当前位置: 仪器信息网 > 行业主题 > >

黄芩素苷

仪器信息网黄芩素苷专题为您整合黄芩素苷相关的最新文章,在黄芩素苷专题,您不仅可以免费浏览黄芩素苷的资讯, 同时您还可以浏览黄芩素苷的相关资料、解决方案,参与社区黄芩素苷话题讨论。

黄芩素苷相关的资讯

  • 标准| 药典委发布“关于勘误黄芩苷标准有关内容的函”
    p style="text-indent: 2em "日前,国家药典委员会官网发布了关于勘误黄芩苷标准的有关内容。更正原文中“鉴别”项目中的“strong二氯化锆/strong”为“strong二氯/strongspan style="color: rgb(255, 0, 0) "strong氧/strong/spanstrong化锆/strong”。全文如下:/pp br//pp span style="font-family: 楷体, 楷体_GB2312, SimKai "各省、自治区、直辖市药品监督管理局:/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "经我委核查,黄芩苷标准[标准编号为WS-10001-(HD-0989)-2002]【鉴别】(2)项中的“然后再滴加5%二氯化镐溶液1滴”应更正为“然后再滴加5%二氯氧化锆溶液1滴”。/span/pp style="text-indent: 2em "span style="font-family: 楷体, 楷体_GB2312, SimKai "特此勘误,请及时通知辖区内相关企业遵照执行。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " 国家药典委员会/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai " 2020年5月7日/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-indent: 2em "strong黄芩苷/strong(Baicalin)是从黄芩根中提取分离出来的一种黄酮类化合物。具有抑菌、利尿、抗炎、抗过敏及解痉等显著的生物活性。黄芩苷还能吸收紫外线、清除氧自由基、抑制黑色素的生成。既可用于医药,也可用于化妆品,是一种很好的功能性美容化妆品原料。黄芩苷也是药典中规定的很多中药饮片和中成药的标准品。/pp style="text-align: center" img style="max-width: 100% max-height: 100% width: 450px height: 140px " src="https://img1.17img.cn/17img/images/202005/uepic/2a16348f-988c-4af8-9b96-2f7dccf9ae63.jpg" title="二氧化锆.png" alt="二氧化锆.png" width="450" vspace="0" height="140" border="0"//pp style="text-indent: 2em "strong二氯氧化锆/strongZrOCl2· 8H2O的作用是用于制造strong二氧化锆/strong,及其他涂料干燥剂、橡胶添加剂等。亦可以做耐火材料、陶瓷釉料和润滑剂。strong二氯化锆/strong的常见形态是结合两个环戊二烯基。/pp style="text-indent: 2em "span style="color: rgb(0, 112, 192) "strong附:黄芩苷标准品说明书/strong/spanbr//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 624px height: 418px " src="https://img1.17img.cn/17img/images/202005/uepic/bbd85870-0707-482a-b141-6c8215d6ff9b.jpg" title="说明书-1.png" alt="说明书-1.png" width="624" vspace="0" height="418" border="0"//pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 592px height: 547px " src="https://img1.17img.cn/17img/images/202005/uepic/e53ebde2-a2c0-4ee2-8644-c434cccd785c.jpg" title="说明书-2.png" alt="说明书-2.png" width="592" vspace="0" height="547" border="0"//pp style="text-indent: 2em "br//p
  • 小柴胡颗粒中黄芩提取物检查项补充检验方法
    5月23日,根据《中华人民共和国药品管理法》及其实施条例的有关规定,《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。小柴胡颗粒,中成药名。为和解剂,具有解表散热,疏肝和胃之功效。主要组成为柴胡、姜半夏、黄芩、党参、甘草、生姜、大枣。小柴胡颗粒中黄芩提取物采用HPLC进行测定,补充方法中将色谱条件、参照物/供试品溶液的制备、测定方法等都有详细的介绍。补充检验方法的起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院。小柴胡颗粒中黄芩提取物检查项补充检验方法(BJY 202304)【检查】黄芩提取物 照高效液相色谱法(中国药典2020年版通则0512)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂(建议色谱柱的内径为4.6mm,粒径为2.7μm);以甲醇为流动相A,0.5%甲酸为流动相B,按下表中的规定进行梯度洗脱;流速为每分钟0.6ml;检测波长为270nm。理论板数按黄芩苷峰计算应不低于5000。时间(分钟)流动相A(%)流动相B(%)0~105→2595→7510~4025→5575→4540~5555→8045→20参照物溶液的制备 取黄芩对照药材0.1g,加水煎煮1.5小时,滤过,滤液浓缩至近干,加入50%乙醇溶液25ml,密塞,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,作为对照药材参照物溶液。另取黄芩苷对照品和汉黄芩苷对照品适量,加甲醇制成每1ml各含60µg的混合对照品溶液,摇匀,用0.22μm微孔滤膜滤过,作为对照品参照物溶液。供试品溶液的制备 取本品,混匀,研细,取约1g﹝规格(1)﹞、0.4g﹝规格(3)﹞、0.3g﹝规格(2)、规格(4)﹞或0.25g﹝规格(5)﹞(均相当于含黄芩生药量0.056g),精密称定,置具塞锥形瓶中,精密加入50%乙醇溶液25ml,密塞,称定重量,超声处理(功率350W,频率37kHz)45分钟,取出,放冷,再称定重量,用50%乙醇溶液补足减失的重量,摇匀,滤过,滤液用0.22μm微孔滤膜滤过,即得。测定法 分别吸取参照物溶液与供试品溶液各5μl,注入超高效液相色谱仪,测定,即得。结果判定 供试品色谱中应呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致,且峰4与峰1的峰面积比值应不低于0.10。对照特征图谱5个特征峰中 峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素注:规格(1)每袋装10g;(2)每袋装5g(无蔗糖);(3)每袋装4g(无蔗糖);(4)每袋装3g(无蔗糖);(5)每袋装2.5g(无蔗糖)。起草单位:广东省药品检验所 复核单位:湖南省药品检验检测研究院
  • 感冒常用药——小柴胡颗粒中黄芩提取物检查项补充检验方法应对方案
    导语5月23日,国家药品监督管理局发布“小柴胡颗粒中黄芩提取物检查项补充检验方法”。小柴胡颗粒是由柴胡、黄芩、姜半夏、党参、生姜、甘草和大枣7味药材组成,具解表散热、疏肝和胃的功效,临床用于外感病,症见寒热往来、胸胁苦满、食欲不振、口苦咽干等。其质量标准收载于《中华人民共和国药典》2020年版一部,法定制法为姜半夏、生姜以70%乙醇为溶剂进行渗漉提取,其余黄芩等5味水煎提取;对于臣药黄芩的质控项目包括薄层色谱鉴别和含量测定两项,但均使用黄芩苷对照品作为参照,存在指标化合物较为单一的问题。现行质量标准的不完善,让一些不法生产企业有机可乘,为降低成本,可能存在添加黄芩提取物进行投料的现象。【1】据相关研究表明:黄芩提取物的主要成分为黄芩苷(含量占85%以上);而黄芩中的黄酮苷为主要的有效成分,包括黄芩苷、黄芩素、汉黄芩苷、汉黄芩素等120种以上,其中前四者含量约占9.0%~20%、0.15%~5.4%、1.7%~4.5%、 0.01%~1.3%,说明两者的物质基础存在明显差异。黄芩药材中掺入黄芩提取物投料或是以黄芩提取物代替黄芩药材投料均为未按法定制法生产,擅自改变小柴胡颗粒的制法,导致其物质基础发生改变,无相应临床数据证实其有效性,存在安全风险。【1】为打击掺入黄芩提取物或将黄芩药材按提取物制法制备后投料生产小柴胡颗粒的违规行为,建标单位建立了黄芩提取物检查项补充检验方法。岛津分析方案分析仪器及色谱柱分析色谱条件柱温:20℃流速:0.6 mL/min检测波长:270 nm进样量:5 µ L流动相:A:0.5%甲酸 B:甲醇岛津复现案例色谱图补充检验方法对照特征图谱峰1:黄芩苷;峰4:汉黄芩苷;峰5:黄芩素使用LC-20AD高效液相色谱仪可以重现标准,对照药材呈现的色谱图峰形良好,主要特征峰均有检出,出峰顺序与标准对照参照图谱一致,各峰实现良好分离,黄芩苷峰理论板数达到190000,满足标准系统适用性要求(应大于5000)。供试品溶液色谱图呈现与对照药材参照物中5个主要特征峰保留时间相对应的色谱峰,其中峰1与峰4应与对照品参照物峰保留时间一致。综上所述,岛津仪器+色谱柱方案可以满足标准检测要求,供相关检测单位参考。参考文献:[1]乔莉,简淑仪,赖竹仪,李华,黄俊忠.超高效液相色谱法检测小柴胡颗粒中掺入的黄芩提取物[J].中国药事, 2023,37(04):450-460. DOI:10.16153/j.1002-7777.2023.04.012.本文内容非商业广告,仅供专业人士参考。
  • 甘肃开展药品检查:停产5家药企 没收4家GMP证书
    今年9月,省食药监局对省内16家、省外2家药品制剂、中药饮片、医用氧生产企业开展了集中飞行检查及延伸检查,发现缺陷问题和风险隐患113项,现场抽样28批次,限期整改16家,责令停产整顿5家,收回药品GMP(药品生产质量管理规范)证书4家。为强化问题整改,日前省食药监局对风险隐患较为突出的12家药品制剂生产企业法定代表人、企业负责人、生产负责人、质量负责人、质量受权人进行集体约谈告诫。其中,武威天利医药有限公司中药饮片厂生产的假药(批号为20160801的柴胡)被移交公安部门。 据悉,被收回GMP的4家药企为靖远爱新气体有限公司、陇西县百宝药业有限责任公司、陇西县志奇中药材加工厂、武威天利医药有限公司中药饮片厂。 其中,靖远爱新气体有限公司原料管理混乱,工业氧和医用氧混存,用于分装医用氧的液态氧购进渠道混乱;质量受权人不能有效履职,非质量受权人代签放行产品;部分产品无批生产记录,液态氧购进量、生产量和销售量失衡;气瓶未按规定定期检验,存在安全隐患;供货商审计档案不健全;化验室使用的容量仪器未校准;气瓶的储存条件不符合规定;对重复使用的部分气瓶充装前未对瓶体进行清洁消毒。 陇西县百宝药业有限责任公司物料管理混乱;生产过程混乱,批生产记录不完整,无法反映生产过程,购进量、生产量和销售量失衡;检验制度不有效落实。 陇西县志奇中药材加工厂仓储区内的原料无质量状态标示;原版空白的批生产记录生产管理负责人和质量管理负责人未严格审核;质量管理部门未与物料供应商签订质量协议,无法明确双方所承担的质量责任;擅自出租厂区场地、库房,用于他人加工中药材,存在混淆等质量安全、消防安全风险隐患,扰乱生产市场秩序;此外,该厂2016年生产的黄芪、黄芩、党参、当归、防风等5个品种34批(次)生产检验记录,部分数据、图谱等缺乏真实性和可追溯性。 武威天利医药有限公司中药饮片厂现场抽验批号为20160801的柴胡,检验结果性状不符合规定,为假药;甘草、黄芪等原料及成品检验未按药典规定全检,黄芪检验存在套用色谱图的问题;2015年7月之前对原药材均未留样;成品库中50kg包装的批号为20160201、20160301的黄芪,50kg包装批号为20130101的甘草包装袋上无品名、批号、规格、产地等标识,不能有效证明产品的真实来源;企业供应部电脑账目显示独活库存为312kg,但在库房内未发现实物。
  • 助力新冠诊疗|防风通圣丸的测定
    在新型冠状病毒肺炎诊疗方案(试行第五版 修正版),中医治疗项下,防风通圣丸被推荐用于治疗处于医学观察期的患者。防风通圣丸具有解表通理,清热解毒之功效。主治外寒内热,表里俱实,恶寒壮热,头痛咽干等。在此参照《中国药典》中防风通圣丸的含量测定,使用日立高效液相色谱仪Primaide进行测定。图1.分析测定条件 图2. 标准品测定结果 图3. 重现性实验结果 取50mg/L黄芩苷标准溶液,重复测定6次,保留时间和峰面积的RSD分别是0.04%和0.19%,均获得了良好的重现性。 图4. 标准曲线 黄芩苷标准溶液在1.00mg/L~200mg/L浓度范围内获得了R2 = 1.0000的良好线性关系。 图5. 系统适用性结果 取50mg/L黄芩苷标准溶液进行系统适用性测试,结果远优于药典规定值。图6. 样品前处理过程样品 图7. 防风通圣丸的测定结果前图8. 含量测定结果 对市售防风通圣丸中黄芩的含量进行了测定,以黄芩苷计算,每1g样品含黄芩苷9.6mg,符合药典的规定值。并在样品中添加了黄芩苷标准品,进行加标回收率的测定,回收率为102.8%~103.6%,证明该测定方法准确可靠。关于日立高效液相色谱仪的详情,请见链接:https://www.instrument.com.cn/netshow/SH102446/Product-C0102-0-0-1.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。 处理方法
  • 中药抗病毒文献解读丨岛津LCMS-8060助力新冠肺炎治疗研究
    随着国内新型冠状病毒(COVID-19)感染的肺炎疫情逐渐得到控制,重症及危重症患者数量也开始相应减少,新型冠状病毒肺炎诊疗方案的成效日益凸显。在与疫情的斗争中,传统中医药的普遍使用,为病人症状的改善和病情的控制发挥了巨大作用。 新冠病毒COVID-19感染者的常见症状为发热、咳嗽、肌痛或疲劳,重症患者会产生大量的细胞因子,而细胞因子风暴的出现会严重威胁病人生命。 科学家们在之前的研究中发现,黄芩苷、黄芩素、橙皮苷、烟碱胺、甘草酸等中草药化合物具有与冠状病毒受体血管紧张素转换酶2(ACE2)结合的能力,因而具有潜在的抗COVID-19病毒的作用。 在对于生物体中的这些天然化合物进行研究的过程中,定量分析研究是必不可少的重要部分。三重四极杆型液相色谱质谱联用仪在复杂生物样品体系的痕量化合物定量分析中有着无可比拟的优势,尤其是岛津旗舰级的LCMS-8060所具备的超高灵敏度和超快速分析性能,更是为广大分析科研工作者所青睐。 岛津旗舰级LCMS-8060 最近,华中农业大学的研究团队在预印本平台Preprints上发表题为“Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2”的文章(Cheng, L. Zheng, W. Li, M. Huang, J. Bao, S. Xu, Q. Ma, Z. Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2. Preprints 2020, 2020020313)。 研究人员尝试从柑橘属植物中的黄酮类化合物中发现有效的抗病毒和抗炎化合物,并提出预防和治疗COVID-19的建议。 为了评估柚苷、柚皮素、橙皮苷、橙皮素、新橙皮苷、川皮苷等6种黄酮类化合物与ACE2结合的能力,研究人员对柑橘、柚子和甜橙进行了有针对性的代谢谱分析,利用LCMS-8060对16个栽培品种的柑橘中的459种已知代谢产物进行了定量检测,并确认了不同黄酮类化合物在不同种类柑橘中的含量差异。 通过LC-MS / MS(Shimadzu LCMS-8060)分析了不同柑橘属种和栽培品种中六种化合物的含量。通过LabSolutions Insight LCMS软件进行数据分析。离子信号峰值面积代表相对含量。(A)柚皮素,柚苷,橙皮素,橙皮苷,新橙皮苷和川皮苷在不同柑橘种类中的分布。(B)不同栽培品种中六种类黄酮化合物的含量。 随后的体外和体内实验表明,柚苷可以抑制脂多糖(LPS)诱导的巨噬细胞中促炎细胞因子的表达,并进一步发现可能通过抑制高迁移率族蛋白B1(HMGB1)来抑制细胞因子的表达。因此,柚苷可能具有预防细胞因子风暴的潜在应用。 通过模拟分子对接,以柚苷为代表的6种黄酮类化合物均与ACE 2表现出不同的结合亲和力。柑橘类中的黄酮类化合物由此表现出抗COVID-19的潜力,该研究也为柑橘类或其衍生的植物化学物质在COVID-19感染的预防和治疗中指明了广阔的应用前景。 文献题目《Citrus Fruits Are Rich in Flavonoids for Immunoregulation and Potential Targeting ACE2》 使用仪器岛津LCMS-8060 第一作者程丽萍、郑伟康、李明 原文链接:https://www.preprints.org/manuscript/202002.0313/v1
  • 第十二届全国生物医药色谱及相关技术学术交流会圆满闭幕
    p  strong仪器信息网讯 /strong2018年4月18日,历经两天的学术交流,“第十二届全国生物医药色谱及相关技术学术交流会”在贵阳圆满闭幕。香港浸会大学蔡宗苇教授、中国农业科学院质量标准与检测技术研究所王静研究员、西北大学郑晓晖教授、广西师范大学赵书林教授、贵州医科大学高秀丽教授,以及岛津、赛默飞两家企业的代表作大会特邀报告。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/52a28e7e-5083-4031-97a6-9a17375b3eb9.jpg" title="蔡宗苇_副本.jpg"//pp style="text-align: center "strong报告人:香港浸会大学蔡宗苇教授/strong/pp style="text-align: center "strong报告题目:PM2.5致大鼠肺损伤作用/strong/pp  报告介绍课题组对太原地区PM2.5中多环芳烃(PAHs)和硝基多环芳烃(NPAHs)的浓度水平、源解析、健康风险进行分析,发现太原市冬季PM2.5污染较严重,PM2.5引起的炎症反应、线粒体损伤和脂质过氧化是PM2.5致大鼠肺损伤的重要调控机制。此外,课题组通过开展PM2.5对肺氧化应激的研究,揭示DNA损伤修复基因和DNA损伤应激基因在PM2.5和NPAHs诱导肺DNA损伤中的调节机制显示PM2.5载有的NPAHs对PM2.5致肺DNA损伤效应有毒性贡献。而活性氧(ROS)/ 活性氮 (RNS)引起的氧化应激与线粒体损伤之间的关系还有待于进一步研究。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/d1db3974-ed7f-402b-b51f-19fdfe19f9aa.jpg" title="IMG_6430_副本.jpg"//pp style="text-align: center "strong报告人:中国农业科学院质量标准与检测技术研究所王静研究员/strong/pp style="text-align: center "strong报告题目:高风险农药助剂的分析方法与消解行为/strong/pp  农药助剂作为农药制剂的必要组成成分,其安全性日益受到关注。APxEOs和PPxEOs这两类助剂的大量使用,对生态环境、食品安全和人体健康构成高风险,因此,有必要开展农产品和产地环境中这两类助剂的分析方法、污染水平和环境行为研究。课题组建立了基于超临界流体色谱-串联质谱法(SFC-MS/MS)的农产品和产地环境中这两类助剂残留的检测方法,并采用模拟试验研究它们在种植过程的消解、转化等环境行为,从而为这两类助剂的安全合理使用、有效控制和科学管理提供技术支撑。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/2844a97b-501b-4988-9cc0-e8aa6c98cd6a.jpg" title="郑晓晖_副本.jpg"//pp style="text-align: center "strong报告人:西北大学郑晓晖教授/strong/pp style="text-align: center "strong报告题目:药物-机体复杂巨系统中生命效应分析科学体系的构建与应用/strong/pp  药物-机体相互作用形成的复杂巨系统之复杂性造成效应物质难以辨识问题不仅严重阻碍了新药研发的进程,也给现代分析技术带来了巨大的挑战。针对上述难题,团队提出并建立了药物-机体开放复杂巨系统的因果相关数理模型,以及分析药物-机体复杂巨系统中数据所蕴涵的元素间的双向因果关系。进而发展靶-药识别组合受体色谱功能辨识技术,对复杂巨系统中的复杂活性信息进行准确分析及特异性活性筛选,结合化学分子结构辨识及生物活性功效辨识,完成核心效应物质的精筛,从而构建了中药有效成分群辨识技术体系。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/aaedf802-b737-4e25-8ebb-4b26f97da82d.jpg" title="赵书林_副本.jpg"//pp style="text-align: center "strong报告人:广西师范大学赵书林教授/strong/pp style="text-align: center "strong报告题目:微芯片电泳免疫和手性分析用于药物和疾病标志物检测/strong/pp  微芯片电泳免疫和手性分析技术,以其快速、高效、灵敏度高、选择性好、成本低、样品消耗量少等优点, 越来越受人们的关注。