当前位置: 仪器信息网 > 行业主题 > >

化学性质

仪器信息网化学性质专题为您整合化学性质相关的最新文章,在化学性质专题,您不仅可以免费浏览化学性质的资讯, 同时您还可以浏览化学性质的相关资料、解决方案,参与社区化学性质话题讨论。

化学性质相关的资讯

  • 盛奥华 | 画说污水性质与污染指标、检测仪表
    污水的类型 物理性质与污染指标污水的污染指标一般可以分为物理性质、化学性质和生物性质三类,其中物理性质分为: 工业企业排出的污水都有较高的温度,会导致水体缺氧和水质恶化; 是一项感官性指标,纯天然水清澈透明无色,污水往往五彩斑斓,污水排放对色度有严格要求; 水的易臭来源于还原性硫氮化合物、挥发性有机物和氯气等污染物质。 固体包括溶解性固体和悬浮固体,悬浮固体和挥发性悬浮固体是重要的水质指标,也是污水处理厂设计的重要参数。化学性质与污染指标有机物:生化需氧量BOD是有机物被生物分解所消耗的溶解氧量;化学需氧量COD是有机物被化学氧化剂氧化所消耗的溶解氧量;这两个参数被广泛运用于表达水中有机物的含量。此外,代表水中所有有机物含碳量总碳TOC以及氧化这些碳的总需氧量TOD也是衡量水中有机物含量的重要参数。 污水中的苯类化合物、酚类化合物、有机酸减、有机农药等,这些物质对微生物都有毒害与抑制作用,属于有毒物质。 污水中的油类污染物和表面活性剂(俗称洗涤剂)虽然无毒,但是对自然界的危害依旧很大,前者直接坑死动物;后者会让水体富营养化,间接坑死动物。 无机物:这个主要指示水样的酸碱性,正常水的pH值在6~9之间。 无机污染物也有有毒和无毒之分,重金属、砷(本身没毒,但极易氧化成砒霜)、含硫化合物、氰化物等都属于有毒物质。无毒的无机污染物主要是植物营养素氮、磷,农田里求之不得的肥料放在自然界的水里就是水生生物的大杀器,过量的氮磷造成水藻疯长、水体富营养化,严重影响鱼类生存。 生物性质与污染指标 细菌总数反映了水体受细菌污染的程度;大肠杆菌则是被视为最基本的粪便污染指示菌群;病毒则是比细菌还小还麻烦的东西。水体自净作用 水体的自净分为以挥发、稀释和沉淀为主的物理净化;以氧化、还原和分解为主的化学净化;以微生物分解为主的生物净化。污水处理就是使用自然净化的模式在小区域内人工加速这一过程,让废水达到排放标准。
  • 普洛帝石油物性及化学性能标准物质平台上线
    英国普洛帝分析侧集团公司近日向国际石油化工领域发布其最新的服务平台-石油物性及化学性能标准物质平台,该平台主要面向石油仪器生产厂家、第三方检测计量机构及石油仪器用户开发服务,重点提升其仪器的评价标尺及溯源。标准物质作为测量参考标准,是用于测量过程控制和测量结果评价不可缺少的工具,是建立一致可比的全球测量互认体系的物质基础和保障。它的作用正如一把尺子,只不过衡量的对象不再是简简单单的长度,而是众多检测领域所涉及的化学、生物、工程、物理等众多特性量或成分量。作为化学测量标尺,标准物质所发挥的作用也是多维的,它可用于检测方法评价、检测仪器评价、待测样品测试、检测环境评价、实验人员与检测实验室能力的评价等。使用标准物质对于改进检测工作质量,提高检测准确度,保证检测结果的一致性和有效性具有重要意义,继而可为科技进步与创新、重大决策以及经济和社会发展中所涉及的公平贸易、标准制定、实施和验证、民生保障等提供坚实的支撑。随着全球逐步从最近的金融危机中挣脱出来、随着政府对经济重建工作的展开。我们能够发现:科技已成为推动经济增长与繁荣的原动力。而经济的增长和繁荣依靠以相同的国际参考标准所进行的正确测量。一个世界。如果没有准确的计量,那它就是一个科技。贸易、社会无法交流的世界。就是一个充斥着错误与不确定的世界。石油物性及化学性能标准物质平台集结国内外主流单位的石油类标准物质,如磨损金属标样、多元素磨损金属标样、金属添加剂标样、基体油和溶剂、磨损金属标样稳定剂、单元素金属有机标样、酸值和碱值标样、燃料稀释标样、柴油稀释标样、汽油稀释标样、发动机冷却液检测标样、多元素冷却液标样、石油产品硫标样、开口闪点标准油、开口闪点参比标准油、闭口闪点参比油、冷滤点标准油、粘度标准油、倾点标准物质、凝点有证标准物质、浊点仪器校准标准油、浊点测试校准物质、馏程标准品、卡尔费休水分标准品、烃含量标准品、对萘酚苯甲醇、等石油化工有证标准样品及参比样品。石油物性及化学性能标准物质平台合作单位有:国际计量局、国际测量技术联合会、国际法制计量组织、国际实验室认可组织、国际认可论坛、中国国家标准物质中心、欧洲认可协作组织、美国标准技术研究院、德国物理技术研究院、英国国家物理实验室、英国国家化学与生物化学实验室、法国国家计量研究所、俄罗斯计量局、加拿大计量局、日本计量研究实验室、韩国标准研究所、新加坡生产力促进局等国际知名标准物质提供单位。目前英国普洛帝分析侧集团公司在中国已经开展各类招商工作,我们将和中国的优秀合作共赢经销商一起承担石油物性及化学性能标准物质平台的相关销售、推广和服务工作。 油液监测技术型设备的专业提供商!普洛帝(简称:PULUODY)是油液监测技术提供商,1970年7月由PULUODY本人创立于英国诺福克,致力于向人们提供“精准、可信赖”的颗粒监测技术。普洛帝颗粒监测技术延续并持续创新了40余年,现已成为油液颗粒监测技术及设备的专业提供商。普洛帝/PULUODY、普勒/PULL、卡尔德/CALDEE是PULUODY ANDLYSIS & TESTING GROUP LTD.(简称PULUODY GROUP)授权公司在中国的注册商标,任何使用方需得到PULUODY GROUP及其授权公司的许可方可使用。PULUODY GROUP拥有在中国区油液监测技术的所有权,陕西普洛帝测控技术有限公司为其授权执行方。PULUODY GROUP授权陕西普洛帝测控技术有限公司在中国区向广大提供其优质的技术及产品!如有疑问请联络普洛帝服务中心!029-85643484
  • 食品出口须警惕因“化学性污染”遇堵
    &ldquo 化学性污染&rdquo 成食品出口头号杀手之一,食品中汞、铅、镉等有害金属,农兽鱼药残留,滥用苏丹红、孔雀石绿等化学物质,食品加工不当产生多环芳烃类、N&mdash 亚硝基化合物,滥用食品添加剂、生长促进剂等&ldquo 化学性污染&rdquo 接连引发轩然大波,成为各国监管高度关注的话题。  欧盟于近日接连发布两则监管动向。一则是就食品中溴化阻燃剂的痕量监控,发布了委员会建议2014/118/EU,欲将溴化阻燃剂纳入食品监控计划,并对抽样程序、不同食品中溴化阻燃剂的监控种类和分析方法、报告方式作了规定。另一则为减少食品中镉含量的委员会建议2014/193/EU,拟逐步采取措施减少食品中的镉含量,特别是谷物、蔬菜和土豆中的最大限量,规定采样和分析应依据EC No 333/2007号法规,该法规指定了食品中铅、镉、汞、无机锡、3-MCPD和多环芳烃含量的取样和分析方法。  &ldquo 化学性污染&rdquo 涉及名目繁多,已成出口&ldquo 硬&rdquo 伤。统计数据显示,2013年我国出境食品被美国食品药物管理局(FDA)、加拿大食品检验署、欧盟食品和饲料类快速预警系统和日本厚生劳动省等境外政府机构通报1850例,其中仅因化学性污染就有856起通报,占总通报数的46.27%。3月份仅宁波地区就有4例食品出口因化学性污染遭到FDA通报。  宁波地区每年食品出口超过10亿美元,水产品、茶叶、蔬菜及制品、罐头、酒类等多类传统优势产品受到国外市场追捧,今年第一一季度,宁波口岸900多家企业经检验检疫出口的各类食品货值已达3.15亿美元,同比增长8.3%。  在此,检验检疫部门给广大企业提个醒,我国新修订的《食品中污染物限量》标准已于去年6月1日施行,欧盟等国对食品中化学污染的管控愈加严谨,加强食品中此类安全风险的评估迫在眉睫:一方面应对照相关法规标准,加强重点安全卫生项目的自我把关能力,加快痕量分析技术等相关检测技术的研发,并与相关实验室、检测机构加强化学性污染检测方面的沟通交流 另一方面,严把原料验收关,在原料采购中重视核查材料成分、质量等级和合格证明等相关信息,完善产品原料、工艺等质量控制体系。
  • 化学式情人节:“钠妹妹”和“氯哥哥”
    一提&ldquo 氢氦锂铍硼&rdquo ,你会不会就条件反射地接上&ldquo 碳氮氧氟氖&rdquo ?高中化学元素性质和方程式这些年来耗费了多少学生的脑细胞!近日,一条漫画科普帖在微信热传,复旦大三学生方方创作的化学故事漫画巧妙地将元素知识镶嵌其中,以钠元素的神奇历险故事,将各个元素的特性和常见化学反应做了个概述。创作者介绍这套漫画的故事情节主要是按照高中化学教材编写的,旨在和高中生一起,从另一个角度看待平时所学的化学知识。  &ldquo 钠妹妹&rdquo 串起元素知识  学化学时,元素的性质和各种化学方程式曾让不少人头疼。如今复旦大学化学系大三学生方方创作的钠MM(妹妹)的故事用一种生动形象的形式把这样一个化学记忆难题给解决了。  故事围绕一个住在煤油中的钠MM和她的男友氯GG(哥哥)展开。讲述了化学性质活泼的钠在离开煤油的保护后,与氯相遇并芳心相许,随后二者在爱情道路上历经种种考验&mdash 他们遇到水分子大军,被迫分离,然后钠MM又遇到了强劲的情敌银小姐&hellip &hellip 经历一番波折后,钠MM终于和氯GG踏上了一段神奇的旅程,他们遇到了许多元素,发生了一系列神奇的故事。  故事用钠MM遭遇的各种考验,将元素周期表中的元素及其化学性质做了一个简单的概述。可爱的漫画,加上生动形象的故事情节,让这些化学知识变得通俗易记。  趣味漫画诠释高中化学  为什么会选择这样的视角来讲述一个化学世界的故事?方方告诉记者,因为化学是自己擅长和熟悉的领域,而且她在高中化学的学习过程当中有时会冒出一些奇思妙想,并且有一套属于自己的理解方法,因此想用漫画的形式将自己的见解呈现出来。  &ldquo 我的大学辅导员曾做过高中化学教育,在一次聊天中,他谈到高中生刚学化学的时候,很多人反映那些化学元素的性质、化学反应方程式很难记忆和理解。我们就探讨是不是可以换一种直观、生动的方式来重新诠释高中化学知识,让学生更容易接受。&rdquo 方方说。因为十分喜欢画画,她的辅导员就建议可以用画画的形式将自己对化学知识的理解呈现出来。  &ldquo 我高中的化学老师很棒,他教课时并非照本宣科,而是有自己的一套理解体系。授课中他会把他对化学独到的见解传授给我们。例如他常常告诉我们化学就是说文解字  讲解乙烷的构象时,会加上动作,声情并茂地说,这个张牙舞爪的乙烷啊&hellip &hellip 因此,化学老师的方法给了我许多启发,我就想,可从另一个角度去理解和记忆化学知识,而不是单纯地死记硬背。&rdquo 她说。  方方介绍,目前的故事情节主要是按照高中化学教材来编写的,以钠的神奇经历把高中所有的元素知识都串起来。她说高中化学基础主要有两条线,一条是元素的性质,一条是理论和概念,钠MM的故事主要是讲前者,目前该系列讲到第9期,讲完这一系列,她准备再用一个系列讲讲高中化学理论知识。  &ldquo 这一系列的漫画主要希望面对高中生进行化学科普。漫画在我的公众号ChemisArt上推出后,就有不少良性互动。我希望这个平台能让更多人参与进来,看看大家尤其是正在学高中化学的中学生的反馈如何,以便决定下一步该怎么走。&rdquo
