当前位置: 仪器信息网 > 行业主题 > >

挥发性风味物质丁酸

仪器信息网挥发性风味物质丁酸专题为您整合挥发性风味物质丁酸相关的最新文章,在挥发性风味物质丁酸专题,您不仅可以免费浏览挥发性风味物质丁酸的资讯, 同时您还可以浏览挥发性风味物质丁酸的相关资料、解决方案,参与社区挥发性风味物质丁酸话题讨论。

挥发性风味物质丁酸相关的资讯

  • 江苏大学陈全胜团队: 通过HS-SPME-GC/MS结合代谢组学分析鉴定超声波辅助康普茶发酵过程中的挥发性物质及其代谢途径
    Introduction茶菌等传统微生物发酵饮料使用富含蔗糖的茶水作为原料,经酵母和细菌共发酵而成。红茶作为茶菌发酵的主要原料,也被称为康普茶,具有促进胃肠道消化、抑制肠道有害微生物生长、抗氧化特性、促进血管舒缩、辅助预防心脑血管疾病的功能。发酵是康普茶香气产生的关键工序,可以产生大量的醛、酸、酮和其他化合物。目前,红外、微波、超声波等物理加工技术已成功应用于食品发酵,与传统加工技术相比更能促进风味的形成。其中,超声波处理的茶叶非常稳定,通过物理作用增强参与香气合成基因的表达,使得茶叶形成不同香气化合物。近年来,顶空固相微萃取(HS-SPME)样品前处理方法因其对样品需求量小、不需要有机溶剂、操作简单、灵敏度高、重现性好等特点,已成功应用于各种茶叶香气物质的提取。超声提取技术具有速度快、成本低、操作简单、环保、效率高等优点,是增强茶叶香气释放的一种特殊方式。因此,HS-SPME结合超声波技术可能适用于茶叶发酵过程的分析。代谢组学可以同时实现所有代谢物的全面定性和定量分析。现阶段,基于HS-SPME结合气相色谱-质谱(GC/MS)技术的组学方法已广泛应用于挥发性化合物的代谢组学分析。然而,结合HS-SPME-GC/MS与代谢组学方法,用于康普茶代谢产物变化与代谢途径之间的关系的研究鲜有报道。本文改进了康普茶的发酵工艺,并通过单因素和响应面分析进行优化。采用HS-SPME-GC/MS技术对康普茶发酵过程进行代谢组学分析,探究其代谢产物变化,并进一步分析代谢途径及其对挥发性化合物性质的影响(图1)。图1. 基于HS-SPME-GC/MS的代谢组学结合多元分析研究康普茶发酵过程中的特征挥发性物质和代谢途径。Results and Discussion发酵条件的确定不同超声频率下发酵液中总糖和茶多酚的消耗率如图2A和2B所示。结果表明,超声处理和非超声处理的样品其总糖和茶多酚的消耗率存在显著差异。优选发酵时间为3 d。根据采样时间记录发酵周期为S0~S7,其中发酵初期阶段记录为S0。此外,优选23 kHz的超声波频率为后续实验的最佳频率(图2C),优选pH 3.2为后续发酵的最佳条件(图2D),优选30 °C为最佳温度(图2E)。以发酵后总糖和酚的消耗率为响应值,进行Box-Behnken分析,建立高度拟合的茶提取物发酵条件的三元回归模型。图2. 探究超声处理对(A)茶多酚消耗率、(B)糖消耗率的影响,(C)五种超声频率对茶多酚和糖消耗率的影响,(D)五种pH值对茶多酚和糖消耗率的影响,(E)五种温度对茶多酚和糖消耗率的影响。采用扫描电子显微镜(SEM)表征23 kHz处理组和对照组茶菌的形态。结果表明,对照组表面光滑圆润,而超声后的细胞表面存在凹痕和皱纹(图3)。这可能与20~40 kHz频率下的急性气穴现象有关。超声波处理可以提高微生物中相关酶的活性,从而提高发酵效率。图3. SEM表征超声对茶菌形态的影响,(A和B)超声处理组,(C和D)对照组。代谢组组成分析GC-MS-TQ8040具有高通量和智能操作特性,配备高亮度离子源和高效碰撞池,可用于超灵敏分析。保留时间、已鉴定化合物列表、缩写、CAS号和分子式如表1所示。 表1. 基于HS-SPME-GC/MS鉴定康普茶发酵过程中的代谢物。132种气味活性化合物被分为10组(32种醇类、13种酮类、16种烯烃、18种酯类、14种烷烃、11种芳烃、9种酸类、7种醚类、4种氮挥发性化合物和1种硫化物)。康普茶发酵过程中挥发物的代谢谱表明,鉴定的化合物分离良好。采用单因素方差分析和Tukey图基事后检验法验证上述132种挥发性化合物在发酵过程中具有显著性。132种高贡献挥发物的方差分析统计如表2所示。表2. 康普茶发酵过程中挥发性成分的相对峰面积变化及其与发酵时间的相关性。标志性挥发性物质的分析采用主成分分析(PCA)将发酵样品分为不同类群,结果表明,发酵和未发酵的茶叶具有不同的挥发性物质成分(图4A)。发酵过程中茶叶的挥发性物质经历周期性的变化。进一步采用PCA的载荷图解释S0~S7代谢物变化差异的具体成分,结果如图4B所示。2-甲基丁酸、D-柠檬烯和苯乙醇等香气化合物有助于康普茶的整体花香、酸甜和柠檬味,并且远离零点,对PC1和PC2有显著贡献,从而影响发酵液的气味特征。PLS-DA得分图显示出更好的模型拟合(组间差异更显著),PC1和PC2分别占比59.1%和7.6%(图4C)。如图4D所示,选择了25种挥发性化合物。苯乙醇增强了“花香”风味,改善了整体的感官香气质量,并增强了康普茶的“甜”香气特征。其难闻气味可能是由2-甲基丁酸引起。挥发性成分的鉴别结果表明,发酵工艺对康普茶挥发性成分具有显著影响。此外,这些挥发性化合物被认为是康普茶发酵过程中的主要特征香气成分。图4. (A)康普茶样品的多元统计分析和质谱数据集的PCA得分图,基于PCA模型的(B)康普茶样品中变量的载荷图、(C)PLS-DA得分图、(D)PLS-DA评选的前25种挥发性化合物。特征代谢物的鉴定结合载荷图和VIP得分进一步筛选特征代谢物。结果如图5所示,部分差异代谢物与康普茶发酵过程呈线性相关。叶醇、二十烷、水杨酸异辛酯、2-甲基丁酸、邻伞花烃、甲基三十烷基醚、苯乙醇和棕榈酸异丙酯的含量与红茶发酵时间呈正相关。其余化合物(甲氧基苯肟、芳樟醇、雪松醇、二氯乙酸、癸酯)与储存时间呈负相关。图5. 12种代谢物的箱形图表明发酵中存在显著差异。代谢途径分析本文介绍了特征挥发物的产生途径、形成机制以及它们之间的转化关系。康普茶发酵过程中发现的特征代谢物的代谢途径如图6所示。图6. 康普茶发酵过程中发现的特征代谢物的代谢途径。Conclusion本文采用单因素优化实验和响应面分析确定康普茶的最佳发酵条件为30 °C、pH 3.2、23 kHz。通过代谢组学技术监测超声辅助处理过程中挥发性物质的综合变化。总而言之,鉴定了由132种成分组成的综合代谢组学图谱,并成功进行多元统计分析,筛选VIP>1的25种特征代谢物作为生物标志物。此外,详细研究了代谢途径以及各种挥发性物质的转化。结果表明,发酵后期存在挥发性物质转化的代谢途径。综上所述,在康普茶发酵过程中可以通过优化工艺加快和改进反应过程。本文为红茶菌发酵代谢产物的变化及影响机制的研究提供了重要的理论价值。
  • 海能技术参与起草的《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》公开征求意见!
    近日,国家粮食和物资储备局发布公开征求《青稞储存品质判定规则》等8项标准意见的通知,其中海能技术参与起草了《粮油检验 植物油挥发性风味成分的测定 气相色谱-离子迁移谱法》,并参与联合方法验证。我国植物食用油市场体量巨大, 植物食用油含有人体必需脂肪酸和丰富的油溶维生素, 是人体营养物质和能量的重要来源之一。随着经济水平的提高和饮食观念的改变, 食用油的品质安全和挥发性风味营养也越来越受到人们的重视。油脂挥发性风味是植物油中的次生特异性标志物, 其很大程度上决定了植物油的品质、用途和市场的可接受程度, 是评价植物油质量的重要指标。相关研究表明,油脂风味并不是由一种或几种化合物来体现, 而是由多种成分协同作用的结果。挥发性风味物质相互间通过的累加、协同、抑制等途径, 导致植物油呈现风味特征的差异化和特异性。油脂的风味受原料的品种、成熟度、环境条件、生长区域、储存和加工工艺的影响, 其中, 加工工艺的影响最大,不同工艺将直接影响油脂挥发性有机物(volatile organic compounds, VOCs)的种类、含量和感官阈值。 目前, 植物油脂挥发性风味成分检测方法中, 感官检验法、理化指标检验法、色谱法、光谱法等较为普遍, 但感官检验法因个体差异使得方法准确性存在局限 常规理化检验只能测定油脂中物质的总量, 不能用于物质组成的定性和定量分析 光谱法检测过程尽管简单快速, 却很难实现对样品质量的完整表征 因此, 如何对油脂风味进行科学、快速、准确的品质判定, 受到科研人员的广泛关注。气相色谱-离子迁移谱(gas chromatography-ion mobility spectrometry, GC-IMS)最早应用于检测爆炸物和化学试剂, 是具有高分离能力的气相色谱和快速响应能力的离子迁移谱的有机结合。现已广泛应用于农业食品安全、质量控制、风味分析等领域, 在食用植物油的质量判定中, GC-IMS 结合化学分析检测大量应用于橄榄油、棕榈油、菜籽油等油脂的掺假测定, 为油脂的的掺假、掺杂辨别鉴定提供了新的解决方式。但在油脂风味品质判定、油脂产品风味稳定性监测等方面的研究较少。 本标准依托 GC-IMS 技术, 探究食用植物油脂风味品质判定的检测方法,对于进一步推测产品调配比例, 保证产品品质一致性和稳定性、优化产品生产工艺、实现油脂风味品质判定方法的标准化和适用性具有重要意义。文本-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf编制说明-粮油检验 植物油挥发性风味成分的测定--气相色谱-离子迁移谱法.pdf
  • 实验技巧 | 挥发性或粘度高的试剂,流动相配置需注意
    流动相是高效液相检测中非常重要的一个环节,其操作的合规性和准确性直接影响到实验结果的准确性和有效性。在日常检测中,我们经常会遇到流动相含有挥发性试剂(如三氟乙酸(TFA)、三乙胺、浓氨等)的情况;也会遇到含粘度较高的组分(如磷酸等)。这些组分在流动相配置时,其添加方法需要特别注意,以免因试剂挥发或放液不完全而影响实验结果。三乙胺是液相流动相中常用的一种组分,起到调节pH,屏蔽固定相上的硅羟基从而修饰峰形,改善峰拖尾等作用。同时它也是一种挥发性试剂,如按常规方法,在液面以上放液,就会出现因三乙胺挥发导致的流动相配置不准确的情况,因此在添加三乙胺等挥发性试剂时,建议选用量入式移液管,伸至液面以下再放液。示例某项目,流动相为:15mmol/L磷酸二氢钾溶液(含0.06%三乙胺和0.14%磷酸)流动相配置一:常规配置方法,三乙胺在液面以上放液,配置流动相。通过以上两图对比可发现,不同的流动相配置操作,会导致出峰时间的明显变化。结论配置流动相时,要按不同试剂的特性选择合适的配制方法,不能一概而论。1)对于挥发性试剂,如三乙胺,二乙胺,三氟乙酸,七氟丁酸等,添加时,为避免挥发导致浓度差异,配置时将移液管插入到液面以下再放液。2)对于粘稠试剂,如磷酸,量取时要尽量慢,吸取完毕后用纸巾擦拭管口周围,避免试剂附着在管口,影响添加试剂的浓度。添加时,要注意放缓放液速度,以避免因放液过快,部分试剂还附着在移液管壁没有流下,导致流动相的浓度差异。
  • 药包材中有害物质检测 | 挥发性有机物
    药物包装材料中的低分子量、非极性有机化合物通常易挥发,有很大可能性直接向药物迁移,对人体健康造成损害。与挥发性有机物分析相关的药包材分析标准方法与挥发性有机物分析相关的药用包装材料成分药用包材样品前处理方法简介1提取试验2浸出试验HS-GC-FID 检测药品包装材料中的有机挥发物图1:药品包装材料中常见有机挥发物(VOC)标准色谱图17种化合物出峰顺序为:乙醇、异丙醇、丙酮、丁酮、乙酸乙酯、乙酸异丙酯、正丁醇、苯、丙二醇甲醚、乙酸正丙酯、4-甲基-2-戊酮、甲苯、乙酸正丁酯、乙苯、二甲苯、环己酮珀金埃尔默Clarus 系列气相色谱仪和TurboMatrix HS 顶空进样器珀金埃尔默顶空自动进样技术专利 —— 压力平衡时间进样技术,整个进样过程仅有进样针在移动,定量更准确,重复性更好√ 彻底解决样品吸附问题,防止交叉污染√ 方便快捷调节进样量√ 无需载气稀释扫描下方二维码,即可下载珀金埃尔默药包材中有害物质检测相关资料下载。
  • 国家大气重点实验室在沈建成 专管“挥发性”物质
    2010年12月29日,记者从沈阳市环保局获悉,环保部第一家依托环境监测部门建设的国家环境保护大气有机污染物监测分析重点实验室在沈建成。空气中的157种微粒状况将被沈阳人完全掌控。  从2008年开始,沈阳市环境监测中心站就开始筹建国家环境保护大气有机污染物监测分析重点实验室,用于了解沈阳市环境空气中有机污染状况,为全国该领域的研究提供技术保障。目前,此重点实验室已经具备了157种大气有机污染物的分析能力,并在北陵公园建成具备77种污染物监测能力的环境空气自动监测站,监测能力居全国第一,该站还会对沈阳日常的空气质量进行分析。  沈阳市环保局有关部门负责人表示,此重点实验室的建成将为沈阳市环境空气质量提供高科技保障。今后,沈阳市民将受益于国家环境保护大气有机污染物监测分析重点实验室,在较短时间内通过过程跟踪和源解析技术,掌握沈阳市大气有机污染物的来源,为环保部门进行污染源治理提供技术支撑,确保市民身体健康。  沈阳市环保局有关部门负责人介绍,大气有机污染物具有致癌、致畸、致突变的强毒性,并且具有流动性和积累性,可通过呼吸、接触、食物链累积等途径,对人类健康造成有害影响,目前已被列为全球八大环境问题之一。  李晶演示使用预浓缩仪-气相质谱联用仪检测苏玛罐内空气样本中大气有机污染物含量  记者探访 最牛实验室  昨日,本报记者独家走进全国最牛大气实验室,对国家环境保护大气有机污染物监测分析重点实验室进行探访。  15时许,在沈阳市环境监测中心站大楼内,一处看似平常的大门后,藏着最尖端的气体实验设备和人才。在实验室内,负责人李晶和几名工作人员正在抽取空气样本,对大气中的挥发性物质进行检测。  沈阳市环境监测中心站副站长、总工程师曲健对记者说,空气中的挥发性物质由于稳定性差通常都是最难监测的,但其对人体和臭氧层的危害又是很强的,这家实验室最强的标志就是对可挥发性气体实现了监测。  注入氮气 用来当“洗涤剂”  由于挥发性物质检测的特点,取样的物品使用后需要让内壁保持真空,而“洗涤剂”就是“氮气”。就像打针抽气一样,将苏玛罐内所有的气体抽空,并注入氮气,由于氮气化学性质稳定,不易与其他物质反应,从而保障下次采样时,能够获得权威的科学数据。  与普通实验室监测的数据不同,这里监测的数据将成为全国标准。曲健介绍说,由于是国家重点大气实验室,这里获得的数据样本将成为全国气体环境数据的重要标准。  确定挥发性物质比例  李晶将苏玛罐挂在了预浓缩仪-气相质谱联用仪的端口上,对内部的气体进行加热、加入溶剂等过程后,挥发性物质在空气中的比例就被确定了下来。  李晶告诉记者,预浓缩仪-气相质谱联用仪价格在200万元,整个实验室的设备的价格至少在千万元以上。  对人体伤害较大的苯系物、有机硫等挥发性有机物气体都在监测范围之内。
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法—— HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定 气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020
    坛墨标样-甲醇中16种挥发性有机物-TVOC混标(含乙酸正丁酯)/GB50325-2020产品编号BWT900637-100-ACAS号规格1mL标准值100μg/mL序号名称CAS号1正己烷110-54-32苯71-43-23三氯乙烯79-01-64甲苯108-88-35辛烯111-66-06乙酸丁酯123-86-47乙苯100-41-48对二甲苯106-42-39间二甲苯108-38-310邻二甲苯95-47-611苯乙烯100-42-512壬烷111-84-213异辛醇104-76-714十一烷1120-21-415十四烷629-59-416十六烷544-76-3
  • 特色应用(二) | SPME-GC-MS/MS研究不同储藏年份玉米风味物质差异
    风味物质是粮食作物食用品质和营养价值的重要衡量指标。小麦、玉米等谷类作物在储藏过程中的品质劣变与其风味物质含量密切相关。岛津中国创新中心与国家粮食和物资储备局科学研究院杨永坛研究员团队合作,基于固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米中挥发性风味物质的种类和含量进行分析,多元统计分析结果显示,玉米的挥发性风味物质与储藏年限存在一定的相关性。由此可构建玉米储藏年份的分类模型,为玉米储藏品质的动态监测提供技术手段。研究成果以“SPME-GC-MS/MS结合多元统计分析不同储藏年份玉米风味物质差异”为题,已发表在《粮油食品科技》期刊。背景介绍粮食在贮藏期间会受到温度、湿度、微生物等环境因素影响,其食用品质和营养价值也会随着储藏时间延长而发生改变。玉米是我国主要粮食作物之一,也是我国储备粮的重要组成。由于玉米原始水分含量相对较高,同时内部富含脂肪,其相较于其他粮食品种储藏稳定性较差,易发生品质劣变,进而影响其种用、食用和加工品质。因此在玉米收购入仓和轮换出库前对其储藏品质进行评估十分必要,引起了研究人员的广泛关注。挥发性风味物质是影响玉米食用和加工的主要因素之一,风味物质的类型、含量以及它们之间的相互作用共同决定着玉米的风味。玉米储藏过程中风味物质含量变化间接反映其品质改变,因此越来越多的研究人员通过测定玉米中典型挥发性风味物质对其进行品质鉴别。已有多项研究发现玉米挥发性风味物质的种类和含量受不同储藏条件的影响,但尚未阐明不同储藏时间玉米的特征差异物质。固相微萃取技术能对含量较低的挥发性物质进行富集,在挥发性物质检测中具有方便、灵敏、高效的优点,在食品风味物质检测领域应用广泛。本研究以吉林地区2019—2022年收获玉米为研究对象,采用固相微萃取-气相色谱-三重四极杆质谱联用技术(SPME-GC-MS/MS)对玉米储藏过程中的风味物质进行检测,并结合主成分分析(PCA)和偏最小二乘法判别分析(PLS-DA)进行数据分析,阐明不同储藏年份玉米的特征差异物,建立玉米储藏年份判别模型。以期为玉米储藏品质的动态监测提供技术手段,更好地指导储备玉米科学储存与适时更新轮换。研究内容本研究采用固相微萃取-气相色谱三重四极杆质谱(GCMS-TQ系列),搭配专属型风味物质多反应监测(MRM)数据库,对玉米样品中的挥发性风味物质进行分析。图1为某采收自2019年的玉米样品的总离子流图,共检出挥发性风味物质共129种,包括醛类、醇类、酯类、酮类、苯系物、杂环类、酸类、醚类、烃类和酚类化合物共10类。检出化合物中醛类物质种类最为丰富,共检出26种,其次为醇类物质和酯类物质,分别检出23种和17种。对不同储藏年份玉米中各类风味物质的相对含量进行分析,结果显示酸类物质在玉米中相对含量最高,是玉米中的主要挥发性风味物质。并发现不同储藏年份玉米中风味物质相对含量发生了变化,需进一步探究二者之间的相关性。图1. 2019年玉米样品总离子流色谱图为明确风味物质含量与玉米储藏年份之间的关系,对不同储藏年份玉米中的挥发性风味物质进行PCA分析。从图2(A)可以看出,不同储藏年份玉米呈一定的聚类趋势。其中2019年和2022年储藏玉米区分度较为显著,表明该模型对储藏年份相差较大的样品区分能力较强。对不同储藏年份的样品组进行皮尔逊相关分析,结果如图2(B)所示,表明每个年份的样品组与其相应年份的样品组之间有很强的正相关性。图2. 2019—2022年玉米风味物质的统计分析结果: (A) 主成分分析得分图 (B) 皮尔逊相关分析为进一步直观体现不同储藏年份玉米的风味物质特征,对检测数据进行了PLS-DA分析。如图3(A)所示,4个储藏年份的样品分别聚为一类,表明不同年份间玉米的挥发性化合物差异显著。利用5倍交叉验证对PLS-DA模型的预测精确度和拟合度进行验证,结果如图3(B)所示,使用3个组分时,模型的R2=0.98,Q2=0.96,预测精确度为1.0,表明模型具有较好的预测能力。按照变量投影重要性(VIP)值大于1的标准,共筛选出47种关键差异化合物。