当前位置: 仪器信息网 > 行业主题 > >

化学药芬布芬

仪器信息网化学药芬布芬专题为您整合化学药芬布芬相关的最新文章,在化学药芬布芬专题,您不仅可以免费浏览化学药芬布芬的资讯, 同时您还可以浏览化学药芬布芬的相关资料、解决方案,参与社区化学药芬布芬话题讨论。

化学药芬布芬相关的资讯

  • 布洛芬等药品产量激增,制药企业VOCs治理跟得上吗?
    布洛芬、对乙酰氨基酚等药品最近成了“抢手货”。据工信部消息,日前,两类解热镇痛药的产能产量大幅提高,日产能达2.02亿片,产量达1.9亿片,多家药企24小时满负荷生产。这种情况下,制药企业产生的主要污染物——挥发性有机物(VOCs)的排放量也随之增加。这些制药企业的VOCs治理能跟得上吗?当前形势下,企业能否从容应对?冲击有限:取决于企业末端治理技术水平和管理能力多位业内人士认为,制药企业满负荷生产、产量激增对其VOCs处理能力的冲击有限。江苏省苏州市生态环境综合执法局郑兴春告诉记者:“制药企业安装VOCs处理设施时,我们要求设备处理能力达到满负荷运行的设计标准。大多数企业平时的运行效率只有30%—40%,即使现在运行效率提高了,也在可控范围内。而且,由于制药企业的生产能力强,每批次可以生产很多药品,所以很少出现超负荷运行的情况。例如,近期我们检查的几家苏州制药企业,虽然产量增加,但都没有超负荷运行。”但这并不意味着VOCs排放量增加对制药企业没有影响。中国环境科学研究院大气环境研究所副研究员王洪昌说:“影响大小,主要取决于企业VOCs末端治理的控制技术水平。”目前,制药企业选择的VOCs末端处理技术相差较大、治理水平参差不齐。一些企业采用燃烧法,安装投资和运行成本较高的RTO(蓄热式热力焚化炉)或RCO(蓄热催化燃烧装置),处理效率较高,能够较好应对生产负荷变化。但是,大多数制药企业采用的仍然是投资和运行成本较低的冷凝、吸收、吸附等技术,处理效率不高,对满负荷冲击的适应能力相对较差。“治理技术水平偏低的企业,当前可能更加频繁地出现VOCs排放浓度瞬时或小时超标问题。”王洪昌说。郑兴春表示,这就要求制药企业提高运维管理能力,加大环境治理力度,根据VOCs排放量的变化,更加及时地调整易耗品更换频率、优化处理设备参数,有效应对生产负荷增加的冲击。他举例说,未采用燃烧法的企业,需要提高易耗品更换频率。比如,采用活性炭吸附技术的企业,要提高活性炭更换频次;采用喷淋技术的企业,要及时更换碱液、调整碱液pH值等。采用燃烧法的企业,当VOCs收集量增加、燃烧时间变长、气体浓度变高时,设备温度也要调高。“企业对VOCs产生环节和收集管道也要实时检测,检查管道密闭性是否达到要求,防止气体泄漏。”郑兴春说。不容忽视:VOCs治理是制药企业重难点事实上,VOCs治理一直是制药企业的重难点,即使是制药行业头部企业,在这方面也吃过不少罚单。华东理工大学资源与环境工程学院党委书记、教授修光利告诉记者,从客观方面看,这与制药行业本身VOCs治理的复杂性相关。“制药企业生产品种多、所涉原料广,特别是原料药制备过程中使用了较多的有机原料和有机溶剂,导致其产生的VOCs种类繁多,排放成分复杂、性质差异大。不仅如此,制药企业生产流程长,VOCs产生环节多,无组织排放情况较多,序批式的生产操作方式导致排放的波动性较大,增加了企业污染治理难度。”修光利说。一些大企业能生产上千种药品。药品所用原料可分为活性药物成分(原料药)、非活性成分(辅料)和包装原料,其中,生产原料药的企业污染较重,利用原料药生产片剂、胶囊等的单纯制剂类企业污染较轻。在浙江,原料药约占全省医药工业一半比重。通常情况下,只有大型企业才有能力生产原料药,小型企业购买原料药做片剂或精包装。一些地区采用合同加工外包(CMO—Contract Manufacture Organization)式的制药企业,其药品品种复杂,也值得关注。药品所用原料越多,生产过程中发生的化学反应越多,产生的VOCs物种也越多。比如,生产布洛芬类消炎止痛药产生的主要大气污染物至少7种,生产对乙酰氨基酚等解热镇痛药则至少产生氨、氮氧化物、硫酸雾等21种大气污染物。“需要注意的是,制药企业所用的原辅料,有时还涉及医药中间体的生产和使用,比如布洛芬制药过程需要用到中间体异丁苯乙酮。医药中间体所用原料更加复杂,一些制药企业并不生产医药中间体,而是从其他化工企业购买。也就是说,药品产量激增,不仅带动制药企业VOCs排放量增加,还带动提供医药中间体的化工企业VOCs排放量的增加。”修光利说。他还指出,生产药品从第一步到最后一步可能有几十个环节,VOCs排放至少涉及7—8个环节,生产环节涉及的连接部件多,泄漏排放风险大。同时,药厂的药品一般都按批次生产,一批药品经过几小时的化学反应(或发酵)后再进入下一环节。物料的间歇式进出,导致产生的VOCs间歇排放,气体浓度波动变化大;更换药品品种需要清洗生产系统,清洗环节排放浓度高,这些都挑战着企业的治理能力。修光利告诉记者,受现有技术条件限制,制药企业产生的部分VOCs物种还缺乏监测方法,特别是一些低阈值特征污染物,虽然单一物质排放浓度达标,但综合恶臭(异味)仍十分明显,治理难度大;类似二氯甲烷等卤代烃的使用比较普遍,挥发性和毒性都很强,直接使用燃烧法会带来二次污染风险。但目前预处理技术非常不成熟,吸附脱附回收利用技术效果也不稳定。制药企业VOCs物种的复杂性对高效的RTO等处理设备的稳定运行也造成了很大影响。亟待解决:加强全过程管控、高效治理技术研发“对于制药企业的检查,我们面临的最大问题就是检测虽然合格,但异味还在。”郑兴春坦言。他希望,制药企业能在原有效率较低的VOCs处理设备上,加装二级、三级处理装置。处理装置升级是优化制药企业VOCs治理的末端环节。王洪昌指出,更应加强全过程管控,从原辅材料替代、工艺改进、过程控制、治污设施建设、监测监管等方面提出一体式优化控制路线。一是加大源头控制力度,积极推广绿色制药技术、推进清洁生产。鼓励采用酶促法、酶法裂解等无污染或低污染的先进药品回收工艺,对于6—APA产品,用酶法裂解替代化学裂解法,可以减少65%的有机溶媒和化学品;推广密闭化、管道化、连续化生产工艺与设备,采用无毒无害或低毒、低害的原料替代高度和难以去除高毒的原料等。二是加强设备密封操作要求,全面提升装备水平。采用国内先进设备,并进行垂直流设置,利用设备之间的层高差实现无缝化对接;生产装置采用DCS自动化控制,采用先进的温度测量、压力测量、液位测量仪器、仪表;鼓励使用无泄漏设备和连接部件。三是强化以资源化为目的的VOCs分类收集、分质处理。目前,很多制药企业采用同一系统收集处理混合VOCs废气,不利于有机溶剂资源回收,还大幅增加VOCs治理难度和费用。分类分质收集,不仅能有效提高废气浓度和物质纯度、降低风量,也便于采用深度冷凝、高效真空脱附等技术,提高溶剂回收率。修光利表示,2021年,由华东理工大学牵头制定、三省一市发布实施的长三角地区统一的《制药工业大气污染物排放标准》(以下简称《标准》),就明确要求对VOCs分类收集、分质处理。“分类收集、分质处理有助于推动VOCs治理技术低碳化改造。另外,分类收集可以考虑与《标准》中的控制项目结合起来。国家和地方标准针对制药行业都提出了总挥发性有机物(TVOC)以及一些特征污染物的控制指标,基本覆盖了化学药品原料药企业涉及VOCs的典型种类,我们也在《标准》的附录中基于产品进行了细致的分类,企业可根据使用的原辅料、生产工艺过程、生产产品等情况,从中筛选需要控制的VOCs。”修光利说:“未来,还要进一步研发适合不同种类VOCs的监测技术方法。”他透露,今年,适用于长三角地区的制药工业大气污染物防治技术规范正在制定,VOCs治理技术将遵循高效安全、节能低碳方向,综合考虑经济、环境和社会效益,构建全过程控制技术体系。同时,鼓励企业对有机溶剂回收利用。通过标准规范引领技术改造,推动化学合成类制药、发酵类制药等行业转型升级。
  • 河北省药用分子化学重点实验室培育基地建设方案通过论证
    近日,河北省科技厅按照科技部有关要求,组织专家对河北省药用分子化学重点实验室——省部共建国家重点实验室培育基地建设计划及2011-2015年建设规划进行了论证,论证专家组由国家工程院院士张生勇等7名同行专家组成。  专家组听取实验室建设计划和规划后,经过认真讨论,一致认为河北省的医药产业具有比较明显的特色和优势,在河北建立药用分子化学重点实验室具有天时、地力、人和的优势。实验室所制定的建设计划和发展规划切实可行,符合产业发展需求和技术发展方向,希望实验室进一步凝练发展目标和研究方向,加大人才引进和培育力度,在科技部门的大力支持下,在依托单位的努力下,尽早把河北省药用分子化学实验室建成特色鲜明、内涵丰富的药物研究领域科技创新基地,为提高国家医药科技创新能力和服务地方经济建设作出贡献。  河北省药用分子化学重点实验室重点围绕生物活性小分子肽、手性药物不对称合成反应、微生物药物的生物合成等方向开展基础与应用研究。它的建立将在提升河北医药产业原始创新能力、加快医药产业高水平人才的引进与培养等方面发挥积极作用。
  • 《化学会评论》封面报道化学所仿生体系分子组装研究成果
    《化学会评论》当期封面  生命体系中诸多基本结构单元在特定的环境下,能自发地进行自组装,形成各种各样的纳米结构。在细胞生命活动中,蛋白的折叠和展开起到了至关重要的作用,蛋白质的错误折叠能够导致神经性疾病的发作,例如阿尔兹海默症(Alzheimer's Disease)。实际上,淀粉样纤维的形成是这类疾病的一个共同特点,通过对与淀粉样纤维形成相关蛋白、多肽甚至寡肽的序列和有效分子识别单元的研究,人们能够设计生物启发的自组装构筑基元,进而用于材料的设计和制备。  在科技部、国家自然科学基金委和中国科学院的共同支持下,化学研究所胶体、界面与化学热力学院重点实验室研究人员近几年来一直致力于“仿生体系分子组装”方面的研究,并取得了系列研究成果,在英国皇家化学会综述期刊《化学会评论》 (Chem. Soc. Rev., 2010, 39, 1877-1890) 上发表了题为Self-assembly and application of diphenylalanine-based nanostructures的综述文章,系统地介绍了该小组近几年来在肽基分子组装方面的工作,并被选为该期的封面论文。  该课题组基于分子仿生的概念,利用不同肽作为自组装基元,构筑了一系列肽基纳米结构,由此组装的肽纳米结构材料在应用方面展示出其独特的优势,如在生物医药领域用于组织工程、药物输运、生物成像和生物传感等。其也可作为模板材料用于各种各样功能性纳米结构的制备。肽分子自组装可在分子水平上进行设计和功能化,从而控制组装体的形状和结构(Angew. Chem. Int. Ed.2007, 46, 2431 Chem. Eur. J. 2008, 14, 5974.),这有利于我们理解生物体里一些结构的形成和调控现象。在某些条件下,这样的肽分子能够自组装成纳米纤维,最终形成宏观的凝胶网络结构(Chem. Mater. 2008, 20, 1522 Chem. Eur. J. 2010, 16, 3176.)。另外,为了赋予纳米生物材料新的特性,发展了一些新的构建策略,制备生物有机-无机复合材料。例如,将阳离子寡肽与荧光量子点结合制备生物兼容的三维胶体球,可用于活体细胞的标记(Small, 2008, 4, 1687) 与多价阴离子结合构建适应性的杂化超分子网络,可用于多种尺度客体材料的包封,在药物控释方面有潜在的应用(Adv. Mater.2010, 22, 1283)。
  • 爱上化学是宿命——记北大化学与分子工程学院教授李彦
    李彦与心爱的碳纳米管模型  见到李彦,着实让我吃了一惊。和以往采访过的&ldquo 大腕儿&rdquo 不同,尽管已逾不惑、已经是长江学者、已经是&ldquo 杰青&rdquo 、已经是北大的博导、已经是国际上颇有名气的学者,李彦身上还是有着这个年龄与身份并不常见的&ldquo 稚气&rdquo ,或者说是一股&ldquo 愚劲儿&rdquo 。  采访,本是为成果一桩。不久前,李彦带领学生在国际知名学术期刊《Nature》上发表文章《单一结构碳纳米管合成》,在碳纳米领域引发&ldquo 强地震&rdquo ,这一成果或将推动已停滞近20年的纳米管研究重新向前,或将使得国际材料学领域多年来&ldquo 以碳基替代硅基&rdquo 的梦想成为现实,是国际材料化学领域的重大突破。  可几个钟头下来,我竟对这个人以及她所代表的一群人产生了浓厚的兴趣和深深的思考。有关科研态度,有关人生价值。  说起来,在科研的路上,李彦绝对不算一个幸运儿。30多年与化学为伴,多次迫于无奈改变科研方向,缺少经费、到处&ldquo 蹭&rdquo 试验场所和设备,捉襟见肘是常态,她也不会&ldquo 来事儿&rdquo ,不懂得找关系、拉课题。30多年的科研历程中,有20多年都是默默无闻。而就在所有人都劝她放弃,所有人都以为她再也撑不下去的时候,震惊世界的成果就这样翩然而至,突如其来,却也在意料之中。  她说,&ldquo 在科研的道路上,当你不求回报的时候,回报也许就来了。&rdquo 她还说,&ldquo 在科研的道路上,朝着目标一辈子,哪怕终其一生仍默默无闻,那也是一种幸福。&rdquo   李彦,北大化学与分子工程学院教授,众多北大&ldquo 愚人&rdquo 中的一员。  &mdash &mdash 记者手记  爱上化学,没有理由,不回头  爱上化学是宿命,这是李彦的话,很实在,也很贴切。  父母都是教授物理与化学的老师,直到现在,已过去近40年,李彦还清楚地记得,早晨,父亲采摘牵牛花,用酒萃取之后,做成酸碱指示剂,加上醋或者石灰水,给学生演示酸碱指示剂遇到酸碱之后的不同颜色变化。  神奇的,那一幕就这样深深印在了李彦的心中,自此抽离不去。  于是,小小的李彦有了特殊的爱好,收集各种药瓶当试管,石灰水、用来做滤网的手纸是她童年最爱的玩具。填报高考志愿时,李彦执拗地填下了这样的志愿:第一志愿,北京大学化学系化学专业,北京大学技术物理系应用化学专业。第二志愿,山东大学化学系。第三志愿,中国海洋大学海洋化学专业。  科研的起步,竟有着戏剧性。本科毕业后,进入导师的实验室开展研究生阶段的研究工作,尽管受导师的喜爱,但主持实验室工作的老师却对女生有着莫名的排斥。这位老师给了李彦一道考题,通过有沉淀生成的氧化还原滴定来标定溶液浓度,这项测试非常考验基本功。  显然,这是老师给的一记&ldquo 下马威&rdquo 。  一般人做此实验,往往称三份样品做平行实验,滴定完了,根据消耗的溶液的体积,计算浓度。可李彦只用了两份样品,滴定完成以后直接把记录的体积数据交给老师,老师计算之后发现两份滴定结果几乎一模一样,这说明李彦在整个实验过程中,有着极大的&ldquo 准头&rdquo 和细心,就是这一个实验,让实验室里的男子汉们彻底&ldquo 服了&rdquo 。  自此,李彦开始了自己与化学的不解之缘,低头前行,一走就是30多年。  哪能事事都要求回报呢,科研这事儿尤其如此  人说做科研,要有板凳坐得十年冷的劲头,李彦可不止坐了十年。  选择无机化学之后,李彦的研究方向发生过几次重大变化。本科、硕士一直研究的领域是萃取化学,博士和博士后阶段主要从事红外光谱和溶液结构的研究,参加工作后转为化合物半导体纳米材料的溶液相合成。到出国访问,才开始碳纳米管的研究。  外人看来,相对频繁的转换研究领域,打乱了在一个领域长期的知识积累。但&ldquo 单纯&rdquo 乐观的李彦却认为,&ldquo 百步九折&rdquo 的经历,其实是对自己的考验,也是在帮自己选择一扇真正适合自己的&ldquo 门&rdquo 。此后,事实果然证明,曲折的研究经历为李彦在碳纳米管可控生长研究中的独特思路埋下了种子。  1999年,李彦进入碳纳米管研究领域,并带着老黄牛的精神,一头扎进了探究碳纳米管生长机制中催化剂作用的方向。了解纳米管研究领域的人都知道,碳纳米管是纳米材料领域的前沿方向,但如何让碳纳米管材料结构一致是困扰纳米管领域的难题,也是让纳米管研究停滞十多年的重要原因,一些科学家甚至认为,如果结构无法固定并一致,那么碳纳米管研究将很难继续发展下去。  在李彦看来,通过催化剂作用影响碳纳米管的生长机制是一条可行之路,选择一种合适的催化剂,并让催化剂在合适的条件下&ldquo 听话&rdquo ,就有可能使得在催化剂上生成的碳纳米管的形状一致起来。  埋首实验室,转眼就是15年。李彦带领学生利用钨钴均匀混合的分子团簇作为前驱体(原料),通过反复的实验,最终制备出高熔点、结构独特的钨基合金作为催化剂。而从钨基合金上生长出的碳纳米管能够复制钨基合金的结构,形成一致的结构,从而表现出稳定的性质。这项成果一举攻克了困扰学界多年的&ldquo 制备结构(手性)完全一致的碳纳米管材料&rdquo 的问题。  不久前,李彦带着这项成果,在日本遇到了纳米管的发现者饭岛澄男,老先生高兴得像个孩子,&ldquo 太好了,这会让多少无奈离开纳米管领域的科学家重燃信心。&rdquo   15年,5400天,129600个小时&hellip &hellip 已记不得中间有多少次遇到了看似无法逾越的&ldquo 坎儿&rdquo ,已记不得有多少次被劝放弃,李彦就是倔强地一直埋头走下去,在她看来,基础科学的重要问题就得有人义无反顾地走下去,不问收获,不问回报,&ldquo 没人把这个问题攻克,碳纳米管的研究和应用就无法往前走。总得有人做下去。&rdquo   做老师是一生夙愿,同样没理由,没商量  1999年,李彦出国,在杜克大学做访问学者,本有机会留在美国继续从事科研工作,但面对诱人的橄榄枝,李彦拒绝了,丝毫没有犹豫。  在外人看来,这是错失良机,是愚笨的行为,但在李彦看来,拒绝是一种本能。因为在她心中,有着最朴素,却也最深沉的梦想,做一名老师,一名可以和学生真正&ldquo 交心&rdquo 的老师。在她看来,陪伴学生一同成长的幸福,是一名实验室里的研究员永远无法体会的。  回国之后,李彦主动申请走上讲台,教鞭一拿就是十几年,从未旷课、迟到、早退。  李彦讲授的课程是《普通化学》,这是化学院本科生最先接触的基础课程,能否对化学产生兴趣、能否建立良好的思维方式,这门课程对于学生来说至关重要。  李彦将最前沿的科研成果与最基础的理论知识相结合,将枯燥的概念同生活实际相结合,一门涵盖现代化学所有基本原理和知识的课程,被她讲得妙趣横生。她常常和学生们分享儿子参加玩具赛车比赛的故事,&ldquo 车就是用来跑的,跑得好最重要,你把它装饰得再漂亮也没有用。做研究做学问也一样,要抓住最根本、最朴素的东西。&rdquo 她注重培养学生的辩证思维,在她的课堂上,学生们必须牢记&ldquo 一个问题的是与否,都是有条件的&rdquo ,用怀疑和批判的态度学习知识。  人的时间与精力都是有限的,繁重的科研任务偶尔会与教学任务发生冲突,李彦有笨办法&ldquo 两全&rdquo ,不耽误课程的前提下,牺牲休息时间,加班做科研。  在李彦看来,科研与教学二者之间并不矛盾,教学过程要求老师将每一个概念都搞清楚、搞透彻,这反过来还能促进科研,而且,教学过程中得出的&ldquo 育人非一日之功,不可急功近利&rdquo 的感悟,也被她带到科研当中,成就其不浮躁、有静气,埋首躬耕,不问收获的科研品性。  采访结束,走出北大化学楼,李彦的一句话久在耳畔:  &ldquo 在北大,像我这样的人很多,有点傻、很较真,做喜欢的事,喜欢做事,与功利无关。&rdquo 原标题:《在北大,还有这样一些&ldquo 愚&rdquo 人》
