当前位置: 仪器信息网 > 行业主题 > >

活体单淋巴细胞

仪器信息网活体单淋巴细胞专题为您整合活体单淋巴细胞相关的最新文章,在活体单淋巴细胞专题,您不仅可以免费浏览活体单淋巴细胞的资讯, 同时您还可以浏览活体单淋巴细胞的相关资料、解决方案,参与社区活体单淋巴细胞话题讨论。

活体单淋巴细胞相关的论坛

  • 【转帖】第四种淋巴细胞—NKT细胞

    第四种淋巴细胞—NKT细胞 通常认为,构成机体免疫系统的淋巴细胞有三种细胞系组成,一是由胸腺产生的T细胞,二是由骨髓分化而来的产生抗体的B细胞,三是自然杀伤(NK)细胞。而新近发现存在第四种淋巴细胞—NKT细胞。1. NKT细胞的发现1986年,克隆成功了NKT细胞的特征性抗原受体基因。将其命名为Va14基因,与其他T细胞抗原受体的(TCR)基因不同,有其独特的结构特征。1987年美国国立卫生研究所的Fawlkes与瑞士的Budd分别领导的两个研究小组报告指出,胸腺细胞中的T细胞通常不能表达受体,仅有部分未成熟T细胞选择表达V-β8.2受体。随后的研究证明这种细胞不是T细胞,考虑是NK细胞的受体,这种细胞集团的数量极少,生理意义不明。1994年,这两个研究小组的研究人员发现,他们报道的细胞为同一细胞,从此NKT细胞的研究引起人们的广泛关注。T细胞识别的抗原是蛋白质,而NKT细胞是别的抗原是α-Gal-Cer即所谓的糖脂质,这是该免疫系统与通常的免疫系统重要的不同点。NKT细胞的分化与T细胞不同的是在胸腺形成前的胎生初期6.5日在胸腺外组织分化。NKT细胞与T细胞比较,机能处于不发达状态。T细胞分化为功能不同的Th1和Th2细胞群,Th1细胞产生INFγ及IL-2,引起迟发行过敏症等细胞性炎症。Th2细胞能产生IL-4和IL-10,参与变态反应及抗体产生等体液免疫反应。而NKT细胞不但能分泌Th1和Th2细胞因子,同时还具有与CD8+伤害性T细胞(cytotox-ic Tlymphocyte,CTL)相同的杀伤靶细胞作用。毫无疑问,NKT细胞在免疫调节系统中占有重要位置。NKT细胞与疾病可能有诸多关系,可能与自身免疫性疾病的发病机制、变态反应的调节、抗肿瘤作用、及抑制寄生虫感染等有关。2. NKT细胞的多样性分化NKT细胞具有T细胞和NK细胞细胞两重性质,既能表达Va14/Ja281特定的T细胞受体又能由CD1介导识别脂质抗原。NKT细胞的分化是否依赖胸腺尚有争议。根据其表达TCR等多种表面抗原的不同,提示NKT细胞存在两个以上细胞群。从CD4/8的表达看,可将其分为(1)CD4-NKT细胞,(2)CD8-NKT细胞,(3)CD4和CD8均不能表达的DN-NKT细胞。第一类的全部和第二类的半数是Va14/Ja281-T细胞。3.人类NKT细胞人末梢血中的DN-NKT细胞V区域,可高度表达Va24/JaQ(这与鼠的Va14/Ja281高度相似)及Vβ11(与鼠Vβ18高度相似)。这种TCR的组合表达可见于DN-NKT细胞和CD4+细胞。而未见于CD8+细胞。小鼠的CD1相当于人的CD1d的Va24/JaQ。此外,人末梢血中1~2%的T细胞能表达抑制性受体,即抑制型NK细胞受体(KIR),而Va24/JaQ+细胞则不能表达。它的NK相关分子是CD16、CD56或CD57,Va24/JaQ+细胞异不能表达这些分子。在小鼠中还可以看到Va24/Ja281+T细胞以外的NKT细胞。人类Va24/JaQ+细胞与KIR+T细胞能形成不同的亚群。且具有不同的功能。4. NKT细胞分化的胸腺依赖性这是目前存在争议的问题,可以肯定地说NKT细胞分化过程中胸腺是有作用的。NKT细胞多见于胸腺及脾脏以外的肝脏和骨髓种,胸腺缺损的小鼠与正常小鼠比较,NKT的分化并不少。将出生三日小鼠的胸腺摘除,虽然NKT细胞的分化显著受到抑制,但此时CD8+NKT细胞的分化未受到影响。由此认为CD8+NKT细胞在胸腺外分化的可能。5. NKT细胞产生细胞因子的意义 NKT细胞是指能够表达NKT细胞标志NKT1.1的T细胞,其机能具有T细胞和NKT细胞双重特征。NKT细胞在TCR和NKR介导下,产生大量的IL-4及INFγ,对肿瘤细胞有细胞伤害作用。 NKT细胞能表达T细胞的TCR与NK细胞的NKR-P1两种受体,特别是NKT细胞多数表达Va14TCR,识别CD1抗原,而NKR-P1识别各种糖链。 NKT细胞,特别是CD4-NKT细胞,对TCR刺激可产生大量IL-4及IFNγ,同时具有ThO型细胞因子产生能力。NKT细胞不但产生IL-4的主要细胞,而且强力产生IFNγ。IFNγ参与自身Th1诱导,具有极强的Th1诱导能力,从而是IL-2产生亢进。它同时还具有Th2细胞分化抑制功能。IL-12能诱导NKT细胞产生IFNγ。IL-12对TCR的刺激是IFNγ的产生显著亢进。综上所述,NKT细胞不但是IL-4和IFNγ的强力产生细胞,同时参与Th1/Th2分化的抑制,而这些作用都不是单纯的。 虽然NKT细胞能大量产生细胞因子,但仅在机体内保持这种功能。当初一度认为,NKT细胞只是IL-4的产生细胞,而不是Th2分化的必需细胞。并不认为在CD1缺损的小鼠中NKT细胞的分化和对TCR刺激使IL-4产生减少,且对Th2分化必需的IL-4及IgE的产生没有多大影响。但给小鼠投于α-GalCer可使NKT细胞活化,IL-4的产生诱导Th2的应答。有报告指出,同样投于α-GalCer,可使NKT细胞产生IFNγ而致IgE产生低下。由此可见,NKT细胞能产生IL-4与IFNγ两种功能相反的细胞因子。这种微妙的协调作用可能是NKT机能表达的重要特征。NKT细胞的活化通常伴有T细胞、B细胞及NK细胞的活化,这对NKT细胞活化后的免疫应答有较大影响。

  • FDA批准Gazyva用于治疗慢性淋巴细胞性白血病

    美国食品药品监督管理局(FDA)近日批准了Gazyva(obinutuzumab)与苯丁酸氮芥联用治疗初治型慢性淋巴细胞白血病(CLL)患者。CLL是一种缓慢加重的渐进性血液与骨髓系统疾病。根据美国国家癌症研究所估计,今年将有15680名美国人被确诊患有该疾病,4580人因CLL死亡。Gazyva有助于免疫系统的某些细胞攻击癌细胞,并且需要与另一种CLL治疗药物——苯丁酸氮芥合用。在对重症CLL患者的治疗过程中,Gazyva在安全性和有效性方面表现出显著改善,此外,FDA还授予此药优先审查和孤儿药地位。FDA药物评价研究中心血液/肿瘤部门主管,Richard Pazdur博士说:“FDA对Gazyva的批准意味着对CLL患者疗法的重要补充,同时也反映了突破性疗法认定的优势,此项认定使我们与企业共同合作,加快重要新药物的开发、评估和上市。”此次批准是基于一项涉及356名受试者的随机、开放性、多中心临床研究,评估了Gazyva-苯丁酸氮芥联用组和苯丁酸氮芥单用组的药效。结果表明,联用组患者的无进展生存期得到显著提高(23个月vs11.1个月)。联用组患者的最常见不良反应包括输液反应、白细胞减少(中性粒细胞减少症)、血小板水平降低(血小板减少症)、红细胞数目降低(贫血)、肌肉和骨骼疼痛、发热等。Gazyva的说明书中含有黑框警告,提示Gazyva与乙肝病毒的再活化及一种罕见病有关,该罕见病(进行性多灶性白质脑病)能损伤大脑白质中覆盖和保护神经的物质,这是此类药物(包括其它单克隆抗体)共有的已知风险。Gazyva由罗氏子公司基因泰克上市销售。转自:http://www.hfoom.com/industry/20131106/376.html

  • CAR-T细胞治疗B细胞淋巴瘤存在的问题及应对策略

    【序号】:1【作者】: 郭逸君周琛张凡【题名】:CAR-T细胞治疗B细胞淋巴瘤存在的问题及应对策略【期刊】:药物生物技术. 【年、卷、期、起止页码】:2022,29(01)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XXGP-2cCnxHFvyQzX46SmBpJzxoU8YSnqdPFG62NrF4M&uniplatform=NZKPT

  • 红细胞与白细胞的重新定向

    白细胞与红细胞在此重新定向。白细胞(WBC)和红细胞(RBC)是血液中的重要组成部分,在生命体延续发展和生物治疗中具有不同的功能。红细胞,又称红血球,含有一种蛋白质称作血红蛋白。当血红蛋白从肺部吸收氧气时,血液呈红色。随着血液流经全身,血红蛋白向人体组织释放氧气。红细胞的生命周期为4个月,其形如圆盘,中间下凹,边缘较厚,呈圆饼状。白细胞,又称白血球,具有更加复杂的功能。白细胞构成了人体抵抗感染的一种防御机制。有多种不同类型的白细胞,其生命周期和功能各不相同。白细胞还能够产生一种特殊的蛋白质,称作抗体,能够识别并吞噬入侵人体的外来异物。 红细胞白细胞物理特征红细胞呈双凹圆盘状,无核。尺寸大约为6-8 μm。白细胞呈不规则性,但有一个核和外缓冲层。生命周期120天。几天,但在健康人体中可存活数天至数年不等。类型:血液中只有一种红细胞在血液中存在许多类型的白细胞,其功能各不相同:嗜中性粒细胞、T淋巴细胞、B淋巴细胞(巨噬细胞)、嗜酸性粒细胞、嗜碱性粒细胞。循环系统:心血管系统。心血管和淋巴系统总计红细胞700:1白细胞男性每立方毫米460-6200万个;女性每立方毫米4200-5400万个。每立方毫米4000 – 11000个功能:向身体的不同部位提供氧气,并负责运送二氧化碳和其它废物。产生抗体,对感染形成免疫力,有些具有噬菌功能。血液中含量:

  • 牛奶中的体细胞

    牛奶体细胞数的英文为somatic cell count,SCC。牛奶体细胞数是指每毫升牛奶中的细胞总数,多数是白细胞,通常由巨噬细胞、淋巴细胞、多形核嗜中性白细胞和少量乳腺组织上皮细胞等组成,约占牛体细胞数的95%,其余是乳腺组织死去脱落的上皮细胞。体细胞数反映了牛奶质量及奶牛的健康状况,在正常情况下,牛奶中体细胞数一般在20万~30万个/mL。

