当前位置: 仪器信息网 > 行业主题 > >

挥发性风味物质己醇

仪器信息网挥发性风味物质己醇专题为您整合挥发性风味物质己醇相关的最新文章,在挥发性风味物质己醇专题,您不仅可以免费浏览挥发性风味物质己醇的资讯, 同时您还可以浏览挥发性风味物质己醇的相关资料、解决方案,参与社区挥发性风味物质己醇话题讨论。

挥发性风味物质己醇相关的论坛

  • 生肉的挥发性风味物质测定方法

    使用GC-MS测定生肉的挥发性风味物质,但是只知道固相微萃取这一种进样方法,有没有什么处理方法使得生肉样品可以采用液体样品自动进样的办法?比如将挥发性风味物质都溶解在有机溶剂里然后过滤膜?

  • 气质联用仪测挥发性风味物质

    请问大家,用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]测挥发性风味物质后数据该如何处理?我们之前只用过[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]测脂肪酸,是用的面积归一化法,然后用37种脂肪酸标样做了一个组分表,后续都是用一个组分表定量。其他操作还是很小白。挥发性风味物质这个不知道该咋处理,怎么导出所有检测出的物质,怎么分析,都不清楚。。。不知是否有大神可以指点指点,或者是否有文件资料之类的可以参考。谢谢大家!

  • 顶空固相微萃取气质联用检测高山根韭菜挥发性风味物质

    [font=微软雅黑][font=微软雅黑]随着人们生活品质的提高,加之根韭菜病虫害少、全身均可食用、无污染的优质特点,符合健康生态理念,因此具有广阔的开发前景。但国内关于根韭菜挥发性风味物质的研究较少,且国内外关于葱属植物如香葱、大葱、洋葱挥发性物质的报道大多是采用水蒸气蒸馏萃取([/font]Steam Distillation,SD)[6,7]和同时蒸馏萃取(Simultaneous Distillationextraction,SDE)[8~11]法,这些方法所需要的样品前处理时间较长,提取试剂用量大、步骤多。固相微萃取(Solid Phase Microextraction,SPME)是20世纪80年代末出现的绿色环保型样品分析前处理技术。与其他常用的挥发性物质测定技术相比,SPME具有敏感、快速、操作简便、样品用量少、不使用有机溶剂、选择性好且灵敏度高,集采样、萃取、浓缩、进样于一体的优点,大大加快了分析检测速度[12]。本研究应用顶空固相微萃取[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url](Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry,HS-SPME-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])方法:韭菜根风味物质进行研究,旨在了解根韭菜根挥发性风味物质的组成,为利用根韭菜液体深层发酵技术来生产天然风味化合物及食品添加剂原料提供一定的理论依据。 [/font][font=宋体][/font][font=微软雅黑][font=微软雅黑]1 材料与方法 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]1.1 材料 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]①仪器 7890N-5975型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪(美国Agilent公司);手持固相微萃取器,配 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]50/30 μm CAR/DVB/PDMS、100 μm PDMS、65 μm PDMS/DVB萃取头(美国Supelco公司);PC-420D恒温数显磁力搅拌器(美国Corning公司)。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]②试剂 正构烷烃标准品(C8~C32,美国Supelco公司);癸酸乙酯(98%,国药集团化学试剂有限公司)。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]③试验材料 试验样品采自云南保山市海拔1 200 m的山地,选取其肥嫩的肉质根,烘干后粉碎过20目筛,密封保存,待测。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]1.2 方法 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]①[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]分析条件 GC条件:进样口温度为230℃;载气为高纯氦气(纯度99.999%):柱流量为1.0 mL/min,不分流进样。程序温度:首先以50℃保持5 min,3℃/min速率升温至125℃,保持3 min,再以2℃/min速率升温至180℃,保持3 min,再以15℃/min速率升温至230℃,保持5 min。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]MS条件:电子电离源(EI);离子化电压70 eV;离子源温度为200℃;四级杆温度为150℃;接口温度为280℃;质谱扫描范围为35~ [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]450 amu。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]②SPME操作方法 称取1.0 g经粉碎后的根韭样品于15 mL的顶空瓶中,加入20 μL 10 mg/L癸酸乙酯标准溶液,再加入10 mL沸水,密封,60℃水浴下磁力搅拌萃取,再将已经老化的CAR/DVB/PDMS萃取头穿透密封垫插入顶空瓶内根韭汤上方,固定好SPME手柄,小心推出纤维头开始萃取并计时,60 min后取出,然后插入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口,在230℃下热解吸5 min。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]③定性与定量分析方法 定性:各组分峰与NIST12.L谱库中标准化合物的匹配度;化合物的保留指数;查阅香气成分的相关文献。定量:利用面积归一法计算得到各组分的相对含量。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]2 结果与分析 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]  采用[/font][font=微软雅黑]HS-SPME收集,[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]法对根韭菜根部挥发性风味物质进行检测,其挥发性风味物质的总离子流图见图1。由图1可知,保留时间为19.686、27.299 min,是根韭菜挥发性物质典型峰。 [/font][/font][font=Arial][/font][font=微软雅黑][font=微软雅黑]  本研究利用[/font][font=微软雅黑]HS-SPME-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]技术,通过谱库检索鉴定出根韭75种挥发性风味化合物,其中匹配度大于等于80%的化合物有31种(表1),其中醚类为14种、烯类8种、烷类4种、醛类3种和醇类2种。1 g样品中这31种挥发性物质总相对含量为20.154 7 μg,醚类总相对含量为16.902 8 μg,烯类总相对含量为1.053 4 μg,烷类总相对含量为0.922 5 μg,醛类总相对含量为0.918 7 μg,醇类总相对含量为0.157 3 μg。在这31种挥发性物质中,含量最高的单个物质是二烯丙基三硫醚,总相对含量为4.686 4 μg,其次是甲基烯丙基三硫醚,总相对含量为4.612 9 μg。在醚类中,二硫醚的总相对含量为1.501 5 μg,三硫醚的总相对含量为14.270 1 μg,四硫醚的总相对含量为1.020 2 μg,噻吩的总相对含量为0.111 0 μg。   司民真等[13]报道了大蒜的主要挥发性物质为二丙烯基二硫醚;大葱主要挥发性物质为1-丙硫醇和丙烯基甲基硫醚;韭的主要挥发性物质为烯丙基甲基硫醚和二烯丙基二硫醚;多星韭的主要挥发性物物中含有1-丙硫醇成分;大花韭的挥发物中含有丙烯基甲基硫醚和二烯丙基二硫醚成分;木里韭挥发物中含有二烯丙基二硫醚、1-丙硫醇、丙烯基甲基硫醚成分;?1?7头、小根蒜主要挥发性物质为丙烯基甲基硫醚和1-丙硫醇[13]。本研究结果表明,根韭挥发性物质中主要是二硫醚及三硫醚,与何洪巨等[14]利用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱分析韭葱中主要成分为二丙基三硫醚(30.75%)、二丙基二硫醚(14.28%)的结果一致。硫醚是抗血小板聚集作用的主要活性成分[15],本研究表明硫醚是根韭菜的主要挥发性风味物质,因此,根韭对调整膳食结构与保持身体健康有重要意义。 [/font][/font]