  • 美女化学分析专家谈赛马兴奋剂检测的那些事儿
    当今在赛马这项竞技比赛中,用于提高马匹速度的各种兴奋剂层出不穷,针对市场上不断增多的新型药物的出现,化学分析专家们不得不争分夺秒地开发相应的新分析方法,以期达到打击各类禁用兴奋剂的目的。  最近,我们采访了一位该领域的专家,来自中国香港赛马会的Karen Y. Kwok博士。    Karen Y. Kwok毕业于香港城市大学环境分析化学专业,后就职于香港城市大学海洋污染国家重点实验室。2013年,她开始作为一名化学家在香港赛马会赛事化验所工作。此后,她全身心投入于赛马运动中的兴奋剂控制测试工作。Kwok博士目前是皇家化学学会(MRSC)的成员,至今已出版了两本书,并在国际杂志期刊上公开发表了10篇论文,多次作为报告人参加各种国际会议。  您受邀在瑞士日内瓦的HPLC 2015大会上做关于检测马鬃中雄激素合成类固醇的报告,请问为什么在赛马中使用雄激素合成类固醇是值得我们关注的问题呢?  雄激素合成类固醇(AASs)是一种可以用来增加肌肉力量、改善身体物理性能的物质。20世纪60年代以来,该类物质就常被作为兴奋剂在人类体育竞技运动和赛马运动中使用,其实该类物质属于违禁物质。自2014年开始,国际联合会发布的国际协议第6E条款明确规定,对于比赛用马,在其整个参赛生涯中,包括育种、竞赛和赌马,都禁止使用AASs。[1]  在您看来,分析比赛用马的禁用药物,主要的挑战是什么?  随着生物科学和医学的快速发展,越来越多的违禁物质被开发出来。不幸的是,针对新兴违禁药物,即使分析专家们能够以最快的速度开发出相应的检测方法,但相对于违禁药物在市场上的应用,不可避免地会存在时间滞后性。另外,赛马比赛中使用的违禁药物种类繁多,有些是用来增强马的运动机能的,而有些是削弱其机能的。而没有一种成熟的方法是可以检测出所有的违禁药物的 我们只能尽可能地充分利用现有的资源,以实现最广泛的药物检测的可能。  为什么您选择检测比赛用马的马鬃为样品,而不是它们的血液或尿液为首选样品?  作为药物测试的目标样品,尿液、血液和毛发各有各的优点。毫无疑问,毛发的主要优点是具有宽的检测窗口。毛发分析的一个典型特征是有可能通过分析不同段的毛发,确定其用药的时间。这样的信息对于确定给药的比赛用马来说,是非常有用的。此外,毛发样品不像尿液和血液样品,它很稳定,易于运输和贮存,并且很难掺假,具有非侵入性。当然话虽如此,很多药物是不适合采集毛发样品用来分析的,只能在尿液或血液中检测。因此对于兴奋剂的检测,尿液、血液和毛发样品它们存在互补关系。  您为什么要开发用于检测马鬃中48种AASs和(/或)其酯类的方法?  AASs通常是以它们的酯化形式使用,这样它们能够被存储在肌肉中,然后通过缓慢地释放以延长其作用期。对于一些内源性AASs如睾酮,在毛发中鉴别其酯化形式是其外源性的铁证。AASs类药物是赛马运动中任何时候都被禁止使用的药物,其药效的持续作用时间远长于尿液和血液样品的检测时间。因此,毛发就成为了用来追溯赛马中使用AASs的理想样品。  在使用超高效液相色谱-高分辨质谱(UHPLC-MS)技术测定马鬃中AASs之前,马鬃样品的制备方法有什么特别值得注意的因素吗?  与尿液和血液不同,毛发是一直暴露在外界环境中的。所以我们需要特别严格的去除污染物的过程,以避免错误的分析结果。其次,毛发中药物的含量通常是很低的(从10-2至10-9级),所以采用提取药物的方法需要足够高的提取率,这样才能满足UHPLC-MS的分析要求。另外,毛发是一种很复杂的基质,我们需要有效的净化方法,以降低MS分析时的基质效应。    这项工作中,您遇到的主要挑战是什么?您又是怎么克服的呢?相比其他方法,您采用UHPLC-MS的优势是什么?  主要的挑战是建立一种有效的提取方法来消除一些化学物质干扰,以保证后续UHPLC-MS分析的准确性。试验发现通过组合使用固相萃取(SPE)和液-液萃取技术,可以获得满意的样品净化结果。然后在选择性反应监测(SRM)模式下,我们采用具有高分辨能力的轨道阱(质量窗仅± 10 ppm)来进一步降低化学干扰。质量数测定的准确性通过在柱后添加质量参考物苄基二甲基苯胺来校准目标分析物可能存在的质量偏移来保证。  据我们所知,我们给出的关于马鬃中48种AASs和(/或)其酯类物质测定的方法是首次的。  该方法适合使用的领域有哪些呢?接下来您的研究内容是什么?  答:目前,我们的方法可用于检验AASs和(/或)其酯类化合物(含量从10-12到10-9级),方法灵敏度、准确度高。由于方法中添加的目标类固醇,方法可用于马鬃样品的筛选以及马鬃样品中AAS酯类物质的确认。实际上,随着我们研究工作的完成,采用我们建立的方法可用于更多的目标物的筛选。接下来的工作将是进一步验证我们所建立的方法,对于给药后的马鬃样品中AASs和(/或)其酯类物质代谢物测定的适用性。  马匹使用兴奋剂和人类使用兴奋剂之间有相似之处吗?分析方法可以通用吗?  比赛用马和人类运动员所使用的兴奋剂中所含的禁用物质可能是相似的,也可能是不同的。这不仅是由于药物在不同的群体上的作用机理不同(例如,人体运动是不受非甾体抗炎药控制的) 而且也由于对于不同的群体,一些药物产生的效果是不同的。此外,赛马中违禁药物不仅仅局限于机能增强药物(包括使狂躁的马平静下来的镇静剂),而且还包括削弱机能的药物。因此,相较之人类运动员的违禁药物,马的药物范围更广。  另外,马和人所采用分析方法也不是可以直接通用的。相较之人类,马的生物样品尤其是尿液,要复杂得多,测定之前样品需要更全面的净化过程。此外,马和人的药物代谢机理也是不同的。  如果一个年轻的化学分析师将开始该领域的研究,您会给一些什么建议呢?  首先兴奋剂检测是一个非常有意义并具有挑战性的领域。对于一个年轻的化学分析师,首先从思想上要认识到,无论是人类运动还是赛马比赛,诚信和公平都是基石,兴奋剂控制测试则是维护这一价值观的重要因素。由于检测结果是具有法律效力的,所以兴奋剂的控制测试需要按法医鉴定过程实施。除了挑战科学技术上的难题,年轻的科学家们也必须精通法医分析的各方面能力,如保证适当的物证保管链、作为专家证人在法庭上作证等。我们需要不断地向经验更丰富的化学家们学习和借鉴经验,以增强我们自己处理不同困难的能力。  此外,兴奋剂控制测试是相当苛刻的,新兴的违禁药物只会不断地增多 因此,我们需要不断掌握新的兴奋剂发展趋势和不同领域的科技进步。  最重要的一条建议就是,我们要赋予我们这份工作最高的热情,面对挑战时永不放弃。在兴奋剂控制测试领域工作,我相信年轻人们会获得巨大的成就感。  参考文献:  [1] http://www.horseracingintfed.com/resources/2015Agreement.pdf  [2] K.Y. Kwok, T.L.S. Choi, W.H. Kwok, and T.S.M. Wan, “Detection of Anabolic Steroids and/or Their Esters in Horse Hair Using Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry,” poster presented at HPLC 2015, Geneva, Switzerland, 21–25 June 2015.  作者:Karen Y.Kwok  原文出处:《The Column》第12卷第6期2-5页  译自:chromatographyonline
  • 春节中的化学:烟花何以五彩缤纷
    一、爆竹中的化学  中国民间有&ldquo 开门爆竹&rdquo 一说。即在新的一年春节到来之际,家家户户开门的第一件事就是燃放爆竹,以&ldquo 噼里啪啦&rdquo 的爆竹声除旧迎新。春节燃放爆竹的同时,民间还喜欢放烟花。烟花没有爆竹清脆的声响,但却有变幻无穷、色彩纷呈的图案。绚丽多彩的烟花与声声爆竹相辉映,将节日的夜空装点得热闹非凡。  我国人民燃放烟花爆竹已有二千多年历史。每逢喜庆日子,人们为了增加节日的欢乐气氛,燃放烟花爆竹。  爆竹的主要成分是什么?烟花在空中爆炸时,为什么会绽放出五彩缤纷的火花?燃放烟花爆竹可以增加节日的喜庆气氛,但是近几年来,我国许多大、中城市相继做出禁止燃放烟花爆竹的决定。这是为什么呢?  爆竹的主要成分是黑火药,含有硫磺、木炭粉、硝酸钾,有的还含有氯酸钾。制作烟花时是在火药中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色,所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  当烟花爆竹点燃后,木炭粉、硫磺粉、金属粉末等在氧化剂的作用下,迅速燃烧,产生二氧化碳、一氧化碳、二氧化硫、一氧化氮、二氧化氮等气体及金属氧化物的粉尘,同时产生大量光和热、而引起鞭炮爆炸。纸屑、烟尘及有害气体伴随着响声及火光,四处飞扬,使燃放现场硝烟弥漫,硫氧化物、氮氧化物、碳氧化物等严重污染空气。这些气体对人的呼吸道及眼睛都有刺激作用。燃放鞭炮不仅污染空气,飞扬的纸屑、烟尘落在地面上,还会影响清洁卫生。同时爆炸声如雷贯耳,据测定单个闪光雷爆炸时,其噪声至少在130分贝(dbA)以上,成为噪声公害。此外,每逢春节,由于燃放鞭炮而引起火灾,炸伤手臂、面部或眼睛的事故屡见不鲜。因此,禁止燃放烟花爆竹,对于保护环境,维护人民的正常生活秩序,都是十分有利的。  二、五彩缤纷的烟花  过春节时,家家户户都喜欢烟花。烟花是由筒壳体(纸、塑料、薄金属片等材料制成),烟火剂,封口物质,附件(如尾翼底座、横担、轴、杆),点火装置(如引线、擦火板、电点火头等)组成。它利用烟火剂燃烧或爆炸时产生的光、色、音响、气动、发烟等效应,使烟花成为一种供观赏品。  烟花是在火药(主要成分为硫黄、炭粉、硝酸钾等)中按一定配比加入镁、铝、锑等金属粉末和锶、钡、钠等金属化合物制成的。由于不同的金属和金属离子在燃烧时会呈现出不同的颜色(即&ldquo 焰色反应&rdquo ),所以烟花在空中爆炸时,便会绽放出五彩缤纷的火花。例如,铝镁合金燃烧时会发出耀眼的白色光 硝酸锶和锂燃烧时会发出红色光 硝酸钠燃烧时会发出黄色光 硝酸钡燃烧时则会发出绿色光。  除了金属和金属化合物外,人们还会在烟花里加入不同剂量的氧化剂、助光剂和黏合剂。氧化剂在燃烧时会产生大量氧气,起到助燃和使烟花颜色更加鲜艳的作用 助光剂能大大提高烟花的亮度 黏合剂则用来将粉末状的化合物组成大小不一的光剂颗粒。如果把这些颗粒按一定的规则排列,就可以制成不同图案的烟花。如&ldquo 向阳花&rdquo 中间一圈放上发黄色光的颗粒,周围放上发绿色光的颗粒,到天空爆炸后,就会形成一朵绿叶扶衬的向日葵,美丽极了。  烟花的颜色是由于不同金属灼烧,发生焰色反应颜色不同造成的。烟花是利用各种金属粉末在高热中燃烧而构成各种夺目的色彩的。使用不同金属就能产生不同效果,发出不同颜色的光芒  焰色反应:  钠(Na):黄 锂(Li):紫红 钾(K):浅紫 铷(Rb):紫  铯(Cs):紫红 钙(Ca):砖红色 锶(Sr):洋红 铜(Cu):绿  钡(Ba):黄绿  烟花爆竹的种类  按燃烧效果不同,可将烟花产品分为以下十类:  (1)喷花类:燃放时以喷射火苗、火花为主的产品   (2)旋转类:燃放时烟花主体自身旋转的产品  (3)升空类:燃放时,由定向器定向升空的产品   (4)吐珠类:从同一筒体有规律地发射多珠的产品   (5)线香类:用装饰纸或薄纸筒裹装烟火药或在铁丝、竹杆、纸片上涂敷烟火药形成的线香状产品   (6)地面礼花类:放置在地面,从筒体内发射并在空中爆发出焰药效果的产品   (7)烟雾类:产生烟雾效果为主的产品   (8)造型玩具类:产品外壳制成多种形状,燃烧时或燃烧后能模仿所造形象或动作的产品   (9)小礼花弹类(直径不大于38mm):弹体从发射管中发射到空中后,能爆发出各种花型图案或其他效果的产品。
  • 制药巨头研发重心纷纷向中国转移
    全球第二大医药巨头默沙东公司于上周宣布在中国成立亚洲研发总部,进行创新药物的研发,并且默沙东承诺未来五年内在中国投入15亿美元(约合96亿人民币)的研发资金,新的亚洲研发总部是这一计划的一部分。  资料图片  据介绍,随着欧美受金融危机带来的不确定性等,以及越来越多的专利药到期、新药上市数量不足等,令跨国制药巨头销售收入增长减缓。越来越多的全球制药企业将研发重心转移到中国这片发展向好且稳定的市场。  新品将涉及糖尿病及女性健康产品  记者了解到,默沙东亚洲研发总部预计一期工程将于2014年完工,届时将有约600名工作人员在此进行药物研发、转化性研究、临床开发、注册事务及外部研发项目。据默克实验室总裁金彼得透露,其实默沙东在中国的研发团队远远不止600人,还有许多合作伙伴包括公司和大学的实验室等,建立了一个更广泛的研究网络,公司非常看好中国的市场环境和人才优势。  默沙东中国主席兼总裁冯纳玺表示,未来几年会有更多的新产品在中国上市,新产品将覆盖糖尿病以及女性健康领域。默沙东亚洲总部将依托中国强大的医学科研人才和创新的平台,在心血管疾病、糖尿病、感染性疾病、骨科、肿瘤、神经科,以及疫苗领域,以创造出更好、更新的药物和疫苗,服务中国乃至全球的患者,同时为中国的医改做出积极的贡献。默沙东的研发涉及广泛的治疗领域,其中包括心血管疾病、糖尿病等中国近年来发病率日益上升的疾病。  金彼得谈到亚洲研发中心还有一个功能,就是希望把默沙东已有的(在欧美市场上已经上市的药品和疫苗)更快地带入到中国市场。除了亚洲研发总部,默沙东还将和一些中国企业进行药物疫苗的研发,比如已经在进行的与中国国药集团合作的HPV疫苗(宫颈癌疫苗)。  中国成全球第三大药品市场  默沙东将亚洲研发总部移师中国,并非孤立事件,其背后有着深远意义,就在今年初,世界最大制药公司美国辉瑞决定关闭它在英国已运作50多年的研发中心。一个开,一个关,预示着中国这样的市场地位正不断凸显。  据介绍,欧美受金融危机带来的不确定性等,加上越来越多的专利药到期、新药上市数量不足,令跨国药企销售收入增长减缓。据不完全统计,2011-2015年将有约770亿美元的药品专利到期。阿斯利康亦由于业务调整,其位于英国莱斯特郡查思伍德研发基地的项目亦将停止。  与此同时,发展中国家,尤其是印度和中国的制药业快速发展,给欧美大型药企走出困境带来希望,药品研发和生产正越来越快地从发达国家向亚洲转移。 2010年3月,IMS发布《重塑世界医药市场新秩序:一个被重新划分的世界》研究报告提出,2011年中国药品销售额将超过法国和德国,成为继美国和日本之后的全球第三大药品市场。  自2001年勃林格殷格翰出资1亿欧元用于在华扩建生产工厂和设立化学品研发中心,2002年诺和诺德在中国成立跨国药企第一家致力于生物技术研究的研发中心,此后数年内,罗氏、阿斯利康、礼来、诺华、强生、GSK和辉瑞都陆续大手笔投入在中国设立研发中心上,甚至位于中国的研发中心已独立成为跨国企业辐射全球的研究基地。  而当阿斯利康、葛兰素史克等纷纷宣布“将药物研究开发的全程都在中国完成”之时,即已宣告其各自在华研发中心将以独立的研究方向和完整的研究过程出现,而非跨国药企研发群体中的附属品,它们将把相对成熟的制药研发过程引入中国,把转化科学等新兴药物开发理念带入中国。而且,跨国药企在华研发中心越来越将以中国市场的需求作为首要研究方向。默克实验室总裁金彼得就向记者提到,默沙东亚洲研发总部会针对中国或者是亚洲市场一些特色疾病领域,如肝炎这类比较常见的疾病,针对其迫切的需要做一些有针对性的研发。
  • 电化学仪器用于环保领域,前景十分看好
    “100家国产仪器厂商”专题:访上海精密科学仪器有限公司雷磁电化学仪器事业部  为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动了“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观了上海精科雷磁电化学仪器事业部。  上海精科由原上海分析仪器总厂、上海天平仪器厂、上海雷磁仪器厂、上海物理光学仪器厂等国内科学仪器行业内著名企业组成,是目前国内最大的科学仪器制造集团之一,也是我国第一台分光光度计、第一台天平、第一台PH计以及第一台旋光仪的诞生地。上海精科目前拥有“上分”、“棱光”、“上平”、“双圈”、“雷磁”、“申光”等多个著名品牌。  上海精科率先通过了ISO9001质量管理体系认证和ISO14001环境管理体系认证,旗下多个品牌多次被评为“上海名牌”。2009年上海精科被中国仪器仪表学会授予“中国分析仪器发展贡献奖”。  pH计是实验室和生产过程中普及程度最为广泛、不可或缺的基本仪器之一,此次访问的是以pH计等电化学仪器为主打产品的“上海精科雷磁电化学仪器事业部”(简称“雷磁事业部”)。  上海精科常务副总经理兼雷磁电化学仪器事业部总经理汤志东先生、上海精科营销部经理叶鸿美女士热情地接待了我们一行,雷磁电化学仪器事业部常务副总经理姚元忠先生、总工程师殷传新先生带领我们参观了雷磁事业部生产车间,并为我们介绍了雷磁事业部近几年的发展情况。     雷磁品牌,创建于1953年  一、 历史悠久、不断发展  上海精密科学仪器有限公司雷磁仪器厂即原上海雷磁仪器厂,由荣仁本先生(全国政协委员)于1953年创建。作为我国第一家分析仪器专业生产企业,经过五十多年的不懈努力,从最初只有十几名员工的私营工厂发展成为今天员工人数近二百人、年产电化学仪器超过2万台、产值近亿元的国有企业,是目前国内规模最大、产品品种最齐全的电化学分析仪器及传感器生产厂。“雷磁”品牌享誉全国。  长期以来,雷磁不断重视新品开发和市场开拓,主要产品除PH计、电导率仪等实验室仪器外,通过引进消化吸收后,在在线水质分析仪器等方面也有了较大的突破,产品的应用领域也不断地拓展。通过市场细化和产品结构调整,形成了十大系列百余个品种的仪器及其相配套的传感器 近年的销售收入和利润增长幅度保持在10%,市场占有率名列前茅。  2003年12月,在雷磁50周年庆典之计,朱良漪先生为雷磁题词:“历经沧桑跌宕起伏半世纪,秉承专长努力拓宽创新,无愧为中国分析仪器企业第一家”。2009年10月,精科公司电化学产品部搬入了宽敞明亮的新厂房 中国仪器仪表行业协会秘书长李跃光先生在庆典仪式上致辞并预祝雷磁“创百年老字号,树中华名牌。”     2007年起,“雷磁”电化学仪器连续获得了上海市名牌称号  通过严格贯标、抓产品质量、抓诚信服务,“雷磁”牌连续两次获得“上海名牌”等荣誉称号,雷磁事业部2007年11月被评为“上海市装备制造与高新技术产业自主创新品牌”单位、2009年被中国水网誉为“水业用户满意设备品牌”。  二、 注重自主创新,确定重点战略目标,取得长足进步  “以自主创新不断推出新产品来取胜”,是精科公司常务副总经理兼雷磁电化学仪器事业部总经理汤志东先生多年的口头禅 每个员工都熟谙这句口头禅的含义:一个企业,如果没有自主创新的能力,很难在市场上立足,甚至被市场抛弃 所以,雷磁事业部从领导到生产员工都不敢松懈自己的工作,注重工作创新。  