  • 流式细胞术详解 13.14章节

    十三.流式细胞术在血液学中的应用 淋巴瘤免疫分型 目前淋巴瘤的分类方法已从LSG的形态学分类逐渐转变为REAL分类法, REAL分类法是以肿瘤发生源为基础的分类方法,在原来的形态学基础上加上免疫学分型后再加以分类,这种分类方法不仅能够推断肿瘤的发生源,对治疗也有指导意义。因此淋巴瘤的免疫分型越来越重要。如同白血病免疫分型一样,淋巴瘤的免疫分型也是利用单克隆抗体检测淋巴瘤细胞的细胞膜和细胞浆抗原,分析其表现型,以了解被测淋巴瘤细胞所属细胞系列及其分化程度。流式细胞仪能对多数的淋巴瘤细胞的细胞膜和细胞浆抗原迅速客观地做出检测,在淋巴瘤的免疫分型中起着不可替代的作用。临床淋巴瘤的免疫分型的检测标本一般是淋巴结、脾脏、胸水、腹水等。在临床淋巴瘤的免疫分型工作中常可遇到以下四种情况:①B细胞系淋巴瘤②T/NK细胞系淋巴瘤③淋巴细胞系以外的造血细胞肿瘤④造血细胞以外的肿瘤。REAL分类淋巴瘤的免疫表型见表12.8。*:弱表达或阴性。BLBL :前B原始淋巴细胞淋巴瘤/白血病; BSLL: B-小淋巴细胞淋巴瘤; LPL:淋巴浆细胞样淋巴瘤; MCL: 斗篷细胞淋巴瘤; FCL:滤泡中心淋巴瘤; MZL: 边缘带B细胞淋巴瘤; SMZL :脾MZL ;HCL:毛细胞白血病; PC:浆细胞瘤;DLBL: B-弥漫性大细胞淋巴瘤; BL: Burkitts淋巴瘤; HBLB:高度B细胞淋巴瘤, Burkitts样; TLB L: 前T原始淋巴细胞淋巴瘤/白血病; TPLL: T幼淋细胞白血病; LGLT:大颗粒淋巴细胞白血病, T细胞型[col

  • 牛奶体细胞数

    牛奶体细胞数的英文为somatic cell count,SCC。牛奶体细胞数是指每毫升牛奶中的细胞总数,多数是白细胞,通常由巨噬细胞、淋巴细胞、多形核嗜中性白细胞和少量乳腺组织上皮细胞等组成,约占牛体细胞数的95%,其余是乳腺组织死去脱落的上皮细胞。体细胞数反映了牛奶质量及奶牛的健康状况,在正常情况下,牛奶中体细胞数一般在20万~30万个/mL。

  • 光镊技术成功捕获活体动物细胞

    为活体研究和临床诊断提供了一种全新的技术手段2013年05月09日 来源: 中国科技网 作者: 吴长锋 最新发现与创新 中国科技网讯 中国科学技术大学光学与光学工程系李银妹课题组,近日与上海交通大学魏勋斌教授合作,采用活体动物内的细胞,发展了动物体内细胞三维光学捕获技术。日前,国际著名学术期刊《自然·通讯》在线发表了这项研究成果,网站还以《医学研究:用光清除血管被堵塞的血管》为题对该研究工作进行报道。 在活的动物体内研究细胞生长、迁移、细胞及蛋白质间相互作用等生物学过程,对生命科学、医学研究及临床诊断具有重大意义,因此体内研究技术一直是活体研究热点之一。 李银妹课题组利用光镊技术,首次对活体动物内的细胞实现光学捕获。研究表明,光镊可以直接深入到活体内,对细胞进行有效操控。研究人员用光镊穿过小鼠耳朵真皮层,到达深度约50微米毛细血管中,捕获和操控血管中的红细胞。将光镊固定在血管中心,血管中快速流动的细胞经过光阱时被逐渐减速,直到一个细胞停留在光阱中,光镊将细胞捕获,并实现了三维操控。 课题组还利用光陷阱的作用聚集红细胞,人为制造出血管堵塞;针对血管中已聚集的细胞团簇,拖拽其中一个细胞引导疏通,使聚集的细胞逐渐疏散开,恢复正常血液流动,从而实施非接触手术式的血管疏通。 过去,光镊技术在生物医学领域的应用仅限于体外的单分子和细胞研究。李银妹课题组的这项研究技术能直接深入到动物活体内,对细胞进行实时观察、操控与测量,实施非接触式手术的实验取证,从而开拓了光镊技术研究活体动物新领域,为活体研究和临床诊断提供了一种全新的技术手段。(记者 吴长锋) 《科技日报》(2013-5-9 一版)

  • ODC1在弥漫大B细胞淋巴瘤治疗中的意义

    [font='times new roman'][size=21px]ODC1[/size][/font][font='times new roman'][size=21px]在[/size][/font][font='times new roman'][size=21px]弥漫大[/size][/font][font='times new roman'][size=21px]B[/size][/font][font='times new roman'][size=21px]细胞淋巴瘤[/size][/font][font='times new roman'][size=21px]治疗中的意义[/size][/font][font='times new roman'][size=16px][color=#000000]进入二十一世纪以来,淋巴瘤的发病率逐年上升,现已跻身十大最常见的肿瘤之列。据[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2020[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年全球癌症报告统计,淋巴瘤新发病例约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]63[/color][/size][/font][font='times new roman'][size=16px][color=#000000]万,约占所有新发癌症病例的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]3.2[/color][/size][/font][font='times new roman'][size=16px][color=#000000]%,死亡病例约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]28[/color][/size][/font][font='times new roman'][size=16px][color=#000000]万,约占癌症总死亡人数的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2.8[/color][/size][/font][font='times new roman'][size=16px][color=#000000]%。其中弥漫大[/color][/size][/font][font='times new roman'][size=16px][color=#000000]B[/color][/size][/font][font='times new roman'][size=16px][color=#000000]细胞淋巴瘤([/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000])约占所有非霍奇金淋巴瘤的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]30%[/color][/size][/font][font='times new roman'][size=16px][color=#000000],是最常见的病理亚型。因其起病具有一定的隐匿性且缺乏快速有效的早期筛查手段,故大多数病例确诊时已为晚期,多伴有远处转移,大约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]60%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的患者可通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]R-CHOP[/color][/size][/font][font='times new roman'][size=16px][color=#000000]([/color][/size][/font][font='times new roman'][size=16px][color=#000000]利妥昔单[/color][/size][/font][font='times new roman'][size=16px][color=#000000]抗、环磷酰胺、阿霉素、长春新[/color][/size][/font][font='times new roman'][size=16px][color=#000000]碱和泼尼[/color][/size][/font][font='times new roman'][size=16px][color=#000000]松)免疫化疗治愈,而复发难治性[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]仍是淋巴瘤治疗领域的一大棘手问题。临床上,患者通常表现为无痛性进行性淋巴结肿大[/color][/size][/font][font='times new roman'][size=16px][color=#000000]伴结外[/color][/size][/font][font='times new roman'][size=16px][color=#000000]侵犯表现,一旦确诊,即需积极治疗。传统的化疗和放疗均因作用位点的选择性低而易产生严重的毒副反应,不仅给患者带来生理和心理上的极大痛苦,也往往是治疗失败的主要原因之一。在过去的二十年里,人们对其在流行病学、预后因素和生物学异质性等方面的研究有了跨越式的进展,随着对[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]疾病本质理解的逐步深入,以分子事件为基础的更为细化的分类标准蓬勃发展,免疫治疗和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]靶向[/color][/size][/font][font='times new roman'][size=16px][color=#000000]治疗药物也层出不穷。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2016[/color][/size][/font][font='times new roman'][size=16px][color=#000000]年,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]WHO[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在淋巴造血系统肿瘤的分类中提出了“双打击淋巴瘤”的概念,为临床工作中的危险分层、预后判断和治疗方案的选择提供了更坚实的依据。尽管在分子机制方面的研究取得了长足的进步,但仍有大约[/color][/size][/font][font='times new roman'][size=16px][color=#000000]40%[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的临床治疗效果仍然不尽如人意,因此,为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]探寻更多的治疗靶点并研制高效低毒的靶[/color][/size][/font][font='times new roman'][size=16px][color=#000000]向药物[/color][/size][/font][font='times new roman'][size=16px][color=#000000]已成为科学研究中亟待解决的关键问题。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC2[/color][/size][/font][font='times new roman'][size=16px][color=#000000],[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]定位于[/color][/size][/font][font='times new roman'][size=16px][color=#000000]2p25.1[/color][/size][/font][font='times new roman'][size=16px][color=#000000],普遍存在于生物体内,是主要的功能基因。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因编码的蛋白产物是多胺生物合成的关键酶,通过[/color][/size][/font][font='times new roman'][size=16px][color=#000000]介[/color][/size][/font][font='times new roman'][size=16px][color=#000000]导鸟氨酸生成腐胺促进多胺的合成。腐胺、精[/color][/size][/font][font='times new roman'][size=16px][color=#000000]脒[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和精胺总称为多胺,至今已被发现[/color][/size][/font][font='times new roman'][size=16px][color=#000000]340[/color][/size][/font][font='times new roman'][size=16px][color=#000000]余年,是生物体生命活动的重要物质,生物学作用极为广泛,并与肿瘤的发生发展密切相关。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]过度表达可引起细胞内腐胺水平升高从而抑制甲基汞诱导的线粒体功能障碍相关细胞凋亡。另有相关报道,由甲基汞引起的线粒体功能障碍和活性氧([/color][/size][/font][font='times new roman'][size=16px][color=#000000]ROS[/color][/size][/font][font='times new roman'][size=16px][color=#000000])生成也可被[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]和腐胺的表达升高所抑制。这些结果表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的过度表达可能通过增加细胞内腐胺水平途径抑制线粒体[/color][/size][/font][font='times new roman'][size=16px][color=#000000]介[/color][/size][/font][font='times new roman'][size=16px][color=#000000]导的细胞凋亡。[/color][/size][/font][font='times new roman'][size=16px][color=#000000]Bachmann[/color][/size][/font][font='times new roman'][size=16px][color=#000000]等的研究发现,生物体细胞内存在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MYC-ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]轴,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]调节[/color][/size][/font][font='times new roman'][size=16px][color=#000000]RNA[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的转录和翻译、核糖体功能、蛋白[/color][/size][/font][font='times new roman'][size=16px][color=#000000]酶体降解、生物钟和免疫等功能是由[/color][/size][/font][font='times new roman'][size=16px][color=#000000]MYC[/color][/size][/font][font='times new roman'][size=16px][color=#000000]基因调控的。大量的研究结果表明,[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在大肠癌、乳腺癌、胃癌、肺癌等癌细胞中的表达量均显著高于相应的癌[/color][/size][/font][font='times new roman'][size=16px][color=#000000]旁正常[/color][/size][/font][font='times new roman'][size=16px][color=#000000]组织。本实验室前期利用公共数据库分析了[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]33[/color][/size][/font][font='times new roman'][size=16px][color=#000000]种肿瘤类型、各种癌细胞系和正常组织中的表达,结果:[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在包括[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在内的许多肿瘤类型和细胞系中呈[/color][/size][/font][font='times new roman'][size=16px][color=#000000]高表达[/color][/size][/font][font='times new roman'][size=16px][color=#000000]状态,说明[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的恶性发生发展中发挥着重要作用,因此本研究对[/color][/size][/font][font='times new roman'][size=16px][color=#000000]ODC1[/color][/size][/font][font='times new roman'][size=16px][color=#000000]在[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]中的生物学功能和分子机制进行了初步探索,旨在为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]诊治提供新思路,为[/color][/size][/font][font='times new roman'][size=16px][color=#000000]DLBCL[/color][/size][/font][font='times new roman'][size=16px][color=#000000]的治疗以及改善患者预后提供有力的临床前研究依据。[/color][/size][/font]

