当前位置: 仪器信息网 > 行业主题 > >

活化玻碳电极

仪器信息网活化玻碳电极专题为您整合活化玻碳电极相关的最新文章,在活化玻碳电极专题,您不仅可以免费浏览活化玻碳电极的资讯, 同时您还可以浏览活化玻碳电极的相关资料、解决方案,参与社区活化玻碳电极话题讨论。

活化玻碳电极相关的方案

  • 天津兰力科:活化玻碳电极直接测定全血中的尿酸
    用阳极极化法在碱性溶液中活化玻碳电极, 研究了尿酸(UA) 在活化玻碳电极(AGCE) 上的电化学行为, 并提出一种利用微分脉冲伏安技术测定全血中尿酸的电化学分析方法。在0. 1 molPL 的乙酸缓冲溶液中(pH 5. 0) , 以0. 1molPL KCl 作为支持电解质, 尿酸在AGCE 上于0. 484 V 处产生一个灵敏的氧化峰。微分脉冲伏安法测定其氧化峰电流与UA 的浓度在5. 0 ×10- 6 ~2. 0 ×10- 4molPL 范围内呈良好的线性关系, 相关系数为019989 , 检出限为110 ×10- 6molPL 。该方法操作简便, 重现性较好, 能在抗坏血酸存在下同时测定UA。用于人血中UA 的测定。关键词:活化玻碳电极 尿酸 血 循环伏安法 微分脉冲伏安法
  • 天津兰力科:活化玻碳电极直接测定注射液多巴胺的含量
    研究多巴胺在活化玻碳电极上的电化学行为,建立一种测定多巴胺的电化学分析方法。方法:玻碳电极在0.1mol.l-1磷酸盐缓冲液(PH=7)中活化,用循环伏安法研究DA的含量。结果:DA在活化玻碳电极上的循环伏安图具有一对氧化还原峰,峰电位分别为0.167V,0.217V(VSSCE)。与裸玻碳电极相比,该电极对DA的氧化具有良好的电催化作用。
  • 天津兰力科:尿酸在活化玻碳电极上的电化学行为及其分析应用
    探讨利用微分脉冲伏安技术测定全血中尿酸的电化学分析方法。方法 玻碳电极在1mol/ L NaOH 溶液中活化,用循环伏安法研究尿酸在活化玻碳电极上的氧化还原特性,用微分脉冲伏安法直接测定尿酸的含量。结果 在0. 1 mol/ L 的醋酸缓冲溶液中(pH5. 0) ,尿酸在活化玻碳电极上于0. 484 V处产生一个灵敏的氧化峰。微分脉冲伏安法测定其氧化峰电流与尿酸的浓度在5. 0 ×10- 6~2. 0 ×10 - 4mol/ L 范围内呈良好的线性关系,相关系数为0. 9989 ,检出限为1. 0 ×10 - 6 mol/ L 。能在抗坏血酸存在下同时测定尿酸。结论 方法操作简单方便,重现性较好,用于人血中尿酸的测定,结果令人满意。
  • 理化(香港):旋转圆盘电极(玻碳电极)上DTAB对氧还原反应的促进作用
    Autolab PGSTAT 鄄30 型电化学系统(Eco Echemine BV 公司, 荷兰), Model 616 型旋转圆盘电极(Pine 公司, 美国)为直径3 mm 的玻碳电极. 电化学实验采用三电极体系, 圆盘电极为工作电极, 大面积铂电极为辅助电极, 参比电极为饱和甘汞电极(SCE), 文中的电位值均相对SCE. 十二烷基三甲基溴化铵(C12H25N(CH3)3Br, 上海源聚生物科技有限公司), 所用试剂均为分析纯, 溶液均为二次蒸馏水配制. 1.2 实验方法实验前, 首先对玻碳电极进行如下预处理: 依次用5# 金相砂纸, 0.5 滋m 的Al2O3 抛光粉抛光, 用二次蒸馏水冲洗, 然后浸于丙酮中超声波清洗, 在0.5 mol• L-1 H2SO4 溶液中-0.2 -0.9V 电位范围内进行循环伏安扫描活化60 个循环, 扫描速率为50 mV• s-1. 