  • 质标所化学性典型污染物检测技术研发成果达到国际先进水平
    3月29日,从中国农业科学院农业质量标准与检测技术研究所 &ldquo 农产品中化学性典型污染物精准识别与确证检测关键技术研究与应用&rdquo 科技成果评价会上获悉,质标所王静率领的&ldquo 农业化学污染物残留检测技术及行为&rdquo 团队经过多年努力,运用农产品中化学性典型污染物检测技术在仿生材料制备及膜固定化技术方面取得突破,构建的精准识别与确证检测技术为解决我国农产品快速检测品种不全、检测灵敏度不高、样品前处理繁琐等问题起到了积极作用。该成果通过了由中国农学会组织的成果评价。  近年来,我国农产品质量安全问题频发,农兽药、农药助剂、环境污染物、违禁添加物等化学性污染物仍是目前影响我国现阶段农产品质量安全的主要危害因子,如何建立精准、快速、稳定的检测技术,构建快速与确证相结合的检测方法体系,已成为实施农产品质量安全监管必须解决的问题。为解决制约农产品质量安全监管过程中的重要技术问题。  &ldquo 农产品中化学性典型污染物精准识别与确证检测关键技术研究与应用&rdquo 设计发明了三嗪类农药等6大类分子印迹固相萃取柱,建立了富集能力强、净化效果好、环境友好型的快速样品前处理技术平台 发现了催化剂与增强剂的相互作用对化学发光检测体系稳定性的影响,将原有检测灵敏度提高了1个数量级 建立了农产品中3类农药助剂的检测技术,构建了我国农产品中植物生长调节剂、除草剂、环境污染物、违禁添加物等多残留确证检测方法,实现了5大类300多种危害因子的多残留确证检测。发表论文143篇,其中SCI论文55篇,获授权国家发明专利9项,形成国家/行业标准7项。  以孙宝国院士等构成的评价专家组一致认为,该成果整体上达到国际先进水平,将为我国农产品质量安全监管、产地准出、市场准入提供强有力的技术支撑,为保障我国农产品质量安全发挥重要作用。
  • 我国研发成功新型电化学发光纳米生物传感器
    随着科技的进步,传感器和光学元件都将趋于小型化和集成化。有机低维纳米材料由于其独特的结构和新颖的物理、化学性质,在生物传感、纳米光子学领域中展现出广阔的应用前景。近日,据国际知名期刊《Advanced Materials》报道,中国科学院化学研究所光化学院重点实验室利用高比表面积的一维纳米材料,制备出一种更加灵敏的电化学发光纳米生物传感器。该项研究也为低维纳米材料制备生物传感器提供了重要的理论和实验依据。  从细菌到人,所有生物都在使用&ldquo 生物分子开关&rdquo 来监测环境。此类&ldquo 开关&rdquo ,即由RNA或蛋白制成、可改变形状的分子。这些&ldquo 分子开关&rdquo 的诱人之处在于:它们很小,足以在细胞内&ldquo 办公&rdquo ,而且非常有针对性,足以应付非常复杂的环境。受到这些天然&ldquo 开关&rdquo 的启发,纳米生物传感器应运而生。  据中科院相关人员介绍,生物传感器是用固定化的生物体成分,如酶、抗原、抗体、激素等,或者是生物体本身的细胞、细胞器、组织等作为传感元件制成的传感器。按所用分子识别元件的不同,生物传感器可分为酶传感器、微生物传感器、组织传感器、细胞器传感器、免疫传感器等 按信号转换元件的不同可分为电化学生物传感器、半导体生物传感器、测热型生物传感器、测光型生物传感器、测声型生物传感器等。其中,电化学生物传感器由于具有体积小、分辨率高、响应时间短、所需样品少、对活细胞损伤小等特点,广泛应用于医药工业、食品检测和环境保护等领域。  如今,纳米技术的介入更是为电化学生物传感器的发展提供了新的活力。纳米材料具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等,使得其表现出奇异的化学、物理性质。例如常见的碳纳米材料,特别是碳纳米管、石墨烯等,就表现出优良的力学性能、导电性能、表面性能及独特的电化学性质。此前,研究人员就曾用琼脂糖将葡萄糖氧化酶和连接了二茂铁的单壁碳纳米管固定在玻碳电极表面,实现了对葡萄糖的快速灵敏检测。碳纳米管的引入还能够显著提高电化学敏感膜中电活性物质的氧化还原可逆性,同时消除了溶解氧对测定的干扰。纳米材料应用于电化学生物传感器领域后,不仅提高了传感器的检测性能,而且提升了传感器的化学和物理性质以及它对生物分子或细胞的检测灵敏度,检测时间也得以缩短,与此同时还实现了高通量的实时分析检测。  随着纳米技术和生物传感器交叉融合的发展,越来越多的新型纳米生物传感器涌现出来,如量子点、DNA、寡核苷配体等纳米生物传感器。未来纳米生物传感器的发展方向应该是集成多功能、便携式、一次性的快速检测分析机器,它可以广泛用于食品、环境、战场、人体疾病等领域的快速检测。例如,食品和饮料中病原体或者农药残留成分的快速灵敏检测 环境中污染气体或者污染金属离子等远程检测和控制 人体血液成分和病原体的快速实时检测,以及战场生化武器和爆炸物的快速检测。  但是与此同时,新一代纳米生物传感器同样面临诸多挑战,如更高灵敏度、特异性、生物相容性、集成多种技术、检测方法简化、制备工艺、批量化生产、成本效益等。对此,这一生物传感器的研发课题组专家表示,分子自组装加工工艺简单可控,可以实现快速复制,而且成本较低,对生物传感器的发展有很重要的促进作用,有利于高灵敏度、低成本、一次性纳米生物传感器的发展。而生物分子自组装技术更值得关注,它具有天然的生物兼容性、优异的结合性能,或将成为生物传感器发展的另一个全新领域。
  • 解决公用工程中水蒸汽的化学问题,避免停工和潜在的人身伤害
    高纯度水和由此产生的蒸汽构成大多数工艺装置的生命线。设备故障和由于水/蒸汽问题而导致的减产,每年可能会花费数十万美元或更多的费用。更糟糕的是,有些故障会造成人身伤害或人员死亡。因此,本文我们将讨论与蒸汽发生器有关的水处理和化学控制的几个重要问题。让我们从一个案例开始。几年前,我和一位同事参观了美国中西部一家有机化学品厂,由于内部结垢,这家工厂的四台550 psig机组锅炉中的蒸汽过热器管束,不得不每两年左右进行一次更换。我们首先察看了一根最近拆卸的管束,其内管表面上有大约¼英寸厚的沉积物。然后我们检查了锅炉,立刻注意到饱和蒸汽取样管线上流出泡沫。随后的调查显示,锅炉冷凝液回流中的总有机碳TOC浓度有时达到200 ppm,ASME指南[1]要求在这种压力下的锅炉,TOC的最大浓度为0.5 ppm。因此,很容易看出为什么锅炉水中存在大量泡沫,以及为什么杂质会持续地被带到到过热器。杂质的影响杂质会引起腐蚀、结垢等问题。随着锅炉压力和温度的升高,这些情况变得更加严重。幸运的是,电力行业已经吸取了一些直接应用于化工装置的经验教训,特别是那些因工艺需要或发电而产生高压蒸汽的装置。例如,表1和表2总结了电力研究所(Electric Power Research Institute,EPRI)为热回收蒸汽发生器的补给水排放和冷凝液泵排放制定的指导方针[2]。热回收蒸汽发生器补给水的一般化学限值*热回收蒸汽发生器冷凝液泵排放的一般化学限值*氢损伤资料来源:ChemTreat。图1氢气分子渗入金属壁——注意这里的厚唇故障对其中一些杂质影响的研究,揭示了为什么限值如此之低。考虑氯化物。即使是从冷凝器管泄漏或受污染的冷凝液回流少量进入蒸汽发生器,如果长期存在且未被锅炉水处理程序中和,将集中在锅炉内部构件的沉积物之下。高温锅炉环境中的氯盐可根据以下条件与水发生反应:所产生的盐酸本身可能会造成一般腐蚀——更糟糕的是,酸会在沉积物之下积聚,在那里会与铁发生反应生成氢。氢气分子渗入金属壁,然后与钢中的碳原子结合生成甲烷(CH4):形成的气态甲烷和氢分子会造成钢出现裂纹,这会大大削弱钢的强度(图1)。氢损伤是非常麻烦的问题,因为不容易检测到。发生此类损坏后,工厂可能会更换管道,但会发现其他管线继续破裂。我曾经是一个必须处理1250 psig公用工程锅炉氢损伤问题的团队中的一员。在知道冷凝器泄漏的情况下,运行人员坚持将设备运行了数周。尽管我们团队尽了最大努力保持足够的锅炉水的化学性质,但最终结果是大范围的氢损伤,要求对整台锅炉重新更换管线。电导率和钠的测定非常简单,对于检测污染物是否进入蒸汽发生器非常好。当然,这种监测只有在化学专家或操作人员迅速采取补救措施时才具有实际价值[3]。正如已经指出的,有机化合物会造成蒸汽发生器出现问题,并在高温下分解形成短链有机酸和二氧化碳,这可能会对蒸汽和冷凝液回流的化学性质产生重大影响。满足补给水指南需要有可靠的高纯水处理系统。一种非常常见的方法是采用二级反渗透(RO),其中包括精制混床离子交换装置或进行最终的电极电离。由于RO膜非常容易受到颗粒物质污染,因此需要在上游进行过滤,这其中微滤或超滤越来越受欢迎[4]。化学处理问题几十年前,人们普遍认为,所有的氧都应该从锅炉给水中去除,否则会造成严重的腐蚀。当一台设备停工且空气会进入系统时,的确如此。然而,在正常运行期间,除非冷凝液/给水系统含有铜合金,否则这种想法已被证明是错误的。不管怎样,这种信念催生一个给水调理的化学程序,称之为还原性全挥发处理(All-Volatile Treatment Reducing,AVT(R)),用氨或胺进料建立了一个适度基本的pH值和还原剂(氧清除剂)注入,以去除从机械除氧器中逸出的氧气。对于高压设备,常用的还原剂曾经是肼,但现在已经用更为安全的化学物质取代了。壁厚变薄资料来源:ChemTreat。图2 单相FAC导致壁厚大幅变薄现在已经知道AVT(R)化学过程会导致给水系统的流体加速腐蚀(FAC);这会导致壁厚变薄(图2),并最终导致灾难性故障。过去30年,美国几次流体加速腐蚀导致的故障曾导致人员死亡。简而言之,蒸汽发生器投入使用时,碳钢形成了一层薄的磁铁(Fe3O4)。流体扰动和还原环境结合在一起会导致铁离子从钢/磁铁基体中浸出,从而引起壁厚变薄。温度和pH值影响溶解程度,通常在150℃左右达到峰值,并且随pH值(如9及以下)的降低而升高。因此,最容易发生这种腐蚀的区域是传统蒸汽发生器的给水/节能器系统,以及热回收蒸汽发生器的低压,有时是中压节能器和蒸发器。对于给水系统中不含铜合金的设备(如热回收蒸汽发生器),推荐的给水处理已变成氧化性全挥发处理(All-Volatile Treatment Oxidizing,AVT(O))。