  • 【分享】巨噬细胞和淋巴细胞非特异性酯酶染色的方法

    非特异性酯酶一固定液 甲醛-丙酮缓冲液(PH=6.6)Na2HPO4 20mg,12 , 50.39mgKH2PO4 100mgdH2O 30ml丙酮 45ml40%甲醛 25ml固定血细胞用二孵育液4%1.付品红 4g2N盐酸 100ml将付品红加入到2n盐酸中,水浴溶解过滤后,置4℃,保存备用2.4%亚硝酸钠液亚硝酸钠 400mg蒸馏水 10ml3.六偶氮付品红溶液临用前取4%亚硝酸钠溶液3ml,边摇边滴入3ml付品红中,再充分震荡,1min备用4.2%α醋酸萘酯溶液:取2gα醋酸萘酯溶于100ml乙二醇甲醚中,置4℃冰箱,避光保存备用5.M/15PH7.6磷酸缓冲液甲液:KH2PO49.08g溶于1000ml蒸馏水,乙液Na2HPO49.47g溶于1000ml蒸馏水 12H2O,23.882取甲液13ml,乙液87ml,混合即可KH2PO40.59g,Na2HPO412H2O 10.39g-500ml孵育液临用前配制:取m/15,PH=7.6缓冲液89ml,逐滴加入六偶氮付品红液6ml,充分混合后,再滴入2%醋酸萘酯2.5ml,充分混合后调整pH至5.8-6.4以下石蜡切片,冰冻切片可以用4%多聚甲醛固定,先固定与切片后固定均可二石蜡切片1. 将被检组织置于4℃10%中性甲醛钙溶液中固定,过夜2. 移入4℃holt氏阿拉伯胶糖液至少24hr3. 置于4℃50%丙酮1hr4. 转入4℃100%丙酮24hr(换两次),最后一次留在室温约1-2hr5. 在二甲苯 中透明30min(换两次)6. 56℃浸蜡30-45min7. 切片 置于室温或37℃温箱干燥1-2hr。8. 二甲苯脱蜡,经100%丙酮,50%丙酮各2-3min,然后进入蒸馏水9. 孵育后步骤与血涂片同,但需经50%丙酮及纯丙酮各30s-1min,二甲苯 透明,然后封藏holt氏阿拉伯胶蔗糖液蔗糖30g阿拉伯胶1g100ml用这个酶扩散少些。1%甲基绿染色液用于复染

  • 【分享】免疫细胞的分离和保存技术

    用体外方法对机体各种具有免疫反应的细胞分别作鉴定、计数和功能测定,是观察机体免疫状态的一种重要手段。为此,须将各种参与免疫反应的细胞从血液或脏器中分离出来。参与免疫反应的细胞主要包括淋巴细胞、巨噬细胞、中性粒细胞等。由于检测的目的和方法有同,分离细胞的需求和技术也异。有的仅需分离白细胞,有的则需分离单个核细胞(mononuclearcell),其中含淋巴细胞和单核细胞(monocyte),有的则需分离T细胞和B细胞以及其亚群。分离细胞选用的方法应力求简便可行,并能获得高纯度、高获得率、高活力的细胞。现用分离细胞群的原则,一是根据各类细胞的大小、沉降率、粘附和吞噬能力加以组分,另一则按照各类细胞的表面标志,包括细胞表面的抗原和受体加以选择性分离。 一、白细胞的分离 (一)血液中红细胞与白细胞比例约600~1000:1,两者的比重不同其沉降速度亦异,通常用两种方法加以分离。 本法是利用血细胞自然沉降率的分离法,采集血液后应及时抗凝,通常选用肝素抗凝法。肝素能阻止凝血酶原转化为凝血酶,从而抑制纤维蛋白原形成纤维蛋白而防止血液凝固。操作原则是将含抗凝血的试管直立静置室温30~60min后,血液分成明显三层,上层为淡黄色血浆,底层为红细胞,紧贴红细胞层上面的灰白层为白细胞,轻轻吸取即得富含白细胞的细胞群,离心洗涤后加入少量蒸馏水或含氯化铵的Gey溶液,经短时间的低渗处理,使红细胞裂解,经过反复洗涤可得纯度较高的白细胞悬液。 (二)聚合物加速沉淀法 本法是利用高分子量的聚合物如明胶、右旋糖酐、聚乙烯吡喀烷酮(polyvinylpyrolidone,PVP)等使红细胞凝集成串,加速红细胞沉降,使之与白细胞分离。本法的细胞获得率比自然沉降法高。

  • 增强光散射分辨率,促进多维流式细胞分析

    多维流式细胞仪可同时进行多参数测量,在特定空间内对细胞群进行分析。若要实现该多维空间的合理使用,每个特定参数需提供额外信息来识别细胞群,并确保其动态范围能够最大限度地加以利用。本研究就白细胞的光信号散射情况进行了详细说明,从而促进了多维流式细胞分析的开展。细胞制备技术的提升对获得高分辨率光散射信号至关重要,可以实现粒细胞、单核细胞、颗粒状和非颗粒状淋巴球的完全分离。对搜集前向散射光的角度进行了改进,以提升白细胞的区分度。尽管正交光散射信号能够区分颗粒状和非颗粒状淋巴细胞,但仍无法利用线性或对数函数的形式将分辨率和动态范围显示出来。而在正交光散射信号中应用多项式函数,则可将白细胞全部以高分辨率显示出来。关联前向和正交光散射信号可实现高分辨率光散射与非线性显示的结合,使细胞群呈现等距分布状态。使用这种方式,可将外周血中性粒细胞、嗜酸细胞、嗜碱粒细胞、单核细胞、颗粒状和非颗粒状淋巴细胞等都显示出来,占据与正交和前向光散射相关的不同位置。出人意料的是,嗜碱粒细胞是处在了颗粒状淋巴和单核细胞附近而非中性和嗜酸性粒细胞。流式细胞术中的人体白细胞光散射特性主要应用于区分淋巴细胞、单核细胞和粒细胞。前向光散射信号与细胞的大小和折光率有关,而正交光散射信号则与细胞的粒度有关。一项对正交光散射信号更进一步的分析显示出了淋巴细胞成分的差异,即非颗粒状淋巴细胞的信号比颗粒状的要低。此外,该方法还显示了白血球的正交光散射信号在不同疾病状态下的变化情况。高分辨率光散射要在最佳角度收集散射参数,并对散射光的收集光路进行优化。改进细胞制备方法对最大限度地实现对细胞群的分离至关重要。改变制备流程可能导致细胞群分辨率的提高或降低。通过光散射,可从测量中排除受损细胞和无核细胞的干扰,从而提高细胞群的分辨率。正交光散射信号的动态范围不允许在相同线性尺度上同时观察淋巴细胞群和中性粒细胞。本研究提供了一种新方法,通过对正交光散射信号进行数字信号处理转换,实现了白细胞群在光散射显示中更加均衡的分布。这种转换提升了淋巴细胞分辨率,实现了细胞的可视化,而动态范围的确定对中性粒细胞的观察也十分重要。因此,重新对细胞群在多维空间进行定位可使细胞群在制备过程中实现完美分离。