以0.1 mol• L-1 Na2SO4 为支持电解质, 0.1 mol• L-1 H2SO4 和0.1 mol• L-1 NaOH 用于调节溶液的pH 值. 所有实验均在室温下进行. 2 结果与讨论2.1 DTAB 对氧还原的促进作用图1 为氧在旋转圆盘玻碳电极上, 以1600r• m-1 的转速及5 mV• s-1 的扫描速率, 得到的线性电位扫描图. 图中曲线(a) 是在不含DTAB 的溶液中通N2 除氧后的线性扫描伏安曲线, 可以看出, 在较正的电位范围内没有出现氧的还原峰, 且反应电流值较低, 在负于-0.7V 后, 才出现析氢电流 (转载自 维普资讯,全文链接:http://www.cqvip.com/qk/92644X/200804/27101369.html)
  • 天津兰力科:纳米二氧化锰在玻碳电极上的直接电化学行为研究
    将纳米MnO2 修饰于玻碳电极表面,研究了纳米MnO2 在玻碳电极上的直接电化学行为1实验结果表明:固载纳米MnO2 的玻碳电极在pH为9.48的NH3-NH4Cl的缓冲溶液中于0.0~0.8V (vs SCE)的电位范围内出现一对峰形较好的不可逆氧化还原峰,其氧化过程在较低扫速时属吸附2扩散混合控制,此时阴极传递系数α=0.5477,阳极传递系数β=0.4523,在较高扫速时属吸附控制1同时在pH = 8.0~10.5范围内其氧化峰电位与pH值呈现较好的线性关系1
  • 天津兰力科:盐酸阿霉素在玻碳电极上的电化学行为研究及分析应用
    采用线性扫描伏安法和循环伏安法研究了盐酸阿霉素在玻碳电极上的电化学行为及电极反应机理, 优化了测定盐酸阿霉素的各实验参数。结果表明, 在0.01 mol/L的HCl溶液中, 盐酸阿霉素在-0.40V处出现(vs.SCE) 一灵敏的还原峰, 峰电流与其溶液浓度在0.00000005~0.000001 mol/L ( r = 0.999) 和0.000001~0.00001mol/L ( r = 0.998) 范围内呈良好的线性关系, 检出限为0.00000001mol/L。并用循环伏安法研究了盐酸阿霉素的峰电流性质, 发现电极反应属于准可逆过程, 出现一对灵敏的氧化还原峰, 体系属准可逆吸附波。利用盐酸阿霉素在玻碳电极的电化学行为建立的分析方法可用于盐酸阿霉素的质量监控及药代动力学研究。
  • 天津兰力科:阿魏酸在玻碳电极上的电化学行为及其分析测定
    研究了阿魏酸在玻碳电极上的电化学行为,优化了测定参数,建立了一种直接测定阿魏酸的电分析测试方法。阿魏酸在玻碳电极上于醋酸盐缓冲溶液中于- 110~112 V处产生1对氧化还原峰,氧化峰电流与阿魏酸的浓度在5 ×10 - 5 ~1 ×10 - 3mol/L 之间有良好的线性关系,线性回归方程为: Ip = 19119 + 31515 ×104 c,相关系数R为01994 1,检出限为1 ×10 - 6 mol/L。适用于中成药中阿魏酸含量的测定,该方法用于逍遥丸中痕量阿魏酸的测定,回收率在95%~106%之间。
  • 六氰合铁酸锰铬修饰电极的制备及其电化学行为
    应用循环伏安法在活化玻碳电极(GcE)表面制备六氰合铁酸锰铬(MncrHcF)膜修饰电极(MncrHCF/GCE)并研究其电化学性质。 只做学术交流,不做其他任何商业用途,版权归原作者所有!
