当前位置: 仪器信息网 > 行业主题 > >

活体珊瑚虫

仪器信息网活体珊瑚虫专题为您整合活体珊瑚虫相关的最新文章,在活体珊瑚虫专题,您不仅可以免费浏览活体珊瑚虫的资讯, 同时您还可以浏览活体珊瑚虫的相关资料、解决方案,参与社区活体珊瑚虫话题讨论。

活体珊瑚虫相关的资讯

  • UNCW Center for Mari发布珊瑚和其它底栖基质类型原位代谢测量系统 CISME新品
    珊瑚和其它底栖基质类型原位代谢测量系统 CISME CISME便携式潜水呼吸系统用于原位检测珊瑚和其它底栖基质的代谢率。这个名字来源于珊瑚原位代谢,并发音为“kiss-me”,以反映仪器与珊瑚之间的温和互动。 CISME在短时间孵化期间测量氧气通量和pH,其中水流量和光照水平由操作人员控制。从这些浓度变化计算呼吸(R)和光合作用(P)。样品环提供水样,可以滴定总碱度(TA)以测量钙化率(CA)。可以基于O2和CO2通量计算R和P,从中可以计算RQ和PQ。样品环也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 检测指标l 在原位孵育期间的氧气通量和pH值的变化,其中水流量和光由操作人员控制。根据浓度的变化,计算呼吸速率和光合速率。 l 样品环提供水溶液样品,用于总碱度(TA)滴定,从中计算钙化率。 l 样品环可用于进行实验,其中操作人员引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。 n 参数l 测量O2的变化,以1秒的间隔测量pH值。l 泡沫密封容器抵至浅表面的珊瑚,珊瑚礁基质,如草皮,珊瑚藻和沉降块来捕获海水。l 可编程孵化程序(R,P,R + P,P + R,Custom multistep (自定义多步)。l 孵育体积:88ml+16ml样品环。l 可拆卸的样品环容积用于收集孵育的水溶液的子样品或引入添加剂。l 350-1200毫升min-1可变流量 通过泵反馈。l 可变光(PAR):0-2500μmolm-2s-1。l 无需破坏性取样。l 耐水压80米。l 附件:孵化分离生物体的流动室,如大型藻类,小动物 用于沉积物培养的适配器。 在藻类基质上检测n 实例CISME检测了位于波多黎各珊瑚礁:加勒比海珊瑚Orbicella faveolata上的 40个标记菌落的代谢率的季节变化。两个珊瑚礁位于波多黎各。每个珊瑚礁有20个被标记的珊瑚每个珊瑚每季度用CISME测量一次,以寻找新陈代谢的季节性变化模式一年重复检测4次。结果显示夏末R升高,但P没有变化,因此夏末的P / R比率较低。 P,CA和P / R比率≥实验室公布测量值,表明原地条件优于陆基海水系统。 使用可编程功能的CISME生成的P vs I曲线与使用Walz潜水荧光计的快速光曲线相比 原位海水酸化实验n 系统标准组成CISME由一个带有电子装置的浮力丙烯酸耐压外壳组成,通过防水电缆连接到孵化流量传感器头,操作人员将其连接到珊瑚/基质表面以进行孵化。l 一个主控机(包括:专有主板;O2板 适配器 WiFi卡 LED驱动器 编程和储存必要文件的USB 全部采用防水丙烯酸外壳)。 l 一个7200 aH的锂离子电池和充电器以及三个HD泡沫浮子。l 一个完整泵头“(由3D构成,具体包括:pH电极 光纤传感器 循环泵 LED光源 氯丁橡胶泡沫密封;另外还包括:三个牵开器“wings”,三个Cetacea牵开器和八个18毫升样品环 “仿真”环和环状填充物。l 一个粘度杯,用来培养小的独立样品。l 插拔连接器连接主控机与头部的电缆线,连接电池与主控机的电缆线,以及连接CISME与UW平板电脑的WiFi电缆线。 l 备件:二个额外的泡沫密封和胶水,二个额外的Presens点更换件和胶水 光纤维维修工具 备用O形圈。 备用' 仿真' 环和环形填充。 氧气校准套筒。 用于组装的工具和零件包:15 mm扳手,薄的15/22两用扳手,用于pH螺丝钉的长内六角扳手,O形圈镐,用于清洗螺丝钉的内六角扳手,带Molykote 111的洗涤器,额外的O形圈 ,硅胶包,Q-tips, l 许可证:允许使用装有专有的Android软件的平板电脑运行CISME。l 一个定制的潜水箱,用于安装系统。 l 一个运输箱,Seahorse brand品牌或同等产品(客户可以选择黑色,黄色或橙色)。l 一张录有用户手册和教学视频的DVD。n 选配水下平板电脑CISME定制的由Inova设计的SZ-Dive水下容器(HOUSE),抗压深度达 80米;安装了CISME安卓软件的三星Galaxy S2 8“平板电脑。 CISMEHOUSEn 有关的检测图片创新点:原位检测珊瑚和其它底栖基质的代谢率,也可用于实验性地引入可能影响珊瑚代谢的物质(例如用于OA研究的酸化海水)。珊瑚和其它底栖基质类型原位代谢测量系统 CISME
  • Manta多参数水质仪成功用于广西北海涠洲岛海域珊瑚礁监测
    项目背景 距离广西北海市约36海里的涠洲岛是中国最年轻的火山岛,这里属热带海洋气候,气候及地理条件很适合珊瑚礁的生长。涠洲岛珊瑚礁位于热带北缘,具有7000多年的发育历史,基底为火山岩。珊瑚礁是全球重要的生态系统之一,对于维持海洋生态平衡和促进营养循环具有重要意义。关于涠洲岛珊瑚礁的研究主要集中在生物群落、地质地貌及其环境发育等3个方面。 在涠洲岛的东北和西南沿岸分布着一定数量的珊瑚礁,涠洲岛珊瑚礁的研究大约开始于上世纪70年代。国家海洋局2005-2010年对北海涠洲岛珊瑚礁海域水体与水质和珊瑚礁进行了综合评价。涠洲岛海域的气候条件与平均海面温度、海水盐度、海水透明度等发育环境均适合珊瑚礁的生长,为涠洲岛珊瑚礁提供了较好的基础条件。但珊瑚礁生态系统的衰退形势呈明显表现,主要受到极端气温和人类活动的影响。解决方案2020年底,在广西北海涠洲岛珊瑚礁修复实验区成功投放海底实时监控系统,并顺利运行。该监控系统能实时监控海面和海底影像,对珊瑚礁生态过程及海洋环境要素(包括温度、盐度、水深、溶解氧、pH值、浊度、叶绿素等)等进行实时、持续的在线监控及相关科研数据采集;该系统还能实时监控诸极端自然灾害和人类活动等对海洋生态环境的破坏,为珊瑚礁乃至海洋环境的管理提供影响依据和预警功能,将为涠洲岛珊瑚礁生态保护与修复提供重要保障。 我公司Manta多参数水质仪,成功安装在水下实时监控系统中。Manta多参数平台可对温度、盐度、水深、溶解氧、pH值、浊度、叶绿素、藻类、水中油和CO2等重要的海水水质参数进行现场实时监测。主机配置的中央清洁刷系统,可定时对传感器表面进行清洁,防止长期使用中的污染物附着,保证测量参数的准确和稳定性。 Manta水质仪在海底工作 可视化监控项目成果 这类工作在广西属首次开展,针对珊瑚礁而言在全国范围内也是新的内容。该项工作不论是监测的硬件、软件技术,还是珊瑚礁科学研究的理念,都将显著提升广西乃至我国珊瑚礁生态系统的管理水平,同时也开启了涠洲岛的科普研学与旅游新体验。我们有幸参与其中,感到荣幸。 Manta多参数水质仪家族Manta+ 多参数仪是为长期在野外环境使用而制造,仪器设计的很多特性都是为了提高可靠性和耐用性。一台主机可最多同时监测5个光学参数,最多可以支持15种水质参数的测量。仪器介绍: 高可靠性 Manta多参数水质分析仪是为长期在野外环境使用而制造,仪器设计的很多特性都是为了提高可靠性和耐用性。