这一程序允许(正常)通过冷凝器泄漏的少量氧气得以保留,甚至可能注入一点补充氧气,从而使给水中溶解的氧气浓度保持在5-10 ppb范围内。氨或胺的加入使pH值维持在中间至上限9的范围内。在这些条件下,磁铁层散布其中并被一层水合氧化铁(FeOOH)覆盖。随着还原环境的消除,其保护作用非常显著。但该程序仅在阳离子电导率小于0.2 μS/cm的高纯水中有效。否则,会导致氧腐蚀。因此,冷凝液回流可能产生高电导率升高的装置不应采用AVT(O)。推荐的热回收蒸汽发生器锅炉水监测点关于给水的化学监测,表2中引用的冷凝液泵排放阳离子电导率、pH值和钠的一般限值均适用。这是可以理解的,因为许多现代工业蒸汽发生器和几乎所有的热回收蒸汽发生器都没有给水加热器;因此,在蒸汽发生器的通道中,冷凝液的化学性质变化很小。但是,热回收蒸汽发生器给水的建议溶解氧范围为5–10 ppb。还建议采用总铁监测,最好使用腐蚀产物取样器,以确保程序(无论是AVT(O)或替代程序)充分保护冷凝液和给水管线。在适当的化学条件下,给水中的总铁含量应保持在2 ppb以下。如果出于某种原因,需要AVT(R),腐蚀产物取样器也会收集铜腐蚀产物,这为铜腐蚀控制提供了关键数据。锅炉水处理八十年来,蒸汽发生化学专家一直利用磷酸钠化合物对汽包锅炉水冷壁回路进行腐蚀控制并防止固体物沉积。目前,对于高压装置,磷酸三钠(TSP-Na3PO4)是唯一推荐的种类,可能会补充少量的苛性碱(NaOH)以提高开车时的pH值。三磷酸钠通过以下方式在锅炉中产生弱碱性:碱性在一定程度上会减轻等式2中的影响。三磷酸钠的优点还有通过与硬性离子(钙和镁)反应,形成可被排出的软淤泥。三磷酸钠的一个缺点是,当温度超过300︒F时,其溶解度大大降低。因此,在满负荷的高压装置中,大部分磷酸盐沉淀在水冷壁管和其他内件上。这种现象通常被称为“隐藏”。许多装置化学专家现在运行装置的散装水磷酸盐浓度约为1–2 ppm,是因为知道大部分原来的磷酸盐已隐藏,并将在锅炉负荷降低或停工时重新溶解。锅炉水化学处理和监测在很大程度上是设计用于保护蒸汽纯度的。对于通过汽轮机发电的装置来说尤其如此。表3汇总了最重要的检测指标。推荐的蒸汽样品检测指标在很大程度上,给水和锅炉水化学性质的化学指南旨在防止过量杂质带入蒸汽,如果蒸汽驱动一台或多台汽轮机机,这一点尤其重要。汽轮机是精密机械,需要仔细的安装、平衡和操作。(有关汽轮机的更多信息,请参阅:“依靠汽轮机”。)表4详细说明了最重要的指导原则。预防问题正确的蒸汽发生化学反应至关重要,因为需要一直监测和控制化学反应。忽视冷凝液回流、锅炉给水、锅炉水或蒸汽化学反应,从成本和安全角度来看,代价都很大。此外,正确的蒸汽发生器停工、保养和开工程序是关键问题,尤其是防止停用氧气腐蚀[6,7]。原文英文版收录于《Chemical Processing》2015年刊,作者:Brad Buecker, Kiewit Engineering & Design参考文献1.“现代锅炉给水和锅炉水化学性质控制操作规程共识”,美国机械工程师协会(ASME),纽约市(1994)。2.“联合循环/热回收蒸汽发生器(HRSG)综合循环化学指南”,出版编号3002001381,美国电力研究协会(EPRI),帕洛阿尔托,加州(2013)。3.Buecker,B.和D.McGee,“改进水/蒸汽化学控制和装置可靠性的智能系统”,电力工程(2014年5月)。4.Buecker,B.,“微型或超过滤和反渗透:工业水处理的流行组合”,工业水世界(2014年1月/2月)。5.“技术指导文件:汽轮机运行用蒸汽纯度”,水和蒸汽特性国际协会,伦敦(2013)。6.Mathews,J.,“化石装置的保养规程”,电力(2013年2月)。7.Buecker,B.和D.Dixon,“联合循环热回收蒸汽发生器停工、保养和开工化学控制”,电力工程(2012年8月)。◆ ◆ ◆联系我们,了解更多!
  • 安东帕落球粘度计推出最高耐化学性毛细管
    安东帕落球式黏度计Lovis 2000 M/ME,可根据Hoeppler落球原理测量滚球滚过透明和不透明溶液的时间。测量只需100 μL样品量,即可提供准确度最高达0.5%的测量结果。给出特性黏度、运动黏度或动力黏度结果。Lovis 2000 M/ME小巧经济,可节省实验室的空间。 作为安东帕AMVn自动微量黏度仪的后续产品,Lovis 2000 M/ME微量落球黏度计配置选择上更具灵活性,为满足不同需求提供更多选择。其中,一款全新推出的PCTFE(氯乙烯)进样毛细管,对腐蚀性样品具有最高的耐化学性。基于这一特性,Lovivs 2000 M/ME可以用于测量几乎所有液体,无论是腐蚀性的、侵蚀性的还是危险性的样品,甚至可以用来测量氢氟酸。 由于测量毛细管非常小,仅需十分之一毫升的样品就可保证测量需求,从而获得可获得高价值的结果。 此外,由于具有良好的韧性,这种新型的毛细管还非常适合于做演示。PCTFE毛细管和完整附件箱可用于手动进样、流通式进样和低样品量进样。更多Lovis 2000 M/ME产品信息,请登录:http://www.anton-paar.com/cn-cn/products/details/rolling-ball-viscometer-lovis-2000-mme/viscometer/ 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 禾信愿为全球大气化学科学提供帮助
    &ldquo 2012年第十二届国际全球大气化学科学大会(The 12th International Global Atmospheric Chemistry Science Conference)&rdquo 于2012年9月17日至21日在北京国家会议中心盛大召开,这次由北京大学主办的大会主题是&ldquo 人类纪元的大气化学&rdquo 。 两年一度的国际全球大气化学科学会议是大气化学领域交流和传递科技信息的首要途径,与会代表就在大气成分和化学性质被我们人类改变的情况下,对大气和人类活动之间的相互作用进行了讨论。 总经理周振博士带领广州禾信分析仪器有限公司的研发、市场、技术等一行队伍,携在线单颗粒气溶胶质谱仪(SPAMS)、在线挥发性气体质谱仪(SPIMS)、激光光腔衰荡气溶胶消光仪(XG-1000)等参展产品参加了此次会议。 位于国家会议中心一层宴会厅C厅外侧大厅的禾信展台及展品受到了参会人员的极大关注,尤其是在线单颗粒气溶胶质谱仪(SPAMS)更吸引了众多中外科研人员的驻足,无论在外观还是在产品的功能上,中外科研人员都表现出了极大的兴趣,某国外专业人士还热心提了一些关于产品性能和应用方面的意见和建议,更有很多长期支持和信赖禾信公司产品的老客户前来咨询新产品。禾信的应用工程师也现场为感兴趣的客户讲解和介绍了相关仪器的原理和使用情况。我们相信,禾信的质谱仪器能够在中国市场上创领行业先锋,为全球大气化学科学提供有力的帮助。
  • 中科院化学所同一实验室诞生两名新科院士
    p  12月7日,记者从中国科学院2015年新当选院士名单中获知,化学部新当选的两名院士刘云圻、李玉良均来自同一实验室——中科院化学所有机固体实验室。同一实验室、同年诞生两名“新科”院士的情况引发科技界广泛关注。/pp  今年66岁的刘云圻自1975年毕业分配至中科院化学所,至今已经在有机固体实验室工作了40年。“在化学部新当选的院士中,我的年龄算比较大了。”刘云圻告诉《中国科学报》记者,“我非常珍惜这个荣誉称号,我将继续在我热爱的科研岗位上工作。”/pp  刘云圻主要从事分子材料与器件的设计、合成及其光电性能研究,包括碳纳米管和石墨烯等。近年来,他领导的研究小组致力于研究开发新的低成本的技术,力争实现其工业化应用。/pp  李玉良则重点关注碳材料的性质。“主要关注分子材料如何形成二维结构。”他告诉《中国科学报》记者。和同事刘云圻的经历相似,今年65岁的李玉良1989年加入有机固体实验室团队。2010年,他领导的团队创造了化学合成新方法,在世界上首次制造出石墨炔。/pp  “当选为新院士后,我会尽责尽力,争取用原创成果为我国取得科学上的跨越发展贡献自己的力量。”李玉良表示。/pp  中科院化学所有机固体实验室成立于1991年,主要从事设计、合成新型有机分子和高分子,研究其聚集态结构、分子间相互作用、电子行为及相关现象,开展特殊物理、化学性质及分子器件等方面的研究。目前,包括刘云圻、李玉良在内,该实验室共有4名中科院院士。/pp  两位“新科”院士表示,实验室在分子材料研究上具有悠久的历史,学风严谨,创新氛围浓。“通过集体的力量凝练出面向科学前沿的重大问题,为研究人员取得科研成果奠定了基础。”李玉良表示。/ppbr//p
  • 布鲁克公司发布完整的扫描电化学显微镜解决方案
    完整的SECM电化学显微镜解决方案 布鲁克独有的PeakForce SECM™ 模块是全球首创的完备商用解决方案,在基于原子力显微镜的扫描电化学显微镜上实现了小于100纳米的空间分辨率。通过创新性探针设计,可实现纳米级分辨率的基于原子力显微镜的扫描电化学显微镜目前已广泛应用于新兴研究领域,如化学动力学,生物化学信号传导和环境化学等。此外,此技术可以纳米级横向分辨同时获取形貌、电化学、电学和机械性能等图谱。PeakForce SECM™ 充分利用峰值力模式的优势从根本上重新定义了在液下能实现哪些电学和化学过程的纳米尺度的观察。 PeakForce SECM首次实现了:(1)以往无法获得的100 nm 空间分辨率的电化学信息(2)同时实现液相下电化学、电学和机械性能等图谱(3)专为SECM设计的可靠而简单易用的商用原子力探针(4)在Dimension Icon原子力显微镜上实现最高分辨的SECM和原子力显微成像Au上的一个甜甜圈型图案,使用PeakForce SECM在微压印SAM(自组装)样品上成像。(A) 形貌图中高度差仅几个纳米;(B) 黏附力图清晰地显示出两种化学性质不同的区域; (C) 电流图显示出SAM因其绝缘特性降低了针尖的法拉第电流。 Image courtesy of A. Mark and S. G?drich, University of Bayreuth.了解更多详情请进入布鲁克公司官网。
  • 中国化学会第六届青年人才托举工程项目入选者公布 仪器专家任评审