要满足临床人体液中微量药物和疾病标志物的检测,必需将微芯片电泳免疫分析技术与高灵敏的检测技术相结合。为此,课题组研制了一套微流控芯片电泳-激光诱导荧光、化学发光检测多功能分析仪,发展了一系列微流控芯片电泳激光诱导荧光、化学发光检测-免疫和手性分析新方法,并应用于药物和疾病标志物检测。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/bf420132-d8e6-4789-8596-f1d9106c8e39.jpg" title="高秀丽_副本.jpg"//pp style="text-align: center "strong报告人:贵州医科大学高秀丽教授/strong/pp style="text-align: center "strong报告题目:药用辅料PEG对黄芩苷体内吸收的影响/strong/pp  黄芩苷是从唇形科植物黄芩的干燥根中提取的一种黄酮类化合物,具有广泛的药理活性和临床治疗作用,也是大多数中药复方制剂中的有效成分,但却由于其溶解性不好,导致其口服生物利用度降低,口服吸收差。课题组曾采用HPLC、UPLC-MS/MS等分析方法展开研究,揭示药用辅料PEG可能促进了黄芩苷在大鼠体内的吸收。基于此,课题组利用UPLC-MS/MS分析方法和原位灌注模型进一步探究PEG400对黄芩苷在大鼠胃肠吸收的影响,系统研究药用辅料PEG对黄芩苷体内吸收的影响,并揭示该影响作用的规律和机理,为解决中药黄芩苷口服吸收差的难题、辅助设计更好的黄芩苷新制剂提供药代动力学支撑。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/685c1a31-c56d-444f-b774-3e63687295ef.jpg" title="金燕_副本.jpg"//pp style="text-align: center "strong报告人:赛默飞世尔科技(中国)有限公司金燕/strong/pp style="text-align: center "strong报告题目:单抗及疫苗制剂HPLC分离纯化表征/strong/pp  报告介绍了赛默飞U3000he Vanquish UHPLC单抗及疫苗制剂分离纯化与表征,如肽谱、聚集体分析、电荷变异体、完整蛋白水平的反相分离和糖谱等,还包括辅料方面的分析应用。突出介绍了U3000双梯度液相、Vanquish DUO双系统和CAD检测器在生物制药领域的最新应用进展。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/48fedf99-ae3b-410c-a34c-d324e4de9c83.jpg" title="张歆媛_副本.jpg"//pp style="text-align: center "strong报告人:岛津企业管理(中国)有限公司张歆媛/strong/pp style="text-align: center "strong报告题目:岛津独有的nSMOL技术在抗体药物生物分析中的新应用/strong/pp  传统使用ELISA的分析方法常常会受到诸如ADA(anti-drug antibodies)的内源性配体的严重影响。岛津独有的nSMOL(nano-surface and molecular-orientation limited proteolysis.),可以为抗体类药物的生物分析提供具有极佳的准确性和重现性的定量分析方法。而nSMOL方法不仅可以应用于抗体药物药代动力学的研究,还能应用于治疗相关的ADA。/pp style="text-align: left "  大会召开闭幕式,首先宣布“青年论坛优秀奖”、“青年论坛鼓励奖”及“优秀墙报奖”获奖名单,奖项均由东曹(上海)生科技有限公司赞助。大会主席、北京大学刘虎威教授致闭幕词,“第十二届全国生物医药色谱及相关技术学术交流会”圆满闭幕。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201804/insimg/e665535f-6657-4594-b2f2-6f764375f1eb.jpg" title="IMG_6529_副本.jpg" style="text-align: center "//pp style="text-align: center "strong中国科学院生态环境研究中心汪海林研究员宣布“青年论坛优秀奖”获奖名单/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/c75648c8-4b62-40e4-b78a-2d866ad94785.jpg" style="" title="IMG_6535_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/6759f267-db9e-41ef-9011-1462adfcd159.jpg" style="" title="IMG_6543_副本.jpg"//pp style="text-align: center "strong颁发“青年论坛优秀奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/3b020c5d-be73-43b5-8266-63e16dd8c594.jpg" style="" title="IMG_6545_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/1c99b320-bc6b-4b91-84d4-8d68528eea06.jpg" style="" title="IMG_6549_副本.jpg"//pp style="text-align: center "strong颁发“青年论坛鼓励奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/72ed8d1f-f67e-466d-a238-d47597fdefd1.jpg" style="" title="IMG_6553_副本.jpg"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/db4c267b-2baf-4721-9250-179203cbc02a.jpg" style="" title="IMG_6562_副本.jpg"//pp style="text-align: center "strong颁发“优秀墙报奖”/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/03227b56-68fc-4625-8936-27d22d5baf9e.jpg" title="IMG_6566_副本.jpg"//pp style="text-align: center "strong东曹(上海)生物科技有限公司二木研辅(右)致辞/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201804/insimg/f3ab796f-1d54-46cf-907e-f53b5cafef8a.jpg" title="IMG_6523_副本.jpg"//pp style="text-align: center "strong大会主席刘虎威教授致闭幕词/strong/p
  • 甘肃拟修订气象条例,侵占破坏气象仪器可处五万元以下罚款
    3月30日,省十三届人大常委会第三十次会议分组审议《甘肃省气象条例(修订草案)》。《条例(修订草案)》提出,侵占、破坏气象仪器的可并处五万元以下罚款。《条例(修订草案)》取消了“从事气象科技服务”行政审批事项,取消“气象信息费”收费项目,并调整、明确雷电灾害防御的政府职责和部门监管责任。同时,强化了气象探测环境保护和人工影响天气工作。依据上位法,明确县级以上人民政府应当划定当地各类气象台站气象探测环境的具体保护范围。各级人民政府应当合理布局和建设人影作业点,实施人工影响天气作业的组织应当具备省气象主管机构规定的条件,并使用符合相关技术标准的作业设备,遵守作业规范。人工增雨(雪)和防雹等所需经费也可由申请提供服务的委托方承担。林业、农垦、民航、石油等部门所属气象台站,可以发布供本部门使用的专项天气预报。其他任何组织或者个人不得以任何方式向社会发布公众气象预报和气象灾害预警信息。侵占、破坏气象仪器、设施、标志、资料的,由有关气象主管机构按照权限责令停止违法行为,限期恢复原状或者采取其他补救措施,可以并处五万元以下的罚款。
  • 《质谱学报》"质谱技术在中草药研究中的应用"专辑
    p style="TEXT-ALIGN: center"span style="FONT-SIZE: 20px FONT-FAMILY: 黑体, SimHei COLOR: #0070c0"2017年《质谱学报》第1期“质谱技术在中草药研究中的应用”专辑/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"以下内容原创作者为《质谱学报》主编刘淑莹老师,如需全文(附英文摘要和参考文献)请联系《质谱学报》编辑部或仪器信息网编辑部/span/span/ppspan style="FONT-FAMILY: times new roman"  strong序 /strong传统中医药学是中华民族的宝贵财富和智慧的结晶,是民族赖以生存繁衍的重要保障。随着现代科学的迅猛发展,对于传统中药的物质基础和作用机理研究不断深入。从这个意义上讲,中医药学这个特有的传统医药体系,是我国最有希望的主导原始创新取得突破的,对世界科技和医学发展产生重大影响的学科。2015年屠呦呦教授获得诺贝尔生理医学奖的事实证明了这一点。/span/ppspan style="FONT-FAMILY: times new roman"  20世纪70年代,中国科学家组织团队对于世界上危害最大的疾病之一——疟疾进行攻关研究,屠呦呦最初由中医药书籍“肘后备急方”中记载的“青蒿一握,以水二升渍,绞取汁,尽服之”得到灵感。中国科学家从黄花青蒿中得到提取物青蒿素,经过艰苦的,广泛的临床试验,证明是疗效确切的。已故的梁晓天院士等根据质谱和核磁共振谱数据,正确地推断了青蒿素的过氧桥结构,从化学结构上预示了分子的构效关系。中医药的现代化的确需要传统中医药理论经验与现代科学技术相结合,青蒿素就是一个成功的案例。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanimg title="qinghaosu_副本.jpg" src="http://img1.17img.cn/17img/images/201701/insimg/ed94ff5b-c03c-47ee-8a45-9458b7a1207c.jpg"//ppspan style="FONT-FAMILY: times new roman"   自从软电离质谱技术诞生以来,质谱技术的应用范围得以大大地扩展。很多质谱学家的兴奋点也由传统的物理、化学等学科移动到生命科学相关的领域。在现代分析技术中,质谱以其快速、高灵敏度、特异性和多信息以及能够有效地与色谱分离手段联用等特点备受科学家们重视。当今质谱技术日新月异的发展,喜看各个中医药大学都添置了质谱仪器,中医药界学者逐渐接受和掌握质谱技术并灵活应用到这些组分极其复杂的药材、炮制品、代谢产物的化学成分分析以及中医药科学研究中。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: #0070c0"strong敞开式离子化质谱技术在中草药研究中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"作者:黄 鑫,刘文龙,张 勇,刘淑莹/span/span/ppspan style="FONT-FAMILY: times new roman COLOR: #002060"  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"摘要:敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是近年来兴起的一种无需(或稍许)样品前处理步骤,在敞开的大气环境下实现离子化的质谱分析技术。近年来,各种AIMS技术的研制与应用成为质谱领域备受关注的焦点之一。本工作综述了AIMS技术在中草药研究中的应用,对典型的分析策略进行了讨论,阐述了AIMS技术的基本原理、特点和分类,并展望了该技术在中医药研究领域未来发展的趋势和可能的影响。/span/span/ppspan style="FONT-FAMILY: times new roman"  敞开式离子化质谱(ambient ionization mass spectrometry,AIMS)是一种能在敞开的常压环境下直接对样品或样品表面物质进行分析的新型质谱技术,此技术无需(或者只需简单的)样品前处理,便可实现对样品的分析,具有实时、原位、高通量、简便快速、环保、可以与各种质谱仪器联用等一系列优点,同时兼具传统质谱的高分析速度、高灵敏度等特点。2004年Cooks课题组在电喷雾电离基础上首次提出解吸电喷雾电离(Desorption electrospray ionization,DESI)技术。2005年Cody等在大气压化学电离基础上研制出实时直接检测的DART(Direct analysis in real time)技术 几乎同时,谢建台等也研制出类似的电喷雾辅助激光解吸电离质谱技术。继而,AIMS的研发引起了广泛关注,各类新技术不断涌现,目前AIMS技术的种类已有40余种。为促进AIMS技术的创新和发展,由中国质谱学会和华质泰科生物技术(北京)有限公司共同主办的AIMS国际学术年会从2013年至今已经成功举办4次,引领着AIMS技术迅速向各个行业逐层渗透,深深地影响着下一代分析检测技术的开发和利用。与经典的电喷雾、大气压化学电离和大气压光电离等电离方式相比,AIMS具有溶剂消耗少、更强的耐盐和抗基质干扰能力,同时,AIMS的敞开结构和模块化设计使其可以方便的与各种质谱连接,从而大大降低了仪器购置成本。这一技术在医学、药学、食品安全、环境污染物监控、爆炸物检测、生物分子及代谢物表征、分子成像等诸多领域已展现出广泛的应用前景。因此,AIMS的基础和应用研究备受质谱学家的关注,基础研究主要围绕构建开发新型的AIMS离子源,探究研究相应的离子化机理 应用研究主要是对各种实际样品进行定性和定量分析。本工作着重综述AIMS在中草药研究中的应用,通过对典型的分析策略进行讨论,阐述AIMS技术的基本原理、特点和分类,并展望该技术在中医药研究领域未来发展的可能趋势和影响。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong 1 敞开式离子化质谱技术的基本原理、特点和分类/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  AIMS集成了样品原位解吸附、待测物实时离子化和离子传输至质量分析器三个核心步骤。下面,以DART为例,介绍离子化的基本原理:利用He或者N2作为工作气通过放电室,放电室内部的阴极和阳极之间施加一个高达几千伏的电压导致高压辉光放电,使工作气电离成为含激发态气体原子或分子、离子、电子的等离子体气流。等离子体气流流经圆盘电极,选择性地移除某些离子后被加热,加热等离子体气流从DART口喷出至样品表面,完成热辅助的解吸附和离子化过程。离子化机理一般认为包括周围气体被激发态工作气体的彭宁(Penning)电离、进而发生的质子转移以及其他类型气相离子分子反应等过程。AIMS技术不仅可在常压下对待测样品离子化,而且离子源的敞开结构易于实现物体表面的直接离子化及质谱分析。这类离子源操作简便、快捷,无需复杂的样品前处理。AIMS技术的另一重要特征是快速及高通量,通常每个样品的分析时间不超过5s,充分展现了质谱快速分析的优势,为高通量分析提供了一种新的有效途径。因此,常压敞开式离子源开辟了质谱技术在无需样品前处理的直接、快速分析,表面与原位分析等领域的广阔应用领域。/span/ppspan style="FONT-FAMILY: times new roman"  AIMS离子源按照其离子化过程和机理可以分为三大类:1)直接电离离子源。样品直接进入高电场被电离,如,在ESI源基础上发展起来的众多离子源,包括直接电喷雾探针(Direct electrospray probe ionization,DEPI)、探针电喷雾电离(Probe electrospray ionization,PESI)、纸喷雾电离(Paper spray ionization,PSI)、场致液滴电离(Field induced droplet ionization,FIDI)和超声波电离(Ultra-sound ionization,USI)等 2)直接解吸电离离子源,同时起到对样品解吸和电离的作用。包括解吸电喷雾电离(Desorption electrospray ionization,DESI)、电场辅助解吸电喷雾电离(Electrode-assisted desorption electrospray ionization,EADESI)、简易敞开式声波喷雾电离(Easy ambient sonic spray ionization,EASI)、解吸大气压化学电离(Desorption atmospheric pressure chemical ionization,DAPCI)、介质阻挡放电电离(Dielectric barrier discharge ionization,DBDI)、等离子体辅助解吸电离(Plasma-assisted desorption ionization,PADI)、大气压辉光放电电离(Atmospheric glow discharge ionization,APGDI)、解吸电晕束电离(Desorption corona beam ionization,DCBI)、激光喷雾电离(Laser spray ionization,LSI)等 3)解吸后电离离子源。这是一种两步机理离子源,第1步先对被分析物进行解吸附,第2步实现被分析物的电离过程,包括气相色谱-电喷雾质谱(Gas chromatography electrospray ionization,GC-ESI)、二次电喷雾电离(Secondary electrospray ionization,SESI)、熔融液滴电喷雾电离(Fused droplet electrospray ionization,FD-ESI)、萃取电喷雾电离(Extractive electrospray ionization,EESI)、液体表面彭宁电离质谱(Liquidsurface Penning ionization,LPI)、大气压彭宁电离(Atmospheric pressure Penning ionization,APPeI)、电喷雾激光解吸电离(Electrospray laser desorption ionization,ELDI)、基质辅助激光解吸电喷雾电离(Matrix-assisted laser desorption electrospray ionization,MALDESI)、激光消融电喷雾电离(Laser ablation electrospray ionization,LAESI)、红外激光辅助解吸电喷雾电离(Infrared laser-assisted desorption electrospray ionization,IR-LADESI)、激光电喷雾电离(Laser electrospray ionization,LESI)、激光解吸喷雾后离子化(Laser desorption spray post-ionization,LDSPI)、激光诱导声波解吸电喷雾电离(Laser-induced acoustic desorption electrospray ionization,LIAD-ESI)、激光解吸-大气压化学电离(Laser desorption-atmospheric pressure chemical ionization,LD-APCI)、激光二极管热解吸电离(Laser diode thermal desorption,LDTD)、电喷雾辅助热解吸电离(Electrospray-assisted pyrolysis ionization,ESA-Py)、大气压热解吸-电喷雾电离(Atmospheric pressure thermal desorption-electrospray ionization,AP-TD/ESI)、基于热解吸敞开式电离(Thermal desorption-based ambient ionization,TDAI)、大气压固态分析探针(Atmosphericpressure solids analysis probe,ASAP)、实时直接分析(Direct analysis in real time,DART)、解吸大气压光致电离(Desorption atmospheric pressure photoionization,DAPPI)等。/span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-SIZE: 20px FONT-FAMILY: times new roman"strong2 敞开式离子化质谱技术在中草药研究中的应用/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  建立一种新的方法,能够对中草药中的药效成分和杂质进行分析,这对于中草药的质量评价和质量控制有重要意义。敞开式离子化质谱技术的发展为中草药分析提供了一种快速、直接的手段。本文综述了不同类型敞开式离子化质谱在中草药分析中的应用,并对典型分析案例加以讨论,总结的应用详情列于表1。