例如,隐藏式传感器较好的避免对传感器的破坏;可分离式的线缆接口可有效保护针脚不被弯曲或折断;主机的LED可显示电路板是否正常工作;为了提高检验效率,Manta系列进行了防水设计,满足IP-67的防水规范,可直接让整机入水读数,方便快速。灵活的现场应用 6种主机机型可供选择,可用于淡水、海水、咸水和地下水的水质测量。可作为剖面自动记录、现场快速测定,同时配备具有掌上电脑功能的防水型Amphibian显示记录仪。Manta多参数水质监测仪已标配有存储器,只需增加电池组就可以实现自动记录功能。要想实现在线监测,我们可提供基于GPRS网络的无线通讯或SDI-12功能的数采器,您对监测任务的多种要求我们都有适合的解决方案。 先进的传感器技术 Manta多参数水质监测仪的传感器可为您的现场监测提供最精确的可靠的数据。为了提高传感器的性能,我们对模拟和数字电路信号进行分开处理,此外,传感器都符合水和废水检测标准方法第20版要求。简单易用的免费软件 我们提供Windows界面的操作软件,可以实现设置、校准和数据下载功能。实时数据图形显示可以帮助您直观地获取稳定的读数。校准日志功能会详细地提供仪器的校准历史记录。主要特点: 1.高度的防水性能,为了提高检验效率,Manta多参数水质监测仪系列进行了防水设计,满足IP-67的防水规范,可直接让整机入水读数,方便快速。 2.可同时装多个光学传感器, 例如浊度,叶绿素,光学溶解氧和蓝绿藻可一起搭配使用。 3.可现场更换的智能传感器 ,更换方便快速,因为智能型传感器内部集成了电路信息,与主机形成相互独立系统,内部电路不会受到任何影响。 4.高强度防水线缆和USB可分离式接口, 有效避免接口或针脚折损并易于更换,线缆密封性优良。USB接口更易和电脑连接。 5.透明坚固的机身, 用户可以检查双层密封圈是否有破损,通过电路板上的LED灯可判断仪器的工作状况信息。是主板问题还是传感器问题 。 6.特有的主机主板和传感器分离配置,用户想在已有的配置上加新传感器。不需要返回厂家去升级,只需订购一个新传感器,自己插上,主机即可自动识别;而且如果是传感器故障,用户只需自己更换一个新的传感器,即可使用。不用整体寄回厂家维修,省时省力。 联系我们,了解更多! https://www.instrument.com.cn/netshow/SH101377/C27127.htm
  • IVIS视角 | 活体成像助力隐孢子虫感染可视化模型构建
    随着生活水平和医疗卫生状况的不断提升,寄生虫感染在我们日常生活中似乎已日渐陌生。但在一些欠发达地区,由于贫困和不良的卫生习惯造成的寄生虫感染仍然威胁着无数生命。隐孢子虫作为一种常见的人畜共患寄生虫感染性疾病,是导致腹泻病的主要原因。由于其经由粪便传播,所以常经由水体污染而在卫生条件较差的地区发生群体性感染。感染通常是自限性的,健康的成年人在发生第一阶段的较严重的腹泻之后便可恢复,但粪便仍可能具有传染性。新生儿或免疫力低下的如艾滋病患者或经免疫抑制治疗的病人在感染后病情较严重,是儿童早期死亡、营养不良和生长迟缓的重要原因,也是艾滋病人并发腹泻死亡的主要原因。现今发现的隐孢子虫共有15个亚种,分别感染人、家禽、宠物、牲畜以及一些野生动物。由于不了解其致病机制,目前的治疗方案往往是对症用药而非对因用药。由于不同物种间感染模式差异,在实验动物(主要为牛等家畜)上应对隐孢子虫感染的有效疫苗往往对预防人的感染收效甚微。针对以上问题,来自美国宾大兽医学院的研究人员发现了一种可用在小鼠模型中模拟与人患隐孢子虫病相似病症的隐孢子虫(Cryptosporidium tyzzeri), 同时利用IVIS小动物活体成像系统帮助他们在体研究隐孢子虫的感染以及宿主经寄生虫或疫苗免疫激活后的抗感染现象。该研究于近期发表在Cell子刊Cell Host & Microbe上。要在小鼠体内模拟人患隐孢子虫病的合理模型,首先就需要找到相应的隐孢子虫。作者在农场收集了大量小家鼠粪便,经由测序,鉴定出一株与感染人的两种隐孢子虫(C. parvum和C. hominis)最接近的一种鼠隐孢子虫(C. tyzzeri)。同时为了后续在体观察其感染模式以及宿主抗感染效果,作者通过CRISPR-Cas9技术将Luciferase基因和mCherry荧光蛋白导入到隐孢子虫的基因组中,构建了一株可以进行活体以及显微观察的隐孢子虫。图一C. tyzzeri的鉴定以及基因编辑 (上:隐孢子虫种间基因组相似性比较,AB为常见感染人的两种隐孢子虫,C为常见感染鼠的隐孢子虫)构建好的隐孢子虫就可以进行活体观察了,由于有活力的隐孢子虫可以表达Luciferase,在底物荧光素的作用下便可自发荧光,通过IVIS活体成像系统来实时监测体内隐孢子虫的繁殖情况。作者将这一光学观察方式与传统的粪便qPCR检测结果进行验证,二者具有很好的一致性。作者除了观察到这一新鉴定的隐孢子虫感染和人患隐孢子虫病的感染部位以及病理表征一致之外,还观察到了具有免疫缺陷的鼠(IFN-γ、Rag基因的敲除鼠 )也更易受到隐孢子虫的危害,这一点与临床上免疫缺陷病人的高发病致死率也刚好吻合。图二 C. tyzzeri感染模式观察有了这一能够很好模拟人隐孢子虫感染的实验动物模型之后,便可以利用这一模型进行隐孢子虫的治疗以及疫苗的开发。由于临床上隐孢子虫高发地区人们在感染痊愈后再度感染的概率大大降低,因此作者首先检验了虫体是否可以直接作为疫苗来进行感染的预防。利用未经Luciferase标记的C. tyzzeri进行第一次感染,同时实验组使用灭活的虫体作为疫苗进行第一次免疫,在感染后用广谱抗虫药巴龙霉素杀灭后用Luc标记C. tyzzeri进行二次感染,能够观察到接触活虫的小鼠几乎不会发生二次感染,而使用灭活虫体作为疫苗无法激活体内免疫系统进行后续的抗感染作用。图三 使用灭活的C. tyzzeri无法预防感染因此作者想到可以使用减毒的活虫对宿主进行第一次免疫。通过射线进行寄生虫减毒处理,可以降低其感染力至无害水平。在减毒活虫感染后30天,在使用Luc标记的C. tyzzeri进行感染,能够观察到该方法与野生型活虫二次感染模型有着相同的抗感染作用,说明减毒的疫苗是一种行之有效的预防隐孢子虫感染的方式。但是由于要调动自身免疫系统,这一方法在免疫缺陷的小鼠身上仍不奏效。图四 使用减毒疫苗可以有效对隐孢子虫进行预防虽然这篇文章也并未真正解决隐孢子虫的抗感染问题,但是构建出针对这一寄生虫病的实验小鼠模型已经为后续的科研工作者尝试更多治疗方案和预防措施提供了可操作可监控的实验工具。参考文献1. A Genetically Tractable, Natural Mouse Model of Cryptosporidiosis Offers Insights into Host Protective Immunity. Adam Sateriale et al., 2019, Cell Host & Microbe 26, 1–12https://doi.org/10.1016/j.chom.2019.05.00关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 孕妇防辐射服无国家标准引起争议