雷磁事业部通过深入了解市场、用户的需求,制定科学的发展战略,并且深入宣传发展战略,努力增强员工的责任感、使命感。十年前,雷磁事业部提出了“做优实验室仪器、做强在线监测仪表、做精电化学传感器”的战略目标 其后新品开发速度不断加快,每年有10多个项目的立项,同时抽出技术力量对所有传统产品进行技术革新,保持产品的竞争力。  近年来,雷磁事业部在注重自主创新、制定科学的发展战略、保护自主知识产权和提高核心竞争力方面取得了不俗的成绩并成功推出了一系列非常有市场竞争力的产品,如:DWG-8002A型氨氮自动监测仪获得“2008年度优秀产品奖” ZDJ—5自动电位滴定仪等产品获得自主创新奖 PXSJ—226离子计、COD—580型COD在线检测仪等新品投放到市场便受到用户的青睐,销售量逐年上升。上述产品代表了“雷磁”牌电化学仪器的技术水平和智能化程度,保持了国内行业的领先地位,有的接近或达到国际先进水平。  雷磁电化学仪器事业部常务副总经理姚元忠(左一)、总工程师殷传新(左二)介绍雷磁产品发展情况  三、 技术先进、门类齐全、形成电化学实验室仪器龙头  在自主创新的同时,雷磁积极跟踪、分析国际电化学仪器发展趋势,结合开发团队具备的电子、机械、软件、化学分析等方面的综合能力,制订了新产品发展目标,提出了以同行美国哈希公司和德国E+H公司为标杆,用坚持自主创新来实现雷磁事业部“做优、做强、做精”战略目标,打破国内高档电化学分析仪器市场和环保仪器市场被进口仪器“主宰”的格局。雷磁电化学仪器全面向智能化、信息化、模块化、系统化、和网络化方向发展。主要产品系列涉及PH计、电导率仪、自动滴定仪、离子计、溶氧仪、浊度仪等,产品不但满足国内用户的需求,还远销东亚、西亚、东欧、南美、北美等地区。     中国的第一支PH玻璃电极诞生于雷磁,经过雷磁几十年的努力,目前形成传感器的种类有PH复合电极、参比电极、离子电极、金属电极、溶解氧电极等多个品种,由传感器分公司专业制造。  PHSJ-5型实验室pH计,采用了高精度A/D转化芯片,配置了精密级pH电极、参比电极和温度传感器,确保了仪器具有0.001级pH的测量精度。该仪器可自动识别五种标准溶液、自动温度补偿、自动校准、自动计算电极百分理论斜率     DZS-708多参数水质分析仪,可同时测量mV、pH/pX、离子浓度、电导率、TDS、盐度、溶解氧、饱和度、温度,随机提供了多种常用的离子模式如:H+、Ag+、Na+、K+、NH4+、Cl-、F-、NO3-、BF4-、CN-、Cu2+、Pb2+、Ca2+等。有三种测量模式:连续测量模式、定时测量模式和平衡测量模式     ZDJ-520在线自动滴定仪具备自动判断滴定终点,能够进行pH、ORP、沉淀和络合滴定分析,可以自动温度补偿、自动标定和自动添加调节试剂,自动清洗及补液以及故障自诊功能。该仪器获得了“2008年度科学仪器优秀新产品”奖  四、 关注环境健康,发挥自身优势,大力发展在线自动监测仪器  如今,“低碳经济”已经是国内和国际发展的主流意识,环境健康、人类健康受到了前所未有的重视 雷磁未雨绸缪,积极调整方向,大力发展在线自动监测仪器。主要产品有在线COD环保监测仪、在线多参数水质监测仪、氨氮监测仪、污水溶解氧监测仪、工业PH/ORP计等产品。除了雷磁环保工程分公司运营环保仪器外,2010年雷磁又专门成立了在线仪器销售科,力推在线仪器的销售,为用户提供绿色仪器,满足顾客需求。     COD580在线水质监测仪,采用电化学氧化(羟基电极法)测量水中的COD值,仪器使用硫酸钠和葡萄糖溶液,无需重铬酸钾及浓硫酸等危险、有害的化学物质,通过信号输入同时可显示COD、温度、pH、流量,非常适合在线快速测量,以及远程控制 SJG-203A型溶解氧分析仪主要用于自来水厂源监测、水产养殖、城市污水处理厂等     DWG-8002A型氨氮自动监测仪,仪器采用氨气敏电极法在线监测水中的氨氮浓度,能广泛应用于对工业废水、生活污水、地表水等的监控。试剂消耗量少,运行成本低   对于新推出环保仪器的销售情况,雷磁一线装配工人称目前“销售等着要,我们需要加班加点来完成”,今年四、五月份,雷磁生产的COD-580在线水质监测仪和DWG-8002A型氨氮自动监测仪订单比去年同期增加了一倍多。  五、 愿景  面临新的市场需求,雷磁将继续发奋努力,抓住机遇,面对挑战,以公司“诚实、责任、顾客、团队、进取”的核心价值观和雷磁“务实、创新、求精、致远”的企业宗旨,“为提高人们的生活质量,提供高科技产品和优质服务”,实现企业稳定、健康、有效、持续的发展,进一步提升国产电化学仪器的水平。  本专题将对上海精科其他仪器部门的报道也会陆续推出,敬请期待。  附录:上海精密科学仪器有限公司  http://spsic.instrument.com.cn  http://www.spsic.com/
  • 专家报告视频-刘芬(中国科学院化学研究所)-XPS中绝缘样品和薄膜样品分析
    p style="text-indent: 2em text-align: justify "5月8日,由国家大型科学仪器中心-北京电子能谱中心、北京理化分析测试学会表面分析专业委员会、中国分析测试协会高校分析测试分会、全国微束分析标准化技术委员会表面化学分析分技术委员会及仪器信息网联合举办,为期一天的a href="https://www.instrument.com.cn/news/20200509/538052.shtml" target="_blank"span style="color: rgb(84, 141, 212) "strong“第四届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”暨“表面化学分析国家标准宣贯会”主题网络会议圆满落/strong/span/aa href="https://www.instrument.com.cn/news/20200509/538052.shtml" target="_blank"strongspan style="color: rgb(84, 141, 212) "幕!/span/strong/a会议为广大网友提供了一个免费学术交流平台,进一步拓展表面科学技术的应用领域。/pp style="text-indent: 2em text-align: justify "会议特别邀请到清华大学李景虹院士、中国科学技术大学朱俊发教授、中国科学院兰州化学物理研究所毕迎普研究员、中国计量科学研究院王海副研究员、中国科学院化学研究所刘芬研究员、北京师范大学吴正龙教授级高工等6位表面分析领域大咖及3家仪器厂家进行了报告分享,国家电子能谱中心副主任姚文清老师主持会议。/pp style="text-indent: 2em text-align: justify "会议受到了5000余人次的关注,同时与蔻享学术共享平台合作实时同步转播,参会人数累计超过4000人次。创历届新高!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 395px height: 395px " src="https://img1.17img.cn/17img/images/202005/uepic/f07353a7-beba-4387-b345-d91e56ec1a5e.jpg" title="刘芬1-1.jpg" alt="刘芬1-1.jpg" width="395" height="395"//pp style="text-indent: 0em text-align: center "中国科学院化学研究所 刘芬 副研究员/pp style="text-indent: 0em text-align: center "报告题目:XPS中绝缘样品和薄膜样品分析/pp style="text-indent: 2em text-align: justify "报告中,刘芬副研究员凭借她在表面分析领域多年的丰富经验,结合绝缘样品和薄膜样品XPS分析中的特点,对《GB/T 25185-2010表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告》、《GB/T 36401-2018 表面化学分析 X射线光电子能谱薄膜分析结果的报告》和《GB/T 36401-2018 表面化学分析 X射线光电子能谱薄膜分析结果的报告》三项国家标准进行了解读。/pp style="text-indent: 2em "报告视频:/pscript src="https://p.bokecc.com/player?vid=E91C1BAA5EBAC0ED9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script
  • 学术报告精彩纷呈 第八届全国环境化学大会召开
    p  环境污染成为制约我国经济发展的瓶颈之一,如何在发展经济的同时保护好生态环境是我国面临的重大任务。环境化学学科不仅面临巨大的挑战,也迎来重要的发展机遇。近年来,随着国家对科技投入的加大,我国环境化学研究发展迅速。为进一步交流环境化学研究的最新成果,探讨环境化学发展的战略方向,促进环境化学研究的创新,“第八届全国环境化学大会”近日在广州举行。/pp style="TEXT-ALIGN: center"img title="635838732107526828212.jpg" src="http://img1.17img.cn/17img/images/201511/insimg/cd43ce46-babb-4aa4-9945-9bd897b327c6.jpg"//pp style="TEXT-ALIGN: center"学术报告精彩纷呈 第八届全国环境化学大会召开/pp  会议由中国化学会环境化学专业委员会和中国环境科学学会环境化学分会主办,华南理工大学承办,中科院广州地球化学所、中科院广州能源所等单位共同承办。/pp  会议根据环境化学学科的最新进展设置了多种议题,涉及催化、生物、材料、毒理等交叉学科 举办环保与分析仪器展览、学术论文报展、研究生专题报告会,邀请国内外著名专家作大会和分会报告。会议主题是“环境化学的创新与发展”,将充分体现“创新、参与、合作、前瞻”的会议宗旨,促进环境化学学科的发展,推动国内外学术研究的合作,加快环境化学的科学建设与人才培养。/pp  大会主席、中科院院士、中科院生态中心研究员江桂斌,中科院院士、北京大学教授陶澍,日本大阪大学教授山下弘巳(YAMASHITA Hiromi),加拿大阿尔伯塔大学X.ChrisLe院士分别作了大会报告 中国科学技术大学教授俞汉青、复旦大学教授陈建民、浙江大学教授陈宝梁、暨南大学教授曾永平、中国科学院生态环境研究中心研究员刘思金等分别作了主旨演讲。/pp  据悉,本次大会代表超过4100名,收到论文摘要1948份,设立了大会报告7个、分会场32个,报告992个、展板报告1001份。会议期间同时举办了青年学者报告会、研究生报告会、“与编辑面对面”研讨会、国家基金委报告会等专题会议。各种报告精彩纷呈,学术气氛热烈。本次会议是历史上环境化学领域规模最大、专家学者最多的一次盛会。/p
  • 《中药分子鉴定通则》团体标准正式发布
    2016年12月12日,中华中医药学会批准《中药分子鉴定通则(T/CACM 010-2016)》标准,并予以公告。该通则由中国中医科学院中药资源中心、中国食品药品检定研究院、国药种业有限公司起草,集结了我国中药分子鉴定二十余年发展成果,综合考虑中药分子鉴定中不同送检样本对物种、变种、种质鉴定的技术需求,兼顾准确、简便、高通量、低成本的特点,将为分子鉴定应用于中药生产全链条质量控制发挥重要作用。  本标准的全部技术内容为推荐性。  本标准在遵从《中华人民共和国药典》的基础上,提出了《中药分子鉴定标准通则》。  本标准由中华中医药学会归口。  适用范围  本标准适用于对主要中药材、中药饮片、中药提取物、中成药、中药材种子种苗生产基地、加工、经营等场所开展的抽样检验活动中,需要对其进行真实性验证或身份鉴定的,允许采用DNA分子检测方法。  标准内容  中药鉴定范围包括中药材、中药饮片、中药提取物、中成药、中药材种子种苗,在实际生产、加工、经营过程中鉴定需求不同,如中药材、中药饮片、中药提取物、中成药主要侧重于物种水平的基原鉴别 而中药材种子种苗还侧重于种下水平的种质或品种鉴定。且由于不同检测样本中DNA含量和质量存在显著差异,因此本标准分为三个部分,即第1部分:中药材与中药饮片、第2部分:中药提取物与中成药、第3部分:中药材种子种苗。  本标准主要内容包括范围、规范性引用文件、术语和定义、方案选择要求、仪器设备、试剂、溶液配制、检验程序、结果分析和表示、结果报告、质量保证、废弃物处理。每个部分内容分别依据各分子鉴定技术特点确定,且均遵循科学性、实用性、先进性原则。  中药分子鉴别发展历程  1994年,单引物PCR扩增用于中药材人参和西洋参鉴别(香港中文大学,Cheung K S 等)。  1995年,提出分子生药学概念,明确分子标记鉴别研究方向(中国中医科学院,黄璐琦)。  1995年,随机扩增多态 DNA技术应用于蛇类的分类学研究和鉴定(南京师范大学,王义权等)。  1996年,Cytb序列分析用于鉴别鸡内金和鸭内金(中国科学院昆明动物所,王建云, 王文等)。  1997年,PCR-RFLP和MASA技术用于人参、西洋参和竹节参药材鉴别(Toyama Medical and Pharmaceutical University, Fushimi H等)  1998年,RAPD技术被用于鉴定中药复方制剂玉屏风散中黄芪、白术、防风等3味生药(台北医学院,Cheng K T等)   1999年,RAPD技术对瓜蒌农家品种种苗进行鉴别(中国中医科学院,黄璐琦等)。  2000年,《分子生药学(第一版)》中提出生药鉴定分子标记研究在近源生药品种、名贵易混淆生药、动物类生药、药材道地性、生药野生与家种(养)、中药原粉制剂、中医药古迹、药用植物种子种苗鉴别的应用前景,以及技术规范化的重要性。  2001年,ITS2序列被用于16种石斛属物种鉴别(香港中文大学,Lau D T W等)  2003年,加拿大科学家提出了DNA条形码鉴别的概念并随后发起了国际生命条形码计划(iBOL)  2004年,《中药分子鉴定》出版(香港中文大学,邵鹏柱、曹晖主编)   2005年,利用SCAR标记对续命汤等40个中药汤剂中人参属物种基原进行了鉴别(韩国中央大学,Shim Y H等)  2006年,《分子生药学(第二版)》在第一版的基础上,增加了SNP标记技术、基因芯片技术、DNA生物条形编码等中药分子鉴定新技术,并提出要充分利用我国丰富的生物资源进行DNA条形编码工作。  2007年,提出ITS2通用引物,并用于48科药材基原鉴别(台湾清华大学,Chiou SJ等) 提出了中药DNA条形码(中国医学科学院药用植物研究所,陈士林等)  2008年,我国正式加盟国际生命条形码研究计划(iBOL)。  2009年,启动中国维管植物DNA条形码计划。  2010年,蕲蛇、乌梢蛇饮片聚合酶链式反应鉴别法被2010版《中国药典》收载,成为世界上首个中药、天然药分子鉴定国家标准(中国中医科学院,黄璐琦等起草)   2011年,启动中国动物药材DNA条形码研究计划及建立动物药材分子鉴定标准数据库(中国中医科学院,黄璐琦等)  2011年,推荐ITS作为种子植物的核心DNA条形码(中国植物BOL工作组)  2012年,川贝母聚合酶链式反应-限制性酶切长度多态性鉴别法被2010版《中国药典》第二增补本收载(中国药科大学,李萍等起草)   2012年,《中药DNA条形码分子鉴定》出版(中国医学科学院药用植物研究所,陈士林主编)  2012年,高通量测序技术用于牙痛一粒丸等15种中成药中的原料药材鉴定(澳大利亚莫道克大学,Coghlan ML等)  2013年,使用碱裂解法快速提取130余种药材DNA(中国中医科学院中药资源中心,蒋超等)  2013年,提出中药材分子鉴别现场运用策略(中国中医科学院中药资源中心,袁媛等)   2013年,提出中药材DNA条形码分子鉴定指导原则(中国医学科学院药用植物研究所、中国中医科学院中药研究所陈士林等)   2014年,提出中药分子鉴定使用原则(中国中医科学院中药资源中心,黄璐琦等)  2014年,中药材DNA条形码分子鉴定指导原则被《中国药典》第三增补本收载(陈士林等起草,国家食品药品监督管理总局2014年第53号公告)   2014年,《中药分子鉴定操作指南》出版(中国中医科学院中药资源中心,黄璐琦主编)   2014年,CCP-based FRET检测技术用于中药鉴定,DNA检测灵敏度可达ng级(中国中医科学院中药资源中心,袁媛等)   2015年,建立金银花种苗DNA身份证(中国中医科学院中药资源中心,黄璐琦等)  2016年,团体标准《中药分子鉴定通则》由中华中医药学会发布(中国中医科学院,黄璐琦等起草)   2016年,《中国药典》聚合酶链式反应鉴别法(通则)修订项目立项(中国中医科学院,袁媛、黄璐琦等起草)
  • 福建物构所等发表超分子分析化学研究综述
    将超分子化学和分析化学完美结合起来的超分子分析化学近年来备受关注。该领域研究受体和分析物的作用、组装以及分析物诱导的信号传导和调控,在环境监测、疾病诊断、药物筛选、手性分析分离等方面具有重要应用前景。  在国家青年千人计划、国家自然科学基金和福建省自然科学基金等资助下,中国科学院福建物质结构研究所结构化学国家重点实验室尤磊课题组与美国德克萨斯大学奥斯汀分校教授Eric Anslyn合作,受邀在美国化学会旗舰刊物《化学评论》发表了题为Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing 的综述论文(Chem. Rev., 2015, DOI: 10.1021/cr5005524)。该综述结合当前超分子化学和动态共价化学最新研究动态,拓展了&ldquo 超分子作用&rdquo 的范围,以&ldquo 动态作用&rdquo 为基石重新定义了&ldquo 超分子分析化学&rdquo 的概念和范畴,以受体和分析物的动态作用和信号传导机理为切入点,结合光学传感系统阐述了这一研究领域的单分析物传感、差分传感和手性传感等三个分支的最新研究进展,并对未来研究方向和发展趋势进行了展望。  尤磊在有机化学、超分子化学和化学生物学的交叉领域开展研究,重点研究新型动态作用和组装及其在传感、标记等方面的应用,包括动态共价化学、刺激响应多组分组装、手性识别和放大、有机和生物分析等,相关研究成果发表在Nat. Chem. (2011, 3, 943), J. Am. Chem. Soc. (2012, 134, 7117 2012, 134, 7126), Chem. Sci. (2015, 6, 158), Chem. Eur. J. (2012, 18, 7068 2012, 18, 1102), J. Org. Chem. (2015, DOI: 10.1021/jo502801g)等国际知名期刊上。福建物构所等发表超分子分析化学研究综述