/span/pp style="TEXT-ALIGN: center"strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"表1 敞开式离子化质谱在中草药研究中的应用/span/strong/pp style="TEXT-ALIGN: center"table cellspacing="0" cellpadding="0" width="600" border="1"tbodytr class="firstRow"td width="255" colspan="2"p style="TEXT-ALIGN: center"strong敞开式离子化质谱技术/strongstrong /strong/p/tdtd width="83"p style="TEXT-ALIGN: center"strong中草药/strongstrong /strong/p/tdtd width="272"p style="TEXT-ALIGN: center"strong分析物/strongstrong /strong/p/tdtd width="58"p style="TEXT-ALIGN: center"strong文献/strongstrong /strong/p/td/trtrtd rowspan="25" width="99"p style="TEXT-ALIGN: center"直接电离/p/tdtd rowspan="3" width="156"p style="TEXT-ALIGN: center"DI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"何首乌/p/tdtd width="272"p style="TEXT-ALIGN: center"2,3,5,4’-四羟基芪-2-O-葡萄糖甙-3”-O-没食子酸酯/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子醇甲、五味子醇乙/p/tdtd width="58"p style="TEXT-ALIGN: center"10/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Tissue spray/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷、氨基酸、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"11/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Leaf spray/p/tdtd width="83"p style="TEXT-ALIGN: center"生姜/p/tdtd width="272"p style="TEXT-ALIGN: center"姜辣素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"银杏籽/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"12/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"圣罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"乌索酸、齐墩果酸及其氧化产物/p/tdtd width="58"p style="TEXT-ALIGN: center"13/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊叶/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"14/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Direct plant spray/p/tdtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"15/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Field-induced DI/p/tdtd width="83"p style="TEXT-ALIGN: center"长春花/p/tdtd width="272"p style="TEXT-ALIGN: center"长春碱、脱水长春碱/p/tdtd width="58"p style="TEXT-ALIGN: center"16/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"iEESI/p/tdtd width="83"p style="TEXT-ALIGN: center"银杏叶/p/tdtd width="272"p style="TEXT-ALIGN: center"银杏毒素、精氨酸、脯氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"17/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、精氨酸、蔗糖/p/tdtd width="58"p style="TEXT-ALIGN: center"18/p/td/trtrtd rowspan="4" width="156"p style="TEXT-ALIGN: center"Field-induced wooden-tip/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀、苹果酸、柠檬酸/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甘草/p/tdtd width="272"p style="TEXT-ALIGN: center"甘草酸、甘草素/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"苦参/p/tdtd width="272"p style="TEXT-ALIGN: center"苦参素、苦参碱、苦参酮/p/tdtd width="58"p style="TEXT-ALIGN: center"19/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"Al-foil ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"附子/p/tdtd width="272"p style="TEXT-ALIGN: center"苯甲酰乌头原碱、次乌头碱、苯甲酰新乌头原碱/p/tdtd width="58"p style="TEXT-ALIGN: center"20/p/td/trtrtd rowspan="7" width="156"p style="TEXT-ALIGN: center"Pipette-tip ESI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱、黄连碱、巴马汀/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"牛蒡子/p/tdtd width="272"p style="TEXT-ALIGN: center"牛蒡苷及其苷元、二糖/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"莲子心/p/tdtd width="272"p style="TEXT-ALIGN: center"莲心碱、甲基莲心碱/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"西洋参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"三七/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子甲素、乙素、五味子酯甲、酯乙/p/tdtd width="58"p style="TEXT-ALIGN: center"21/p/td/trtrtd rowspan="21" width="99"p style="TEXT-ALIGN: center"直接解吸电离/p/tdtd rowspan="13" width="156"p style="TEXT-ALIGN: center"DESI/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄/p/tdtd width="272"p style="TEXT-ALIGN: center"莨菪碱、东莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"毒参/p/tdtd width="272"p style="TEXT-ALIGN: center"毒芹碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗/p/tdtd width="272"p style="TEXT-ALIGN: center"16种托品烷类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"22/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"阿托品/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"甜叶菊/p/tdtd width="272"p style="TEXT-ALIGN: center"甜菊糖苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"24/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"克罗烷型二萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"25/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"青脆枝/p/tdtd width="272"p style="TEXT-ALIGN: center"喜树碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"26/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"27/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贯叶连翘/p/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、糖类/p/tdtd width="58"p style="TEXT-ALIGN: center"23/p/td/trtrtd width="83"/tdtd width="272"p style="TEXT-ALIGN: center"金丝桃苷类、长链脂肪酸类/p/tdtd width="58"p style="TEXT-ALIGN: center"28/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"大麦/p/tdtd width="272"p style="TEXT-ALIGN: center"羟氰苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"29/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白毛茛/p/tdtd width="272"p style="TEXT-ALIGN: center"小檗碱类/p/tdtd width="58"p style="TEXT-ALIGN: center"30/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"橙皮甙、柚皮甙、苦橙甙等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"31/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"DAPCI/p/tdtd width="83"p style="TEXT-ALIGN: center"南、北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"萜品烯类/p/tdtd width="58"p style="TEXT-ALIGN: center"32/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参、红参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"33/p/td/trtrtd rowspan="6" width="156"p style="TEXT-ALIGN: center"DCBI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄连/p/tdtd width="272"p style="TEXT-ALIGN: center"黄连素、黄连碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄藤/p/tdtd width="272"p style="TEXT-ALIGN: center"黄藤素/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鱼腥草/p/tdtd width="272"p style="TEXT-ALIGN: center"别隐品碱、白屈菜红碱、原阿片碱、血根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄柏/p/tdtd width="272"p style="TEXT-ALIGN: center"药根碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"粉防己/p/tdtd width="272"p style="TEXT-ALIGN: center"轮环藤酚碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"两面针/p/tdtd width="272"p style="TEXT-ALIGN: center"两面针碱、白屈菜赤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"34/p/td/trtrtd rowspan="34" width="99"p style="TEXT-ALIGN: center"解吸后电离/p/tdtd rowspan="27" width="156"p style="TEXT-ALIGN: center"DART/p/tdtd width="83"p style="TEXT-ALIGN: center"颠茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"阿托品、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"35/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"蒌叶/p/tdtd width="272"p style="TEXT-ALIGN: center"蒌叶酚/p/tdtd width="58"p style="TEXT-ALIGN: center"36/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"芫荽/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"绿薄荷/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"罗勒/p/tdtd width="272"p style="TEXT-ALIGN: center"大麻素类/p/tdtd width="58"p style="TEXT-ALIGN: center"37/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"乌头属药材/p/tdtd width="272"p style="TEXT-ALIGN: center"乌头碱类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"38/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"曼陀罗籽/p/tdtd width="272"p style="TEXT-ALIGN: center"托品碱、莨菪碱/p/tdtd width="58"p style="TEXT-ALIGN: center"39/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"萝芙木/p/tdtd width="272"p style="TEXT-ALIGN: center"单萜吲哚类生物碱/p/tdtd width="58"p style="TEXT-ALIGN: center"40/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"姜黄/p/tdtd width="272"p style="TEXT-ALIGN: center"姜黄素类/p/tdtd width="58"p style="TEXT-ALIGN: center"41/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"荜澄茄果/p/tdtd width="272"p style="TEXT-ALIGN: center"荜澄茄油烯/p/tdtd width="58"p style="TEXT-ALIGN: center"42/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"极细当归/p/tdtd width="272"p style="TEXT-ALIGN: center"藁苯内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"朝鲜当归/p/tdtd width="272"p style="TEXT-ALIGN: center"日本前胡素、日本前胡醇/p/tdtd width="58"p style="TEXT-ALIGN: center"43,44,51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"白芷/p/tdtd width="272"p style="TEXT-ALIGN: center"白当归脑/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"川芎/p/tdtd width="272"p style="TEXT-ALIGN: center"川芎内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"43/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"槟榔子/p/tdtd width="272"p style="TEXT-ALIGN: center"槟榔碱、槟榔次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"延胡索/p/tdtd width="272"p style="TEXT-ALIGN: center"延胡索碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"贝母/p/tdtd width="272"p style="TEXT-ALIGN: center"贝母素、去氢贝母碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"钩藤/p/tdtd width="272"p style="TEXT-ALIGN: center"钩藤碱/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、黄芩苷、汉黄芩素、汉黄芩苷/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷类/p/tdtd width="58"p style="TEXT-ALIGN: center"45/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"丁公藤/p/tdtd width="272"p style="TEXT-ALIGN: center"东莨菪内酯/p/tdtd width="58"p style="TEXT-ALIGN: center"46/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"制川乌/p/tdtd width="272"p style="TEXT-ALIGN: center"单酯和双酯型二萜类乌头碱/p/tdtd width="58"p style="TEXT-ALIGN: center"47/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"八角茴香/p/tdtd