  • 顶空固相微萃取—气质联用分析金华火腿挥发性风味物质

    [font=微软雅黑][font=微软雅黑]吹扫捕集和顶空固相微萃取方法均可用于挥发性风味物质的提取。带有自动进样装置的吹扫捕集方法具有取样量少、富集效率高、无溶剂萃取、与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]连接可实现自动进样等优点[/font],但目前在肉品风味测定领域应用较少;顶空固相微萃取则应用最为广泛,也具有快速简便、无溶剂萃取、使用温和的提取条件、与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]连接实现自动进样等优点。这两种前处理方法都可以顶空采样,区别是吹扫捕集为动态顶空,顶空固相微萃取为静态顶空。金华火腿是中国传统腌腊/发酵肉制品,生产周期长,其挥发性风味物质种类多、成分复杂,比一般肉制品挥发性风味分析具有更大难度,因此也更具代表性。本文以金华火腿挥发性风味物质为研究对象,对吹扫捕集和顶空固相微萃取这两种前处理方法的应用进行深入研究,确定主要影响因素及适宜的条件参数,进而结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用鉴定挥发性风味化合物,并且比较这两种前处理方法配合不同极性色谱柱所测定的金华火腿挥发性风味组分。具体研究内容和结果如下:1.分析金华火腿样品在测定其挥发性风味前的贮藏温度对风味测定结果的影响。分别将真空包装的金华火腿小块样品(3cm×3cm×1cm)存放于4℃和-20℃,贮藏20 d后测定挥发性风味物质。对比总离子流图发现,4℃储存样品的己醛谱峰相对于其它化合物谱峰明显高于-20℃,从而大大掩蔽了其它化合物的谱峰,不利于保持金华火腿挥发性风味组分的相对比例关系。同时,4℃贮藏样品呈现黄褐色,-20℃依然保持火腿的微红色。因此,样品在测定挥发性风味前,应贮藏于-20℃。2.在极性和非极性色谱柱条件下,分别对吹扫捕集/顶空固相微萃取法进行研究,通过Plackett-Burman试验设计筛选方法的显著影响因素(P0.05),针对显著影响因素进行单因素和组合试验,具体分析不同因素及水平、不同极性色谱柱对挥发性风味测定结果的影响。结果表明:预热(吹扫)/萃取温度、吹扫/萃取时间、样品质量三个因素是风味前处理方法的显著影响因素(P0.05),并且这些因素的确定不受色谱柱极性影响。吹扫捕集显著影响因素,其水平的具体取值受色谱柱容量的影响;顶空固相微萃取则受萃取头容量的影响。3.两种前处理方法结合[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用分析金华火腿挥发性风味物质。共检出金华火腿挥发性化合物106种,极性色谱柱和固相微萃取、极性色谱柱和吹扫捕集、非极性色谱柱和吹扫捕集、非极性色谱柱和固相微萃取四种不同组合方式分别检出挥发性化合物55、48、60、69种,且极性和非极性色谱柱检出不同种类化合物的相对百分含量有较大差别。[/font]

  • 【小白求助】GC-MS定量挥发性风味物质

    用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GCMS[/color][/url]做挥发性风味物质的定量,想做内标做标曲,需要每一种化合物都购买标准品吗?小白谢谢各位!!