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 光片照明(SPIM)显微镜———淋巴管形成机制

    [b]小鼠胚胎初始淋巴管形成的多步机制[/b]Rene′ Ha¨ gerling1,7, Cathrin Pollmann1,7,Martin Andreas1, Christian Schmidt1,Harri Nurmi2, Ralf H Adams3, Kari Alitalo2,Volker Andresen4, Stefan Schulte-Merker5,6and Friedemann Kiefer1,* [i][b]The EMBO Journal[/b][/i] (2013), 1-16在哺乳动物发育过程中,主静脉血管中的一个内部细胞亚群开始表达淋巴管特异基因,进而发育出初级的淋巴结构,被共同命名为淋巴囊。淋巴内皮细胞的出芽,扩展,膨胀被认为是淋巴内皮细胞从主静脉中产生的基础,但是淋巴管形成的确切机制仍然不为人所了解。使用选择性光片照明显微镜Ultramicroscope来观察进行整体免疫染色的小鼠胚胎,我们观察到细胞分辨率的完整的发育中的血管系统。本文中,我们报道了可以被检测到的最早的淋巴内皮细胞松散的连接在主静脉和浅表的脉管丛。下一步的淋巴内皮细胞聚集导致了两个清晰的,未被预先确认的淋巴结构,背部外周纵向淋巴管和腹侧初级胸导管,它们在后期阶段形成了一个与主静脉的直接连接。我们发现血管内皮生长因子C和基质组分CCBE1对于淋巴内皮细胞出芽和迁移是必不可少的。总之,我们提供了一个明显更加细节化的视角和早期淋巴管发育的新颖模型。[img=,591,756]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal1.jpg[/img]图1. 初始淋巴祖细胞从主静脉中产生。(A-D)受精后9.5/9.75(A,C)和10.5(B,D)天小鼠胚胎血管系统的整体染色。PECAM-1优先染动脉、静脉血管中的内源粘蛋白。Prox1识别的淋巴内皮细胞。(A)中框出了胸颈静脉区,淋巴内皮细胞。DA,背主动脉;ISA,节间动脉;PAAs,咽弓动脉。标尺100um。E 图示箭头穿越一对主静脉之一。静脉内皮细胞,蓝色;发育中的心脏,暗绿;浅表静脉丛的位置被标示出来。CCV,一般主静脉;SV,静脉窦;H,心脏;ISV,节间血管。(F)成对CCV和导流入心脏的SV的三维重构。移开一半对称主静脉后的ISVs和生肌刀(M)。蓝色箭头指示静脉血的流动。(G)胸颈静脉区的横切面。DA,ISA和动脉丛标记红色;CV,ISV和sVP标记蓝色。NT,神经管;DRG,背根神经节;iLECs,初始淋巴内皮细胞。(H-K)整体免疫染色胚胎的图片左侧标注的蛋白分布的光学切片的3维重建。E,受精后几天的发育阶段(H,I,K横切面;J矢状切面)。白色箭头,新出现的iLECs;点线,CV的背根。标尺100um。(L-O)在E10.0和E10.25期间出现的最早iLECs的图解。Prox1+细胞,绿色,黄色为细胞核。以绿色表面表明在CCV移开分支中的Prox1表达区。[img=,591,330]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal2.jpg[/img]图2. 淋巴内皮细胞从CV的出芽伴随着细胞和核的形状改变,以及一个蛋白标记开关的表达。(A,B)整体免疫染色胚胎的CCV中左侧标注蛋白的矢状视图。受精后的发育阶段(E);iLECs初始淋巴内皮细胞;头盖处,左;尾部,右。标尺100um。CV的上出口,从鳞状到纺锤状的LEC形状改变(箭头指示CV根中的Prox1+ ECs)。白色箭头,iLECs间极薄的连接;红色箭头,照亮的静脉血管中频繁的发现红细胞(但iLECs中从没有)。(B)也可以看到相应的图解1O。(C)在E10.5阶段,出现的iLECs中的VEGFR-3及其联合受体Nrp2水平被上调,而CV和iLECs中的Lyve-1水平保持不变。***P0.001,NS,不显著。(D,E)随着iLECs的出现核的形状从圆形转变为椭圆形。通过核表面重构描述了CCV内部和外部的Prox1+细胞核以及对球率和椭球率做散点图(E)。标尺100um。(F-H)矢状(F)和横切面(G,H)视图中整体免疫染色小鼠胚胎的CCV内部和外部的Prox1+细胞核表面重构。(F,G)通过热成像赋以伪色标记的Prox1表达强度图,例如,最高强度的表达标记为红色,低强度表达标记为蓝色。(H)通过图像的叠加进行细胞的解剖学定位软件包:Imaris Vantage,标尺100um。[img=,591,785]http://qd-china.com//bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal3.jpg[/img]图3. iLECs在节间血管主要分支的水平上浓缩来形成照亮的外周纵向淋巴管(PLLV)。(A-D)每张图所展示蛋白的整体免疫染色胚胎光学切片的矢状图重构。E,受精后的发育天数;头盖的,左;尾端的,右。(A)在iLECs出现的早期阶段,iLECs以扇形模式分布,从CCV向头部和尾部扩展。虚线,iLECs检测的边界。(A-D)iLECs在节间血管第一侧枝的水平上立即浓缩形成PLLV。长的阴影线指示了CCV和SV的位置;短的阴影线,iLECs浓缩和PLLV形成的区域。(E-H)图解iLECs的位置,在E10.5和E10.7阶段出现在CV的背部。CCV之外的Prox1+iLECs以淡绿色标记,CV内的Prox1+细胞和心肌以深绿色标记。在CCV移开的分支中的Prox1表达域(P1ED)以淡绿色表面显示。浅表静脉丛作为iLECs的一个可能的备选来源,其位置标注为蓝色(G,H)。sVP内的Prox1+内皮细胞被标注为红色。sVP,浅表静脉丛;标尺100um。 [img=,591,846]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal4.jpg[/img]图4. CV和PLLV之间的LECs聚集并形成不断增长的更大的被照亮结构并最终形成原始的胸导管。来自整体免疫染色的小鼠胚胎光学切片的图中标注蛋白的(A-C)矢状图和(D)截面图。(A)箭头指示了位于CV和PLLV之间的LECs快速和不断进行的聚集,这导致了更大照明结构pTD的形成(B-D)。(C,D)浅表淋巴管sLECs开始从PLLV背侧和pTD旁边伸展。PLLV和pTD在pTD头盖端连接到一起。(F-H)图示了导致pTD成形的细胞聚集和浓缩事件。(I)在E11.5阶段,sLECs中的VEGFR-3和它的联合受体Nrp2水平上调,而Lyve-1水平与CV和iLECs相比强烈下调。***P0.001。发育阶段(E);头盖,左,尾端,右。ACV,前主静脉;CCV,一般主静脉;PCV,后主静脉;ISV,节间静脉;PLLV,外周纵向淋巴管;pTD,原始胸导管;sLECs,浅表淋巴结。标尺100um。[img=,591,734]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal5.jpg[/img]图5. 通过最高水平表达的Prox1表征的pTD和CV间新形成的成对的接触点。(A-C)整体免疫染色胚胎的矢状图。新形成中的pTD快速巩固进一个巨大的照明结构,头颅部以U形连接到PLLV(左侧A,B)。CV和pTD间的两个连接表达最高水平的Prox1(箭头)。(B-E)一个总是位于pTD和CV连接间的作为锁骨下动脉的短暂存在的侧枝被星号标记出来。(C)红色箭头:pTD内堆积的红细胞。箭头标注pTD连接端对面的Prox1+细胞。(D,E)通过pTD和CV连接区域的单个平面(光学切片)。(F-H)图示pTD和CV间接触点的发育,接触点处高表达的Prox1+细胞标记为暗绿色和红色的细胞核。标尺100um。[img=,591,963]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal6.jpg[/img]图6. 不同的淋巴内皮细胞群表达不同的标记蛋白组。(A-G)所示发育阶段的免疫染色胚胎的横向冷冻切片。可见的抗原被以每幅图上所标记的相应颜色标记。典型例证标记表达的面板在(I)中汇总。(A)在E10.0阶段的LECs细胞中没有粘蛋白的表达,在E11.0阶段首先被检测到并在E12.0的LECs中变得丰富。注意CV中的Prox1+细胞在所有阶段都是阴性。在E11.5阶段,Nrp2在CV和pTD内中等强度的表达,而CV外的iLECs强烈的表现为阳性。(C)内皮粘蛋白在iLECs中只有短暂的留存。(D)在CV和pTD的Prox1+ ECs中Lyve-1强烈表达,而在展示的sLECs中仅有残留的表达(箭头)。(E)在所有血管结构中,整合蛋白α6有中等程度的表达。(F)在E11.5阶段,神经生长因子Netrin-4在BECs中强烈表达,在CV中很弱的表达,在pTD内中等程度的表达,但在iLECs中(箭头)没有被检测到。(G,H)Unc5B在iLECs(G,箭头)和sLECs(H,箭头)中强烈表达,而在pTD中表达微弱。 (H)来自整体免疫染色的小鼠胚胎的Prox1 (绿) 和Unc5B (蓝)光学切片的矢状重构. (I)在妊娠中期,不同LEC群中标注蛋白的表达。数据来自免疫染色的冷冻切片或整体免疫染色。表示的结构和细胞群: CV, 主静脉 iLECs, 初始LECs (第一轮从CV中出现的纺锤状LE,松散连接的细胞) sLECS, 浅表LECs (从PLLV (背侧)中伸出的LECs) pTD, 初始胸导管. CV*, 对CV背侧Prox1+细胞的表达限制。标尺100um。 [img=,591,781]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal7.jpg[/img]图7. CCBE1缺陷导致的Prox1+细胞从CV分离的失败,并导致初始淋巴结构的快速损失。 (A, B, F, G) 对标注蛋白进行整体免疫染色的野生型(A) 和Ccbe1_/_ (B, F, G)胚胎的3D重构。(A, B)E10.5阶段的矢状图. (B) 在CCBE1-缺陷胚胎中,在CV和初始PLLV中检测到丰富的Prox1+细胞,紧邻浅表静脉丛。与野生型胚胎(A)相比,CCV和PLLV间没有纺锤状的iLECs。 (B, F) Prox1+细胞描绘出CCV和SV的边界, 当非典型的,大的,照明的分支从CV(箭头)中出现。(G) 含大量VEGFR-3+的异形分支从CV(箭头)和ISVs(箭头)中伸展。(C-E)图示野生型(C)和CCBE1-缺陷型(D, E)胚胎中的Prox1+ cells。含大量VEGFR-3+的静脉内皮标注为深蓝色。sVP, 浅表静脉丛。标尺100um。[img=,295,591]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal8.jpg[/img]Figure 8VEGF-C(血管内皮因子C)缺陷的小鼠胚胎中的Prox1+内皮细胞因为不能离开它们起源处的血管从而标记了LECs的静脉来源。E10.75阶段野生型(A, B)和Vegfc_/_型(C-F)胚胎的矢状图3D重构,对标注蛋白做了整体免疫染色。在VEGF-C缺陷胚胎中,Prox1+内皮细胞不能离开静脉血管导致没有出现发育中的淋巴结构。(E, F) 除了CV(箭)中的Prox1+ 细胞, 在腹侧sVP(箭头)处更大的静脉血管中捕获了第二群Prox1t淋巴初始组织 。(G, H) 图示了野生型 (G) 和VEGF-C缺陷型(H)胚胎中的Prox1+细胞。NE, 神经元的Prox1+表达条纹。sVP, 浅表静脉丛。标尺100 um。[img]http://qd-china.com/bio%20application/Lavision%20Ultramicroscope/The%20EMBO%20Journal/The%20EMBO%20Journal9.jpg[/img]Figure 9. 在iLECs外出和淋巴管形成过程中,CCBE1和VEGF-C协同的相互作用。对E10.5阶段所标注蛋白整体免疫染色的野生型(A-C), Vegfct/_ (D-F), Ccbe1t/_ (G-I) 和 Vegfct/_/Ccbe1t/_ (J-L) 胚胎矢状图的3维重构。CCV和ISVs的根部用虚线标注,Prox1+细胞用箭头标注。与野生型同窝小崽相比,Vegfct/_胚胎(A-C)表现出iLECs从CCV中迁出的下降(D, E)。与之相反,Ccbe1t/_胚胎中,受损的ISVs形成被检测到。而且,不典型的,照亮的分支出现在Prox1+和高水平VEGFR-3表达的主静脉根部(G-I). (J-L) 在复合的杂合胚胎中,这种表型非常夸张地表明了VEGF-C 和CCBE1在淋巴管形成过程中的协同作用。标尺100um。

  • 机器人可自动探查活体脑细胞内部运作

    中国科技网讯 据物理学家组织网近日报道,美国麻省理工学院和佐治亚理工学院研究人员开发出利用机器人操纵来自动发现和记录活体大脑中神经元信息的方法,即用一种全细胞膜片钳制动一个微小的空心玻璃针,在神经细胞的膜上开孔,以记录其内部电活性。该研究成果刊登在5月6日《自然·方法》期刊上。 这种深入大脑中神经元内部运作的方式可提供大量有用的信息,如电活性模式、细胞内部状况、甚至基因在某一时刻被闭合的剖面。然而,能够实现这个入口非常困难,目前世界上只有极少数实验室在进行尝试,这种自动发现和记录活体大脑中神经元信息的最新方法有望改变该领域研究现状。研究人员证明,在一个细胞检测的计算机程序的引导下,与人工相比,该自动装置识别和记录活老鼠大脑中的神经元信息具有更好的精度和速度。 采用新型自动化装置消除了对活体细胞的活动进行数月定向和长期搜索的需要。采用这种技术,科学家可将大脑中数千个细胞划分成不同类型,还可绘制其彼此之间的连接,并从正常细胞中找出病变细胞。 研究人员称,该方法在研究大脑疾病方面将会尤其有用,如精神分裂症、帕金森氏症、自闭症和癫痫。科学家们一直难以描述这些疾病中一个细胞与其具有电活回路和性能的分子集成。描绘出疾病如何改变活体大脑内特定细胞分子,将会更好地发现药物的靶标。 如果通过人工对这种精密仪器进行操作,需花上4个月的训练时间,最终还可能不是很精准,于是研究人员将这项任务交与机器人来操作,其机械手臂由计算机程序做指导。研究人员说,在神经科学中使用机器人来研究有生命的动物还仅仅是个开始,而像这样的机器人可能被用于在大脑中有目标点地注入药物,或提供基因治疗载体,希望新方法也能激励神经学家追求各类机器人自动化,例如在光遗传学方面,利用光有针对性地干扰神经回路和确定神经元在大脑功能中发挥的因果作用。(记者 华凌) 《科技日报》(2012-05-11 二版)