width="272"p style="TEXT-ALIGN: center"莽草毒素/p/tdtd width="58"p style="TEXT-ALIGN: center"48/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"桑叶/p/tdtd width="272"p style="TEXT-ALIGN: center"脱氧野尻霉素/p/tdtd width="58"p style="TEXT-ALIGN: center"49/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"厚叶岩白菜/p/tdtd width="272"p style="TEXT-ALIGN: center"熊果素、岩白菜素、鞣花酸、没食子酸/p/tdtd width="58"p style="TEXT-ALIGN: center"50/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"吴茱萸/p/tdtd width="272"p style="TEXT-ALIGN: center"吴茱萸碱、吴茱萸次碱/p/tdtd width="58"p style="TEXT-ALIGN: center"51/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"北五味子/p/tdtd width="272"p style="TEXT-ALIGN: center"五味子素、戈米辛/p/tdtd width="58"p style="TEXT-ALIGN: center"51,52/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"Nano-EESI/p/tdtd width="83"p style="TEXT-ALIGN: center"人参/p/tdtd width="272"p style="TEXT-ALIGN: center"人参皂苷/p/tdtd width="58"p style="TEXT-ALIGN: center"53/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAESI/p/tdtd width="83"p style="TEXT-ALIGN: center"孔雀草/p/tdtd width="272"p style="TEXT-ALIGN: center"花青素、山奈酚等黄酮类/p/tdtd width="58"p style="TEXT-ALIGN: center"54/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"DAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草叶/p/tdtd width="272"p style="TEXT-ALIGN: center"鼠尾草酸及其衍生物/p/tdtd width="58"p style="TEXT-ALIGN: center"56/p/td/trtrtd rowspan="2" width="156"p style="TEXT-ALIGN: center"LAAPPI/p/tdtd width="83"p style="TEXT-ALIGN: center"鼠尾草/p/tdtd width="272"p style="TEXT-ALIGN: center"萜类/p/tdtd width="58"p style="TEXT-ALIGN: center"55/p/td/trtrtd width="83"p style="TEXT-ALIGN: center"枳壳/p/tdtd width="272"p style="TEXT-ALIGN: center"川皮苷、黄酮醇类、沉香醇/p/tdtd width="58"p style="TEXT-ALIGN: center"57/p/td/trtrtd width="156"p style="TEXT-ALIGN: center"PALDI/p/tdtd width="83"p style="TEXT-ALIGN: center"黄芩/p/tdtd width="272"p style="TEXT-ALIGN: center"黄芩素、汉黄芩素/p/tdtd width="58"p style="TEXT-ALIGN: center"58/p/td/tr/tbody/tablespan style="FONT-FAMILY: times new roman" /span/ppspan style="FONT-FAMILY: times new roman"  strong2.1 直接电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  直接电离离子源是基于电喷雾原理的直接电离敞开式离子化质谱技术,将样品组织中分析物直接电离进行质谱分析。这项技术快速、直接、实时、原位,无需样品前处理,适用于中药材直接分析。主要应用技术包括:直接电离(Direct ionization)、组织喷雾电离(Tissue spray)、叶片喷雾(Leaf spray)、直接植物喷雾(Direct plant spray)场致直接电离(Field-induced DI)、内部萃取电喷雾电离(Internal extractive electrospray ionization mass spectrometry,iEESI)等。虽然这些技术的名称不同,但它们的原理和分析策略是相似的,即,将样品本身作为固体基质,应用溶剂和高电压使分析物溶解或萃取到溶剂中,液相分析物分子在高电场作用下直接电离、喷雾、产生带电液滴和离子进行质谱分析。/span/ppspan style="FONT-FAMILY: times new roman"  姚钟平课题组在固体基质下的电喷雾离子化机理与应用方面做了大量的研究工作。固体基质电喷雾电离是将中草药的粉末、混悬液、提取液附着于固体基质上用于直接电离分析,可用的固体基质包括:纯金属探针、纸三角、木片、铝箔、移液器头等。因铝箔具有惰性、不渗透性、相对刚性等特点,可以折叠承载溶剂,对粉末样品有目的性的提取,在敞开式的环境下进行电喷雾质谱分析。铝箔电喷雾质谱已经成功应用于西洋参和附子等中药粉末样品中主要成分的测定。移液器头模式的分析是将移液器头与质谱进样器和进样泵连接,在线提取进样器头中的中药粉末,加以高电压使带电有机溶剂通过中药粉末将分析物提取出来后电离,经由质谱分析。这种移液器头模式的分析已成功应用于人参、西洋参和三七中皂苷类成分、南、北五味子中木脂素类成分和多种药材中生物碱类成分的测定。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.2 直接解吸电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  自DESI问世以来,其在中草药分析中的应用已被陆续报道。采用的主要方式包括:分析物的表面解吸电离、反应直接解吸电离、分析物的表面成像、薄层色谱与直接解吸电离质谱联用等,其中应用最广泛的是分析物的表面解吸电离,无需中药材样品的前处理,可直接分析。/span/ppspan style="FONT-FAMILY: times new roman"  DAPCI是应用大气压电晕放电从化学试剂中产生电子、质子、亚稳态原子、水合氢离子和质子化溶剂离子,去解吸电离样品表面的分析物,进行质谱分析,主要用于分析低分子质量的挥发性或半挥发性化合物。已报道的研究有南、北五味子中萜品烯类成分和人参、红参中皂苷类成分的分析。/span/ppspan style="FONT-FAMILY: times new roman"  DCBI是将高直流电压加在尖针上引发氦原子电晕放电,在电晕针附近产生激发态离子,与分析物在样品表面发生反应,产生单电荷分析物离子,进行质谱分析。应用DCBI分析中草药中低极性成分是极具挑战性的。为了解决这一难点,文献报道了一种设计方案,将反应试剂(饱和氢氧化钠与甲醇溶液,3:7,V/V)加入样品中以提高DCBI的电离效率,并将该方法成功应用于6种中药材中生物碱的测定,并将其与TLC联用测定生物碱的含量。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.3 解吸后电离离子源/strong/span/ppspan style="FONT-FAMILY: times new roman"  DART-MS是在中草药分析中应用较为广泛的一种敞开式离子化质谱技术,其离子源目前已有商品化的产品。DART-MS的主要分析策略包括:分析物的表面解吸电离,将样品置于DART源与质谱进口 粉末样品的分析,将填充样品的玻璃毛细管(棒)置于DART源加热的气体束中电离 液态样品分析,将样品滴在熔点管(浸管)、金属筛网(不锈钢金属网格)上面,置于DART源与质谱进口之间 TLC与DART-MS联用分析,是将化合物在薄层板上分离后,将薄层板置于DART源与质谱进口之间,分析物经加热气体的热解吸附,通过离子-分子反应使分析物电离再引入质谱进行分析。/span/ppspan style="FONT-FAMILY: times new roman"  EESI和nano-EESI是基于电喷雾电离的敞开式离子化质谱技术,发明最初主要被应用于液态和气态样品分析,被分析物从溶液相或气相样品中被萃取出来,经由电喷雾电离产生离子进行质谱分析。陈焕文课题组将Nano-EESI-MS技术成功应用于人参中人参皂苷的测定。将激光解吸或消融与电喷雾结合的敞开式离子化技术(LAESI)适用于固体样品分析,在中草药分析中的应用主要有:孔雀草根、茎、叶中的成分分析和鼠尾草叶中萜类成分的测定。将敞开式离子化技术与光致电离原理相结合,应用于中草药研究中,主要有两种方式:解吸大气压化学电离(DAPPI)和激光消融大气压光致电离(LAAPPI)。这两种方式可以使样品表面非极性和中性分析物有效电离进行质谱分析,另外,这两种方式还具有表面成像功能,例如,DAPPI-MS和LAAPPI-MS技术在鼠尾草叶成分表面成像研究中的应用,以及枳壳叶中主要药效成分的DAPPI-MS分析等。等离子体辅助激光解吸质谱(PALDI-MS)已被成功用来研究黄芩中黄芩素和汉黄芩素成像,结果显示,此成分集中分布于根的表皮维管束边缘。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.4 在中草药质量评价和质量控制中的应用/strong/span/ppspan style="FONT-FAMILY: times new roman"  随着敞开式离子化质谱技术的不断发展,其在中草药质量快速评价和控制中的应用日益广泛。敞开式离子化质谱指纹分析方法能够给出中草药成分的整体化学轮廓,可用于评价中草药质量的稳定性、追溯基源、鉴别真伪。应用敞开式离子化质谱方法评价和控制中草药质量,首先要选择一种适合的敞开式离子化技术,建立指纹图谱分析方法,进而对样品进行分析,将获得的数据采用多变量统计分析方法处理,例如主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)、聚类分析(HCA)等。/span/ppspan style="FONT-FAMILY: times new roman"  目前,应用DART-MS技术结合多种统计分析方法,成功区分了蒌叶的不同栽培品种 区分了曼陀罗、萝芙木、荜澄茄以及伞形科中药的不同品种,并鉴定了其中标志性化学成分 区分了不同来源的当归 鉴定了川乌中标志性化学成分,并区分了其炮制程度的不同。将DAPCI-MS技术结合PCA分析应用于南、北五味子研究,成功区分了不同栽培品种和野生品种,并区分了不同炮制品种。应用Wooden-tipESI-MS结合PCA和PLS-DA技术,鉴定了川贝母粉末的品种,并区分了其中掺伪品。/span/ppspan style="FONT-FAMILY: times new roman"  strong2.5 本实验室的研究工作/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药成分的确认和定量分析是近年来AIMS的重要发展方向之一,本实验室选用商品化的DART为离子源,开发的方法具有较强的可重复性和实际应用价值。研究内容主要包括5个方面。/span/ppspan style="FONT-FAMILY: times new roman"  1)中药的快速分析:研究了8种中药的化学成分,实现了生物碱类、黄酮类和部分人参皂苷的快速、直接分析 并对DART的电离机制进行了较深入的讨论 /span/ppspan style="FONT-FAMILY: times new roman"  2)中药成分的DART定量分析:针对中药延胡索的功效成分延胡索甲素和乙素进行DART定量分析,利用甲基化衍生和氘代内标实现了人参皂苷的DART定量分析 /span/ppspan style="FONT-FAMILY: times new roman"  3)对DART技术不易电离成分的分析:本实验室首次采用瞬时衍生化试剂四甲基氢氧化铵对皂苷和寡糖类成分进行DART源内的瞬时甲基化,通过甲基化衍生增加皂苷成分的挥发性,生成铵加合物离子,实现了多羟基化合物(如人参皂苷和寡糖)的DART分析检测。其中,四甲基氢氧化铵不仅发挥了衍生化的作用,同时还作为辅助电离试剂增强了皂苷成分在DART中的灵敏度[62]。因为该反应属于自由基反应,反应控制难度较大,重复性还有待提高 /span/ppspan style="FONT-FAMILY: times new roman"  4)DART用于农药残留的检测:针对100余种农残成分开展了DART快速检测研究,发现多种农药成分在DART电离过程中不仅有加合离子(离子-分子反应产物),还产生碎片(过剩能量产生),此外,实验发现有机磷农药会发生氧硫交换的氧化反应,并对其反应机制进行了深入探讨 /span/ppspan style="FONT-FAMILY: times new roman"  5)开展DART电离机理研究:研究发现,不同的工作气体(氦气、氩气、氮气等)因其不同的电离能和氮气的振动自由度影响,使得其在电离过程中展现出不同的特性,虽然氦气因具有更高的电离能应用范围更广,但是在某些场合下使用电离能较低的氩气和氮气(较氦气价格低廉)产生的待测化合物碎片较少,再适当引入辅助(make up)试剂可有效地提高待测物的灵敏度。经过研究发现,具有较低电离能的氟苯和丙酮等作为辅助试剂能明显的提高待测物的分析灵敏度。/span/ppspan style="FONT-FAMILY: times new roman" span style="FONT-SIZE: 20px FONT-FAMILY: times new roman" strong3 总结与展望/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  中药品质的安全有效主要取决于其中所含的药效成分和杂质,这就要求应用快速、可靠的分析方法来评价和控制中药材的质量。目前,多种敞开式离子化质谱技术已成功应用于多种中药中多种类型化学成分的检测,并可对多种中药的品质进行综合评价和质量控制。一般来讲,对于挥发性较好或质子亲合能较高的成分,如生物碱,黄酮类等成分,电离可以直接发生在植物组织表面附近而不需借助溶剂和其他基质。为了得到好的分析结果,对于皂苷类等组分需溶剂辅助,对于糖类组分的分析甚至需要简单的衍生化。敞开离子化源,其原理之一是被分析物周围的气相离子-分子反应,这些反应很难达到经典的密闭CI源平衡条件,因此,在实验条件控制,数据的重复性方面还存在一些困难,尚需技术本身不断完善。另外,对分析物的准确定量方法也有待开发及改进。以上这些问题需要分析化学家和质谱学家的持续关注和潜心研究,相信在不远的将来,敞开式离子化技术与小型质谱仪器结合的分析方法能应用于中药生产的田间地头、成品药生产线、中医诊断的辅助等更多的中医药领域,为推动传统中医药的现代发展发挥更大的作用。/span/pp strong /strongspan style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai COLOR: #002060"strong《质谱学报》致谢/strong: 此次《质谱学报》组织“质谱技术在中医药研究中的应用”专辑是逢时的,受到中医药界广大质谱工作者的热烈响应。不仅吸引了大陆的同仁,而且两岸三地的质谱工作者,如台湾的李茂荣教授、香港的蔡宗苇教授和澳门的赵静教授等都积极投稿。此专辑包括中药和其他民族药,如藏药、维药等的相关研究,从研究内容上讲,有植物药也有动物药,包括了药材、炮制品和复方药的成分分析和代谢研究。由于本刊篇幅有限,在大量来稿中只能选用19篇,对于其他审稿已通过的文章,将在以后几期中陆续刊登。另外,感谢中国科学院上海有机化学研究所的郭寅龙研究员为本专辑的出版提供指导和帮助 感谢北京大学的白玉老师、北京中医药大学的刘永刚老师、长春中医药大学的杨洪梅老师和南京中医药大学的刘训红老师在组稿过程中的贡献 感谢长春中医药大学药学院为本专辑提供部分药材图片。对于本刊编辑中存在的错误和其他问题,欢迎读者提出宝贵的意见。/span/ppspan style="COLOR: #002060" /span/p
  • 钻石二代色谱柱又增新品
    钻石二代色谱柱自上市以来,以其优良全面的性能和优质完善的服务,深受用户的好评和信赖。 为了扩大钻石二代色谱柱的应用范围,迪马科技的每一款3&mu 和5&mu 键合相又新增3.0mm内径以及30mm柱长色谱柱。进一步满足HPLC,特别是LC-MS快速分析的应用需求。 另外,迪马科技又进一步拓展了钻石二代色谱柱在不同行业及领域的应用,比如中药/天然产物分析(红叁、何首乌、黄芩苷、脱水穿心莲内酯),禁用偶氮染料中的芳香胺,以及维生素E,维生素B2等。
  • 第六届普析通用杯药物分析优秀论文获奖名单公布
    p  strong仪器信息网讯/strong 2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会于2015年10月20-21日在北京前门建国饭店隆重召开,100余名来自于药物分析领域的专家、学者参加了此次会议。出席本次会议的嘉宾有:中国食品药品检定研究院副院长王佑春、北京普析通用仪器有限责任公司总经理田禾、副总经理王峰、中国药学会药物分析专业委员会原主任委员田颂九、中国食品药品检定研究院中药民族药检定所所长马双成、澳门大学药学院副院长李绍平、上海市药品检验所副所长陈桂良、药物分析杂志主编金少鸿、浙江大学药学院曾苏、中国药学会副理事长兼秘书长丁丽霞,药物分析杂志编委会主任粟晓黎等。金少鸿研究员主持了此次会议的开幕式和闭幕式。本次优秀论文评选颁奖活动是在中国科协和中国药学会的支持下,以精品科技期刊工程项目为指导目标,以表彰近两年药物分析优秀论文为主题形式。/pp style="TEXT-ALIGN: center"img title="IMG_7669金少鸿_meitu_1.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fe802379-e1cb-4bd6-a35a-89b7ff8e9970.jpg"//pp style="TEXT-ALIGN: center"金少鸿研究员致词/pp style="TEXT-ALIGN: center"img title="IMG_9790_meitu_8.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2770d3fb-9cd5-487c-af39-bc9d464927de.jpg"//pp style="TEXT-ALIGN: center"中国食品药品检定研究院副院长 王佑春/pp  王佑春谈到,全国药物分析优秀论文评选活动是《药物分析杂志》组织的学术活动之一。2004年中国药品生物制品检定所(中检院前身)与北京普析通用仪器有限公司签署了合作协议,共同组织优秀论文评选活动,表彰在药物分析专业科研工作中敢于创新、成绩优秀的作者。从2004年起,每两年举办一次。全国药物分析杂志优秀论文评选交流会是药物分析学科领域重要的学术活动之一,是药物分析研究工作者显示成果的舞台。历届优秀论文评选会议无论是投稿、文章评审、还是现场评奖均得到了药物分析专业领域作者、专家的积极参与。这个活动也推动了我国药物分析学科的成熟与发展。/pp style="TEXT-ALIGN: center"img title="IMG_7662丁丽霞_meitu_3.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/5321410c-7731-440a-92f6-f42c787aceda.jpg"//pp style="TEXT-ALIGN: center"中国药学会副理事长兼秘书长 丁丽霞/pp style="TEXT-ALIGN: center"img title="田禾_meitu_10.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2d50c596-3f73-4298-a141-59ef35c917a1.jpg"//pp style="TEXT-ALIGN: center"北京普析通用仪器有限责任公司总经理 田禾/pp  田禾讲到,十分高兴能够作为仪器厂家,为药物分析工作者在实际工作中提供一些保障和支持。中国的分析仪器产业相比于国外还存在一定的差距,普析通用作为一家国内领先的民营企业,深深地感受到国外品牌带来的冲击和压力。但是,中国一定要发展自己的分析仪器产业,这样才能更好地服务于国内的分析行业工作者。药物分析杂志与普析通用合作举办的“全国药物分析优秀论文评选”活动,一方面可以很好地了解国内分析仪器在药物工作者中的使用情况 另一方面也可以帮助企业提高其仪器的整体研发技术水平,继而促进中国分析仪器产业的提升。/pp style="TEXT-ALIGN: center"img title="IMG_7689王峰_meitu_2.