  • 关于肉中的挥发性风味物质的检测(使用吹扫捕集与气质联用)

    [color=#444444]羊肉中的挥发性风味变化的影响研究,生鲜肉的风味,不知道做过风味研究方面的亲,有没有好的建议?[/color][color=#444444][color=#444444]用的赛默飞的[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url](GC-MS),打算用吹扫捕集技术提取,现在才开始进行,现遇到了以下一些问题。[/color][color=#444444]1.进样内标的选择,查资料说用(1,2-二氯苯做内标),现在不知道用什么内标?[/color][color=#444444]2.做挥发性风味物质需要先用混标做曲线对照吗?现在有图谱库查找跑出来的峰,我现在考虑到不知道什么时候出的峰是肉中的挥发性风味物质,所以不知道是否使用单标和混标?[/color][color=#444444]3.做环境空白,即进空白样品的时候(样品瓶中不加肉样),出现了很多峰,估计是柱流失(出现了73,147,207,281,355),可是是刚安的柱子,怎么柱流失这么严重?[/color][/color]

  • 固相微萃取-GCMS测定挥发性风味物质

    固相微萃取-GCMS测定挥发性风味物质

    我们最近使用固相微萃取装置-GC-MS来测挥发性风味物质,结果跑出来的峰只有很多硅氧烷类化合物,只有极少极少的挥发性物质。下面是我们的条件:首先我们用的仪器是岛津GCMS2010SE,色谱柱是DB-5MS,萃取头是色谱科supelco 50/30μmDVB/CAR/PDMS。我们先进行了:色谱柱的老化:从50-300℃梯度升温降温3次;萃取头老化:进样口270℃,老化1h(此步骤只启动了GC,未启动MS)。样品前处理:3g-5g鱼肉,加入NaCl,60℃加热平衡30min,插入萃取头萃取35min,插入进样口(温度为250℃)解析5min。GCMS的程序我放图在下面。(以上处理条件均参考的文献)。结果我也放一些在下面,跑出来的都是各种硅氧烷类化合物。目前,我试过不插萃取头启动GCMS跑一遍程序,几乎没有出现峰。我们岛津GCMS做过脂肪酸,有一个自动进样器,取了1ul丙酮自动进样跑了两次,只出现了几个杂峰,没有硅氧烷类化合物。请各位老师大神们帮忙分析一下原因,谢谢谢谢![img=,690,389]https://ng1.17img.cn/bbsfiles/images/2020/05/202005121805014448_4739_4165208_3.jpg!w690x389.jpg[/img][img=,690,389]https://ng1.17img.cn/bbsfiles/images/2020/05/202005121805510511_6855_4165208_3.jpg!w690x389.jpg[/img][img=,690,389]https://ng1.17img.cn/bbsfiles/images/2020/05/202005121806546206_8976_4165208_3.jpg!w690x389.jpg[/img][img=,690,389]https://ng1.17img.cn/bbsfiles/images/2020/05/202005121807346056_5338_4165208_3.jpg!w690x389.jpg[/img]