  • 流式细胞术详解 12章节

    十二. 流式细胞术在血液学中的应用 白血病免疫分型其临床意义 目前公认的系列特异性指标是:T淋巴细胞系--胞浆CD3(cCD3),B淋巴细胞系-- cCD22或cCD79,髓系---MPO 或cCD13,一般可先用他们区分细胞系列后再进一步分析某一系列亚型和分化阶段。1. ALL的免疫学分型1986年前分为普通型ALL(cALL)、未分化细胞ALL (Null-ALL)、T细胞ALL( T-ALL) 、前B细胞ALL (PreB-ALL)、B细胞ALL (B-ALL)五型;1986-1994年分为两大类九型(非T-ALL六型,T-ALL三型),九十年代后期有人按临床实用性一般分为B祖细胞ALL、前B细胞ALL、B细胞ALL、T细胞ALL四型。表12.1-表12.4列出ALL的五型、九型( B[color=blac

  • 流式细胞术中使用Flowjo补偿自动调节功能自动化调节补偿【转帖】

    早就听说flowjo的补偿自动调节功能,上网寻觅一圈都没有找到相应教程,实在忍不了了,就自己在此写个教程,希望能帮助到其他同学,废话不多。上教程,如果大家觉得不错,赏两个叮当,让我有更多的动力在为大家奉献一些小教程。1.样品制备,及数据采集我们实验室是BD公司的流式机,采集软件是cellqust pro,我的习惯都是采集数据以后,转用FLOWJO再继续分析,制图。样品制备同常。下面以脾淋巴细胞CD4,CD8分群来做一简单介绍。数据采集中,仍然要使用阴性管调节 阈值 电压 ,圈定大概的淋巴细胞的门。完成后,收细胞,保存数据为none.001转cd4-pe的单阳样品,不用调节补偿,直接收细胞,保存数据为cd4-pe.002。同样,转cd8-fitc的单阳样品,不用调节补偿,直接收细胞,保存数据为cd8-fitc.003最后上样品和control组,收细胞,保存数据为sample.004,如果有control组,假设为control.005(以上处理跟常规处理的主要区别,就是补偿调节都是0%,即不调节补偿,省去了补偿调节这一步,收细胞的速度是不是快了不是一点两点咧.)2,自动补偿调节将数据导入flowjo,本人用的是win环境下的lfowjo7.6.2xx版,有同学反应,文件不能导入或者导入细胞数是0,同学们可以试试将数据文件夹放在全英文路径下,同时有的从MAC系统拷来的目录,可以试着对文件夹从命名一下,也要是全英文,可能可以解决文件打不开的问题。将以上文件全部拖拽进flowjo,使用NONE.001圈定淋巴细胞门LYM.将门拖拽到allsample让门应用到所有样本上。这时候我们可以先看看sample.004的散点图,因为没有调节补偿,根本不是我们所能使用的图,更化不了象限,所以,我们开始调节补偿。

  • 什么是体细胞数?如何降低生鲜乳中的体细胞数?

    生鲜乳中体细胞数(SomaticCellCount,简称SCC)反应生鲜乳卫生状况和奶牛乳房健康的状态。体细胞通常由巨噬细胞、淋巴细胞、脱落上皮细胞和中性白细胞等组成。当乳腺被感染或受机械损伤后,体细胞会上升,受感染乳区的乳汁中大约99%的细胞是白细胞。  1、高体细胞数对乳制品的影响主要有:(1)牛奶味道变异;(2)牛奶贮存期缩短;(3)乳清量增加、酪蛋白收缩性降低,导致奶酪的产量下降。  2、引发高体细胞数原因有:(1)可能有隐性乳腺炎发生 发生隐性乳腺炎时,感染牛很少有临床症状,肉眼观察乳汁正常,故常常误将感染乳区的乳作正常牛奶处理,造成生鲜牛奶中体细胞的升高。(2)牛群结构偏老 一般而言,胎次越小的牛只体细胞越低。因为老龄牛只长期接触乳腺炎病原菌,免疫功能下降,有更多的被感染机会。  3、降低生鲜乳中SCC,重点应从以下方面着手:(1)减少乳房机械性损伤。牛床、运动场、挤奶厅、饲槽、水槽等奶牛活动区域无尖锐物品,机械挤奶时不可过挤,以避免引起乳房损伤。(2)减少病原菌等生物侵袭。加强环境消毒,及时杀灭环境中的有害微生物。(3)日粮营养充足、均衡,提高机体抗感染能力。(4)定期(至少每月1次)进行牛群隐性乳房炎检测,及时进行乳房炎预防。(5)隔离患有传染性乳房炎的奶牛,淘汰患有慢性乳房炎的母牛等。

  • CIK细胞的制备方法

    【背景】CIK是“Cytokine-Induced Killer Cells”的缩写,中文全称为“细胞因子诱导的杀伤细胞”。 CIK是单个核细胞在CD3单抗和多种细胞因子(包括IFN-g, IL-2等)的作用下培养获得的一群以CD3+CD56+细胞为主要效应细胞的异质细胞群, 其既具有T淋巴细胞强大的抗肿瘤活性,又具有NK细胞(自然杀伤细胞)的非MHC(主要组织相容性抗原)限制性肿瘤杀伤能力。CIK细胞具有杀瘤活性高、杀瘤谱广,对正常组织毒性低,体外可高度扩增等特点,是目前临床上广泛使用的过继性免疫治疗细胞。【培养原理】CIK培养用细胞因子和抗体:nCD3激发型单抗:T细胞活化的第一信号来自于T细胞表面的受体,即T细胞抗原受体(T cell antigen receptor, TCR)与APC提呈的抗原的特异性结合,也就是T细胞对抗原的特异性识别。TCR是由2条不同肽链构成的异二聚体,在T细胞表面,其与CD3分子通过非共价键结合,形成TCR/CD3复合体。TCR识别特异性抗原后会引起CD3和T细胞表面的辅助受体CD4或CD8分子的胞浆尾部聚集,进而激活与胞浆尾部相连的酪氨酸激酶(Lck, Fyn和ZAP-70等),促使CD3分子胞浆区的免疫受体酪氨酸活化基序(immunoreceptor tyrosine-based activation motif, ITAM)中的酪氨酸(Y)磷酸化。磷酸化的酪氨酸(pY)进一步磷酸化下游含酪氨酸的蛋白,从而引起激酶活化的级联反应(磷脂酰肌醇途径或MAP激酶途径等),最终通过激活转录因子,使其进入细胞核内,结合于调控T细胞增殖和活化的靶基因(如IL-2和IFN-g等),引起基因的表达和转录,T细胞因而由静止状态转为增殖和活化状态。由上可见,CD3分子在T细胞活化信号的转导中起着极其关键的作用。CD3激发型单抗与T细胞表面CD3分子特异性结合后,可引起CD3分子胞浆区ITAM基序中酪氨酸的磷酸化,进而导致T细胞增殖和活化的下游信号的激活,从而使T细胞增殖和活化。也就是说,CD3激发型单抗能够模拟抗原与TCR/CD3复合物的识别和激活过程,从而引起T细胞的增殖与活化,因此是CIK细胞培养中不可或缺的刺激因素。此外,CD3激发型单抗在选用时一定要注意克隆号。研究表明,仅克隆号为OKT-3的CD3激发型单抗可以刺激所有人的T细胞的增殖,而其它克隆号的CD3激发型单抗仅能刺激一部分人的T细胞。因此,在进行CIK培养时,最好选用OKT-3克隆,以保证每个患者的T细胞均能被激活。nIL-2 (白细胞介素-2)IL-2最初发现时被称为T细胞生长因子(T cell growth factor, TCGF),是引起T细胞增殖最重要的细胞因子。IL-2既是自分泌细胞因子,也是旁分泌细胞因子,其通过与T细胞表面的IL-2受体(IL-2R)的特异性结合而促使T细胞活化,并进入细胞分裂状态。此外,IL-2还可刺激NK细胞的生长并增强其杀伤能力。因此CIK细胞培养中须添加IL-2,以促进T细胞的增殖与活化。nIFN-g (干扰素-g)IFN-g 具有上调外周血淋巴细胞表面IL-2R表达的作用,因此会增强T细胞对IL-2促增殖反应的敏感度和强度。在诱导CIK细胞形成的过程中加入IFN- g ,可降低IL-2的用量。研究发现,IFN-g加入的顺序与CIK的细胞毒活性密切相关。先加入IFN- g,培养24后再加入IL-2,可明显提高CIK的细胞毒活性。nIL-1a(白细胞介素-1a)IL-1a也可以介导外周血淋巴细胞表面上调表达IL-2R。当IL-1a与IFN-g和激发型CD3单抗合用时,可以明显提高CIK 的细胞毒作用。【细胞制备】1.外周血单个核细胞的采集1.1用血细胞分离机采集患者自身的外周血单个核细胞50-100mL;1.2淋巴细胞分离液密度梯度离心法进一步纯化单个核细胞(PBMC);1.3无血清培养液洗涤2次,获得纯度在90%以上的PBMC。2.CIK细胞的培养及鉴定2.1将PBMC按1-2 x 106/ml的浓度悬浮于无血清培养液中,加入1,000 U/ml 的重组人IFN-g,37oC,5%CO2培养箱中培养;2.224h 后加入50ng/ml 的CD3 单克隆抗体和300 U/ml 的重组人IL-2,刺激CIK 细胞的生长和增殖;注:此时也可同时加入100 U/ml的重组人IL-1a。2.3每3天半量换液或扩瓶一次,并补加重组人IL-2 300 U/ml;2.4在培养的第14d,收获CIK细胞。2.5CIK细胞质控:2.9.1台盼蓝染色检测:活细胞应在80%以上;2.9.2流式细胞仪检测细胞表面CD3、CD8、CD56等分子的表达:CD3+CD56+细胞的比例应在20%以上。2.9.3细胞杀伤实验:以CIK细胞为效应细胞,以肿瘤细胞(可为原代肿瘤细胞或肿瘤细胞株)为靶细胞,将效应细胞与靶细胞按10 : 1(数目比) 的比例加入96 孔U 型板中,每孔含靶细胞1 x 104个,终体积为200 ml,设3个复孔。培养4h,然后取培养上清,用乳酸脱氢酶(LDH) 试剂盒检测效应细胞对靶细胞的杀伤率。2.9.4收获细胞前,取少量培养物进行细菌、真菌培养,并检测支原体、衣原体,及内毒素(标准:病原学检测阴性,内毒素5 Eu)。【步骤简图】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873006_small.jpg 【推荐试剂】http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873008_small.jpg 注:Animal Free意为无动物成分。无动物成分的重组细胞因子在生产过程中不会有任何动物源性物质,尤其是牛蛋白的混入,使得最终获得的重组人蛋白中不含任何动物成分。这样可避免动物病原体(如疯牛病,克雅氏病等)的污染及外源蛋白引起的机体异种排斥和过敏反应,因此细胞治疗的体外细胞培养过程中最好使用无动物成分的重组细胞因子。【其它相关试剂】 http://img.dxycdn.com/trademd/upload/userfiles/image/2013/04/B1366873009_small.jpg【参考文献】 Li R, Wang C, et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother. 2012; 61:2125-2133