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/a92662b4-9fc1-438b-b805-9d3b62152193.jpg"//pp style="TEXT-ALIGN: center"北京普析通用仪器有限责任公司总经理 王峰img title="ceng.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/bffee579-7a47-467a-826d-4bda7b26037e.jpg"//pp style="TEXT-ALIGN: center"药物分析杂志副主编 曾苏/pp style="TEXT-ALIGN: center"(浙江大学药学院、中国药学会药物分析委员会副主任)/pp  曾苏谈到,为了奖励近年来药学工作者在药物分析领域所做的贡献,进一步推动我国药物分析学科发展,中国食品药品检定研究院专门在2015年工作计划中,列入了2015年《药物分析杂志》优秀论文评选学术研讨会暨第六届普析通用杯药物分析优秀论文颁奖会。评选范围确定为征集会议投稿和2013~2014年在《药物分析杂志》上已发表的文章。截止到2015年9月,接收会议投稿近60篇。近两年在《药物分析杂志》上已发表的论文960篇。/pp  此次论文评选的主体范围从以下方面进行筛选,体现导向性:/pp  1、 药物分析新理论、新技术、新方法研究;/pp  2、 现代分析技术在药物分析中的应用研究;/pp  3、 新药质量标准的建立及药物质量再评价研究;/pp  4、 药物原料、制剂及新剂型的研究;/pp  5、 药用辅料、药包材和医药材料质量分析;/pp  6、 药物活性、药物毒性分析研究;/pp  7、 药物分析检测质量控制方法技术研究;/pp  8、 药物代谢动力学、生物利用度等研究;/pp style="TEXT-ALIGN: center"img title="IMG_9784_meitu_15.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/267a0377-476a-443e-8309-151eee36765e.jpg"//pp style="TEXT-ALIGN: center"大会现场/ppstrong部分参会报告:/strong/pp style="TEXT-ALIGN: center"strongimg title="IMG_9825_meitu_3.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c6f4aafc-f2f7-42df-9a05-5e4225ae5442.jpg"//strong/pp style="TEXT-ALIGN: center"范昌发报告题目 《C57-ras转基因小鼠模型的建立》/pp  中国食品药品检验研究院范昌发通过PCR方法克隆人的原癌基因c-Ha-ras,全长6.5 kb,含有4个外显子,以及该基因本身的启动子、调控序列和poly A信号序列 并将其通过原核注射注入C57BL/6J小鼠受精卵雄原核。同时,通过PCR,real-time RT PCR和反转录cDNA测序比对等手段鉴定c-Ha-ras基因的插入和表达,并结合病理切片分析自发肿瘤的发生。/pp  范昌发表示,通过该实验,成功建立了C57/B6J背景的人类c-Ha-ras转基因小鼠模型。该C57-ras转基因小鼠的制作和用途已申请专利,这是我国首个以临床前药物致癌性实验为目的的c-Ha-ras转基因小鼠,也是在我国建立符合ICH规范的、拥有自主知识产权的临床前药物安全性致癌评价替代方法体系的基础。/pp  img title="IMG_9730_meitu_4.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/4bc5f0e1-6c73-4460-aa0f-0ebca8160cc6.jpg"//pp style="TEXT-ALIGN: center"孙煌报告题目 《核磁共振和液相色谱—质谱法对多索茶碱未知杂质的结构分析》/pp  黑龙江省药品检验所孙煌应用HPLC-MS/MS、核磁共振(1H-NMR、13C-NMR、HMBC)技术,对多索茶碱及其未知杂质进行结构分析,并首次发现并确定多索茶碱未知杂质的结构。该方法可为多索茶碱的质量控制提供依据。/pp style="TEXT-ALIGN: center"img title="IMG_9646_meitu_5.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c2a99326-3788-4611-b027-eb33e2e8f1c7.jpg"//pp style="TEXT-ALIGN: center"赵琰报告题目 《基于黄芩苷单克隆抗体的ELISA快速检测方法的建立》/pp  北京中医药大学赵琰以制备出的黄芩苷特异性单克隆抗体为基础,选择单抗最佳工作浓度,建立了黄芩苷间接竞争酶联免疫分析方法,并应用此方法检测精制清开灵注射液中的黄芩苷含量。采用该方法检测精制清开灵注射液中黄芩苷的含量,所得结果与HPLC一致。从而为含黄芩苷的中药材及复方的质量控制分析提供了更加快速灵敏的检测方法。/pp style="TEXT-ALIGN: center"img title="IMG_9812_meitu_6.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/2c5004d0-0ca4-4c54-87d8-609b66f729cd.jpg"//pp style="TEXT-ALIGN: center"颁奖现场/pp style="TEXT-ALIGN: center"img title="IMG_7721_meitu_16.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fb264ce6-e8c9-4816-b9fa-331cdd8d4d9b.jpg"//pp style="TEXT-ALIGN: center"参会代表合影/ppstrong附获奖名单:/strong/pp style="TEXT-ALIGN: center"img title="截图00_meitu_9.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/e500d708-53e7-4f31-8c01-dd5995a04d4c.jpg"//p
  • 高效液相色谱监测中药的发展现状及前景
    中药的成分非常复杂,以往常用的薄层色谱等方法因其精密度、准确度、灵敏度、重现性差而不能满足现代中药的需要。高效液相色谱正是以其稳定、可靠、高效的特点成为中药研究的最重要的分析方法。目前高效液相色谱已经广泛应用于生物碱、皂苷、黄酮、蒽醌、香豆素等各种中药有效成分的测定。近年来对高效液相色谱监测中药的研究非常多,由于高效液相色谱集经典液相色谱和气相色谱的优势于一身,无论柱效、选择性还是分析程度都达到或超过了它们,近年来对高效液相色谱的不足之处进行了改进,使这项技术日臻完善。1、高效液相色谱发展近况  高效液相色谱在药物分析中的应用,主要考虑试样的预处理和分析柱、检测器的选择。在试样的预处理上,日前兴起的固相(微)萃取使得许多含量低的成分得到精制提纯,从而适于高效液相色谱的测定,而孙新国采用逆流萃取测定川芎嗪含量取得了很好的效果。中药中有些紫外吸收弱,或无特征紫外吸收的成分,直接用高效液相色谱测定,其灵敏度和分离度都不尽人意,利用柱前或柱后衍生化法可使这些成分较精确地测定出来。对于极性大、脂溶性差物质,在YWGCl8柱上不易保留,用十二烷基磺酸钠作为离子对试剂,降低其极性,延长柱上的保留时间,取得较好的分离较果。将液相色谱和质谱这两个强有力的分析技术在线连接在一起,经过三十年的发展已成为一项较为成熟的分析手段,但是它从形成伊始就存在着问题:从液相色谱流进质谱时,流动相的变化、溶剂的组成、高温高压离子化的问题制约着这种联用技术发展,大气压离子化接口具有去除溶剂和离子化的双重功效,它的引入,使得该技术在各个领域得到了广泛的应用。电喷雾离子源是一种软电离技术,一般只生成(M H) 和(M-H)-两种分子离子峰,选择性监测(mz)190的负分子离子峰,具有较高的灵敏度、准确度、专一性,满足了低浓度药物研究的需求。由张莉等人研究的三维高效液相色谱法可以同步测定葛根素和阿魏酸两种指标。通过实验证明:如果选择合适的柱温等色谱条件,乙醇作为反相高效液相色谱流动相,分析中药及中成药中有效成分,既安全又准确。结构相似的物质,普通的检测器难以检测出来,高效液相色谱-电化学法可以有效地测定黄连粉中仅差一个基团的黄芩苷和黄芩素的含量。样品经色谱柱分离后收集,再经荧光分光光度计测荧光强度,影响因素多,测定复杂,改进后的高效液相色谱-荧光法则可以不经衍生化和收集分离物,只经化学处理除杂,浓缩后直接进样即可。用该法测定贯叶连翘中金丝桃素的含量也取得了较好的结果。高效液相色谱-示差折光测黄芪精口服液中黄芪甲苷的含量也都取得了较为满意的结果。对于只有紫外末端吸收,用紫外检测时灵敏度低,基线易漂移,示差折光检测其易受外界条件干扰,蒸发散射检测器能克服以上不足,响应值只与样品质量有关,其信号相应与质量成正比,不同化合物,质量相同则信号相应基本一致。蒸发光散射检测法是基于不挥发样品分子对光的散射程度与其质量成正比,与其所含基团性质无关。只要选择适当的检测器参数,便可使流动相和溶剂完全气化,不产生信号,而样品中的各个组分以不挥发粒子存在,对光有散射,以被检测出来。因此,蒸发光散射检测器可用于含不同基团的多组分同时分离、分析。和紫外、荧光等方法相比,蒸发光散射检测法对不同物质有近似相同的响应因子,  因而不出现低浓度、高响应或高浓度、低响应的现象,有利于不同比例混合物的准确测定.高效液相色谱-蒸发光散射检验法测定银杏叶中萜类内酯含量、红参及育精胶囊中人参  皂苷Rg1和Re的含量和藤黄中藤黄酸含量都得到了很好的结果。2、高效液相色谱的研究动向  2.1缩短分析时间,提高分离效率。应用先进的检测仪器和方法,对流动相、固定相进行调节或改变,采用梯度洗脱、柱切换技术有望解决这个问题。梯度洗脱的高效液相色谱法,能分析较宽极性范围的样品,较等度洗脱具有很大的优势,但对于成分更复杂、极性范围更宽的中药样品则有些力不从心。多柱高效液相色谱法又称多维高效液相色谱法。除具有梯度洗脱一样的改变流动相浓度的优点外,还可以改变固定相种类、键合度、粒径、柱长、柱径等及流动相种类、浓度等。  2.2进一步向自动化、智能化及联用技术上发展。液相色谱与质谱联用在国外已成为测定低浓度生物药品中药物及代谢物的首选方法,LC-MS-MS法测定血浆中HIV-1蛋白酶,准确高效,血浆中残留的内源性组份和其他药物不干扰测定,既节省材料又节约时间。已经应用于体液、血浆、血清中的药物分析。中药复方注射液“清开灵”中的胆酸类物的分析采用液相色谱质谱质谱联用,效果理想。高效液相色谱-核磁共振联用在药物分析方面的作用很不错。新近提出的智能多柱高效液相色谱系统利用切换技术的模块式分离性能,把样品分块的切换进不同性质的色谱柱,再用合适的流动相洗脱。全过程采用智能化控制。3、高效液相色谱在中药分析中的应用前景  中药研究的大趋势是全成分分析,通过对从单味药到复方的不同配伍、煎煮时间等的研究,才能发现中药中化学成分的变化规律,找到中药机理之间的有机联系。中药成分繁多,且各种成分的性质遍布所有极性段、酸碱范围。实现多成分分析的最简单途径即在一根足够长的色谱柱上,采用温和的流动相,在足够久的时间内洗脱。但这与现代分析要求的简便快速相违。通过大量的应用研究表明,高效毛细管电泳在分析中药成分,尤其在分析高极性化学成分方面有较大优势,在分析大量的复方制剂方面显示了较高的能力。由于毛细管几乎不会出现高效液相色谱分析中常出现的柱床污染现象,而且用过的毛细管柱只需很短的时间进行冲洗后,即可以进行第二个样品的分析,快速高效且分辨率很高。新兴的毛细管电色谱是集高效液相色谱和毛细管电泳优势于一身的一种新型电分离微柱液相色谱技术,它是将高效液相色谱的多种填料微粒移到毛细管中,以样品与固定相间的相互作用作为分离机制,以电渗流为流动相驱动力的色谱过程。最近,一些先进的检测仪器成功的用在了高效液相色谱分析法上,使得高效液相色谱的应用更广泛,并充分利用高效快速、选择性好、灵敏度高等优点,建立更加系统的成分分析方法。通过与质谱联用、梯度洗脱、柱切换技术、配合先进的检测技术,以及与分子生物学、现代分子药理学相结合,必将在中药分析中发挥很大作用。
  • 畜禽养殖,中国抗生素污染源爆点
    六十秒读懂专题:中国是抗生素滥用最为严重的国家。在医疗领域之外,畜禽养殖业中抗生素的大量应用,以及养殖废水处理监管的缺失同样需要我们注意,因为正是其造成了中国严重的抗生素污染,进而导致细菌耐药性越来越强这一严峻形势。  中国环境遭受抗生素污染,河流污染情况尤其严重  &ldquo 近日,包括《纽约时报》《南华早报》在内的多家媒体发表文章,引用内地研究者在《中国科学》杂志社发布的科学通报,称中国环境正在遭受严重的抗生素污染。国际媒体所言非虚,近年来不断的报道也印证了这一结论。在2014年12月25日,《焦点访谈》报道称珠江广州段受抗生素污染非常严重,脱水红霉素、磺胺嘧啶、磺胺二甲基嘧啶的含量分别为460纳克/升、209纳克/升和184纳克/升,远远高出了欧美发达国家河流中100纳克/升以下的含量。  类似的情况并不只存在于珠江流域,北京师范大学水科学研究院对中国部分地表水取样检测后发现,全国主要河流,包括海河、长江入海口、黄浦江、珠江和辽河等河流都检出抗生素。2014年5月,另一项研究称中国的地表水被检测出含有68种抗生素,其中珠江、黄浦江等地检出的抗生素频率高达100%,除检出频率外,地表水抗生素浓度水平也大大高于西方国家。以黄浦江为例,磺胺甲嘧啶在所有的采样点中均被检出,枯水期检出频率为100%,浓度峰值达到每升623.3纳克(1纳克=1/1000微克),对比德国莱茵河2003年数据,其峰值也不足60纳克,而在美国和日本,该物质几乎没有检出。磺胺类药物属于广谱抗菌药,用于敏感细菌及其他敏感病原微生物所致的感染。水体与土壤的抗生素交叉污染,使得这一问题变得越发棘手。  畜禽养殖消耗大量抗生素,一为抗病,二为增肥  大部分抗生素都是通过人与动物的排泄物进入水体,这揭示了中国抗生素污染的一个重要来源&mdash &mdash 畜禽养殖。前文提及的调查报告显示,中国是世界抗生素使用第一大国。2013年中国抗生素使用量近于世界其他国家的总和,其中人类消耗量为48%,52%为动物消耗,也就是养殖业消耗。养殖场在畜禽养殖过程中应用抗生素原因有以下两点:  一,降低畜禽患病率。相较于野外,养殖场的畜禽密度显然要高的多,所以一旦发生动物疫情,传染速度非常快,就会给养殖户带来严重损失。在养殖过程中添加抗生素,可以预防与治疗疫病,避免遭受此类损失。  二,相当一部分抗生素可以通过杀灭有害菌,调节畜禽肠道内细菌总数促进畜禽消化,进而影响生长,增加畜禽个体重量。部分饲料企业会在其产品中预先添加入此类抗生素,养殖户则采用此种饲料刺激畜禽增重以提高收入。  中国养殖业抗生素滥用,无钱处理闷声大排污  在中国,由于养殖密度大、畜禽疫病复杂多样再加上监管不力等多种原因,普遍存在抗生素过量使用甚至滥用等问题。养殖户在使用含抗生素饲料之外,还会采用注射、灌服等多种手段再次添加抗生素。对于畜禽养殖场,抗生素支出占用药总支出的70%到80%。  故此,抗生素在国内所占成本比重要大大高于国外。以肉用鸡为例,据报道,2012年中国抗生素约占总成本的10% 而2015年,麦当劳宣布在两年内其在全美提供的鸡肉将不含抗生素,供应商泰森食品公司声称这一计划将使公司养殖成本提升3%。鉴于抗生素一直是畜禽供应商基于经济考量作出的选择,我们可以推断出,在美国,肉用鸡抗生素所占成本比重是必然低于3%这一数值的。  相较于大部分人关注的食品安全&mdash &mdash 也就是抗生素在畜禽体内的残留而言,更严重的是养殖废水的问题。因为绝大多数的抗生素都会被代谢出体外,最终以养殖废水的形式进入环境,如不加以处理,就会造成严重的污染。而中国还没有如何处理养殖废水的强制规定,如何处理含有抗生素的废水完全取决于养殖场的环保意识。国家环保总局于2007年编制完成了《畜禽养殖业污染治理工程技术规范》,但由于废水处理成本较高(每万头猪场污水处理设备投资就需至少120万元),加上监管和专项补贴基金的双重空缺,所以小型养殖场更倾向于直接把废水排入河流。故而在中国各大河流甚至是地下水中检出高浓度抗生素也就不足为奇了。  抗生素环境污染,细菌耐药性越来越强,旧疾病卷土重来  部分人对抗生素污染相当不以为意。如南京鼓楼自来水中检出阿莫西林等两种抗生素,官方部门首先声称南京水务集团供水完全达到国家标准&mdash &mdash 因为国家标准根本没有对抗生素的检测指标,继而又有专家声称每升水8纳克这样的浓度,对于正常人的身体健康不会有大的影响。实际情况是,抗生素不同于重金属等污染,虽然这样低的浓度短期内不会直接损害人类健康,但这样的抗生素环境就像是细菌的角斗场,那些通过环境考验的细菌抗药性会大大增强。面对这样的超级细菌,现有的抗生素逐渐会变得不再有效,就好像老奸巨猾的犯罪分子不再害怕警察一样。  时至今日,细菌耐药性发展的速度逐渐赶上了新抗生素的研发速度。以结核病为例,世界卫生组织估计,2011年全世界有50万耐多药结核病新发病例,而以往的特效药物对于这样的结核病不再起作用。这些病例中,有60%就发生在巴西、中国、印度、俄罗斯联邦和南非(&ldquo 金砖五国&rdquo )。2015年,估计将需要20亿美元用于耐多药结核病的诊断和治疗。  美国:FDA政策收紧,买抗生素要找兽医开处方  美国曾经一度是畜禽养殖业抗生素泛滥的重灾区,据调查,美国抗生素有八成消耗在养殖业上(当然必须指出,这与美国严格限制抗生素在医疗中的使用是有关系的)。在20世纪70年代,已经有官员担心抗生素的滥用会导致耐药性传染病。据统计每年至少有2.3万美国人死于耐药性感染。2013年,美国食品药品管理局(FDA)转变其之前相对宽松的政策,严格限制养殖业中抗生素的应用。FDA与各抗生素生产厂商联手,修改抗生素使用条件,规定食用动物生产商不得再使用抗生素加快动物生长。而如果农场主想要用抗生素为他们的动物治疗疫病,就需要有执照的兽医为其开出处方,凭处方才能购买抗生素。也正是因为FDA的强力政策,美国麦当劳才主动提出要&ldquo 在两年内停用抗生素鸡&rdquo ,当然,中国的麦当劳则不在此列。  虽然缺乏相关的政策与标准,但中国现也仍在对抗抗生素滥用的道路上,这又尤以寻找抗生素替代品为重点。目前,以&ldquo 中草药替代抗生素&rdquo 最为炙手可热。如搜索专利号CN 103168919 A,即可发现这是一种&ldquo 增强免疫和促进生长的饲料添加剂&rdquo ,具有&ldquo 扶正祛邪、益气固表、健脾开胃、消食化积、补血生津&rdquo 等功效,令人叹服。
  • 想用户之所想,节省成本和时间-东西分析HPLC,半制备兼分析
    高效液相色谱仪具有高分辨率、高灵敏度、速度快,色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、天然产物化学、食品分析、医药研究、环境分析、无机分析等各种领域。 东西分析从用户角度出发,研究、生产的高效液相色谱仪(HPLC)通过更换流通池,实现对样品的分析及少量样品的制备的功能,一机两用,为用户节省更大的成本和时间,广泛应用到物质的定性、定量分析及少量样品的制备,如药物和少量天然产物的半制备分析、有机物转化产物(中间体)分离纯化,新兴有机污染物及其代谢转化产物的分离富集和纯化,复杂基质(沉积物、生物样品等)的前处理净化等。LC-5520分析兼半制备高效液相色谱仪微机反控,轻松实现分析条件设置;积木式结构设计,立体式柱温箱;可快速实现分析型与半制备液相的互换;可连接柱后衍生,可兼容UV\ELSD等检测器。高性能可变波长紫外-可见光检测器抑制示差拆光技术,保证低噪声和漂移;多波长10段时间程序编程,全波段停泵扫描,可精确选择波长。高精度立式柱温箱可容纳任意两根分析色谱柱,可安装半制备色谱柱;色谱柱安装更换更人性化,兼顾了半制备色谱柱的安装需求。高压输液泵双柱塞往复式大冲程高压泵,精度高,流量范围宽;程序控制实现双泵的梯度洗脱 具有柱塞杆在线自动清洗功能。色谱工作站中英文界面,更好地满足国内外用户需求;强大的数据处理功能,可实现各种定量算法;记录谱图原始采集数据及相关信息,遵循GLP规范。应用案例紫外检测器测定多环芳烃图1 16种多环芳烃标样谱图(3ug/mL)色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN和H2O(梯度洗脱) 紫外检测器:多波段时间编程紫外检测器测定铁皮石斛中甘露糖图2 铁皮石斛中甘露糖的测定谱图 色谱柱:Inertsil C18 4.6 mm×250mm 流动相:ACN-0.02mol/L:NH4OAc:20:80 检测波长:250nm 紫外检测器测定工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸图 3 工业用精对苯二甲酸中对羧基苯甲醛、对甲基苯甲酸测定谱图色谱柱:Inertsil C18 4.6 mm×250mm 流动相:MeOH-0.02mol/L HOAc 1:9 检测波长:254nm紫外检测器测定双黄连口服液中绿原酸和黄芩苷图4 双黄连口服液中绿原酸和黄芩苷的测定谱图流动相:ACN-0.4%H3PO4 梯度洗脱 色谱柱:Inertsil C18 4.6mm×250mm 检测波长:324nm 紫外检测器测定盐酸头孢噻呋注射液中盐酸头孢噻呋图5 盐酸头孢噻呋注射液中盐酸头孢噻呋的测定谱图色谱柱:Inertsil C18 4.6mm×250mm 流动相:H2O-ACN-TFA(950:50:1200:800:1); 检测波长:254nm 蒸发光散射检测器测定黄芪甲苷图6 250ppm黄芪甲苷标准品测试谱图色谱柱:Inertsil C18 4.6x250mm 流动相:35%ACN流速:1mL/min 进样量:20uL漂移管温度:70℃ 气体流速:900mL/min蒸发光散射检测器测定齐墩果酸、熊果酸图7 50ppm齐墩果酸和100ppm熊果酸标样测试谱图色谱柱:Inertsil C18 4.6×250mm 流动相:MeOH-0.2%HOAc(88:12) 流速:1mL/min 进样量:20μL漂移管温度:60℃ 气体流速:900mL/min蒸发光散射检测器测定银杏叶提取物图8 银杏叶提取物标样测试谱图色谱柱:Inertsil C18 4.6×250mm流动相:MeOH-THF-H2O(25:10:65)漂移管温度:65℃ 气体流速:900ml/min 进样量:20uL 样 品:银杏内酯A 236ppm 银杏内酯B 92ppm银杏内酯C 176ppm 白果内酯 252ppm