    今日,中国化学会公布了第六届(2020-2022年度)青年人才托举工程入选者名单,推举出了4位候选人,分别是中国科学院理化技术研究所董智超、北京大学王欢、南方科技大学王杰、南开大学赵庆;同时公布了32位遴选专家。值得注意的是,32位遴选专家中包含一位仪器专家,即国家纳米科学中心的裘晓辉,研究方向为扫描探针显微技术。裘晓辉,国家纳米科学中心研究员,中科院"百人计划"。1992年毕业于吉林大学化学系物理化学专业,1997年、2000年在中国科学院化学研究所分别获得理学硕士、博士学位,研究生期间利用扫描隧道显微镜系统地研究了固体表面有机分子吸附自组装结构的热力学及动力学行为。2000年8月至2006年3月期间先后在美国加州大学Irvine分校、美国IBM公司研究中心、俄亥俄州立大学进行博士后研究,研究领域涉及低温超高真空扫描隧道显微技术及其在单分子振动和分子光谱研究中的应用,碳纳米管场效应器件的光电导及光电效应等。2005年10月入选中科院"百人计划"。2006年3月进入国家纳米科学中心工作,被聘为研究员、博士生导师。2007年6月获"百人计划"择优支持。近年来在国际有影响力的学术期刊上发表论文多篇,其中包括 Science,Phys. Rev. Lett.,J. Am. Chem. Soc.等。开展的研究方向包括: (1) 单分子光谱-低温超高真空扫描隧道技术。扫描探针显微技术的发展使得人们具有了在原子和分子尺度上探索微观世界的能力,并迅速成为推动纳米材料的结构和性质研究的重要技术手段。利用扫描探针显微镜的高分辨空间成像、局域电子谱和力谱测量、原子分子操纵等功能,可以在金属、半导体、氧化物等多种固体表面构筑一个对单个原子、分子、或原子/分子团簇体系的量子态和物理化学性质进行系统研究的独特试验平台,相关的研究工作为探索分子纳米结构的新奇物性、设计和构造微纳器件提供了重要的实验依据。 (2) 纳米结构材料电学性质的静电力显微测量方法。与纳米结构表征技术(如TEM、XRD)相比,对纳米材料的物性研究手段有待进一步发展和完善。由于研究中所使用的传统检测设备不具有空间分辨率,对于样品中纳米颗粒的尺寸差异和复杂结构的各向异性不能准确测量,因而所获得的结果往往是颗粒集合体的统计平均性质。发展对纳米结构的光学、电学、磁学等性质的精确实验测量技术不仅是探索纳米材料的结构和性质关系的基础,也是建立纳米相关理论、推动纳米材料应用研究的关键步骤。 (3) 纳米颗粒表界面物理化学(电子/光学)性质研究。纳米颗粒的独特光学和电学性质使其在光电器件、发光材料及生物荧光探针等领域具有广泛的应用前景。纳米晶体的性质不仅是量子尺寸效应的体现,而且显著地依赖于纳米粒子的表面状态。对纳米颗粒表界面物理化学性质和电子过程的微观研究不仅可以推动纳米可控合成理论的发展,也将为纳米材料在电子、光电器件中的应用奠定基础。具体通知如下:根据《中国科协办公厅关于开展第六届中国科协青年人才托举工程项目申报工作的通知》(科协办函学字〔2020〕154号)的文件精神,按照《中国科协青年人才托举工程实施管理细则》有关要求,中国化学会拟推荐董智超(中国科学院理化技术研究所)等4人作为中国科协第六届(2020-2022年度)青年人才托举工程项目候选人。本届“青托”评审采取函评和会评(答辩)两轮评审,三十余位专家参与,在每个环节实行严格的同单位专家回避制度。现将拟推荐人员和遴选专家予以公示,欢迎社会各界给予监督。如有异议,请于公示期内向中国化学会秘书处实名反映,并提供联系方式和书面材料。联系电话:010-82449177-883联系邮箱:hanlidong@iccas.ac.cn公示时间:2021年2月26日-3月4日 中国化学会第六届(2020-2022年度)青年人才托举工程入选者名单序号姓名性别出生年月研究方向工作单位推荐形式1董智超男1988-08仿生表界面化学中国科学院理化技术研究所申请人自荐2王欢女1988-07复杂非平衡体系的活性分析北京大学申请人自荐3王杰男1989-12蛋白质化学南方科技大学申请人自荐4赵庆男1988-10高能电极-电解液界面的设计与合成南开大学申请人自荐 中国化学会第六届(2020-2022年度)青年人才托举工程遴选专家名单序号姓名研究领域工作单位1薄志山共轭聚合物合成北京师范大学2陈雨生物材料与纳米医学上海大学3程靓化学生物学中国科学院化学研究所4范青华手性催化合成中国科学院化学研究所5古志远分析化学南京师范大学6桂敬汉天然产物全合成中国科学院上海有机化学研究所7何静环境友好催化北京化工大学8胡蓉蓉高分子化学华南理工大学9江海龙材料化学中国科学技术大学10蒋伟新型超分子南方科技大学11蓝宇理论化学郑州大学12邱丽萍化学生物传感湖南大学13裘晓辉扫描探针显微技术国家纳米科学中心14孙頔金属团簇化学山东大学15汤平平天然产物全合成南开大学16汪骋功能材料厦门大学17王从洋金属有机催化中国科学院化学研究所18王树光功能有机共轭分子体系设计、合成与生物应用中国科学院化学研究所19王训功能纳米材料清华大学20王亚培聚合物热材料与界面微纳结构的制备中国人民大学21吴永真新型太阳能转换材料与器件华东理工大学22熊宇杰光电催化中国科学技术大学23徐明华有机不对称合成及手性药物南方科技大学24许华平含硒/碲高分子清华大学25杨国昱氧合团簇化学北京理工大学26袁荃多功能纳米材料湖南大学27张健团簇和多孔催化材料中国科学院福建物质结构研究所28张俊龙金属有机催化北京大学29张强能源材料清华大学30赵宇飞水滑石层状材料北京化工大学31赵远锦微流控与器官芯片东南大学32邹晓新无机功能材料吉林大学 中国化学会 2021年2月26日
  • 会议邀请| PHI CHINA邀您参加第五届电化学能源技术前沿论坛
    点击上方蓝字关注我们提倡“将创新与智慧贡献于产品之中”,秉承“聚焦实用电池路线,凝聚共性关键问题,促进产业协同创新,推动行业健康发展”为指导思想的“第五届电化学能源技术前沿论坛”将于2021年10月18-20日在贵阳中天凯悦酒店举办,将邀请产业界、学术界和投资界的专家纵论实用化电化学能源体系的现状和发展趋势,凝聚行业发展的共性关键问题,探索内在影响机制并探讨解决方案。鞠焕鑫博士将代表PHI CHINA出席本次大会的分会场4,并现场带来主题为“先进表面分析技术在能源材料研究中的应用”报告。本报告将针对能源材料对检测分析技术的需求,从空间分辨、深度分辨和原位表征多个维度出发,介绍表面分析技术(XPS、AES和TOF-SIMS等)的最新进展以及在能源材料科学研究中的应用,包括对能源材料微区特征进行组分和化学态的空间分布研究;对膜层结构进行不同深度下元素组分和化学态的研究;对材料进行原位测试芯能级、价带和导带电子结构等;对器件进行对服役条件下的原位分析测试等。 欢迎各界专家、学者们前往参会,共同探讨!分会场4会议时间2021年10月19日 16:20-16:45会议地址贵州省贵阳市观山湖区中天路7号贵阳中天凯悦酒店主讲介绍鞠焕鑫 博士高德英特(北京)科技有限公司 报告题目:先进表面分析技术在能源材料研究中的应用 摘要:表面分析技术已经广泛应用于能源材料和器件的科学研究和高科技产业中,不仅有助于深入理解能源材料的基本物理化学性质,表界面特性和电子结构等关键科学问题,为材料性能的优化提供主要的实验依据,而且也为材料/器件产业生产中的新材料研发、质量控制和失效分析提供了强有力的工具。面对新能源材料/器件中的基础研究和技术创新,先进表征分析技术的发展和应用具有重要的意义。
  • 世界上第一个单原子X射线揭示了最小水平的化学
    原子可能没有骨骼,但我们仍然想知道它们是如何组合在一起的。这些微小的粒子是构成所有正常物质(包括我们的骨头)的基础,理解它们将有助于我们理解更大的宇宙。我们目前可以使用高能X射线来帮助我们理解原子和分子,以及它们是如何排列的,捕捉衍射光束来重建它们的晶体结构。上图:六个铷和一个铁原子的超分子组装体。扫描隧道显微镜显示了一个铁原子的清晰信号。现在,科学家们已经使用X射线来表征单个原子的特性,表明这项技术可以用来在物质最微小构件的水平上理解物质。由俄亥俄大学和美国阿贡国家实验室的物理学家托卢洛普阿加伊(Tolulope Ajayi)领导的一个国际团队表示:“在这里,我们证明X射线可以用来表征一个原子的元素和化学状态。”X射线被认为是在原子水平上表征材料的合适探针,因为它们的波长分布与原子的大小相当。有几种技术可以用X射线照射物体,看看它们是如何在很小的尺度上组合在一起的。其中之一是同步加速器X射线,其中电子沿着圆形轨道加速,直到它们发出明亮的高能光。上图:铁超分子组装示意图,铁原子为红色,铷为青色。为了分辨真正精细的尺度,物理学家托卢洛普阿加伊和他的同事使用了一种将同步辐射X射线与原子尺度成像显微镜技术相结合的技术,称为“扫描隧道显微镜”。这采用了一种优秀的尖端导电探针,该探针与测试材料的电子相互作用,称为“量子隧道”。在非常接近的地方(比如半纳米),电子的精确位置是不确定的,会将其涂抹在材料和探针之间的空间中;原子的状态就可以在产生的电流中进行测量。这两种技术统称为“同步加速器X射线扫描隧道显微镜(SX-STM)”。放大的X射线激发样品,针状探测器收集产生的光电子。这是一项令人兴奋的技术,它开启了一些令人难以置信的可能性:去年,该团队发表了一篇关于使用 SX-STM 旋转单个分子的论文。这一次,他们做得更小,试图测量单个铁原子的性质。他们分别创建了超分子组装,包括铁和铽离子在一个原子环中,也就是所谓的配体。1个铁原子和6个铷原子通过三联吡啶配体连接;铽、氧和溴通过吡啶-2,6-二甲酰胺配体连接。然后,对这些样品进行 SX-STM 处理。上图:左图-铽超分子组装示意图,铽为青色,溴为蓝色,氧为红色。左图-铽超分子组装的SX-STM图像。探测器接收到的光与照射在样品上的光是不一样的。一些波长被原子核中的电子吸收,这意味着在接收到的X射线光谱上有一些较暗的线。研究小组发现,这些较暗的线条分别与铁和铽吸收的波长一致。吸收光谱也可以分析,以确定这些原子的化学状态。对于铁原子,有趣的事情发生了。只有当探头尖端正好位于铁原子的超分子结构上方并且非常接近时,才能探测到X射线信号。研究人员说,这证实了隧道机制中的探测。因为隧穿是一种量子现象,这对研究量子力学具有重要意义。研究人员表示:“我们的工作,将同步加速器X射线与量子隧道过程联系起来,并开启了未来的X射线实验,以同时表征材料在单原子极限下的元素和化学性质。”这项研究发表在《自然》杂志上。
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • PALL 化学分析活动月之新年快乐