  • 【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    【原创大赛】盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析

    盐酸芬戈莫德在大鼠体内代谢的尿液及胆汁样品分析 芬戈莫德最初是由冬虫夏草(子囊菌亚门赤僵菌)培养液中提取的抗生素成分经化学修饰后合成的免疫抑制剂。芬戈莫德是鞘氨醇的结构类似物,研究显示,该药具有与其他药物完全不同的免疫抑制机制,在体内磷酸化后与位于淋巴细胞上的鞘氨醇-1-磷酸受体(S1PR)结合,通过改变淋巴细胞的趋化,促使淋巴细胞在淋巴组织内滞留,从而减少自身反应性淋巴细胞再次进入循环的几率,进而防止这些细胞浸润中枢神经系统(CNS)。进而达到免疫抑制效果。而且该过程是可逆的,停药后淋巴细胞水平即可以恢复正常。临床研究表明,口服制剂芬戈莫德针对复发-缓解型多发性硬化症疗效确切,优于目前的常用MS治疗药物干扰素β-1a注射剂(Avonex,已用于多发性硬化症的临床治疗药物)。芬戈莫德可靶向作用于对中枢神经系统(CNS)有潜在自身攻击性的淋巴细胞,促进神经保护与修复过程,降低MS的复发率,延缓损伤的进展过程,减少颅内核磁共振成像(MRI)病灶的数量,减轻病灶的严重程度。 药物及实验动物:盐酸芬戈莫德为本所研制,实验用大鼠为Wistar雄性大鼠,6-8周龄,体重范围约200-250g/只,本所实验中心提供;大鼠代谢笼为苏州动物实验仪器厂产品。色谱条件色谱柱:Acquity BEH C18 (100mm×2.1mm, 1.7μm)流动相:A:水(0.05%TFA)B:乙腈(0.05%TFA)http://ng1.17img.cn/bbsfiles/images/2014/12/201412302201_530374_2217446_3.jpg质谱条件Waters LCT Premier XETM型飞行时间质谱仪,W-负离子模式;毛细管电压2200 V;锥孔电压35 V;离子源温度120℃;脱溶剂气温度350℃;脱溶剂气流量10L /h;锥孔气流量700 L /h;质量扫描范围m /z 50 ~ 1200[

  • 细胞免疫和体液免疫的区别和联系

    [font=宋体][font=宋体]细胞免疫和体液免疫,作为人体免疫系统的两大核心组成部分,各自承担着不同的功能,但同时又紧密相连,共同维护着人体的健康。细胞免疫主要通过[/font][font=Calibri]T[/font][font=宋体]淋巴细胞来识别和清除被感染的细胞或癌细胞,而体液免疫则通过[/font][font=Calibri]B[/font][font=宋体]淋巴细胞产生抗体来中和病毒或细菌。尽管它们在机制和功能上有所区别,但两者在免疫反应中相互协作,共同应对外来的病原体。了解它们之间的区别和联系,有助于我们更好地理解免疫系统的运作机制,并为疾病的预防和治疗提供新的思路。[/font][/font][b][font=宋体] [/font][font=宋体]一、体液免疫和细胞免疫的作用[/font][/b][font=宋体] [/font][font=宋体]体液免疫:用于产生抗体来达到保护目的的。[/font][font=宋体] [/font][font=宋体]细胞免疫:用于清除细胞内寄生微生物和排斥同种移植物或肿瘤抗原。[/font][b][font=宋体] [/font][font=宋体]二、体液免疫和细胞免疫的联系[/font][/b][font=宋体] [/font][font=宋体]体液免疫和细胞免疫各自有独特的作用,又相互配合,共同发挥免疫作用。对于细胞内寄生物,体液免疫首先起作用,阻止寄生物的传播感染,当寄生物进入细胞后,细胞免疫将抗原从细胞释放出来,再由体液免疫最后清除。[/font][font=宋体] [/font][font=宋体] [/font][b][font=宋体]三、体液免疫和细胞免疫的区别[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、起主要作用的细胞不同[/font][/font][font=宋体] [/font][font=宋体][font=宋体]体液免疫:起主要作用的细胞是[/font][font=Calibri]B[/font][font=宋体]细胞。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞免疫:起主要作用的细胞是[/font][font=Calibri]T[/font][font=宋体]细胞。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、作用对象不同[/font][/font][font=宋体] [/font][font=宋体]体液免疫:侵入内环境中的抗原。[/font][font=宋体] [/font][font=宋体]细胞免疫:被抗原入侵的细胞、自身的异常细胞和异体组织器官。[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、作用方式不同[/font][/font][font=宋体] [/font][font=宋体][font=宋体]体液免疫:浆细胞(效应[/font][font=Calibri]B[/font][font=宋体]细胞)产生的抗体与相应病原体的抗原特异性结合,并使之发生进一步的变化(如形成沉淀)而被吞噬细胞吞噬,从而抑制病原体的繁殖或对人体细胞的黏附。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]细胞免疫:效应[/font][font=Calibri]T[/font][font=宋体]细胞与靶细胞密切接触,并释放穿孔素使靶细胞裂解。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services][b]多重荧光免疫组化([/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services][b]mIHC[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services][b])服务[/b][/url],更多详情可以查看:[/font][font=Calibri]https://cn.sinobiological.com/services/fluorescent-multiplex-ihc-services[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b]

  • 骨髓细胞的提取

    名 称:骨髓细胞的提取目的:分离并培养骨髓间充质干细胞原理:先分离出单核细胞然后再通过培养分离出骨髓间充质干细胞内容:步骤一:小鼠骨髓细胞的获取1. 断颈处死小鼠(7-12周,雌雄均可),投入盛有250ml左右的0.1%新洁尔灭或75%酒精中浸泡3-5分钟,拎出后将小鼠仰面翻铺于超净台上一个消毒托盘上。2. 用眼科镊小心捏起小鼠两髋关节之间的腹部皮肤,用眼科剪小心剪开皮肤,并分离两下肢的皮肤,往下在脚踝处剪断,往上在髋关节处剪断,这样可以游离出小鼠的两条下肢。将它们放入另外一个消毒托盘中,并换一套新的剪子和镊子。手术器械事先均必须消毒。3. 小心剥离肌肉,分别剪下Femurs and Tibias, 剪去两端软骨,露出红色的骨髓腔。注意尽可能少的剪走骨髓腔。4. 拿两支5ml无菌注射器,每支吸取5ml IMDM(10%FBS, 50/50u/ml Pen/Strep),换装一个4号针头(又称皮针)或1ml注射器的针头,并用无菌的针头套管将之轻轻拧弯。轻轻插入骨髓腔,对准一个无菌15ml离心管,将细胞冲出。每根骨用2.5ml IMDM培养液左右即可基本冲下骨髓腔内的细胞。5. 300C下离心,1200转/10分钟,去上清,但留1ml,以便用于在振荡器上悬浮细胞。6. 加进氯化铵溶液(NH4Cl: 8.99g/L, KHCO3: 1g/L, Na4-EDTA: 0.037g/L ,过滤灭菌, 40C储存)裂解红细胞,按1: 9比例,即1ml 细胞悬液,加进9ml氯化铵溶液,混匀,冰上10分钟。 7. 300C离心,1200转/10分钟,去上清。步骤二:淋巴细胞分离液分离小鼠骨髓细胞1. 按步骤二方法采集小鼠骨髓细胞,并破红细胞2. 细胞用4ml培养液悬浮,缓慢留置于8ml淋巴细胞分离液液面上,2000rpm for 20min.3. 小心吸取云雾状底层的基质细胞约1.5ml的体积,置于1个盛有1ml无菌细胞培养用PBS的15ml离心管中,颠倒混匀,1200rpm for 10min, 去上清4. 如果是注射用细胞,则用5ml PBS洗涤细胞2次;5. 离心沉淀下来的细胞用50-200ul PBS,计数细胞,并计算所需细胞体积数铺板培养

  • 流式细胞术详解 18-20章节

    十八. 流式细胞术在血液学中的应用NK和LAK细胞活性测定 NK细胞存在于外周血大颗粒淋巴细胞中,它对靶细胞的细胞毒活性不依赖于抗体,无MHC限制性,它们的数量及细胞毒活性是机体免疫系统的重要指标。人NK细胞一般表达CD56、CD16、CD57部分表达CD2、CD8、CD11而不表达CD3。 LAK(Lymphokine Activated Killer cells)细胞主要存在于LGL的高密度群体中,LAK前体细胞表达NK细胞标志CD16而不表达T细胞标志如CD3、CD4、CD5等;它们不需要抗原刺激就能杀伤NK细胞不能杀伤的肿瘤细胞,并且无MHC限制性;从表型上看大多数LAK细胞来自NK细胞,但严格讲LAK细胞对K562细胞的杀伤活性不能称作LAK活性,测定LAK活性的靶细胞应为NK抵抗的实体瘤细胞,如HL-60细胞、HeLa细胞等。 [