  • RAC再活化碳吸附能力测试的样品振荡
    利用响应面法对水处理活性炭热活化过程进行系统优化Use of Response Surface Methodology for Systematic Optimization of the Thermal Reactivation Process of Activated Carbon for Water Treatment
  • 天津兰力科:对乙酰氨基酚在碳原子线修饰电极上的电化学行为研究
    运用循环伏安法研究了对乙酰氨基酚在碳原子线修饰电极上的电化学行为. 实验结果表明,对乙酰氨基酚在裸玻碳电极上表现为不可逆的电极过程,而在碳原子线修饰电极上氧化峰和还原峰的电位差为0. 048V,为准可逆过程. 另外,对乙酰氨基酚在该修饰电极上的检出限为1 ×10 - 5mol/L.
  • 天津兰力科:KOH活化对超级电容器用活性炭的影响
    以普通活性炭为原料, KOH 为活化剂,在不同的工艺条件下制备了活化活性炭,并组装成单体超级电容器,考察了碱炭比、活化时间、活化温度对活性炭材料比电容的影响。电化学性能测试结果表明:采用KOH活化效果显著,在最佳的工艺条件下,循环伏安法测得活性炭的比电容从活化前的16119 Fg- 1提高到20218 Fg- 1 ,恒流充放电测得在30 mA条件下其比电容从活化前的9214 Fg- 1提高到11810 Fg- 1。粒径分布和SEM测试结果表明,活化活性炭颗粒粒径变小,粒径分布变窄,颗粒表面出现了许多新孔,呈现疏松的蜂窝状,这使活化后活性炭具有大的比表面积和高的比电容。
  • 天津兰力科:吲哚美辛在单壁碳纳米管修饰电极上的电化学行为
    运用伏安法研究了吲哚美辛在单壁碳纳米管修饰电极上的电化学行为。在0.1mol/L HAc2NaAc 缓冲溶液(pH 4. 5) 中, 吲哚美辛于0.91 V (vs . SCE)电位处有一个峰形很好的氧化峰。与裸玻碳电极相比, 吲哚美辛在修饰电极上的电位正移了约30mV , 峰电流增加了近10 倍, 表明该修饰电极对吲哚美辛有较强的电催化作用。搅拌条件下开路富集2 min , 氧化峰电流与吲哚美辛在0.00000055~0.000011mol/L 浓度范围内呈良好的线性关系, 检出限为0.00000011mol/L 。该方法可用于药剂中吲哚美辛的分析。
  • 天津兰力科:杨梅酮在碳纳米管上修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWN T sö GC) , 并研究了杨梅酮在MWN T sö GC 上的电化学性质。方法:采用循环伏安法对杨梅酮的浓度进行测定。结果: 氧化还原峰电流与杨梅酮的浓度呈线性关系。结论: 多壁碳纳米管对杨梅酮有良好的催化活性,MWN T sö GC 对于测定杨梅酮呈现良好的响应特性和较高的测定灵敏度, 该传感器应用于杨梅酮的分析。
  • 天津兰力科:芦丁在碳纳米管修饰电极上的电化学性质研究
    制备了多壁碳纳米管修饰玻碳电极(MWNT/GC) ,并研究了芦丁在MWNT/GC 上的电化学行为. 研究表明,MWNT/GC 对芦丁的氧化具有明显的电催化作用. 用循环伏安法对芦丁浓度进行了测定,其氧化峰电流与芦丁的浓度在0.0000005 ~0.0001mol/L 范围内呈良好的线性关系,线性相关系数为0.9918.
  • 火花直读光谱法测定不锈钢薄板中7种元素含量
    用火花直读光谱仪测定不锈钢薄板的化学成分时,由于试样较薄,样品制备时易高温氧化,测定时也因火花电极高温激发导致钢板氧化,严重影响测定结果。国家标准GB/T 11170-2008规定,进行不锈钢化学成分测定时,推荐取样厚度不小于3.0mm。但实际应用中,越来越多的不锈钢制品采用薄板作为原材料,如过滤时使用的拦栅,搅拌机叶片等制品都是使用厚度小于3mm的板材制成。因此,利用火花直读光谱仪准确、快速测定不锈钢薄板中的化学成分,具有较大的现实意义。为防止样品制备时氧化,本工作采用低速砂轮打磨,并采取降温处理措施。测定时,选择具有高能预火花能力的单向低压火花光源,同时利用导热原理进行激发能散热处理,成功地完成不锈钢薄板的快速检测。
  • PH计如何选择合适的探头?酸度计如何选择合适的电极?
