潜在友好的。”冯建东表示,未来,这项显微镜技术将作为一项研究工具,在单分子水平揭示更多化学奥秘,也有助于揭示更为清晰的生物结构和看清生命基本单位细胞如何工作。
  • 登上《自然》封面!新型单分子化学反应成像显微镜在浙大问世
    化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。 浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。 在时空隔离中达到单分子反应测量极限教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。” 图1:单分子电致化学发光信号的时空隔离和随机性。为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。” 在单分子空间定位中突破光学极限显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。 受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ” 图2:单分子电致化学发光显微镜在微纳结构成像上的论证。 冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。 图3:单分子电致化学发光显微镜固定(死)细胞成像。 研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。 图4:单分子电致化学发光显微镜活细胞成像。 未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。 该研究受到了国家自然科学基金委(项目号:21974123)、浙江省自然科学基金委(项目号:LR20B050002)、中央高校基本科研业务费校长专项(项目号:2019XZZX003-01)和浙江大学百人计划的经费支持。
  • 科学家将拉曼效应用于光热显微镜,实现超灵敏振动光谱化学成像
    “我们开创了受激拉曼光热成像[1]这个全新的方向,这是化学成像领域的一个新突破,这项技术未来一定会发展成为能够被广泛应用的产品。”美国波士顿大学程继新教授如是说。图丨程继新(来源:程继新)在这次研究中,程继新团队利用一种新的物理机制,即受激拉曼本质上是一个化学键振动吸收过程,吸收的能量变成热形成焦点局部升温,升温改变焦点周围样品的折射率。由此,他们开发出受激拉曼光热(Stimulated Raman Photothermal,SRP)显微镜。该技术突破了此前受激拉曼散射(Stimulated Raman Scattering,SRS)成像的检测极限,将调制深度提高了 500 倍,极高的调制深度为更高灵敏度的检测奠定了基础。那么,与 SRS 相比,SRP 有哪些不同呢?具体来说,SRS 显微镜直接测量光被吸收后强度的变化,并提供光谱和空间信息;而 SRP 显微镜则是测量由样品热膨胀引起的光散射或由热透镜引起的折射,观察样品本身的温度、折射率等变化,进而提供光谱和空间信息。化学成像技术能够“追踪”细胞中的分子信息,但该领域最大的瓶颈之一是灵敏度。SRS 显微镜在揭示复杂系统中的分子结构、动力学和耦合方面显示出巨大的潜力。然而,由于其较小的调制深度和脉冲激光的散粒噪声,SRS 的灵敏度难以突破毫摩尔级,这导致其无法对低浓度分子的观察及对相关信息的追踪。此外,不可忽视的是,在使用 SRS 成像时,研究人员必须使用高倍物镜来收集信号。如果想得到高分辨成像,就必须将两个高倍物镜挤在一起,这在操作上带来极大的不便。而 SRP 的优势在于操作简单、方便,只需要低倍物镜就能够测量相关信号,且检测物镜和样品之间可以保持一定的距离。由于 SRP 显微镜非常灵敏,可以通过它观测不同的分子、不同的化学键,填补了该领域的数据空白。该技术有望应用于环境科学、材料科学、生命科学等领域,例如环境中微塑料检测、绘画作品成份分析、病毒单颗粒谱学、单细胞和生物组织成像等。一次“因祸得福”的聚会开启了一个新方向该技术背后的科研故事要从一次“因祸得福”的聚会说起。2021 年,在程继新 50 岁生日时,举办了一次课题组聚会,其中的主题之一是篮球比赛。组内成员博士研究生朱一凡在运动时不小心受伤了,因此需要在家休养 2 个月。于是,程教授交给他一个计算方面的任务:在受激拉曼散射成像时,聚焦焦点的温度变化具体是多少?根据朱一凡的模拟结果,在大概 10 微秒的时间里,相关温度上升了 2 至 3 摄氏度,这个结果很快引起了程教授的高度关注。“这个范围的瞬态温度变化不会损害细胞。于是,我们开始探索拉曼效应用于光热显微镜这个全新的方向。”