  • 分子科学从这里起源——记化学所分子科学创新历程
    开栏寄语:  2016年10月,中国科学院化学研究所将迎来60周岁生日。60年来,几代化学所人不懈努力,顽强拼搏,勇攀高峰,形成了“创新、求是、团结、奉献”的优秀文化,为我国科技事业、国民经济和国防建设作出了重要贡献。如今,化学所以基础研究为主,正在有重点地开展国家急需的、有重大战略目标的高新技术创新研究,并与高新技术应用和转化工作相协调发展,已成为具有重要国际影响、我国最高水平的化学研究机构之一。本报即日起将推出系列文章,以纪念为化学事业奋斗终身的前辈,也向正在“三个面向”“四个率先”的要求下,为化学科学发展、国民经济和国防建设奋战的科研工作者致以崇高的敬意。▲化学所规划图▲化学所分子楼  化学,是研究物质形成、结构、性能和变化的科学。上世纪90年代,科学家已经在认识分子结构和化学键的本质上积累了丰富的知识。彼时,化学家已瞄准了新的科学目标,即从需求出发设计并合成具有特定化学、物理特性的分子。  中国科学院化学研究所自1956年成立以来,一直把握着世界化学前沿的脉搏,引领中国化学学科相关领域的发展。  当化学学科逐渐走进“分子时代”时,化学所在国内率先提出面向世界科学前沿的分子科学研究计划。多年来,化学所依靠深厚的历史积淀,以扎实的基础研究,突破了诸多关键技术,培养了一大批分子科学领军人才,成为我国分子科学领域的高地。  “弄潮”分子科学  上世纪90年代末,党中央、国务院作出建设国家创新体系的重大决策,决定由中科院开展“知识创新工程”试点。根据该项试点工作的部署,1999年3月,中科院化学所首批进入了中科院知识创新工程,并启动了分子科学中心的建设,希望办成世界上有影响的、国际一流水平的分子科学中心,成为国际交流的窗口,同时建设和完善面向国家重大战略需求的先进高分子材料基地。  该中心由中科院化学所与当时的感光化学所相关部分整合而成,时任化学所所长朱道本被聘任为该中心的主任。  中国科学家“弄潮”分子科学的蓝图就此展开。  朱道本说:“一个人的力量是有限的,有了领导和同事们的支持,才能把分子科学中心建好。”启动伊始,他带领化学所多名研究人员详细调研了德国马普研究所、日本分子科学中心等世界一流的化学研究机构。  1999年4月初,经过详细论证,由14名院士和科研、管理专家组成评委会,在化学所原有研究单元的基础上,论证首批进入中心的单元。分子动态学、有机固体、工程塑料、高分子物理、纳米科技、光化学、胶体和界面等实验室和研究组入选。  “首批进入中心的196人,平均年龄是39.8岁,‘杰青’获得者有10名,‘百人计划’9名。”朱道本告诉《中国科学报》记者。  这些在世纪之交时种下的分子科学“种子”,在十多年里不断开花结果。以有机固体实验室为例,朱道本带领研究小组创造了新的高效合成方法,筛选出了具有自主知识产权、综合性能优异的电子/空穴传输材料 李永舫带领研究小组构建了高性能有机器件,使单结聚合物太阳能电池的能量转换效率提高到10%以上,始终保持了世界领先的水平 李玉良首次在铜表面上合成了具有本征带隙sp杂化的二维碳的新同素异形体石墨炔,开辟了人工化学合成碳同素异形体的先例。  如今,中科院化学所已在分子科学的多个领域位列世界前沿。  “奠基”分子纳米科技  纵观历史,观测手段的每一次进步都能推动人类认识世界的步伐。例如,在生物学上,X光衍射技术为分子生物学的发展奠定了基础。而天文学上,射电望远镜的发明则极大地拓宽了天文学家观测的视野。  分子科学领域也不例外。上世纪80年代,国际上纳米科学与技术的迅猛发展,以STM为代表的纳米表征技术的发明揭示了纳米尺度的微观世界,有力地推动了分子科学的发展。  1987年,在美国加州理工学院专攻扫描隧道显微学技术(STM)的白春礼,携带STM的研制资料和关键元器件回国,在中科院和化学所领导的支持下创立了STM实验室。  当时,STM仪器尚未实现商业化,自行研制STM仪器成为该实验室成立之初的主要目标。1988年,白春礼和同事们在科研经费不足的情况下,只花了不到半年时间,成功研制出中国第一台STM仪器。  “因为实验用房紧张,研制工作在化学所4号楼的一间地下室里开展。”参与STM仪器研发的实验室人员对这段历史记忆犹新,“1988年4月12日,实验室的日历永远记住了这个时间。”  中国科学院化学研究所上一任所长万立骏告诉《中国科学报》记者:“有了STM这个利器,中科院化学所纳米科学的发展得到了极大的支撑。”  1989年初,研究团队还开发了原子力显微镜(AFM),助力分子科学研究直接观察非导体的表面原子结构。超高真空扫描隧道显微镜、低温扫描隧道显微镜、激光检测原子力显微镜、弹道电子发射显微镜等纳米检测仪器也陆续成功研发。  研究人员正是依靠这些自主研发的仪器,对有机导体、有机铁磁体、非线性光学材料、高温超导材料、矿物和生物大分子等一系列物质开展了研究,取得了许多重要的研究成果。  2001年,以白春礼、王琛、万立骏为学术带头人的创新团队获得国家自然科学基金委员会的支持,标志着实验室进入一个新的发展阶段。一年后,该实验室正式被批准为中科院重点实验室。  在科研领域方面,该实验室已从STM研究拓展到纳米材料科学、单分子科学、纳米器件、纳米生物学等广大的纳米学科领域。  从基础到应用:一个都不能少  在中科院化学所分子科学研究走过的历程中,研究人员基于高水平的基础研究,开展了丰富的应用研究和产业化探索,分子科学的创新链条也得到了充分延展。  纳米绿色印刷是化学所全链条创新的典范。宋延林带领的团队先后实现了包括绿色制版、绿色版基和绿色油墨在内的完整纳米绿色印刷产业链技术。从2010年起,该团队与企业合作,推动项目产业化示范和制版中心建设,已经取得多项国际领先的技术成果,在国内外产生了广泛的影响。  有机光导鼓关键技术则始于上世纪80年代。王艳乔等科研人员完成技术研发后,于2000年建成我国首条有机光导鼓自动化生产线,结束了我国有机光导鼓的技术与产业空白局面,创造了良好的经济和社会效益。  在聚丙烯催化剂研发方面,肖士镜、谢光华和胡友良等研究人员成功制备出高活性、高立构规整性的聚丙烯催化剂,并于1992年在辽宁营口实现了催化剂的产业化,替代了进口催化剂。而在甲醇/一氧化碳羰基合成方面,袁国卿等带领研发团队研制出系列新型的螯合型催化剂。2004年起,该类催化剂陆续被大型企业广泛应用,共生产醋酸1100万吨,创造利润40多亿元。  中科院化学所所长张德清指出,多年来,在分子科学领域,化学所形成了分子合成、分子组装与功能及与材料、环境、生命、能源等交叉的全覆盖研究领域。  2013年,中科院发展规划局组织国际知名科学家对化学研究所进行了现场专家诊断评估。“国际评估专家认为化学所是中国最好的化学研究机构,也提出了许多中肯的意见,让我们未来的发展有了更清晰的方向和更大的空间。”张德清表示。
  • ICAS 2017分会场:分析化学未来在青年!
    p  strong仪器信息网讯/strong 2017年5月7日,2017国际分析科学大会(ICAS 2017)第二天上午,仪器信息网编辑的镜头来到了“青年论坛与新技术新方法”分会场。在这里,北京科技大学张学记教授等五位学者带来的精彩报告正有序上演。而在青年身上,中国分析化学的未来也在冉冉升起。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/d7bc7ea2-b3fb-46fc-a3cd-f22f4f1603bb.jpg" title="IMG_8578.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "华中科技大学Mohamed Foda教授主持分会场报告/span/strong/ppstrongspan style="color: rgb(0, 112, 192) "/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/6ae26f6b-724b-4414-8dc8-a3f6dca0a472.jpg" title="IMG_8557.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "In Situ Spectroelectrochemistry of Organic Semiconductors/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "Carita Kvarnströ m, University of Turku, Finland/span/strong/pp  来自芬兰图尔库大学的Carita Kvarnströ m教授介绍了有机半导体的原位光电化学分析方法,即通过将电化学与光谱方法相结合,全面分析多个电子转移过程及其氧化还原反应。Carita表示,在有机半导体和一维/二维共轭材料中,该方法可研究电荷载流子的工艺和特性。特别在半导体复合材料中,对于整体材料而言,可以通过UV、VIS、NIR、IR、Raman、EPR等不同光谱方法合成参数,研究单个组分性质改变对其形成的影响、共轭聚合物中的电荷载体及石墨烯在不同电解质介质中的氧化还原等内容。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/6fb795f9-7041-49cb-be2b-a546e02023ab.jpg" title="IMG_8585.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongBioanalysis Based on Novel Nanomaterials or Intelligent Interface/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongXueji Zhang, University of Science & Technology Beijing, China/strong/span/pp  北京科技大学张学记教授介绍了基于新型纳米材料或智能界面的生物分析方法。纳米材料由于具有独特物理化学性质、良好的生物相容性、优越的机械性能及表面易于生物功能化等特点,被广泛应用到生物分析之中。结合纳米材料和智能界面等研究内容,张学记教授在报告中介绍了团队在生物分析化学研究领域所开展的系列工作,如生物功能材料的有序组装、仿生微纳界面、生物传感与功能器件的构建等,分享生物分析全新思路。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/7e4f4fa7-15d7-4443-b127-b270960aacba.jpg" title="IMG_8607.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "Highly Sensitive Biomedical Detection using SERS based Microfluidic Technology/span/strong/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "Rongke Gao, Hefei University of Technology, China/span/strong/pp  合肥工业大学高荣科副教授在报告中提出了基于SERS微流控的生物标志物快速免疫检测研究。该方法在基于液滴的微流控系统中嵌入磁棒,通过结合SERS标签,使液滴依次经过产生、免疫反应、免疫复合物分离和液滴裂变的过程,以实现生物标志物的无洗涤免疫测定。由于整个测定可自动进行,只需要最少的样本量。据介绍,该方法有望成为用于早期诊断前列腺癌和其他严重疾病的潜在临床工具。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/478a8a8d-23e6-4e3f-be58-6e26bc1315ba.jpg" title="IMG_8618.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongExploration of Nucleic Acid Modifications by Chemical Labeling–mass Spectrometryanalysis/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongBi-Feng Yuan, Wuhan University, China/strong/span/pp  核酸胞嘧啶甲基化(5-甲基胞嘧啶,5-mC)作为一个重要的表观遗传标记,在各种细胞过程中发挥关键作用。但是由于目前分析检测手段的限制,对体内甲基化DNA氧化衍生物(5-hmC、5-fC、5-caC)的精确定量分析方法仍然不够成熟。为此,武汉大学袁必锋教授团队建立了一种通过化学标记和LC-ESI-MS / MS分析方法,实现一次性同时分离分析检测细胞中全部三种甲基化DNA氧化衍生物(5-hmC、5-fC、5-caC)。通过对甲基化DNA氧化衍生物的定量分析,为干细胞分化机制的阐明、癌症的风险评估、早期预警和诊断、抗癌药物全新作用通路的发现提供新的实验分析方法。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/e321ccc0-d22d-4f97-91a4-f934594d4183.jpg" title="IMG_8630.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongTwo-dimensional Titanoniobate-based Nanosheets for the Highly Efficient Enrichment and Ambient MS Detection of Phosphopeptides/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongQianhao Min, Nanjing University, China/strong/span/pp  蛋白质磷酸化是常见的蛋白质翻译后修饰方式之一,长期以来,蛋白质磷酸化综合表征研究受磷酸化修饰的低丰度以及磷酸化多肽的低离子化效率所限制。为解决这一问题,南京大学闵乾昊副教授所在团队构建了基于Fe3O4纳米晶体及纳米晶片(Fe3O4 -TiNbNS)的纳米复合材料,用于磷酸肽的捕获和同位素标记。在初级质谱图中实现了对其磷酸化位点的精确计数的单磷酸化多肽和多磷酸化肽的全面检测,提供了磷酸肽的快速和全面表征。该方法可与商业化ESI质谱仪广泛兼容,具备快速、低成本。高通量等检测特点,在疾病的临床检测当中拥有广泛前景。/p
  • 中国化学会第二届分子手性学术研讨会闭幕!
    11月14日9点整中国化学会第二届分子手性学术研讨会在广州大学城华师国际会议厅开幕。会议主要专题有: 1. 手性配合物与手性材料 2. 不对称合成与手性分离 3. 生命中的手性现象 随着组合化学在手性药物合成和新材料方面的应用,大量的新型手性化合物与材料被合成出来,这些材料与化合物的识别与分离显得非常重要和关键,制约着这一领域的发展。由华南师范大学章伟光教授进行的新型手性探针与分离材料的制备这一课题组合成了环糊精类衍生物作为新型手性探针与分离材料,可以分离和识别上百种手性化合物,取得了重大进展与突破。芬兰KSV公司的QCM-Z500石英晶体微天平是章老师进行手性分析的重要工具。
  • 喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统
    喜讯不断!祝贺万华化学成功引进芬兰Pixact公司PCM结晶监测系统 万华化学集团股份有限公司是一家全球化运营的化工新材料公司,依托不断创新的核心技术、产业化装置及高效的运营模式,为客户提供更具竞争力的产品及解决方案。 万华化学始终坚持以科技创新为第一核心竞争力,持续优化产业结构,业务涵盖聚氨酯、石化、精细化学品、新兴材料四大产业集群。所服务的行业主要包括:生活家居、运动休闲、汽车交通、建筑工业、电子电气、个人护理和绿色能源等。作为一家全球化运营的化工新材料公司,万华化学拥有烟台、宁波、四川、福建、珠海、匈牙利六大生产基地及工厂,形成了强大的生产运营网络。 万华化学秉承“化学,让生活更美好!”的使命,始终以创建受社会尊敬、让员工自豪、国际一流的化工新材料公司为公司愿景,一如既往地在化工新材料领域持续创新,引领行业发展方向!万华化学此次引进芬兰Pixact公司的PCM结晶监测系统,为万华化学的科技创新再添新动力,必将创造更加辉煌的未来。PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像。对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以得到高准确度的晶体尺寸、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。PCM结晶监测系统不需要离线取样,可以在线原位实时监测晶型转变过程。测试过程清晰直观,既大大提高了晶型转变的研究效率和准确性,又可以避免传统显微镜的多晶型研究的取样问题、以及取样后由于条件变化导致的样品变化问题,可帮助用户优化与控制工艺流程,以及排除故障。 PCM结晶监测系统,非常适合结晶工艺的开发与优化,速度快,效率高;帮助工艺问题原因被快速发现及快速解决,可以实现生产质量稳定性监控,原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整等。PCM结晶监测系统是结晶工艺研究与控制的强有力工具,是结晶过程的眼睛,代表了当前结晶成像及颗粒度监控领域的国际最高水平。 芬兰Pixact公司除了PCM结晶监测系统,还有PPM颗粒监测系统、PDM液滴监测系统、PBM微气泡监测系统等。(1)PPM颗粒监测系统是为在线分析不同形态颗粒而设计,广泛应用于微颗粒、颗粒、纤维、团块、絮状物等;(2)PDM液滴监测系统是为在线分析液滴和乳液而设计;(3)PBM微气泡监测系统是为在线分析气泡悬浮液和泡沫体系而设计,可以得到:气泡尺寸分布、平均气泡尺寸、标准偏差、索特平均直径和累积分布参数(D10、D50、D90等);芬兰Pixact公司的所有在线监测系统都可以提供PIXSCOPE探头、PIXSCOPE FL非接触式探头、PIXCELL流通管,均可以应用于研发、实验室小试、千吨级中试和万吨级工业化现场。 万华化学始终坚持以科技创新为第一核心竞争力,伴随着芬兰Pixact公司的PCM结晶监测系统的成功引进,相信万华化学必将创造自我、超越自我!北京海菲尔格科技有限公司作为Pixact在国内的总代理,继续致力于将最先进的仪器设备推广到所需要的各个领域,让我们一起加油向未来,让生活变得更美好!