图3 2019—2022年玉米风味物质的偏最小二乘判别分析结果: (A) 三维PLS-DA得分图 (B) 不同组分数下PLS-DA分类性能 (C) VIP值图进一步比较不同年份间玉米中挥发性风味物质的差异,可以看出有6种挥发性化合物出现规律性变化。其中,1-辛烯-3-醇、丁酸橙花酯和2-正戊基呋喃3种化合物含量随储藏时间的延长而减少(如图4(A)~(C));此外,DL-泛酰内酯、辛酸甲酯和2-乙酰基呋喃化合物的含量随储藏时间的延长而增加(如图4(D)~(F))。图4. 不同储藏年份玉米特征风味物质箱线图结论基于岛津固相微萃取-气相色谱三重四极杆质谱仪建立玉米中挥发性风味物质的分析方法,对2019至2022年收获东北地区玉米样品中挥发性风味物质进行检测,采用PCA和PLS-DA方法对不同储藏年份玉米的风味物质数据进行分析,筛选出在不同年份的玉米间具有显著性差异的化合物,根据检出的差异化合物在不同储藏年份玉米中的含量分布构建分类模型,将为不同年份玉米的储藏品质动态监测提供参考,以更好指导储备玉米的科学储存与适时更新轮换,对保障国家粮食安全和节粮减损具有重要意义。岛津多功能自动进样器-气相色谱三重四极杆质谱仪参考文献:[1] WANG S, CHEN H, SUN B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS) [J]. Food Chemistry, 2020, 15(315): 126158.[2] 徐瑞, 李洪军, 贺稚非. 玉米冻藏过程中挥发性成分变化及主成分分析[J]. 食品与发酵工业, 2019, 45(1): 210-218. XUN R, LI H J, HE Z F. Changes and principal component analysis of volatile compounds in corn ears during frozen storage[J]. Food and Fermentation Industries, 2019, 45(1): 210-218.[3] 李云峰, 范競升, 陈冰琳,等. 3个甜玉米品种在不同储藏条件下可溶性固形物含量及挥发性风味成分变化[J]. 华南农业大学学报, 2021, 42(03): 33-44. LI Y F, FAN J S, CHEN B L, et al. Changes of soluble solid contents and volatile flavor components of three sweet corn cultivars under different storage conditions[J]. Journal of South China Agricultural University, 2021, 42(03): 33-44.[4] 郭瑞, 李盼盼, 张晓莉, 等. SPME-GC-MS/MS 结合多元统计分析研究不同储藏年份玉米风味物质差异[J]. 粮油食品科技, 2024, 32(3): 179-186. GUO R, LI P P, ZHANG X L, et al. Diversity analysis of volatile flavor compounds of corn with various storage years based on SPME-GCMS/MS and multivariate statistical analysis[J]. Science and Technology of Cereals, Oils and Foods, 2024, 32(3): 179-186.本文内容非商业广告,仅供专业人士参考。
  • GB/T 5750实操直播 | 嗅味物质、农残及半挥发性有机物检测
    继《GB 5749生活饮用水卫生标准》征求意见稿配套的检测标准《GB/T 5750生活饮用水标准检验方法》征求意见稿发布后,为帮助广大实验室同行更好地应对,睿科集团将于2022年4月7日举办“新版GB/T 5750征求意见稿 嗅味物质、农残及半挥发性有机物检测实操”专题网络讲堂。直播时间 2022年4月7日(周四)14:00 直播内容✓理论介绍:新版GB/T 5750征求意见稿详解及检测技术✓标准背景解读及检测方法简述✓自动化前处理解决方案如何应用实操课程✓水中嗅味物质、农残及半挥发性有机物检测实操✓检测前处理仪器实操流程✓注意事项及问题排查
  • 上海伍丰-车内挥发性有机物和醛酮类物质 采样测定方法
    车内挥发性有机物和醛酮类物质采样测定方法一、说明本方法可以测定15 种以上醛酮类化合物,包括:甲醛、乙醛、丙酮、丙烯醛、丙醛、丁烯醛、丁酮、丁醛、甲基丙烯醛、苯甲醛、戊醛、甲基苯甲醛、环己酮、己醛等。二、仪器等度、紫外、C18柱固相萃取装置及其附件超声波清洗器DNPH 采样管标准样品:2,4-二硝基苯腙三、液相色谱分析条件a) 色谱柱:等效C18 反相高效液相色谱柱;b) 流动相:乙腈/水;c) 洗脱:均相等梯度,60%乙腈/40%水;d) 检测器:紫外检测器360nm,或二极管阵列;e) 流速:1.0 ml/min;f) 进样量:25 &mu l。
  • 盘点:大气中挥发性有机物检测技术
    大气中的VOCs不仅是生成光化学烟雾污染物的主要前体物,同时也是大气细粒子中有毒有害有机组分的重要来源,对形成灰霾有重要贡献,且一些VOCs本身具有毒性和致癌性。随着我国大气污染控制的不断深化,VOCs成为继颗粒物、二氧化硫、氮氧化物之后,我国大气污染控制中又一新的关注点。  VOCs定义  VOCs是一类有机化合物的组合,不同组织对其有不同的定义,主要分为两类,一类是学术意义上的定义,一类是环保意义上的定义。  化学意义上的定义主要有五种:1)挥发性有机物污染防治技术政策定义VOCs为熔点低于室温、沸点范围在50℃~260℃之间的有机化合物 2)世界卫生组织将VOCs定义为沸点范围在50-260℃之间,室温下饱和蒸汽压超过133.32Pa,在常温下以蒸汽形式存在于空气中的一类有机物,按挥发性有机物化学结构可进一步分为8类:烷类、芳烃类、烯类、卤烃类、酯类、醇类、酮类和其他化合物 3)ISO 4618/1-1998中VOCs指原则上,在常温常压下,任何能自发挥发的有机液体和/或固体 4)德国DIN55649-2000将VOCs定义为在常温常压下,任何能自发挥发的有机液体和/或固体,在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物 5)我国北京地方标准DB11/447-2007中将VOCs定义在20℃条件下蒸汽压大于或等于0.01kPa,或者特定适用条件下具有相应挥发性的全部有机化合物的统称。  环保意义上的定义主要有两种:1)美国EPA对VOCs的定义为除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物 2)美国ASTM D3960-98中VOCs指任何能参加大气光化学反应的有机化合物。  我国大气污染防治相关政策和标准中,还没有大气中VOCs的明确定义,而VOCs的定义关系到检测方法制定、治理措施等问题。  VOCs标准  我国VOCs检测标准有《HJ 732-2014固定污染源废气 挥发性有机物的采样 气袋法》、《HJ 733-2014泄漏和敞开液面排放的挥发性有机物检测技术导则》、《HJ 734-2014固定污染源废气 挥发性有机物的测定 固相吸附-热脱附/气相色谱-质谱法》、《HJ 644-2013 环境空气 挥发性有机物的测定 吸附管采样-热脱附 气相色谱-质谱法》以及《GB 21902-2008 合成革与人造革工业污染物排放标准》附录C,均采用色谱法进行分析。  VOCs排放标准国家还没有相关规定,但是上海、天津、广东等地区针对不同行业制定了一些地区标准,如《DB12/524-2014 工业企业挥发性有机物排放控制标准(天津)》、《DB44/814-2010家具制造行业挥发性有机化合物排放标准(广东)》、《DB44/815-2010印刷行业挥发性有机化合物排放标准(广东)》、《DB44/816-2010表面涂装(汽车制造业)挥发性有机化合物排放标准(广东)》、《DB44/817-2010制鞋行业挥发性有机化合物排放标准(广东)》、《DB31/374-2006半导体行业污染物排放标准(上海)》。  美国EPA在上世纪八九十年代制定了一系列大气有毒有机物检测标准,其中涉及VOCs检测的共有6项,均是气相色谱法,但可配备不同的采样方法和检测方法。  VOCs检测  我国大气中的VOCs主要来源于石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等行业。因此大气中VOCs的检测主要应用于三个方面:一大气中VOCs检测 二污染源集中排放VOCs检测 三生产过程VOCs泄露检测。与三种应用场合相适应,VOCs的检测仪器也分为实验室仪器、在线式仪器和便携式仪器三类。  实验室VOCs检测  VOCs实验室分析发展较早,也比较成熟。分析方法为使用采样袋、苏码罐、吸附剂或吸收液将VOCs采集回实验室,再经过热解析、溶剂解析等前处理过程后,利用GC或HPLC分析。  实验室VOCs检测主要难点在于选择合适的采样方法保证可以采集到所有挥发性有机污染物,制定规范的运输方案防止运输过程中VOCs的损失,选择合适的前处理过程保证所有的挥发性有机物进入分析仪器。  实验室分析方法的主要优势是结果准确,主要缺点是时效性差,采样和运输过程中易导致样品损失,影响测定的准确性和可靠性。  在线VOCs检测仪  VOCs在线分析仪主要有在线气相色谱仪、在线质谱仪、在线气质联用仪、在线PID和FID检测器、在线红外光谱仪、在线激光检测仪和在线差分光学吸收光谱仪等。  由于VOCs没有标准的检测方法,而且在线系统用于现场检测,而不同现场的挥发性有机物种类差异较大且相对稳定,故检测需求不同。因此需要根据自身的需求和各种检测仪器的特点选择合适的检测方法。  在线气相色谱仪可检测出已知挥发性有机物的浓度 在线质谱仪可同时实现挥发性有机物的定性和定量检测,但无法区分同分异构体 在线PID和FID检测器可得出VOCs的总量,且仪器体积较小 各种在线光谱仪检测范围宽,可适应各种工业场合应用。  在线VOCs检测仪主要的国内厂家有聚光科技、广州禾信、宝英科技、中科光电、富瞻环保、武汉天虹等,国外厂家有英国Markes、日本亚那科、奥地利IONICON、韩国KNR、德国AMA、法国Chromatotec、美国CerexMS等。  便携式VOCs仪器  便携式VOCs分析仪主要有便携式FID/PID检测器、便携红外分析仪、便携激光光谱仪、便携式气质联用仪等。  最新公布的环保部标准中便携式仪器提到了FID检测器、PID检测器和红外吸收检测器三种。  便携式VOCs检测仪主要的国内厂商有东西分析、崂应、富瞻环保等,国外厂商有美国Inficon、英国SIGNAL、美国雷格沃夫、美国华瑞、日本亚那科、英国科尔康等。    挥发性有机物是一种混合物,由于其定义未明确,因此监测需求也不明确。目前的主要检测方法是气相色谱法、质谱法和光谱法,环保部公布的行业标准中采用的是气质联用法。其中环境空气挥发性有机物(HJ644)标准中测定的是35种目标有机化合物,主要是烷烃、烯烃和苯系物,固定污染源废气挥发性有机物(HJ734)标准中测定的是24种目标有机化合物,主要是酮类、酯类、烯烃类和苯系物。
  • 卷烟条与盒包装中挥发性有机化合物测定——Supelco提供解决方案
    烟草和印刷行业挥发物检测国标指定用柱&mdash &mdash VOCOLTM气相毛细管柱 VOCOLTM气相毛细管柱是国标YC/T 207-2006《卷烟条与盒包装中挥发性有机化合物的测定 顶空气相色谱法》中的指定专用柱,也是GB-T-5750-2006生活饮用水标准检验方法中挥发性物质1,1-二氯乙烯(GB/T5750.8-2006:5.1)的指定用柱。 因其在分离度、柱性能等各方面均超越竞争对手的对应色谱柱,目前已经成为了烟草和相关印刷行业检测的指定用柱,并经过证明是目前满足该检测需求的唯一用柱。VOCOLTM气相毛细管柱广泛地应用于全国环境检测中心、各大卷烟厂,烟草研究院,烟用纸业公司,印刷厂等。 VOCOLTM气相毛细管柱是中等极性色谱柱,为分析挥发性有机化合物(VOCs)而专门设计的,是Sigma-Aldrich公司旗下著名分析品牌Supelco(色谱科)的专利产品。该系列色谱柱膜厚均大于1.0um,能够为挥发性有机物提供更长的保留时间和分离度,可以说是挥发性有机物分析的首选用柱。用于直接进样或配合吹扫捕集使用,适用于US EPA 502.2,524.2,624,8240,8260和8021等分析方法。 针对国标YC/T 207-2006《卷烟条与盒包装中挥发性有机化合物的测定 顶空气相色谱法》中物质的检测,SIGMA-ALDRICH为您提供了详细的产品清单,帮助您实现快速检测。如有任何问题,请随时联系我们。北京:010-65688088-6812 上海:021-61415566-8209 广州:020-38840730-5001 序号货号名称规格目录价(元)0124217-UVOCOLTM气相毛细管柱60m*0.32mm*1.8um8460.270212540-5ML-F苯5ml/瓶566.280303079-5ML乙苯5ml/瓶625.950495660-5ML邻二甲苯5ml/瓶641.160595670-5ML间二甲苯5ml/瓶641.160695680-5ML对二甲苯5ml/瓶601.380746139-5ML-R乙醇5ml/瓶391.950891237-1ML-F异丙醇1ml/瓶360.360919422-5ML正丁醇5ml/瓶827.191002474-5ML4-甲基-2-戊酮5ml/瓶1034.281102482-1ML环己酮1ml/瓶221.131258958-5ML乙酸乙酯5ml/瓶859.951340858-1ML乙酸丙酯5ml/瓶241.021473285-1ML乙酸丁酯4ml/瓶241.021590871-1ML-F乙酸异丙酯3ml/瓶262.081672405-1ML-F乙二醇二甲醚2ml/瓶363.871782762-1ML-F甲醇1ml160.291896566-5ML-F正丙醇5ml/瓶1430.911945997-1ML-F乙酸甲酯1ml/瓶437.582047745-U苯乙烯1g/瓶273.78 关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 如何靠‘谱’品酒: Vocus PTR-TOF高通量白酒样品风味分析
    白酒的历史悠久,根据原料和工艺的不同,白酒香型较为多样 [1]。自古以来,人们就钟情于高品质的酒,描述“好”酒的佳句颇多,如诗仙李白的“兰陵美酒郁金香,玉碗盛来琥珀光”, 王翰的“葡萄美酒夜光杯, 欲饮琵琶马上催”,王维的“新丰美酒斗十千,咸阳游侠多少年”等。酒香不怕巷子深,通常香味是人们判断酒品质的第一印象,而且品质较好的白酒一般具有较为特殊且复杂的风味。闻香识酒是品酒师们的基本技能,但由于从业门槛高,培训时间长,感官评价偏主观,及可能受身体状况影响也使得酿酒行业在寻找可补充或替代的分析解决方案。单纯从化学的角度讲,酒的香味主要来自于酒体中所含的挥发性物质,尤其是含氧物种,也有某些含氮和有机硫物种等。近期有学者提议利用科学的人工干预白酒发酵过程来直接调控白酒风味。相对于传统的色谱或者色谱质谱方案,近年来兴起的快速质谱技术,尤其是质子转移反应(PTR-TOF)质谱法因其高通量分析能力,全谱风味物种检测能力以及较好的灵敏度,逐渐成为含酒精类饮品风味分析平台核心仪器之一。除了直接分析酒类风味之外,直接进样PTR-TOF质谱仪也可通过呼气模块直接取样口腔或鼻腔中气体,实时分析和监测口腔环境,更真实反映白酒在食用过程中影响观感的组分动态变化(引用‘PTR-TOF动态分析鼻腔气中白酒的风味变化’公共号文章)。图1 白酒(图片来自于网络)PTR-TOF试剂与方法本次测试中,我们共测量了20个不同类型的酒样,包含不同香型的白酒和白兰地。测试中为降低酒精对信号的影响,对酒样进行了稀释。通过比较稀释后的酒样的完整质谱图,选择了最佳的稀释浓度进行样品测量,来最大程度上减少乙醇所带来的基体影响,保证风味物质的最大检测效果。本次测量Vocus CI-TOF的采样时间设置为1s/全谱(包含m/Q 400的所有谱峰),每个样品的持续进样测量时间约30秒,切换样品期间利用干净空气吹扫样品残留以恢复仪器本底信号:完成20个样品的检测时间小于20分钟。如利用自动顶空进样系统进行采样,进样测量则更加简单,单个样品检测分析时间也将更快(可达到5秒/样品)。PTR-TOF分析结果基于本次检测结果,我们选取了谱图上60多个变化趋势较明显的峰浓度进行了比较分析。图1中X轴是不同物质对应的质荷比,Y轴是样品编号,图中圆圈越大、颜色越深,则表示对应的风味物质浓度越高。从该图可见,不同酒样所测到的这60多种代表性挥发性物质的浓度差别较为显著,部分分子量较小(m/Q100)的挥发性物质比较常见,但浓度有所差异。少部分挥发性物质(m/Q200)仅在部分样品中测到,具有一定的独特性。如样品20种测到了分子量在m/Q 300左右且浓度较高的物质,可能是特征性风味分子。Sample 1-20中测量到的不同物种的浓度比较,圆圈的大小表示浓度的高低图2展示了sample 20的质谱图,浓度较高的几个的信号,这些含氧有机分子一般都是传统分析方法鉴别检测不充分或者不了的物种。我们在此对这些信号进行了初步的分析(相对误差均<5ppm): m/Q 145.1223,该信号对应的分子为C8H17O2+,可能是乙酸己酯hexyl acetate或辛酸乙酯ethyl octanoate [2] m/Q 89.0597, 其分子组成为C4H9O2+,该信号可能是乙酸乙酯Ethyl acetate或丁酸Butyric Acid; m/Q 117.0910, 其分子组成为C6H13O2+,该信号可能来自于异丁酸乙酯Ethyl isobutyrate或乙酸丁酯Butyl acetate或乙酸异丁酯Isobutyl acetate或丁酸乙酯Ethyl butyrate; m/Q 145.1587,其分子组成为 C9H21O+, 该信号可能是1-壬醛1-Nonanol或2-壬醛2-Nonanol或2,6-Dimethyl-4-heptanol; m/Q 75.0804, 其分子组成为C4H11O+,该信号可能是正丁醇1-Butanol或异丁醇Isobutanol。图3 Sample20的全谱扫描图值得注意的是,样品20中检测到了几个之前文献没有报道过的特殊的峰,比如m/Q 289.2373, 其分子式为C16H33O4+,该物质可能是一种二甘醇月桂酸酯Diethylene glycol monolaurate;m/Q 261.206036, 其分子式为C14H29O4+,该物质初步定性为2-(2-Methoxyethoxy)ethyl nonanoate。PTR-TOF结论基于Vocus CI-TOF的全谱记录能力,本次检测数据中还有很多有趣的信号值得深入去发掘和探究。同时,Vocus CI-TOF质谱仪快速分析样品的能力,能够满足对大批量的样品进行实时在线的快速检测,尽可能的缩短对样品的检测时间,有助于提升对大批量产品的品控和筛查能力。参考文献[1] 白酒基础知识扫盲:12种香型风味各不同,喝过5种就算是老酒客[2] Chen, L., Yan, R., Zhao, Y., Sun, J., Zhang, Y., Li, H., Zhao, D., Wang, B., Ye, X. and Sun, B.: Characterization of the aroma release from retronasal cavity and flavor perception during baijiu consumption by Vocus-PTR-MS, GC×GC-MS, and TCATA analysis, LWT, 174, 114430, https://doi.org/10.1016/j.lwt.2023.114430, 2023.