    近日,来到亲子家园、妈咪村等好几家孕妇用品专营店,看到货架上的“防辐射”孕妇装琳琅满目,但主要分成两种,一种是纯银制品,一种则是含金属纤维的。为搞清“防辐射”孕妇装究竟是不是真的“防辐射”,作用又有多大,记者随意挑选了一件含25%金属纤维的背心向销售人员提出了疑问。销售小姐倒是挺热情,立刻拿出了一台测试灯现场演示。记者看到,那是一个圆球状的灯泡,里面发散出很多像珊瑚虫一样的射线,当销售员将那件金属纤维背心靠上去时,那些射线立刻连成一片,销售员说:“看到了吗?效果出来了。”记者分别拿了不同含量的金属纤维背心以及纯银背心上前测试,看到的效果几乎一样,根本分辨不出哪一件的防辐射功能更强一些。销售员说测试灯基本都是厂家配送的,对于其原理,也说不清。  在这几家店里,店主起初都信誓旦旦地表示不管价格如何、含量多少、质地怎么样,这些防辐射服的功能都是一样的。记者询问能否用手机现场测试一下时,商家们则积极送上产品。结果那些含金属纤维的背心无一例外都在测试中败下阵来,因  为无论它们将手机包裹得多严实,依然遮盖不住手机信号,可是纯银背心却能使手机信号弱化直至消失。看到此种情况,店家的态度立刻发生了转变,又纷纷推销起经得起考验的纯银背心来,并说金属纤维制品防辐射功能确实不强。也有店家认为,手机信号和手机辐射是两个概念,用金属纤维背心包裹住手机,虽然不能屏蔽手机信号,但实际上手机的辐射已经减弱甚至消失了。店家虽这样说,可是却不能提供任何一种方法进行这方面的测试。有消费者提出:“辐射是看不见的东西,手机信号都还在,防辐射效果却很好,让人有些不可思议。”采访中,也有商家表示世界上没有100%的防辐射服,手机测试方法也不够科学。  从相关部门了解到,很多企业喜欢用防辐射服装包裹手机等方法来证明服装的屏蔽效能,缺乏科学根据,容易误导消费者。因为日常生活中的电磁波辐射方向杂乱无章,屏蔽布料一旦被加工成服装,衣领、袖口等都可能有辐射“进入”。  据了解,我国还未出台关于防辐射服装的强制性标准,国内只有一个电子行业标准,即《材料屏蔽效能的测试方法》。这一标准只能用在检验生产服装的材料上,材料的检验结果并不等同于衣服也具有同样的效果。统一标准尚未出台,市场给商家提供了大肆渲染防辐射产品功效的空当,而消费者无法辨别真伪优劣。  有关人士指出,商家提供的产品合格证上大多只是标出了符合国家标准,但是这仅仅意味着该产品只是符合了普通服装的生产标准,而非能说明它一定具有防辐射能力。有些产品还附带有相关检测报告,而该报告也只能说明厂家送给检测中心检测的那一个样品的检测结果,却不能保证所有该类产品的检测结果。专家提醒消费者,不必对电磁辐射产生恐惧心理,对于部分商家过度地对“防辐射”进行炒作,消费者更需要擦亮眼睛。“远离辐射源,是孕妇防辐射的最根本方法。”
  • 生物物理所发展出线虫活体荧光显微成像法
    中国科学院生物物理研究所欧光朔研究组在2012年12月期的Nature Protocols上发表题为Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development的文章,介绍他们发展的研究线虫胚胎后发育的荧光活体显微成像方法。  胚胎后发育是生命体一个重要的发育时期。例如,线虫的959个体细胞中有400多个是在胚胎后时期产生的。观察线虫胚胎时期发育的显微成像技术相对成熟,而研究线虫胚胎后发育的活体荧光显微成像方法缺乏。  该文章系统介绍了观察活体线虫胚胎后发育时期细胞动态的方法,并对可能的技术难点进行了讨论。欧光朔研究组将这项成像技术与线虫遗传学的结合,发现了迁移细胞的分子标识(Ou & Vale, Journal of Cell Biology, 2009)、 一种新的细胞不对称分裂方式(Ou et al., Science, 2010) 、自体吞噬基因在凋亡细胞降解中的作用(Li et al., Journal of Cell Biology, 2012)等。  该项工作得到科技部、国家自然科学基金委和“青年千人计划”的资助。线虫Q神经前体细胞在L1幼虫时期迁移及产生子代细胞的简图
  • 日本核污染水排海将对海洋生态和人类健康带来巨大风险
    2023年8月24日,日本罔顾国际社会和组织的质疑和反对,强行启动了核污水排海计划,正式开始将福岛第一核电站的核污水排放至太平洋。根据该计划,核污水排海时间将至少持续30年,2023年度将把约3.12万吨核污水分4次排放,每次约排放7800吨,完成首次排放需要17天左右。核污水排海带来的危害将是不可逆的,造成安全威胁是多方面的,产生的影响更是全世界和长期的。日本核污水排海在多领域造成严重影响日本福岛核污水排海严重破坏全球海洋生态系统。自2013年福岛核污水泄漏事件以来,曾多次检测出于太平洋海域打捞出的鱼类含有放射性物质。例如,2019年福岛县鱼联曾捕获到铯元素严重超出标准的“斑瓮鳐”。2020年,菲律宾科技部核研究所发现,西菲律宾海的放射性物质呈上升趋势,从珊瑚虫身体中分离出了超常浓度的碘-129。福岛核污水净化不完全,含有的核素具有极强放射性与毒性,将会形成长时间的辐射危害,并可能诱发疾病和基因突变,这些危害是不可逆的。福岛核污水主要运用多核素去除系统(ALPS)处理,该系统是通过化学沉淀法和吸附的方法,截留和分离污水中所含的放射性核素。经过该系统处理过的福岛核污水中仍含有氚、碳-14、锶-90、碘-129、锝-99、钴-60等放射性核素,将这些核污水直接排放入海,一旦通过海洋生物进入食物链,会通过食物链传导和累积放大效应,对海洋生物造成放射性污染,严重损害海洋生态系统及海洋生物多样性。日本福岛核污水排海严重危害到公众健康。日本福岛核污水中含有放射性核素,通过食物链进入人体并富集,会对人类DNA产生影响,将造成人类后代畸形、肢体残疾、细胞癌变等等健康问题,对人类健康和可持续发展的威胁将持续几百年甚至上万年之久,对世界各国人民的健康福祉将会造成不可预测的破坏和危害。此外,当前日本福岛核污水排海这一解决方案存在诸多风险与不确定因素,相关的风险评估和研究非常不足。不少国际组织都对此表达了担忧。德国海洋科学研究所指出,福岛沿岸拥有世界上最强的洋流,从排放之日起57天内,放射性物质将扩散至太平洋大半区域,3年后太平洋另一端的美国和加拿大将遭到核污染影响,10年后蔓延至全球海域。美国海洋实验室协会在去年12月就发表过一份声明,表示他们对日本的数据并不信服。夏威夷大学的海洋生物学家罗伯特-里奇蒙曾指出:“我们看到了一份不充分的放射性和生态影响评估,这让我们非常担忧,日本不仅无法检测到进入水中、底泥和生物体中的物质,而且如果真的发现了,也没有办法去除它。”日本福岛核污水对太平洋沿岸国家的海洋经济造成巨大冲击。优良的海洋生态环境是海产品贸易和渔业可持续的自然资源基础。太平洋海水遭受福岛核污水污染,将对东盟及太平洋沿岸国家的水产养殖产业及贸易活动造成难以估量的损失。印尼、越南、菲律宾等国受到波及的概率较大。印尼是全球市场养殖对虾的最大供应国之一,在金枪鱼和罗非鱼出口方面也占据重要地位,2020年,印尼水产养殖产量为1484.5万吨。2020年,越南水产养殖量为461.5万吨,水产品出口额为85亿美元,占全球总额的5.6%。东盟的主要水产品贸易对象都分布在亚洲,包括中国、日本、韩国等。为了防范日本福岛核污水对食品安全造成的放射性污染风险,中国、韩国在内的多国已经采取措施,禁止进口原产地为日本的水产品。日本核污水排海违背国际环境法原则和联合国人类可持续发展目标日本政府从自身利益出发,为降低经济损失、加速福岛核污水清除工作,选择耗时最短、经济成本最小的“稀释入海”方案,将福岛核污水排海产生的一系列核污染风险问题转嫁全世界,罔顾人类长期共同发展利益,公然违背了国际环境法原则和联合国人类可持续发展目标。首先,此举违背了《联合国里约环境与发展宣言》中的风险预防原则。