  • 可用于预测分子特性!人工智能公司DeepMind开发出化学界最有价值的技术之一
    原文作者:Davide Castelvecchi机器学习算法利用电子密度预测材料性质伦敦人工智能公司DeepMind的科学家领导的一个团队开发了一种机器学习模型,该模型能通过预测分子中电子的分布来预测分子的特性。这种方法发表于12月10日的《科学》杂志上[1],它可以比现有技术更准确地计算一些分子的性质。人工智能预测单个分子中电子的分布(示意图),并利用它来计算物理性质。来源:DeepMind维也纳大学的材料科学家Anatole von Lilienfeld说,“能做到如此精确是一项壮举。”波兰罗兹理工大学的计算化学家Katarzyna Pernal说,这篇论文是“一项扎实的工作”。但她补充说,在能为计算化学家所用之前,机器学习模型还有很长的路要走。预测性质原则上,材料和分子的结构完全由量子力学决定,特别是由支配电子波函数行为的薛定谔方程(Schrödinger equation)决定。这些数学工具能描述特定电子在特定空间位置出现的概率。但是DeepMind的物理学家James Kirkpatrick说,因为所有的电子之间都存在相互作用,所以根据这样的第一性原理(first principle)计算结构或分子轨道异常棘手,仅能对最简单的分子进行计算,比如苯。为了避开这个问题,那些依赖新分子的发现或开发的研究人员——从药理学家到电池工程师,几十年来一直使用一套被称为密度泛函理论(DFT)的技术来预测分子的物理性质。该理论并不模拟单个电子,而是计算电子负电荷在分子中的总体分布。“DFT着眼于平均电荷密度,所以它不知道单个电子的状态。”Kirkpatrick说。物质的大多数性质可以根据该密度轻易地计算出来。自20世纪60年代DFT建立以来,它已经成为物理科学中应用最广泛的技术之一:2014年,《自然》新闻团队的一项调查发现,在被引次数最多的100篇论文中,有12篇是关于DFT的。材料性质的现代数据库,如Materials Project,很大程度上由DFT计算的数据组成。但是这种方法有局限性,而且现在已经知道它会对某些类型的分子给出错误的结果,甚至包括氯化钠这样简单的分子。尽管DFT已经比基于基本量子理论的计算要高效得多,但它们仍然很耗时,并且通常需要超级计算机。因此,在过去的十年里,理论化学家越来越多地开始用机器学习进行实验,特别是用在材料的化学反应活性或导热能力等性质的研究上。理想问题DeepMind团队可能做出了迄今为止最具野心的尝试,他们利用人工智能来计算电子密度,这是DFT计算的最终结果。“在某种程度上这属于理想的机器学习问题:你知道答案,但不知道想用什么计算公式。”理论化学家Aron Cohen说。他长期从事DFT研究,目前在DeepMind工作。该团队用薛定谔方程导出的1161个精确解数据训练了一个人工神经网络。为了提高其准确性,他们还将一些已知的物理定律硬连接进了神经网络中。von Lilienfeld说,他们随后用一组DFT计算常用的标准分子测试了训练好的系统,结果很出色。“这是研究群体目前能得到的最好结果了,而他们大获全胜。”他说。von Lilienfeld补充说,机器学习有个优点是,尽管训练模型需要海量的计算能力,但这个过程只要做一次,之后就能在普通笔记本电脑进行独立的预测运算。与每次都从头开始计算相比,机器学习模型大大降低了成本和碳足迹。Kirkpatrick和Cohen说,DeepMind正在发布他们训练好的系统供任何人使用。作者表示,目前该模型主要适用于分子,而不适用于材料的晶体结构计算,但之后的版本也可能会适用于材料。参考文献:1. Kirkpatrick, J. et al. Science374, 1385–1389 (2021).原文以DeepMind AI tackles one of chemistry’s most valuable techniques为标题发表在2021年12月10日《自然》的新闻版块上
  • 质检总局:进口新西兰婴儿奶粉检出化学物质
    "统一"泡面超过保质期,"强生"爽身粉、润肤油、婴儿润肤霜货证不符,新西兰育婴宝初生婴儿奶粉违规使用化学物质&hellip &hellip 国家质检总局网站昨日公布"10月进境不合格食品、化妆品信息",多款知名企业及品牌产品上榜。这些不合格批次产品已退货或销毁,未在国内市场销售。  新西兰3批次育婴宝初生婴儿、较大婴儿、幼儿婴儿配方奶粉,被发现违规使用化学物质5' 单磷酸肌苷和5' 单磷酸鸟苷。澳大利亚的贝拉米有机较大婴儿奶粉(阶段二)、贝拉米有机幼儿奶粉(阶段三)共9855千克,违规使用化学物质L-胱氨酸。韩国乐天食品(株)帕斯特工厂生产的韩羊婴儿配方山羊奶粉、美恩智婴儿配方奶粉,共计8001千克,检出"能量含量不符合国家标准要求".此外,还有一批次1970千克的荷兰瑞贝恩婴儿米粉,检出钙、水分和维生素B1含量不符合国家标准要求。   检测发现,台湾统一企业股份有限公司的统一米粉、统一泡面,共8批次,全部超过保质期。维力食品工业股份有限公司的张君雅小妹妹捏碎面,未获检疫准入。  韩国希杰狮王(株)多特洁丽康牙膏,细菌总数超标。从美国进口的自然牙医牌儿童用防龋齿啫喱牙膏-浆果味,PH值超标。强生(中国)有限公司从新加坡进口的爽身粉、婴儿润肤霜、润肤油,货证不符。丝芙兰(上海)化妆品销售有限公司从意大利歌丽诗化妆品有限公司进口的2351千克歌丽诗海盐塑身霜,铅超标。  新西兰政府公布"恒天然"调查报告  针对今年8月曝出的恒天然集团浓缩乳清蛋白受污染事件,昨天,新西兰政府公布了第一阶段的政府调查报告,对乳品等食品监管体系提出29项改进建议。新西兰官员当天表示,将向新兴出口市场增派贸易专员,其中将额外派遣4名贸易专员常驻中国。  报告承认,新西兰各级监管部门缺乏具有乳品加工和监管专长的人才,并在包括乳品业在内的食品安全研究方面投入不足。报告建议政府提升对乳品业产品和原料追溯的能力 推行更加标准化的召回制度 修改婴幼儿配方奶粉的监管法规。
  • 食药监总局公布婴儿乳粉等生产许可检验机构
    国家食品药品监督管理总局关于公布婴幼儿配方乳粉生产许可检验机构的公告(第6号)  为贯彻落实《国务院办公厅转发食品药品监管总局等部门关于进一步加强婴幼儿配方乳粉质量安全工作意见的通知》(国办发〔2013〕57号),严格婴幼儿配方乳粉生产许可,保证婴幼儿配方乳粉发证检验工作质量,依据《食品药品监管总局关于贯彻婴幼儿配方乳粉生产许可审查细则严格生产许可工作的通知》(食药监食监一〔2013〕253号)和《婴幼儿配方乳粉生产许可审查细则(2013版)》,国家食品药品监督管理总局组织专家组,对婴幼儿配方乳粉生产许可检验机构进行了推荐、考核和评审。经研究,决定由国家食品质量安全监督检验中心、国家乳制品质量监督检验中心、山东省食品药品检验所、国家食品质量监督检验中心(上海)、国家加工食品质量监督检验中心(广州)、安徽省食品药品检验研究院(安徽国家农副加工食品质量监督检验中心)、黑龙江省质量监督检测研究院、武汉食品化妆品检验所共8家检验机构承担婴幼儿配方乳粉生产许可检验工作。  各省级食品药品监督管理局对企业现场审查抽取的婴幼儿配方乳粉样品,应分送2家以上婴幼儿配方乳粉生产许可检验机构进行生产许可检验。检验机构要严格按照婴幼儿配方乳粉国家标准、食品安全国家标准规定的检验方法和食品标签明示的成分进行检验,并准确、及时出具检验报告。检验报告应同时报送相关省级食品药品监督管理局和国家食品药品监督管理总局。  附件:婴幼儿配方乳粉生产许可检验机构名单.doc  国家食品药品监督管理总局  2014年1月28日 食品药品监管总局办公厅关于公布食品添加剂醋酸酯淀粉等产品生产许可检验机构的通知  山东省、上海市食品药品监督管理局:  为进一步加强食品添加剂生产许可工作,根据有关规定,经研究,现公布你局推荐的山东省食品药品检验所、上海市质量监督检验技术研究院为食品添加剂醋酸酯淀粉等产品生产许可检验机构(检验机构联系方式及承检范围见附件)。  请你局监督检验机构在承担生产许可检验工作中,应当严格遵守以下规定:  一、在指定的承检范围内开展检验工作,不得超范围检验。  二、严格按照法律法规和标准的规定,准确、高效地完成检验工作。  三、未经批准,不得擅自将有关检验工作委托给其他检验机构。  四、在检验工作中发现产品的食品安全问题,要及时报告省级食品药品监督管理局或质量技术监督局处置。  五、在检验工作中,要注重经验和技术的积累,注重对检验人员的培训,特别是要有针对性地开展检测方法和技术的研究,不断提高检验能力和检验水平。  附件:新增食品添加剂生产许可检验机构联系方式及承检范围国家食品药品监督管理总局办公厅  2014年1月27日
  • 近红外光谱法预测双氯芬酸钠球包衣的载药量和释放速率
    与高效液相色谱法(HPLC)等更传统的方法相比,这种研究人员所描述的新方法具有在线和实时监测的优点。《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》杂志上的一项新研究探讨了将双氯芬酸钠球体作为给药系统时,双氯芬酸钠的药物载量和包衣过程中的释放率。该研究通过使用近红外(NIR)光谱技术,不仅对药物负载和释放率进行了监测,还对二者进行了实时在线预测。双氯芬酸在屏幕上展示|图片来源:© JoyImage -stock.adobe.com这项研究由13位来自山东大学和山东SMA制药有限公司的研究人员共同合作完成(均位于中国山东)。他们在报告中首先介绍了近年来制药行业如何将过程分析技术(PAT)越来越多地纳入到生产实践中,无论是使用近红外光谱、拉曼光谱还是光学相干断层扫描(OCT),PAT都被誉为药品生产过程中在线实时监测所不可或缺的工具。双氯芬酸钠肠溶片在美国通常以Voltaren的商品名处方,其也以凝胶形式提供。它是一种非甾体抗炎药(NSAID),用于缓解关节炎,提供抗炎、镇痛和解热作用(根据美国专利申请号5,000,000),美国食品药品监督管理局(FDA)。与此同时,山东的研究小组报告称,双氯芬酸钠微球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放速率,流化床包衣广泛用于工业生产。双氯芬酸钠肠溶片是美国常用的处方药,其品牌名称为 Voltaren,也有凝胶剂型提供。根据美国食品和药物管理局(FDA)的规定,这是一种非甾体抗炎药(NSAID),用于缓解关节炎,具有消炎、镇痛和解热作用。与此同时,山东的研究团队报告称,双氯芬酸钠球作为一种多单元薄膜包衣给药系统,具有良好的流动性和稳定的释放率,且流化床包衣技术已广泛应用于工业生产中。流化床喷涂是将功能聚合物与涂层分散体喷涂在一起,一般会形成均匀的薄膜涂层。它具有传热传质快、气相固相接触面积大、温度梯度小等优点。研究人员说,作为过程中的一环,对药物负载量和释放率(双氯芬酸钠的关键质量属性(CQAs))的测试和分析可确保给药系统的安全性和有效性,但离线方法耗时过长,影响分析测试效率。在这一应用中,使用近红外光谱的实时在线预测模型具有很强的抗干扰性,进而允许将蔗糖球以不同的投料量引入实验。研究人员说,这种设计将证明模型的稳健性。近红外光谱用于在存在干扰物质的情况下需要进行多组分分子振动分析的场合。近红外光谱由在中红外区域中发现的基本分子吸收的泛音和组合带组成。近红外光谱通常由非特异性和分辨差的重叠振动带组成。尽管存在这些明显的光谱限制,但化学计量学数学数据处理的使用可用于校准定量分析的定性。在流化床涂层过程中使用了带有漫反射模块和高温外部探头的微型近红外光谱仪。据说这次实验的结果是成功的,研究小组发现它能够验证模型的分析能力。因此,作者建议在这一领域开展进一步研究,为智能化的现代药物生产过程提供更多科学依据。参考文献(1) Sun, Z. Zhang, K. Lin, B. et al. Real-Time In-Line Prediction of Drug Loading and Release Rate in the Coating Process of Diclofenac Sodium Spheres Based on Near Infrared Spectroscopy. Spectrochim. Acta, Part A 2023, 301, 122952. DOI: 10.1016/j.saa.2023.122952(2) Voltaren® (diclofenac sodium enteric-coated tablets) – Tablets of 75 mg – Rx only – Prescribing Information. U.S. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/019201s038lbl.pdf (accessed 2023-09-07).(3) Voltaren Arthritis Pain Relief Gel & Dietary Supplements | Voltaren. https://www.voltarengel.com/ (accessed 2023-09-07).
  • 安旭生物新品单人份化学发光免疫分析仪首发AACC2022
    2022年7月26日,第74届美国临床化学年会暨临床实验医学博览会(2022 AACC)在美国芝加哥麦考密克会展中心隆重举行。安旭生物营销团队携多款明星产品亮相展会,广受好评。(团队亮相AACC)本次展会,安旭生物不仅携带了毒品检测产品、传染病检测产品、妊娠检测产品、肿瘤检测产品、心肌检测产品、POCT仪器产品等,也带来了备受关注的新冠病毒检测系列产品、猴痘病毒检测系列产品,以及新品单人份化学发光免疫分析仪。(备受关注的展位)明星产品新冠病毒检测产品不论是初代新冠病毒还是近期的新冠变种毒株,针对新冠病毒的差异性、异变性等特性,安旭生物成功研发了新冠病毒抗原检测、新冠病毒抗体检测、新冠病毒核酸检测等系列产品,为客户提供了完整的新冠病毒检测解决方案。安旭生物的新冠病毒检测系列产品具有灵敏度高、操作简单及多场景适用等优势,受到客户的广泛认可。安旭生物的新冠病毒抗原检测系列产品自上市以来,陆续获得欧盟CE、德国、法国、意大利、瑞士、奥地利、捷克、比利时、澳大利亚、加拿大、墨西哥、秘鲁、智利、新西兰、泰国、沙特、新加坡、印尼、马来西亚等证书或市场准入许可,产品远销欧洲、美洲、澳洲、亚洲、非洲等多个国家。(向客户展示新冠病毒检测系列产品)备受瞩目猴痘病毒检测产品近期,世界卫生组织表示,70多个国家不断扩大的猴痘病毒疫情属于全球紧急情况,在猴痘病毒暴发之际,安旭生物快速响应,现已成功研制出多款猴痘病毒检测产品:猴痘病毒核酸检测试剂盒(荧光PCR法)、猴痘病毒IgG/IgM快速检测试剂、猴痘病毒抗原快速检测试剂,安旭生物的猴痘病毒检测产品具有灵敏度高、特异性好、操作便捷等优势,能够在猴痘病毒疫情防控中发挥显著作用,助力猴痘病毒的筛查诊断和防控。(展会现场沟通)新品发布单人份化学发光免疫分析仪安旭生物新品单人份化学发光免疫分析仪强势登陆AACC,该仪器体积小、检测速度快,集成了磁分离系统、酶促发光技术和背景降噪技术。3步操作、15分钟实现8通道并行检测、测试速度最高可达32T/H、内置智能视觉识别系统,支持远程升级和维护、支持炎症系列、心肌标志物、生殖激素等多项指标检测,轻松应对复杂的市场需求。(产品详情图)至今,安旭生物已服务全球150余个国家和地区,通过丰富的产品线及不断完善的产品解决方案,为人类健康提供卓越的产品及服务。关于安旭生物杭州安旭生物科技股份有限公司(公司简称:安旭生物,股票代码:688075)成立于2008年,公司位于美丽的杭州,集研发、生产、销售体外诊断试剂、POCT仪器及生物原材料为一体的生物医药高科技公司。专注于POCT试剂及仪器的研发、生产与销售,同时聚焦生物原料平台的开发与产品技术储备,现已形成从上游核心生物原料到诊断试剂、仪器的产业链一体化布局,是国内少数几家在国际市场能够与跨国体外诊断巨头竞争的中国企业之一,具备了在国内外市场全方位发展的竞争实力。
  • 基因泰克DiCE联手寻找高难靶点小分子药物
    p style="text-align: center "img title="001.jpg" src="http://img1.17img.cn/17img/images/201712/insimg/c0290159-fbc4-4ab5-91e7-f62c88308bf5.jpg"//pp strong 新闻事件/strong/pp  昨天基因泰克宣布将与DiCE Molecules合作开发小分子药物。DiCE的技术平台是DNA编码化合物库(DEL)合成、指导演化、组合化学的复合体,从几亿到上十亿的化合物开始、利用独特优化系统号称可以为任何靶点找到类药配体。这个合作主要研究现在公认的非成药靶点。根据协议,DiCE将获得一定首付和各种里程金,但具体金额都没有公开。/pp  strong药源解析/strong/pp  DiCE 是斯坦福大学Pehr Harbury教授于2013年创建的新技术公司,主要利用DEL技术搜索化学空间,为困难靶点寻找小分子配体。去年已经与赛诺菲签订了5年、最多12个靶点的合作计划,获得5000万首付和潜在每个靶点1.8亿各种里程金(总额可达23亿)。昨天是第二次与大药厂合作。/pp  第一代DEL只是用DNA作为一个条形码记录每个化合物的合成历史。这与其它条形码、如不同长度的烷烃没有本质区别,但因为DNA可以通过PCR放大所以反应可以用很少量反应物、因此DEL库可以非常大,上10亿的库并不困难。后来David Liu等人利用DNA的互补双链不仅标记反应物、还可以作为模板控制哪些反应物参加反应。Liu创建了Ensemble并与多家大药厂合作开发困难靶点药物,但今年宣布解散。DEL到目前为止最大的成功据我所知是葛兰素的RIP抑制剂。这个发现不仅利用了DEL,而且还有很多其它最前沿的药物化学技术,值得大家学习一下(这里)。找到的RIP抑制剂选择性和其它性质在激酶抑制剂里确实非常优秀。/pp  DiCE的平台虽然细节很少,但号称是加上筛选压力和遗传变异机制。选择压力比较容易想象,所有筛选平台都要找到个别“适者”、多数情况下就是与靶标蛋白结合的化合物,然后淘汰绝大多数不合时宜的化合物。DiCE的平台是多轮DEL合成。所谓遗传大概是指保留苗头化合物的需要性质,变异则应该是改变分子的某个模块。和天然蛋白只有20个氨基酸不同,DEL的模块可以远远多于20个。这个过程也可能重复合成第一代化合物库里面已经包括的化合物,但更系统的SAR可以增加筛选准确性(去除假阳性、回收假阴性)。/pp  DEL可以在更广阔化学空间更高效筛选先导物,但适合DEL的化学反应是有限的、每个化学反应可以买到的起始原料是有限的。DEL涵盖的空间很大、但对寻找新药不一定最重要。虽然很多技术号称可以合成天然产物类似物,但多数只能合成简单的分子类型,DiCE似乎还只能合成多肽类似物。当然更重要的障碍是筛选压力(即优化系统)。优化指标现在还基本是一本糊涂账,我们即不知道哪些性质候选药物需要有、也不知这些万里挑一的化合物有哪些致命隐私。对于抗体药物选择性可以比较可靠地假设已经合格,但小分子药物城府要深得多,经常在关键时刻才交代脱靶活性。虽然GSK的RIP1抑制剂说明DEL可能非常有用,但Ensemble的倒闭也说明DEL也只是诸多技术中的一个。/pp/p
  • 登上《自然》封面!新型单分子化学反应成像显微镜在浙大问世