  • 使用TD-GC/MS-O分析螺蛳粉挥发性风味成分

    使用TD-GC/MS-O分析螺蛳粉挥发性风味成分

    使用TD-GC/MS-O分析螺蛳粉挥发性风味成分摘要:螺蛳粉具有其非常独特气味和香味,是由于其特有配料的各种挥发性风味化合物带来的。本文采用热脱附TDU--吸附搅拌磁子(SBSE)提取螺蛳粉汤的挥发性风味香气香味成分,气相色谱质谱法分析鉴定螺蛳粉汤的挥发性风味香气香味成分;采用TF-SPME薄膜固相微萃取测定酸笋的挥发性化合物;采用GC-MS-O对气味进行考察。利用气质数据解卷积软件拆分共流出色谱峰和保留指数校正以及化合物的气味风味信息,来揭示螺蛳粉其独特风味化合物的构成。关键词:螺蛳粉,酸笋,ODP,嗅闻,GCMS,保留指数,AromaOffice2D螺蛳粉是广西柳州的特色小吃之一,是广西当地居民主要的快餐食品。产品都以广西地方特色的食材——酸笋以及螺蛳(石螺)为主要原料,具有辣、爽、鲜、酸、烫的独特风味,是柳州最具地方特色的名小吃。近年来,柳州螺蛳粉因其独特的风味及营销模式迅速红遍全国 。螺蛳粉的味美还因为它有着独特的汤料。汤料由螺蛳、山奈、八角、肉桂、丁香、多种辣椒、等天然香料和味素配制而成。2018年8月20日,“柳州螺蛳粉”获得国家地理标志商标 。2008年,柳州螺蛳粉手工制作技艺入选广西壮族自治区第二批非物质文化遗产名录。2020年被列入国家级非物质文化遗产名单。 螺蛳粉由于其独特的汤料而呈现特有的气味和香味。这种特有的美味是由螺蛳粉里面的特有配料的各种挥发性风味化合物带来的。有少数文献对于酸笋(非方便速食螺蛳粉所用酸笋)的成分分析有报道,但对于螺蛳粉全汤的风味成分未见报道。本文采用吸附搅拌磁子(SBSE)提取螺蛳粉汤的挥发性风味香气香味成分,大体积冷却进样口CIS,热脱附TDU和气相色谱质谱法分析鉴定螺蛳粉汤的挥发性风味香气香味成分;采用TF-SPME薄膜固相微萃取测定酸笋的挥发性化合物;采用GC-MS-O对气味进行考察。利用AromaOffice2D风味物质数据库软件查询和处理GCMS数据。此软件包含解卷积拆分共流出色谱峰和保留指数校正以及化合物的气味风味信息。1试验部分1.1 仪器与装置美国安捷伦7890A/5975C气相色谱-质谱联用仪德国Gerstel的MPS Robotic Pro多功能自动样品前处理平台,可以实现全自动液体,顶空,固相微萃取SPME,热脱附,磁力搅拌吸附萃取SBSE,动态顶空DHS等功能。德国Gerstel的CIS4大体积冷阱进样口和TDU2热脱附单元。德国Gerstel的ODP4嗅闻仪。磁力吸附搅拌子(PDMS,10mmX1mm, Gerstel)薄膜固相微萃取 TF-SPME(PDMS/DVB, 20 x 4.8 mm,Gerstel)。1.2样品,标样,试剂样品:方便袋装螺蛳粉(京东电商平台)。香气香味化合物标准品均来自Sigma-Aldrich等主要试剂公司,少数为实验室内部精制标样。C6-C30正构烷混合标准物,来自安谱公司。1.3 GC/MS条件1.3.1 色谱条件:色谱柱:安捷伦HP-Innowax (60m×0.25 mm ( i.d.)×0.25μm) 惰性毛细管柱;升温程序: 40℃保持2 min,以5 ℃/min升至250℃,保持20 min;载气(He, 纯度99.999%以上)流速1.8mL/min 进样口:CIS-PTV大体积冷阱进样口,温度-30℃-250℃, 15℃/S;分流比11:1。热脱附TDU:25-230℃, 100℃/min, 不分流,传输线温度:260℃MSD和ODP分流比为1:11.3.2质谱条件:电子轰击(EI)离子源;电子能量70eV;传输线温度250℃;离子源温度230℃;四级杆温度150℃。SCAN扫描范围:29-400。EMV: 1328V。1.4数据处理软件:安捷伦MS化学工作站F版Amdis自动化质谱图解卷积和鉴定软件GERSTEL Olfactory Data Interpreter (ODI) SoftwareAromaOffice2D V7风味物质数据库软件 (Gerstel, K.K)1.5样品的提取处理及分析方法按方便螺蛳粉说明的步骤煮螺蛳粉:将干粉及500ml冷水放入锅中,煮沸约8-10分钟,粉用筷子能夹断即可,捞起放入碗中备用。加入500ml水进锅中烧开,倒入煮好的米粉和汤包煮开,把配料(腐竹、木耳、酸笋、花生等) 放入,煮开后倒入碗中搅拌均匀。螺蛳粉汤:准确取15g样品于20ml顶空瓶,准确加入1ppm的内标物,放入磁力吸附搅拌子,一小时后,用去离子水冲洗干净,放入TDU2热脱附的小管,运行序列,进行热脱附。酸笋:取3.6g样品于20ml顶空瓶,悬挂TF-SPME薄片,60℃提取1小时后,放入TDU2热脱附的小管,运行序列,进行热脱附,TDU温度30-250℃,CIS温度-30-250℃。https://ng1.17img.cn/bbsfiles/images/2023/08/202308011757509503_3339_1615838_3.png图1 TF-SPME薄膜固相微萃取示意图在分析样品前,和样品分析完全相同的条件下,用0.05%的C6-C30的正构烷标样注射到GCMS,获得正构烷的保留时间,用于软件计算保留指数。2 结果与讨论2.1 样品处理方法:螺蛳粉汤的原料比较复杂,里面有米粉,调料包和其它材料。其香气成分测定需要一种简单快速,无溶剂或少许溶剂的提取富集技术。和一般需要溶剂和浓缩的复杂步骤的LLC,SDE,SPE,SAFE等样品提取制备方法相比,搅拌棒吸附萃取(SBSE)是一种无溶剂的用于萃取和浓缩痕量有机物的技术。其灵敏度高,重现性好,样品用量少,操作简单快速,也比普通SPME的灵敏度高许多,非常适合螺蛳粉汤的风味化合物的测定。对于有独特风味的腌制发酵的酸笋是条状的,薄膜固相微萃取TF-SPME比较适合。2.2 螺蛳粉汤的挥发性化合物分析SBSE提取测定某螺蛳粉汤的挥发性化合物总离子色谱图(TIC)如下:https://ng1.17img.cn/bbsfiles/images/2023/08/202308011757513527_3202_1615838_3.png图2 SBSE提取测定某螺蛳粉汤的挥发性化合物总离子色谱图(TIC)从SBSE提取测定某螺蛳粉汤鉴定了大约125种风味化合物。含量最高的化合物是对甲酚,为76.8957ppm。含量最多化合物有大茴香脑,乙基麦芽酚,丁香酚棕榈酸等。其次有乙酸乙酯,正己醇,桉叶素,苯甲醛,芳樟醇,石竹烯,大茴香醛等。各种萜烯,醛类,醇类,酮类,酯类,酚类,吡嗪,硫醚等,在此不一一例举讨论。,详见表1 某螺蛳粉汤的SBSE分析组分表 。 