程继新说。图丨SRP 显微镜设计(来源:Science Advances)从计算方面确定了温度升高的数据,那么,如何在实验上证实温度升高呢?研究人员想到,可以用对温度很敏感的荧光染料来做温度计。具体来说,把荧光染料加入样品,在受激拉曼激发的同时进行荧光测量。实验结果证明荧光强度呈下降趋势,以此在实验上确认了受激拉曼导致的温度升高(如下图)。图丨受激拉曼光热效应的理论模拟和实验观察(来源:Science Advances)但是,荧光测试是有标记的测量,而他们更想通过无标记(label-free)的方式测量光热信号。于是,研究人员用“第三束光”测折射率的变化,可以在纯液体中得到同样的信息,而且这种做法不受脉冲激光噪音的影响。最终,他们突破了此前 SRS 成像的检测极限,将调制深度提高 500 倍。组内成员博士研究生殷嘉泽以中红外光热显微镜(Mid-infrared photothermal microscopy)为主要研究方向,于 2021 年发展了一种新方法,用快速模数转换直接提取光热信号[2]。该方法同样适用于 SRP 显微镜,从而有效地提高了其检测灵敏度。图丨生物样品在水溶液环境中的 SRP 成像(来源:Science Advances)此外,组内成员博士研究生戈孝伟为本次开发 SRP 显微镜提供了 SRS 的实验基础。由此可见,研究是一个逐渐积累的过程,并需要团队成员发挥各自的优势,这充分体现了“众人能移万座山”的精神。图 丨相关论文(来源:Science Advances)近日,相关论文以《受激拉曼光热显微镜实现超灵敏化学成像》(Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging)为题发表在 Science Advances [1]。波士顿大学博士研究生朱一凡为该论文第一作者,程继新教授为论文通讯作者。16 年磨一剑1999 年,程继新在香港科技大学从事第一个博士后研究,他选择了一个技术较为成熟的研究方向——超快光谱学(ultrafast spectroscopy)。同年,诺贝尔化学奖颁予飞秒时间分辨的超快光谱学技术。2000 年,他加入国际单分子生物物理化学的奠基人之一、哈佛大学谢晓亮教授(现北京大学李兆基讲席教授)课题组,从事第二个博士后研究。在那里,程继新和其他同事开发了可实现高速振动光谱成像的相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)显微镜。2014 年,诺贝尔化学奖颁予超分辨率荧光显微技术。但是,荧光显微镜不能解决生物成像领域中所有的问题,例如,荧光染料标记会改变胆固醇、氨基酸等小分子的生物功能。因此,生命科学需要无荧光染料标记的分子成像技术。程继新表示,“选键成像很好地解决了分子选择性的问题,其不仅能看到各种分子,又不需要对分子进行荧光染料标记。”梦想很美好,现实却充满挑战。能不能通过发明新技术,去做荧光显微镜做不到事情?“继新”人如其名,从学生时代就喜欢啃“硬骨头”的他,继续探索。博士后研究工作结束后,程继新于 2003 年来到美国普渡大学任教,在那里,他将分子光谱学与生物医学工程融合,致力于化学成像这一新兴领域。2007 年,该课题组报道了一个有趣的发现:由于受激拉曼增益和损耗,一部分能量从光子转移到分子[3]。因为脉冲式的能量吸收可以产生声波,该发现促使其团队开发出受激拉曼光声显微镜(stimulated Raman photoacoustic microscope)。然而,由于当时的光声测量不是很灵敏,他们没测到受激拉曼光声信号。幸运的是,在一个意外的实验中,他们发现了基于泛频激发的光声信号[4],并开发了检测血管内壁胆固醇的振动光声内窥镜。图丨中红外光热选键成像的原理(左)及产品展示图(右)(来源:程继新)为寻找增强化学键成像信号的方法,他们再次调整研究方向。通过“thinking out of the Raman box”,开启了中红外高分辨光热成像这一全新的方向。由于分子振动吸收的能量在皮秒的时间尺度上全部转化为热能,程继新意识到,光热效应可以用来“看”细胞里的化学键。2016 年,他们报道了高灵敏度中红外光热显微镜 (Mid-infrared photothermal microscope),突破性地实现中红外超分辨三维动态成像。通过用可见光来测量光热效应,该技术能够以亚微米分辨率“看见”活细胞中的化学组分,首次使单细胞红外显微成像成为可能[5]。2017 年,程继新加入波士顿大学担任光学中心的 Moustakas 光学及光电子学讲席教授。他的团队致力于精准医学光子学技术的研发,研究覆盖了化学成像、神经调控、光学杀菌等三个方向。