    化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。 浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。 在时空隔离中达到单分子反应测量极限教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。” 图1:单分子电致化学发光信号的时空隔离和随机性。为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。” 在单分子空间定位中突破光学极限显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。 受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ” 图2:单分子电致化学发光显微镜在微纳结构成像上的论证。 冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。 图3:单分子电致化学发光显微镜固定(死)细胞成像。 研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。 图4:单分子电致化学发光显微镜活细胞成像。 未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。 该研究受到了国家自然科学基金委(项目号:21974123)、浙江省自然科学基金委(项目号:LR20B050002)、中央高校基本科研业务费校长专项(项目号:2019XZZX003-01)和浙江大学百人计划的经费支持。
  • 潜心执著钻研热化学 奋力拼博实现强国梦——中国热化学泰斗谭志诚教授学术生涯采访录
    半个世纪前,一个胸怀报国理想的热血青年从星城长沙远赴渤海之滨的大连,开启了他毕生挚爱的热化学研究,并成为当今该领域的大师级人物。“为学无他,争千秋勿争一日”是他的座右铭,不论现在还是将来,他的名字和中国热化学科研事业紧密相连,必将彪炳史册,流芳千古。他就是我国热化学泰斗、中国科学院大连化学物理研究所谭志诚教授。谭志诚为神舟号飞船热控设计作出贡献他把先进的理念带回祖国,从理论到实践,从探索到突破,顺逆交替,委屈不曲 情势数变,行坚意笃。不变的探寻,只为实现科学报国的崇高理想和无限提升自己的人生价值。将他与热化学科研事业紧密联系在一起的,是他在此领域潜心数十年奋力拼搏、开拓创新的艰辛历程。这一厚重的科研轨迹成就了我国热化学研究的长足发展,同时也升华了他的人生价值。蜚声海内外的热化学泰斗谭志诚1941年出生于湖南长沙,现任中国科学院大连化学物理研究所研究员、教授、博士生导师及武汉大学、大连交通大学和聊城大学特聘兼职教授,是我国热化学学科主要学术带头人之一。在50余年的热化学科研生涯中,谭志诚取得16项重大科技成果,为我国科技进步和国防建设做出了突出贡献。他荣获全国科学大会奖、国家科技进步二等奖、国防科学技术二等奖、中科院重大成果二等奖(2项)、中科院重大成果三等奖、中科院科技进步三等奖(2项)、中国石油天然气总公司科技进步三等奖、军队科技进步三等奖、辽宁省科学技术三等奖等11项国家级和省部级重大科技成果奖。他从1995年开始享受国务院颁发的有突出贡献专家政府特殊津贴 先后荣获全国各民主党派、工商联和无党派人士为全面建设小康社会作贡献先进个人、国防科技工业协作配套先进个人、中科院研究生院杰出贡献教师、美国传记研究所(ABI) 2012年度人物、英国剑桥国际传记中心2012前100名科学家等荣誉称号。作为项目负责人,他申请获准并主持完成6项国家自然科学基金项目。在国内外50余种学术刊物发表研究论文400余篇,被国际权威检索机构-科学引文索引(SCI)收录350余篇,7篇获国家级优秀论文奖,1篇获世界华人重大学术成果奖。在峥嵘岁月中成长成才上世纪50年代,刚刚经历了战火洗礼的新中国满目疮痍、百废待兴。年仅十几岁的谭志诚面对眼前的一切,渐渐萌生了一个崇高的理想,他立志要做一名伟大的科学家, 把自己的一切献给新中国的建设事业。在这一理想的指引下,他孜孜不倦地奋发学习,完成了从小学到研究生的求学历程,并取得优异成绩和得到充实积淀天道酬勤, 1958年,年仅17岁的谭志诚从湖南长郡中学毕业后,以优异的成绩考入国立武汉大学化学系。在大学学习期间,谭志诚废寝忘食地钻在书海中,如饥似渴地汲取知识的甘露。1960-1963年困难时期,为考虑学生身体健康,不让学习太晚,学校图书馆、教室及寝室晚上熄灯较早。但是这难不倒他,因为还有路灯。在昏暗的路灯下,一个因饥饿而消瘦的青年学生全神贯注地阅读着密密麻麻文字的教科书… … 不仅如此,为了充分利用时间,在武汉大学5年学习期间的10个寒暑假,他只在第一个寒假和最后一个暑假回家探望过亲人。除了体育活动外,他把假期绝大部分时间都用于复习功课和学习外语。外语教科书中的单词他记得滚瓜烂熟,同学们随问随答,他被称为“活字典”。在大学期间,谭志诚勤奋踏实的学风和诚恳友善的人品,深受师长和学友的信任和赞赏,历年被推选当任年级学习委员,工作努力,成绩斐然。1963年大学毕业时,谭志诚成为同年级出类拔萃的优秀学生,当年武汉大学化学系有300余名毕业生,仅有3人考取了研究生,谭志诚就是其中之一,他以优异的成绩考取了中国科学院大连化学物理研究所招收的第一个热化学专业研究生,从此开始了他在热化学领域半世纪长途跋涉的艰辛征程。谭志诚的研究生学习艰苦而又充实。在做研究生毕业论文期间,正处 “文革”运动高潮期,白天无法做实验,他就晚上到实验室工作。有一天深夜,武斗分子借着他实验室的灯光,从后山向实验室射来一颗子弹,打穿了他实验台内一瓶水银,他并不为此所惧,仍然坚持实验,直到论文工作最后完成。战火纷飞到举国时艰,从稚嫩到逐步成熟,峥嵘岁月中,谭志诚在忘我的积淀中逐渐成长为一个意气风发的科研工作者。世事砥砺,却从未改变方向 风雨无阻,他始终铿锵前行。1967年研究生毕业后,谭志诚留所继续从事热化学研究至今。且不说他取得的成就,单是这种执著坚守的精神就足以让人感动。坚守了半个世纪的梦想半个世纪以来,谭志诚始终坚守在这门基础性很强且偏冷门的热化学领域,并做出了一系列重大贡献。在低温量热学、微量热学、热容与相变及热分析等研究领域,他的学术造诣和技术水平均达到了很高的境地,先后取得16项重大科研成果,获得11项国家级和省部级奖励。他和同事们一道建立了4.2 - 1700 K温区用于物质热容测定及相变研究,具有不同特点的十多种精密绝热量热装置,经鉴定均达到国际先进水平。利用这些装置,为我国国防和经济建设的一些重大项目,如原子弹、氢弹、火箭、导弹、人造卫星、神舟号飞船、新型歼击机等的设计与研制,以及石油的热力开采和稀土资源的开发等,及时提供了大量准确的基础热力学数据,为这些重大国防和国民经济建设项目的完成做出了重要贡献。与此同时,谭志诚利用一切机会赴国外学习和考查,深入了解热化学国际最前沿的科研进展,以推动我国热化学科研向前发展:1987-1988年应日本学术振兴会邀请,赴日本国立大阪大学理学院化学热力学实验室作访问学者,开展稀土化合物热力学性质中日合作研究 1991年9月-1993年3月应法国科学院邀请,赴法国马赛热力学及微量热研究所任客座研究员,开展中法合作项目:与能源和环保有关的有机化合物热力学性质的微量热研究。1999年9-12月应俄罗斯联邦自然科学基金委员会邀请,赴莫斯科大学热化学实验室作访问教授,开展中俄合作项目:纳米材料的热化学研究。2000年1-12月应日本文部省邀请,赴日本国立大阪大学分子热力学研究中心任外籍客座教授,开展有机功能材料的热力学研究。虽然谭志诚的学术水平和科研成果得到国际同行一致认可和高度赞赏,但他不骜于虚声,而惟以求真, 总是保持着虚怀若谷,执着务实的心态,只是考虑如何将自己的事业深深植根在祖国这块厚重广袤的热土上,孜孜不倦地探索和耕耘。在当今潮流百变时代,他始终摒弃时尚,不图虚荣而是脚踏实地将满腔热情倾注在他所酷爱的热化学科研事业之中。从20多岁的年轻人到年逾古稀的老人,一直稳坐在热化学这张冷板凳上潜心学术钻研,这样的人不仅在中国,恐怕在全世界也是凤毛麟角。谭志诚潜心于热化学研究数十年,他超常的拼博精神和丰硕的创新成果使其成为科学工作者学习的楷模,受到我国学术部门领导同志的亲切关怀和热情鼓励。中科院院长芦嘉锡、路永祥、白春礼、国家自然科学基金委主任张存浩都在人民大会堂亲切接见过谭志诚。精勤不倦,育桃李满园为了使科学报国、振兴中华的宏伟事业后继有人,谭志诚呕心沥血从事热化学科研事业的同时,还在培育精英人才的教育史上书写了浓墨重彩的一笔。身为热化学领军人的谭志诚,不仅是一名孜孜不倦的垦荒者,还是一位优秀的学术传承人。他深知,一个学科要有长久不竭的发展动力,必须要有优秀的人才作中坚。因此他不仅自己忘我地潜心学术钻研,而且还特别注重对青年一代科技人才的精心培养。他遵循人才成长规律,在科学实践中发现人才,呕心沥血、身体力行地培养造就创新型人才。他甘当人梯、提携后学,想方设法竭尽全力把自己几十年在热化学研究领域积累的宝贵经验和心得体会,毫无保留地传授给年青一代。他深知教坛任重道远,对学生教之以理,育之以情,才能成为学子们的良师益友。谭志诚对学生的关爱胜过对自己的孩子。不仅耐心指导学生进行科学实验、撰写学术论文,还关心学生的思想和生活,培养学生良好的科学道德和严谨求实的学风,帮助学生树立正确的人生观、价值观。他以培养德才兼备的人才为已任,教给学生做学问首先要学会做人的道理 鼓励学生对自己的研究课题要安、钻、迷 (即安下心,钻进去,迷住它),才能有所发现和創新,才能成为该领域的专门人才。“红烛泪、春蚕丝、园丁梦” 这正是对谭志诚这样的学术导师为培养人才而耗尽心血的真实写照。通过他苦心栽培和精心雕琢,至今已有硕士、博士及博士后等20余名优秀人才脱颖而出,均在国内外教学、科研单位发挥重要骨干作用。他以极大的热情培养指导和鼓励优秀青年人才脱颖而出,为该热化学实验室保持国际先进水平和进一步发展奠定了坚实的基础。通过他和该实验室新老成员半个世纪艰辛拼博,中科院大连化物所热化学实验室已发展成为该领域国际先进实验室之一。为学无他,争千秋勿争一日梦想不是虚无飘渺的,它是一种理性,一种追求,一种激励人们去拚搏的力量 只有坚持不懈和奋力拼搏,梦想才会成真。谭志诚把一门基础性很强且偏冷门的热化学学科当作自己为之奋斗一生的事业,并通过艰辛努力最终实现了自己的梦想 他像一个永不言弃的登山者,一步一个脚印奋力攀登着科学领域的一座又一座高峰,终于达到了光辉的顶点,并且开拓出了属于自己的一片广阔天地。咬定青山不放松,立根原在破岩中。人生没有一蹴而就的成功,涓滴之水可以磨损大石,不是由于它的锋利,而是由于它昼夜不息、日复一日的滴坠。谭志诚五十年如一日在冷僻的热化学领域砥砺奋斗,潜心研究,淡薄名利,终成大器, 取得令世人瞩目成果, 这不是名利和地位的追逐,而是为报效祖国、振兴中华的这一厚重理想的实现。“为学无他,争千秋勿争一日”这是一个成功科学家最高的精神境界,我们深信谭志诚在热化学领域的奋斗故事和拼博精神,必将彪炳史册并在科学和教育界流芳千古。
  • 中国化学会2020年部分学术会议召开信息变更通知
    p style="text-align: justify text-indent: 2em line-height: 1.75em "仪器信息网讯 受新型冠状病毒肺炎疫情的影响,中国化学会主办的部分学术会议在举办时间或形式上做出调整。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202003/uepic/1a76f024-6b89-4103-8a95-13740d1da1c1.jpg" title="4d6d0f2b8ed8bddce685d6b315ca9e26.jpg" alt="4d6d0f2b8ed8bddce685d6b315ca9e26.jpg"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "会议的进一步信息,请及时关注会议网站、学会官网和学会微信公众平台的相关通知。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "对因会议信息变更给您带来的不便,我们深表歉意,感谢您的理解和支持。如有需要,请和各会议组委会联系。/ppbr//p
  • 聚焦分析测试技术与环境催化学术前沿交叉 分论坛精彩报告集锦
    仪器信息网讯 2022年8月20-21日,第二十六届高校分析测试中心研究会年会暨第二届中国分析测试协会高校分析测试分会年会在历史名城镇江顺利召开。大会现场采用线上线下同步直播的方式,现场与会嘉宾超300位。本次会议为期两天,除大会报告外,会议还设置了五个平行分论坛,主题分别聚焦高校分析测试中心管理与资质认定、科学试验创新方法标准化、分析测试技术研究与应用、分析测试与学术前沿交叉之能源材料、分析测试与学术前沿交叉之环境催化。分会场照片本文将带来分析测试与学术前沿交叉之环境催化分论坛的精彩报告集锦,论坛邀请了中山大学欧阳钢锋教授、中国科学院化学所陈春城研究员、华东理工大学詹望成教授、上海师范大学张蝶青教授、上海大学张登松研究员、四川大学王建礼教授、南京师范大学何欢教授(季秋忆)、山东大学占金华教授、南京大学谷成教授、上海师范大学卞振锋教授、西南交通大学范美坤教授、华南理工大学付名利教授、浙江工业大学庞小兵教授、山东师范大学孙传智教授、清华大学彭悦副研究员、西安交通大学何炽教授、河北工业大学王鹏飞副教授等专家带来了30个精彩报告分享。分析测试与学术前沿交叉之环境催化分论坛现场《新型碳材料在环境催化中的应用探究》中山大学 欧阳钢锋教授报告介绍了欧阳钢锋课题组近年来在利用碳材料开展的环境催化领域的研究成果。针对芬顿技术在环境领域的广泛应用,以可见光催化生成双氧水为例,指出由于环境污水体量大,该类技术的实施将面临巨大的投入。欧阳钢锋团队以碳材料为基质,研究构筑了“Z”型异质结并在可见光作用下实现双氧水的原位、高效生成。通过对催化剂结构调控及醌类化合物引入,大幅提升了双氧水的产率,在类芬顿氧化降解水环境污染物时取得了良好效果。此外,欧阳钢锋针对碳材料活化过硫酸盐机理进行了详细论述,阐明了杂化轨道比例对过硫酸盐活化效率的影响,评估了碳催化材料的规模化应用前景,展望了碳材料在环境领域蕴藏的巨大潜能。《原位红外研究污染物光催化降解机理》中国科学院化学所 陈春城研究员低浓度、高毒性、难降解有机污染物(如卤代物、染料、农药、抗生素药物等)引起的环境问题已经严重影响人类的健康。光催化技术是近年发展起来的一类高效绿色的消除水中难降解有毒有机污染物的新技术,不过污染物降解量子效率低严重限制光催化规模化应用。报告介绍了陈春城团队通过原位红外研究手段和技术对有机污染物光催化降解的界面机理以及大气颗粒界面光化学转化机制等关键问题进行的系统研究成果。《含氯VOCs的高效催化净化》华东理工大学 詹望成教授挥发性有机物(VOCs)是造成我国大气中臭氧和颗粒物浓度居高难下的重要前体物。报告介绍了詹望成团队围绕当前VOCs净化过程中面临的关键科学问题——污染物分子的高效活化和控制转化,针对低碳烷烃和氯代烃等难降解VOCs的催化净化过程,重点开展C-H键的活化及毒副产物的控制等创新性研究的工作进展。《低浓度NOx的光化学去除研究》上海师范大学 张蝶青教授氮氧化物(NOx)是影响大气环境质量的一个重要污染因素,国内外对NOx的危害、燃煤发电燃烧过程中NOx的产生机理以及NOx技术的降低等都进行了充分的研究。氮氧化物气体的反应会形成臭氧,臭氧是烟气和酸雨的主要组成部分,也是形成细颗粒的主要组成部分,对人体健康都有损害。报告介绍了张蝶请团队围绕基于太阳光的低浓度NOx光化学高效去除技术开展的相关研究进展,包括光化学电子转移对低浓度NO高效去除的调变规律和光-电协同促进低浓度NO去除的新机制研究成果。《非电行业烟气氮氧化物催化净化》上海大学 张登松研究员随着工业与交通运输业的发展,氮氧化物(NOx)排放量与日俱增,NOx是造成酸雨、光化学烟雾及雾霾的主要原因,严重危害人类健康,破坏生态环境平衡。目前NH3选择性还原(NH3-SCR)是最有效的NOx控制技术,钒基催化剂已经广泛应用于电厂脱硝工艺中。然而,商业钒基催化剂活性温度窗口窄,很难应用于低温脱硝过程,比如工业窑炉、垃圾焚烧等非电行业。随着国家对非电行业NOx排放标准的日益提升,亟待开发适用于非电行业的低温抗中毒的NOx净化催化剂。报告介绍了张登松课题针对非电行业烟气NOx净化催化剂易中毒失活的关键科学难题,提出了以保护位抑制催化剂中毒失活的新理念,即通过对活性位和保护位的耦合与调控,发展了对SO2、碱金属以及多重复合毒物有抗中毒作用的NOx净化催化剂,并揭示了其抑制中毒作用的新机制,有效克服了烟气复杂组分对催化剂造成的中毒效应,显著提升了NOx催化净化效率和稳定性,形成了高效稳定的NOx催化净化新技术,为非电行业NOx减排应用奠定了科学基础。《双碳背景下未来汽车尾气催化剂技术趋势》四川大学 王建礼教授汽车尾气催化剂是汽车尾气催化转化器中使用的催化剂,是指借助某些有效的技术措施,减少尾气中的有害物质或使尾气中的CO、HC、NOx及PM被氧化或还原,生成无毒的CO2、H2O和N2。报告分别从柴油车、汽油车以及天然气车等方面详细介绍了各领域的尾气催化材料及催化剂制备科学和技术的发展趋势。《苝酰亚胺催化剂内场调控及其光耦合过硫酸盐增效机制》南京师范大学 何欢教授/季秋忆博士当前处理有机污染物的方法包括吸附技术、膜分离技术、生物降解以及高级氧化技术。报告介绍了何欢团队构建的新型苝二酰亚胺/过硫酸盐/可见光(PDI/PS/Vis)系统,以不同自组装程度PDI为研究对象,以双酚A为目标污染物,深入阐明了可见光下超分子活化过硫酸盐新机制。研究表明PDI/PS/Vis系统可以为降解废水中的有机微污染物提供新思路。《纳米环境矿物的表面调控与高级氧化》山东大学 占金华教授过去十几年来,基于过硫酸盐的高级氧化技术处理难降解有机污染物具有操作简单和氧化能力强的特点,在污水和污染土壤治理领域已得到广泛关注。而发展具有环境友好、催化稳定、廉价易得等优势的金属催化剂是近年来研究者们关注的研究方向之一。矿物材料广泛存在于自然环境之中,具有环境协调性、环境舒适性、加工制备简单、成本低廉等特点,是环境修复领域关注的重要研究课题。报告介绍了占金华团队在纳米环境矿物材料在有机污染治理中的研究成果,包括研究了环糊精改性纳米矿物活化H2O2与过硫酸盐,增强了污染物的降解,表现出实际应用的潜力;研究了富氧空位红锌矿活化PMS体系,阐明了非价电子活化PMS产生SO4-的机制,以及阐明了非电子活化PMS产生O2的机制。《限域体系的构建以及对全氟化合物高效降解机制的研究》南京大学 谷成教授全氟化合物是一种分布广泛的污染物,但是一般的羟基自由基、亚硫酸盐、活性碘等高级氧化技术对全氟化合物的降解存在效率过低、反应条件复杂等问题。报告介绍了有机源物质产生水合电子方法,尤其是带有五元杂环吲哚类物质具有的优势;紧接着,谷成教授围绕三个体系,从限域体系构建、降解/脱氟效率、水合电子产率、体系表征、理论计算等方面对研究工作进行了详细介绍,并展示了其课题中自制的反应装置。《固废中贵金属的光催化绿色回收》上海师范大学 卞振锋教授固废中贵金属回收过程涉及使用强酸和释放毒气、有毒重金属离子,环境污染严重。如何实现贵金属清洁回收是环保领域研究热点。报告介绍了卞振锋团队通过光催化氧化实现贵金属的溶解,发展适合多种贵金属的光催化清洁回收技术,探究贵金属选择性溶解回收的调控机制;系统研究贵金属原子表面活化、迁移以及光催化氧化途径;发展适用于在温和条件下,能够实现快速从电子垃圾、废汽车尾气三效催化剂、废贵金属负载型催化剂甚至矿石废渣中回收贵金属的通用方法,为光催化规模化贵金属清洁回收提供理论基础。《多维度SERS在环境中的应用研究》西南交通大学 范美坤教授拉曼光谱,特别是表面增强拉曼光谱(surface enhanced Raman scattering,SERS)是一种基于光的非弹性散射的光谱技术,具有实时、快速等特点,是一种很好的茶叶质量安全和品质分析的方法。报告介绍了范美坤团队基于表面增强拉曼光谱技术在茶叶分析领域开展的应用工作进展。《漆包炉尾气中VOCs的深度催化氧化及其异味治理》华南理工大学 付名利教授漆包线广泛应用于电机、变压器和家电等电器制造,我国是漆包线生产与消费第一大国,其生产过程使用大量含VOCs溶剂与稀释剂,产生的VOCs具有较强的毒性和致癌性,其行业产生的异味废气常引起强烈的扰民投诉,是环境部门重点管控项目。基于此,报告介绍了付名利团队对漆包线生产各环节中的 VOCs 进行物质流向跟踪,用各种实验方法进行分析,研究了漆包线行业 VOCs 的排放特征和组成分布,旨在为控制漆包线行业 VOCs 污染提供可靠的污染源数据支持。