  • 上海生科院许琛琦小组发现人体免疫系统工作新机制

    我科学家发现人体免疫系统工作新机制来源:科技日报 12月3日,国际权威学术期刊《自然》在线发表了中科院上海生科院生物化学与细胞生物学研究所/国家蛋白质科学中心(上海)许琛琦研究员领导的研究组的最新成果,首次证明钙离子能改变脂分子功能来帮助T淋巴细胞(简称T细胞)活化,提高T细胞对外来抗原的敏感性,从而帮助机体清除病原体。这项新成果对治疗自身免疫病、慢性病毒感染、肿瘤等多种与T细胞相关的疾病有很好的指导意义。该论文也是新成立的国家蛋白质科学中心(上海)的第一篇学术论文。人体的免疫系统复杂而精确,其中T细胞是一种关键的功能细胞,是保证机体健康的基础,与肿瘤、艾滋病、免疫缺陷症等疾病直接相关。艾滋病病毒正是通过感染T细胞从而破坏免疫系统并使人致病。据许琛琦介绍,T细胞发挥功能的基础是识别外来抗原,这项功能由T细胞抗原受体(TCR)来行使。每一个T细胞表面都有几千个TCR,TCR的周围是脂质分子,它们通过静电力将TCR的活化位点屏蔽起来,保证它们在没有抗原的时候不会活化,接受抗原刺激后则快速活化。钙离子在细胞内担任非常重要的“信号使者”角色。T细胞被抗原活化后,细胞外的钙离子会通过钙离子通道流入细胞内,细胞内钙离子浓度会在数秒之内提高10倍,并维持几个小时。这些钙离子能够直接结合TCR周围的脂质分子,中和它们的负电荷,从而解除脂质分子对TCR活化位点的屏蔽,帮助TCR活化,将比较弱的抗原刺激信号放大,使得T细胞获得完全的效应功能。这种机制大大提高了T细胞对抗原的敏感性。美国科学院院士,斯坦福大学医学院免疫、移植与感染研究所所长、著名免疫学家Mark Davis教授指出,这项工作令人激动,揭示了钙离子对TCR活化及其T细胞生理功能的重要作用,解决了T细胞活化的一个关键性问题。据《东方早报》报道,昨天,国际权威学术期刊《Nature》(《自然》)在线发表了中科院上海生科院生物化学与细胞生物学研究所/国家蛋白质科学中心(上海)许琛琦研究员领导的研究组的最新成果:一种人体免疫系统工作新机制,即钙离子可以激活体内的T淋巴细胞(简称T细胞),而T细胞正是消灭病原体的“主力部队”。  身体不舒服了,就会生病。可对很多市民来说,恐怕并不了解“病”是怎么一回事。其实,人体内的免疫系统复杂而精确,病原体进入后,就会与体内的免疫细胞进行一番厮杀,谁能胜出就决定了最后的结果。在免疫系统这支“军团”中,T细胞是一种关键的功能细胞,堪称是“指挥官”加“士兵”,它的数量以及“活力”,影响着健康的程度。许琛琦表示,例如肿瘤、艾滋病、免疫缺陷症、自身免疫病等多种疾病都与T细胞的功能相关,艾滋病毒正是通过感染T细胞从而破坏人的免疫系统。  据了解,在T细胞的表面,活跃着一种名为TCR的抗原受体,它们就如同是部队中的“侦察兵”,只要察觉到抗原信号,就会通知T细胞本身,让其参加“战斗”。许琛琦研究组发现,作为人体内必需的钙离子,除了组成骨骼和牙齿外,居然还在细胞内担任非常重要的“通信兵”角色。T细胞被抗原活化后,细胞外的钙离子经通道流入细胞内,浓度会在数秒内提高10倍,并维持几个小时。这些钙离子能直接结合TCR周围的脂质分子,帮助TCR活化,将比较弱的抗原刺激信号放大,激活“沉睡”中的T细胞,从而让其加入到与疾病的争斗中。  就理论上来说,钙离子信号通路是多种疾病的药物靶点。但是,许琛琦强调,目前只是在基础科学领域的研究,要落实到临床医学,还需要不断的实验。另外,他也表示,此钙离子是细胞内的活性钙,浓度很低,靠吃钙片和骨头汤等传统“补钙”方式并不能增加其含量。身体里的钙有什么作用?它能强健骨骼、让肌肉不会轻易抽筋,还能增强机体免疫力。这是中国科学院生物化学与细胞生物学研究所/国家蛋白质科学中心(上海)许琛琦研究员课题组的最新发现:在细胞里的钙离子,能帮助人体内T淋巴细胞的活化,提高T淋巴细胞对“外敌入侵”的敏感性,从而帮助机体清除病原体。昨天凌晨,国际权威学术刊物《自然》在线发表了这一发现。  T淋巴细胞是人体免疫系统中的“高级部队”。它巡游在人体内,一旦发现细菌、病毒等“外敌”入侵,即使数量极其微小,也会及时行动起来,召集其他“免疫大军”,坚决将其清除——其敏感程度,只有神经细胞可相媲美。  也正因此,T细胞也成了不少病毒、肿瘤细胞的攻击对象。比如,艾滋病毒就直接攻击T细胞,因为一旦让T细胞“缴械”,它就能在人体内长驱直入。  经过几年努力,许琛琦有了新发现。原来,在每一个T细胞的膜上,都有多达几千个信号接收器TCR(T细胞抗原受体),像哨兵一样担任警戒任务。TCR身上有数个活化位点,平时被脂质分子包裹着。这些位点如开关,一旦侦察到外敌,就会迅速激活并打开细胞上的“钙闸门”,将细胞外的钙离子放进细胞,让细胞内钙离子浓度迅速增加10倍。  当钙离子进入细胞后,它们会拉开其他的脂质分子,打开更多的TCR开关,从而活化T细胞,开启各种“应急预案”,有的产生蛋白质御敌,有的下令免疫细胞增殖——齐心协力消灭“坏蛋”。  “T细胞这种信号放大机制,还是首次发现。”许琛琦介绍。病毒专家、中科院上海巴斯德研究所所长孙兵研究员对此很感兴趣,既然只要去掉TCR上的脂质分子屏蔽,就能增强T细胞功能,那么我们可以设计药物来完成这个任务,使被病毒“挟持”的T细胞恢复活力,就能清除体内病毒,尤其是慢性病毒,如乙肝病毒。国际免疫学权威、美国斯坦福大学医学院免疫、移植与感染研究所所长马克·戴维斯教授评论说:“这项工作揭示了T细胞工作的一个关键性机制,完成得非常漂亮,其发现令人兴奋。”

  • 牛奶体细胞数,你真的知道吗?

    [b]牛奶体细胞概念的提出[/b]乳汁中细胞计数或者说是白细胞计数在奶牛乳房炎监测中已运用的大概有百多年的历史。体细胞这一概念是在 1910 年由 Prescott 和 Breed首先提出,当时他们建议用“Body cells”,因为当时认为奶中细胞是从上皮细胞脱落下来的。直到1960 年左右,“Somatic cells”已逐渐被人们所普遍接受。[b]牛奶体细胞的组成[/b] 现今我们通常所说的牛奶体细胞主要指白细胞,包括巨噬细胞、淋巴细胞以及多形核白细胞(PMN)。乳中细胞类型研究表明,腺泡上皮细胞,无论是在干奶期还是泌乳期,在乳中很少,仅占细胞总数的7%以下。所以说泌乳期乳中细胞数的增加不是由于上皮细胞的脱落造成的。巨噬细胞是正常乳中的主要细胞,占细胞总数的 30%~70%。[b]牛奶体细胞出现的原因牛奶体细胞[/b]主要是白细胞对乳腺有重要的作用,它对病原微生物的入侵起监视和杀灭作用。巨噬细胞及PMN具有吞噬功能,可以杀死入侵病原微生物,乳中淋巴细胞包括T淋巴细胞和B淋巴细胞,它们在对入侵微生物的特异性免疫中起很重要的作用,病原微生物一旦通过乳头管进入乳腺并在其中增殖,就会引起一系列的炎性反应。此时乳中的细胞就同病原微生物相互斗争,并且产生一系列的炎性因子,而这些炎性因子将导致一系列的病理变化,这些炎性因子包括补体,前列腺素,白三烯、组胺、5-HT(5-羟色胺)、白介素,TNF(肿瘤坏死因子)、白细胞杀菌素以及一些其他细胞因子,典型的症状包括血管通透性增加,血管扩张,血流量增加,水肿,中性粒细胞转移,以及乳腺合成能力降低,并伴有疼痛,发热。在炎症初期乳腺最主要的防御机制就是 PMN 的迁入,正常情况下,PMN 可自由通过毛细血管,而不黏附或很少黏附在血管壁上,一旦出现炎症,黏附分子被大量表达,从而使得 PMN 黏附、迁移并通过细胞间隙而进入乳腺。乳中白细胞和被损伤的组织释放一些因子能吸引 PMN 大量涌入乳中,在炎症初期乳中细胞 90%以上的是 PMN,有报导表明大量要进入乳腺的 PMN 在腺泡外聚集,甚至在某些腺泡受损较严重的地方,PMN 可通过上皮间隙而进入腺泡,因此 PMN 在感染区的大量迁移是造成[b]牛奶体细胞[/b]SCC 大量上升的主要原因,因而有人认为,PMN 迁入的速率是消除感染乃至决定病情的关键因素。 另外,据报道 PMN 也可在乳头导管、乳头池、乳腺池等处透过基底膜而进入乳汁。因此,这些地方被认为是炎症初期机体作出反应并允许 PMN 通过的地方,乳腺以此来抵御微生物的入侵,值得注意的是,在慢性炎症反应过程中,单核细胞也可透入。因此,SCC 增加也是白细胞迁入造成的。乳中 PMN执行吞噬入侵微生物的功能,但是它也可以吞噬诸如脂滴、酪蛋白这样一些物质,而这些物质被吞入后 PMN 吞噬微生物的功能将降低。即便如此,PMN 仍是乳腺中起关键作用的因素,当然它也可以释放一些物质以增加血管通透性和吸引更多的白细胞到炎性部位。在一些顽固性感染病例中,虽然 PMN 数量会有所波动,但总体上是处在一个高水平上,而且即便是将感染的病原微生物清除后,它仍会维持在高水平上直至乳腺修复。还有报道说:微生物被清除后 PMN 在高水平上仍要维持几天、几周甚至更长一点时间。[b]影响牛奶体细胞的因素[/b]据报道,[b]牛奶体细胞[/b]变化受到很多因素的影响,如年龄、乳期、昼夜、挤奶过程,感染等。近年来报道渐趋于一致即认为,感染是引起变化的最主要因素。[color=inherit]1 )微生物感染的影响[/color] 有研究表明,[b][color=#d92142]体细胞[/color][color=#d92142]S[/color][color=#d92142]CC的主要影响因素就是微生物感染,这不论是在乳区水平、个体还是桶奶水平上都是如此。[/color][/b]有人对感染后的奶牛同其 BTSCC(桶奶 SCC)联系加以分析后认为,BTSCC 之所以发生变化,感染是主要影响因素。感染乳腺的微生物被划分为二大类,即重要微生物及次要微生物,重要微生物一旦感染将使SCC大幅增加,这类微生物包括金黄色葡萄球菌,无乳链球菌及其他一些链球菌,大肠杆菌等;次要微生物包括牛棒状杆菌以及凝固酶阴性的一些葡萄球菌,它们感染后,通常使得感染乳区化正常乳区的 SCC 高出 2~3 倍。现今,许多研究表明,仅用SCC一项来作为衡量乳区感染与否是不可信的,因为常出现假阳性和假阴性的情况。造成这种误差的部分原因可能是感染期间 SCC 的正常波动所致;这种变化在人为用各种病原微生物感染乳腺的实验中得到证实。即在感染的早期阶段数量急剧上升,可以在几小时或几天内达到峰值,(这与感染微生物种类有关)随后由于中性粒细胞的吞噬而适度下降。而 SCC变化范围依感染微生物及转归结果以及牛个体差别而变化很大。有研究表明被感染乳区 SCC 是呈波动态势,在慢性感染乳区,微生物数量及SCC二者均随时间而上下波动,同时未感染乳区SCC也在变化,但始终处在 200,000/mL 以下。另外主要微生物感染后,SCC的变动幅度也由于牛个体不同而不同,所以仅凭 SCC 一项来判别乳区感染与否及微生物种类并不十分可靠。[color=inherit]2 )年龄、乳期对SCC的影响[/color] 研究者普遍认为,牛奶体细胞SCC 随胎次增加及乳期向后延伸而增加,但 Harmon研究却不同,他将牛群中分成感染牛与未感染牛,结果显示:在未感染牛群中,牛奶体细胞 变化都很小,无论是年龄还是泌乳期影响都很小, Sheldrak等人也证实无论是胎次数目增加,还是不同乳期阶段,它对未感染牛群的 SCC影响都很小,有研究显示,在同一乳期中,从分娩35天到205天截止,SCC数目从35天的83,000/mL 逐渐升到285天的160,000/mL,但是相同的时间内金黄色葡萄球感染的乳区中,SCC的数量却从234,000/mL升至1,000,000/mL。当然,在娩后所有乳区SCC均有增加,但那些未感染的乳区和感染了次要微生物的乳区是SCC分娩后35天均很快的下降。Harmon研究也表明,[b][color=#d92142]在微生物未感染的牛群中,SCC受胎次、泌乳乳期的影响不大。[/color][/b][color=inherit]3 )应激对SCC的影响[/color]Wells等报道,各种应激因素都能引起SCC上升。但据 Paape 等人报道,无论将牛只放入可以控制环境条件中的隔离室内,还是给牛注射 ACTH 或者是皮质醇类激素,未感染的牛只其SCC只有很小改变或者说是没有改变。Elvinger调查表明,经受热应激的牛只SCC有大量的上升,他们通过将牛圈在可以控温的房间内或予其他的热刺激,未感染牛与感染金黄色葡萄球的牛的SCC分别是145,000/mL和105,000/mL,分析认为造成这种差异的部分原因可能是由于热应激造成的产奶量下将所致,因热应激造成产奶量下降10%~20%也是很常见的。将牛单独圈起这种应激会不会造成SCC上升,LefcourtA M研究表明这一应激虽可使牛的行为有所变化,但对SCC影响甚微。在法国科学家们进行了一项非常有趣的试验,他们将牛组成二组,一组圈起来,另一组在每天早晨挤奶后走上9.6 km,结果显示:走路的一组中受感染的牛其SCC达185,000/mL,而未感染的牛SCC为47,000/mL,这二者SCC都多于另一组牛的SCC。同时显示运动不仅会使奶牛奶量下降,而且使饲料的摄入量也减少,研究者将已感染和由于剧烈运动损伤乳房而造成感染的牛联系起来分析,认为SCC变动与感染的关系很大,表明[color=#d92142][b]各种各样的应激对受微生物感染牛的SCC影响较未感染牛的大。[/b][/color][color=inherit]4 )季节的影响[/color]据报道,[color=#d92142][b]夏季 SCC 较冬季高,这与夏季临床型乳房炎多是发是吻合的[/b][/color]。研究表明,夏季乳腺对环境中病原微生物易感与牛群中存在大量的大肠杆菌是相一致的。同时也表明了热应激不仅可增加乳腺的易感性而且使得环境中病原微生物的数量也大大增加,热应激本身不能单独使SCC上升,但SCC上升却是由于夏季乳头长时间处于有大量病原微生物的环境中而造成感染和引起临床症状的结果。[color=inherit]5 )其他因素[/color]奶中SCC有一个正常的变化(如昼夜变化),正常挤奶时间所收集的奶与两次挤奶间隔期间收集的奶SCC也有所不同,一般规律是,末期乳中SCC最多,而挤奶前奶中SCC最低,对同一乳区来说,它们相差多达4~7倍,而且挤奶后,高水平的SCC可持续 4 个小时左右后才开始下降。Brolund 报道饲料改变也影响SCC,他认为个体间差别对 SCC 影响有较大的作用,但后来研究表明,这与感染相比影响很小。[color=#d92142][b]牛奶体细胞作为牛群乳腺的健康与否的一个指标,其优势是显而易见的 ,以月为基准测定牛群SCC可以很好地监控奶汁的质量和乳腺的健康程度。但值得强调的是,传染性病原微生物感染后牛奶SCC数量变化比较明显,而条件性病原微生物感染后,由于其感染恢复快,它们感染后,尤其是在管理良好的牛场即便是转归为临床型乳房炎,它们SCC也能维持在300,000/mL以下,在这样一种情况下,SCC 就不能直观地反映出乳腺的健康状况。[/b][/color]也由于这些病原感染后,高水平的SCC维持时间短,而且它们感染率也很低,无论什么时候均小于10%乳区,但以全年经济收入来说,由条件性病原微生物造成临床型乳房炎引起损失还是比较大的。SCC主要影响因素是微生物感染,而其他一些因素只要不影响到乳腺的健康,它的影响就不是很大,而SCC的上升,是乳腺防御微生物入侵而采取的相应措施,应激等可使已感染到乳腺SCC上升,而对于未感染的乳区来说除了昼夜变化对 SCC 有影响外,其他因素影响都非常小。