  • 赛默飞发布6000型固定污染源挥发性有机物排放连续监测系统新品
    Thermo Scientific 6000型固定污染源挥发性有机物排放连续监测系统挥发性有机物监测装置:测量CH4/NMHC、苯、甲苯、二甲苯等苯系物,定制化组分VOCs烟气参数监测装置:测量流速、温度、压力、湿度、氧量(根据需求)辅助气体装置:供应氢气、零气、氮气、标气等系统控制及数据采集装置直接抽取法(热-湿式)采样系统采样探头为了适应不同的装置及工况,赛默飞固定污染源挥发性有机物排放连续监测系统选定可以根据需要设置加热温度的采样探头,并在满足HJ 1013要求的情况下,减少过渡加热造成组分变化。取样探头带有标准的防护罩。电加热取样探头可以控制加热到最高200℃。温度控制系统除恒温控制整个取样探头外,在探头掉电或温度过低时可以输出报警信号给系统。探头最高可以应含尘量≤10g/m3。不锈钢伴热管线从取样探头抽出的样气通过电伴热取样管线进入样品预处理系统。取样管线是恒功率加热式的,并采用温控器对管线温度进行控制,加热温度可以设定为120-180℃,以保证样气在传输过程中不发生冷凝或组分变化。取样管线的材质为不锈钢,可以避免Telfon材质在高温下析出挥发性有机物造成测量误差。样气预处理系统挥发性有机物的物质种类繁多,部分溶于水。为避免此情况导致测量不准确,系统不设置制冷器,高温加热的样气直接进入分析仪(可接受的样气最高温度为220℃)。预处理单元能够对颗粒物、焦油等进行滤除。系统内过滤精度高达0.5μm。6000型固定污染源挥发性有机物排放连续监测系统特点:1. 升级版的FID提升仪器的灵敏度,增加抗噪性,耐震性,使仪器在不同环境温度下保持稳定2. EPC压力准确度± 1%3. 采样与进样压力平衡,提升采样精度4. 完整的自动点火机制,确保安全性5. 全段加热,无冷点6. 氧峰技术方案,指标优于国标7. 通过远程模式实现闭门操作应用领域:1. 石化2. 电子半导体3. 印刷电路板4. 医药5. 橡胶/塑料制品6. 涂料与油墨7. 汽车制造与维修8. 印刷与包装印刷9. 家具制造10. 表面涂装12. 黑色冶金创新点:1. 结合Thermo Scientific几十年的色谱分析经验,重新构建的新一代FID检测器,可获得优于国标要求的基线噪声和检测限值;检测器采用集成模块化设计,提高了维护便利性和性能稳定性。2. 专有技术改进FID气路结构设计,从源头解决氧气影响问题,复杂样气组分分析无忧。3. 全新优化改进的样品管路,可以进一步保证样品真实性,减少干扰,提高测量精度。4. 全面检测优选的样品采集传输材料,全程使用脱油脱脂316L不锈钢材质,保证样品真实性,减少样品采集传输损失和干扰。5. 双级采样泵设计,可在保证优于国标要求的响应时间同时,减少样品压力波动对测量的影响。6. 四级不锈钢烧结样品过滤,保证样品的过滤精度,减少样品传输压力损失,提高测量准确性,减少系统维护量。7. 优于国标要求的供电元件的选型和设计,保证仪器稳定运行的同时,保障使用者的人身安全。8. 冗余式设计,预留后期客户增加监测项目的空间,并预留部分通讯接口,便于客户对数据的有效利用。9. 国际知名品牌的PLC+工控机组成的DAS系统,保证系统长期稳定运行,提供长期数据存储,符合国标数据报表要求。10. 原装进口的氢气安全切断阀,可保证7x24连续运行的性能稳定性。11. 灵活的系统接口,可以兼容多种辅助设备信号接入。12. 手动/自动的全面配置,可以减少维护人员投入,也可以手动快速操作。6000型固定污染源挥发性有机物排放连续监测系统
  • 禾信298万中标一台在线挥发性有机物质谱仪及配套
    p  重庆市环境科学研究院日前发布大气环境科研能力建设项目(18A1884)结果公告,广州禾信仪器股份有限公司以298万元中标一台SPIMS2000在线挥发性有机物在线分析质谱仪及配套设备,用于对大气挥发性有机物进行实时监测。/pp  详情如下:/pp  一、项目号:18A1884 采购执行编号:0611-BZ1800400845AH-2/pp  二、项目名称:重庆市环境科学研究院大气环境科研能力建设项目/pp  三、采购方式:公开招标/pp  四、评审日期: 2018年9月17日/pp  五、公告日期: 2018年9月18日/pp  六、中标结果br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201809/uepic/544cd421-817b-46fa-be4a-dd48c5e44840.jpg" title="2018-09-30_002321.jpg" alt="2018-09-30_002321.jpg"//pp  七、评标委员会/pp  汪洪 熊华明 彭岗 申世明 方维凯/pp  八、其他事项/pp  公告期限:1个工作日/pp  九、联系人/pp  采购人:重庆市环境科学研究院/pp  采购经办人:高奥/pp  采购人电话:023- 67850069/pp  采购人传真:023- 67850069/pp  采购人地址:重庆市渝北区冉家坝旗山路252号/pp  代理机构:重庆市政府采购中心/pp  代理机构经办人:白帆 毛艺洁/pp  代理机构电话:023-67078013 67707443/pp  代理机构传真:023-67707355/pp  代理机构地址:重庆市江北五里店五简路2号重庆咨询大厦B幢505室/p
  • 固定污染源单组分挥发性有机物(VOCs)分析方案(下)-北京博赛德
    在固定污染源单组分挥发性有机物(VOCs)分析方案(中)-中我们讨论了 固定污染源单组分挥发性有机物(VOCs)分析难点及常见问题以及造成的原因。今天我们继续分享一些解决办法和方案,希望给到广大环境监测机构和企业一些思路。4 方法依据和解决方案为了满足固定污染源的监测需求,结合多个已经颁布的相关标准,北京博赛德科技有限公司针对该方法面临的难点,提供了多方面的解决思路,使方法更稳定,适用性更强。《固定污染源废气VOC的采样 气袋法》 HJ732-2014《固定源废气监测技术规范》 HJ/T 397-2007《固定污染源废气 VOCs 的测定气相色谱-质谱法》DB 50/T 679—20164.1 采样真实性方法用玻璃真空瓶采样,废气中所有组分都被采集,样品更真实,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。4.2 高沸点物质进样时的残留尽管玻璃材质本身惰性无吸附,但高沸点组分在常温下会产生凝结现象,因此本方法可选自动加热进样功能,提高高沸点物质的进样效率,大大降低了吸附。4.3 高沸点物质在整体系统内的残留4.3.1小体积定量环进样满足污染源的定量范围,又避免了污染物过量对系统造成的污染。4.3.2空阱聚焦空阱聚焦,可保证高沸点物质快速释放。4.4 自动添加内标方法可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。4.5 内标添加方式 方法采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致。4.6 扩展功能方法可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。5 结果展示 由谱图可见,高沸点物质灵敏度高。经方法验证数据可知,所有可测组分精密度高、准确度合格。烷烃、烯烃、芳香烃、卤代烃类组分响应稳定,检出限低;醛、酮、酯类物质检出限虽高于烃类物质,但响应稳定,可准确检测中低浓度以上的该类化合物。6 结论空气中挥发性有机物检测。本方法用玻璃真空瓶采样,代表性强。玻璃内壁惰性强,无吸附,储存稳定性好。一次采样可多次进样,增加检测结果的可靠性。可自动加热进样,大大降低了高沸点物质的吸附。小体积定量环进样,空阱聚焦,可保证高沸点物质快速释放,提高灵敏度。可直接连接标气罐,自动添加内标,避免了手动稀释内标的过程。采用双定量环设计,样品和内标独立的定量环进样系统,同时采集,同时吹扫进入处理系统,保证了二者路径完全一致,内标可准确反映样品在系统内的状态,增加检测的准确性。可选大体积进样预浓缩功能,扩展应用于环境空气中挥发性有机物检测。 希望这篇纷享方案为全国的环境监测机构、各企业自查自检提供一些的支持,早日实现低碳环保的生态环境。
  • 我国大气挥发性有机物政策总结
    2011年3月,国家十二五规划中强调&ldquo 深化颗粒物污染防治&rdquo ,而研究发现,挥发性有机物是大气颗粒物的重要来源,故对挥发性有机物的控制逐步受到重视。  2011年12月,《国家环境保护&ldquo 十二五&rdquo 规划》发布,其中强调&ldquo 加强挥发性有机污染物和有毒废气控制&rdquo 。此规划正式提出控制挥发性有机污染物的排放,并明确提出开展挥发性有机污染物监测工作。 &ldquo 加强石化行业生产、输送和存储过程挥发性有机污染物排放控制。鼓励使用水性、低毒或低挥发性的有机溶剂,推进精细化工行业有机废气污染治理,加强有机废气回收利用。实施加油站、油库和油罐车的油气回收综合治理工程。开展挥发性有机污染物监测,完善重点行业污染物排放标准。&rdquo   2013年9月,国务院印发《大气污染防治行动计划》(即大气十条),进一步细化了需要控制挥发性有机污染物的重点行业。 &ldquo 推进挥发性有机物污染治理。在石化、有机化工、表面涂装、包装印刷等行业实施挥发性有机物综合整治,在石化行业开展&ldquo 泄漏检测与修复&rdquo 技术改造。限时完成加油站、储油库、油罐车的油气回收治理,在原油成品油码头积极开展油气回收治理。完善涂料、胶粘剂等产品挥发性有机物限值标准,推广使用水性涂料,鼓励生产、销售和使用低毒、低挥发性有机溶剂。推进非有机溶剂型涂料和农药等产品创新,减少生产和使用过程中挥发性有机物排放。&rdquo   同期,环保部等六部委共同发布《京津冀及周边地区落实大气污染防治行动计划实施细则》。 &ldquo 实施挥发性有机物污染综合治理工程。到2014 年底,加油站、储油库、油罐车完成油气回收治理。到2015 年底,石化企业全面推行&ldquo 泄漏检测与修复&rdquo 技术,完成有机废气综合治理。到2017 年底,对有机化工、医药、表面涂装、塑料制品、包装印刷等重点行业的559 家企业开展挥发性有机物综合治理。&rdquo   2014年7月,环保部等六部委共同发布《大气污染防治行动计划实施情况考核办法(试行)实施细则》,此细则规定了全国大气挥发性有机物控制的进度。  &ldquo 2014年,制定地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物综合整治方案 完成储油库、加油站和油罐车油气回收治理,已建油气回收设施稳定运行。  2015年,北京市、天津市、河北省、上海市、江苏省、浙江省及广东省珠三角区域所有石化企业完成一轮泄漏检测与修复(LDAR)技术改造和挥发性有机物综合整治 有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到50%,已建治理设施稳定运行。其他地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到50%,已建治理设施稳定运行。  2016年,北京市、天津市、河北省、上海市、江苏省、浙江省及广东省珠三角区域有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到80%,已建治理设施稳定运行。其他地区石化、有机化工、表面涂装、包装印刷等重点行业挥发性有机物治理项目完成率达到80%,已建治理设施稳定运行。  2017年,各地区重点行业挥发性有机物综合整治方案所列治理项目全部完成,已建治理设施稳定运行。&rdquo   至此,大气挥发性有机物治理工作开始开展,而大气挥发性有机物的监测工作作为治理的前端工作,也正式开启。  2014年12月,环保部发布《石化行业挥发性有机物综合整治方案》,石化行业的挥发性有机物治理工作率先开展。  从上述政策可以看出,我国挥发性有机物治理将从京津冀、长三角、珠三角地区向全国逐步开展,涉及的行业有石油化工、有机化工、表面涂装、包装印刷、医药、塑料制品等,其中石化行业已制定明确的时间表。
  • 总有机碳TOC分析仪对挥发性化合物的回收率
    1、挑战总有机碳(TOC,Total Organic Carbon)分析技术能够有效测量样品中的杂质,提供有机污染物的简明、非专属、全面的测量结果,为用户提供宝贵的工艺监测数据。准确地检测和量化低TOC浓度,对工艺控制、产品质量、资产保护来说至关重要。有机物的污染会影响生产工艺、污染制成品,导致整个产品批次不合格,甚至损坏生产设备。有机污染物的来源之一是挥发性化合物。挥发性和半挥发性化合物常来源于清洁剂或冷却剂。挥发性污染物也可能来自源水和化学分解产物。能够有效检测挥发性和半挥发性化合物,对于城市用水和工业用水处理工艺的全面检漏来说非常关键,我们可以用TOC分析技术来完成这项检测任务。先将有机物氧化成CO2,然后检测CO2的含量,从而完成TOC分析。有些常用的TOC分析方法会在过程中添加酸剂并进行气体吹扫。向液体样品中添加酸剂降低其pH值,可以确保将所有以碳酸根或碳酸氢根形式存在的碳转化为溶解CO2。气体吹扫就是使气泡通过液体样品,去除样品中的其它溶解气体或挥发性液体的过程。有些分析方法很难有效检测挥发性化合物,这是因为挥发性化合物会消失在气体吹扫过程中,或者需要用特殊方法才能检测到。这些局限性会造成监测数据不准确,从而导致应对决策延误甚至错误。本文比较了以下三种TOC氧化法对挥发性化合物的回收效率:高温催化燃烧法两级先进氧化法紫外-过硫酸盐氧化和膜检测法(此技术用于 Sievers M系列TOC分析仪)2、实验在实验中,我们用上述几种TOC氧化方法对不同的挥发性化合物进行测试,以了解这些氧化方法的分析性能。我们测量了TOC浓度分别为0.25 ppm、1.0 ppm、5.0 ppm的标准品的TOC值。本次研究根据以下化合物特性,选用4种化合物【丙酮、甲醇、甲乙酮(MEK)、异丙醇(IPA)/2-丙醇】进行测试:具有挥发性或半挥发性是水系统中常见的污染物可能影响制成品质量,或长期损坏生产设备催化燃烧(CC,Catalytic Combustion)式分析仪在本次研究中使用的催化燃烧式分析仪用铂催化剂和高温燃烧法进行TOC氧化,然后进行非色散红外(NDIR,Non-Dispersive Infrared)检测。在TOC或POC(Purgeable Organic Carbon,可吹除有机碳)模式下运行分析仪来分析挥发性化合物,工作流程见图1和图2。POC模式是分析仪的可选配置,不在本次研究中讨论。图1:催化燃烧式分析仪的NPOC(Non-Purgeable Organic Carbon,不可吹除有机碳)模式图2:催化燃烧式分析仪的TOC模式图1和图2是催化燃烧式分析仪的两种常见操作模式。图1显示,在NPOC模式的吹扫过程中,IC(Inorganic Carbon,无机碳)和POC被去除,因而不包含在测量结果中。图2显示了TOC分析的两步过程。在TC测量中,由于未吹扫就进行氧化,TC(Total Carbon,总碳)测量结果中包括了POC。在IC测量中,样品和酸剂经过吹扫,产生的CO2被载气送到NDIR部分进行测量。两级先进氧化(TSAO,Two-Staged Advanced Oxidation)式分析仪在本次研究中使用的两级先进氧化式分析仪用氢氧化钠和臭氧(能够产生羟基自由基)进行TOC氧化,然后进行NDIR检测 。在TC或VOC(Volatile Organic Carbon,挥发性有机碳)模式下操作分析仪来分析挥发性化合物,TC模式和VOC模式均为分析仪的可选配置。本次研究不评估TC模式。两级先进氧化式分析仪的VOC模式类似于催化燃烧式分析仪的POC模式,这两个术语可以互换使用。图3是两级先进氧化式分析仪的标准操作模式【TIC(Total Inorganic Carbon,总无机碳)+TOC模式】。在这两步操作模式下,在NDIR测量之前先进行IC和POC吹扫。由于未进行氧化,POC不包含在测量结果中。此模式的两个步骤使用同一样品,TOC代表样品中的NPOC。*注意:在 IC 测量步骤中,已通过吹扫去除了样品中的 POC 和 IC。图3:两级先进氧化式分析仪的TIC+TOC模式图4是两级先进氧化式分析仪的附加TC模式。在此模式下,用氢氧化钠和臭氧来预氧化样品,以便在吹扫之前氧化全部POC。分析仪的VOC模式是TC分析和TIC+TOC分析的结合。计算实测的“TC”与实测的“TIC和NPOC之和”之间的差值,即可得到VOC。VOC=TC–(TIC+NPOC)。图4:两级先进氧化式分析仪的TC模式Sievers M系列分析仪Sievers M系列TOC分析仪用紫外-过硫酸盐进行TOC氧化,然后进行膜电导(MC,Membrane Conductimetric)检测。分析仪可以在普通操作模式下检测挥发性有机物。图5是M系列分析仪所采用的TOC分析方法的流程。图5:M系列分析仪的标准操作图5显示了Sievers M系列TOC分析仪的普通分析模式。样品在被加入酸剂后,分流到分析仪中相互独立的TC通道和IC通道中。TC通道中的样品被加入氧化剂,然后在紫外线照射下,样品中的有机物被氧化。IC通道中的样品则跳过上述过程。各通道中的样品通过CO2渗透膜,将CO2分离开。TOC等于TC减去IC。如果需要事先去除IC以获得更准确的TOC结果,可以使用无机碳去除器(ICR,Inorganic Carbon Remover),而无需进行吹扫。建议当IC高10倍的TOC时使用无机碳去除器。IC通道中的样品被送进无机碳去除器,通过一圈CO2渗透管,即可在不使用载气的情况下去除IC。此方法不会在去除IC的过程中损失挥发性碳,因而能准确测量TOC。同催化燃烧工艺和两级先进氧化工艺相反,M系列分析仪内的样品不接触空气,这就能够确保在受控实验室环境中测得的挥发性有机物的结果真实反应了在线设置中的实际工艺样品的TOC。3、结果图6-9显示了上述三种TOC氧化技术的挥发性化合物回收率的测量数据。M系列分析仪在关闭无机碳去除器的普通分析模式下运行,催化燃烧式分析仪在TOC模式下运行,两级先进氧化式分析仪在VOC模式下运行。图 6:丙酮的回收率CC=催化燃烧TSAO=两级先进氧化图 7:甲醇的回收率图 8:甲乙酮(MEK,也称为丁酮)的回收率图 9:异丙醇(IPA)的回收率图6-9显示了在本次研究中评估的4种化合物的回收率。各图中的红线代表100%回收率。4、结论本次研究使用的所有分析仪都在正确的操作模式下成功完成了对化合物的分析,但Sievers M系列分析仪是唯一在标准操作模式下并且在不用载气的情况下有效检测挥发性有机物的仪器。表1列出了所有化合物和所有分析浓度的挥发性有机物的平均回收率。表 1:本次研究中的所有化合物和分析浓度的挥发性有机物的平均回收率分析仪平均回收率M系列分析仪100.04%CC103.02%TSAO90.52%在本次研究中使用的催化燃烧式分析仪只能在TOC模式(或配置可选附件的POC模式)下检测挥发性化合物。但大多数用户所采用的标准操作是NPOC模式,该模式无法检测挥发性有机物。在本次研究中使用的两级先进氧化式分析仪只能在TC或VOC模式下检测挥发性有机物,但这两种模式都是可选配置。催化燃烧式分析仪和两级先进氧化式分析仪都需要用载气进行吹扫和NDIR检测。用载气进行吹扫时,会损失挥发性和半挥发性有机化合物。用载气进行NDIR检测时,要求进行精确的气液分离,这是因为水分会影响测量结果的准确性。Sievers M系列分析仪采用膜电导检测法来测量液体(而非气体)的CO2,能够避免上述缺点。为了应对工艺偏差或泄漏,用户必须能够有效地监测有机污染物(如挥发性化合物)。精准的监测结果帮助用户正确掌握工艺。Sievers M系列分析仪能够在标准操作模式下准确测量挥发性化合物的TOC,为用户提供了理想的监测解决方案。紫外-过硫酸盐氧化结合膜电导检测技术,无需进行吹扫和使用载气,避免了挥发性化合物的损失。在低污染的情况下快速识别工艺泄漏和生产效率过低的原因,可以有效保护生产设备和制成品质量,帮助用户及时做出应对决策,从而为用户节省大量的时间和资金。Sievers M系列分析仪的检测限(LOD,Limit of Detection)和定量限(LOQ,Limit of Quantification)最低,对低浓度挥发性化合物的分析结果最准确,能够满足用户的一切监测需求。Sievers M系列TOC分析仪具有精准的分析性能、良好的整体易用性、无需另行购买可选附件,是检测挥发性有机化合物的理想工具。◆ ◆ ◆联系我们,了解更多!