《宣言》要求,“各国应为了保护环境广泛适用预防措施,当出现严重的或不可逆转的损害威胁时,不能因为缺乏科学上的充分证据而延迟采取措施防止环境恶化”。日本将核污水潜藏的危害通过太平洋强行转嫁给全球,不仅是对日本自身发展的不负责,也严重侵害了包括太平洋沿岸国家在内的其他国家人民所享有的海洋资源与空间的平等权。其次,此举违背了可持续发展原则。面对日本福岛核污水囤积问题,日本放弃电离排放、蒸发掩埋等方式,而采用稀释入海的污水处理方式。虽然短期内节省了物资、人力成本,但从长远来看,日本福岛核污水排放入海后沉积的辐射性物质所带来的危害难以估量,与人类可持续发展的总目标背道而驰。国际社会应该采取积极行动应对日本排放核污水首先,积极推动核污水国际法律责任的国际法完善。核污水对生态环境、人类生活的危害是长时间的、跨区域的、难以定量的。日本做出福岛核污水排海决策,除了储蓄罐存量不足这一客观原因外,法律责任认定和追究难以落实也是主要原因。这也暴露出了现行国际法在针对此类核污染问题中,国家责任的认定和追究问题上存在着不足,因此需要国际社会采取积极行动。应在联合国现有环境保护机制基础上,完善和制定核污染损害赔偿责任机制,形成国家跨界损害责任的全球性条约框架。确定核危害赔偿责任主体,保障受危害国家、群众及环境的基本权益。量化核污染损害赔偿责任。其次,联合成立国际第三方检测机构。对于日本的声明缺乏独立可信的科学论证的质疑,建议国际原子能机构组织成立国际第三方检测机构,包括多个利益相关方各国,学术界、工业界、公众和非政府组织参与,公开透明地检测日本福岛核污水,并共享实时数据,保证其公开、公正、客观和科学性。要开展太平洋沿海水域长期追踪监测,检测放射性核素在海水、沉积物和海洋生态系统中的分布特征,研究放射性核素在多介质间的迁移,分析其对海洋生态系统生物及海洋生物和人类健康的影响。中国是受福岛核污水危害的首要国家之一,应最大程度地防止日本核污水排海给我国造成的损害。近期应组建国家应对福岛核污水排海风险监测预警机构,持续开展相关海域的放射性监测和研究,建立核污水排海影响综合预测和评估模型,科学分析核污水污染的范围、流向、速度等,从而为及时有效地采取应对措施提供支撑。同时,还要加强与其他环太平洋国家合作,共同实施对日核污水排海计划的水域监测工作,实现数据信息的共享,为更好地应对核污染风险创造条件。此外,国家海关和检验检疫等机构应加大监管力度,对进口的海产品、来自污染区的船舶和人员等进行放射性污染水平的监测和监管。
  • 中国生物工程学会立项《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》团体标准
    各会员单位,有关单位:根据《中国生物工程学会团体标准管理办法》的相关规定,学会组织专家对《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》两项团体标准进行了立项审查,上述两项团体标准符合立项条件,同意立项。中国生物工程学会二〇二三年八月十四日关于《脐带间充质干细胞检测技术规范》《干细胞体内短波红外活体光学成像试验方法》团体标准立项的公告.pdf
  • 活体成像 | NEWTON7.0 Bio 植物活体成像落户袁隆平及官春云两大院士团队实验室
    近日,两台Newton 7.0 Bio植物活体成像陆续抵达长沙,分别落户国家杂交水稻工程技术研究中心以及国家油料改良中心湖南分中心,已安调成功,将助力袁隆平院士及官春云院士两大团队进行水稻和油料作物研究。 新款的Newton 7.0 Bio植物成像系统增加了箱体顶部中心的高度,具有更大的成像视野。且CCD相机和样品台均可Z轴升降,除了便于调整植株高度外,也方便植株焦点的选择而无需进行相机对焦。双样品台设计,30°旋转的载物台适用于盆栽植物,而样品板则适用于叶片成像。 采用独特的镀膜技术,GFP,RFP等专用的窄波发射滤光片可有效分离信号荧光和叶绿素自发荧光,从而避免了自发荧光的干扰(如下图,油料改良中心及杂交水稻研究中心的实验结果,GFP及mCherry标记)。深度制冷,高灵敏度的CCD相机,尤其适用于LUC报告基因的检测;多通道扫描式荧光光源,涵盖400~800nm,激发均一性≥99%,除用于GFP外,还可以满足YFP,RFP等多种报告基因检测;搭载功能强大的图像获取及分析软件,使得Newton 7.0 Bio在植物基因表达调控,转基因鉴定,植物逆境胁迫,突变体筛选,微生物侵染,植物生物节律等领域都能展现出无与伦比的性能。Newton 7.0 Bio将会是植物研究领域科研人员的得力助手!END昊诺斯生物更专业 更优质 更贴心与实验室相伴
  • 时空多尺度神经环路活体成像技术
    成果名称时空多尺度神经环路活体成像技术单位名称北京大学联系人马靖联系邮箱mj@labpku.com成果成熟度□研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产成果简介:光学成像技术是研究系统神经生物学的一个极其重要的手段。其中,通过光学成像技术手段跟踪简单模式生物神经环路中的信息传递来指导研究高等动物神经系统的动力学机制,是破译大脑信息处理功能的最有效途径之一。但是,目前光学显微成像技术的最高时间分辨率处于几十毫秒量级,尚无法捕捉动作电位在神经环路中的快速精细运动。因此,对神经元、神经环路活体光学成像技术开展研究,同时实现高空间分辨率和高时间分辨率的显微成像十分必要。2012年,生命科学学院陶乐天研究员申请的&ldquo 时空多尺度神经环路活体成像技术&rdquo 项目获得了第四期&ldquo 仪器创制与关键技术研发&rdquo 基金的资助。在该基金的资助下,申请人课题组购置了关键配件,开展了相关实验,有力地推动了仪器的研制工作。课题组基于其成员在光学系统研制和成像技术领域的丰富经验,利用高性能sCMOS科学级相机和高速光学调制器件,采用图像分块、分时复用技术和自适应光学波前像差实时校正技术,成功研制了一套时间分辨率达到5毫秒、空间分辨率达到0.5微米的显微成像系统,并将该系统应用于模式生物(线虫)神经环路的活体成像实验研究中。应用前景:目前该项目已经顺利结题,相关成果正在神经科学基础研究中进行推广。这项技术在神经环路的结构、发育、形成、维护研究领域的应用,将为新一代神经精神疾病的诊断、治疗技术提供科学依据和新的思路。
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!参考文献1、Hastings JW. Cell Physiology Source book 2012.2、Nguyen V H et al. Cancer Research, 2010, 70(1):18-23.3、 Nguyen V H et al. Nuclear Medicine & Molecular Imaging, 2016.4、 Dunlap P . ADVANCES IN BIOCHEMICAL ENGINEERING BIOTECHNOLOGY, 2014.5、Keyaerts Marleen et al. Trends in molecular medicine,2012,18(3).6、 Nathan K. Archer et al. Springer International Publishing, 2017.7、Doyle T C et al. Cellular Microbiology, 2004, 6(4):303-317.8、Avci P et al. Virulence.