表1 某螺蛳粉汤的SBSE分析组分表No.Name化合物名称RI_LibRI_testRT_minppm1PROPANONE8107885.4550.05362ETHYL ACETATE8808686.6942.46603METHYLBUTYRALDEHYDE, 2-9119017.2310.46644ISOVALERALDEHYDE9259067.330.68625ALCOHOL9349187.5983.00006ETHYL ISOBUTYRATE9699558.4060.05367PROPYL ACETATE9799668.6590.87388ALDEHYDE C 59859738.8020.05369PINENE, ALPHA-103210129.7070.010710ETHYL BUTYRATE1038103210.2480.391311TOLUENE1043103910.4250.241212BUTYL ACETATE1082106911.2250.632613DIMETHYL DISULPHIDE1084107411.3580.064314ALDEHYDE C 61094108011.5392.948515CARENE, DELTA-3-1152114313.2810.053616PHELLANDRENE ALPHA1171117814.2760.053617HEPTANONE, 21185118614.4840.053618LIMONENE1201119814.8460.310919EUCALYPTOL1222121015.1832.482120HEXENAL, 2E-1215122615.640.273421PENTYL FURAN-21213123415.8490.053622TERPINENE, GAMMA-1241124916.2710.546823CYMENE, P-1263127817.0730.852424TERPINOLENE1288128917.3870.053625BENZENE, 1,2,4-TRIMETHYL-1270129117.4590.461026ALDEHYDE C 81297129517.5751.050727CYCLOHEXANONE1285130617.8690.080428OCTENONE, 1,3-1296130817.9330.053629OCTANEDIONE, 2,3-1310132918.5020.053630DIMETHYLPYRAZINE, 2,5-1336133218.5840.477131HEPTENAL, 2E-1334133518.6551.334832INDANE1369134218.8610.005433METHYL HEPTENONE, 6,5,2-1334134618.9430.252034ALLINATE /ALLYL ISOTHIOCYANATE1357137419.720.0536351,1-ETHANEDIOL DIACETATE1372138219.9430.042936NONANONE, 2-1399139620.3251.040037TETRADECANE1400139820.3250.225238ALDEHYDE C 91383140220.4730.943539FENCHONE1396141220.730.053640OCTENAL, 2E-1437144221.5150.241241OCTENOL, 1,3-1446145221.7630.005442PYRAZINE, 3,6-DIMETHYL 2-ETHYL-1437145521.8350.010743PENTADECANE15001500230.080444COPAENE, ALPHA-1498150523.1390.010745HEPTADIENAL, 2E,4E-1482151023.2490.021446BENZALDEHYDE1530154724.1612.369547LINALOOL1548155024.2555.762948PYRAZINE, 3,6-DIMETHYL-2-VINYL-1531155324.3310.916749ALCOHOL C 81550156124.5070.600450Pentadecane, 3-methyl- 156624.6450.579051HEXADECANE1600159825.4341.731552NONADIENAL, 2E,6Z-1579160225.5220.048253METHYL HEPTADIENONE, 6,3,5,2-1593160825.6750.375354TERPINENOL, 4-1601161625.9090.520055CARYOPHYLLENE1584161825.9095.360856DECENAL, 2E-1636165826.8420.026857ACETOPHENONE1644167527.2410.016158ESTRAGOL1666168927.5711.200859HEPTADECANE1700169827.7840.075160TERPINEOL, ALPHA-1698170828.0140.032261TERPINYL ACETATE, ALPHA-1685171228.0860.053662CRESYL ACETATE, P-1714174828.8920.053663DECADIENAL, 2E,4Z1761178129.6360.316364OCTADECANE1800179830.0120.053665METHYL SALICYLATE1753180430.1370.048266DECADIENAL, 2E,4E-1809182930.6831.624367ANETHOLE TRANS-1777185031.11618.393068CAPRONIC ACID1840186231.3730.010769GERANYLPROPANONE1840186731.4820.032270unknown 187031.5470.316371BUTYRIC ACID-3-HYDROXY-2,2,4-TRIMETHYL-PENTYLESTER, ISO- 188031.7730.5414722,2,4-TRIMETHYL-1,3-PENTANEDIOL DIISOBUTYRATE1869188731.9083.232673BENZYLALCOHOL1886189532.0920.589774SAFROL1851190132.1981.431375unknown 190732.3211.163376TRIDECANOL, 2-1917192232.6320.337777BHT IONOL1901192532.7170.723778PHENYLETHYL ALCOHOL, 2-1910193232.840.042979IONONE, BETA-1934196133.4291.377780HEXANOIC ACID, 2-ETHYL-1951196333.4290.273481HEPTANOIC ACID1947196933.5760.675582ALCOHOL C 121965197133.6291.383183METHYLGUAIACOL, 4-1951197933.7861.468984unknown 199134.0370.691585ACETYLPYRROLE-21975199634.1290.310986EICOSANE2000199934.1960.777387unknown 200234.2580.734488Caryophyllenepoxid III 201734.5421.361689EUGENOL METHYL ETHER2023202834.7670.552290ETHYLMALTOL2040204135.02135.027691ETHYLGUAIACOL, 4-2009205335.2460.600492ANISYL ALDEHYDE2001205935.3622.519693CINNAMIC