  • 解读 HJ759-2015《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》修订
    近期,环保部BCTHJ759-2015《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》方法进行了修订,北京博赛德科技有限公司(BCT)的子公司,北京博赛泰克质量技术检测有限公司非常荣幸参与了此次修订的验证工作。本次修订主要增加了采样分析环节的质控内容,对操作细节和操作流程进行了规范,将罐采样分析中常见的问题在注意事项中明确,对于数据质量的提高,起到了很好的指导作用。HJ 759-2015修订解读3月17日,环保部发布《环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法》征求意见稿,对HJ 759-2015进行修定。由于罐采样分析方式具有采样过程简单,存储时间长,可多次分析等特点,HJ 759-2015一经发布BCT得到广泛使用,在环境空气中挥发性有机物分析领域,解决了诸多分析难点。北京博赛泰克质量技术检测有限公司,非常荣幸参与了此次修订的验证工作。部分修订内容解读本次修订主要增加了采样分析环节的质控内容,对操作细节和操作流程进行了规范,将罐采样分析中常见的问题在注意事项中明确,对于数据质量的提高,起到了很好的指导作用。主要改进如下:提出了微负压采样的方式保证了采样过程的流量恒定,避免了由于温差带来的水分冷凝,并且可以对采样罐运输过程进行泄露的质量控制强化了标气加湿步骤模拟了环境空气的水分,增加了标气和实际样品的一致性,同时也提高了标准物质在采样罐内的存储稳定性明确了采样罐的惰性检查和气密性检查等过程加强了罐子惰性和气密性的要求,明确了的采样罐日常维护和测试工作,对采样过程起到了很好的规范做用规定了采样过滤器的清洗注意事项可以很好的避了日常分析过程中常见的高沸点物质响应低等问题同时增加了校准曲线的制作方式对高浓度样品可准确定量 ENTECH 7200 CTS 预浓缩系统 本次修订的亮点在于既保存了保留传统的液氮制冷方式,又增加了北京博赛德销售的ENTECH 7200 CTS大气预浓缩系统的常温捕集方式。该系统的常温捕集方法避免了低温捕集带来的除水效果差,峰形状过宽,空白值高的问题。结构原理ENTECH 7200CTS是BCT新一代的大气浓缩仪,它采用了全新的多重毛细柱捕集系统,无需液氮制冷,也无需电子制冷,多重毛细柱捕集系统替代传统的填充捕集阱,解决 “通道效应”,具有更高的捕集回收率,实现了空气中C3-C12+挥发性有机物的捕集。ENTECH 7200CTS原理图主要优势除水效果好,水溶性组分稳定性更高.ENTECH 7200CTS 水峰填充柱捕集阱水峰经ENTECH 7200CTS系统预浓缩之后出峰峰形更锐利,检出限低,低沸点物质的缝宽可达到小3s。填充柱捕集阱和多重毛细柱捕集阱缝宽对比图如下两图:离子碎片58的比较部分组分TIC图的比较ENTECH 7200CTS系统空白值更低,多重毛细柱捕集阱将样品和标准气体吸附在捕集阱的表面,加热后被测组分瞬间解析,捕集阱内不会产生残留,而且烘烤捕集阱BCT多5min系统空白即能满足检测需求,非常节约分析时间。系统空白TIC图结论由此看出ENTECH 7200CTS大气浓缩仪对样品的除水效果好、样品出峰峰形更锐利,检出限低、系统空白值更低。
  • 岛津应用:GCMS结合顶空进样器测定地表水中挥发性有机物
    挥发性有机物(VOCs)是指沸点50~260℃、室温下饱和蒸汽压超过133.322 Pa的易挥发性有机物。挥发性有机物对人体健康的影响主要是刺激眼睛和呼吸道,使皮肤过敏,使人产生头痛、咽痛和乏力,其中还包含了较多致癌物质。 我国地表水环境质量不容乐观,地表水污染问题主要来源于工业废水和城镇生活污水的排放。GB 3838-2002《地表水环境质量标准》中对20多种挥发性有机物(VOCs)的限定值为0.6 μg/L~1.0 mg/L不等。因此为了防止水污染,保护地表水水质,保障人体健康,维护良好的生态系统,需要进行挥发性有机物的检测和控制。现行VOCs的检测方法主要有直接进样法、顶空-气相色谱质谱联用法、吹扫捕集-气相色谱质谱法等。顶空进样法采用气体进样,不需要进行有机溶剂萃取等前处理,且分析速度快。 本文建立了一种顶空进样测定地表水中挥发性有机物含量的方法,该方法操作简单,灵敏度高,检出限低,且适用性强。采用岛津公司 HS-20 结合气相色谱质谱联用仪(GCMS-QP2010 Ultra)分析地表水中的挥发性有机物,方法操作简单,在0.1~10.0 μg/L 标准曲线范围内线性良好,样品加标回收率为75.59~109.03%。本方法可以用于地表水中挥发性有机物的定性定量检测。了解详情,请点击 http://pmo42817f.pic34.websiteonline.cn/upload/y9nq.pdf
  • 陕西首项挥发性有机物环境保护地方标准发布
    2月8日,陕西省首次针对挥发性有机物治理的环境保护地方标准——《挥发性有机物排放控制标准》由省环保厅会同省质监局制定完成已经发布,并于2月10日正式实施。  挥发性有机物是导致城市灰霾和光化学烟雾的重要前体物,主要来源于化工、医药、电子制造、家具等行业。该《标准》对涉及的8个主要相关行业,如汽车整车制造、印刷、木质家具制造、医药制造、电子产品制造、涂料与油墨及其类似产品制造、橡胶制品制造、表面涂装等的挥发性有机物排放进行了严格的标准限制,在适用范围、排放限值、工艺管理、监测要求等方面作了详细规定,从原辅材料控制、工艺过程控制、末端排放控制、排放总量控制等4个控制途径设置了技术或管理规定和排放限值两类控制指标。同时,对关中地区的挥发性有机物排放限值更加严格。  《标准》规定,新建企业自2017年2月10日起执行,现有企业自2018年2月10日起执行。据初步估算,标准实施后,陕西省将有78%的工业挥发性有机物排放受到更加严格的标准限制,8个主要行业挥发性有机物减排总量可达65%以上,全省工业挥发性有机物排放总量将在现有水平上削减至少20%以上。
  • 生态环境部发布《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》等7项国家生态环境标准
    为支撑相关生态环境质量标准、风险管控标准、污染物排放标准实施与国际公约履约工作,近期,生态环境部发布《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)、《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)、《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)、《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)、《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)、《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)和《地表水环境质量监测点位编码规则》(HJ 1291-2023)等7项国家生态环境标准。《环境空气 65种挥发性有机物的测定 罐采样/气相色谱-质谱法》(HJ 759-2023)为第一次修订,适用于环境空气和无组织排放监控点空气中65种挥发性有机物的测定。与原标准相比,本标准在适用范围中增加了无组织排放监控点空气,完善了采样技术要求和前处理、定量方式的性能指标要求,支撑细颗粒物和臭氧协同控制工作及《关于消耗臭氧层物质的蒙特利尔议定书》履约监测。《固定污染源废气 非甲烷总烃连续监测技术规范》(HJ 1286-2023)为首次发布,规定了连续监测系统的组成和功能、技术验收、运行维护、质量保证和质量控制以及数据审核和处理等要求,有利于推动非甲烷总烃连续监测技术在固定源管理中的标准化、规范化应用,支撑《石油炼制工业污染物排放标准》(GB 31570-2015)等标准实施。《固定污染源废气 烟气黑度的测定 林格曼望远镜法》(HJ 1287-2023)为首次发布,适用于固定污染源排放口处烟气黑度的测定,解决了林格曼黑度图板携带不便、摆放受限、易损褪色等问题,进一步提高烟气黑度测定结果的准确性和可比性,支撑《锅炉大气污染物排放标准》(GB 13271-2014)等标准实施。《水质 丙烯酸的测定 离子色谱法》(HJ 1288-2023)为首次发布,适用于地表水、地下水、生活污水和工业废水中丙烯酸的测定,填补了水中丙烯酸分析方法标准空白。本标准具有前处理方法简单、灵敏度高、重复性好等优点,支撑《石油化学工业污染物排放标准》(GB 31571-2015)、《合成树脂工业污染物排放标准》(GB 31572-2015)等标准实施。《土壤和沉积物 15种酮类和6种醚类化合物的测定 顶空/气相色谱-质谱法》(HJ 1289-2023)为首次发布,适用于土壤和沉积物中相关酮类和醚类化合物的测定,填补了土壤和沉积物中醚类化合物分析方法标准空白,拓展了酮类化合物分析对象范围,操作简便,易于推广,支撑土壤风险评估及管控工作。《土壤和沉积物 毒杀芬的测定 气相色谱-三重四极杆质谱法》(HJ 1290-2023)为首次发布,适用于土壤和沉积物中3种指示性毒杀芬同类物的测定,填补了土壤和沉积物中毒杀芬分析方法标准空白。本标准具有准确性好、灵敏度高等优点,支撑《新污染物治理行动方案》实施。《地表水环境质量监测点位编码规则》(HJ 1291-2023)为首次发布,适用于地表水环境质量常规监测点位的编码工作。本标准明确了监测点位控制级别、流域水系、行政区划、水体类型和顺序等要素的编码方法,规范了监测点位编码工作,在点位信息维护、数据联网与应用、信息公开等方面发挥重要作用。上述7项标准的发布实施,丰富了监测标准供给,对于进一步完善国家生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,支撑国际公约履约工作具有重要意义。
  • 岛津应用:GCMS结合顶空进样器测定地表水中挥发性有机物
    挥发性有机物(VOCs)是指沸点50~260℃、室温下饱和蒸汽压超过133.322 Pa的易挥发性有机物。挥发性有机物对人体健康的影响主要是刺激眼睛和呼吸道,使皮肤过敏,使人产生头痛、咽痛和乏力,其中还包含了较多致癌物质。 我国地表水环境质量不容乐观,地表水污染问题主要来源于工业废水和城镇生活污水的排放。GB 3838-2002《地表水环境质量标准》中对20多种挥发性有机物(VOCs)的限定值为0.6 μg/L~1.0 mg/L不等。因此为了防止水污染,保护地表水水质,保障人体健康,维护良好的生态系统,需要进行挥发性有机物的检测和控制。现行VOCs的检测方法主要有直接进样法、顶空-气相色谱质谱联用法、吹扫捕集-气相色谱质谱法等。顶空进样法采用气体进样,不需要进行有机溶剂萃取等前处理,且分析速度快。 本文建立了一种顶空进样测定地表水中挥发性有机物含量的方法,该方法操作简单,灵敏度高,检出限低,且适用性强。采用岛津公司 HS-20 结合气相色谱质谱联用仪(GCMS-QP2010 Ultra)分析地表水中的挥发性有机物,方法操作简单,在0.1~10.0 μg/L 标准曲线范围内线性良好,样品加标回收率为75.59~109.03%。本方法可以用于地表水中挥发性有机物的定性定量检测。 了解详情,敬请点击《GCMS 结合HS-20 顶空进样器测定地表水中挥发性有机物》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 青岛容广发布固定汚染源挥发性有机物采样器新品
    R G K - 3 0 0便携式大气采样器主要应用于大气中挥发性有机化合物(V O C s)的采样。采样器可以连续定时进行顺序采样,设置一次数据最多可采集1 2个样品;采集平行样品,设置一次数据最多可采集6组平行样品。仪器整体设计紧凑, 小型轻便, 方便实用,操作简单。H J / T 1 9 4《环境空气质量手工监测技术规范》H J 6 4 4 - 2 0 1 3《环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法》(1)体积小巧,便于携带,易于使用,适用于现场采样。(2)4 . 3寸触摸屏显示,分辨率4 8 0 * 2 7 2。(3)采样器选用吸附管采样,采样模式自由选择:平行采样,序列采样。(4)采样器每路安装有1个候补吸附管,用于检测所采集数据是否有效。(5)采用交直流两用供电电源。当现场不具备A C 2 2 0 V供电条件时,可以用内部电池供电。内部电池在满电状态下至少可供仪器使用2小时。(6)采样时,泵控制的采样流量为(1 0~2 0 0)m l / m i n之间,保持恒定采样。(7)流量采用质量流量计控制,精确度高,误差低于5 %。(8)吸附管连接采用四氟乙烯材料,防止材料挥发或吸附有机物。(9)可顺序采集1 2个样品,或平行采集6组样品。(1 0)符合国际E P A标准。(1)采样流量范围:( 1 0~2 0 0 ) m l / m i n(2)采样流量示值误差:≤±5 %(3)采样流量重复性:≤2 %(4)采样方式:吸附管(5)连续采样工作一小时,采样器流量稳定性:≤5 %(6)环境湿度:≤8 5 %(7)环境温度:( - 1 0~4 0 )℃(8)吸附管连接材质:四氟乙烯(9)显示方式:触摸显示屏(1 0)工作电源:( A C 2 2 0 V±1 0 % ) / 5 0 H z,内置锂电池,2 4 V / 6 A H创新点:吸附管法VOC采样器,可根据客户指定成多路VOC采样设备固定汚染源挥发性有机物采样器
  • 《2020年挥发性有机物治理攻坚方案》印发(附全文)
    p  为贯彻落实《打赢蓝天保卫战三年行动计划》(国发〔2018〕22号)有关要求,确保完成“十三五”环境空气质量改善目标任务,生态环境部在充分调研基础上制定了《2020年挥发性有机物治理攻坚方案》(以下简称《方案》)并于近日印发。/pp  2020年是打赢蓝天保卫战的决胜之年,挥发性有机物(VOCs)治理攻坚是打赢蓝天保卫战收官的重要任务。生态环境部在相关通知中指出,各级生态环境部门要高度重视,统筹疫情防控、经济社会平稳健康发展,扎实做好“六稳”工作,落实“六保”任务,坚持精准治污、科学治污、依法治污,切实做到问题精准、时间精准、区位精准、对象精准、措施精准,抓好《方案》各项任务措施落实。/pp  要加强组织实施,监测、执法、人员、资金保障等重点向VOCs治理攻坚行动倾斜,加强与相关部门、行业协会等协调配合,形成工作合力。京津冀及周边地区、长三角地区、汾渭平原、苏皖鲁豫交界地区及其他O3污染防治任务重的地区相关省(市)生态环境厅(局)要督促相关城市加大工作力度,力争实现6-9月优良天数提高目标,为完成“十三五”优良天数比率约束性指标打下坚实基础。/pp  全文如下:/pp style="text-align: center "  strong2020年挥发性有机物治理攻坚方案/strong/pp  打赢蓝天保卫战,事关满足人民日益增长的美好生活需要,事关全面建成小康社会,事关经济高质量发展和美丽中国建设,2020年是打赢蓝天保卫战的决胜之年,各地要按照党中央、国务院决策部署,坚定不移贯彻新发展理念,坚持方向不变、力度不减,扎实推进大气污染防治各项任务。当前阶段,我国面临细颗粒物(PM2.5)污染形势依然严峻和臭氧(O3)污染日益凸显的双重压力,特别是在夏季,O3已成为导致部分城市空气质量超标的首要因子,京津冀及周边地区、长三角地区、汾渭平原等重点区域(以下简称重点区域)、苏皖鲁豫交界地区等区域(见附件1)尤为突出,6-9月O3超标天数占全国70%左右。VOCs是形成O3的重要前体物,主要存在于企业原辅材料或产品中,大部分易燃易爆,部分属于有毒有害物质,加强VOCs治理是现阶段控制O3污染的有效途径,也是帮助企业实现节约资源、提高效益、减少安全隐患的有力手段。为确保完成“十三五”环境空气质量改善目标任务,有效降低O3污染,保障人民群众身体健康,在全国开展夏季(6-9月)VOCs治理攻坚行动。/pp  工作思路:以习近平生态文明思想为指导,统筹疫情防控、经济社会平稳健康发展和打赢蓝天保卫战重点任务,扎实做好“六稳”工作,落实“六保”任务,落实精准治污、科学治污、依法治污,做到问题精准、时间精准、区位精准、对象精准、措施精准,全面加强VOCs综合治理,推进产业转型升级和经济高质量发展。坚持长期治理和短期攻坚相衔接,深入实施《“十三五”挥发性有机物污染防治工作方案》《重点行业挥发性有机物综合治理方案》,严格落实无组织排放控制等新标准要求,突出抓好企业排查整治和运行管理 坚持精准施策和科学管控相结合,以石化、化工、工业涂装、包装印刷和油品储运销等为重点领域,以工业园区、企业集群和重点企业为重点管控对象,全面加强对光化学反应活性强的VOCs物质控制 坚持达标监管和帮扶指导相统一,加强技术服务和政策解读,强化源头、过程、末端全流程控制,引导企业自觉守法、减污增效 坚持资源节约和风险防控相协同,大力推动低(无)VOCs原辅材料生产和替代,全面加强无组织排放管控,强化精细化管理,提高企业综合效益。/pp  工作目标:通过攻坚行动,VOCs治理能力显著提升,VOCs排放量明显下降,夏季O3污染得到一定程度遏制,重点区域、苏皖鲁豫交界地区及其他O3污染防治任务重的地区城市6-9月优良天数平均同比增加11天左右(各城市预期性目标详见附件2),推动“十三五”规划确定的各省(区、市)优良天数比率约束性指标全面完成(详见附件3)。/pp strong 一、大力推进源头替代,有效减少VOCs产生/strong/pp  严格落实国家和地方产品VOCs含量限值标准。2020年7月1日起,船舶涂料和地坪涂料生产、销售和使用应满足新颁布实施的国家产品有害物质限量标准要求。京津冀地区建筑类涂料和胶粘剂产品须满足《建筑类涂料与胶粘剂挥发性有机化合物含量限值标准》要求。督促生产企业提前做好油墨、胶粘剂、清洗剂及木器、车辆、建筑用外墙、工业防护涂料等有害物质限量标准实施准备工作,在标准正式生效前有序完成切换,有条件的地区根据环境空气质量改善需要提前实施。/pp  大力推进低(无)VOCs含量原辅材料替代。将全面使用符合国家要求的低VOCs含量原辅材料的企业纳入正面清单和政府绿色采购清单。企业应建立原辅材料台账,记录VOCs原辅材料名称、成分、VOCs含量、采购量、使用量、库存量、回收方式、回收量等信息,并保存相关证明材料。采用符合国家有关低VOCs含量产品规定的涂料、油墨、胶粘剂等,排放浓度稳定达标且排放速率满足相关规定的,相应生产工序可不要求建设末端治理设施。使用的原辅材料VOCs含量(质量比)均低于10%的工序,可不要求采取无组织排放收集和处理措施。推进政府绿色采购,要求家具、印刷等政府定点招标采购企业优先使用低挥发性原辅材料,鼓励汽车维修等政府定点招标采购企业使用低挥发性原辅材料 将低VOCs含量产品纳入政府采购名录,并在政府投资项目中优先使用 引导将使用低VOCs含量涂料、胶粘剂等纳入政府采购装修合同环保条款。