    PH如何使用大家都知道,接上电源线,接上电极(探头)线,再将电极(探头)放入溶液中就可以了,但是,往往有很多人发现测量的数据和实际的数据有出入,就是仪表不准确的问题,而出现仪表不准确的问题往往和我们电极(探头)的选用有很大的关系,目前市场上的PH电极(探头)有上百种型号,而这些型号都是根据不同的工况条件而专门研制出来的,我们现实的工况条件也有很多种,如:污水、纯水、高纯水......,面对这么多的电极(探头)型号和这么复杂的工况条件,如何选择正确的电极(探头)是决定仪表测量是否准确的关键,此方案综合了各类工况和各种电极(探头)型号,方便大家在选择PH电极(探头)时,能够做到尽可能的准确。
  • 天津兰力科:超电容器碳纳米管与钼复合电极材料的研究
    以碳纳米管(CNTs) 为基体材料,用浓硝酸回流处理碳纳米管,TEM(透射电子显微镜) 研究表明碳纳米管的端帽被部分打开,通过液相反应对碳纳米管进行表面改性,制备CNTs/ Mo 复合电极材料,复合电极使电解液和导电材料的接触面积增大,使电极反应的有效表面积增大,反应场所有所增加,从而提高电极电化学反应的活性。基于此复合材料的超电容器具有高比电容、高稳定性、良好的可逆性和长寿命等特点。循环伏安结果表明:CNTs/ Mo 复合电极的比电容比纯CNTs 电极要高出20 %。
  • 天津兰力科:碳纳米管电极对水溶液中苯酚的电化学氧化处理
    制作了多壁碳纳米管电极,并将其应用于苯酚的氧化处理上. 结果发现有很好的氧化峰出现在电位窗口内,峰电流在一定范围内与苯酚的浓度成良好的线性关系. 长时间恒电位氧化实验表明,能克服传统碳电极的缺点,电极表面没有积垢,电极的重现性较好,可以逐渐将苯酚氧化.
  • 天津兰力科:基于碳纳米管- 纳米二氧化锰增强的H2O2修饰电极的研制
    将碳纳米管(CNT)和纳米二氧化锰(Nano2MnO2 )分散在壳聚糖(CH IT)溶液中, 用涂敷法固定到玻碳电极表面, 制成修饰电极。由于碳纳米管具有良好的电子传递性能, 使纳米二氧化锰对H2O2 的电催化活性明显提高, 通过循环伏安法、计时电流法对传感器的性能进行了研究。在最佳测试条件下, 该传感器对H2O2 的线性范围为115 ×10 - 6~510 ×10 - 2 mol/L, 检出限为4 ×10- 7 mol/L。用于实际样品的测定, 结果满意。
  • 高能量密度和功率密度炭电极材料
    活性炭电极材料具备成本低, 制备简单, 性能好等优点, 与其他炭电极材料相比, 无论在性能还是成本方面都有明显的优势, 因而有巨大的开发应用价值.