    爱您的分析仪器吗? 爱!那就给它最好的保护吧!  想保证您的实验室结果吗?想!那就选择最适合的过滤器材吧!  PALL 化学分析活动月,凡购买以下明星产品,满5000元送For U 经典保温杯一个,市值130.00元。满8000元送双肩电脑背包一个,市值328.00元。  活动时间:即日起-2012年3月31日  明星一:GHP万能膜:万能的过滤所有样品  您是否还在为不知道待过滤样品的化学性质而无法选择合适的过滤膜而烦恼?选择GHP 万能膜试试吧!!  膜材质与溶剂的兼容性:++表示推荐,--表示不推荐 蛋白溶液一般水溶液非极性溶液性溶液体疏水VS亲水产品信息GHP++++++++亲水详询当地代理商PTFE----++++疏水PVDF+++++--亲水Nylon--+++--亲水  明星二:PSF针头过滤器: 小滤器,大学问  您是否在为杂质多、粘稠的样品过滤,感到费心费力?  选择PSF 带预过滤层的过滤器,轻松解决问题。  使用连续玻璃纤维(GxF)预过滤膜,使通量达到最大, 获得更高的流速。  多层预过滤的孔隙从0.04以上到1µ m, 有效捕获颗粒并延长过滤器的使用寿命。  产品:拥有广泛的膜材质选择,GHP,PVDF膜,尼龙膜, PTFE膜,玻璃纤维等等,具体详情请咨询当地经销商。  明星三: PALL MS Acrodisc 针头过滤器 首个被认证的适用于LCMS低溶出的过滤器。  想保护您的LCMS吗?想保持结果的稳定性吗?  请为它选择专为它打造的滤器, 专用于LCMS(液相色谱-质谱) 的样品和流动相过滤。  ●LCMS-(液相色谱-质谱) 认证–最低限度的减少过滤器本底对您结果的影响。  ●低离子的影响– 避免了重复的测试.  ●具保护性的包装设计–五个单独的包装,避免了下游程序的污染  ●优越的化学耐受性– 亲水的PTFE膜(WWPTFE)能适用于极性和一般的水溶液  ●低蛋白吸附–将蛋白吸附降到最低,得到精确的一致的结果  ●颗粒截留能力–保护设备和柱子,保证实验结果  产品信息: 货号:MS-3201 描述:0.2µ m,25mm,WWPTFE膜,包装:50/pkg  更有其它各类通过认证的过滤器,适合不同的检测仪器(UHPLC,IC,自动化工作站等),请咨询当地经销商。  明星四:Solvac 流动相过滤器 最简单的过滤器!!不再用玻璃容器过滤,不再来回倾倒溶液,过滤的确简单!!   聚丙烯外壳。耐受强酸,强碱,强腐蚀性有机溶剂。   实现流动相密闭,连续过滤。   磁性密封,不会漏液。   可配合不同的47mm膜片使用。  产品信息:   SolVac 流动相过滤器货号说明包装4020SolVac滤器,带有61cm(2ft)供给管、拇指夹、臣锺、真空口接头、2个膜封垫、2个密封垫1个/包装  详询PALL当地经销商:  http://www.biomart.cn/agency/index.htm?action=ViewBrand&id=4028489725be95790125bec3af2f02b3  或Email至颇尔市场部:Jessie_jing_chen@ap.pall.com  颇尔公司保留该活动的最终解释权
  • 电化学界奠基人-复旦大学吴浩青院士逝世
    人民网上海7月18日电 著名化学家、化学教育家,中国科学院院士,复旦大学教授吴浩青先生今天上午8:58在华东医院逝世,享年97岁。  吴浩青院士是中国电化学的开拓者之一,曾对电池内阻测量方法做过重要改进,被誉为“锂电子电池之父”。他生于1914年,江苏宜兴人,1931年考入浙江大学化学系,1935年毕业后留校任教,1952年调入复旦大学,前后执掌教鞭70年,为我国培养了大批优秀教学、科研人才。  吴浩青教授知识渊博,思维敏捷,学术思想活跃,勇于开拓,始终站在科学前沿。1957年,他在复旦建立了我国高校第一个电化学实验室,由此这里成了中国电化学人才的培育基地。吴浩青对电池内阻测量方法做过重要改进 对中国丰产元素锑的电化学性质做过系统研究,利用微分电容-电势曲线确定了锑的零电荷电位为-0.19~0.02伏,校正了文献数据并得到国际公认。吴浩青撰有《物理化学》、《化学热电力》、《电化学动力学》等专著。发表论文60余篇,获国家发明专利4项。80年代,吴浩青先生已进入古稀之年,仍老当益壮,坚持从事锂固体电解质、高能电源锂电池及其放电机理的研究。1984他在第十四届国际能源会议上发表了《锂-聚乙炔电池中的电化学嵌入反应》的论文,首次提出了锂在共轭双键高聚物中的嵌入反应机理,再次在这个问题上做出了创造性贡献。这一成果获得国家教委科学技术进步奖二等奖,吴浩青也被誉为中国“锂电子电池之父”。  在复旦大学和化学教育界,吴浩青是培养了众多高徒的严师。仅在复旦的50多年里,他就培养了近50名研究生,其中很多现已成为教授、总工程师及研究所所长,更有3名中科院院士。有人以“成果浩海上,育苗青天下”概括其一生科研和教学成就。他编写的教材《电化学动力学》经多年主讲后,于1998年由高等教育出版社与德国Springer-Verlag出版社联合出版。在教学方面,他长期主讲比较难懂的物理化学,务求深入浅出,把抽象的概念讲得生动活泼,通俗易懂。一位学生这样评价他的课:“包容了优雅的风格和节奏,描述了科学世界中人类所面临的多种复杂问题,详尽而奥妙。”他对学生的要求十分严格,曾在化学考试中,给学生评出59.8分的成绩。吴老曾说:“几十年来,我对学生一直严格要求,因为只有这样才是真正关爱学生,才能让他们成才。”直到90岁之后,吴浩青教授依然精神矍铄,坚持亲自动手做实验。其科研精神和学术作风,已成为复旦大学化学系的优良传统。
  • 新品发布 | 日立Primaide 1320柱后光化学衍生器上市
    新|品|发|布用于黄曲霉毒素检测的日立Primaide 1320柱后光化学衍生器上市为什么要检测黄曲霉毒素?黄曲霉毒素(Aflatoxins, AFT)是黄曲霉和寄生曲霉等某些菌株产生的双呋喃环类毒素,具有极强的急性毒性和致癌性。黄曲霉毒素主要污染粮油及其制品,各种植物性与动物性食品也能被污染。人们食用被污染的食品后,急性中毒可引起肝坏死;慢性中毒可引发肝癌、胃癌、食道癌等严重疾病。黄曲酶毒素污染的食品 产品开发背景 日立为什么推出Primaide 1320柱后光化学衍生器?黄曲霉毒素的检测方法有很多种,其中高效液相色谱-荧光检测法具有灵敏度高、准确性好、重复性好等优势,在黄曲霉毒素的检测中应用越来越广泛。但是黄曲霉毒素B1和G1产生的荧光信号较弱,影响检测灵敏度,因此需要采用柱前或柱后衍生的方法。柱后光化学衍生法具有操作简便、快速、无需任何化学衍生试剂等优势。因此日立推出全新产品Primaide 1320柱后光化学衍生器,具有优异的光化学衍生性能,设置于色谱柱与检测器之间,进行柱后连续光化学衍生反应来提高荧光强度,主要应用于食品、粮油、饲料、中药材等产品中黄曲霉毒素的检测。 新品推荐 Primaide柱后光化学衍生系统 Primaide 1320柱后光化学衍生器Primaide柱后光化学衍生系统分析流路图 产品介绍 日立Primaide 1320柱后光化学衍生器的原理是什么?黄曲霉毒素B2和G2具有较强的荧光特性,而黄曲霉毒素B1和G1产生的荧光信号较弱,在检测时需要通过衍生才会产生较强的荧光信号。黄曲霉毒素G1、G2、B1、B2四种成分的化学结构式如下图所示。当使用日立Primaide 1320柱后光化学衍生器进行柱后衍生时,在紫外灯的照射下,黄曲霉毒素B1和G1被氢化,双键打开,在环上引入羟基,得到结构与黄曲霉毒素B2和G2类似的产物,从而产生稳定的荧光信号。在此光照过程中,黄曲霉毒素B2和G2的化学性质和荧光性质均不会改变。日立Primaide 1320柱后光化学衍生器的性能怎么样?参考食品安全国家标准GB 5009.22-2016,使用日立Primaide柱后光化学衍生系统测定了黄曲霉毒素B1、B2、G1、G2四种成分。重复性(AFT G2和AFT B2 1.5ng/mL,AFT G1和AFT B1 5.0ng/mL,n=6)线性黄曲霉毒素四种成分的保留时间和峰面积的重现性良好,而且标准溶液在0.03~40.00ng/mL浓度范围内的线性良好。日立Primaide 1320柱后光化学衍生器采用优质的进口部件,内部设计散热系统,确保分析系统长期稳定运行。具有优异的光化学衍生性能,其特殊设计的内部光路和反应管进一步提高了衍生效率和检测灵敏度。使用日立Primaide高效液相色谱仪搭配1320柱后光化学衍生器检测黄曲霉毒素,方法检测灵敏度高、准确性好、重复性好,简单快速,完全满足标准要求。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 美国分析化学家对中国茶感兴趣
    p  不久前,美国塔夫茨大学化学系传感与科学中心的Albert Robbat教授撰文指出,他所领导的研究团队的主要研究兴趣在于揭示span id="pos_placeholder" style="width: 0px height: 0px visibility: hidden margin: 0px padding: 0px "/span人与自然系统(包括环境污染、农药与石油化工产品等)之间复杂的相互作用。最近,他们正在利用中国茶作为一种研究模型,试图探究微小和极端的气候变化将如何影响植物的化学性质。其主要研究焦点选取的是植物产量,同时也稍微兼顾了不同的气候对于植物的风味、香味和功能品质方面的影响。对于气候或多样性研究方面,茶是一种非常理想的作物体系,因为它一年内可以成长好几季。同时,茶也是一种极具经济价值的作物,2017年的市场价格显示,600万吨的茶价值390亿美元。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/2b12b305-9d1b-4621-a0d1-4b613b146090.jpg" title="Robbat2007.jpg" alt="Robbat2007.jpg"//pp style="text-align: center "strongAlbert Robbat教授/strongbr//pp  茶的质量为什么以及可能如何受到气候条件变化的影响?什么因素可能对客户采购决定、市场、农夫的生计、生态学知识和管理实践产生影响?Albert Robbat教授和他的团队希望能够用定量化的数据来回答这些问题。br//pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/ee43387c-a717-47fc-8ca0-a9edfc80abe5.jpg" title="timg.jpg" alt="timg.jpg" width="400" height="266" border="0" vspace="0" style="width: 400px height: 266px "//p
  • 宁波材料所在二硫化钼电化学行为研究方面取得新进展