/pp  strong二、全面落实标准要求,强化无组织排放控制/strong/pp  2020年7月1日起,全面执行《挥发性有机物无组织排放控制标准》,重点区域应落实无组织排放特别控制要求。各地要加大标准生效时间、涉及行业及控制要求等宣贯力度,通过现场指导、组织培训、新媒体信息推送、发放明白纸等多种方式,督促指导企业对照标准要求开展含VOCs物料(包括含VOCs原辅材料、含VOCs产品、含VOCs废料以及有机聚合物材料等)储存、转移和输送、设备与管线组件泄漏、敞开液面逸散以及工艺过程等无组织排放环节排查整治,对达不到要求的加快整改。指导企业制定VOCs无组织排放控制规程,细化到具体工序和生产环节,以及启停机、检维修作业等,落实到具体责任人 健全内部考核制度,严格按照操作规程生产。/pp  企业在无组织排放排查整治过程中,在保证安全的前提下,加强含VOCs物料全方位、全链条、全环节密闭管理。储存环节应采用密闭容器、包装袋,高效密封储罐,封闭式储库、料仓等。装卸、转移和输送环节应采用密闭管道或密闭容器、罐车等。生产和使用环节应采用密闭设备,或在密闭空间中操作并有效收集废气,或进行局部气体收集 非取用状态时容器应密闭。处置环节应将盛装过VOCs物料的包装容器、含VOCs废料(渣、液)、废吸附剂等通过加盖、封装等方式密闭,妥善存放,不得随意丢弃,7月15日前集中清运一次,交有资质的单位处置 处置单位在贮存、清洗、破碎等环节应按要求对VOCs无组织排放废气进行收集、处理。高VOCs含量废水的集输、储存和处理环节,应加盖密闭。企业中载有气态、液态VOCs物料的设备与管线组件密封点大于等于2000个的,应全面梳理建立台账,6-9月完成一轮泄漏检测与修复(LDAR)工作,及时修复泄漏源 石油炼制、石油化工、合成树脂企业严格按照排放标准要求开展LDAR工作,加强备用泵、在用泵、调节阀、搅拌器、开口管线等检测工作,强化质量控制 要将VOCs治理设施和储罐的密封点纳入检测计划中。/pp  引导石化、化工、煤化工、制药、农药等行业企业合理安排停检修计划,在确保安全的前提下,尽可能不在7-9月期间安排全厂开停车、装置整体停工检修和储罐清洗作业等,减少非正常工况VOCs排放 确实不能调整的,要加强启停机期间以及清洗、退料、吹扫、放空、晾干等环节VOCs排放管控,确保满足标准要求。7月15日前,各省份将石化、化工、煤化工、制药、农药等行业企业2020年检修计划及调整情况报送生态环境部。引导各地合理安排大中型装修、外立面改造、道路画线、沥青铺设等市政工程施工计划,尽量错开7-9月 对确需施工的,实施精细化管控,当预测到将出现长时间高温低湿气象条件时,调整作业计划,避开相应时段。企业生产设施防腐防水防锈涂装应避开夏季或采用低VOCs含量涂料。/pp  strong三、聚焦治污设施“三率”,提升综合治理效率/strong/pp  组织企业对现有VOCs废气收集率、治理设施同步运行率和去除率开展自查,重点关注单一采用光氧化、光催化、低温等离子、一次性活性炭吸附、喷淋吸收等工艺的治理设施,7月15日前完成。对达不到要求的VOCs收集、治理设施进行更换或升级改造,确保实现达标排放。除恶臭异味治理外,一般不采用低温等离子、光催化、光氧化等技术。行业排放标准中规定特别排放限值和控制要求的,应按相关规定执行 未制定行业标准的应执行大气污染物综合排放标准和挥发性有机物无组织排放控制标准 已制定更严格地方排放标准的,按地方标准执行。/pp  按照“应收尽收”的原则提升废气收集率。推动取消废气排放系统旁路,因安全生产等原因必须保留的,应将保留旁路清单报当地生态环境部门,旁路在非紧急情况下保持关闭,并通过铅封、安装自动监控设施、流量计等方式加强监管,开启后应及时向当地生态环境部门报告,做好台账记录。将无组织排放转变为有组织排放进行控制,优先采用密闭设备、在密闭空间中操作或采用全密闭集气罩收集方式 对于采用局部集气罩的,应根据废气排放特点合理选择收集点位,距集气罩开口面最远处的VOCs无组织排放位置,控制风速不低于0.3米/秒,达不到要求的通过更换大功率风机、增设烟道风机、增加垂帘等方式及时改造 加强生产车间密闭管理,在符合安全生产、职业卫生相关规定前提下,采用自动卷帘门、密闭性好的塑钢门窗等,在非必要时保持关闭。按照与生产设备“同启同停”的原则提升治理设施运行率。根据处理工艺要求,在处理设施达到正常运行条件后方可启动生产设备,在生产设备停止、残留VOCs废气收集处理完毕后,方可停运处理设施。VOCs废气处理系统发生故障或检修时,对应生产工艺设备应停止运行,待检修完毕后同步投入使用 因安全等因素生产工艺设备不能停止或不能及时停止运行的,应设置废气应急处理设施或采取其他替代措施。按照“适宜高效”的原则提高治理设施去除率,不得稀释排放。企业新建治污设施或对现有治污设施实施改造,应依据排放废气特征、VOCs组分及浓度、生产工况等,合理选择治理技术,对治理难度大、单一治理工艺难以稳定达标的,要采用多种技术的组合工艺。采用活性炭吸附技术的,应选择碘值不低于800毫克/克的活性炭,并按设计要求足量添加、及时更换 各地要督促行政区域内采用一次性活性炭吸附技术的企业按期更换活性炭,对于长期未进行更换的,于7月底前全部更换一次,并将废旧活性炭交有资质的单位处理处置,记录更换时间和使用量。/pp  strong四、深化园区和集群整治,促进产业绿色发展/strong/pp  7月15日前,各城市根据本地产业结构特征、VOCs排放来源等,重点针对烯烃、芳香烃、醛类等O3生成潜势大的VOCs物种,确定本地VOCs控制重点行业,组织完成涉VOCs工业园区、企业集群、重点管控企业排查,明确VOCs主要产生环节,逐一建立管理台账。同一乡镇及毗邻乡镇交界处同行业企业超过10家的认定为企业集群,VOCs年产生量大于10吨的企业认定为重点管控企业。各地要重点排查以石化、化工、制药、农药、电子、包装印刷、家具制造、汽车制造、船舶修造等行业为主导的工业园区 重点排查以制药、农药、涂料、油墨、胶粘剂、染料、日用化工、化学助剂、合成革、橡胶轮胎制造、有机化学原料制造等化工行业,使用溶剂型涂料、油墨、胶粘剂和其他有机溶剂的家具、零部件制造、钢结构、铝型材、铸造、彩涂板、电子元器件、汽修、包装印刷、人造板、皮革制品、制鞋等行业为主导的企业集群。/pp  对存在突出问题的工业园区、企业集群、重点管控企业制定整改方案,做到措施精准、时限明确、责任到人。工业园区要加强资源共享,实施集中治理和统一管理,开展园区监测评估,建立环境信息共享平台。有条件的石化、化工类工业园区要分析企业VOCs组分构成,识别特征物质,推动建立健全监测预警监控体系,开展走航监测、网格化监测以及溯源分析等工作,完善园区统一的LDAR管理系统,纳入园区环保监控管理平台。重点区域及苏皖鲁豫交界地区城市要全力抓好重点企业集群(详见附件4)治理,形成示范带动效应,结合本地产业情况,进一步完善企业集群清单,抓好综合整治工作。各企业集群要统一整治标准,统一整改时限,标杆建设一批、改造提升一批、优化整合一批、淘汰退出一批。家具、彩涂板、皮革制品、制鞋、包装印刷等以小企业为主的集群重点推动源头替代,汽修、人造板等企业集群重点推动优化整合,对不符合产业政策、整改达标无望的企业依法关停取缔。推进工业园区和企业集群建设涉VOCs“绿岛”项目,统筹规划建设一批集中涂装中心、活性炭集中处理中心、溶剂回收中心等,实现VOCs集中高效处理。对排放量大,排放物质以烯烃、芳香烃、醛类等为主的企业制定“一企一策”治理方案。/pp  strong五、强化油品储运销监管,实现减污降耗增效/strong/pp  加大汽油、石脑油、煤油以及原油等油品储运销全过程VOCs排放控制,在保障安全的前提下,重点推进储油库、油罐车、加油站油气回收治理,加大油气排放监管力度,并要求企业建立日查、自检、年检和维保制度。储油库应采用底部装油方式,装油时产生的油气应进行密闭收集和回收处理,处理装置出入口应安装气体流量传感器。7月15日前,对储油库油气密闭收集系统进行一次检测,任何泄漏点排放的油气体积分数浓度不应超过0.05%。运输汽油的油罐汽车应具备底部装卸油系统和油气回收系统,装油时能够将汽车油罐内排出的油气密闭输入储油库回收系统,往返运输过程中能够保证汽油和油气不泄漏,卸油时能够将产生的油气回收到汽车的油罐内,除必要应急维修外,不应因操作、维修和管理等方面的原因发生油气泄漏 运输汽油的铁路罐车要采取相应措施,减少装油、卸油和运输过程的油气排放。加油站卸油、储油和加油时排放的油气,应采用以密闭收集为基础的油气回收方法进行控制,卸油应采用浸没式,埋地油罐应采用电子式液位计进行液位测量,除必要的维修外不得进行人工量油,加油产生的油气应采用真空辅助方式密闭收集,加油站正常运行时,地下罐应急排空管手动阀门在非必要时应关闭并铅封,应急开启后应及时报告当地生态环境部门,做好台账记录。6-9月,各地组织开展一轮储油库、汽油油罐车、加油站油气回收专项检查和整改工作。/pp  重点区域、苏皖鲁豫交界地区及其他O3污染防治任务重的地区城市鼓励采用更严格的汽油蒸气压控制要求,6-9月对车用汽油实施42-62千帕的夏季蒸气压要求,全面降低汽油蒸发排放 鼓励采取措施引导车主避开中午高温时段加油,引导油库和加油站夜间装、卸油。/pp  strong六、坚持帮扶执法结合,有效提高监管效能/strong/pp  整合执法、监测、行业专家等力量组建专门队伍,结合排查工作,做好指导帮扶和执法监督,开展“送政策、送技术、送服务”等活动。向企业宣传VOCs治理相关法律法规、政策标准,引导企业自觉守法,树立减排VOCs就是增效的理念。/pp  各地对照相关标准要求,对本地区涉VOCs排放工业园区、企业集群、重点管控企业进行指导帮扶,重点区域及苏皖鲁豫交界地区城市实现全覆盖。对排放稳定达标、运行管理规范、环境绩效水平高的企业,纳入监督执法正面清单。做好制药、涂料、油墨、胶粘剂等行业排放标准以及VOCs无组织排放控制标准7月1日全面实施的准备工作,帮扶指导企业加快实施达标排放改造,对于整改进度滞后的企业,要定期通过现场指导、电话、微信、短信等方式进行提醒,确保达到标准要求。/pp  7月1日后,按照“双随机、一公开”模式,开展执法行动,对不能稳定达标排放、不满足无组织控制要求的企业,依法依规予以处罚。将实施停产检修的石化、化工、煤化工、制药、农药等行业企业纳入执法监管范围,重点检查启停机期间以及清洗、退料、吹扫、放空、晾晒等环节是否符合排放标准要求。按照《关于进一步规范适用环境行政处罚自由裁量权的指导意见》要求,规范行政处罚自由裁量权的适用和监督,做到合理合法、公平公正。重点查处违法情节及后果严重、屡查屡犯的,典型案例公开曝光。查处问题范围主要包括违反法律法规标准的10种行为:以敞开、泄漏等与环境空气直接接触的形式储存、转移、输送、处置含VOCs物料 化工等行业使用敞口式、明流式生产设备 在不操作时开启VOCs物料反应装置进出料口、检修口、观察孔等 敞开式喷涂、晾(风)干等生产作业(大型工件除外) 设备与管线组件密封点发生渗液、滴液等明显泄漏 有机废气输送管道出现破损、异味、漏风等可察觉泄漏 高浓度有机废水集输、储存和处理过程与环境空气直接接触 生产工序和使用环节的有机废气不经过收集处理直接排放 擅自停运或不正常运行废气收集、处理设施及VOCs自动监控设施 石化、化工、有机化学原料制造、农药制造、肥料制造、炼焦、人造板、家具制造等行业中应取得排污许可证的企业无证排污。/pp  开展监测执法联动,7月15日前,对已安装的VOCs在线监测设备进行校准,对重点管控企业和采用简易治理工艺的企业开展抽测。各地应进一步提高执法装备水平,各级生态环境部门应配备便携式大气污染物快速检测仪、VOCs泄漏检测仪、微风风速仪、油气回收三项检测仪等。大力推进智能监控和大数据监控,充分运用执法APP、自动监控、卫星遥感、无人机、电力数据、VOCs走航监测等高效监侦手段,提升执法能力和效率。运用已有的监测预警系统,动态监控工业园区、企业集群及重点管控企业VOCs排放情况,及时发现问题并实施整改,切实降低园区及周边VOCs浓度。/pp  生态环境部组织开展强化监督帮扶。组织专家团队深入重点区域、苏皖鲁豫交界地区以及其他O3污染防治任务重的地区,查找问题、把脉会诊,针对共性问题、突出问题等提出工作建议,指导地方优化VOCs治理方案,推动各项任务措施取得实效 针对地方和企业反映的技术困难和政策问题,组织开展技术帮扶和政策解读,切实帮助解决VOCs综合治理工作中的具体困难和实际问题,支持企业复工复产。紧盯工业园区、企业集群和重点管控企业,全面监督VOCs无组织和有组织达标排放情况,对发现的问题实行“拉条挂账”式跟踪管理,督促地方建立问题台账,制定整改方案,督促整改到位。/pp  strong七、完善监测监控体系,提高精准治理水平/strong/pp  加快完善环境空气VOCs监测网。加强大气VOCs组分观测,完善光化学监测网建设,提高数据质量,建立数据共享机制。已开展VOCs监测的城市,要进一步规范采样和监测方法,加强设备运维和数据质控,确保数据真实、准确、可靠。尚未开展VOCs监测的城市,要参照《2020年国家生态环境监测方案》《关于加强挥发性有机物监测工作的通知》,抓紧加强能力建设,开展相关监测工作。VOCs排放量较大、O3污染较重的城市,应优先开展VOCs自动监测,并实现与中国环境监测总站数据直联 开展手工监测的城市,按照中国环境监测总站统一安排的日期开展手工采样,O3污染过程要加密监测频次,探索主要VOCs物质浓度变化及传输规律。6-9月,重点区域、苏皖鲁豫交界地区及其他O3污染防治任务重的地区城市组织对排查出的工业园区、企业集群和典型企业的厂界或园区环境开展VOCs苏玛罐采样监测,数据统一报送中国环境监测总站,并向社会公布。中国环境监测总站要加强数据汇总和综合分析,编制重点工业园区、企业集群和企业环境VOCs苏玛罐采样监测报告。生态环境部组织重点区域各省(市)对重点工业园区和企业集群开展走航监测,排查突出问题,评估整治效果。7月15日前,中国环境监测总站完成重点区域、苏皖鲁豫交界地区及其他O3污染防治任务重的地区国控环境空气质量站点O3量值溯源和VOCs监测质控抽查工作。鼓励各地开展VOCs来源解析,确定影响O3生成的主要VOCs物种和排放行业,提高精准治污水平。/pp  加强污染源VOCs监测监控。重点区域要对石化、化工、包装印刷、工业涂装等行业VOCs自动监控设施建设和运行情况开展排查,达不到《固定污染源废气中非甲烷总烃排放连续监测技术指南(试行)》规范要求的及时整改。其他地区要加快VOCs重点排污单位自动监控设施建设,并与当地生态环境部门联网,苏皖鲁豫交界地区9月底前基本完成,全国12月底前基本完成。鼓励各地按照《挥发性有机物无组织排放控制标准》附录A要求,开展重点管控企业厂区内无组织排放监测,监控企业综合控制效果。鼓励各地对纳入重点排污单位名录的企业安装用电监控系统、视频监控设施等。加快推进储油库、加油站油气回收装置自动监控设施建设。加强对企业自行监测及第三方检测机构的监督管理,提高企业自行监测数据质量,公开一批监测数据质量差甚至篡改、伪造监测数据的机构和人员名单。/pp  strong八、加大政策支持力度,提升企业治理积极性/strong/pp  加大财政支持力度,中央大气污染防治专项资金、各省份环保专项资金重点向VOCs治理倾斜,优先将VOCs治理工程、低(无)VOCs含量原辅材料替代、工业园区和企业集群综合整治、监测监控能力建设等项目纳入项目储备库。实施差别化管理,对纳入监督执法正面清单的企业减少现场检查频次,做到无事不扰。综合考虑生产工艺、原辅材料使用、无组织排放控制、污染治理设施运行效果等,树立标杆企业,在政府绿色采购、企业信贷融资等方面给予支持。鼓励企业、集群或园区主动开展自愿减排工作,与政府签订VOCs减排协议,主动承诺遵守更严格的VOCs排放要求,实施更全面的VOCs治理任务。/pp  对VOCs浓度高的工业园区、企业集群以及治理进展缓慢、群众投诉强烈、问题突出的企业,加密监督频次,严格依法处罚。将超标问题突出、存在弄虚作假等违法行为的企业,向社会公布,并记入社会诚信档案,纳入全国信用信息共享平台。/pp  中国石油、中国石化、中国海油、中化集团等中央企业要主动承担社会责任,切实发挥模范带头和引领示范作用,加大资金投入,强化运行管理,创建一批行业标杆企业。制定细化落实方案,将改造任务分解落实到各企业,于7月底前完成,并报送生态环境部。充分发挥石化联合会、轻工联合会、制药、汽车、船舶、工程机械、钢结构、印刷等行业协会组织协调、技术支持、政策宣贯等作用,加强行业自律,引导树立行业标杆,助推行业健康发展。7月底前,每个行业可推选出5-10家标杆企业,由协会主动向社会公开,接受社会监督,增强企业治理VOCs的责任感和荣誉感。鼓励行业协会等搭建企业VOCs治理交流平台,促进成熟先进技术推广应用。/pp  strong九、加强宣传教育引导,营造全民共治良好氛围/strong/pp  完善信息公开制度,向社会公开VOCs重点排污单位名单。督促企业主动公开污染物排放、治污设施建设及运行情况等环境信息。各地要积极跟踪相关舆情动态,及时回应社会关切,积极开展多种形式的宣传教育,普及O3污染防治、VOCs综合治理的科学知识、政策法规,对治理成效突出的地方和企业,组织新闻媒体加强宣传报道。加大培训力度,各地组织开展VOCs治理政策、标准、技术专题培训,引导企业进一步树立加强管理就是减少成本、减少VOCs排放就是增加企业利润的理念 组织各级环境执法人员开展VOCs治理监督执法专题培训,提高执法能力。/pp  加大环保宣传力度,倡导文明、节约、绿色的消费方式和生活习惯,鼓励、引导公众主动参与VOCs减排。完善公众监督、举报反馈机制,充分发挥“12369”环保举报热线作用,鼓励设立有奖举报基金,对举报VOCs偷排漏排、治理设施不运行、超标排放等违法行为属实的给予奖励。/pp  strong十、切实加强组织领导,严格实施考核督察/strong/pp  各地要进一步把思想认识行动统一到党中央、国务院决策部署上来,切实加强组织领导,坚持目标导向、问题导向,把夏季VOCs攻坚行动放在重要位置,作为打赢蓝天保卫战的关键举措。各地生态环境部门要加强组织实施,监测、执法、人员、资金保障等重点向VOCs治理攻坚行动倾斜,加强与相关部门、行业协会等协调配合,形成工作合力。企业是污染治理的责任主体,要切实履行社会责任,落实项目和资金,确保工程按期建成并稳定运行。/pp  生态环境部每月对重点区域、苏皖鲁豫交界地区和其他O3污染防治任务重的地区城市空气质量改善情况进行通报,对空气质量改善滞后或重点任务进展缓慢的城市进行预警。重点区域及苏皖鲁豫交界地区城市2020年6-9月优良天数提高目标为预期性目标,统筹纳入2020年优良天数比率约束性指标完成情况考核。综合运用强化监督帮扶等监管机制,压实工作责任,对2020年优良天数比率约束性指标进展缓慢、问题特别严重的地区视情开展点穴式、机动式专项督察。/pp  附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/a5bce087-2d42-46c8-9950-5b6753f6e8c9.pdf" title="1.区域范围.pdf" style="font-size: 12px color: rgb(0, 102, 204) font-family: arial, helvetica, sans-serif text-decoration: underline "span style="font-family: arial, helvetica, sans-serif "1.