ALDEHYDE2015207235.6250.482594CAPRYLIC ACID2038207535.6820.053695Heneicosane 209936.2080.005496CRESOL, P-2067210336.20876.895797ETHYL CINNAMATE2129215837.2440.514698BUTYL ISOTHIOCYANATE, 4-METHYLTHIO-2109216637.3860.203799PELARGONIC ACID2149218337.6950.3377100BENZYL METHYL KETONE, 4-METHOXY-2133218637.7590.2841101EUGENOL2151219337.88216.3452102PHENOL, 3-ETHYL-2182219738.0060.1179103DOCOSANE2200219938.0060.8416104VINYLGUAIACOL, 4-2181222338.4270.5039105PROPIOPHENONE, 4-METHOXY-2187224238.7770.0214106ETHYL PALMITATE2253226139.1130.3699107HELIOTROPIN2226227239.3130.0268108unknown 227739.4040.7880109BENZENE, 4-PROPENYL-1-(3-METHYL-2-BUTENYLOXY)-/ FOENICULIN2261228239.4970.3002110CAPRIC ACID2253228839.5990.0107111TRICOSANE2300229939.7981.1365112PHENOL, 2,4-DI-TERT.-BUTYL-2293232140.1650.0214113DIETHYL PHTHALATE2375239741.5240.0429114TETRACOSANE2400240041.5242.0746115PHENOL, 4-VINYL-2379242041.850.01611162H-Pyran-2-one, tetrahydro-6-nonyl-? 246242.5550.0054117PENTACOSANE2500250043.1862.0049118METHYL LINOLEATE2480250943.3050.0161119ETHYL LINOLEATE2532254643.8250.06971202',3',4' Trimethoxyacetophenone? 256844.1420.0268121HEXACOSANE2600261144.8111.8173122ETHYL 4-METHOXYCINNAMATE2614266645.921.5332123HEPTACOSANE2700270046.5991.4581124MYRISTIC ACID2711271246.8450.0536125OCTACOSANE2800280048.6698.7221126NONACOSANE2900290051.1215.3823127PALMITIC ACID2930292451.81236.60371289-Hexadecenoic acid2970296352.9765.6932129Alkane isomer 54.0823.3023130STEARIC ACID 59.2995.4412Sum 293.031通过嗅闻,和螺蛳粉特有气味的化合物如下表:表2 某螺蛳粉汤嗅闻结果,螺蛳粉特有气味部分No.Name化合物名称RI_LibRI_testRT_minppm气味描述气味强度96CRESOL, P-2067210336.20876.8957螺蛳粉特有“臭”味4101EUGENOL2151219337.88216.3452螺蛳粉特有“臭”味2102PHENOL, 3-ETHYL-2182219738.0060.1179螺蛳粉特有“臭”味1104VINYLGUAIACOL, 4-2181222338.4270.5039螺蛳粉特有“臭”味1122ETHYL 4-METHOXYCINNAMATE2614266645.921.5332粪臭味1从上表看出,最大的贡献化合物是对甲酚,以及丁香酚等,酚类化合物为主。当然也有其它香气化合物,例如烤香,玉米,爆米花,药香,花香,清香,酸味,杏仁,焦糖,肥皂,樟脑等气味。见下表: 表3 某螺蛳粉汤嗅闻结果,部分其它气味化合物 No.Name化合物名称RI_LibRI_testRT_minppm气味描述气味强度 CYCLOHEXANONE1285130617.8690.0804青味2 DIMETHYLPYRAZINE, 2,5-1336133218.5840.4771煮玉米味2 METHYL HEPTENONE, 6,5,2-1334134618.9430.2520烤红薯3 ALDEHYDE C 91383140220.4730.9435肥皂2 FENCHONE1396141220.730.0536樟脑2 PYRAZINE, 3,6-DIMETHYL 2-ETHYL-1437145521.8350.0107烤香2 HEPTADIENAL, 2E,4E-1482151023.2490.0214青味2 BENZALDEHYDE1530154724.1612.3695药,杏仁2 NONADIENAL, 2E,6Z-1579160225.5220.0482青味,肥皂2 DECENAL, 2E-1636165826.8420.0268烤香2 ESTRAGOL1666168927.5711.2008草药1 DECADIENAL, 2E,4Z1761178129.6360.3163爆米花1 METHYL SALICYLATE1753180430.1370.0482风油精2 DECADIENAL, 2E,4E-1809182930.6831.6243酸臭3 CAPRONIC ACID1840186231.3730.0107酸臭3 IONONE, BETA-1934196133.4291.3777花香3 ACETYLPYRROLE-21975199634.1290.3109玉米1 ETHYLMALTOL2040204135.02135.0276焦糖,烤香2 ETHYLGUAIACOL, 4-2009205335.2460.6004药2 ANISYL ALDEHYDE2001205935.3622.5196药2 HELIOTROPIN2226227239.3130.0268药12.3 酸笋的挥发性化合物分析及和螺蛳粉汤挥发性化合物的关系一般认为酸笋是螺蛳粉独特酸臭味的主要来源。所以对酸笋部分进行了TF-SPME提取分析。