    二硫化钼(MoS2)在固体润滑、光电子器件、电化学催化等领域具有广泛的应用,而镧系元素(Ln)掺杂可以对其各类物理化学性质起到不同的调控作用。Ln-MoS2基功能材料、涂层和器件在实际使役环境中的性能和寿命在很多时候与其表面的氧还原反应(ORR)密切相关。比如,表面ORR会增加Ln-MoS2基纳米器件和涂层周围金属部件的电偶腐蚀风险,而与此同时,Ln-MoS2基催化剂在燃料电池领域的应用潜力极大依赖于其阴极反应(即ORR)的活性。系统预测Ln-MoS2表面ORR活性规律并清晰揭示其背后的微观量子化学机理,可以给各类Ln-MoS2体系的实际应用设计、精准性能调控和有效防护提供重要指导。   近期,中国科学院海洋新材料与应用技术重点实验室和中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的研究人员利用第一性原理计算方法,探索了所有15种Ln-MoS2(Ln = La~Lu)体系的ORR活性,不仅发现了Ln杂质对MoS2表面ORR活性的极大促进作用,还观察到ORR活性与Ln杂质原子序数存在一种双周期的依赖关系。本研究工作中,研究人员也通过热力学统计的方法精确模拟了疏松固/液界面上的水环境效应,然后通过构建动力学反应方程组,成功发展了一种电流-电势极化曲线的模拟方法,所得到的极化电流曲线不仅可定量揭示ORR活性,也可以直接对比/指导实验测量。深入的机理分析表明,Ln-MoS2表面ORR活性的增强来源于一种特殊的缺陷电子态配对机制,它会选择性地增强两种ORR中间产物吸附(OH和OOH吸附基团),从而显著减小ORR能垒;而双周期规律则来源于Ln元素中4f-5d6s轨道杂化程度和Ln—S原子成键能力上类似的双周期规律。在此分析基础上,研究人员也为Ln-MoS2体系提出了一种普适的轨道化学机理,对各类电子结构、杂质稳定性、吸附物稳定性和电化学活性中同时出现的双周期规律进行了统一阐述。   相关成果发表于《自然—通讯》(Nat. Commun. 2023, 14, 3256)。该研究得到国家自然科学基金、中国工程物理研究院表面物理与化学重点实验室学科发展基金和国家重点研发项目的资助。镧系元素掺杂二硫化钼对氧还原反应的增强效应(图中显示了模拟所得的电流电势极化曲线以及半波电势所表现出的双周期趋势)
  • 全自动折光仪|一款内置帕尔贴控温方式的仪器【恒美新品】
    点击了解更多→全自动折光仪|一款内置帕尔贴控温方式的仪器【恒美新品】 全自动折光仪是一种用于测量透明材料折射率的仪器。对于化学、物理和材料科学等领域的研究人员来说,这种仪器具有重要的作用。 全自动折光仪的主要功能是通过测量光的折射角来计算物质的折射率。光的折射角是指光从一种介质进入另一种介质时,光线相对于原介质表面的偏移角度。不同物质的折射率是不同的,因此通过测量折射角可以确定物质的性质和结构。 此外,全自动阿贝折光仪还可以用于研究物质的分子结构和化学性质。通过测量不同温度和压力下的折射率,可以研究物质的相变和分子间的相互作用。这对于化学反应动力学、材料科学和物理学等领域的研究具有重要意义。 总之,全自动折光仪在化学、物理和材料科学等领域中具有重要的作用,可以用于研究物质的分子结构和化学性质,以及测量透明材料的折射率。
  • 碳纳米环带单分子器件研究获进展
    单分子器件可用于研究电荷传输的微观机制,并可为在纳米尺度研究物质的基本物理化学性质提供理想平台。传统上,单分子器件的构建通常需要在功能分子的末端引入杂原子锚定基团,从而将分子固定在电极之间。然而,长期以来,受限于这一方法,单分子器件的研究对象主要局限于结构相对简单的线性分子体系。   在中国科学院院士、中科院化学研究所有机固体院重点实验室研究员朱道本的指导下,臧亚萍课题组与和合作者首次报道了基于碳纳米环带的单分子器件,并发现了其由于独特的环张力效应带来的异于常规线性分子的新奇电子学和化学性质。   碳纳米环带是一种通过自下而上合成的新型碳基纳米材料,被视为碳纳米管的最短单元结构,具有高度精确可调的尺寸、边缘和拓扑结构。臧亚萍课题组和合作者发现,无需引入任何杂原子锚定基团,由于独特的环张力作用,碳纳米环分子可以利用弯曲的径向π轨道直接和金电极键合,构筑具有超低接触电阻的碳纳米环单分子器件。研究进一步利用不同尺寸碳纳米环分子张力的变化,可以实现对其电导的高效调控。此外,臧亚萍课题组、化学所陈传峰课题组及中国科学技术大学杜平武课题组合作,探讨了碳纳米环带边缘结构对其导电性质的影响规律,发现了在碳骨架中引入“五元环”边缘能够显著促进电荷传输,因而带来超高电导。   近日,臧亚萍课题组发现环张力能够影响分子的电荷输运性质,并使其展现出特殊的化学反应能力。该研究通过对碳纳米环单分子器件施加定向电场,在温和条件下(常温,0.6 V电压)实现了相邻苯环间非极性C-C键的断裂,形成了由Au-C共价键连接的线性寡聚苯单分子器件。对照实验和DFT计算进一步表明,这一独特反应遵循经典芳香亲电取代(EAS)机理,其中静电场发挥了关键的催化作用。该方法对不同尺寸的纳米环具有普适性。利用这一方法,课题组制备了目前最长的八聚苯单分子器件,揭示了电子的隧穿传输距离可以延长至八个苯环单元。该原位反应方法为在表界面精准构筑新型碳纳米结构以及研究其电子学性质提供了新手段。相关研究成果发表在《自然-通讯》(Nature Communications)上。   上述成果将单分子器件的研究拓展到复杂环形分子体系,揭示了环张力这一独特结构效应对分子电子学和化学性质的特殊调控作用。这为未来发展具有复杂几何和拓扑结构的新型分子材料和器件提供了新思路。研究工作得到国家自然科学基金和中科院的支持。碳纳米环带单分子器件
  • 化学分析方法“大聚会” 你用过多少
    常见的化学成分分析方法  一、化学分析方法  化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。  1.1重量分析  指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。  1.2容量分析  滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。  酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。  络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀 剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。  氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。  沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。  二、仪器分析  2.1电化学分析  是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。  电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法 若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。  电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。  电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。  伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。  2.2光化学分析  光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。  2.2.1原子吸收光谱法(AAS)  原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。  其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。  2.2.2原子发射光谱法(AES)  原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。  其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。  2.2.3原子荧光分析法(AFS)  原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。  其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光 若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。  2.2.4分光光度法  分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。  其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(&lambda )为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法 用可见光光源测定有色物质的方法,称为可见光光度法。  2.2.5旋光法  旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光性质测定溶液浓度的方法。  其基本原理是将样品在指定的溶剂中配成一定浓度的溶液,采用旋光计测得样品的旋光度并算出比旋光度,然后与标准比较,或以不同浓度溶液制出标准曲线即工作曲线,求出含量。  2.3色谱分析  色谱分析是指通过利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。  2.3.1气相色谱法  气相色谱法的基本原理是利用气相色谱仪中的一根流通型的狭长管道(色谱柱)。在色谱柱中,不同的样品由于具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。而气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。  2.3.2液相色谱法  液相色谱法的基本原理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。检测器主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。  2.4波谱分析  波谱分析是指物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。除此之外还包含有拉曼光谱等。  2.4.1红外光谱法(IR)  红外光谱法是分子吸收光谱的一种,是通过将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。主要是应用于测试有机分子的价键结构以及官能团的种类等。  