区域范围.pdf/span/a/ppspan style="font-family: arial, helvetica, sans-serif "  /spanimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/b023a195-65ae-4871-b249-b288d5d99897.pdf" title="2.重点区域及苏皖鲁豫交界地区城市2020年6-9月优良天数预期提高目标.pdf" style="font-size: 12px color: rgb(0, 102, 204) font-family: arial, helvetica, sans-serif text-decoration: underline "span style="font-family: arial, helvetica, sans-serif "2.重点区域及苏皖鲁豫交界地区城市2020年6-9月优良天数预期提高目标.pdf/span/a/ppspan style="font-family: arial, helvetica, sans-serif "  /spanimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/74078725-c27c-4207-8b70-c5fd76c2346d.pdf" title="3.各省(区、市)2020年优良天数比率改善任务.pdf" style="font-size: 12px color: rgb(0, 102, 204) font-family: arial, helvetica, sans-serif text-decoration: underline "span style="font-family: arial, helvetica, sans-serif "3.各省(区、市)2020年优良天数比率改善任务.pdf/span/a/ppspan style="font-family: arial, helvetica, sans-serif "  /spanimg src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202006/attachment/823508f9-b6ad-4e87-a512-52ef106470f0.pdf" title="4.重点区域及苏皖鲁豫交界地区城市涉VOCs重点企业集群清单.pdf" style="font-size: 12px color: rgb(0, 102, 204) font-family: arial, helvetica, sans-serif text-decoration: underline "span style="font-family: arial, helvetica, sans-serif "4.重点区域及苏皖鲁豫交界地区城市涉VOCs重点企业集群清单.pdf/span/a/p
  • 岛津应用:顶空-GCMS 法测定土壤中15 种挥发性卤代烃
    随着化学工业和石油开采业的快速发展,废气和废水对周围土壤都会造成污染,在全国土壤污染状况普查中要求对污水灌溉区域和重点污染企业周边的挥发性有机物的污染状况必须进行监测。但多年来,国内外对大气和水体中的 VOCs 研究报道较多,而对土壤中的 VOCs 研究较少。因此建立高效灵敏分析土壤中的 VOCs 的检测方法尤为重要。 本文提出了一种简便快捷的检测方法,在土壤样品中加入基质修正液,经顶空处理后,用气相色谱质谱联用法对土壤样品中的挥发性卤代烃有机污染物进行定性定量分析。方法操作简便、准确灵敏、干扰少,从而有效地对土壤污染状况进行风险评估。 了解详情,敬请点击《顶空-GCMS 法测定土壤中15 种挥发性卤代烃》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 纺织品中挥发性有机SVHC检测首创新方法
    实验人员操作改进过的IMS检测仪针对纺织品特制的不锈钢夹样器样品含高关注物质检测设备进行报警  目前在欧盟已公布的55起REACH纺织品召回案例中,我国纺织品占54.55%,这是由于国内纺织品市场的产品检测率不足50%。更为严峻的是,统计数据显示。2011年,中欧双边贸易额达到5672.1亿美元,据业界普遍预测,REACH法规的实施将对中国出口欧洲的产品增加5~6%的额外成本。质检部门有必要时刻关注REACH法规的动态,以便为企业提供及时的技术和咨询服务。  立足实际找不足  目前,对于纺织品中邻苯二甲酸酯含量的测定,国内主要有国家标准GB/T 20388-2006,国外有BS EN 15777-2009等。纺织品中染料中间体2,4-二硝基甲苯的国内检测标准主要有GB/T 17592-2006,BS EN 14362.1-2012等。采用以上标准检测SVHC,均需对纺织品样品进行繁杂的前处理步骤,仪器检测时间较长,而且对设备要求较高、试剂消耗量较大,要想完成众多的检测项目,需要高昂的检测费用及较长的检测周期,给纺织品生产企业造成巨大压力。  江苏常州检验检疫局综合技术服务中心科研人员在原检测方法的基础上,改进不足之处,研究新方式,建立了一种用于对纺织品中挥发性SVHC进行快速筛选的方法。该方法基于离子迁移谱技术(IMS),采取纺织品样品直接进样的方式,可在1~6分钟内分别实现对11种挥发性SVHC的快速检测,检测限均低于100ppm,完全满足欧盟REACH法规中的1000ppm的质量含量限量要求,并可根据用户的实际需求确定报警阈值,作为针对这些挥发性高关注物质的快速筛选技术。  求同存异辟蹊径  IMS技术作为一种痕量探测技术起源于20世纪60年代,在过去的20多年里,此技术在针对毒品检测、爆炸物探测、化学战剂检测、生物战剂检测等领域的应用方面,获得了长足的发展,同时也拓展到了环境检测、工业过程控制、生物医学、食品监测等多个领域。  常州局技术人员独辟蹊径,在国内首创采用IMS分析,将用于爆炸物和毒品检查的探测仪,经过改进后进行检测REACH法规中的挥发性SVHC。和传统的检测方法相比,该种检测手段轻便快捷,不仅仪器体积小巧便携,可用于现场测试,而且分析速度快,对样品前处理要求很低,大大缩短了样品的检测周期,节约了检测成本,避免了检测过程中使用的化学物质对环境的污染,特别适合于相关检验部门进行简单快速的检测使用以及大批量样品的普检初筛,同时也为纺织企业生产中相关物质的在线检测提供了可能。  传统的IMS仪器采用拭纸进样方式,但纺织品具有一定的厚度和柔软度,且仪器设备中配有的软件及其设置仅仅适用于毒品和爆炸物的检测,不能够满足SVHC的检测报警需要,因此为了完成针对纺织品中SVHC的检测,技术人员对于仪器的硬件部分&mdash &mdash 进样装置和软件部分&mdash &mdash 报警方式分别进行了改进。  在硬件方面,为满足IMS仪器对纺织品中SVHC的快速筛选,首先对进样口进行了改造,加大其开口厚度。由于纺织品较柔软,为了加大其硬度,同时防止样品卷曲的情况出现,设计了由两片不锈钢托板组成的夹持装置,夹持纺织品进样,灵活方便。针对不锈钢热传导问题,将不锈钢片在加热处挖出和加热装置同等位置和大小的长方形孔,保证纺织品全面直接受热。制成后的进样装置送样方便,结果稳定,可以用于纺织品的直接检测。软件方面,IMS仪器仅可对爆炸物和毒品进行报警,而所需检测的SVHC物质并不在可探测物质中。因此在实验测得SVHC标准物质相关数据后,手动添加入标准物质库中并设置相应功能,得到准确报警信号。方法建立后,使用纺织品直接进样,对其中的11种挥发性有机SVHC进行准确灵敏的报警。  利企利国创效益  在目前国内公开报道的文献中,已有关于纺织品中SVHC、IMS对挥发性有机化合物的监测、IMS仪器装置的文献和专利报道。但采用纺织品直接进样,IMS分析和检测REACH法规的挥发性有机SVHC,达到准确快速筛选的目的,为国内首创。  这一方法已申请发明专利并得到受理,相关研究成果已获得上海天祥质量技术服务有限公司宁波分公司、江苏省纺织产品质量监督检验研究院、东华大学纺织学院、江苏出入境检验检疫局工业产品检测中心和浙江省检验检疫科学技术研究院的现场验证,验证结果显示此方法准确可靠,可用于纺织品中挥发性有机SVHC的快速筛选。  该研究建立的用于对纺织品中的挥发性SVHC进行快速检测筛选的方法,不仅可以作为针对这些挥发性高关注物质的快速筛查技术,也可作为检验机构、大中专院校、研究所及各企业快速筛查REACH法规的挥发性有机高关注物质的检测方法,具有显著的经济效益和社会效益。  目前欧盟先后公布的各类SVHC物质清单共包含各种化学物质138种。虽然根据REACH法规的指南文件和ECHA的解释,ECHA是希望企业通过供应链的信息传递来获得最终产品中的SVHC信息。但就我国目前的产业发展水平而言,大多数企业尤其是中小型企业基本上无法通过供应链获得准确的SVHC信息。所以一旦欧盟客户索取产品中SVHC信息,企业只能选择盲目回应或者进行产品检测。盲目回应必然蕴含了巨大的贸易风险,在中国产品信任危机的国际大环境下,一旦出了问题必将造成无法估量的损失。但检测又要面对高昂的检测费用,2010年第三方检测机构对聚合物材质中15种SVHC物质检测的报价高达4500元人民币。经过两年的市场竞争,价格有所回落,但随着欧盟SVHC清单的不断扩充,检测费用依旧非常高昂,在国际整体经济不景气的大环境下,国内企业根本无法承受如此高成本的检测费用。  因此该方法的推广将可以快速提高我国对于产品中SVHC物质的测试技术水平,增强我国政府和企业应对国际技术贸易措施和突发质量安全事故的技术能力和话语权。在经济效益方面,通过该课题检测技术的应用不仅可以大大减少企业的检测成本,也可以有效帮助监管部门和企业加强对产品的质量控制,从而降低出口产品因不符合输入国法规产生的贸易损失,并且有利于我国企业开发出更为环保、健康、安全的优质产品,提高产品在国际国内市场的竞争力,从而产生巨大的经济效益。  链 接  SVHC(Substances of Very High Concern),即高度关注物质,来源于欧盟REACH法规。所谓SVHC物质就是指有科学证据证明可能会对环境或人类健康造成严重危害的物质。按照不同的危害性,SVHC物质可分三类:有致癌、致畸及生殖毒性 有持久生物累积和毒性 有高持久、高生物累积性。  REACH法规被认为是目前为止影响最广的技术贸易法规,尤其是对中国这样对外经济依存度很高、适应国际技术法规能力相对较弱的发展中国家影响更大,特别是主要出口欧盟的纺织及相关轻工产品行业。
  • 重磅!生态环境部印发《重点行业挥发性有机物综合治理方案》
    重点行业挥发性有机物综合治理方案  为贯彻落实《中共中央国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》《国务院关于印发打赢蓝天保卫战三年行动计划的通知》有关要求,深入实施《“十三五”挥发性有机物污染防治工作方案》,加强对各地工作指导,提高挥发性有机物(VOCs)治理的科学性、针对性和有效性,协同控制温室气体排放,制定本方案。  一、形势与问题  (一)VOCs污染排放对大气环境影响突出。VOCs是形成细颗粒物(PM2.5)和臭氧(O3)的重要前体物,对气候变化也有影响。近年来,我国PM2.5污染控制取得积极进展,尤其是京津冀及周边地区、长三角地区等改善明显,但PM2.5浓度仍处于高位,超标现象依然普遍,是打赢蓝天保卫战改善环境空气质量的重点因子。京津冀及周边地区源解析结果表明,当前阶段有机物(OM)是PM2.5的最主要组分,占比达20%-40%,其中,二次有机物占OM比例为30%-50%,主要来自VOCs转化生成。  同时,我国O3污染问题日益显现,京津冀及周边地区、长三角地区、汾渭平原等区域(以下简称重点区域,范围见附件1)O3浓度呈上升趋势,尤其是在夏秋季节已成为部分城市的首要污染物。研究表明,VOCs是现阶段重点区域O3生成的主控因子。  相对于颗粒物、二氧化硫、氮氧化物污染控制,VOCs管理基础薄弱,已成为大气环境管理短板。石化、化工、工业涂装、包装印刷、油品储运销等行业(以下简称重点行业)是我国VOCs重点排放源。为打赢蓝天保卫战、进一步改善环境空气质量,迫切需要全面加强重点行业VOCs综合治理。  (二)存在的主要问题。《大气污染防治行动计划》实施以来,我国不断加强VOCs污染防治工作,印发VOCs污染防治工作方案,出台炼油、石化等行业排放标准,一些地区制定地方排放标准,加强VOCs监测、监控、报告、统计等基础能力建设,取得一些进展。但VOCs治理工作依然薄弱,主要表现为:  一是源头控制力度不足。有机溶剂等含VOCs原辅材料的使用是VOCs重要排放来源,由于思想认识不到位、政策激励不足、投入成本高等原因,目前低VOCs含量原辅材料源头替代措施明显不足。据统计,我国工业涂料中水性、粉末等低VOCs含量涂料的使用比例不足20%,低于欧美等发达国家40%-60%的水平。  二是无组织排放问题突出。VOCs挥发性强,涉及行业广,产排污环节多,无组织排放特征明显。虽然大气污染防治法等对VOCs无组织排放提出密闭封闭等要求,但目前量大面广的企业未采取有效管控措施,尤其是中小企业管理水平差,收集效率低,逸散问题突出。研究表明,我国工业VOCs排放中无组织排放占比达60%以上。  三是治污设施简易低效。VOCs废气组分复杂,治理技术多样,适用性差异大,技术选择和系统匹配性要求高。我国VOCs治理市场起步较晚,准入门槛低,加之监管能力不足等,治污设施建设质量良莠不齐,应付治理、无效治理等现象突出。在一些地区,低温等离子、光催化、光氧化等低效技术应用甚至达80%以上,治污效果差。一些企业由于设计不规范、系统不匹配等原因,即使选择了高效治理技术,也未取得预期治污效果。  四是运行管理不规范。VOCs治理需要全面加强过程管控,实施精细化管理,但目前企业普遍存在管理制度不健全、操作规程未建立、人员技术能力不足等问题。一些企业采用活性炭吸附工艺,但长期不更换吸附材料 一些企业采用燃烧、冷凝治理技术,但运行温度等达不到设计要求 一些企业开展了泄漏检测与修复(LDAR)工作,但未按规程操作等。  五是监测监控不到位。我国VOCs监测工作尚处于起步阶段,企业自行监测质量普遍不高,点位设置不合理、采样方式不规范、监测时段代表性不强等问题突出。部分重点企业未按要求配备自动监控设施。涉VOCs排放工业园区和产业集群缺乏有效的监测溯源与预警措施。从监管方面来看,缺乏现场快速检测等有效手段,走航监测、网格化监测等应用不足。  二、主要目标  到2020年,建立健全VOCs污染防治管理体系,重点区域、重点行业VOCs治理取得明显成效,完成“十三五”规划确定的VOCs排放量下降10%的目标任务,协同控制温室气体排放,推动环境空气质量持续改善。  三、控制思路与要求  (一)大力推进源头替代。通过使用水性、粉末、高固体分、无溶剂、辐射固化等低VOCs含量的涂料,水性、辐射固化、植物基等低VOCs含量的油墨,水基、热熔、无溶剂、辐射固化、改性、生物降解等低VOCs含量的胶粘剂,以及低VOCs含量、低反应活性的清洗剂等,替代溶剂型涂料、油墨、胶粘剂、清洗剂等,从源头减少VOCs产生。工业涂装、包装印刷等行业要加大源头替代力度 化工行业要推广使用低(无)VOCs含量、低反应活性的原辅材料,加快对芳香烃、含卤素有机化合物的绿色替代。企业应大力推广使用低VOCs含量木器涂料、车辆涂料、机械设备涂料、集装箱涂料以及建筑物和构筑物防护涂料等,在技术成熟的行业,推广使用低VOCs含量油墨和胶粘剂,重点区域到2020年年底前基本完成。鼓励加快低VOCs含量涂料、油墨、胶粘剂等研发和生产。  加强政策引导。企业采用符合国家有关低VOCs含量产品规定的涂料、油墨、胶粘剂等,排放浓度稳定达标且排放速率、排放绩效等满足相关规定的,相应生产工序可不要求建设末端治理设施。使用的原辅材料VOCs含量(质量比)低于10%的工序,可不要求采取无组织排放收集措施。  (二)全面加强无组织排放控制。重点对含VOCs物料(包括含VOCs原辅材料、含VOCs产品、含VOCs废料以及有机聚合物材料等)储存、转移和输送、设备与管线组件泄漏、敞开液面逸散以及工艺过程等五类排放源实施管控,通过采取设备与场所密闭、工艺改进、废气有效收集等措施,削减VOCs无组织排放。  加强设备与场所密闭管理。含VOCs物料应储存于密闭容器、包装袋,高效密封储罐,封闭式储库、料仓等。含VOCs物料转移和输送,应采用密闭管道或密闭容器、罐车等。高VOCs含量废水(废水液面上方100毫米处VOCs检测浓度超过200ppm,其中,重点区域超过100ppm,以碳计)的集输、储存和处理过程,应加盖密闭。含VOCs物料生产和使用过程,应采取有效收集措施或在密闭空间中操作。  推进使用先进生产工艺。通过采用全密闭、连续化、自动化等生产技术,以及高效工艺与设备等,减少工艺过程无组织排放。挥发性有机液体装载优先采用底部装载方式。石化、化工行业重点推进使用低(无)泄漏的泵、压缩机、过滤机、离心机、干燥设备等,推广采用油品在线调和技术、密闭式循环水冷却系统等。工业涂装行业重点推进使用紧凑式涂装工艺,推广采用辊涂、静电喷涂、高压无气喷涂、空气辅助无气喷涂、热喷涂等涂装技术,鼓励企业采用自动化、智能化喷涂设备替代人工喷涂,减少使用空气喷涂技术。包装印刷行业大力推广使用无溶剂复合、挤出复合、共挤出复合技术,鼓励采用水性凹印、醇水凹印、辐射固化凹印、柔版印刷、无水胶印等印刷工艺。  提高废气收集率。遵循“应收尽收、分质收集”的原则,科学设计废气收集系统,将无组织排放转变为有组织排放进行控制。采用全密闭集气罩或密闭空间的,除行业有特殊要求外,应保持微负压状态,并根据相关规范合理设置通风量。采用局部集气罩的,距集气罩开口面最远处的VOCs无组织排放位置,控制风速应不低于0.3米/秒,有行业要求的按相关规定执行。  加强设备与管线组件泄漏控制。企业中载有气态、液态VOCs物料的设备与管线组件,密封点数量大于等于2000个的,应按要求开展LDAR工作。石化企业按行业排放标准规定执行。  (三)推进建设适宜高效的治污设施。企业新建治污设施或对现有治污设施实施改造,应依据排放废气的浓度、组分、风量,温度、湿度、压力,以及生产工况等,合理选择治理技术。鼓励企业采用多种技术的组合工艺,提高VOCs治理效率。低浓度、大风量废气,宜采用沸石转轮吸附、活性炭吸附、减风增浓等浓缩技术,提高VOCs浓度后净化处理 高浓度废气,优先进行溶剂回收,难以回收的,宜采用高温焚烧、催化燃烧等技术。油气(溶剂)回收宜采用冷凝+吸附、吸附+吸收、膜分离+吸附等技术。低温等离子、光催化、光氧化技术主要适用于恶臭异味等治理 生物法主要适用于低浓度VOCs废气治理和恶臭异味治理。非水溶性的VOCs废气禁止采用水或水溶液喷淋吸收处理。采用一次性活性炭吸附技术的,应定期更换活性炭,废旧活性炭应再生或处理处置。有条件的工业园区和产业集群等,推广集中喷涂、溶剂集中回收、活性炭集中再生等,加强资源共享,提高VOCs治理效率。  规范工程设计。采用吸附处理工艺的,应满足《吸附法工业有机废气治理工程技术规范》要求。