《工业园区异味VOCs污染特性的研究》浙江工业大学 庞小兵教授餐厨垃圾生物处理包括好氧堆肥、厌氧消化及卫生填埋等方式,在处理过程中产生的大量挥发性有机物(VOCs)会造成二次污染,对环境和人体健康均造成危害。报告从餐厨异味VOCs的来源、检测技术等方面进行阐述,并详细介绍了庞小兵团队基于传感器、机器学习等开发的便携式异味检测仪,及其与GC-MS、GC-PID检测的比对结果,研究表明检测结果一致,阐明餐厨垃圾异味治理与机理研究需要进行VOCs成分分析。《稀土改性金属氧化物的在NH3-SCR中的应用基础研究》山东师范大学 孙传智教授氮氧化物(NOx)是公认的主要大气污染物之一,它不仅是酸雨的主要成分,还是形成光化学烟雾的元凶,控制和治理氮氧化物污染越来越受到国内外环保领域的关注。目前,工业上主要采用氨选择性催化还原技术(NH3-SCR)控制氮氧化物的排放。催化剂为商用V2O5-WO3/TiO2,具有较高的脱硝活性,但其成本和操作温度较高,活性组分钒有毒,易对环境和人类造成二次毒害。因此,开发NH3-SCR低温高效无毒催化剂迫在眉睫。报告介绍了孙传智团队稀土改性金属氧化物在NH3-SCR中的应用基础研究方面的工作进展。《锰基复合氧化物的表征及其在环境催化领域的应用研究》清华大学 彭悦副研究员近年来,天然气受到了广泛应用,但这也带来了环境问题。甲烷是天然气的主要成分,其温室效应是CO2的22倍,甲烷废气的排放会加剧温室效应。催化燃烧可以有效地处理这些较低浓度的甲烷,此反应中常用的贵金属催化剂成本较高且易烧结,而金属氧化物催化剂以廉价易得、高热稳定性等优势表现出更强的应用价值,其中锰氧化物具有众多稳定的氧化物形式,表现出极高的催化潜力。报告介绍了彭悦团队开展的锰基莫来石在柴油车DOC以及锰氧化物在催化氧化甲苯中的应用研究工作进展。《低碳烷烃催化氧化与资源化》西安交通大学 何炽教授乙烯、丙烯、丁二烯等低碳烯烃是重要的化工原料,主要用于生产聚合物(聚乙烯、聚丙烯等)、含氧化合物(乙二醇、乙醛、环氧丙烷等)以及化工中间体(乙苯、丙醛等)等,因此在高分子、农药、医药、精细化工等领域应用广泛。目前,低碳烯烃主要来源于传统石油路线的蒸汽裂解和炼厂流化催化裂化工艺、以煤/甲醇为原料的煤制烯烃/甲醇制烯烃路线和以烷烃为原料的脱氢制烯烃技术。其中,烷烃催化脱氢技术因其高原子经济性、环境友好的特点,备受研究者关注。自页岩气革命以来,丰富的低碳烷烃资源(含甲烷、乙烷、丙烷等)极大地推动了低碳烷烃脱氢制烯烃的研究热潮。报告介绍了何炽团队建立的高效催化反应体系,拥有能够加速C-H键、C-C键活化、提升活性中心稳定性等特点,实现了低碳烷烃高效稳定催化氧化。《光催化分子氧活化去除难降解有机污染物》河北工业大学 王鹏飞副教授有毒难降解有机污染物毒性大、难生物降解、在自然界中存在的时间长,易在生物体内富集滞留,导致人类和动物癌变、畸变及雌性化,用现有环境技术很难处理。有毒难降解有机污染物的高效、环境友好的去除方法是国际上十分关注的前沿研究领域。报告介绍了王鹏飞团队在光催化分子氧活化去除难降解有机污染物研究方面的工作进展。论坛还邀请了南京工业大学丁靖、中国石油大学王雅君、中国科学院重庆绿色智能技术研究院方玲、南京大学万海勤、中山大学王俊慧、南京师范大学汤常金、南京大学邹伟欣、南京大学谭伟等位专家带来精彩的口头报告、以及麦克默瑞提克(上海)仪器有限公司熊雯、SPECS-TII王珍、安徽创谱仪器科技有限公司申锦等仪器厂商带来最新的仪器技术应用进展报告。合影
  • 化学试剂公司阿拉丁拟出售大股东和核心员工股份占64%
    阿拉丁是一家新三板公司,阿拉丁有神灯。阿拉丁把神灯一擦,灯神带着它的大股东飞去了富裕的地方,但把小股东留下了。 10月13日,阿拉丁(830793.OC)发布公告,西陇科学将以股份加现金的方式收购公司64%的股份,收购对象为公司实际控制人徐久振和招立萍、上海晶真投资管理中心(有限合伙)、上海仕创投资有限公司。其中,晶真投资是阿拉丁的员工持股平台,仕创投资是徐久振和招立萍控制的公司。也就是说,被收购的都是大股东和核心员工的股份。 在被收购前,阿拉丁开过一个股东沟通会。知情人士透露,阿拉丁曾希望以21.5元/股的价格回购小股东的股份,但小股东不同意,阿拉丁一度将回购股价提高到接近市场价,不过最后还是没有谈拢。 2015年12月17日,阿拉丁完成了8223万元的定增,定增股价为30元/股。截止到停牌前,阿拉丁股价已经下跌20%,如果同意这次回购,意味着小股东将确认亏损,这是小股东不愿意见到的。 中小股东当然死活不同意被低价回购。于是,阿拉丁抛弃了97位中小股东。很不幸,这是一出小股东被迫留机舱,飞行员潇洒跳伞的剧情。 1、一年融资1.3亿,是资本市场的老司机 先来认识一下故事的主人公阿拉丁。 阿拉丁是一家做化学试剂的公司,估值9.08亿元。2014年和2015年,公司营业收入分别为8030.84万元和1.01亿元,净利润分别为2452.92万元和2977.48万元。 这位看上去老实巴交的“工科男”,玩起资本市场来却是得心应手,俨然一副资本市场老司机的姿态。 2015年一年间,阿拉丁就擦了4次神灯,完成了4轮融资,融资金额合计为1.28亿元。 不仅融得多,而且次次精髓。 2015年1月22日,阿拉丁以13.95元/股的价格融资3696.75万元,第一次融资的阿拉丁还比较内敛。 3月的第一个星期,新三板做市指数上涨29.36%,嗅到牛市味道的阿拉丁立刻作出反应。3月10日,阿拉丁就行动起来了,分别以6.5元/股的价格向中信证券和兴业证券,分别发行40万股和10万股。 本次定增价较第一次定增价低53.4%。因为阿拉丁很清楚,在牛市,时间就是金钱,没人知道牛市什么时候结束。 4月7日三板做市指数到达顶点,即使这样,阿拉丁仍然赶上了牛市的尾巴。5月8日,做市首日股价收于最高点46.97点,阿拉丁市值更是高达16.49亿元。 在向做市商发行股票的同时,阿拉丁还向公司员工持股平台晶真投资,以3元/股的股价发行了195.9万股,而且并无限售。 2015年末,阿拉丁完成了最后一笔8223万元的融资。到了2016年,融资太困难,阿拉丁也没再擦亮自己的神灯。 如果光会融资,远远不够。一手在融资,一手套现,才是资本市场老司机的正确姿势。 2014年11月17日,阿拉丁第一批限售股解禁。12月4日,徐久振分别以4元/股和7元/股的价格,卖出15万股和50万股。2015年上半年,徐久振又卖出35万股,而这一次被西陇科学收购,卖出了全部。 2014年6月12日,阿拉丁挂牌,2016年6月12日,公司实际控制人持股全部解禁,然后两个月后,公司就出售了。这一系列动作,真是干脆利落,值得注意的是,2016 年 1 月 13 日,阿拉丁还接受了上市辅导。 2、32.5倍PE,如果你是大股东,你卖吗? 市值9.08亿元,32.53倍的市盈率,阿拉丁的估值在新三板并不算低。 高估值和公司较高的毛利率有一定相关性。 阿拉丁的药剂产品主要涵盖生物试剂、高端化学试剂、新材料试剂和分析色谱试剂,其中化学试剂占总营业收入的65.87%。 作为药剂行业的公司,阿拉丁的毛利率始终保持在70%左右,远高于行业平均毛利率。要知道,作为收购方的西陇科学的毛利率仅为14.04%,其超净高纯化学试剂的毛利率也只为33.23%。 那么,阿拉丁为什么会有这么高的毛利率呢? 按阿拉丁自己的说法,这主要因为阿拉丁销售采用 B2B、B2C等商业模式,通过互联网电子商务平台进行销售,多为直接用户。电商平台真的对阿拉丁效率有那么大的帮助吗? 2015年,阿拉丁的销售费用、管理费用、财务费用之和为4200.26万元,占营业收入的41.5%,其中其管理费用占比更是达到了31.45%。同期,西陇科学的销售费用、管理费用、财务费用占营业收入之比则只有12.1%。 通常来说,互联网往往能帮助公司以较低成本获取流量,但在阿拉丁身上我们并没有看到。2015年,阿拉丁销售费用占营业收入占比为9.35%,在这一数据上西陇科学仅为5.21%。 这些因素的叠加使得阿拉丁净利润率下降至29.77%,尽管仍然高于西陇科学3.84%,但相较于毛利率,双方差值大大缩小。 一家效率高于行业平均水平的传统行业公司,在新三板仍有32.53倍PE,如果你是大股东,你卖吗? 大股东卖了,就等于锁定了收益;小股东卖了,就等于确认了亏损,大股东利益与小股东利益出现了对立。所以,就不难理解阿拉丁的大股东为什么毅然决然地选择跳伞,而97位小股东却被迫留在机舱。 97位小股东,你们一定很蓝瘦,香菇。
  • 新品发布!1064Defender 手持式拉曼分析仪
    近年来,海洛因、芬太尼、摇头丸等致命毒品的泛滥形势日益严峻和复杂,这给需要在现场进行快速毒品鉴别和采取决策行动的执法人员带来了新的挑战。新款 Thermo Scientific™ 1064 Defender™ 拉曼分析仪帮助用户轻松应对这一挑战。新款分析仪采用非接触式、有针对性的方法,加强了对街头海洛因和其他有荧光毒品的鉴别能力,无需取出包装即可直接检测。明确的结果,高度的灵活性1. 非接触式瞄准扫描,可保证用户安全;2. 灵活性强,通过自定义界面,确保您与仪器配合默契;3. 可靠的监管链包含管制物质、稀释剂和前体的综合库;4. 设计引领生活 (WiFi, WebUI,可拆卸式电池)。清晰直观的界面1. 鉴别模式 - 对未知化学品进行详细分析;2. 筛查模式 - 监测是否存在重要的目标化学物质。通过配备全面、模块化以及可自定义管制列表的数据库,这款设备的扫描分析模式以清晰的警告或警报界面呈现结果,确保用户获知最佳的后续行动建议。通过结合GPS 和数码摄像功能,分析仪加强了查缉流程和证据监管链的可靠性。1064 Defender 拉曼分析仪还具有 Wi-Fi 和 USB 连接功能,便于用户实现数据的无缝传输。Thermo Scientific 1064 Defender 灵活易用,用户可以按需进行个性化定制。其价格极具竞争力,对于缉毒、边检、海关等需要禁毒的执法机构来说,又新添一款新的现场检测利器。扫描下方二维码联系我们了解赛默飞1064 Defender 手持式拉曼分析仪赛默飞世尔科技中国简介赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。我们在全国还设立了8个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心,拥有100多位专业研究人员和工程师及70多项专利。创新中心专注于针对垂直市场的产品研究和开发,结合中国市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com
  • 表面分子印迹聚合物电位型传感器构建成功 实现蛋白分子快速高灵敏电化学检测
    p  发展适合于现场快速检测海洋生物大分子及海洋细菌的生物传感器技术,对于及时快速地开展海洋环境监测和评价具有重要意义。目前,对生物大分子的检测,一般采用酶联免疫法、生物化学测试法、聚合酶链式反应法等技术 对全细胞的检测,则通常需要通过细胞培养实验来完成。然而,上述方法存在仪器复杂、设备昂贵、检测耗时长等缺点,仅适用于实验室分析。/pp  在海洋环境中,贻贝可通过其足丝分泌贻贝粘蛋白,该蛋白具有优越的粘滞性和良好的生物相容性。近期,中国科学院烟台海岸带研究所研究员秦伟课题组利用聚多巴胺类仿贻贝粘蛋白材料,成功构建了表面分子印迹聚合物电位型传感器,实现了对蛋白质分子及细胞体的高灵敏、高选择、快速电化学检测。他们采用基于仿贻贝粘蛋白的表面分子印迹技术,在电位型传感器表面原位构建了生物分子选择性识别印迹层 利用表面分子印迹层与待测生物分子之间的高选择性识别作用,实现了样品中生物分子在传感器表面的高选择性分离与富集 利用聚离子作为指示离子,指示富集前后传感器膜界面的电位变化,从而实现了对蛋白质分子及细胞体的免标记电化学检测(如下图)。该方法有效解决了电化学生物传感器难以实现免标记分析的难题,有望应用于海洋病毒及海洋致病菌的现场快速检测中。/pp  相关研究成果已于近日发表在化学期刊《德国应用化学》(Rongning Liang, Jiawang Ding, Shengshuai Gao, Wei Qin*. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species. Angew. Chem. Int. Ed., 2017, 56, doi: 10.1002/anie.201701892)。此外,秦伟课题组也于近期在该期刊发表了关于电化学生物传感研究的其它成果(Angew. Chem. Int. Ed., 2016, 55, 13033–13037)。/pp style="text-align: center "img width="600" height="495" title="W020170526571669789953.jpg" style="width: 600px height: 495px " src="http://img1.17img.cn/17img/images/201705/insimg/dfa6e65f-ceeb-4ed3-8f15-be9f33a61853.jpg" border="0" vspace="0" hspace="0"/ p/pp 基于海洋贻贝粘蛋白的仿生电化学生物传感器检测原理/pp/pp/p/p
  • CDE发布《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》
    近日,国家药品审评中心为进一步指导企业开展药品研发,并为境外已上市境内未上市的化学药品研发提供可参考的技术标准,发布《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》,自发布之日起施行。该技术要求适用于化学药品3类与化学药品5类。内容包括药学研究与评价基本考虑、化学药品3类研究与评价技术要求(生产工艺、特性鉴定、质量控制、稳定性)、化学药品 5 类研究与评价技术要求。详细内容如下:《境外已上市境内未上市化学药品药学研究与评价技术要求(试行)》一、背景境外已上市化学药品的仿制或进口,是解决我国患者对临床需求领域药品可获得性和可及性的重要手段。为加快境外已上市境内未上市仿制药品和原研药品研发上市进程,加强科学监管,提高审评审批质量和效率,依据《药品注册管理办法(国家市场监督管理总局令第27号)及其配套文件,制定化学药品研究与评价技术要求,为工业界和监管机构提供研发和审评的技术参考。二、适用范围本技术要求适用于境外已上市境内未上市的化学药品,主要包括两类情形:(1)境内申请人仿制境外上市但境内未上市原研药品的药品,即化学药品 3 类;(2)境外上市的药品申请在境内上市,即化学药品5 类(不适用于原研药品已在境内上市的化学药品5.2类)。与境外已上市境内未上市制剂关联申报的原料药适用于本技术要求。三、药学研究与评价基本考虑本技术要求是药学研究与评价的基本技术要求。申请人作为申报产品的责任主体,对产品的研发与生产、质量可控性、安全性和合规性等应有全面、准确的了解,并开展相应的研究工作。申请人需结合产品特性,参照本技术要求及国内外相关技术指南开展药学研究,按照现行版《M4:人用药物注册申请通用技术文档(CTD)》格式编号和项目顺序整理(对于不适用的项目,应注明不适用),提交全面、完整的药学研究资料。对于化学药品3类和5.2类注册申请,申请人应全面了解参比制剂上市背景、安全性和有效性数据、上市后不良反应监测情况,评价和确认其临床价值。按照《化学仿制药参比制剂遴选与确定程序》提交参比制剂遴选申请,或按照国家药监局发布的《化学仿制药参比制剂目录》选择合适的参比制剂。仿制药的活性成份、剂型、适应症和给药途径应与参比制剂一致。仿制药的质量应与参比制剂保持一致。申请人应首先充分调研参比制剂公开信息(如国外药品监管机构审评文件、药品说明书及标签和/或文献资料)进行处方解析,明确产品目标质量概况,分析确定产品的关键质量属性。通过处方工艺与质量研究,充分评估原料药、辅料和包装系统相关特性对制剂性能和生产工艺的潜在影响,明确关键物料属性;研究与评价工艺参数,确定影响产品质量的关键工艺步骤和关键工艺参数,建立有效的工艺过程控制。申请人应以多批参比制剂为对照进行质量研究,保证自制制剂与参比制剂质量一致。对于参比制剂确无法获得的情形,建议按照国际通行和国内现行相关药学研究技术要求开展研究。通过加强对原料药、辅料和包装系统的控制、工艺过程控制和产品质量控制等,使设计开发的生产工艺能够持续稳定生产出符合预期质量要求的产品。对于化学药品5类上市许可申请,申请人应提交可反映供中国上市产品情况的现行版CTD药学研究资料,汇总在药品证书(CPP)载明国家首次上市后至申报进口期间发生的工艺改进、质量提升等药学重大变更(包括经药监机构批准的变更内容等)历史简介,必要时提供药学重大变更研究资料,关注进口注册样品与支持中国注册的关键临床批样品的质量对比。药品生产应符合药品生产质量管理规范(GMP),通过不断完善药品生产质量管理体系,降低影响药品质量的风险因素,使药品生产全过程持续符合药品质量要求。申请人应加强药品生命周期的管理,药品研发上市后仍需持续关注物料属性、处方工艺、生产设备、批量等因素对药品质量的潜在影响,不断完善对物料关键属性的控制、过程控制和产品质量控制,推动药品质量的不断提升。本技术要求的起草是基于当前科学认知,随着相关法规的不断完善以及药学研究和科学技术的不断进步,本技术要求将不断修订完善。四、化学药品3类研究与评价技术要求(一)原料药技术要求1.生产工艺原料药生产应遵循生产工艺稳定、能够持续商业化生产和产品质量合格的原则。原料药生产工艺研究与评价的主要内容包括起始物料选择与质量控制、生产工艺开发、工艺过程控制和工艺验证等。申请人对每一阶段的研究目的应有清晰的认识,对生产工艺有整体的理解,以便科学合理地开展研究并获得符合药品质量要求的原料药。1.1 起始物料选择与质量控制根据从源头开始全程控制药品质量的考虑,起始物料的选择应参考ICH Q11和欧盟相关技术要求。对以发酵或植物提取为基础的半合成原料药,一般需考虑从微生物或植物开始描述生产工艺。申请人应对起始物料选择的合理性进行评估与确认。起始物料应有稳定的、能够满足原料药大规模生产的商业化来源。起始物料供应商应具备完善的生产与质量控制管理体系。若起始物料来自多家供应商,建议申请人参照《已上市化学药品变更研究的技术指导原则》相关要求开展研究。申请人应建立合理的起始物料内控标准,对越靠近终产品的起始物料,其质量控制要求一般应越严格。对用于合成多肽类药物起始物料的保护氨基酸,其质量标准应包括手性纯度检查项。对于化学结构和生产工艺较为复杂的起始物料,申请人应结合起始物料的生产工艺,对其工艺杂质(包括毒性杂质、残留溶剂和元素杂质等)进行全面的分析。申请人应详细研究杂质的种类与含量是否会影响后续反应及终产品质量,包括主要杂质的生成、转化和清除,有效控制起始物料的杂质,制定合理的控制项目、分析方法和限度,对分析方法进行方法学验证。1.2 生产工艺开发通过对文献资料的充分调研,申请人可以了解原料药的基本生产工艺信息和关键质量属性。结合质量风险管理和控制策略,选择科学合理的工艺路线。通过实验室小试、中试放大和商业化生产,逐步加深对整个生产工艺的理解,不断优化工艺路线,积累更多的工艺知识和生产经验,设计开发出能够持续稳定生产符合预期质量要求产品的商业化生产工艺。原料药的关键质量属性通常包括影响产品定性、纯度和稳定性的属性或特征。关键质量属性的控制策略通常包括:(1)将其订入原料药质量标准,通过对最终原料药的检测和/或通过上游控制加以确定;(2)不将其订入原料药质量标准,但可以通过上游控制来提供质量保证。上游控制一般可以采用在线检测,或通过对工艺参数和/或生产过程的物料属性测定,预测原料药的关键质量属性。杂质因可能会对药物制剂的安全性产生影响,属于原料药关键质量属性。对于多晶型药物,申请人应在生产工艺开发阶段通过精制工艺的优化和筛选制备优势稳态晶型,保证原料药批间晶型一致性。对于可能存在亚硝胺类杂质的药物,申请人应首先选择可以避免亚硝胺类杂质生成的生产工艺。若生产工艺无法避免亚硝胺类杂质生成时,可以通过制定详细的过程控制策略,保证生产过程有关亚硝胺类杂质的质量控制有效且符合要求。1.3 工艺过程控制原料药工艺过程控制包括关键工艺步骤及其关键工艺工艺参数和中间体控制。