其基本原理是当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。  2.4.2紫外光谱法(UV)  紫外光谱法是测定物质分子在紫外光区吸收光谱的分析方法。其基本原理是物质吸收紫外光后,其价电子从低能级向高能级跃迁,须吸收波长在200~1000 nm范围内的光,此波长恰好落在紫外-可见光区域,从而产生相应的吸收峰。并非所有的有机物质在紫外光区都有吸收,只有那些具有共轭双键(&pi 键)的化合物,其&pi 电子易于被激发发生跃迁,在紫外光区形成特征性的吸收峰。  2.4.3核磁共振谱法(NMR)  核磁共振谱法是指具有核磁性质的原子核(或称磁性核或自旋核),在高强磁场的作用下,吸收射频辐射,引起核自旋能级的跃迁所产生的波谱,叫核磁共振波谱。而利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法。  2.4.4质谱法  质谱法是指用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的荷质比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是具有多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子即可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。  其基本原理是使试样中各组分进行电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散,在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小 当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,将它们分别聚焦而得到质谱图,从而确定其质量。  2.4.5拉曼光谱法  拉曼光谱法是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  其基本原理是当光照射到物质上会发生弹性散射和非弹性散射,其中弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,则统称为拉曼效应。由于拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。其中)。如果分子能级的跃迁仅仅涉及转动能级,则发射的是小拉曼光谱 如果涉及到振动-转动能级,则发射的是大拉曼光谱。
  • 科学家用固体核磁共振技术探索金属—氢活性物种
    中科院大连化学物理研究所研究员侯广进团队利用固体核磁共振技术在金属氧化物催化剂表面金属—氢(M-H)活性物种的研究方面取得新进展。相关成果近日发表于《美国化学会志》。M-H是一类特殊的物种,已有近百年的研究历史。其通常具有很高的反应活性和独特的化学性质,在许多化学反应中作为中间体普遍存在。然而,在多相催化体系中,鉴于实际固体催化剂表面生成的金属氢物种固有的高反应活性,以及固体催化剂表面结构的复杂性,针对它们的全面表征和化学性质探索一直具有挑战性。迄今,在常用的表征方法中,表面镓—氢(Ga-H)物种的特征信号仅在有限的文献中通过红外光谱检测到。在该研究中,研究人员利用固体核磁共振技术研究纳米Ga2O3催化剂上直接H2活化和丙烷脱氢反应中产生的表面物种,提出了表面Ga-H物种的明确的固体核磁共振谱学证据。Ga-H物种由于强的1H-69Ga/71Ga核自旋耦合作用产生了复杂的1H核磁共振特征信号。研究人员利用先进多维核磁技术对复杂谱线进行解析,并揭示了这种特殊中间体物种的结构构型、形成机制。研究人员进一步利用CO2吸附模型实验,揭示了Ga-H物种是CO2加氢转化过程中的关键中间体。  相关论文信息:https://doi.org/10.1021/jacs.2c01005
  • 2010年物理诺奖得主团队用石墨烯制出特氟龙替代物
    英国曼彻斯特大学科学家海姆和诺沃肖洛夫因发明石墨烯而获得今年诺贝尔物理学奖。最近,他们领导的研究小组又利用石墨烯制成了一种稳定耐高温的新材料,可替代用于不粘锅的特氟龙材料,具有广泛应用前景。  海姆和诺沃肖洛夫等人在新一期纳米科技刊物SMALL上报告说,他们对石墨烯进行氟化处理,获得了这种新材料。现在被广泛应用的特氟龙材料的化学名称是聚四氟乙烯,是由碳元素和氟元素组成的塑料 而石墨烯是由薄薄的一层碳原子组成的物质,对石墨烯进行氟化处理后得到的材料实际上就是只有一层原子结构的特氟龙。  这种新材料同时具有石墨烯和特氟龙两种材料的优点。它像特氟龙那样化学性质稳定和耐高温,可以用于生产不粘锅和密封垫圈等产品 同时它又像石墨烯那样具有很高的强度和可用于生产半导体的电学性能。  海姆说,两方面优点的结合使得这种材料具有广泛应用前景,它不会只是被作为更薄更轻的特氟龙替代物,而是可以用在任何需要超薄、高强度、化学性质稳定、耐高温涂层的场合,比如可以用于生产发光二极管中的超薄介质。
  • 新品 油品检测设备-自动表面张力测定仪
    仪器分析是化学学科的一个重要分支,它是以物质的物理和物理化学性质为基础建立起来的一种分析方法。利用较特殊的仪器,对物质进行定性分析,定量分析,形态分析。 仪器分析方法所包括的分析方法很多,有数十种之多。每一种分析方法所依据的原理不同,所测量的物理量不同,操作过程及应用情况也不同。油品分析仪器作为仪器仪表行业的一小部分,也作出了自己的贡献,石油产品的广泛应用让油品分析仪器在各个行业也活泛起来,得利特(北京)科技有限公司为了在油品分析仪器行业站住脚,必须不断升级和研发新产品,才能满足客户的使用需求。北京得利特为客户解忧,我们工程师新研发了一款自动表/界面张力测定仪,下面跟随得利特小编来了解一下吧!A1200自动界面张力测定仪适用GB/T6541标准,分子间的作用力形成液体的界面张力或表面张力,张力值的大小能够反映液体的物理化学性质及其物质构成,是相关行业考察产品质量的重要指标之一。表面张力测定仪基于圆环法(白金环法),测量各种液体的表面张力(液-气相界面)及液体的界面张力(液-液相界面)。此方法具有操作简单,精度高的优点。广泛用于电力、石油、化工、制药、食品,教学等行业。
  • 汽油氧化安定性的影响原因和指标有哪些 ?
    汽油在常温和液相条件下抵抗氧化的能力称为汽油的氧化安定性,简称安定性。汽油在贮存和使用过程中会出现颜色变深,生成粘稠状沉淀物的现象,这是汽油安定性不好的表现。安定性不好的汽油,在储存和输送过程中容易发生氧化反应,生成胶质,使汽油的颜色变深,甚至会产生沉淀。 影响其汽油安定性的根本的原因在于汽油的化学组成部分。组成汽油的各种烃类的化学性质是不同的,汽油中的烷烃、环烷烃和芳香烃的化学性质非常稳定,一般不发生氧化变质反应,影响汽油安定性的主要是汽油中所含的烯烃尤其是二烯烃等不饱和组分非常容易发生氧化叠合反应,生成胶质等而导致汽油变质。另外汽油中各种非烃类化合物也是引起汽油氧化变质的重要因素。直馏汽油中不含不饱和烃,其安定性很好;部分二次加工汽油中含有大量不饱和烃及非烃化合物,其安定性较差。 汽油安定性的指标主要有:碘值、硫含量、酸度、实际胶质、诱导期等。其中诱导期是指:汽油在一定条件下(100℃,氧气压力7*98.0665kPa)与氧气接触,从开始到汽油吸收氧气加速氧化、压力明显下降为止所经历的时间称为汽油的诱导期,单位为min。汽油的诱导期时间越短,安定性越差,生成胶质的速度越快,国标中规定诱导期不小于480min(480分钟)。
  • 2012年上半年发布仪器新品:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。  电化学分析是利用物质的电化学性质测定物质成分的分析方法。它是仪器分析法的一个重要组成部分,以电导、电位、电流和电量等化学参数与被测物质含量之间的关系作为计量的基础。根据所测量电化学参数的不同,常见的电化学分析仪器有:pH计、电位滴定仪、电化学工作站、卡尔费修水分仪、电导率仪、库仑仪、极谱仪等。  电化学仪器是实现电化学分析与电化学测量的基本工具,量大面广。电化学信号可直接使用,无须精密的机械和光学系统,方便经济,是企事业单位及科研机构实验室常用的一类分析仪器。目前电化学仪器不仅作为实验室基础研究的科学仪器,也拓展到现场分析技术和仪器仪表等领域,在线分析、便携化、多功能化等亦是其未来的发展方向。  2012年的上半年,电化学领域新产品新技术不断推出。仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。  pH 计日本堀场 HORIBA F-70 LAQUA PH计上市时间:2012年3月(汕头市科技设备供应公司代理)  HORIBA F-70 LAQUA系列PH计是一款操作简单而有趣的新形仪表,采用宽屏静电容量式触摸屏,触感操作;智能导航可以及时指引进而解决校准及测量故障等问题;此外,该款仪器的玻璃管电极易清洗。  卡氏水分测定仪上海禾工科学仪器有限公司 全自动卡尔费休水分测定仪AKF-1上市时间:2012年3月  AKF系列全自动卡尔费休水份测定仪在传统产品上进行了大量的创新,增加了仪器稳定性,降低了仪器故障,消除了运行噪声,同时改良了操作界面,加入自动打空白,自动清洗装置,自动保持检测状态等技术,仪器操作的简便、自动、安全、高效。上海禾工科学仪器有限公司高 精度智能卡尔费休水分测定仪AKF-2010(升级型)上市时间:2012年4月  AKF-2010卡尔费休水分测定仪采用Windos操作系统,5.6寸高精度触摸屏;操作简单直观,可以外接键盘鼠标,并且可以连接到网络,直接用网络传输数据,可以实现对仪器的远程控制和远程数据传输处理及监管;该款仪器还具有极大的扩展性,可方便升级为电化学自动滴定系统;其全封闭滴定池,使用户无需直接接触有毒试剂即可完成整个分析过程以及仪器的日常维护等工作。  自动电位滴定仪日本京都电子公司 AT-700自动电位滴定仪上市时间:2012年4月(上海今昊科学仪器有限公司代理)  AT-700自动电位滴定仪采用了新的液路设计,更换试剂、日常维护更加简单;并且可以扩展为双管滴定,最多可连接10组滴定单元;可配套专用多样品转换器使用,经济实用;该电位滴定仪使用通用的USB接口连接各种外部设备,U盘存储,键盘输入,条码扫描;精确的液滴控制保证了实验的精度;多种规格的测试电极和多种外设极大扩展了电位滴定仪的应用范围;仪器设计紧凑,体积为原来型号仪器的一半。  电化学工作站、恒电位仪美国青藤 DY2116B微型恒电位仪/恒电流仪上市时间:2012年4月(雷迪美特中国有限公司代理)  DY2116B是美国Digi-Ivy, Inc.