  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 文献速递ㅣ动物活体成像系统在纳米医学领域中的应用一
    全文字数:1852阅读时间:6分钟● 快讯近日,湘雅二医院药学部湖南省转化医学与创新药物工程技术研究中心向大雄教授团队在纳米医学领域取得系列研究成果,在国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)及《Journal of Controlled Release》(IF=9.77,JCR1区)上连续发表两篇研究性论文。两篇论文第一作者及通讯作者单位均为中南大学湘雅二医院,向大雄教授为通讯作者,团队2018级博士研究生吴军勇、2019级博士研究生李泳江为共同第一作者。文章一图1|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)三阴性乳腺癌含有致密的肿瘤基质,是药物渗透和细胞毒性T淋巴细胞浸润的主要障碍,因此化疗和免疫治疗通常难以发挥作用。研究发现中性粒细胞弹性蛋白酶能快速破坏致密的细胞外基质,克服肿瘤基质屏障,使药物或免疫细胞进入肿瘤内部发挥作用。然而游离的弹性蛋白酶缺乏靶向性,因此向大雄教授团队开发了嵌合肿瘤细胞膜蛋白的仿生脂质体(LMP),并在表面结合弹性蛋白酶(NE-LMP),利用肿瘤细胞膜蛋白同源靶向及渗透与滞留效应(EPR)可以有效将NE靶向至小鼠原位乳腺癌内部并降解肿瘤基质。与紫杉醇及与PD-1免疫检查点抑制剂联合应用表现出显著增强的化学-免疫协同疗效,显著延长了小鼠的生存期。同时,这一联合应用策略还可以明显抑制肿瘤肺转移。文章中,标记DiR的NE-LMP在原位乳腺荷瘤小鼠中的生物分布和肿瘤靶向作用的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。活体结果显示DiR标记的NE-LMP在给药后很快到达肿瘤部位(2小时),并在8小时积累最多;体外器官结果显示DiR标记的NE-LP也到达肿瘤部位,但荧光强度不如DiR标记的NE-LMP,证明了NE-LMP的优越肿瘤靶向作用。图2|NE-LMP的生物分布(A) NE-LMP和NE-LP的体内生物分布和肿瘤靶向作用(B) NE-LMP和NE-LP的体外生物分布(C) 体外组织中荧光强度的量化目前上市用于临床的纳米载体大部分是脂质体,向大雄教授团队利用简单易制备的脂质体作为核心,表面嵌合特殊功能蛋白,这是一种“自下而上”的组装思路,具有前沿的创新性和实用性。图3|用于增强肿瘤化学免疫治疗的膜蛋白弹性蛋白酶结合仿生脂质体的制备示意图文章二图4|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)多形性胶质母细胞瘤(GBM)是恶性程度最高的脑部肿瘤,目前缺乏有效的治疗方式,常规的化疗药物难以跨越血脑屏障(BBB)发挥作用。外泌体(Exos)是由细胞分泌,粒径在30-150nm的纳米囊泡,作为药物载体具有多种优势。脑微血管内皮细胞是BBB主要组成成分,其分泌的外泌体可以跨越BBB,用其载药可以将药物递送至脑内。然而,Exos提取纯化过程较为繁琐,产量较低,作为药物载体极大限制了应用。为了弥补这一缺陷,向大雄教授团队采用连续挤压细胞的方式生产仿生纳米囊泡(BNVs),其具有与Exos相似的粒径、外观和蛋白表达。本研究将Exos和BNVs进行深入比较,在脑部肿瘤的药物递送中进行了直接对比。结果表明,来源于脑微血管内皮细胞的BNVs是天然Exos的合格替代品。二者的载药能力相似,但BNVs的产率是Exos的500倍。携带阿霉素的天然Exos和BNVs在斑马鱼和体内皮下/原位异种移植小鼠肿瘤模型中表现出良好的抑瘤作用。文章中,评估和比较Exos和BNVs在小鼠肿瘤模型中脑肿瘤靶向能力的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。尾静脉对原位GBM小鼠注射给予DiR标记的Exos、BNVs或游离DiR,并在注射后6小时、12小时和24小时使用AniView100拍摄获得小鼠体内和体外器官荧光图像。结果显示DiR标记的Exos和BNVs在6小时达到GBM,并在24小时积累更多,而游离DiR在大脑中没有显示荧光信号,表明Exos和BNVs都可以突破BBB并靶向大脑中的肿瘤部位。图5|Exos和BNVs的生物分布和肿瘤靶向作用(A) Exos和BNVs在GBM小鼠中的体内生物分布(n=3)(B) Exos和BNVs在原位GBM小鼠中的体外生物分布(n=3)。H:心脏;S:脾;K:肾脏;B:大脑;GI:胃肠道(C) 原位GBM小鼠中Exos和BNVs的脑分布(n=3)鉴于自体来源的BNVs的低免疫原性、高产量等特性,可将其作为纳米医学中有效的Exos替代物,以克服Exos制剂研究过程中难以扩大生产的缺陷。图6|文章图形概要恶性肿瘤是严重危害人类健康的重大疾病,近年来。发病率和死亡率逐年上升,而临床常规的治疗方式(化疗、放疗、免疫治疗)特异性差,毒副作用较大,使用常受到限制。精心设计的纳米载体可以实现肿瘤的准确靶向,用以调控肿瘤的微环境或杀灭肿瘤细胞,达到减毒增效,然而常规的有机或无机纳米载体属于外源性材料,常引起机体的免疫响应,易被吞噬而失去效果。鉴于此,向大雄教授团队近年来着眼于仿生纳米递药系统研究,设计了一系列以外泌体、囊泡、细胞膜和蛋白等内源性材料为基础的纳米载体,实现了肿瘤的准确治疗。文献链接:https://doi.org/10.1016/j.jconrel.2021.07.004https://doi.org/10.1002/adhm.202100794博鹭腾助力科研实验广州博鹭腾作为一家专业从事光学成像设备研发与生产的高新技术企业,坚持为用户提供强大的图像处理技术、优质的产品设备和贴心的售后服务,为中国科研工作贡献一份力量。
  • 山东大学齐鲁医院345.00万元采购活体成像系统
    详细信息 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 山东省-济南市 状态:公告 更新时间: 2023-06-18 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 时间:2023-06-18 15:52:05 项目概况 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标项目的潜在投标人应在济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司)获取招标文件,并于2023年07月13日09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PHZB2023-061 项目名称:山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统) 预算金额:345.00万元(人民币) 最高限价(如有):345.00 万元(人民币) 采购需求: 1、采购内容:包括采购设备的供货、运输、安装调试及售后服务等。 2、分包情况:本次采购共1个包,具体标包情况见下表,投标人须整包响应。 包号 设备名称 简要说明 数量 本包预算金额(万元) 是否进口 1 小动物活体成像系统 通过采用生物发光与荧光探针标记研究对象,借助光学检测仪器采集功能信号,并通过结构性成像模式对动物解剖学结构进行成像,对信号进行精确定量和定位等多重研究,在活体动物水平监测疾病的发展变化并开展相关药物的临床前研发。 1套 345.00 可采进口 合同履行期限:自合同生效之日起至合同履行完毕。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求: (1)投标人须是具有独立承担民事责任能力的法人、其他组织或自然人,具备所投设备的生产或经营能力; (2)投标人在“信用中国”、中国政府采购网网站,未被列入“失信被执行人”、“重大税收违法失信主体”、“政府采购严重违法失信行为记录名单”; (3)所投设备须符合国家规定的相应技术标准,环保标准和安全标准; (4)本项目不接受联合体投标; (5)若所投设备属于医疗设备,除满足以上1-4项要求外,还需同时具备以下资格条件: ①投标人为制造商的,应按照《医疗器械生产监督管理办法》(国家市场监督管理总局令第53号)的规定提供有效的医疗器械生产许可证或生产备案凭证;投标人为代理商或经销商的应按照《医疗器械经营监督管理办法》(国家市场监督管理总局令第54号)的规定提供有效的医疗器械产品经营许可证或经营备案凭证; ②投标人须按照《医疗器械注册与备案管理办法》(国家市场监督管理总局令第47号)的规定提供所投设备的医疗器械注册证(如有附表,需提供附表)或产品备案表。 三、获取招标文件 时间:2023年06月19日至2023年06月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司) 方式:投标人须携带法定代表人身份证或法定代表人授权委托书及被授权人身份证原件(法定代表人授权委托书须注明所投包号)到场领取。若无法到场领取的,可将以下资料复印件加盖公章并将彩色扫描件(要求图片清晰可辨)制作为一个PDF文档发送到puhuazb123@163.com,邮件中注明项目名称、投标人名称、被授权人(或法定代表人)姓名和联系电话。 (1)法定代表人身份证或法定代表人授权委托书及被授权人身份证(法定代表人授权委托书须注明所投包号); (2)工本费转账底单或汇款凭证(备注项目编号)。 售价:纸质版文件300元/包,缴纳形式:现金或由投标人公司账户电汇或网银转账,账号信息如下: 开户名称:山东普华项目管理有限公司 开户银行:中国民生银行股份有限公司济南历山支行 账号:639285709 注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。不接受个人转账。 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年07月13日 09点00分(北京时间) 开标时间:2023年07月13日 09点00分(北京时间) 地点:济南市历山路179号历山名郡C5座西单元一楼会议室(山东普华项目管理有限公司)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 无。