  • 天津兰力科:丝网印刷碳电极传感器检测茶叶中痕量铅研究
    建立了同位镀汞法修饰的丝网印刷碳电极电化学方波溶出伏安法快速检测茶叶中的铅的方法。详细描述了建立该系统检测方法的条件优化过程,得到了一系列最佳参数:最佳的镀汞液浓度4×10-4 mol/L,沉积电位-1.1 V,电位增量3 mV,方波频率10 Hz,方波幅度0.05 V,pH 值5,沉积时间280 s,平衡时间30 s。在优选条件下获得的方法灵敏度、线性范围和检测限分别为22.7 nA/(μg/L) , 10~225 μg/L (r=0.9986) 和0.74μg/L(S/N=3)。研究了对多种重金属元素存在条件下120 μg/L 的铅检测的干扰情况。本试验对样品前处理方法研究发现,采用家用微波炉、聚四氟乙烯密封增压微波消化罐消化茶叶,用标准加入法对分析样品进行检测,与国标方法相比较,无显著偏差。该方法灵敏、准确、快速适合于茶叶中痕量铅的测定。
  • 天津兰力科:碳纳米管/ 纳米二氧化钛- 聚苯胺载铂复合电极微分脉冲法测定葡萄糖
    研究了多壁碳纳米管/纳米二氧化钛- 聚苯胺载铂(CNT/nanoTiO2 - PAn - Pt)复合电极对葡萄糖的电催化氧化作用。以015 mol/L KOH水溶液为底液,采用微分脉冲法在- 015 - 012V电位区间扫描,在- 0133V( vs, SCE)附近产生的氧化电流峰灵敏度高且峰型好,故以此峰为定量峰。葡萄糖浓度在1125 ×10 - 2 ~ 110×10 - 5 mol/L与峰电流呈良好的线性关系,线性相关系数为0199881, 检出限为510 ×10 - 6mol/L。加入0106m mol/L的抗坏血酸或013m mol/L的尿酸(模拟人血成份)均不干扰葡萄糖的测定。该电极对模拟血液中葡萄糖的测定,结果令人满意。
  • 单壁碳纳米管复合膜电极电催化氧化山莨菪碱
    制备以水作为分散剂的单壁碳纳米管—刚果红(SCNTWs-CR)的化学修饰电极,研究山莨菪碱在该修饰电极上的电化学行为和电化学动力学性质.结果表明:该修饰剂对山莨菪碱的氧化具有显著的电催化作用;山莨菪碱的氧化过程是一个不可逆的双电子双质子过程,其在该修饰电极上的扩散系数、速率常数分别为6.49×10-2cm2/s,6.52×10-3mol/(L?s).基于实验优化分析条件,建立直接测定山莨菪碱的电化学定量分析方法,该方法的线性范围为1.73×10-5~5.17×10-5 mol/L和6.31×10-5 ~1.14×10-4 mol/L,检出限为1.74×10-6mol/L,同支电极的相对标准偏差(RSD)为3.66!.该方法也可用于山莨菪碱的含量测定.
  • 纳米碳管-钙钛石复合催化剂氧电极交换电流密度的测试与分析
    La0.8Sr0. 2MnO3 ,正交试验确定的最佳氧电极催化剂配比为:纳米碳管0.1g ,La0.6Sr0.4CoO30.02g ,Na2SO4 0.1g ,PTFE 0.5mL ,此时,交换电流密度最大,达0.1441 mA/ cm2 单因素试验结果显示,复合催化剂中w (La0. 8Sr0. 2CoO3) =9.09 % ,w (Na2SO4) = 45. 45 %时电极的阴极极化程度最小.
  • 天津兰力科:纳米CeO2 修饰碳糊电极微分脉冲伏安法对盐酸克伦特罗的测定
    研究了盐酸克伦特罗(CLB)在纳米CeO2 修饰碳糊电极上的电化学行为。结果表明: 在0110 molL - 1的HClO4 溶液中, CLB于+ 0140 V ( vs SCE)左右处产生1对准可逆的氧化还原峰。与裸碳糊电极相比,CLB在修饰电极上的电流响应明显增大, 据此建立了尿样中CLB 的微分脉冲伏安测定方法。线性范围为510 ×10 - 9~610 ×10 - 6 molL - 1 ( r = 01998 2, n = 7) , 检出限为215 ×10 - 9 molL - 1 ( 3sb ) , 加标回收率为96%~104%。
  • 碳纳米管修饰金电极检测特定序列DNA
    利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在表面修饰有羧基化碳纳米管(CNTs-COOH)的金电极表面,制备新型核酸探针, 可以特异性结合目标单链寡聚核苷酸. 以阿霉素作为嵌合指示剂, 利用示差脉冲法测定杂交的结果. 经过实验条件的优化, 测定DNA 浓度在1.0×10-6~1.0×10-9 mol/L 呈良好的线性关系. 检测限为: 2.54×10-10mol/L. 碳纳米管特有的纳米结构对检测结果的放大作用, 提高了该传感器的检测限和灵敏度