采用催化燃烧工艺的,应满足《催化燃烧法工业有机废气治理工程技术规范》要求。采用蓄热燃烧等其他处理工艺的,应按相关技术规范要求设计。  实行重点排放源排放浓度与去除效率双重控制。车间或生产设施收集排放的废气,VOCs初始排放速率大于等于3千克/小时、重点区域大于等于2千克/小时的,应加大控制力度,除确保排放浓度稳定达标外,还应实行去除效率控制,去除效率不低于80% 采用的原辅材料符合国家有关低VOCs含量产品规定的除外,有行业排放标准的按其相关规定执行。  (四)深入实施精细化管控。各地应围绕当地环境空气质量改善需求,根据O3、PM2.5来源解析,结合行业污染排放特征和VOCs物质光化学反应活性等,确定本地区VOCs控制的重点行业和重点污染物,兼顾恶臭污染物和有毒有害物质控制等,提出有效管控方案,提高VOCs治理的精准性、针对性和有效性。全国重点控制的VOCs物质见附件2。  推行“一厂一策”制度。各地应加强对企业帮扶指导,对本地污染物排放量较大的企业,组织专家提供专业化技术支持,严格把关,指导企业编制切实可行的污染治理方案,明确原辅材料替代、工艺改进、无组织排放管控、废气收集、治污设施建设等全过程减排要求,测算投资成本和减排效益,为企业有效开展VOCs综合治理提供技术服务。重点区域应组织本地VOCs排放量较大的企业开展“一厂一策”方案编制工作,2020年6月底前基本完成 适时开展治理效果后评估工作,各地出台的补贴政策要与减排效果紧密挂钩。鼓励地方对重点行业推行强制性清洁生产审核。  加强企业运行管理。企业应系统梳理VOCs排放主要环节和工序,包括启停机、检维修作业等,制定具体操作规程,落实到具体责任人。健全内部考核制度。加强人员能力培训和技术交流。建立管理台账,记录企业生产和治污设施运行的关键参数(见附件3),在线监控参数要确保能够实时调取,相关台账记录至少保存三年。  四、重点行业治理任务  (一)石化行业VOCs综合治理。全面加大石油炼制及有机化学品、合成树脂、合成纤维、合成橡胶等行业VOCs治理力度。重点加强密封点泄漏、废水和循环水系统、储罐、有机液体装卸、工艺废气等源项VOCs治理工作,确保稳定达标排放。重点区域要进一步加大其他源项治理力度,禁止熄灭火炬系统长明灯,设置视频监控装置 推进煤油、柴油等在线调和工作 非正常工况排放的VOCs,应吹扫至火炬系统或密闭收集处理 含VOCs废液废渣应密闭储存 防腐防水防锈涂装采用低VOCs含量涂料。  深化LDAR工作。严格按照《石化企业泄漏检测与修复工作指南》规定,建立台账,开展泄漏检测、修复、质量控制、记录管理等工作。加强备用泵、在用泵、调节阀、搅拌器、开口管线等检测工作,强化质量控制 要将VOCs治理设施和储罐的密封点纳入检测计划中。参照《挥发性有机物无组织排放控制标准》有关设备与管线组件VOCs泄漏控制监督要求,对石化企业密封点泄漏加强监管。鼓励重点区域对泄漏量大的密封点实施包袋法检测,对不可达密封点采用红外法检测。  加强废水、循环水系统VOCs收集与处理。加大废水集输系统改造力度,重点区域现有企业通过采取密闭管道等措施逐步替代地漏、沟、渠、井等敞开式集输方式。全面加强废水系统高浓度VOCs废气收集与治理,集水井(池)、调节池、隔油池、气浮池、浓缩池等应采用密闭化工艺或密闭收集措施,配套建设燃烧等高效治污设施。生化池、曝气池等低浓度VOCs废气应密闭收集,实施脱臭等处理,确保达标排放。加强循环水监测,重点区域内石化企业每六个月至少开展一次循环水塔和含VOCs物料换热设备进出口总有机碳(TOC)或可吹扫有机碳(POC)监测工作,出口浓度大于进口浓度10%的,要溯源泄漏点并及时修复。  强化储罐与有机液体装卸VOCs治理。加大中间储罐等治理力度,真实蒸气压大于等于5.2千帕(kPa)的,要严格按照有关规定采取有效控制措施。鼓励重点区域对真实蒸气压大于等于2.8kPa的有机液体采取控制措施。进一步加大挥发性有机液体装卸VOCs治理力度,重点区域推广油罐车底部装载方式,推进船舶装卸采用油气回收系统,试点开展火车运输底部装载工作。储罐和有机液体装卸采取末端治理措施的,要确保稳定运行。  深化工艺废气VOCs治理。有效实施催化剂再生废气、氧化尾气VOCs治理,加强酸性水罐、延迟焦化、合成橡胶、合成树脂、合成纤维等工艺过程尾气VOCs治理。推行全密闭生产工艺,加大无组织排放收集。鼓励企业将含VOCs废气送工艺加热炉、锅炉等直接燃烧处理,污染物排放满足石化行业相关排放标准要求。酸性水罐尾气应收集处理。推进重点区域延迟焦化装置实施密闭除焦(含冷焦水和切焦水密闭)改造。合成橡胶、合成树脂、合成纤维等推广使用密闭脱水、脱气、掺混等工艺和设备,配套建设高效治污设施。  (二)化工行业VOCs综合治理。加强制药、农药、涂料、油墨、胶粘剂、橡胶和塑料制品等行业VOCs治理力度。重点提高涉VOCs排放主要工序密闭化水平,加强无组织排放收集,加大含VOCs物料储存和装卸治理力度。废水储存、曝气池及其之前废水处理设施应按要求加盖封闭,实施废气收集与处理。密封点大于等于2000个的,要开展LDAR工作。  积极推广使用低VOCs含量或低反应活性的原辅材料,加快工艺改进和产品升级。制药、农药行业推广使用非卤代烃和非芳香烃类溶剂,鼓励生产水基化类农药制剂。橡胶制品行业推广使用新型偶联剂、粘合剂,使用石蜡油等替代普通芳烃油、煤焦油等助剂。优化生产工艺,农药行业推广水相法、生物酶法合成等技术 制药行业推广生物酶法合成技术 橡胶制品行业推广采用串联法混炼、常压连续脱硫工艺。  加快生产设备密闭化改造。对进出料、物料输送、搅拌、固液分离、干燥、灌装等过程,采取密闭化措施,提升工艺装备水平。加快淘汰敞口式、明流式设施。重点区域含VOCs物料输送原则上采用重力流或泵送方式,逐步淘汰真空方式 有机液体进料鼓励采用底部、浸入管给料方式,淘汰喷溅式给料 固体物料投加逐步推进采用密闭式投料装置。  严格控制储存和装卸过程VOCs排放。鼓励采用压力罐、浮顶罐等替代固定顶罐。真实蒸气压大于等于27.6kPa(重点区域大于等于5.2kPa)的有机液体,利用固定顶罐储存的,应按有关规定采用气相平衡系统或收集净化处理。  实施废气分类收集处理。优先选用冷凝、吸附再生等回收技术 难以回收的,宜选用燃烧、吸附浓缩+燃烧等高效治理技术。水溶性、酸碱VOCs废气宜选用多级化学吸收等处理技术。恶臭类废气还应进一步加强除臭处理。  加强非正常工况废气排放控制。退料、吹扫、清洗等过程应加强含VOCs物料回收工作,产生的VOCs废气要加大收集处理力度。开车阶段产生的易挥发性不合格产品应收集至中间储罐等装置。重点区域化工企业应制定开停车、检维修等非正常工况VOCs治理操作规程。  (三)工业涂装VOCs综合治理。加大汽车、家具、集装箱、电子产品、工程机械等行业VOCs治理力度,重点区域应结合本地产业特征,加快实施其他行业涂装VOCs综合治理。  强化源头控制,加快使用粉末、水性、高固体分、辐射固化等低VOCs含量的涂料替代溶剂型涂料。重点区域汽车制造底漆大力推广使用水性涂料,乘用车中涂、色漆大力推广使用高固体分或水性涂料,加快客车、货车等中涂、色漆改造。钢制集装箱制造在箱内、箱外、木地板涂装等工序大力推广使用水性涂料,在确保防腐蚀功能的前提下,加快推进特种集装箱采用水性涂料。木质家具制造大力推广使用水性、辐射固化、粉末等涂料和水性胶粘剂 金属家具制造大力推广使用粉末涂料 软体家具制造大力推广使用水性胶粘剂。工程机械制造大力推广使用水性、粉末和高固体分涂料。电子产品制造推广使用粉末、水性、辐射固化等涂料。  加快推广紧凑式涂装工艺、先进涂装技术和设备。汽车制造整车生产推广使用“三涂一烘”“两涂一烘”或免中涂等紧凑型工艺、静电喷涂技术、自动化喷涂设备。汽车金属零配件企业鼓励采用粉末静电喷涂技术。集装箱制造一次打砂工序钢板处理采用辊涂工艺。木质家具推广使用高效的往复式喷涂箱、机械手和静电喷涂技术。板式家具采用喷涂工艺的,推广使用粉末静电喷涂技术 采用溶剂型、辐射固化涂料的,推广使用辊涂、淋涂等工艺。工程机械制造要提高室内涂装比例,鼓励采用自动喷涂、静电喷涂等技术。电子产品制造推广使用静电喷涂等技术。  有效控制无组织排放。涂料、稀释剂、清洗剂等原辅材料应密闭存储,调配、使用、回收等过程应采用密闭设备或在密闭空间内操作,采用密闭管道或密闭容器等输送。除大型工件外,禁止敞开式喷涂、晾(风)干作业。除工艺限制外,原则上实行集中调配。调配、喷涂和干燥等VOCs排放工序应配备有效的废气收集系统。  推进建设适宜高效的治污设施。喷涂废气应设置高效漆雾处理装置。喷涂、晾(风)干废气宜采用吸附浓缩+燃烧处理方式,小风量的可采用一次性活性炭吸附等工艺。调配、流平等废气可与喷涂、晾(风)干废气一并处理。使用溶剂型涂料的生产线,烘干废气宜采用燃烧方式单独处理,具备条件的可采用回收式热力燃烧装置。  (四)包装印刷行业VOCs综合治理。重点推进塑料软包装印刷、印铁制罐等VOCs治理,积极推进使用低(无)VOCs含量原辅材料和环境友好型技术替代,全面加强无组织排放控制,建设高效末端净化设施。重点区域逐步开展出版物印刷VOCs治理工作,推广使用植物油基油墨、辐射固化油墨、低(无)醇润版液等低(无)VOCs含量原辅材料和无水印刷、橡皮布自动清洗等技术,实现污染减排。  强化源头控制。塑料软包装印刷企业推广使用水醇性油墨、单一组分溶剂油墨,无溶剂复合技术、共挤出复合技术等,鼓励使用水性油墨、辐射固化油墨、紫外光固化光油、低(无)挥发和高沸点的清洁剂等。印铁企业加快推广使用辐射固化涂料、辐射固化油墨、紫外光固化光油。制罐企业推广使用水性油墨、水性涂料。鼓励包装印刷企业实施胶印、柔印等技术改造。  加强无组织排放控制。加强油墨、稀释剂、胶粘剂、涂布液、清洗剂等含VOCs物料储存、调配、输送、使用等工艺环节VOCs无组织逸散控制。含VOCs物料储存和输送过程应保持密闭。调配应在密闭装置或空间内进行并有效收集,非即用状态应加盖密封。涂布、印刷、覆膜、复合、上光、清洗等含VOCs物料使用过程应采用密闭设备或在密闭空间内操作 无法密闭的,应采取局部气体收集措施,废气排至VOCs废气收集系统。凹版、柔版印刷机宜采用封闭刮刀,或通过安装盖板、改变墨槽开口形状等措施减少墨槽无组织逸散。鼓励重点区域印刷企业对涉VOCs排放车间进行负压改造或局部围风改造。  提升末端治理水平。包装印刷企业印刷、干式复合等VOCs排放工序,宜采用吸附浓缩+冷凝回收、吸附浓缩+燃烧、减风增浓+燃烧等高效处理技术。  (五)油品储运销VOCs综合治理。加大汽油(含乙醇汽油)、石脑油、煤油(含航空煤油)以及原油等VOCs排放控制,重点推进加油站、油罐车、储油库油气回收治理。重点区域还应推进油船油气回收治理工作。  深化加油站油气回收工作。O3污染较重的地区,行政区域内大力推进加油站储油、加油油气回收治理工作,重点区域2019年年底前基本完成。埋地油罐全面采用电子液位仪进行汽油密闭测量。规范油气回收设施运行,自行或聘请第三方加强加油枪气液比、系统密闭性及管线液阻等检查,提高检测频次,重点区域原则上每半年开展一次,确保油气回收系统正常运行。重点区域加快推进年销售汽油量大于5000吨的加油站安装油气回收自动监控设备,并与生态环境部门联网,2020年年底前基本完成。  推进储油库油气回收治理。汽油、航空煤油、原油以及真实蒸气压小于76.6kPa的石脑油应采用浮顶罐储存,其中,油品容积小于等于100立方米的,可采用卧式储罐。真实蒸气压大于等于76.6kPa的石脑油应采用低压罐、压力罐或其他等效措施储存。加快推进油品收发过程排放的油气收集处理。加强储油库发油油气回收系统接口泄漏检测,提高检测频次,减少油气泄漏,确保油品装卸过程油气回收处理装置正常运行。加强油罐车油气回收系统密闭性和油气回收气动阀门密闭性检测,每年至少开展一次。推动储油库安装油气回收自动监控设施。  (六)工业园区和产业集群VOCs综合治理。各地应加大涉VOCs排放工业园区和产业集群综合整治力度,加强资源共享,实施集中治理,开展园区监测评估,建立环境信息共享平台。  对涂装类企业集中的工业园区和产业集群,如家具、机械制造、电子产品、汽车维修等,鼓励建设集中涂装中心,配备高效废气治理设施,代替分散的涂装工序。对石化、化工类工业园区和产业集群,推行泄漏检测统一监管,鼓励建立园区LDAR信息管理平台。对有机溶剂使用量大的工业园区和产业集群,如包装印刷、织物整理、合成橡胶及其制品等,推进建设有机溶剂集中回收处置中心,提高有机溶剂回收利用率。对活性炭使用量大的工业园区和产业集群,鼓励地方统筹规划,建设区域性活性炭集中再生基地,建立活性炭分散使用、统一回收、集中再生的管理模式,有效解决活性炭不及时更换、不脱附再生、监管难度大的问题,对脱附的VOCs等污染物应进行妥善处置。  强化工业园区和产业集群统一管理。树立行业标杆,制定综合整治方案,引导工业园区和产业集群整体升级。石化、化工类工业园区和产业集群,要建立健全档案管理制度,明确企业VOCs源谱,识别特征污染物,载明企业废气收集与治理设施建设情况、重污染天气应急预案、企业违法处罚等环保信息。鼓励对园区和产业集群开展监测、排查、环保设施建设运营等一体化服务。  提升工业园区和产业集群监测监控能力。加快推进重点工业园区和产业集群环境空气质量VOCs监测工作,重点区域2020年年底前基本完成。石化、化工类工业园区应建设监测预警监控体系,具备条件的,开展走航监测、网格化监测以及溯源分析等工作。涉恶臭污染的工业园区和产业集群,推广实施恶臭电子鼻监控预警。  五、实施与保障  (一)加强组织领导。各地要按照打赢蓝天保卫战总体部署,深入推进重点行业VOCs综合治理。各级生态环境部门要加强与相关部门、行业协会等协调,形成工作合力 结合第二次全国污染源普查、污染源排放清单编制等工作,确立本地VOCs治理重点行业,建立重点污染源管理台账 组织监测、执法、科研等力量,加强监督和帮扶,开展专项治理行动。加强服务指导,重点区域强化监督定点帮扶工作要把重点行业VOCs综合治理作为帮扶的重点。京津冀及周边地区、汾渭平原等“一市一策”驻点跟踪研究工作组要加大VOCs治理科研支撑力度。对推进不力、工作滞后、治理不到位的,要强化监督问责。  (二)完善标准体系。加快含VOCs产品质量标准制修订工作,2019年年底前,出台低VOCs含量涂料产品技术要求,制修订建筑用墙面涂料、木器涂料、车辆涂料、工业防护涂料中有害物质限量标准,制订油墨、胶粘剂、清洗剂挥发性有机化合物限量强制性标准。加快涉VOCs行业排放标准制修订工作,2020年6月底前,力争完成农药、汽车涂装、集装箱制造、包装印刷、家具制造、电子工业等行业大气污染物排放标准制订。建立与排放标准相适应的VOCs监测分析方法标准、监测仪器技术要求,加快出台固定污染源VOCs排放连续监测技术规范、VOCs便携式监测技术规范。鼓励地方制定更加严格的地方排放标准。  (三)加强监测监控。加快制定家具、人造板、电子工业、包装印刷、涂料油墨颜料及类似产品、橡胶制品、塑料制品等行业自行监测指南和工业园区监测指南。排污许可管理已有规定的石化、炼焦、原料药、农药、汽车制造、制革、纺织印染等行业,要严格按照相关规定开展自行监测工作。  石化、化工、包装印刷、工业涂装等VOCs排放重点源,纳入重点排污单位名录,主要排污口安装自动监控设施,并与生态环境部门联网,重点区域2019年年底前基本完成,全国2020年年底前基本完成。鼓励重点区域对无组织排放突出的企业,在主要排放工序安装视频监控设施。鼓励企业配备便携式VOCs监测仪器,及时了解掌握排污状况。具备条件的企业,应通过分布式控制系统(DCS)等,自动连续记录环保设施运行及相关生产过程主要参数。自动监控、DCS监控等数据至少要保存一年,视频监控数据至少保存三个月。  强化监测数据质量控制。企业自行监测应在正常生产工况下开展,对于间歇性排放或排放波动较大的污染源,监测工作应涵盖排放强度大的时段。加强自动监控设施运营维护,数据传输有效率达到90%。企业在正常生产以及限产、停产、检修等非正常工况下,均应保证自动监控设施正常运行并联网传输数据。各地对出现数据缺失、长时间掉线等异常情况,要及时进行核实和调查处理。加强生态环境监测机构监督管理,对严重失信的监测机构和人员,将违法违规信息通过“信用中国”等网站向社会公布。  (四)强化监督执法。各地要加大VOCs排放监管执法力度,严厉打击违法排污行为,形成有效震慑作用。对无证排污、未按证排污、不能稳定达标排放、不满足措施性控制要求的企业,综合运用按日连续计罚、查封扣押、限产停产等手段,依法依规严格处罚,并定期向社会公开。严肃查处弄虚作假、擅自停运环保设施等严重违法行为,依法查处并追究相关人员责任。整顿和规范环保服务市场秩序,严厉打击VOCs治理设施建设运维不规范行为。  多措并举治理低价中标乱象。加大联合惩戒力度,将建设工程质量低劣的环保公司和环保设施运营管理水平低、存在弄虚作假行为的运维机构列入失信联合惩戒对象名单,纳入全国信用信息共享平台,并通过“信用中国”“国家企业信用信息公示系统”等网站向社会公布。  开展重点行业专项执法行动,重点对VOCs无组织排放、废气收集以及污染治理设施运行等情况进行检查,检查要点参见附件4、附件5。鼓励各地出台相关文件开展无组织排放监测执法,按照《挥发性有机物无组织排放控制标准》附录A要求,通过监测厂区内无组织排放浓度等,监控企业综合控制效果。  加强技术培训和执法能力建设。制定执法人员培训计划,围绕VOCs管理的法规标准体系、污染防治政策、综合治理任务,重点行业主要排放环节、排放特征、无组织排放措施性控制要求、废气收集与治理技术,监测监控技术规范、现场执法检查要点等,系统开展培训工作。在环境执法大练兵中,将VOCs执法检查作为大比武的重要内容,有效带动提升VOCs执法实战能力。提高执法装备水平,配备便携式VOCs快速检测仪、VOCs泄漏检测仪、微风风速仪、油气回收三项检测仪等。  (五)全面实施排污许可。按照固定污染源排污许可分类管理名录要求,加快家具等行业排污许可证核发工作。对已核发的涉VOCs行业,强化排污许可执法监管,确保排污单位落实持证排污、按证排污的环境管理主体责任。定期公布未按证排污单位名单。  (六)实施差异化管理。综合考虑企业生产工艺、原辅材料使用情况、无组织排放管控水平、污染治理设施运行效果等,树立行业标杆,引导产业转型升级。在重污染天气应对、环境执法检查、政府绿色采购、企业信贷融资等方面,对标杆企业给予政策支持。对治污设施简易、无组织排放管控不力的企业,加大联合惩戒力度。  强化重污染天气应对。各地应将涉VOCs排放企业全面纳入重污染天气应急减排清单,做到全覆盖。针对VOCs排放主要工序,采取切实有效的应急减排措施,落实到具体生产线和设备。根据污染排放绩效水平,实行差异化应急减排管理。对使用有机溶剂等原辅材料,末端治理仅采用低温等离子、光催化、光氧化、一次性活性炭吸附等技术或存在敞开式作业的企业,加大停产限产力度。鼓励各地实施季节性差异化VOCs管控措施,在O3污染较重的季节,对芳香烃、烯烃、醛类等排放量较大的企业,提出进一步管控要求。  