  • 抗生素“阻击战”勤邦显身手(一)
    一、背景介绍 抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类物质。现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。抗生素残留是指给动物使用抗生素药物后积蓄或贮存在动物细胞、组织或器官中的药物原形、代谢产物和药物杂质。抗生素残留危害巨大,已经引起了世界各国政府的高度重视。 1929年英国细菌学家弗莱明发现青霉素,并在临床应用中取得惊人的效果,这标志着抗生素时代的到来,由此人类的平均寿命得以延长。可是由于抗生素的使用会导致耐药细菌的出现,短短几十年后,到20世纪末,过分依赖和滥用抗生素就使人类陷于将“无药可救”的噩梦。为此,许多国家都对抗生素使用实施严格限制措施。动物使用抗生素主要是在养殖业中将抗生素作为饲料添加剂,这不仅可以使动物生长速度更快,喂食量降低,动物抗病能力也会非常高,养殖户获利增加。但是,动物广泛使用抗菌素会导致“耐药菌株”的出现,使得原有的抗生素失去作用,导致动物细菌疾病难以控制。而且这些“耐药菌”极可能通过食物或动物与人的接触传播给人,进而使人产生耐药性。 1957年日本最早报道了病原菌耐药性问题,当年一些病原菌有一种抗生素以上的耐药性,到了1964年,40%的流行病株有四重或更多的耐药性。1972年墨西哥的抗氯霉素伤寒杆菌造成了1400多人死亡。据美国《新闻周刊》报道,仅1992年美国就有13300名患者死于抗生素耐药性细菌感染。1999年2月,路透社报道了美国科学家在肉鸡饲料中发现超级细菌,这种肠球菌对目前所有的抗生素具有耐药性。《发现》杂志称抗生素这种神奇的药物已走向穷途末路。 2002年初,欧盟从中国进口的虾、对虾中发现强力抗生素的药物残留,认为对人体健康构成潜在威胁,导致欧洲部分地区陷入食品恐慌。 2010年,据法新社和英国《卫报》8月11日综合报道,英国和印度研究人员发表报告称,一些赴印度接受手术等治疗的患者感染了一种新型超级细菌。这种几乎对所有抗生素具有抗药性的细菌正在从南亚传向英国,可能在全世界蔓延。 2011年,世界卫生组织将“控制抗菌素耐药性”作为2011年世界卫生日的主题,并提出“抵御耐药性:今天不采取行动,明天就无药可用”。二、 抗生素残留产生的原因 1. 抗生素饲料添加剂的使用 抗生素饲料添加剂的长期使用;一些添加抗生素的饲料不在标签上标识,或标识与实际不符而造成养殖企业重复用药;以治疗量当作预防量添加等因素都会造成抗生素的残留。 2. 不遵守休药期、停药期的规定 一些养殖企业不遵守休药期、停药期的规定,从而使药物残留量超过国家标准。如 《乳与乳制品卫生管理办法》第4条规定:应用抗生素期间和停药期内的乳汁不得供食用。 3. 未正确使用抗生素 给动物使用抗生素时,在给药剂量、给药途径、用药时间和用药部位等方面不符合用药规定, 造成抗生素残留在体内并使残留时间延长。如对泌乳牛用药不当或不注意安全时间给药是牛乳中抗生素残留的重要因素,尤其是使用乳房灌注法治疗乳腺炎时,更易造成牛乳中抗生素残留。 4. 作为保鲜剂使用 一些不法交奶户在夏季高温季节为防止牛奶的酸败,往往向牛奶中添加抗生素作为保鲜剂使用,造成牛奶中抗生素的残留。 5. 使用违禁药物或 国家标准规定不许使用的药物 一些养殖企业不遵守国家规定,在饲料或饮水中直接添加违禁药物或淘汰药物,导致畜产品中抗生素残留。 三、抗生素残留的危害 1. 产生毒性作用 人们长期食用含有抗生素残留的动物性食品,抗生素可在体内蓄积,危害人体健康。如四环素类(土霉素、金霉素、四环素)经口服可直接刺激机体引起人体不舒服,出现恶心、呕吐、腹部不适、食欲减退等症状,四环素类还能影响骨和牙齿的生长,抑制婴儿的骨髓生长。 2. 产生细菌耐药性 抗生素对不同病原微生物的抗菌效力并不一致,这主要是由于微生物在药物敏感性方面存在差异。根据这种差异,将不同菌种对同一抗生素的敏感性分为高度敏感、中度敏感、轻度敏感和耐药等4种情况。细菌是通过药物靶酶的改变、代谢途径的改变、通透性屏障和产生灭活酶或修饰酶等机制产生耐药性的。 3. 使菌群失调 正常条件下,人体肠道寄生着对人体有益的微生物菌群,它们与人体相互适应,维持着微生物菌群的平衡,某些菌群还能合成维生素供机体使用。长期食用有抗生素残留的动物性食品,会造成一些非致病菌的死亡,使菌群失调,同时使肠道内产生B族维生素和维生素K 的细菌受到抑制,从而引起维生素缺乏。由于抗生素抑制了有益菌的生长,为一些耐药的致病菌提供了生存空间,甚至造成“二重感染”,危害人体健康 。 4. 发生过敏反应 经常食用含有青霉素、四环素、磺胺类药物以及某些氨基糖昔类抗生素等残留的动物性食品,能引起易感个体出现过敏反应,严重者可引起皮疹、呼吸困难、休克等症状,甚至危及生命。 5. 产生致畸、致癌、致突变作用 某些抗生素具有致畸、致癌、致突变的作用,人通过摄食肉、奶等动物性食品而引起病变,如氯霉素可引起各种可逆性血细胞减少,极少数可引起不可逆的再生障碍性贫血,容易引起早产儿及新生儿的循环障碍,称为“灰婴综合症”。四、世界各国禁止抗生素的制度 面对耐药性这一全球性的难题,世界卫生组织向科学家们发出倡议,寻求对策。1981年,WHO专门成立了慎用抗生素联盟,成员国包括90多个国家,各成员国都承诺采取严厉措施限制抗生素使用。1986年,瑞典全面禁止在畜禽饲料中使用抗生素。1996年由美国FDA、疾病控制和预防中心、农业部协作成立了国家抗生素抗药性检控体系。一旦发现耐药菌产生,便启动相应法律,包括收回药物使用许可证。2010年6月28日,FDA公布一份抗生素限令草案,旨在降低“动物滥用抗生素对人类健康构成的明显风险”。2012年1月4日,美国FDA针对使用广泛的头孢类抗生素发布部门规定:从2012年4月5日开始,禁止给牛、猪、火鸡使用头孢类抗生素。1997年,在柏林召开的世界卫生组织会议倡议在动物饲料中谨慎使用抗生素,以减少病原菌抗药性的扩散。同年三月,国际粮农组织在巴黎召开会议,会议确定通过“风险分析、风险处理、慎用抗生素和抗药性检测”来控制饲料中使用抗生素对公众健康的威胁。1998年12月于哥本哈根召开的抗生素和生长促进剂的工作会议上,与会者的意见表明,在未来的10年里将逐渐淘汰抗生素添加剂。1998年底,欧盟委员会颁布了杆菌肽锌、螺旋霉素、维吉尼亚霉素和泰乐菌素4种抗生素在畜禽饲料中作为生长促进剂使用的禁令,禁令自1999年7月1日起生效。1998年2月,丹麦牛肉与鸡肉行业宣布,自愿停止使用一切抗生素饲料;4月,猪肉行业宣布35公斤以上生猪,自愿停止使用一切抗生素饲料;同年,丹麦政府开始对使用抗生素的猪肉收税(每头猪2美元)。2000年,丹麦政府下令,所有动物,不论大小,一律禁用一切抗生素饲料。2006年1月1日,欧盟就已全面禁止在饲料中使用生长素、抗生素作为饲料生长添加剂。韩国从1991年起对肉类产品进行抗生素残留检测,从2005年起就开始逐渐减少允许使用的抗生素药物数量与种类。2011年的7月1日起,韩国全面禁止动物饲料中添加抗生素。 早在2000年,我国国家质量监督检验检疫局就颁布了8项无公害农产品国家标准,出台了49项绿色食品标准,73项无公害食品行业标准等,其中部分标准对少数几种抗生素的残留做出了规定。1994年农业部还专门发布了《动物性食品中兽药最高残留限量》标准,此后又相继修订,但至今滥用抗生素造成残留超标事件仍时有发生。面对抗生素存在滥用风险的局面,中国农业部出台了一系列公告,农业部第168号公告——《饲料药物添加剂使用规范》 ,规定了部分兽用原料药可在制成预混剂后使用,包括土霉素钙预混剂、金霉素预混剂等抗生素预混剂在内的33种兽药预混剂名列其中;农业部第193号公告规定“氯霉素、及其盐、酯(包括琥珀氯霉素)及制剂,禁做所有用途,所有食品动物禁用”,“硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂,禁做促生长用,所有食品动物禁用”;农业部第560号公告也明确规定万古霉素及其盐、酯及制剂为禁用兽药。
  • 氨基糖苷类抗生素(AGs)方法包发布,攻克行业检测难题!
    我国每年约有30000儿童因药物性致聋陷入无声世界,其中因抗生素使用不当致聋占了约一半。近年研究还发现,我国药源性耳聋患者中50%与遗传因素有关,而且属“母系遗传”,有家族史的患者应禁用氨基糖苷类药物。 氨基糖苷类抗生素药因价格低廉、抗菌谱广等特点,也应用于兽用药杀菌以促进家畜生长。此类抗生素由2个或多个氨基糖基团通过糖苷和氨基环多醇键合而成,极性大,易溶于水,脂溶性差,人体和禽畜的胃肠道不易吸收,通过肌肉注射后大部分以原药经肾排泄,通过粪肥可能迁移至土壤及周围水体中,最终进入食物链,对动物和人体健康及生态系统构成潜在威胁。 氨基糖苷类抗生素药分析检测中的挑战由于此类化合物极性极大,常规色谱保留弱或无保留,无紫外吸收或紫外吸收弱,业内目前也没有特别成熟稳定且灵敏的检测方法。 Idea 1对于极性化合物的检测,一般会首先想到选用亲水作用液相色谱-HILIC,理论上亲水性越强的化合物,在Hilic柱上被保留的时间越长。市面上有两款Hilic柱在极性化合物的保留能力方面颇受广大科研工作者的青睐,但在进行氨基糖苷类抗生素化合物分析检测时,因基质残留大、稳定性差、重现性不好、灵敏度不高等原因而未受认可。 Idea 2另外一个思路是在流动相中添加七氟丁酸(HFBA)、三氟乙酸(TFA)等离子对试剂来增强极性化合物的保留,GBT21323-2007《动物组织中氨基糖苷类药物残留量的测定高效液相色谱-质谱/质谱法》中,使用100mM HFBA作为流动相,结合常规的C18柱,对这类化合物保留良好。但是,TFA、HFBA等离子对试剂,负离子响应极强,进到质谱中极易残留且不容易洗掉,极大地影响其他负离子化合物的检测灵敏度,质谱分析中是不建议使用离子对试剂的。另外,国标方法中,进样量大(30μL),基质效应明显,其检测的10种氨基糖类抗生素LOQ分别为50ppb、300ppb,灵敏度不高。 ??检测氨基糖苷,赛默飞有妙招!??赛默飞氨基糖苷类抗生素(AGs)检测方法包赛默飞采用Thermo Scientific™ Vanquish™ Binary Horizon液相系统与Thermo Scientific™ TSQ Fortis™ 三重四极杆质谱仪联用平台,通过在流动相中添加TFA和HFBA等离子对试剂,搭配Thermo Scientific™ Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱(可耐pH范围0.5~10),来增强这些极性化合物的保留,再结合赛默飞离子色谱专利的电解再生膜抑制器技术,去掉TFA和HFBA离子,避免污染质谱。Vanquish™ Binary Horizon液相系统与TSQ Fortis™ 三重四极杆质谱仪联用平台 基于这样的理念和赛默飞独有的技术平台,成功建立了快速检测动物源食品中14种氨基糖苷类抗生素残留的方法(潮霉素、阿米卡星、安普霉素、巴龙霉素、卡那霉素、链霉素、奈替米星、庆大霉素、大观霉素、双氢链霉素、妥布霉素、新霉素、西索米星、依替米星)。Acclaim™ AmG C18 氨基糖苷类抗生素检测的专用柱 样品前处理方式与国标GBT21323-2007一致,21min内获得良好的分离(国标35 min),灵敏度满足国标要求,LOQ均≤20ppb(进样量5μL)且连续6针的RSD均<14%,连续进50针猪肉基质样品后,保留时间精密度和峰面积重复性良好,RTs偏差≤±0.03min,各化合物50ppb的峰面积重复性均<11%,本方案快速灵敏、可靠稳定。 电解再生膜抑制器 部分实验数据展示14种氨基糖苷类抗生素在21min内实现良好保留和分离。点击查看大图点击查看大图 抑制器原理小贴士在下图抑制器原理图中,两边是选择性透过膜,中间为流动相通道,通过电解水作用,在阴极产生OH?置换出流动相中的TFA?和HFBA?,直接从阳极排到废液。点击查看大图 参考文献徐媛,陈达,钟新林,徐牛生,LC-MSMS结合离子色谱电解再生膜抑制器技术快速检测动物源食品中14种氨基糖苷类抗生素残留 点击下载完整版【赛默飞氨基糖苷类抗生素方案】!
  • 中国首个指纹图谱质控的中药注射剂产生
    目前中药注射剂乃至整个中药产业都面临严重的“信任危机”。如何在国家不断加大药品监督力度的情况下保证中药注射剂的安全性,就成为了解决此次信任危机的重中之重。  由于中药成分相对复杂,需要对每味中药和每种成分逐一鉴定,才能够严保质量关。但就现有的技术而言,只有指纹图谱技术能够在检测中尽可能多地反映产品全貌,因此,指纹图谱技术就成为了监督中药产品质量的关键。  具有先进分析技术的指纹图谱特别是数字化色谱指纹图谱的出现为中药产品质量的控制开辟了新途径。为促使此项技术能早日正式投入使用,企业的质检中心从2004年起就用指纹图谱全程控制注射用双黄连(冻干)的质量。无论是对注射用双黄连(冻干)的原料金银花、黄芩、连翘及提取物 还是对注射用双黄连(冻干)配剂药液及该制剂成品都进行了严格的监控。技术应用至今,注射用双黄连(冻干)成品的指纹图谱均达到国家标准。  2009年7月1日,注射用双黄连(冻干)将进入2005年中华人民共和国药典增补本,这不仅是我国唯一一个,同时也是首个采用指纹图谱控制产品质量的中药注射剂。中华人民共和国药典是药品的最高法典,代表着国家对药品的最高标准,只有安全性好、用药广泛、质量标准高的药物才能进入此药典。此举无疑是继注射用双黄连(冻干)第一个进入2000版药典的中药粉剂后,中药企业的又一次重大突破。届时中药企业会正式将指纹图谱技术应用于生产过程的各个环节,从而严格有效地控制注射用双黄连(冻干)的质量,以此保证产品质量的均一和稳定,并保证产品的有效性和安全性。  指纹图谱标准的应用,不仅能确保对中药产品的质量控制,更能提高中药产品的市场竞争力,同时对中药注射剂质量与安全再评价的顺利通过,以及整个中药行业产品质量标准的提高都将奠定良好的技术基础。
  • 检测以及第三方检测促进赤峰市中药产业升级
    在传统的中药行业中,大多数企业仅停留在出售原材料的初级阶段,这使得它们易受市场波动的影响,导致利润并不可观。同时,药材市场普遍偏好某些特定地区的原料,使得其他地区的生产者想要稳固自己在中药市场中的地位变得颇具挑战。2023年,笔者有幸对内蒙古赤峰市的中草药产业进行了实地考察。调研结果显示,赤峰的中草药行业已经发展成为一个包括种植、制药和销售在内的一体化产业体系,不仅稳定且健康发展,更成为了当地经济的重要支柱之一。值得一提的是,中药检测以及第三方检测在整个产业链中扮演了至关重要的角色。笔者考察中一、赤峰中药产业的蓬勃发展赤峰市拥有悠久的中药材种植历史,超过300年。得益于昼夜温差大、阳光充足以及较低的降水量,该地区非常适宜培育多种名贵中药材,因此所产药材不仅外观上乘,而且有效成分含量高。赤峰人工种植的中药材资源十分丰富,包括桔梗、北沙参、怀牛膝、党参、黄芪、黄芩、板蓝根、紫草、甘草、荆芥等众多品种,其种植面积和使用量均较大。北沙参桔梗截至2023年底,全市中药材的种植面积达到40.7万亩,产量为37万吨,总产值逾50亿元。其中,大宗药材品种如桔梗、北沙参、防风、黄芪、黄芩和板蓝根的种植规模均相当庞大。特别是桔梗,以其色泽洁白、条形修长、根部分叉少、口感佳而著称。除了少量用于药用,新鲜桔梗全部出口至韩国和日本。赤峰市喀喇沁旗牛家营子镇更是被誉为“中国北沙参、桔梗之乡”。目前,全市拥有超过5000亩的中药材种植基地13处,其中万亩以上的大型基地3处。赤峰中药基地采收中药场景赤峰已构建起一个涵盖化学药品、生物制药、医疗器械以及中蒙药和医药物流配送的完整产业体系。形成了从“原料药—中间体—制剂”到“道地药材—初加工饮片—配方颗粒—制剂”的成熟产业链条。在中成药生产方面,全市有两家规模较大的企业。除此之外,还有21家规模以上的中蒙药材加工企业,生产包括中药饮片、中药材、中成药和蒙药在内的120多种产品,销售网络遍布全国30个省市自治区。二、中药检测以及第三方检测对产业发展的推动作用随着绿色消费观念在中国深入人心,消费者对重金属和农药残留等问题的认识日益重视。国家也制定了严格的《药用植物及制剂进出口绿色行业标准》(WM2-2001),并对绿色中药标识实行严格管理。中药产品必须通过严格的检测并提供报告,才能进入制药厂。然而,许多中药种植基地缺乏进行成分检测的能力,这限制了中药产业的发展。随着中药(蒙药)在世界各地越来越受欢迎,对中药(蒙药)国际标准化的需求和呼声也越来越高。针对这一情况,赤峰市的大型中药企业投入巨资建立检测实验室,配备了色谱、质谱等先进仪器,不断提升中药品质。大型饮片企业也建立了自己的检测实验室,成为推动中药产业持续发展的关键力量。此外,第三方检测服务体系提供全面的检测服务,助力整个产业的进步。赤峰市产品质量检验检测中心不断加强药品检验能力的建设,技术水平持续提升,药品综合检验能力不断增强,为提高赤峰市药品质量安全水平提供了有力的技术支持。“精准蒙中药材定制与全程溯源技术研究”项目取得了阶段性成果。该项目由内蒙古天奇中蒙制药股份有限公司牵头,联合北京中医药大学、北京机械工业自动化研究所共同实施。主要目的是解决药材种源混乱和田间生产管理无序的问题,开展精准良种选育繁育、分子防伪关键技术、质量评价体系和快速检测技术等方面的研究,进一步推动中药产业的繁荣发展。天奇药业作者简介:张绍芬,大学毕业,高级畜牧师,曾任北京市延庆区工商联常务副主席。
  • 应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定
    应用指南 | CMS-TLC 用于天然产物肉豆蔻提取物的分析鉴定 天然产物及其潜在的活性成分及其在传统医学中的应用在药学研究领域日益引起人们的兴趣。天然产物的活性成分是理想的化学起始结构,可以在药物开发过程中进行改进,因此,目前批准的药物中有很多是基于天然产物开发的。本文介绍了利用 Advion expression CMS 和 Advion Plate Express TLC 薄层色谱质谱接口对肉豆蔻醇提物进行分析的工作流程。实验仪器质谱:expression CMS 小型台式质谱仪TLC:薄层色谱质谱接口实验方法TLC 方法 采用TLC硅胶60 F254 分离化合物,展开剂为80/20 石油醚 (bp.60-80) /二恶烷。 提取:有机肉豆蔻香料坚果磨成粗粉,取 500mg 加入 10mL 甲醇中,超声处理15min。将浆液过滤后,20000g 离心 5min,上清液储存在棕色玻璃小瓶中,5°C 保存,待进一步分析使用。 衍生:新鲜配制固蓝RR盐,浓度为 200 mg/100 mL甲醇,使用前与 0.1N 氢氧化钠溶液 2:1 混合,在室温下干燥20分钟。TLC/FIA/CMS 分析 TLC 分析:采用Advion TLC薄层色谱质谱接口进行直接提取分析,流动相为甲醇+0.1%甲酸,流速为200 μL/min。 HPLC 分析:样品通过高效液相色谱分析系统进行分析,流速为 350 μL/min,时间 5 min,流动相为乙腈+0.1% 甲酸,梯度从 50% 到 90%。 MS分析: Advion expression CMS 采用极性切换和源内 CID 扫描,质量范围为 m/z 100 到 m/z 1000。结果分析 肉豆蔻具有精神活性,它是少数能干扰大麻素的化合物之一。与另一种天然产物大麻相比,肉豆蔻提取物在紫外下对大麻素标准品(如大麻酚 (CBN)、大麻二酚 (CBD) 和四氢大麻酚 (THC))的 Rf 区域仅显示出轻微的响应。用 TLC/FIA/MS 分析 TLC 板上的该区域显示没有 THC 的质量信号,并且当通过 UHPLC/CMS 分析时,也没有迹象表明肉豆蔻提取物中存在大麻素。此外,在 Rf 值为 0.4 时,没有形成经典的固蓝 RR 颜色反应;而肉豆蔻提取物在 Rf=0.2 时呈现紫色。在紫外照射下,相应的分析物有强烈的信号,可能不是大麻素,而是肉豆蔻的主要成分之一,如黄芩苷或肉豆蔻酸。图2 肉豆蔻提取物的 TLC 和 TLC/FIA/MS 分析结果图。与 Rf = 0.40 的三种大麻素标准品(CBN、CBD 和 THC)相比,紫外下 THC 区域有轻微的阳性反应;但是,(B) 图显示在用固蓝 RR (A) 衍生时,没发生标志性颜色反应。推导表明,Rf=0.21 的未知化合物对颜色反应有干扰。同时进行了相应位置的 MS 分析(2B 中的红色椭圆形)显示,负离子模式 MS 扫描 (C) 中 m/z 402.2 处的信号和丰富的源内 CID MS 信息 (D)。 进一步的 TLC/FIA/MS 分析表明,该分析物在负离子模式下质荷比为 m/z 402.2,排除了该化合物为三肉豆蔻精的可能性。然而,CID表明甘油三酯至少含有部分月桂酸。在 UHPLC/CMS 分析( 图3 )中也确认了相同的分析物,UHPLC 保留时间为 9.02 min, MS 数据包括正、负离子模式数据以及源 CID 数据。关于该分析物确切的化学结构的进一步研究还在进行中,但表明使用 expression CMS 从天然产物分析中获得的信息更丰富。图3 (A) 肉豆蔻提取物的 UV 谱图,(B) 负离子模式下的 MS TIC 谱图,(C) 正离子模式下的 TIC 谱图,(D) t=0.92 分钟的负离子模式质谱图,和 (E) 各自的正离子模式质谱图。结论 TLC/FIA/MS 工作流程为从植物材料中提取的天然产物和药用化合物的分析增加了有价值的信息和特定的数据。 Advion Plate Express 是一种创新的样品提取设备,用于从 TLC 薄层板上直接提取化合物,提供天然产物的快速分析。 Advion expression CMS 小型台式质谱仪,具有更快的扫描速度,在线极性切换和源内 CID ,可快速提供化合物基本信息。
  • 科技传统结合,高通量筛选等新技术如何打开中药创新研究突破口?