TF-SPME薄膜固相微萃取测定某螺蛳粉中酸笋的挥发性化合物的总离子色谱图(TIC)如下:https://ng1.17img.cn/bbsfiles/images/2023/08/202308011757518264_490_1615838_3.png图3 TF-SPME薄膜固相微萃取测定某螺蛳粉中酸笋的挥发性化合物的总离子色谱图(TIC) 表4 某螺蛳粉酸笋TF-SPME分析组分表NoNameRI_LibRI_testRT_minTIC%1ETHYL ACETATE8808656.6720.0772ISOVALERALDEHYDE9259057.3170.013ALCOHOL9349127.4710.0354ETHYL PROPIONATE9619468.2210.0365PROPYL ACETATE9799678.6740.4426DECANE10009869.0920.0127Acetic acid, TMS derivative 10119.7070.2058PROPANOL1045103710.3890.4649PROPYL PROPIONATE1031104210.510.165102,6,10-Trimethyltridecane 107011.2680.0111ALDEHYDE C 61094108111.5690.0112DODECANE1200119114.6570.04813PENTANEDIONE, 2,4-1208121515.3430.00514PENTYL FURAN-21213123515.8970.00815ALCOHOL C 51253125216.3830.00116HEPTENAL, 4Z-1245125516.4480.00117STYRENE1248126816.8250.00118ALDEHYDE C 81297129617.6090.00119HEPTANOL, 21320132018.280.02220ETHYL LACTATE1341135219.1390.02721ALCOHOL C 61355135519.2370.0122INDANE1369137219.6930.00123TETRADECANE1400140020.4550.03424PROPYL LACTATE1410143621.3860.01525DIMETHYLSTYRENE, P-1434145321.820.0326ACETIC ACID1437146622.1590.17827BENZALDEHYDE1530154824.2250.01328PROPANOIC ACID1534155124.3150.21429ALCOHOL C 81550158025.0130.026302-HYDROXYPROPYL PROPIONATE1633165726.860.0131METHYLBUTYRIC ACID, 2-1649168627.5270.01832VERATROL 175028.9940.00933METHYL SALICYLATE1753180630.2380.0234CAPRONIC ACID1840186431.4750.00935GUAIACOL1859188331.8740.02636BENZYLALCOHOL1886190232.2850.05637PHENYLETHYL ALCOHOL, 2-1910194933.2470.02238METHYLGUAIACOL, 4-1951198433.9590.13539PHENOL2002202734.7960.05140ETHYLGUAIACOL, 4-2009207435.7160.0141CRESOL, P-2067210736.36196.03942CEDROL2130215437.2460.04143ANISYL ACETATE2165217637.6540.03144ETHYLPHENOL, 42160219638.0190.00945DOCOSANE2200220038.1020.01646ETHYL PALMITATE2253226239.2110.02247TRICOSANE2300230039.8970.02648PHENOL, 2,4-DI-TERT.-BUTYL-2293232040.2470.00549Hexadecanoic acid, propyl ester? 234640.7040.02450TETRACOSANE2400240041.6380.0551BENZOIC ACID2432249743.2440.0552PENTACOSANE2500250143.3090.12953ETHYL LINOLEATE2532254143.9570.00454HEXACOSANE2600260144.9490.05255HEPTACOSANE2700270146.7660.05156OCTACOSANE2800280148.8660.05357NONACOSANE2900290151.3570.04358PALMITIC ACID 292251.980.04747TRICOSANE2300230039.8970.02648PHENOL, 2,4-DI-TERT.-BUTYL-2293232040.2470.00549Hexadecanoic acid, propyl ester? 234640.7040.02450TETRACOSANE2400240041.6380.0551BENZOIC ACID2432249743.2440.0552PENTACOSANE2500250143.3090.12953ETHYL LINOLEATE2532254143.9570.00454HEXACOSANE2600260144.9490.05255HEPTACOSANE2700270146.7660.05156OCTACOSANE2800280148.8660.05357NONACOSANE2900290151.3570.04358PALMITIC ACID 292251.980.047从表4看出,某螺蛳粉酸笋最大组分为对甲酚,含量96%。它是螺蛳粉汤的对甲酚的来源。和酸笋的嗅闻结果一致,味道是浓烈的臭味,药香,螺蛳粉特有气味。参见下面螺蛳粉汤和其中酸笋的挥发性化合物的总离子色谱图对比(TIC):https://ng1.17img.cn/bbsfiles/images/2023/08/202308011757521602_6515_1615838_3.png图4 螺蛳粉汤和其中酸笋的挥发性化合物的总离子色谱图对比(TIC)小结:螺蛳粉的特有气味来源于酸笋的对甲酚,以及其它挥发性化合物。参考文献:1. “柳州螺蛳粉”国家地理标志商标启用。 广西新闻网2. 文化和旅游部关于第五批国家级非物质文化遗产代表性项目名录推荐项目名单的公示。 文旅部3. 郭荣灿,王成华,江虹锐,余炼,刘小玲,赵谋明.广西发酵酸笋气味物质提取方法优化及比较分析.食品工业科技,2019,40(13):202-210+2204. Determination of the Volatiles in Fermented Bamboo Shoots by Head Space – Solid-Phase Micro Extraction (HS-SPME) with Gas Chromatography– Olfactory – Mass Spectrometry (GC-O-MS) and Aroma Extract Dilution Analysis (AEDA), Analytical Letters, 54:7, 1162-11795. 尹航,周文红,白云霞,刘小玲. 基于电子鼻、气相-离子迁移谱(GC-IMS)法分析广西螺蛳粉与螺蛳鸭脚煲风味 食品工业科技. https://doi.org/10.13386/j.issn1002-0306.2020070197