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:山东大学齐鲁医院 地址:济南市文化西路107号 联系方式:刘老师0531-82169507 2.采购代理机构信息 名 称:山东普华项目管理有限公司 地 址:济南市历山路179号历山名郡C5座西单元 联系方式:尹香丽 0531-55655227 3.项目联系方式 项目联系人:尹香丽 电 话:0531-55655227 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:活体成像系统 开标时间:2023-07-13 09:00 预算金额:345.00万元 采购单位:山东大学齐鲁医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山东普华项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 山东省-济南市 状态:公告 更新时间: 2023-06-18 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标公告 时间:2023-06-18 15:52:05 项目概况 山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统)招标项目的潜在投标人应在济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司)获取招标文件,并于2023年07月13日09点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:PHZB2023-061 项目名称:山东大学齐鲁医院实验动物中心设备采购项目(小动物活体成像系统) 预算金额:345.00万元(人民币) 最高限价(如有):345.00 万元(人民币) 采购需求: 1、采购内容:包括采购设备的供货、运输、安装调试及售后服务等。 2、分包情况:本次采购共1个包,具体标包情况见下表,投标人须整包响应。 包号 设备名称 简要说明 数量 本包预算金额(万元) 是否进口 1 小动物活体成像系统 通过采用生物发光与荧光探针标记研究对象,借助光学检测仪器采集功能信号,并通过结构性成像模式对动物解剖学结构进行成像,对信号进行精确定量和定位等多重研究,在活体动物水平监测疾病的发展变化并开展相关药物的临床前研发。 1套 345.00 可采进口 合同履行期限:自合同生效之日起至合同履行完毕。 本项目(不接受)联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:无; 3.本项目的特定资格要求: (1)投标人须是具有独立承担民事责任能力的法人、其他组织或自然人,具备所投设备的生产或经营能力; (2)投标人在“信用中国”、中国政府采购网网站,未被列入“失信被执行人”、“重大税收违法失信主体”、“政府采购严重违法失信行为记录名单”; (3)所投设备须符合国家规定的相应技术标准,环保标准和安全标准; (4)本项目不接受联合体投标; (5)若所投设备属于医疗设备,除满足以上1-4项要求外,还需同时具备以下资格条件: ①投标人为制造商的,应按照《医疗器械生产监督管理办法》(国家市场监督管理总局令第53号)的规定提供有效的医疗器械生产许可证或生产备案凭证;投标人为代理商或经销商的应按照《医疗器械经营监督管理办法》(国家市场监督管理总局令第54号)的规定提供有效的医疗器械产品经营许可证或经营备案凭证; ②投标人须按照《医疗器械注册与备案管理办法》(国家市场监督管理总局令第47号)的规定提供所投设备的医疗器械注册证(如有附表,需提供附表)或产品备案表。 三、获取招标文件 时间:2023年06月19日至2023年06月26日,每天上午8:30至11:30,下午13:30至17:00。(北京时间,法定节假日除外) 地点:济南市历山路179号历山名郡C5座西单元二楼(山东普华项目管理有限公司) 方式:投标人须携带法定代表人身份证或法定代表人授权委托书及被授权人身份证原件(法定代表人授权委托书须注明所投包号)到场领取。若无法到场领取的,可将以下资料复印件加盖公章并将彩色扫描件(要求图片清晰可辨)制作为一个PDF文档发送到puhuazb123@163.com,邮件中注明项目名称、投标人名称、被授权人(或法定代表人)姓名和联系电话。 (1)法定代表人身份证或法定代表人授权委托书及被授权人身份证(法定代表人授权委托书须注明所投包号); (2)工本费转账底单或汇款凭证(备注项目编号)。 售价:纸质版文件300元/包,缴纳形式:现金或由投标人公司账户电汇或网银转账,账号信息如下: 开户名称:山东普华项目管理有限公司 开户银行:中国民生银行股份有限公司济南历山支行 账号:639285709 注:本项目实行资格后审,获取招标文件成功不代表资格后审的通过。不接受个人转账。 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年07月13日 09点00分(北京时间) 开标时间:2023年07月13日 09点00分(北京时间) 地点:济南市历山路179号历山名郡C5座西单元一楼会议室(山东普华项目管理有限公司)。 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 无。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:山东大学齐鲁医院 地址:济南市文化西路107号 联系方式:刘老师0531-82169507 2.采购代理机构信息 名 称:山东普华项目管理有限公司 地 址:济南市历山路179号历山名郡C5座西单元 联系方式:尹香丽 0531-55655227 3.项目联系方式 项目联系人:尹香丽 电 话:0531-55655227
  • 第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会
    在去年发布的「十四五规划」的国家战略中,生命科学被纳入引领性科技领域的重点攻关项目,而正在呼吁生物医药行业健康发展的议题也引起了广泛关注。动物活体成像技术作为基础医学、材料科学、药效评估等领域的基础研究方式,受到越来越多的应用。 博鹭腾作为专业从事动物活体成像设备研发与生产的高新技术企业,一直致力于对动物活体成像相关技术的开发与推广,现已研发出国际先进的小动物活体三维成像系统。 为了加速动物活体成像技术的发展,进而推动整个生命科学研究行业的进步,博鹭腾特举办《第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会》。【会议流程】08:30-09:00 | 签到入座09:00-09:05 | 主持人开场09:05-09:10 | 领导致辞 张俊修 广东省食品医药行业联合党委书记09:10-09:15 | 领导致辞 朱才毅 广东省实验动物学会秘书长09:15-09:20 | 总经理致辞 罗文波 博士 广州博鹭腾生物科技有限公司09:20-09:40 |《活体成像技术在纤维化疾病研究中的应用》 苏金 教授 广州医科大学呼吸疾病国家重点实验室09:40-10:00 |《光学分子影像技术在乳腺外科手术导航中的应用》 邱斯奇 博士 汕头市中心医院10:00-10:20 |《常见肿瘤动物模型构建以及应用》 聂晶 博士 湖南斯莱克景达实验动物有限公司10:20-10:35 | 茶歇10:35-10:55 |《活体成像仪在动物模型构建及临床前评价中的应用》 谢水林 副研究员 华南理工大学10:55-11:15 |《近红外荧光成像用于食管癌术中导航的研究》 李丹 副研究员 中山大学11:15-11:25 | 新产品发布仪式11:25-11:45 |“AniView Kirin”介绍 小动物活体三维成像系统11:45-12:00 | 合影【举办单位】指导单位:广东省医药行业协会 广东省实验动物学会 主办单位:广州博鹭腾生物科技有限公司协办单位:广州云星科学仪器有限公司
  • 上海市重大传染病和生物安全研究院500.00万元采购活体成像系统
    基本信息 关键内容: 活体成像系统 开标时间: 2022-04-12 15:30 采购金额: 500.00万元 采购单位: 上海市重大传染病和生物安全研究院 采购联系人: 陈老师 采购联系方式: 立即查看 招标代理机构: 上海财瑞建设管理有限公司 代理联系人: 赵政帆 代理联系方式: 立即查看 详细信息 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目公开招标公告 上海市-长宁区 状态:公告 更新时间: 2022-03-22 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目公开招标公告 发布日期:2022-03-22 项目概况 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目 招标项目的潜在投标人应在登录财瑞采购云平台(http://crzb.cairui.com.cn)网上报名获取招标文件,并于2022年04月12日 15点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1825-224A20212261 项目名称:上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目 预算金额:500.0000000 万元(人民币) 最高限价(如有):500.0000000 万元(人民币) 采购需求: 超高分辨活体成像系统,1套,详见采购需求 合同履行期限:卖方在收到买方预付款后(境内供货)/开出的信用证后(境外供货)的120天内交货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 规范进口产品采购政策等 3.本项目的特定资格要求:详见其他补充事宜 三、获取招标文件 时间:2022年03月22日 至 2022年03月29日,每天上午9:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:登录财瑞采购云平台(http://crzb.cairui.com.cn)网上报名 方式:详见其他补充事宜 售价:¥2000.