    中药是中华民族的瑰宝,几千年来,在防病治病中发挥了重要的作用,也是我国医药产业的三大支柱之一,在经济发展中发挥了重要作用。自从我国加入WTO以后,长期依赖于仿制的化学药物的发展受到了很大的冲击,而具有我国自主知识产权的中药迎来了新的发展机遇,特别是近年来西方国家对传统药物和植物药的普遍重视和注册政策的调整,给中药进入国际市场提供了一个良好的契机。 壹 从中药到新药新药的发现从样品的收集开始,可从民族、民间药物、临床名方、老药和国外天然药物中选择筛选样品,收集样品,进行基原鉴定。通过系统的构效关系分 析,进一步设计并优化活性化合物,再通过活性筛选,直至发现具有临床应用价值的化合物,从而进入新药研发阶段,*成为化学药的一类新药。 中药尽管有两千多年的临床使用历史,但临床上基本都是以复方配伍使用,各种中药的疗效包括复方的疗效如何,没有确切的数据。中药的开发仍需进行大量的筛选,而我国目前中药新药的研发极少经过发现过程,这也是我国缺少疗效独特的中药创新药物的重要原因。贰 科技与传统的结合如果有一种技术可以极大程度的缩减新药研究某个阶段的耗时,那么是否对于我国独特中药创新药物的研发颇有裨益。答案是肯定的。以高通量筛选技术为例,使用GeneVac系统,可以助力缩减新药研究阶段所用时间,无需人工值守,只需要选择相应的溶剂类型,一键开启。 GeneVac 4.0 EZ-2 GeneVac S3 HT中药创新药物发现的新方法、新技术包括“基于细胞、靶酶、亲和色谱、分子烙印技术、生物芯片等的高通量筛选技术”、“多维液相色谱-高通量筛选-LC-MS/NMR联用技术”、“LC-MS-DS/HPLC/HTS联合技术”等。叁 中药创新药物发现的新领域、新途径乔木类植物尚含有一些结构类型较新颖、生理活性较强的成分,发现活性成分的机率较高,如紫杉醇、三尖杉酯碱、喜树碱、番荔枝内酯等。海洋生物中所含化学成分结构新颖、复杂,常具有很强的生物活性,具有很好的新药开发前景。低等生物和植物共生菌具有很强的生物活性,特别是一些真菌类,很小的剂量就能够产生很强的生理作用。同时,低等生物还具有易于通过发酵生产的 优势。鲜活动物的内源性物质,其活性成分具有生理活性强、疗效确切、副作用小等特点,如蛇毒、蚯蚓纤溶酶、水蛭素、斑蝥素、蜂毒等都是活性很强的天然产物。中药复方的化学成分有别于单味中药,通过成分之间的增溶作用,使一些在单味中药研究中没有发现的成分在复方研究中被发现,如我们在补阳还五汤的化学成分研究中发现4个新的生物碱,为创新药物的发现提供新的结构化合物。中药成分的体内代谢产物,由于中药和天然药物具有比化学药更好的生物顺应性,在体内更易发生代谢,其代谢产物往往是其真正的活性成分,如黄芩苷、番泻苷等。肆 Genevac离心浓缩仪GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载独有的Dri-Pure技术,轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。 一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,该系列还具备更多高端功能,详细可填写表单进行咨询。
  • 201万!天水市秦州区疾病预防控制中心采购酶标仪、全自动碘元素分析仪等仪器
    天水市秦州区疾病预防控制中心招标项目的潜在投标人应在自2021年11月17日00:00:00至2021年11月23日23:59:59分止均可免费获取,登录天水市公共资源交易中心网站免费下载。获取招标文件,并于2021-12-08 09:30(北京时间)前递交投标文件。一、项目基本情况项目编号:TGZC2021-541项目名称:天水市秦州区疾病预防控制中心实验室仪器设备采购项目预算金额:201.46(万元)最高限价:201.46(万元)采购需求:全自动微生物鉴定及药敏测定系统、酶标仪、洗板机、暗视野显微镜、全自动碘元素分析仪、甲醛测定仪等设备一批(其中进口产品已论证,具体采购内容详见招标文件)。合同履行期限:按合同约定执行本项目(是/否)接受联合体投标:否二、申请人的资格要求1.1.符合《中华人民共和国政府采购法》第二十二条规定; 2.具有合法有效的营业执照、开户许可证或基本存款账户信息。3.供应商须具有医疗器械生产许可证或医疗器械经营许可证。4.本项目实行资格后审,不接受联合体投标。 5.供应商须为未被列入“信用中国”网站记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为记录名单;不处于中国政府采购网政府采购严重违法失信行为信息记录中的禁止参加政府采购活动期间;未被列入“信用中国(甘肃)或(投标人所属省份)”网站、“信用中国(甘肃天水)”网站记录失信被执行人或财政性资金管理使用领域相关失信责任主体、统计领域严重失信企业及其有关人员等的方可参加本项目的投标。(以投标截止日当天在“信用中国”网站、中国政府采购网及“信用中国(甘肃)或(投标人所属省份)”网站、“信用中国(甘肃天水)”网站查询结果为准,如相关失信记录失效,投标人需提供相关证明资料)。6.供应商提供中国裁判文书网上查询的无行贿犯罪档案查询结果网页截图。2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:无三、获取招标文件时间:2021-11-17至2021-11-23,每天上午00:00至12:00,下午12:00至23:59地点:自2021年11月17日00:00:00至2021年11月23日23:59:59分止均可免费获取,登录天水市公共资源交易中心网站免费下载。方式:登录天水市公共资源交易中心网站免费下载。投标人可访问“天水市公共资源交易中心”网站(http://ggzyjy.tianshui.gov.cn)点击对应的招标项目公告,免费获取招标文件,也可通过登录天水公共资源交易电子服务系统,在“投标管理”栏目“招标文件获取”子栏目下在线免费获取。 注:凡是拟参与天水市公共资源交易活动的采购人、招标代理机构、投标单位需先在天水市公共资源交易网上免费注册或获取数字证书方可办理业务。投标人免费注册或办理数字证书后,登录电子服务系统在“投标管理”栏目下“招标文件获取”子栏目下获取投标保证金缴款子账号,缴款账号应以收到短信或天水市公共资源交易电子服务系统获取情况中显示的为准。售价:0.0(元)四、提交投标文件截止时间、开标时间和地点时间:2021-12-08 09:30地点:天水市公共资源交易中心(秦州区建设路185号二楼第三开标厅)。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜供应商在投标文件递交截止时间前应主动登录甘肃政府采购网,以便及时了解相关招标信息和补充信息。如因未主动登录网站而未获取相关信息,对其产生的不利因素由供应商自行承担。现因天水市公共资源交易系统优化升级,系统升级为:(http://114.55.226.66:8083),受疫情影响,天水市秦州区疾病预防控制中心实验室仪器设备采购项目,通过“公共资源交易网上不见面开评标系统”(http://114.55.228.94:8094/UserLogin.aspx)进行,请投标人在开标前登录系统,根据登录页面的操作手册,安装好投标文件离线加密工具(对投标文件进行加密,需将加密好的投标文件在不见面开评标系统中提前上传,并录入(法人或授权人)信息,以上工作必须在开标前完成。开标前半小时以内投标人须登录不见面开评标系统进行签到。若在开标截止时间前没有签到则视为放弃投标。网上开标时间:同递交投标文件截止时间一致。开标系统网址:(http://114.55.228.94:8094/UserLogin.aspx)。 开标时,投标人采用网上远程异地解密时,请用CA证书或用户名登录天水市公共资源交易中心不见面开评标系统,进入本项目开标大厅点击解密来完成投标文件的解密工作。每位投标人的解密时间从开标时间起60分钟内完成,超过规定时间解密的投标文件不予接受。①天水市公共资源交易网:http://ggzyjy.tianshui.gov.cn/f②信用中国”网站:https://www.creditchina.gov.cn③中国政府采购网网址:http://www.ccgp.gov.cn/七、对本次招标提出询问,请按以下方式联系1.采购人信息名 称:天水市秦州区疾病预防控制中心地 址:天水市秦州区北园子17号联系方式:0938-68182262.采购代理机构信息名 称:甘肃路辰项目管理有限公司地 址:甘肃省天水市秦州区羲皇大道天水技校旁联系方式:182199876643.项目联系方式项目联系人:赵宇博电 话:0938-6818226
  • 清华大学分析中心孙素琴教授
    简介  孙素琴,1978年本科毕业于清华大学工物系放射化工专业,于当年留校工作至今,现为清华大学分析中心教授,主要研究领域为二维相关光谱法、分子光谱法与中药及食品分析。先后发表学术论文200余篇,其中SCI论文100余篇,获发明专利3项,出版了《中药二维红外光谱鉴定图集》、《中药红外光谱分析与鉴定》两部中文专著和《Infrared Spectroscopy for Complex Mixtures—Applications in Food and Traditional Chinese Medicine》一部英文专著 曾获得国家教委二等奖,清华大学基础理论奖、分析测试协会(CAIA)一等奖(1项)、二等奖(2项)、三等奖(2项) 多次参加国际学术交流活动。   作为国内较早从事中药及食品光谱分析工作的科研工作者,孙素琴教授选择这项工作的由衷是什么?多年的工作中,又有哪项工作是她认为最值得纪念的?对于广大女性分析测试同行,孙素琴教授又有怎样的寄语?在2013年度“三.八”国际妇女节来临之际,仪器信息网采访了孙素琴教授。  Instrument:孙老师,您好!就我们所知,您在分析化学领域已经工作了二十多年,请问您当初选择分析测试这份职业的原因是什么?  孙素琴教授:从事这项工作是基于一个大的背景:在国家教委大力支持下,部分高校于1983年集中引进了一批大型仪器设备,用于装备化学实验室,清华大学也是其中一个。为了推动这批新型仪器及时高效地发挥作用,清华大学将这一批价值1000多万元的仪器设备集中共管,便于更好地服务于校内外的教学科研。在此环境下,1986年我有幸与红外光谱分析结缘。从那时开始,二十多年间,我们还与国外的大型仪器公司开展了合作,直接与国际接轨,及时了解国外仪器发展的新动向,不断利用这些公司提供的最先进仪器开展各项分析测试研究工作,完善我们的分析测试手段。与其说我长期以来从事的这个分析测试领域是当时的选择,不如说是机遇和需要。  Instrument:二十多年的工作中,您始终热衷于您的事业,请问您如何看待您的工作的?  孙素琴教授:不断开发仪器的新功能,使红外光谱技术更好地为教学和科研服务,是每个分析测试工作者的重要职责。运用红外光谱技术长期进行多学科研究的过程中,我逐渐地熟悉它,掌握它,并喜欢上它,以至于决心最大程度地发挥和开发它的功能:从仪器部件的组成,到控制仪器的计算机硬件与软件功能再到各种采样分析手段等。为了将运用红外光谱技术对食品和中草药这样复杂混合物体系的质量监控研究这项工作做好,我有时几乎不分白天和夜晚,很多节假日也都在加班,只为了做好样品分析测试研究。经过多年坚持不懈的努力工作,最终创建了“红外光谱宏观指纹鉴定法”,为复杂混合物的红外光谱分析奠定了基础,使红外光谱技术用于中药等样品分析成为可能。对于我的工作,因为有热爱、有感情,所以我依然愿意继续从事我的工作。  Instrument:同样的,在您的工作历程中,您遇到的最大的困难和挑战是什么?  孙素琴教授:我所研究的红外光谱技术主要分析对象是食品和中药,众所周知,经典的红外光谱分析技术主要是用来分析和鉴定单一组分化合物的,而中药却是一个复杂多变、组方灵活的混合物体系。借用红外光谱技术进行中药质量控制的技术曾被认为几乎是不可能的,开展这方面的研究工作,如同走进了“禁区”。  从98年开始,我和我的团队经过近15年的努力,在对大约10万张红外光谱数据的分析中,总结了大量样本间的相关性及其中的变化规律,最终建立了一套正确合适的方法体系。经过多年的努力,在利用红外光谱技术进行中药质量监控研究方面,我们取得了不少成果,使曾经的不可能变成可能。我们的研究成果也已被多家大型制药和食品企业采用,并取得了很好的效果。  如今,我们可以利用红外光谱技术来进行食品、保健品和中药的质量控制,譬如快速地识别中药材的真伪(如真假冬虫夏草的识别)、跟踪中药的炮制过程(如生、熟地黄的判定)以及进行产品质量(过量辅料的添加等)的评价等。  总的来说,面对困难与挑战,我们需要坚持和努力,最终会有收获!  Instrument:值此“三.八国际妇女节”来临之际,请您对即将进入分析测试行业的女性送上您的寄语。  孙素琴教授:我从事光谱分析测试研究工作已有30个年头了,与许多同行一样,尽管工作中遇到过不少困难和挑战,但也从中得到很多快乐。回过头来想想这些年的坚持与努力,我深深地体会到任何工作要想做得好,做得长久,需要有足够的耐心,既要认真,又要勤奋,仅仅有兴趣还不够,还要耐得住寂寞。  现在国家非常重视对科研和检测机构的投入,仪器设备的大量购置为分析测试者提供了极好的硬件基础,希望有志选择分析测试行业的朋友们,要勇于承担,敢于挑战,借助于分析仪器设备,大胆地去探索,不断开创科学研究和分析测试的新天地。  人物专访:  快速无损的中药识别“利器”--访清华大学孙素琴教授
  • 解决方案丨鸡肝中环丙氨嗪残留量的测定