生态环境部办公厅2019年6月26日印发附件1:重点区域范围区域名称范围京津冀及周边地区北京市,天津市,河北省石家庄、唐山、邯郸、邢台、保定、沧州、廊坊、衡水市以及雄安新区,山西省太原、阳泉、长治、晋城市,山东省济南、淄博、济宁、德州、聊城、滨州、菏泽市,河南省郑州、开封、安阳、鹤壁、新乡、焦作、濮阳市(含河北省定州、辛集市,河南省济源市)长三角地区上海市、江苏省、浙江省、安徽省汾渭平原山西省晋中、运城、临汾、吕梁市,河南省洛阳、三门峡市,陕西省西安、铜川、宝鸡、咸阳、渭南市以及杨凌示范区(含陕西省西咸新区、韩城市)  附件2:重点控制的VOCs物质类别重点控制的VOCs物质O3前体物间/对二甲苯、乙烯、丙烯、甲醛、甲苯、乙醛、1,3-丁二烯、三甲苯、邻二甲苯、苯乙烯等PM2.5前体物甲苯、正十二烷、间/对二甲苯、苯乙烯、正十一烷、正癸烷、乙苯、邻二甲苯、1,3-丁二烯、甲基环己烷、正壬烷等恶臭物质甲胺类、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯、异丙苯、苯酚、丙烯酸酯类等高毒害物质苯、甲醛、氯乙烯、三氯乙烯、丙烯腈、丙烯酰胺、环氧乙烷、1,2-二氯乙烷、异氰酸酯类等附件3:VOCs治理台账记录要求重点行业重点环节台账记录要求石化/化工含VOCs原辅材料含VOCs原辅材料名称及其VOCs含量,采购量、使用量、库存量,含VOCs原辅材料回收方式及回收量等。密封点检测时间、泄漏检测浓度、修复时间、采取的修复措施、修复后泄漏检测浓度等。有机液体储存有机液体物料名称、储罐类型及密封方式、储存温度、周转量、油气回收量等。有机液体装载有机液体物料名称、装载方式、装载量、油气回收量等。废水集输、储存与处理废水量、废水集输方式(密闭管道、沟渠)、废水处理设施密闭情况、敞开液面上方VOCs检测浓度等。循环水系统检测时间、循环水塔进出口TOC或POC浓度、含VOCs物料换热设备进出口TOC或POC浓度、修复时间、修复措施、修复后进出口TOC或POC浓度等。非正常工况(含开停工及维修)排放开停工、检维修时间,退料、吹扫、清洗等过程含VOCs物料回收情况,VOCs废气收集处理情况,开车阶段产生的易挥发性不合格产品产量和收集情况等。火炬排放火炬运行时间、燃料消耗量、火炬气流量等。事故排放事故类别、时间、处置情况等。废气收集处理设施废气处理设施进出口的监测数据(废气量、浓度、温度、含氧量等)。废气收集与处理设施关键参数(见附件4)。废气处理设施相关耗材(吸收剂、吸附剂、催化剂、蓄热体等)购买处置记录。工业涂装生产信息主要产品产量及涂装总面积等生产基本信息。含VOCs原辅材料含VOCs原辅材料(涂料、固化剂、稀释剂、胶粘剂、清洗剂等)名称及其VOCs含量,采购量、使用量、库存量,含VOCs原辅材料回收方式及回收量等。废气收集处理设施废气处理设施进出口的监测数据(废气量、浓度、温度、含氧量等)。废气收集与处理设施关键参数(见附件4)。废气处理设施相关耗材(吸收剂、吸附剂、催化剂、蓄热体等)购买处置记录。包装印刷生产信息主要产品印刷量等生产基本信息。含VOCs原辅材料含VOCs原辅材料(油墨、稀释剂、清洗剂、润版液、胶粘剂、复合胶、光油、涂料等)名称及其VOCs含量,采购量、使用量、库存量,含VOCs原辅材料回收方式及回收量等。废气收集处理设施废气处理设施进出口的监测数据(废气量、浓度、温度、含氧量等)。废气收集与处理设施关键参数(见附件4)。废气处理设施相关耗材(吸收剂、吸附剂、催化剂、蓄热体等)购买处置记录。储油库基本信息油品种类、周转量等。收发油收发油时间、油品种类、数量,油品来源;气液比检测时间与结果,修复时间、采取的修复措施等;油气收集系统压力检测时间与结果,修复时间、采取的修复措施等。油气处理装置进口压力、温度、流量,出口浓度、压力、温度、流量,修复时间、采取的修复措施等;一次性吸附剂更换时间和更换量,再生型吸附剂再生周期、更换情况,废吸附剂储存、处置情况等。泄漏点检测方法、检测结果、修复时间、采取的修复措施、修复后检测结果等。加油站基本信息油品种类、销售量等。加油过程气液比检测时间与结果,修复时间、采取的修复措施等;油气回收系统管线液阻检测时间与结果,修复时间、采取的修复措施等;油气回收系统密闭性检测时间与结果,修复时间、采取的修复措施等。卸油过程卸油时间、油品种类、油品来源、卸油量、卸油方式等。油气处理装置一次性吸附剂更换时间和更换量,再生型吸附剂再生周期、更换情况,废吸附剂储存、处置情况等。附件4:工业企业VOCs治理检查要点源项检查环节检查要点VOCs物料储存容器、包装袋1.容器或包装袋在非取用状态时是否加盖、封口,保持密闭;盛装过VOCs物料的废包装容器是否加盖密闭。2.容器或包装袋是否存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。挥发性有机液体储罐3.储罐类型与储存物料真实蒸气压、容积等是否匹配,是否存在破损、孔洞、缝隙等问题。4.内浮顶罐的边缘密封是否采用浸液式、机械式鞋形等高效密封方式。5.外浮顶罐是否采用双重密封,且一次密封为浸液式、机械式鞋形等高效密封方式。6.浮顶罐浮盘附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。7.固定顶罐是否配有VOCs处理设施或气相平衡系统。8.呼吸阀的定压是否符合设定要求。9.固定顶罐的附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。储库、料仓10.围护结构是否完整,与周围空间完全阻隔。11.门窗及其他开口(孔)部位是否关闭(人员、车辆、设备、物料进出时,以及依法设立的排气筒、通风口除外)。VOCs物料转移和输送液态VOCs物料1.是否采用管道密闭输送,或者采用密闭容器或罐车。粉状、粒状VOCs物料2.是否采用气力输送设备、管状带式输送机、螺旋输送机等密闭输送方式,或者采用密闭的包装袋、容器或罐车。挥发性有机液体装载3.汽车、火车运输是否采用底部装载或顶部浸没式装载方式。4.是否根据年装载量和装载物料真实蒸气压,对VOCs废气采取密闭收集处理措施,或连通至气相平衡系统;有油气回收装置的,检查油气回收量。工艺过程VOCs无组织排放VOCs物料投加和卸放1.液态、粉粒状VOCs物料的投加过程是否密闭,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。2.VOCs物料的卸(出、放)料过程是否密闭,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。化学反应单元3.反应设备进料置换废气、挥发排气、反应尾气等是否排至VOCs废气收集处理系统。4.反应设备的进料口、出料口、检修口、搅拌口、观察孔等开口(孔)在不操作时是否密闭。分离精制单元5.离心、过滤、干燥过程是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。6.其他分离精制过程排放的废气是否排至VOCs废气收集处理系统。7.分离精制后的母液是否密闭收集;母液储槽(罐)产生的废气是否排至VOCs废气收集处理系统。真空系统8.采用干式真空泵的,真空排气是否排至VOCs废气收集处理系统。9.采用液环(水环)真空泵、水(水蒸汽)喷射真空泵的,工作介质的循环槽(罐)是否密闭,真空排气、循环槽(罐)排气是否排至VOCs废气收集处理系统。配料加工与产品包装过程10.混合、搅拌、研磨、造粒、切片、压块等配料加工过程,以及含VOCs产品的包装(灌装、分装)过程是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。含VOCs产品的使用过程11.调配、涂装、印刷、粘结、印染、干燥、清洗等过程中使用VOCs含量大于等于10%的产品,是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。12.有机聚合物(合成树脂、合成橡胶、合成纤维等)的混合/混炼、塑炼/塑化/熔化、加工成型(挤出、注射、压制、压延、发泡、纺丝等)等制品生产过程,是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至VOCs废气收集处理系统。其他过程13.载有VOCs物料的设备及其管道在开停工(车)、检维修和清洗时,是否在退料阶段将残存物料退净,并用密闭容器盛装;退料过程废气、清洗及吹扫过程排气是否排至VOCs废气收集处理系统。VOCs无组织废气收集处理系统14.是否与生产工艺设备同步运行。15.采用外部集气罩的,距排气罩开口面最远处的VOCs无组织排放位置,控制风速是否大于等于0.3米/秒(有行业具体要求的按相应规定执行)。16.废气收集系统是否负压运行;处于正压状态的,是否有泄漏。17.废气收集系统的输送管道是否密闭、无破损。设备与管线组件泄漏LDAR工作1.企业密封点数量大于等于2000个的,是否开展LDAR工作。2.泵、压缩机、搅拌器、阀门、法兰等是否按照规定的频次进行泄漏检测。3.发现可见泄漏现象或超过泄漏认定浓度的,是否按照规定的时间进行泄漏源修复。4.现场随机抽查,在检测不超过100个密封点的情况下,发现有2个以上(不含)不在修复期内的密封点出现可见泄漏现象或超过泄漏认定浓度的,属于违法行为。敞开液面VOCs逸散废水集输系统1.是否采用密闭管道输送;采用沟渠输送未加盖密闭的,废水液面上方VOCs检测浓度是否超过标准要求。2.接入口和排出口是否采取与环境空气隔离的措施。废水储存、处理设施3.废水储存和处理设施敞开的,液面上方VOCs检测浓度是否超过标准要求。4.采用固定顶盖的,废气是否收集至VOCs废气收集处理系统。开式循环冷却水系统5.是否每6个月对流经换热器进口和出口的循环冷却水中的TOC或POC浓度进行检测;发现泄漏是否及时修复并记录。有组织VOCs排放排气筒1.VOCs排放浓度是否稳定达标。2.车间或生产设施收集排放的废气,VOCs初始排放速率大于等于3千克/小时、重点区域大于等于2千克/小时的,VOCs治理效率是否符合要求;采用的原辅材料符合国家有关低VOCs含量产品规定的除外。3.是否安装自动监控设施,自动监控设施是否正常运行,是否与生态环境部门联网。废气治理设施冷却器/冷凝器1.出口温度是否符合设计要求。2.是否存在出口温度高于冷却介质进口温度的现象。3.冷凝器溶剂回收量。吸附装置4.吸附剂种类及填装情况。5.一次性吸附剂更换时间和更换量。6.再生型吸附剂再生周期、更换情况。7.废吸附剂储存、处置情况。催化氧化器8.催化(床)温度。9.电或天然气消耗量。10.催化剂更换周期、更换情况。热氧化炉11.燃烧温度是否符合设计要求。洗涤器/吸收塔12.酸碱性控制类吸收塔,检查洗涤/吸收液pH值。13.药剂添加周期和添加量。14.洗涤/吸收液更换周期和更换量。15.氧化反应类吸收塔,检查氧化还原电位(ORP)值。台账企业是否按要求记录台账。附件5:油品储运销VOCs治理检查要点类别检查环节检查要点储油库发油阶段1.油罐车或铁路罐车是否采用底部装载或顶部浸没式装载方式。2.气液比、油气收集系统压力等。油气处理装置3.是否有油气处置装置。4.检测频次、油气排放浓度、油气处理效率,进出口压力。5.一次性吸附剂更换时间和更换量,再生型吸附剂再生周期、更换情况,废吸附剂储存、处置情况等。油气收集系统6.泄漏检测频次及浓度。加油站加油阶段1.是否采用油气回收型加油枪,加油枪集气罩是否有破损,加油站人员加油时是否将集气罩紧密贴在汽油油箱加油口(现场加油查看或查看加油区视频)。2.有无油气回收真空泵,真空泵是否运行(打开加油机盖查看加油时设备是否运行);油气回收铜管是否正常连接。3.加油枪气液比、油气回收系统管线液阻、油气收集系统压力的检测频次、检测结果等。卸油阶段4.查看卸油油气回收管线连接情况(查看卸油过程录像)。5.卸油区有无单独的油气回收管口,有无快速密封接头或球形阀。储油阶段6.是否有电子液位仪。7.卸油口、油气回收口、量油口、P/V阀及相关管路是否有漏气现象,人井内是否有明显异味。在线监控系统8.气液比、气体流量、压力、报警记录等。油气处理装置9.一次性吸附剂更换时间和更换量,再生型吸附剂再生周期、更换情况,废吸附剂储存、处置情况等。
  • 珀金埃尔默Torion助力新国标《水中挥发性有机物的测定便携式顶空/气相色谱质谱法》
    近期,生态环境部办公厅发布了《水质挥发性有机物的测定 便携式顶空/气相色谱质谱法(征求意见稿)》,该标准规定了地表水、地下水、生活污水、工业废水和海水中挥发性有机物的现场快速定性和56种目标化合物的定量分析。珀金埃尔默Torion T-9仅需80秒即可完成标准中56种VOCs的定性定量分析,可从容应对环境突发事件的应急监测需求。减少了样品运输和保存过程中待测物质的变化,具有实验室分析方法不可替代的优势。随着我国经济的增长,工业发展迅猛,在化工品生产、运输和储存过程中导致的挥发性有机物(VOCs)污染事故频发,严重影响了当地的人民生活、社会稳定和经济发展。VOCs并非单一的化合物种类众多,具有迁移性、持久性和毒性是一类重要的环境污染物。VOCs会对空气、水、土壤等造成严重伤害和污染,其中水与我们的生活息息相关。目前,国内外针对水中VOCs的检测标准主要是顶空气相色谱法、顶空气相色谱质谱法、吹扫捕集气相色谱质谱法等均为实验室检测标准。珀金埃尔默Torion T-9便携式气质配合SPS-3顶空工作站可以在突发应急现场分析水中VOCs,样品分析速度快,检测56种VOCs仅需80秒,同时峰形尖锐分离效果好。在满足新标准的同时可在突发性环境应急事件中快速提供检测结果,指导应急策略。Torion T-9便携式气质技术优势:SPME/CME/顶空/热脱附等多种样品前处理方式创新的环状离子阱比常规离子阱离子容量高400倍开机5分钟做样3分钟升温速率高达2.5℃/s无基础用户一天培训可独立操作隔膜泵/涡轮分子泵的真空系统非耗材省心省成本图1 56种VOCs与2种内标总离子流图1-氯乙烯;2-1,1-二氯乙烯;3-二氯甲烷;4-反-1,2-二氯乙烯;5-1,1-二氯乙烷;6-氯丁二烯;7-顺-1,2-二氯乙烯;8-2,2-二氯丙烷;9-溴氯甲烷;10-氯仿;11-1,1,1-三氯乙烷;12-1,2-二氯乙烷;13-1,1-二氯丙烯;14-苯;15-四氯化碳;16-1,2-二氯丙烷;IS1-氟苯(内标);17-三氯乙烯;18-二溴甲烷;19-一溴二氯甲烷;20-顺-1,3-二氯丙烯;21-反-1,3-二氯丙烯;22-1,1,2-三氯乙烷;23-甲苯;24-1,3-二氯丙烷;25-二溴氯甲烷;26-1,2-二溴乙烷;27-四氯乙烯;28-氯苯;29-1,1,1,2-四氯乙烷;30-乙苯;31/32-对/间-二甲苯;33-溴仿;34-苯乙烯;35-邻-二甲苯;36-1,1,2,2-四氯乙烷;37-1,2,3-三氯丙烷;38-异丙苯;39-溴苯;40-正丙苯;41-2-氯甲苯;42-4-氯甲苯;43-1,3,5-三甲基苯;44-叔丁基苯;45-1,2,4-三甲基苯;46-1,4-二氯苯;IS2-1,4-二氯苯-d4(内标);47-仲丁基苯;48-1,3-二氯苯;49-4-异丙基甲苯;50-1,2-二氯苯;51-正丁基苯;52-1,2-二溴-3-氯丙烷;53-1,2,4-三氯苯;54-萘;55-六氯丁二烯;56-1,2,3-三氯苯;图2 1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出解卷积谱图在突发应急事件中,由于便携质谱检测结果是制定应急决策的重要依据,不但要快而且要准。Torion T-9内置强大的谱库的同时还具备独特的解卷积功能,可以轻松鉴定极为复杂的化合物,即使有化合物共流出也可以实现准确定性和定量。如图2所示1,2-二氯丙烷、三氯乙烯、二溴甲烷和一溴二氯甲烷共流出通过Torion T-9的内置谱库和解卷积功能可以准确识别出这4种物质。Torion T-9便携式气质为突发应急保障而设计,总重量仅14.5公斤,仪器从启动到样品分析仅需5分钟,样品分析时间3分钟以内,在福建泉港C9泄露、江苏海安工业园泄露、青岛上合峰会、武汉军运会等突发事件和重大会议保障上起到了关键的作用。
  • 【精品巡礼】系列报道之一:工业园区大气挥发性有机物在线分析系统
    挥发性有机物(VOCs)是造成灰霾和臭氧超标的主要前体物之一,对环境空气质量和人们身体健康带来非常严重的危害。我国政府高度对此高度重视,在新修订的《环保法》中,首次将挥发性有机物列入监管对象;《“十三五”挥发性有机物污染防治工作方案》明确主要目标是到2020年,建立健全以改善环境空气质量为核心的VOCs 污染防治管理体系,实施重点地区、重点行业VOCs 污染减排,排放总量下降10%以上。通过与NOx 等污染物的协同控制,实现环境空气质量持续改善。VOCs怎么治先河环保针对挥发性有机物(VOCs)种类多、组分复杂、无组织排放特征明显和监管难度高等突出特点,充分利用网格化监测理念,构建点、面、域全覆盖/测、管、治一体化的工业园区VOCs综合整治解决方案,确保VOCs排放测得准、说得清、管得好;打造智能、高效和便捷的VOCs监管平台,为管理部门核算VOCs排放量,制定VOCs排污和收费政策,减排效果评估,污染预警与溯源和环境执法等提供关键数据和技术支撑。XH VOC6000大气挥发性有机物在线分析仪本期为您介绍先河环保XHVOC6000大气挥发性有机物在线分析仪,适用于工业园区或环境空气中全组分挥发性有机物浓度的在线监测,可实现污染来源追踪及溯源。产品概述针对国内环境空气中挥发性有机物成分复杂多变和部分地区空气湿度较大等特点,结合环保管理部门对环境监测仪器自动化和智能化运行的监测需求,先河环保开发了XHVOC6000型挥发性有机物在线监测系统,该监测系统具有定性可靠、测量精度高和扩展性强等特点,可实现环境空气中VOCs全分析,数据无盲点,真正实时反应环境空气中VOCs的类型和变化。适用于工业园区或环境空气中挥发性有机物浓度的在线监测。XHVOC6000型挥发性有机物在线监测系统利用二级脱附与电子制冷技术采集+富集+聚焦VOCs技术进样,由气质联用仪(或气相色谱)进行定性定量分析。该产品可一次采样监测100多种VOCs,其中包括C2-C12碳氢化合物、苯系物、卤代烃、氯苯类、含氧有机物、硫化物等挥发性有机物及部分半挥发性有机物。性能特点1) 所有流路经过惰性化处理。避免有机物在系统中粘附、反应,能用于活性较高的挥发性有机物的检测2) 全流路保温。将冷点减少到了最低,避免有机物在流路中冷凝损失3) 可测量组分多,可扩展性强。目前应用已完成100种以上物质的监测,并且可在一个程序中完成。可根据实际工作需要开发新的分析方法,可扩展测定半挥发性有机物4) 具备干吹功能。能在分析实际样品时有效降低水分的吸附,防止聚焦管出现的吸水“结冰”现象,从而保证流路通畅与捕集效率,保证样品分析时的准确度5) 定性能力强。系统的专利技术与整体优化,使得质谱检测器能够满足C2~C12的监测,其质谱自带的谱图库和检索能力,能够最大限度地保证定性的准确性;最大限度降低假阳性结果的产生和误报,并能对难分离的非同分异构体准确定量6) 识别未知组分的能力强,当出现未知组分时,通过质谱扫描,可实现及时定性;特别适用于未知挥发性气体的监测,满足应急监测的需要7) 仪器性能稳定,保留时间的稳定性强,测量结果可靠,校正工作量较小8) 可连接真空罐、采气袋,完成异地采样的分析9) 可以自动实现样品加标或添加替代物,考察基底效应与系统的稳定性技术指标
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制