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年04月12日 15点30分(北京时间) 开标时间:2022年04月12日 15点30分(北京时间) 地点:上海市长宁区延安西路1319号15楼 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 (一)本次招标的合格投标人应同时满足下列资格要求:1)投标人须在投标截止期之前在国家商务部指定的为机电产品国际招标投标活动提供公共服务的电子交易平台(以下简称机电产品招标投标电子交易平台,网址为:www.chinabidding.com)上完成有效注册;2)参加采购活动前三年内,在经营活动中没有重大违法记录;3)投标人可以是投标货物的制造厂家或代理商,如投标人是代理商,应提供制造厂家授权书或者提供合法获得该货物及售后服务支持的有效证明;4)中国关境外之货物:投标单位必须注册地在境外或可以与采购人外贸代理公司签订外贸合同的企业;5)投标人提供的投标机型应是原产地的全新产品;6)投标人财务状况良好,需提供投标人开户银行在开标日前三个月内开具的资信证明原件或复印件;7)本次招标不接受联合投标。(二)凡愿参加投标的合格供应商登录财瑞采购云平台(http://crzb.cairui.com.cn),在网上招标系统中上传如下材料:1)《营业执照》复印件。2)报名用法定代表人授权委托书(或法定代表人证明)原件。3)被授权人(或法定代表人)身份证原件及复印件。4)境内投标人被授权人在本单位的社保缴纳证明(近6个月内任意一个月)。注:以上报名资料复印件必须加盖公章。如有缺漏,采购代理机构将拒绝接受其报名。(三)招标文件发售1)发售时间:2022-03-22 17:00~2022-03-29 17:00,过时不候。2)发售地点:凡愿参加投标的合格供应商须在上述规定时间内登录财瑞采购云平台(http://crzb.cairui.com.cn)首页免费下载《用户手册-供应商》,并根据操作手册提示进行免费实名信息录入,完成录入后登录平台、网上付费(购买纸质招标文件)、免费下载电子招标文件等操作,逾期不再办理。未按规定获取招标文件的投标文件将被拒绝。注:投标人须保证获得招标文件需提交的资料和所填写内容真实、完整、有效、一致,如因投标人递交虚假材料或填写信息错误导致的与本项目有关的任何损失由投标人承担。3)招标文件售价:每本2000元人民币,售后不退。4)未从招标机构处购买招标文件的潜在投标人将不得参加投标。5)其中,机电产品国际招标标准招标文件(第一册)由投标人在 机电产品招标投标电子交易平台(www.chinabidding.com) 上自行下载。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:上海市重大传染病和生物安全研究院 地址:上海市东安路131号 联系方式:陈老师,021-54237605 2.采购代理机构信息 名 称:上海财瑞建设管理有限公司 地 址:上海市长宁区延安西路1319号15楼 联系方式:赵政帆,18964788921 3.项目联系方式 项目联系人:赵政帆 电 话: 18964788921 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:活体成像系统 开标时间:2022-04-12 15:30 预算金额:500.00万元 采购单位:上海市重大传染病和生物安全研究院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:上海财瑞建设管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目公开招标公告 上海市-长宁区 状态:公告 更新时间: 2022-03-22 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目公开招标公告 发布日期:2022-03-22 项目概况 上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目 招标项目的潜在投标人应在登录财瑞采购云平台(http://crzb.cairui.com.cn)网上报名获取招标文件,并于2022年04月12日 15点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:1825-224A20212261 项目名称:上海市重大传染病和生物安全研究院超高分辨活体成像系统采购项目 预算金额:500.0000000 万元(人民币) 最高限价(如有):500.0000000 万元(人民币) 采购需求: 超高分辨活体成像系统,1套,详见采购需求 合同履行期限:卖方在收到买方预付款后(境内供货)/开出的信用证后(境外供货)的120天内交货。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 规范进口产品采购政策等 3.本项目的特定资格要求:详见其他补充事宜 三、获取招标文件 时间:2022年03月22日 至 2022年03月29日,每天上午9:00至11:30,下午13:00至17:00。(北京时间,法定节假日除外) 地点:登录财瑞采购云平台(http://crzb.cairui.com.cn)网上报名 方式:详见其他补充事宜 售价:¥2000.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年04月12日 15点30分(北京时间) 开标时间:2022年04月12日 15点30分(北京时间) 地点:上海市长宁区延安西路1319号15楼 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 (一)本次招标的合格投标人应同时满足下列资格要求:1)投标人须在投标截止期之前在国家商务部指定的为机电产品国际招标投标活动提供公共服务的电子交易平台(以下简称机电产品招标投标电子交易平台,网址为:www.chinabidding.com)上完成有效注册;2)参加采购活动前三年内,在经营活动中没有重大违法记录;3)投标人可以是投标货物的制造厂家或代理商,如投标人是代理商,应提供制造厂家授权书或者提供合法获得该货物及售后服务支持的有效证明;4)中国关境外之货物:投标单位必须注册地在境外或可以与采购人外贸代理公司签订外贸合同的企业;5)投标人提供的投标机型应是原产地的全新产品;6)投标人财务状况良好,需提供投标人开户银行在开标日前三个月内开具的资信证明原件或复印件;7)本次招标不接受联合投标。(二)凡愿参加投标的合格供应商登录财瑞采购云平台(http://crzb.cairui.com.cn),在网上招标系统中上传如下材料:1)《营业执照》复印件。2)报名用法定代表人授权委托书(或法定代表人证明)原件。3)被授权人(或法定代表人)身份证原件及复印件。4)境内投标人被授权人在本单位的社保缴纳证明(近6个月内任意一个月)。注:以上报名资料复印件必须加盖公章。如有缺漏,采购代理机构将拒绝接受其报名。(三)招标文件发售1)发售时间:2022-03-22 17:00~2022-03-29 17:00,过时不候。2)发售地点:凡愿参加投标的合格供应商须在上述规定时间内登录财瑞采购云平台(http://crzb.cairui.com.cn)首页免费下载《用户手册-供应商》,并根据操作手册提示进行免费实名信息录入,完成录入后登录平台、网上付费(购买纸质招标文件)、免费下载电子招标文件等操作,逾期不再办理。未按规定获取招标文件的投标文件将被拒绝。注:投标人须保证获得招标文件需提交的资料和所填写内容真实、完整、有效、一致,如因投标人递交虚假材料或填写信息错误导致的与本项目有关的任何损失由投标人承担。3)招标文件售价:每本2000元人民币,售后不退。4)未从招标机构处购买招标文件的潜在投标人将不得参加投标。5)其中,机电产品国际招标标准招标文件(第一册)由投标人在 机电产品招标投标电子交易平台(www.chinabidding.com) 上自行下载。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:上海市重大传染病和生物安全研究院 地址:上海市东安路131号 联系方式:陈老师,021-54237605 2.采购代理机构信息 名 称:上海财瑞建设管理有限公司 地 址:上海市长宁区延安西路1319号15楼 联系方式:赵政帆,18964788921 3.项目联系方式 项目联系人:赵政帆 电 话: 18964788921
  • PerkinElmer小动物活体荧光断层成像技术与应用研讨会在京举行