  • 挥发性物质的标准曲线问题

    我在做风味物质缓释的研究,采用顶空分析的方法来测定释放量。因为需要定量,所以就要做标准曲线。一般情况下,做标准曲线时的GC方法应该与分析样品时的方法一致,但对于挥发性样品,由于存在气液分配的问题,虽然加入的标准物浓度是已知的,但顶空中挥发量却是未知的,所以不能用顶空的方法来做标准曲线。有人建议我用液体进样的方法来制备标准曲线(把不同浓度的标准物溶解在一定溶剂中,然后吸取液体样品来进样),然后用这标准曲线近似的来定量顶空分析结果。听听大家的意见,这样做是否可行,对结果的准确性影响大吗

  • 【求助】哪些不同的挥发性物质

    地沟油与正常油有哪些不同的挥发性物质要用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],测定正常的一种油脂与一中地沟油之间的不同挥发性成分之间的区别回答得好的话再加分

  • 不同产地花生酱的挥发性风味成分比较分析

    【序号】:1【作者】:【题名】:不同产地花生酱的挥发性风味成分比较分析【DOI】:【年、卷、期、起止页码】:【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=GZSP20221229006&uniplatform=NZKPT&v=wEPWBMMN3ZzhvWrF67M2CHDcGedJuy-5d_NY33gyEDMKqsvAfhhvvBHq2VOHBDeS

  • GC-MS分析肉制品中挥发性风味成分,如何从TIC中判断重叠峰?

    GC-MS做肉制品挥发性风味成分,全扫描采集到TIC图,扣除背景后检索谱库,各峰匹配度低,请问如何判断TIC中的重叠峰并进行拆分?ps:用的热电的TSQ GC-MSMS,软件不能进行峰纯度检测,好像也没有看到解卷积软件,请教高手,这种情况如何进行定性呢?

  • 【求助】SPME-GCMS分析挥发性物质无峰出现

    做顶空固相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url](SPME-GCMS)分析挥发性风味物质,但出来的图谱几乎没有,以前一直都很多的,不知道是什么原因,请教一下各位大侠,仪器型号是岛津QP2010

  • 气质联用仪测挥发性物质

    气质联用仪测挥发性物质

    大家好,我最近在做挥发性物质检测,使用正构烷烃标品时,采用自动进样跑C5-C10,乙醇溶,浓度为0.1mg/ml跑出来的峰不全。下图是不同方法测出来同一标品的色谱图[img=,690,385]https://ng1.17img.cn/bbsfiles/images/2023/06/202306301023041807_7487_6064831_3.png!w690x385.jpg[/img]

  • 内标法测定酒中挥发性物质

    使用内标法测定酒中挥发性物质时,两平行之间内标物质峰面积相差四万,但目标物质的浓度平行性还可以,这是什么原因导致的呢?

  • 藻类样品中半挥发性物质分离制备

    请教大家一个问题,我做的是藻类的一些挥发半挥发性物质的检测(烯醛类),因为一些物质买不到标样,也难以合成,所以想说能不能自己从样品中分离出来。 我看过一般是用制备液相色谱分离一些生物活性物质,不知道是否可以分离半挥发性的物质。 此外,看到一种制备[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],但是国内用的人好像不多,有没有对这方面了解的版友呢?

  • 【求助】欲购一根检测挥发性风味物质的色谱柱,请各位高人指点下困惑!万分感谢!

    实验室马上要买台新的GC-MS,主要是用来测肉制品挥发性风味,现在色谱柱的问题上犹豫不觉:(1)色谱柱的应该是买若极性的比较好 考虑型号:HP-5MS; HP-5MSI; DB-5MS. 三种型号功能应该相差不太大,但据说HP-5MSI更加惰性,效果更好,不知是否正确?(2)在固定液、内径、膜厚相同的情况下,是不是色谱柱越长效果越好?(3)色谱柱的内径貌似小些比较好?(0.25mm的效果不错?那和0.32mm的比呢?其他条件相同的情况下)(4)色谱柱的膜厚到底是多少比较好?(0.1um,0.25um,1.0um三者比较)(5)不考虑价格因素,请各位高手推荐下最合适的Agilent色谱柱型号?(详细到种类、柱长、内径、膜厚)万分感谢,也让小弟都长下见识~~~~~~~~~~~~

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制