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • 【转帖】纳米微粒结合转铁蛋白 猎杀癌细胞

    美国北卡罗莱纳大学教堂山分校文理学院的首席化学教授约瑟夫—德西蒙博士领导的研究小组发现,人体中的一种正常的良性蛋白质,如果和纳米粒子相结合,就能瞄准并杀死癌细胞,而无须负载那些携带化疗药物的粒子。此前,研究人员曾认为,纳米粒子只有携带了有毒的化学载体才能达到这样的效果。转铁蛋白是人体血液中数量第四多的蛋白质,近20年来一直被作为肿瘤靶向载体用以递送治癌药物。纳米粒子通常也是无毒的,需要通过负载标准化疗药物来治疗癌症。然而,结合转铁蛋白的“打印”纳米粒子,不仅能识别它们,还能诱导癌细胞死亡。而不与任何纳米粒子结合的自由转铁蛋白,能从拉莫斯癌细胞中获得养料生长,即使在很高浓度下也不会杀死任何拉莫斯癌细胞。然而令人吃惊的是,转铁蛋白附着在纳米粒子表面后,其能有效地筛选标靶,攻击并杀死B细胞淋巴瘤。在许多迅速生长的癌细胞表面,蛋白质受体被过度表达,于是和转铁蛋白配体结合的治疗就能找到并瞄准它们,而结合转铁蛋白的纳米粒子被认为是安全且无毒的。德西蒙实验室发明了一种“打印”技术,能人为造出尺寸精确且形状符合预期的纳米颗粒。他们采用这种技术制作出一种可与人类转铁蛋白相结合的生物相容性纳米粒子,其能安全且精确地识别广谱癌症,除了B细胞淋巴瘤外,还能有效地指向非小型细胞,如肺、卵巢、肝脏和前列腺的癌细胞。研究人员目前正在进一步研究,携带转铁蛋白的纳米粒子如何及为何对于拉莫斯癌细胞是有毒的,而对其他细胞却无毒。化学治疗和放射治疗曾被认为是癌症的最有效疗法,但这些疗法通常会损害健康组织和器官。这一发现将可能发展出一种全新的策略来治疗某种类型的淋巴瘤,而副作用更小。不过,德西蒙承认,该研究也会引起一些人对不可预期后果的担忧,即一个设计好的针对某类癌症的靶向化疗载体是否会偏离目标。

  • 单核细胞的分离[共享]

    基本原理本分离单核细胞所用方法是Percoll非连续性密度梯度离心法,主要是根据不同细胞间密度的差别进行细胞分离。此法易操作,且使用通常的实验设备即可完成。试剂与器材•外周血单个核细胞(参见实验1)•PBS1×和PBS10×(无Ca2+、Mg2+),含0.5mM EDTA•胎牛血清(56℃,30分钟加热灭活)•HCl 1mol/l•Percoll分层液(密度=1.130g/ml,商品)•4g/l台盼蓝染液(溶解在PBS液中)•50ml聚丙烯圆锥管•毛细吸管•移液管(1、2、10ml)•CO2孵箱•超净台•有旋转桶转子装置的离心机•PH计操作步骤所有的操作应该在无菌条件下进行一.不同密度Percoll分层液的配制1. Percoll分层液储备液的制备:取未稀释的Percoll原液(从瓶中取)9ml+1ml PBS 10×(无Ca2+、Mg2+),用HCl 1PH至7.42. Percoll分层液(Ⅰ)(密度=1.080g/ml)的配制:取Percoll储备液3.12 ml(前一步配制)+1.88 ml PBS1×(无Ca2+、 Mg2+)3. Percoll分层液 (Ⅱ)(密度=1.069g/ml)的配制:取Percoll分层液(Ⅰ)2.68 ml+2.32ml PBS 1×(无Ca2+、Mg2+)4. Percoll分层液(Ⅲ)(密度=1.060g/ml)的配制:取Percoll分层液(Ⅱ)2.32 ml +2.68 ml PBS 1×(无Ca2+、Mg2+)二.不连续密度梯度制备1. 将洗涤过的8×107外周血单个核细胞重新悬浮在2ml的Percoll分层液(Ⅰ)(密度=1.080g/ml)在这层液体的表面上轻轻铺上2ml Percoll分层液(Ⅱ)(密度=1.069g/ml),后再于第二层液面上轻轻铺上2ml的Percoll分层液(Ⅲ)(密度=1.060g/ml)2. 20℃,在旋转转子中1000×g离心上步所形成的密度梯度90分钟(慢慢增加速度,无制动停转)。三.单核细胞的分离1. 离心后单核细胞存在于Percoll分层液(Ⅱ)和(Ⅲ)(密度较小的部分)之间的界面中。 (图1)图略(暂时)图1. Percoll非连续性密度梯度离心分离法2. 用毛细吸管仔细收集单核细胞。3. 用含1-5%胎牛血清的PBS 1×液洗涤细胞3次,4℃,400×g离心5分钟,弃上清液。4. 若需要进一步实验,将细胞重新悬浮于培养基中。5. 用台盼蓝拒染法测定细胞存活率。(参见第一章第一篇第一节)结果本法回收的细胞中单核细胞占70-100%(存活率应大于90%),淋巴细胞占0-20%,粒细胞占0-5%,红细胞占0-7%,血小板小于0.5%。实验要点1. 为了得到较好的结果,外周血单个核细胞分离后应立即使用。2. 所有操作过程应在18-20℃中进行。3. 仔细覆盖各种Percoll分层液,避免破坏其界面。4. 洗涤分离细胞3次,以除去残存的Percoll分层液和血小板。5. 如果所制备的细胞仍不纯,可使用包被有抗CD2、抗CD3、抗CD19抗体分子的磁珠, 以除去残存的NK、T、B淋巴细胞。

  • 德国开发出首台可观察活体细胞的超高分辨率生物显微镜

    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。 STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。 IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制