  • 天津兰力科:氮化钼与五氧化二钽复合电极性能的研究
    在添加Ta2O5 下,通过MoO3 混合物与NH3 反应制得氮化钼与五氧化二钽复合活性电极材料,运用XRD 对复合活性电极材料进行了表征,采用循环伏安法对γ2氮化钼及其复合电极进行电化学测量,研究成膜物质的结晶形态、表面形貌和对电容的影响。结果表明氮化钼与五氧化二钽复合电极成膜均匀,与基体附着性强,电容特征显著,具有良好的稳定性与重现性,而且明显改善电容器的大功率放电特性,添加Ta2O5 可以使Mo2N 的工作电位窗口拓宽0. 40 倍,相同条件下电容值增加0. 50 倍。
  • QSense石英晶体微天平技术在锂离子电池电极表面薄膜重量和粘弹性的原位实时探测中的应用
    本文作者开发了一种高度敏感的基于EQCM-D方法的,在三种不同的锂电池电解质溶液中,原位测量了由于锂离子插入/提出以及固体电解质界面的形成和生长引起的复合LTO电极的重量和粘弹性的变化。利用声学多层形式主义建立一个自洽的,复合LTO电极的粘弹性模型,描述了在气体空气环境下,与锂电池电解质溶液在开路电压下以及外加电压下相接触条件下共振率和共振宽度的变化。该模型选择性地表征了多层复合电极组件中的每一层(电极的刚性和粘弹性部分+固体电解质界面)与电解质溶液接触时的机械状态。EQCM-D方法可实现实时无损探测电极粘弹性,厚度剪切及谐振模式。通过一种先进的粘弹性模型来拟合EQCM-D的实验数据,可以得到每层的重量和粘弹性参数。我们的主要发现是,锂电池电解液及添加剂可通过EQCM-D短时间实验进行筛选。同时,通过探测电极容量保持率,量化了固体电解质界面膜生长的本征粘弹性特性。我们的结论是,使用适量的水淹没研究EQCM-D腔体,可能提供有关实际电极的循环性能的信息的重要预测信息,在不同电解液中对纽扣电池进行测试时。所开发的实验装置和建模程序可应用于各种类型的离子插入电极,固体电解质界面型保护膜,包括低压阳极和高压阴极。我们目前正在致力于改进EQCM-D方法将Sflood(溶液质量与浸入电极质量之比)减小一个数量级,这足够为EQCM-D技术广泛应用于先进储能研究领域开启一扇新的大门。
  • 通过Biotage微波合成仪进行氯化铟催化的2-烷基苯并吡啶的碳氢活化微波合成反应by耐士科技
    Microwave promoted indium trichloride (10 mol %) catalyzed sp3 C–H bond functionalization of 2-alkyl azaarenes 1 or 4 has been observed to construct C–C bond either with but-2-ene-1,4-diones 2 or (E)-3-(2-oxo-2-phenylethylidene)indolin-2-one (6) giving access to 2-((quinolin-2-yl)methyl)butane-1,4-diones 3, 2-((pyridin-2-yl)methyl)butane-1,4-diones 5, or 3-(quinolin-2-yl)propan-2-yl)indolin-2-ones 7 in good yields using 1,4-dioxane as solvent.
  • 天津兰力科:聚苯胺修饰电极对甲醇的电催化氧化研究
    应用电化学方法制备了Pt/PAn/GC 电极, 优化了苯胺在玻碳电极上的聚合条件, 并对其进行了表征。结果表明, 铂微粒在聚苯胺膜电极上具有很高的分散度, 电极具有很大的比表面积, Pt/PAn/GC 电极对甲醇电氧化的催化活性明显高于Pt/GC 电极和Pt 电极, 在该电极上甲醇正向扫描和反向扫描时的氧化峰电流为58.68mA/cm2 和50.00mA/cm2, 为Pt/GC 电极的1.6 倍和1.7 倍, 为Pt 电极的3.0 倍和3.1 倍, 从而有效地提高了铂的催化活性, 并得到在玻碳电极上聚合苯胺的最佳条件为扫描速度50mV/s, 扫描上限1.2V。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制