其课题组在全球首次通过光声信号来刺激、调节神经细胞(如下图)。最近,他们设计了一种用于无创神经刺激的高精度(0.1 毫米)光致超声器件,并在小鼠模型成功验证,第一次利用非遗传途径进行超高精度的无创神经调节[6]。此外,他们还发明了一种通过光解色素来杀死抗药性超级细菌的方法[7]。图丨光致超声神经刺激工作原理图和横向声场压强分布(来源:程继新)程继新认为,真正原创的工作不是被设计出来的,而是实现了从来没想过会发生的事情。“原创的科学是由直觉推动的,并得益于长期不懈的努力和积累,所谓的‘突破’其实是一个量变到质变的过程。”他总结道。不止于科学技术的创新,在推进技术产业化落地的过程中,更是让他感叹“应用范围超乎了最初的想象”。据悉,程继新拥有 30 多项国际专利,并作为联合创始人或科学顾问参与了多项技术的产业化。2015 年,基于分子振动光声技术,程教授和学生们共同创立了 Vibronix Inc.,该公司致力于振动成像技术研发和医疗设备创新,现位于苏州工业园区。2018 年,作为科学顾问参与建立了光热光谱公司(Photothermal Spectroscopy Corp.)。该公司位于美国加州,基于程教授的中红外光热成像专利开发了一款名为“海市蜃楼(mIRage)”的显微镜,寓意为“信号来自于折射率的变化”。据了解,该产品目前已销往世界各地百余实验室。2019 年,程继新联合创立了 Pulsethera 公司,旨在通过内源发色团的光解作用杀死超级细菌。2022 年,程继新成为法国巴黎 AXORUS 公司的科学顾问,该公司致力于光声神经刺激技术的医学转化。谈及技术的推进产业化落地的经验,程继新表示,在发展某项技术时,可能最开始只聚焦在生命科学领域的某个细分方向,但将技术真正发展为产品,其应用范围之广可能是当初没有想到的。他举例说道:“mIRage 现在被应用在半导体领域,用来检测芯片中的污染。芯片中的污染多数是有机物,因此能够通过化学键成像来检测芯片的质量,这完全超乎了我的想象。”图丨2023 年 8 月,程继新课题组的部分成员合影于首届化学成像 Gordon Research Conference(来源:程继新)回顾三十年的科研之路,程继新认为,最有回味的事情是每个阶段都有新惊喜。化学成像领域每经过大约 8 年就要进行一次技术革新,从 1999 年的 CARS 显微镜到 2008 年的 SRS 显微镜,到 2016 年的中红外高分辨光热成像,再到 2023 年的 SRP 技术。“几年前还觉得是天方夜谭的事情,都通过发明新的技术实现了,由此一步步将领域发展向前推进。”程继新说。下一步,该团队将继续发展无荧光标记的化学成像,进一步提升灵敏度,同时发展深组织的高分辨化学成像技术。他们希望,能够利用高能量的激光器将 SRP 的灵敏度提升到接近于荧光显微镜的微摩尔级别。同时,他们计划尽快将该技术发展为产品。据悉,美国加州的Photothermal Spectroscopy Corp.及中国苏州的威邦震电公司(Vibronix Inc.)正在推进相关的产业化进程。从 2007 年观测到受激拉曼过程的能量转移,到 2023 年报道 SRP 显微镜,对程继新来说,这是一次历经 16 年的科研旅程。在本次的 SRP 论文发表后,他在朋友圈这样写道:“科学很酷,生命短暂。我的下一个 16 年会是什么样呢?”
  • 美德科学家因超分辨率荧光显微镜获诺贝尔化学奖
    瑞典皇家科学院8日宣布,将2014年诺贝尔化学奖授予美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。 诺贝尔化学奖评选委员会当天声明说,长期以来,光学显微镜的分辨率被认为不会超过光波波长的一半,这被称为&ldquo 阿贝分辨率&rdquo 。借助荧光分子的帮助,今年获奖者们的研究成果巧妙地绕过了经典光学的这一&ldquo 束缚&rdquo ,他们开创性的成就使光学显微镜能够窥探纳米世界。如今,纳米级分辨率的显微镜在世界范围内广泛运用,人类每天都能从其带来的新知识中获益。 声明还说,黑尔于2000年开发出受激发射损耗(STED)显微镜,他用一束激光激发荧光分子发光,再用另一束激光消除掉纳米尺寸以外的所有荧光,通过两束激光交替扫描样本,呈现出突破&ldquo 阿贝分辨率&rdquo 的图像。贝齐格和莫纳通过各自的独立研究,为另一种显微镜技术&mdash &mdash 单分子显微镜的发展奠定了基础,这一方法主要是依靠开关单个荧光分子来实现更清晰的成像。2006年,贝齐格第一次应用了这种方法。因此,这两项成果同获今年诺贝尔化学奖。 今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制