    环丙氨嗪又名灭蛆灵、灭蝇胺,是一种新型的昆虫生长调节剂,对双翅目昆虫幼虫体有杀灭作用,尤其对在粪便中繁殖的几种常见的苍蝇幼虫(蛆)有很好的抑制和杀灭作用。它和一般灭蝇药的不同点是它杀幼虫-蛆,而一般灭蝇药只杀成蝇且毒性较大。该药具有触杀和胃毒作用,并有强内吸传导性,持效期较长,但作用速度较慢。短期内大量接触灭蝇胺对眼睛、皮肤有刺激作用,甚至引起急性中毒,产生恶心、呕吐、眩晕等健康危害,长期摄入对人体健康有不良影响。对于动物性食品中环丙氨嗪残留量的检测现可依据国家标准GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》,本方法参考上述标准,将试料中的环丙氨嗪,用三氯乙酸/乙腈溶液提取,混合阳离子交换固相萃取柱净化,高效液相色谱测定,外标法定量。图-1 环丙氨嗪的结构式仪器和耗材1仪器Fotector Plus高通量全自动固相萃取仪AH 50全自动均质器MPE系列高通量真空平行浓缩仪Auto EVA 80 全自动氮吹浓缩仪Agilent 1260高效液相色谱2 耗材MCX固相萃取柱(60 mg/3mL,P/N:RC-204-72855)3 试剂乙腈(色谱纯)甲醇(色谱纯)正己烷(色谱纯)乙酸乙酯(色谱纯)25 mmol/L乙酸铵溶液:取乙酸铵0.19 g,用水950 mL溶解,用乙酸调pH至5.0,用水稀释至1000 mL。1%三氯乙酸溶液:取三氯乙酸1 g,用水溶解并稀释至100 mL。提取液:取1%三氯乙酸溶液15 mL,用乙腈稀释至100 mL。0.1 mol/L 盐酸溶液:取盐酸9 mL,用稀释至1000 mL。5%氨水甲醇溶液:取氨水5 mL,用甲醇稀释至100 mL。流动相:取25 mmol/L 乙酸铵溶液40.0 mL,用乙腈定容至1000 mL。样品制备称取试样5 g(准确到±0.01 g),于50 mL离心管中,使用AH 50全自动均质器自动加入提取液15 mL,并均质30 s。5000 r/ min离心5 min,取上清液于分液漏斗中,再于残渣中加提取液10 mL,重复提取一次,合并两次上清液,加正己烷30 mL,振摇2 min,静置使分层。收集下层液体于MPE浓缩杯中,于MPE真空平行浓缩仪50 ℃水浴中浓缩至1 mL,转至10 mL刻度离心管中,用提取液润洗浓缩杯2次,每次2 mL。合并两次提取液,以10000 r/min离心5 min,取上清液,备用。1 净化取MCX固相萃取柱安装在Fotector Plus高通量全自动固相萃取仪上,依次用甲醇5 mL、水3 mL活化,备用液过柱(控制流速约1.0 mL/ min)。依次用甲醇3 mL、0.1 mol/L盐酸溶液3 mL、水3 mL和甲醇3 mL洗柱,弃去洗出液。用5%氨水甲醇5 mL洗脱,收集洗脱液。洗脱液于EVA 80全自动氮吹浓缩仪上50℃氮吹吹干,用流动相1 mL溶解残余物,涡旋混匀,过滤,待上机分析。具体的固相萃取方法见图-2。2 固相萃取净化条件图-2 Fotector Plus固相萃取方法液相检测条件1 液相条件2 色谱图 图-3 环丙氨嗪标准溶液色谱图(200 µ g/L)图-4 鸡肝基质加标环丙氨嗪色谱图(25 µ g/kg)结果与讨论为了验证该方法的回收率,本实验向鸡肝样品中加入环丙氨嗪标准品进行低、中、高三种浓度梯度的基质加标回收验证(n=6),数据如表-1所示。加标回收率在74.5%~77.9%之间,RSD值控制在5%以内。说明该方法能够运用于动物性食品中环丙氨嗪残留量的检测。样品加标回收率及RSD值(n=6)总结本解决方案操作方便、提取和浓缩效率高、重现性好,符合GB 31658.12-2021《动物性食品中环丙氨嗪残留量的测定 高效液相色谱法》要求。均质过程采用AH 50全自动均质器,仪器自动加液,通过水洗、溶剂洗、超声洗三种刀头清洗方式,全方位杜绝样品间交叉污染。MPE真空平行浓缩仪实现批量、快速、高效的浓缩过程,采用水浴加热和平稳的圆周震荡模式,一批次完成16位大体积浓缩,同时保证样品的平行性和可靠性。浓缩完成后配合Fotector Plus高通量全自动固相萃取仪进行净化,从活化到上样、洗脱等一步到位,全自动过程排除人员操作带来的误差,且六通道同时进行萃取,能够实现高通量处理,最多一天能够处理180个样品;将净化后的样品直接置于EVA 80高通量全自动氮吹浓缩仪中,不仅避免转移的损失,又省时省力,真正为批量检测提供帮助。
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法鸡新城疫活疫苗-2023.10.2359禽用灭活疫苗中非法添加禽腺病毒Ⅰ群全病毒抗原检测方法禽用灭活疫苗-2023.10.2360禽用灭活疫苗中非法添加禽流感病毒抗原检测方法禽用灭活疫苗禽流感病毒抗原2017.6.12农业部公告第2538号61清瘟败毒片中非法添加三磷酸核苷竞争性抑制剂(GS-441524)检查方法清瘟败毒片三磷酸核苷竞争性抑制剂(GS-441524)2024.6.19农业农村部公告第801号参考自农业农村部官方网站:http://www.xmsyj.moa.gov.cn/zcjd/202403/t20240321_6452006.htmhttp://www.xmsyj.moa.gov.cn/gzdt/202406/t20240619_6457458.htm
  • 勤卓科技发布勤卓小型烤箱真空鼓风高温烘干箱QZ-225E新品
    一、用途可供各工矿企业、科研单位、大专院校实验室,干燥、烘焙、熔蜡、灭菌之用。本恒温烤箱zui高温度300℃。它适用与烘焙,热处理或其他加热用,也是实验室常备仪器。恒温烤箱之工作温度可由室温起至zui高温度止,在此范围内可任意选定工作温度,选定后可借箱内自动控制系统使温度恒温。本恒温箱装有电动鼓风机,促使室内热空气机械对流,使室内温度更为均匀.本恒温烤箱结构精密,控温灵敏准确,操作简单,工矿及大专院校科研单位等均可采用。本恒温烤箱是新一代产品,数显控温灵活、准确,清晰直观。 高温鼓风干燥箱精密烘箱工业烘烤机直销【规格参数】 更高温度到达时间:20min 温度偏差:±1℃ 温度显示方法测量和设定温度:LED数字显示 温度传感器工业铂电阻:(PT100) 定 时 器: 1~999分钟 外箱材质:防锈处理冷轧钢板静电喷塑 内箱材料: 镀锌板 隔热材料: 超细玻璃纤维 大门密封: 环保型硅橡胶条 加 热 器 :镍铬电加热器 数显控温仪;HK-70A 2.0KW内腔:450*450*350mm外箱:680*770*510mmHK-136A 2.4KW内腔:550*550*450mm外箱:820*900*670mm HK-225A 3.5KW内腔:750*600*500外箱:1020*950*720 HK-640A 6.0KW内腔:1000*800*800mm外箱:1330*1150*1020 380mmHK-960A 9.0KW内腔:1200*1000*800mm外箱:1500*1330*1090mm 箱体材质1、箱体采用整体式,内部材质采用SU304高级不锈钢板,外壳采用冷轧钢板防静电喷塑,隔热层采用高级超细玻璃保温棉,厚度100mm,整箱牢固结实美观大方2、设有单开门,门中设有钢化玻璃观察窗,门密封采用耐温、防水、防油有机硅胶密封条。五、送风循环系统风道位于试验箱后部加层,其内分布加热、风叶、PT100温度传感器等装置。当风机高速旋转时,将工作室中空气从下部吸入风道内,与加热器产生的热量在风道中充分混合,从工作室上方百叶窗中均匀吹出,在工作室中与试品进行热交换,交换后的空气再被吸入风道内进行混合,反复循环。从而达到目标温度要求,同时保证试验箱内,获得较高的温度均匀指标。展望未来,面对瞬息万变的市场,勤卓环境有限公司将以全新的面貌、创建更高品质的品牌意识,为客户提供专业技术支援,服务企业、服务社会。创新点:优质钢板,造型美观,新颖勤卓小型烤箱真空鼓风高温烘干箱QZ-225E
  • 检测数据:江苏26县市畜禽养殖减排交“白卷”
    在江苏省环保厅与省农委近日共同举办的江苏省农业面源污染减排会上,一组首次公布的数据,让不少与会者“如坐针毡”:经国家核定,上半年江苏省禽畜养殖COD和氨氮排放量分别为16.76万吨和1.19万吨,较上年同期削减了1.73%和3.13%,其中COD未达到削减2.5%的年度时序 而从各地情况看,今年上半年,全省有26个县(市)的畜禽养殖COD减排量为0。  “虽然这其中有对农业源减排不够了解、台账建立不够规范的因素,但这些数据各地要引起高度重视。尤其是‘吃鸭蛋’的县(市)必须把问题好好梳理清楚,到底思想上有没有重视,措施有没有到位?千万不要影响了省委、省政府完成国家减排任务的大局。”在相关人员将各地情况一一通报结束后,江苏省环保厅副厅长秦亚东特别强调说。  江苏省农业源减排面临的形势如何?据江苏省环保厅总量处处长刘晓磊介绍,一是基数大。2010年污染源普查动态更新调查结果显示,江苏省农业源COD和氨氮排放量为41.2万吨和4.1万吨,约占全社会排放总量的1/3和1/4,农业源已经成为江苏省除生活源外的第二大污染来源。二是任务重。根据国家下达的任务,到2015年,江苏省农业源COD和氨氮排放量分别比2010年减少11.9%和12.9%,净削减COD4.9万吨和氨氮0.53万吨,不管是减排比例,还是净削减量都位居全国前列。  而从减排现状看,不容乐观。“我们感到压力很大。”江苏省农委副主任李俊超坦言道,过去农民一般是既种地又养殖,畜禽粪便都用于还田 而现在却把两者“割裂”开来,种地的不养殖,养殖的不种地。现有的规模化畜禽养殖场都不愿还田了,而且普遍存在重“效益”轻“治污”现象,没有配套治污设施或设施建设不完善,畜禽粪便常常被推到河里、沟里。  同时,对农业源污染的监管也远未到位。江苏省环保厅总量处处长刘晓磊说:“从项目立项、审批、过程监管到后期执法,对农业源的环境监管基本都是空白,一般都是接到投诉才会介入。”  农业源减排效果不理想还有一些深层制约因素。  首先,养殖的规模化程度普遍较低,严重制约着减排治污工程的推进。江苏省环保厅副厅长秦亚东告诉记者,“2010年的数据表明,江苏省纳入减排的五类畜禽养殖规模化程度分别为:生猪36.2%、奶牛70.3%、肉牛10%、蛋鸡32.2%、肉鸡47.5%。除奶牛外,其他四类畜禽养殖的规模化程度均不高。”  其次,治理项目多与资金投入少也形成巨大反差。根据环境保护部与江苏省政府签订的目标责任书要求,80%以上规模化畜禽养殖场和养殖小区需配套建设固体废物和废水贮存处理设施,而江苏省列入减排基数的规模化养殖场(小区)有5000多家,每年近千家的治污工程推进任务相当繁重,但当前缺乏治理专项资金引导,原本就是微利的畜禽养殖企业很难承受。  如何才能改变农业源减排的“无力”状况?除了加强减排设施建设和环境监管外,还应加强农业废弃物的资源化运用。来自环境保护部的一位专家说,农业源的污染减排与工业、生活污染具有很大的差异性,畜禽养殖业的废物基本都可以资源化。“对于畜禽养殖废物实现肥料化、沼气化,以及废物综合利用后进入农业生产再利用的,均可以视作有效减排。”  以牛粪为例,我国养殖业一年可以得到干牛粪约1.4亿吨,如果将这些牛粪量的一半作为沼气发酵原料,按较低水平计算,每千克干牛粪产生200升沼气,便可产生140亿立方米沼气,其热值约等于1400万吨原煤。
  • 国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告
    国家药监局关于发布丹七片中异性有机物检查项补充检验方法等4项补充检验方法的公告(2023年第66号)根据《中华人民共和国药品管理法》及其实施条例的有关规定,《丹七片中异性有机物检查项补充检验方法》《脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法》《檀香清肺二十味丸中松香酸检查项补充检验方法》《小柴胡颗粒中黄芩提取物检查项补充检验方法》经国家药品监督管理局批准,现予发布。特此公告。   附件:丹七片中异性有机物检查项补充检验方法.docx 脑立清丸(胶囊、片)中水麦冬酸检查项补充检验方法.docx 檀香清肺二十味丸中松香酸检查项补充检验方法.docx 小柴胡颗粒中黄芩提取物检查项补充检验方法.docx国家药监局  2023年5月18日
  • 上榜!迪马色谱柱入选多个中药配方颗粒国家药品标准
    中药配方颗粒是由单味中药饮片经水提、分离、浓缩、干燥、制粒而成的颗粒,在中医药理论指导下,按照中医临床处方调配后,供患者冲服使用。中药配方颗粒的质量监管纳入中药饮片管理范畴。按照国家药品监督管理局统一部署要求,根据国家药品标准工作程序,国家药典委员会组织相关企业开展中药配方颗粒品种试点统一标准研究,并组织专家开展标准审评工作。 NEWS  2021年4月29日,国家药典委员会发布《关于执行中药配方颗粒国家药品标准有关事项的通知》:   经国家药品监督管理局批准,首批160个中药配方颗粒国家药品标准已正式颁布,将于2021年11月1日正式实施,现在我委网站予以转发,并就有关事项通知如下: 迪马色谱柱入选多个中药品种   在国家药典委员会发布的首批160个中药配方颗粒国家药品标准中,炒牛蒡子、川牛膝、干姜、黄芩、酒黄芩、酒女贞子、牛蒡子、女贞子、山楂(山里红)等多个品种推荐使用迪马科技液相色谱柱,现将部分品种汇总如下,供广大中药配方颗粒分析工作者参考。 160个中药配方颗粒如下:备注:以上红框标注品种推荐使用迪马液相色谱柱。
  • 甘肃再次安排1.3亿环保专项资金
    甘肃省今年计划继续安排省级环保专项资金1.3亿元,用于补助污染减排项目。  &ldquo 十二五&rdquo 以来,甘肃省连续3年安排省级环保专项资金3.87亿元,对全省重点行业和重点领域污染减排项目实行补助,有力促进了污染减排目标任务的完成。  据了解,前3年专项资金补助的对象,重点是30万千瓦以上火电机组脱硝改造工程、日产水泥熟料2000吨以上新型干法水泥生产线脱硝改造工程、重点工业企业水污染减排工程、有色金属冶炼行业二氧化硫深度治理工程和规模化畜禽养殖场及养殖小区污染减排工程等。  在此基础上,今年甘肃省又将30万千瓦以下火电机组脱硝改造工程、日产水泥熟料2000吨以下新型干法水泥生产线脱硝改造工程、钢铁行业烧结机脱硫工程、石化行业重油催化裂化烟气脱硫工程、部分火电机组脱硫增容改造工程、有明确治污责任主体的有机肥生产线等畜禽养殖污染物集中治理减排工程等,纳入了资金补助重点。  至此,甘肃省污染减排资金补贴重点已涉及12个重点行业和重点领域。甘肃省将通过进一步健全完善污染减排资金引导政策,促进全省重点行业和重点领域减排项目建设。
  • 岛津推出《ICPMS-2030应用数据集册-医药篇》
    美国药典(USP) 宣布全新的USP通则章节USP232(元素杂质-限值)和233(元素杂质-流程)将于2018 年1月1日实施。通则232 和2232 基于给药途径规定了关注元素的列表及其允许的日接触(PDE)限值。此次标准更新使USP 在关注元素杂质列表和PDE 方面与人用药品注册技术要求国际协调会(ICH)Q3D文件相匹配。根据药物途径,ICH和USP对于口服、注射和吸入给药的元素杂质给与了每日允许暴露限(PDE)。对元素杂质进行了分类,分为1类(Cd、Pb、As和 Hg),2A类(Co、V、Ni),2B类(Tl、Au、Pd、Ir、Os、Rh、Ru、Se、Ag、Pt),3类(Li,Sb,Ba,Mo,Cu,Sn,Cr)。元素杂质的潜在毒性根据给药途径的差异而有所不同。在产品风险评估中,必须根据最终药品的预期给药途径考虑元素杂质。还必须考虑元素天然存在(如矿物类原料的相关元素)或有意/无意添加( 如作为化学反应的催化剂,或通过工艺设备的污染)的可能性。在所有药品的风险评估中,必须考虑毒性最高且普遍存在的 1 类元素(Cd、Pb、As和 Hg)。仅在药物通过注射或吸入给药时,才可能需要考虑 3 类杂质等其他元素。USP233推荐使用ICP-MS或ICP-OES测定药品及成分中元素杂质的含量。当然如果其他的测试方法通过验证并且满足可接受标准也能使用。ICP-MS的检出能力是非常优秀的,可以完美的应对USP和ICH Q3D中元素杂质测试的要求。 《2015 版中国药典》中明确规定了甘草、阿胶、黄芩等中药材种 Pb、Cd、As、Hg、Cu的测定。Pb≤5. 0 mg / kg,Cd≤0. 3 mg / kg,Hg ≤0. 2 mg / kg,Cu≤20. 0 mg /kg,As≤2. 0 mg /kg。第四部通则 2321 测试方法第二法为电感耦合等离子体质谱法。 ICP-MS 作为重要的元素分析手段,除了具有分析速度快、线性范围宽、灵敏度高等优点外,还有两个潜在的优点:一是绝对定量能力,一是多组分同时分析能力是当前体内元素强有力的分析手段,简便的技术使其应用越来越广泛。随着 ICP-MS 仪器的逐渐普及和研究工作的不断深入,ICP-MS 灵敏度高、分析速度快、方法可靠,易与其他技术联用,这些都符合了医药检测的发展需要。 岛津公司作为全球著名的分析仪器厂商,自1875年创业以来,始终秉承创始人岛津源藏的创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。全国有数百家制药企业,面对出口应对 USP 和 ICH 必须执行。同时中国拥有传承千年的中医学,在造福子孙后代的同时中药的质控也是势在必行。故岛津分析中心汇编了这本《岛津 ICPMS-2030应用数据集册-医药篇》,希望能对药品中杂质元素的检测工作有所帮助。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制