公司生产的一款袖珍式恒电位仪/恒电流仪。该仪器采用最新的半导体芯片科技,通过独特的电路设计大大缩小了仪器的体积,应用更为便捷;噪声低,稳定性高,精心设计的硬、软件的有机结合,在不用Faraday屏蔽罩的情况下也很容易获得pA的电流测量分辨;信号发生和采集通过16-bit DAC和16-bit ADC来完成,最小电流分辨可达0.76pA;操作简单,功能多样化,易于使用,控制界面一目了然。美国Gamry电化学公司 Interface1000电化学工作站  Interface 1000具有9个电流范围,3个增益范围,很灵活地适用于从腐蚀到电池,从传感器到超级电容的应用领域;高性能:电池充放电、极化实验,Interface 1000可以达到1A电流,槽压可以达到20V;和Gamry其他系统一样,Interface 1000采用浮地技术设计,使用与接地的工作电极系统;Interface 1000 可以达到 20 uV 噪声效果;不需要添加任何模块,Interface 1000 可以测量到1 MHz的交流阻抗;多台Interface 1000可以方便的组合为多通道的电化学工作站,并且比传统的多通道使用起来灵活。  电化学仪器部件、外设美国pine光谱电化学装置上市时间:2012年2月(理化(香港)有限公司代理)  Pine公司的光谱电化学装置可以实现电化学方面的检测,并同时能实现光谱的检测。整套装置中,关键在于蜂窝状的电极和薄层石英电解池的配合使用,实现了电化学与光谱的同时检测;蜂窝状电极由三电极系统集成,以铂、金等贵金属作为工作电极,蜂窝状的制作工艺使光线穿透电解池,让研究者能够了解实时光谱及电化学数据。美国pine光电化学石英电解池上市时间:2012年2月(理化(香港)有限公司代理)  PINE公司的光电化学石英电解池顶端有一较大的端口,可插入光电阳极(通常是硅晶片)。电解池周围的端口可插入对电极(通常为铂环)和参比电极;并且专门设计有气体喷射和净化的配件。可见光及紫外光可以通过电解池的任一两侧玻璃。在需要光学窗口的情况下,一侧或两侧的玻璃可以更换为可移动的光学窗口;除了在光电化学研究中应用,石英电解池也广泛应用在溶剂体系研究中(如强碱)。  了解更多电化学仪器,请访问仪器信息网电化学仪器专场  了解更多新品,请访问仪器信息网新品栏目
  • 化学所生物质谱成像研究获重要进展
    p  在国家自然科学基金委和中国科学院的大力支持下,中国科学院化学研究所活体分析化学院重点实验室的研究人员长期致力于动物组织质谱成像技术的研究,先后开发了系列小分子新基质(Anal. Chem. 2012, 84, 465 Anal. Chem. 2012, 84, 10291 Anal. Chem. 2013, 85, 6646 ),并对半脑缺血(Anal. Chem. 2014, 86, 10114)、肿瘤转移等生物模型小鼠(Anal. Chem. 2015, 87, 422)的脑、肾、脾等组织进行了分子组织学质谱成像研究。最近,研究人员发展了一种通用、免标记的直接质谱成像方法,快速检测并对小鼠体内的碳纳米管、石墨烯和碳量子点等碳纳米材料进行定量成像研究。相关结果发表在近期的《自然· 纳米技术》(Nature Nanotech. 2015, 10, 176)杂志上。/pp  碳纳米材料因为其独特的物理化学性质,在材料学领域具有非常广阔的应用前景。近年来,碳纳米材料由于在药物输送、光动力学治疗、组织工程以及生物成像等方面的重要价值,成为生物医学研究领域的热点材料。但是有关碳纳米材料的生物效应及生物安全性问题目前依然存在争论,因此生物组织中的碳纳米材料的生物分布研究具有重要的实际价值,尤其是亚器官的生物分布成像研究,有助于揭示纳米材料与生物体之间的相互作用。但是目前为止,这方面研究仍缺乏实用有效的方法。/pp  对于碳纳米材料的生物监测或成像,通常采用放射性同位素或荧光标记法,因费时费力且标记物有解离的可能而具有一定局限性。而免标记的光谱学方法又存在成像速度慢、发光信号弱、背景干扰强等缺点。质谱成像技术提供了一种同时获取生物样品形貌及其分子信息的检测手段,各个种类分子可以在10微米及以下的空间分辨率被独立检测出来。这种技术属于内源性的“免标记”法,因为分子都有其固有质量,只要分子可以被离子化就可以被检测出来。在质谱成像中最常用的分子离子化方法是基质辅助激光解吸/电离(MALDI),但需要有机基质(通常为被测物的10000倍)与目标样品共结晶并用激光照射。基质吸收激光辐射后被快速激发并蒸发,随后共结晶的样品被转移到气相环境,样品分子可以通过基质的电荷转移离子化。然而,没有人证实过MALDI质谱检测完整碳纳米材料的能力,因为很难找到与其共结晶的合适的基质。如果没有基质,完整的分析物就很难被释放到气相中。而且,碳纳米材料的巨大分子量也远远超出了质谱能够检测的质量范围。/pp  为了解决这个问题,研究人员放弃传统基质,发现并利用碳纳米材料在紫外激光解吸电离过程中产生的固有碳负离子簇(C2-C10)指纹信号,该质谱信号几乎不受任何生物分子的背景信号干扰。结合飞行时间质谱,同时实现了小鼠体内碳纳米材料的亚器官质谱成像和定量分析。该碳负离子簇质谱指纹信号的发现,克服了传统质谱方法无法直接检测纳米材料的难题,将质量信号窗口转移到了质谱灵敏度高的小分子质量范围。与传统的标记方法相比,该激光解吸电离质谱分析方法由于采用内源性的化学信号,避免了标记基团在活体循环过程中可能产生的解离、衰变或者失活。同时,与免标记的光谱方法相比还具有高信噪比、低背景干扰以及准确可靠的优点。/pp  研究人员证实并比较了碳纳米管、石墨烯和碳量子点的亚器官生物分布。研究发现,碳纳米管和碳量子点在肾中主要分布在外部的实质区域。而在脾组织中,这三种碳纳米材料主要分布在脾的红质区域,还发现在边缘区中碳纳米管的浓度最高。定量结果表明,尺寸较大的未修饰碳纳米管和石墨烯主要富集在肺组织中,而碳量子点主要停留在内皮网状系统丰富的肝和脾中。此外,还意外地发现碳量子点在小鼠器官中的超长清除时间。最后,将该方法拓展到小鼠肿瘤组织中药物负载的碳纳米管成像以及二硫化钼二维纳米材料的组织成像研究。/pp  这些重要的应用和发现,进一步表明该方法可以结合质谱成像和定量的优点,进行纳米材料与生物体系相互作用研究,并有望发展成为一种碳纳米材料乃至其它纳米材料生物分析的通用方法。论文发表后,Nature Nanotechnology 杂志专门邀请国际知名质谱学专家Richard W. Vachet撰文在同期的“新闻视角”专栏评论:“这种成像技术提供了一种强大的活体定量纳米材料的方法,一个特别让人激动的优势是该方法可拓展同时检测纳米材料及其附近的蛋白质或其他生物分子,将深层次揭示生物分子和材料的相互作用。无论如何,活体纳米材料的质谱成像研究将有一个光明的未来。”/pp  a href="http://www.nature.com/nnano/journal/v10/n2/full/nnano.2014.282.html"论文链接/a/pp style="text-align: center "img title="W020150319401924220724.jpg" src="http://img1.17img.cn/17img/images/201512/noimg/0797cf49-646a-4e6a-8c55-eec276e5949f.jpg"//pp style="text-align: center "质谱成像揭示碳纳米材料的亚器官生物分布/p
  • 【时事新闻】赛默飞推出新型XRF分析仪 令金属化学分析更快更简便
    2015年9月21日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)针对金属加工、材料可靠性鉴别和金属废料行业等领域,正式推出Thermo ScientificTM NitonTM XL5 分析仪,用以评估金属材料的化学组分。与当今市场上的任何一款 X 射线荧光(XRF)合金分析仪相比,此分析仪更为小巧轻便,无论是管理层还是操作员抑或是质控人员均可便捷使用。Thermo Scientific Niton XL5 分析仪Niton XL5 分析仪专为在短时间内提供高度准确的结果而量身打造。整个分析仪仅重1.3千克,结构紧凑,操作员可使用其接近难以触及的区域,实现检测范围最大化,减轻用户疲劳,提供极低检测限(LOD)。此分析仪还有其他特色之处,包括配有一台电子信息处理机,供实时结果显示;还提供热插拔电池和旅行充电器,用于提高操作员现场工作效率。赛默飞世尔科技便携式分析仪的副总裁/总经理 Howard Kopech 表示说道:“金属化学性质的精确质控测试正变得越来越重要,尤其是在快速发展的金属加工市场。为了在提供强有力的解决方案,帮助客户提高质保/质控水平和分析性能的同时,增强用户信心,提高用户生产力,我们设计出了 Niton XL5 分析仪。”Niton XL5 分析仪采用蓝牙和 GPS 连接技术,提高了通讯能力。当分析仪被安装在测试架上时,Thermo Scientific NitonConnect 个人电脑辅助软件可轻松实现数据传输并提供远程查看功能。Thermo Scientific Niton XL5 分析仪还具有以下优势:- 新款高效 5W X 射线管,提高轻元素检测能力;- 微观和宏观相机,提高数据采集效率;- 可为不同应用提前创建可定制模式;- 全新用户界面和显示屏,其中包括具有滑动功能的触摸屏;- 针对恶劣环境,提高防护等级。Niton XL5 分析仪是 Thermo Scientific 手持式 XRF 分析仪系列产品中的一员分析仪系列产品的组成部分,Thermo Scientific 手持式 XRF 分析仪系列产品还包括现有的 Niton XL2 和 Niton XL3 系列。此外,新型 Thermo Scientific Niton XL2 100G是此系列产品的补充,向客户实时提供可靠的鉴定结果。欲了解有关 Thermo Scientific Niton XL5 手持式分析仪的更多信息,请访问:www.thermoscientific.com/XL5 。-------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的 使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发 展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛 默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制