关键工艺步骤的终点判断和控制手段均应有数据支持。关键工艺参数与原料药的关键质量属性相关,通常申请人应在原料药生产工艺开发阶段对其进行评估,基于工艺耐用性研究结果或历史数据加以确定,规定可使生产重复操作所需的变化范围。若涉及引入新手性中心的合成反应,申请人应详细提供异构体杂质的分析方法与控制策略。对于已分离的中间体,申请人应制定包括检测项目、分析方法和可接受标准的质量标准,并说明质量标准制定的依据。关键中间体的主要质控方法(如杂质控制方法)应进行包括专属性和灵敏度等的方法学验证。申请人应根据杂质转化和清除研究结果,为原料药过程控制提供杂质限度制定的合理依据。1.4 工艺验证申请人应在原料药上市申请前完成商业规模生产工艺验证,提交工艺验证方案、工艺验证报告和生产工艺信息表。原料药无菌工艺验证应参照已发布的《无菌工艺模拟试验指南(无菌原料药)》等相关指南执行。原料药注册批生产批量应至少满足1批工艺验证或1批拟定商业化生产批量的制剂生产需求,并与实际生产线生产设备产能匹配。2. 特性鉴定2.1结构确证原料药结构确证分析测试方法包括紫外可见吸收光谱、红外吸收光谱、核磁共振波谱、质谱、元素分析、比旋度、X-射线单晶衍射和/或X-射线粉末衍射、差示扫描量热法、热重分析和圆二色谱等。申请人可以结合工艺路线和多种分析测试方法对原料药化学结构进行综合解析。对可能含有立体构型、多晶型、结晶水和/或结晶溶剂等的原料药,建议采用合适的分析测试方法进行结构确证。申请人可以将结构确证样品与药典收载的对照品或已上市产品进行对比研究,确证原料药化学结构的一致性。对于不能获取药典收载的对照品或与已上市产品进行对比的,建议对原料药化学结构进行系统研究与确证。结构确证样品通常应明确精制条件,说明其纯度。对药物制剂关键质量属性产生影响的多晶型药物,需研究证明批间晶型一致性和晶型放置过程稳定性。共晶药物具有特殊的理化性质、确定的组分和化学计量比,可以通过X-射线单晶衍射、X-射线粉末衍射、固相核磁共振波谱、红外吸收光谱、差示扫描量热法和/或晶体形态等分析方法进行结构确证。2.2 杂质谱分析原料药的杂质谱分析包括工艺杂质和降解杂质。申请人可以结合原料药的生产工艺、反应机理、结构特点及其降解途径、药典标准和/或其他文献等全面分析潜在的杂质和杂质来源。工艺杂质指生产工艺过程引入的杂质,包括起始物料及其引入的杂质、中间体、反应副产物、残留的试剂/溶剂/催化剂和元素杂质等。降解杂质指药物通过水解、氧化、开环、聚合等降解反应产生的杂质。降解杂质与原料药的结构特征密切相关,申请人可以通过原料药结构特点、药典标准或文献收载的杂质结构、强制降解试验和稳定性考察等方面分析可能的降解杂质及其降解途径,通过工艺控制、采用合适的包装和贮藏条件,减少降解杂质的生成。3. 原料药的质量控制3.1质量标准质量标准包括检测项目、分析方法和可接受标准。符合标准是指按照拟定的分析方法检测,结果符合可接受标准。原料药质量标准检测项目的设置既要有通用性,又要有针对性,能够反映产品质量的变化情况。质量标准检测项目一般包括但不限于性状、鉴别、检查与含量(效价)测定。检查项目通常应考虑到原料药的安全性、有效性和纯度/效价,包括pH值/酸碱度、溶液的澄清度与颜色、一般杂质(氯化物、硫酸盐、炽灼残渣等)、有关物质、异构体、致突变杂质(包括亚硝胺类杂质)、残留溶剂、元素杂质、干燥失重/水分、细菌内毒素和/或微生物限度等。随着原料药生产工艺的稳定,通过对产品质量检测数据的积累和产品质量认知的逐步提高,可以不断调整和完善原料药的质量控制。申请人应参考ICH Q2和Q6A等指导原则,根据与参比制剂质量一致的要求,合理拟定原料药质量标准检测项目和可接受标准,提供充分的支持性试验资料与文献资料。对于已有药典标准收载的原料药,申请人应首先考虑选用药典标准检测项目和分析方法。分析方法学重点确认药典标准检测方法和条件是否适用,若研究结果表明方法适用,申请人可沿用药典标准分析方法;若需建立新的分析方法,则应进行相应的方法学验证,并证明新方法不劣于药典方法。对于已收载在中国药典的原料药,质量指标一般不低于中国药典要求。3.2 质量研究申请人可参考ICH 指导原则(Q2、Q3A、Q3C、Q3D、Q6A和M7等)、《化学药物杂质研究技术指导原则》、《化学药物残留溶剂研究技术指导原则》、《化学药物质量控制分析方法验证技术指导原则》、《化学药物质量标准建立的规范化过程技术指导原则》等以及中国药典四部通则进行原料药的质量研究,提供原料药质量研究资料,包括代表性样品的典型图谱。分析方法应按照中国药典和ICH指导原则进行规范的方法学验证。(1) 有关物质申请人应在杂质谱分析全面的基础上,结合相关文献,科学选择有关物质分析方法,进行规范的方法学验证和/或确认。对于已有药典标准收载的,申请人应结合原料药工艺路线分析药典标准分析方法的适用性,拟定的有关物质分析方法分离检出能力和杂质控制要求应不低于药典标准。申请人可以在原料药中加入限度浓度的杂质对照品,证明拟定的有关物质分析方法可以单独分离目标杂质和/或使杂质与主成分有效分离;对于药典标准尚未收载的,可以采用富含杂质样品(如粗品或粗品母液、适当降解样品、稳定性末期样品等),对色谱条件进行比较优选研究,根据对杂质的检出能力选择适宜的色谱条件,建立有关物质分析方法,并采用杂质对照品进行方法学验证。测定杂质含量时,申请人可以选择外标法、内标法、加校正因子的主成分自身对照法和不加校正因子的主成分自身对照法。对于加校正因子与不加校正因子的主成分自身对照法,申请人应对校正因子进行研究。对映异构体需采用手性色谱分析方法进行研究。(2) 致突变杂质根据起始物料和原料药的生产工艺和降解途径,申请人应对原料药潜在的致突变杂质进行分析与研究,参考ICHM7制定合理的控制策略。对于晚期肿瘤用药,基于目标制剂的适应症与用药人群,申请人可参考ICHM7与S9制定致突变杂质的控制策略。亚硝胺类杂质参照发布的《化学药物中亚硝胺类杂质研究技术指导原则(试行)》执行。(3) 元素杂质参考ICHQ3D指导原则,通过科学和基于风险的评估,申请人可以评估是否存在来源于原料药的元素杂质,包括起始物料和原料药工艺过程添加的催化剂和无机试剂、生产设备和包装系统引入的元素杂质等。申请人应评估这些来源的元素杂质对制剂的影响,制定合理控制策略。3.3 质量标准限度制定申请人应对药典方法进行比较研究,确定合理的分析方法,参考ICH指导原则制定合理的原料药质量标准可接受限度。对于尚未收载于药典标准的,应结合用原料药制备的自制制剂与参比制剂的质量对比研究结果,拟定合理的质量标准可接受限度。与安全性相关的质量控制检测项目可接受标准应有安全性试验数据或文献依据支持,满足制剂生产工艺和关键质量属性的要求。有关物质检测项目一般应包括已知特定杂质、未知单个杂质和杂质总量。有关物质的可接受限度通常应符合ICHQ3A和/或欧盟抗生素指导原则等要求,必要时申请人需提供安全性试验数据来论证杂质的安全性。4. 稳定性原料药的稳定性研究包括影响因素试验、加速试验和长期试验,必要时应进行中间条件试验考察。申请人可以参考ICH Q1A、Q1B和《化学药物(原料药和制剂)稳定性研究技术指导原则》开展稳定性研究。提交原料药注册申请时,申请人一般应提供3 批样品6个月加速试验和不少于6 个月长期试验的稳定性研究资料(包括典型图谱)。加速试验和长期试验应在符合GMP条件下进行,试验样品应为能够代表商业化生产规模的注册批次。通常应提交稳定性试验方案和稳定性承诺。对于液体原料药,申请人应开展包材相容性研究。(二)制剂技术要求1.处方工艺申请人应在充分了解参比制剂的基础上,结合参比制剂的临床应用、药代动力学等特点,基于安全性和有效性评估确定产品的开发目标,并根据目标产品质量概况及相关研究结果,确定所开发产品的关键质量属性。通过处方工艺开发和生产工艺验证,明确原料药、辅料、包装系统和生产过程对产品质量起重要作用的影响因素,建立相应的物料控制、工艺过程控制等控制策略。通过处方工艺研究,设计开发出可持续稳定生产符合预期质量要求产品的商业化生产工艺。对已开展临床试验研究的产品批次,申请人需提供关键临床试验批、人体生物等效性试验批等批处方和工艺信息。拟上市产品的处方工艺原则上应与已确证临床等效的批次处方工艺保持一致。1.1 处方(1) 原料药申请人应对原料药的理化性质和生物学特性等进行研究,基于风险评估原则,充分评估原料药相关特性对制剂性能和生产工艺的潜在影响,明确其关键物料属性。原料药理化性质和生物学特性主要包括但不限于溶解度、粒度分布、晶型、水分、稳定性和渗透性等。(2) 辅料申请人应结合辅料在制剂中的作用,评估辅料相关特性对制剂性能和生产工艺的潜在影响,说明辅料种类和用量的选择依据。通常应根据参比制剂的处方组成,选择与参比制剂种类一致的辅料,也可以根据研究情况选择合适的辅料但需提供充分依据。辅料的用量或浓度通常需符合FDA IID限度要求,或提供充分依据(如在境外已批准用于该给药途径和系统暴露水平的其他制剂产品)。应特别关注用于儿童制剂的辅料种类及用量合理性。(3) 处方设计申请人应深入调研参比制剂的公开信息,通过处方解析等确定产品目标质量概况。若能够获得参比制剂处方组成,可提供处方组成及其来源,作为产品处方设计的依据。申请人可以参考ICH Q8开发制剂产品处方工艺,充分评估原辅料相关特性对制剂产品关键质量属性的潜在影响,考察并确定对制剂产品性能和质量起关键作用的处方因素。建议申请人在处方开发中考虑拟采用生产工艺对制剂产品性能和质量的影响。如产品涉及特殊设计,申请人应提供设计依据及支持性研究数据。申请人需阐明产品从处方设计初期到最终商业化生产的处方演变过程。过量投料参考ICH Q8相关要求。1.2 工艺研究申请人应根据拟开发产品的剂型特点,结合制剂的处方特征和已有知识对工艺进行选择。参考ICH Q8开展产品工艺开发。必要时应对中间产品的暂存条件和暂存期限进行同步考察。灭菌/无菌工艺的研究和选择参考《化学药品注射剂灭菌和无菌工艺研究及验证指导原则(试行)》。注射剂还应参考《化学药品注射剂包装系统密封性研究技术指南(试行)》、《化学药品注射剂生产所用的塑料组件系统相容性研究技术指南(试行)》等。1.3 过程控制制剂产品生产工艺过程控制需建立在深入的工艺研究基础之上。申请人应基于已有的生产经验、知识以及相关研究结果确认关键工艺步骤、关键工艺参数及其可接受范围,并对关键中间产品制定控制标准。列出所有关键工艺步骤和工艺参数控制范围,提供研究数据支持关键工艺步骤确定的合理性和工艺参数控制范围的合理性。1.4 工艺验证制剂产品上市许可申请前,申请人通常应完成商业规模生产工艺验证,提交工艺验证方案、工艺验证报告和生产工艺信息表。工艺验证阶段建议增加取样频率和取样数量,以支持产品质量符合要求。无菌制剂应按相关指导原则要求开展灭菌/无菌工艺验证,提供验证方案和验证报告。灭菌/无菌工艺验证应支持拟定商业化生产批量产品生产符合要求。1.5 生产批量仿制药注册批样品批量参照发布的《化学仿制药注册批生产规模的一般性要求(试行)》执行。人体生物等效性试验批或关键临床批样品的生产规模应在拟定的商业化生产线和生产设备上生产,处方、工艺、生产设备原则上应与商业化生产保持一致。制剂产品商业化生产中如存在分亚批情况,申请人应研究制定亚批的质控要求,在工艺研发和验证期间论证分亚批的必要性和分亚批控制策略的合理性;在证明生产过程中各亚批间质量均一的基础上方可将多个亚批合并为一个批次;明确亚批组成与成品批次的对应关系,必要时开展亚批保存时限研究。2. 原辅包质量控制2.1原料药申请人如使用外购原料药进行制剂生产,需结合原料药生产商提供的工艺路线对原料药的质量进行充分研究与评估,制定原料药内控标准以达到自制制剂与参比制剂质量一致的目的。如原料药的晶型和/或粒度分布对制剂质量产生影响,应被纳入原料药内控标准并制定专属的检测项目进行控制。原料药粒度分布应以人体生物等效性试验批次、关键临床批次和工艺验证批次样品使用的原料药粒度分布的实测数据作为限度制定依据。申请人应对原料药供应商和原料药质量进行全面的审计和评估,并在后续的商业化生产中保证供应链的稳定。如发生变更,申请人需按相关技术指导原则进行研究和申报。2.2 辅料所用辅料应符合制剂产品剂型的要求。申请人应明确关键辅料的关键质量属性控制情况,制定合理的内控标准。除特殊情况外,辅料应符合中国药典要求,或USP、EP、JP等要求。对于特殊辅料,申请人需注意辅料批间差异对药品质量的影响,基于风险建立合理的内控标准。来源于动物的辅料应有TSE/BSE风险声明。2.3 直接接触药品的包装材料和容器直接接触药品的包装材料和容器应符合国家药监局颁布的药包材标准,或USP、EP、JP等要求。申请人应依据参比制剂的包装系统,结合拟开发产品的特性和临床使用情况,选择能够保证药品质量的包装系统,用于支持自制制剂与参比制剂质量一致。根据制剂产品给药途径和风险评估,申请人应按照相关技术指导原则或规范对所选择的包装材料和容器进行相容性和功能性研究与评价;根据加速试验和长期试验研究结果确定所采用的包装材料和容器的合理性,以保证药品质量与参比制剂一致。3. 制剂的质量控制3.1质量标准建议申请人根据制剂产品特性和相关技术指导原则科学制定制剂产品质量标准,提供制定制剂产品质量标准所依据的试验资料与文献资料。产品的目标质量概况是确定制剂关键质量属性的依据。制剂的关键质量属性一般应包括但不限于性状、鉴别、有关物质(包括异构体杂质)、致突变杂质、元素杂质、微生物限度、无菌和含量测定等。申请人应参考ICH Q2和Q6A等指导原则,根据与参比制剂质量一致的要求,合理设定制剂质量标准检测项目和可接受标准,提供充分的支持性试验资料与文献资料。对于已有药典标准收载的制剂,申请人可以首先考虑选用药典标准检测项目和分析方法。分析方法学应重点确认药典标准检测方法和条件是否适用,若研究结果表明方法适用,申请人可沿用药典标准分析方法;若需建立新的检测方法,则应进行相应的方法学验证,并证明新方法不劣于药典方法。对于已收载在中国药典的制剂,质量指标一般应不低于中国药典要求。3.2 质量研究申请人可以参考ICH指导原则(Q2、Q3B、Q3C、Q3D、Q6A和M7等)、《化学药物杂质研究技术指导原则》、《化学药物质量控制分析方法验证技术指导原则》、《化学药物质量标准建立的规范化过程技术指导原则》等以及中国药典四部通则进行制剂产品的质量研究,提供制剂质量研究资料,包括代表性样品的典型图谱。分析方法应按照中国药典和ICH指导原则进行规范的方法学验证。(1) 有关物质对制剂中有关物质的研究应重点关注降解产物。降解产物包括原料药的降解产物、原料药与辅料和/或内包材的反应产物。原料药的工艺杂质一般不需在制剂中进行监测,但需关注工艺杂质是否对降解产物检出产生干扰。申请人应在全面分析杂质谱的基础上,结合相关文献,科学选择有关物质分析方法,对其进行规范的方法学验证和/或确认。对于已有药典标准收载的,申请人应分析药典标准分析方法的适用性,拟定制剂产品有关物质分析方法的分离检出能力和杂质控制要求应不低于药典标准。申请人可以在制剂中加入限度浓度的杂质对照品,证明拟定的有关物质分析方法可以单独分离目标杂质和/或使其主成分有效分离;对于药典标准尚未收载的,可以采用富含杂质样品(如适当降解样品、稳定性末期样品等),对色谱条件进行比较优选研究,根据对杂质的检出能力选择适宜的色谱条件,建立有关物质分析方法,并采用杂质对照品进行方法学验证。对于辅料、溶剂和/或复杂基质可能对杂质检测产生影响的分析方法,申请人应研究确定合理的辅料溶剂峰扣除方法。杂质含量测定如采用加校正因子和不加校正因子的主成分自身对照法,应对校正因子进行研究。对映异构体需采用手性色谱分析方法进行研究。(2) 致突变杂质通过对参比制剂和相关文献的了解,根据制剂的生产工艺和降解途径,对制剂中潜在的致突变杂质进行分析和研究,参考ICH M7制定合理的控制策略。对于晚期肿瘤用药,需基于适应症与用药人群,参考ICHM7与S9制定致突变杂质的控制策略。亚硝胺类杂质参照发布的《化学药物中亚硝胺类杂质研究技术指导原则(试行)》执行。(3) 元素杂质参照ICH Q3D 指导原则,通过科学和基于风险的评估确定制剂中元素杂质的控制策略,包括原料药、辅料、包装系统、生产设备等可能引入的元素杂质。腹膜透析液、肠外营养类注射剂或参比制剂已标识铝元素含量的,仿制药应在质量标准中制定铝元素检查项。(4) 溶出度申请人可基于参比制剂的溶出特性开发建立溶出度方法。如采用药典标准、FDA溶出度数据库或日本IF文件等公开途径已公布溶出度方法,建议申请人开展方法适用性研究;如不采用已公布溶出度方法,则需提供相应依据;如缺乏可参考的溶出度方法,建议申请人基于药物pH-溶解度曲线、漏槽条件等信息,参考相关溶出度技术指导原则并结合制剂产品特性开发溶出度方法。研究过程需关注方法区分力的考察。3.3 质量对比研究自制制剂应与参比制剂进行全面的质量对比(含杂质谱对比),两者质量应一致。参比制剂原则上应提供多批次样品的考察数据,充分考察与制剂产品紧密相关的关键质量属性。自制制剂的杂质种类原则上应不超过参比制剂,杂质含量应不超过参比制剂的杂质限度。若自制制剂出现超过鉴定限度或界定限度的新杂质,申请人应分析其产生原因,采取相应措施降低杂质含量,必要时需提供安全性试验数据来论证杂质的安全性。参照相关技术指导原则要求开展自制制剂和参比制剂的溶出曲线比较研究。溶出曲线对比考察参比制剂应提供多批样品数据,也应考察参比制剂溶出行为批内和批间均一性。溶出曲线相似性判定应符合《普通口服固体制剂溶出度试验技术指导原则》、《普通口服固体制剂溶出曲线测定与比较指导原则》等相关要求。3.4 质量标准限度制定申请人应在全面掌握制剂产品关键质量属性的基础上,结合多批次样品的质量研究结果和稳定性考察结果,制定科学、合理、可控的质量标准。质量标准限度的确定应基于对药品安全性、有效性及与参比制剂质量一致性的考虑,包括分析方法的系统误差。有关物质、致突变杂质和元素杂质等检测项目限度确定需结合试验结果或文献依据,并考虑给药途径、给药剂量和临床使用情况等。一般通过与参比制剂进行比较确定杂质限度。如已收载于药典标准等公开资料,应对药典方法进行比较研究,确定合理的分析方法,限度设定应不高于药典标准限度。有关物质的可接受限度通常应符合ICH Q3B和/或欧盟抗生素指导原则等要求,必要时申请人需提供安全性试验数据来论证杂质的安全性。在溶出曲线研究的基础上,根据参比制剂的溶出特性、临床试验批和/或人体生物等效性试验用样品的溶出度结果,合理制定溶出度标准。4. 稳定性制剂稳定性研究包括影响因素试验、加速试验和长期试验,必要时应进行中间条件试验考察。申请人可以参考ICH Q1A、Q1B和《化学药物(原料药和制剂)稳定性研究技术指导原则》开展稳定性研究。提交制剂注册申请时,申请人一般应提供3批样品6个月加速试验和不少于6个月长期试验条件下的稳定性研究资料(包括典型图谱)。加速试验和长期试验应在符合GMP条件下进行,试验样品应为能够代表商业化生产规模的注册批次,建议生产不同批次的制剂采用不少于2批次的原料药。根据稳定性研究结果和参比制剂信息确定贮藏条件,仿制药的稳定性应不低于参比制剂。通常应提交稳定性试验方案和稳定性承诺。根据制剂产品特性,考察包装系统对贮藏和运输的适用性。五、化学药品5类研究与评价技术要求化学药品5 类属于境外已上市药品,包括5.1 类和5.2 类,申请人应参考国际通行及国内现行相关技术指南的要求开展研究,其中化学药品5.2 类需在选择确认合适参比制剂的基础上,还应参考本技术要求中“化学药品3 类研究与评价技术要求”相关内容开展药学研究。在申请上市许可阶段,申请人应按照《M4:人用药物注册申请通用技术文档(CTD)》格式编号及项目顺序整理并提交申报资料,包括可反映供中国上市产品情况的现行版CTD 药学研究资料,汇总CPP 证书载明国家首次上市后至申报进口期间发生的工艺改进、质量提升等药学重大变更(包括经药监机构批准的变更内容等)历史简介,必要时提供药学重大变更研究资料。提供代表性批次样品的批分析数据,包括关键临床试验批(如境外III期临床试验批、境内临床试验批)、进口检验批、工艺验证批样品的列表汇总信息,说明进口中国的药品与境外上市药品在生产线、原辅包、处方工艺和质量控制等方面的异同。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制