    仪器信息网讯 2011年10月24日,由PerkinElmer主办的“FMT(Fluorescence Molecular Tomography)小动物活体荧光断层成像技术与应用研讨会”在北大博雅国际酒店举行。来自高等院校、医院、科研院所等近50名代表参加了本次研讨会。研讨会现场  PerkinElmer大中华区生命科学业务总监郭求真先生参加了会议开幕式并致辞:“PerkinElmer公司一直致力于医学诊断解决方案的发展,目前已是小动物活体成像领域全球领先的供应商。公司于2010年已成功收购荧光活体三维成像系统全球领先的供应商VisEn,今年9月对外宣布了已经与成像与检测解决方案的领先公司Caliper Life Sciences签订了最终收购协议。通过与他们在研发、应用技术和知识产权等方面进行整合,有助于提高PerkinElmer在分子成像与检测领域的全球领导者地位,更好的为各类高增长终端市场提供强劲的客户解决方案。”PerkinElmer大中华区生命科学业务总监郭求真先生致辞  PerkinElmer影像产品首席技术官Wael Yared博士首先作了专题讲座,详细介绍了PerkinElmer推出的FMT小动物活体荧光断层成像解决方案的技术特点以及应用领域。Wael Yared博士介绍,“当前,大部分成像系统的定量方法都是基于对小动物体表发光强度的测定,以体表发光强度来量化研究对象,做不到绝对定量。而FMT应用其专利的荧光分子断层技术对体内信号进行探测及定量分析,最终的定量结果以探针浓度表示,并可精确量化至皮摩尔级别,是真正意义上的绝对精确定量。而且,FMT的定量运算充分考虑了光信号在体内传播过程中的复杂性(如组织异质性、不同组织对光信号的吸收及发散程度、轮廓边缘性等),保证了定量结果的真实性和可信度。”  关于FMT的3D断层扫描及重建技术,Wael Yared博士介绍说:“FMT荧光3D断层技术利用激光底透扫描以及超声探头深度定位的方式,获取10万级数量的不同断层深度荧光信息,并结合独特的算法及强大的3D重建和分析软件实现了真实的三维断层信号扫描及重建”。随后,他还逐一介绍了FMT系统的体内深层信号观测、多通道同时成像、多模式成像等特点,并用具体案例介绍了FMT系统的操纵流程以及应用领域。PerkinElmer影像产品首席技术官Wael Yared博士报告题目:Fluorescence Molecular Tomography Technology Foundations and Current Work  PerkinElmer亚太地区活体成像产品专家Jia Fu博士主要介绍了PerkinElmer公司4种不同机制的活体荧光成像试剂:酶激活类荧光试剂、靶向类荧光试剂、血管及生理类荧光试剂、荧光染料及纳米颗粒类标记试剂。并向大家重点介绍了PerkinElmer荧光成像试剂最新产品——HypoxiSense,指出当前只有PerkinElmer供应此种靶向类荧光试剂。Jia Fu博士说:“PerkinElmer提供了非常广泛的荧光成像试剂产品,使用的是NIR fluorescence(近红外荧光材料),其低毒性和高效率的特点非常适合应用在活体成像实验中,而且操作简便,没有很高的技术要求。”报告最后,Jia Fu博士指出,PerkinElmer公司整套的荧光试剂研发的目的都是为了从转录后水平监测疾病的发展过程,因此随着技术的完善,相信将可见活体成像技术应用于临床将成为可能。PerkinElmer亚太地区活体成像产品专家Jia Fu博士报告题目:Fluorescence Imaging Agents and Platforms互动环节现场观众积极提问  交流会期间,PerkinElmer影像产品首席技术官Wael Yared博士、亚太地区影像产品销售主管Mark Dupal先生接受了仪器信息网独家专访,亚太地区活体成像产品专家Jia Fu博士陪同接受访问:  仪器信息网:FMT成像系统主要面向哪些客户群体?  Wael Yared博士:FMT成像系统可供两大类客户使用,第一类是制药公司,他们在药物研发过程中需要进行动物实验去证明药物功效、药物代谢过程等 第二类是开展动物实验的各科研机构,包括高等院校、科研院所等。FMT成像系统可以帮助这些客户开展相关实验。  仪器信息网:与生物发光原理相比,荧光断层成像技术的优势是什么?  Wael Yared博士:生物发光技术已广泛应用于生命科学、医学研究及药物开发等方面,但该技术主要存在着需要对研究对象进行基因改造以及二维成像不能绝对定量的不足。荧光3D断层技术是利用激光底透扫描以及超声探头深度定位的方式,实现了真实的三维断层信号扫描及重建,真正实现了绝对定量。而且无需进行基因改造工作,操作起来也十分简便。  仪器信息网:和FMT系统配套使用的荧光活体成像试剂能否用在其它系统上?  Jia Fu博士:可以在其它成像系统上使用,前提是要有合适波长的滤光片来获取PerkinElmer荧光活体成像试剂的信号,同时,FMT成像系统也能使用其它品牌近红外波段的成像试剂。但是,当前其它成像系统几乎为2D成像系统,即使使用PerkinElmer荧光活体成像试剂得到的也只是二维图像,对于使用同一成像试剂,FMT系统获取信息相对更多。  仪器信息网:贵公司如何看待活体成像产品在中国的市场前景?  Mark Dupal先生:中国是一个非常有潜力、有活力的市场,有很多制药公司、CRO公司,高等院校和科研机构,有着强劲的市场需求。美国、欧洲的市场已经比较稳定,增长速度不会有太大变化,但是未来的中国一定是个巨大的市场。FMT成像系统在欧美市场已经投放了10年,今年才开始在中国投放。对于我们来说,中国是个新的市场,我们会继续加大对中国市场的财力和人员的投入,做好客户支持和产品支持工作。  仪器信息网:贵公司如何看待PerkinElmer在小动物活体成像领域市场地位?  Mark Dupal先生:可以肯定的说,在收购Caliper之后,PerkinElmer在小动物活体成像领域已经成为全球最大的供应商。采访现场
  • 半导体所完成水下高分辨率光学成像海试
    近期,中国科学院半导体研究所研发的“水睛”水下高分辨率环视摄像机完成了针对水下礁盘的摸底海试工作。海洋观测是开发海洋资源、保护海洋生态的关键技术,受到全球的关注,但是目前海洋生物群落及环境变化监测技术仍无法满足海洋大时空数据获取的需求,特别是深海。光学成像技术可提供高分辨率、符合人眼视觉特征的图像,但是在保障高分辨率的前提下存在视场小的问题,难以实现大范围的海底详查的需求。针对此种情况,半导体所周燕、王新伟及其科研团队研制了水下高分辨率环视摄像机“水睛”,可实现水下高分辨率大视角的光学成像,具备180°下视走航观测和360°原位环视观测两种模式(图1)。本次海试中,“水睛”搭载半导体所海面移动光学试验平台“冲浪者”号(图2),在约1000平方米海域进行了水下高分辨观测,完成了海上走航式观测、定点原位观测等摸底性观测试验,验证了设备具备5900万像素下良好的实时彩色成像功能。图1 水下环视摄像机的下视及环视工作模式(上图下视模式,下图环视模式)图2 搭载冲浪者号走航式观测过程中的“水睛”摄像机此次海试,研究人员利用水下摄像机多次完成了礁盘生态系统的观测,拍摄了大量的珊瑚、海星、贝类、鱼类等,形成了水下光学彩色图像库(图3),可用于海洋光学图像处理、目标识别等算法研究。图3海域美丽的珊瑚、鱼类、海星、砗磲等除珊瑚及鱼类等生物要素外,本次海试中,在海底还发现了生物附着的碗和盘子各一只(图4)。图4 生物附着的盘子和碗此次海试由半导体所和南开大学共同组织完成,除“水睛”摄像机外,还利用多参量海洋水体测量系统完成了海洋温盐深、核素、水体光学衰减系数等海洋水体多物理化学参量采集。相关工作得到了南方海洋实验室、中科院青促会项目的经费支持。 图5 项目团队及设备在海试现场
  • 珀金埃尔默与军事医学科学院野战输血研究所共建 “小动物活体影像技术服务与研发中心”
    2014年8月27日,专注于提高人类健康及生存环境安全的全球领先企业珀金埃尔默(PerkinElmer,Inc.)公司(NYSE:PKI)宣布,与军事医学科学院野战输血研究所合作组建的“军事医学科学院野战输血研究所——珀金埃尔默小动物活体影像技术服务与研发中心”正式挂牌,并举行揭幕仪式。 开幕式在军事医学科学院野战输血研究所学术报告厅举行,来自国内外相关领域的专家学者一百多人参加了本次开幕式。上午8时45分开幕仪式正式开始,参加揭幕仪式的有野战输血研究所所长王东根、副所长周虹、科技处副处长贾向志、PerkinElmer公司大中华区总监郭求真先生以及PerkinElmer公司大中华区影像事业部经理冯起先生。野战输血研究所所长王东根、政委隋炳山、副所长周虹在共建中心主任詹林盛研究员的陪同下,视察了共建中心并高度赞扬了中心的内部设置。揭幕仪式后,开展了“小动物活体影像技术交流会”。交流会上,共建中心主任詹林盛研究员带领的科研团队就基因及细胞治疗分子成像、肿瘤体内增殖和转移分子成像、病原感染与炎症反应分子成像、药物及疫苗临床前评价分子成像、肝脏疾病分子成像、输血及创伤分子成像等方面进行了交流,旨在推进小动物活体影响平台建设,强化小动物活体影像技术产品研发优势,提高技术服务和科技支撑能力。 共建中心坐落于军事医学科学院野战输血研究所内,配备了国际顶尖的小动物活体光学成像硬件设备和软件工具。双方将在活体成像技术服务、平台服务、课题合作及应用开发等方面展开合作,以带动国内小动物活体成像技术的推广和应用开发,成为辐射全国的活体动物影像技术服务平台。关于珀金埃尔默:珀金埃尔默(PerkinElmer, Inc.)公司是致力于改善人类及环境健康和安全的全球领先企业。2012年,该公司收入约为21亿美元,拥有约7,500名员工,服务于全球150多个国家和地区的客户,同时该公司还是标准普尔(S&P)500指数的成员。欲知详情,请致电800-820-5046 或登录我们的网站:www.perkinelmer.com.cn。共建中心联系方式:军事医学科学院野战输血研究所—珀金埃尔默小动物活体影像技术服务与研发中心,联系人:周老师;联系电话010-66931292;E-mail: amms91@126.com.
  • Carestream多模式活体成像声明
    Carestream多模式活体成像重要声明  2010年7月, Carestream起诉Caliper(原Xenogen)活体成像产品直接侵犯了我公司的成像专利(美国专利号7,734,325) 在2010年2月,Caliper的全资子公司Xenogen,以及Stanford大学起诉Carestream在其成像系统的营销和销售中,间接涉及由斯坦福大学独家授权给Xenogen的成像专利。为了调停诉讼,双方于2011年8月达成和解协议。但是近期,个别代理机构利用Caliper Life Sciences, Inc. 和我公司双方专利诉讼调停的报道,来故意误导中国境内的客户,造成了严重的不良影响,Carestream中国区在此澄清和声明:  1 利兰-斯坦福青年大学托管委员会于1995年向中国国家知识产权局所申请的专利均为研究方法学专利,非仪器和功能专利(专利号:95198006.8)。  2 Carestream多模式小动物活体成像仪,具备发光,荧光,x-ray,同位素检测等功能,目前为止,已经为中国和世界其它各地的广大科研工作者提供了性能优异,质量可靠的活体成像的研究工具。  3 根据中华人民共和国专利法第六十九条第四款规定,为科学研究和实验等用途而使用专利的,不视为专利侵权,可无偿使用 此规定为包括美国、欧洲、日本等国家在内的国际通行准则。  4 我公司对任何错误解读翻译和误导该事件的商业行为所造成的不良影响和后果,将保留通过法律途经追究相关责任的权利,以维护我公司的合法权益 同时,本着对客户负责任的态度,我公司郑重对客户承诺,在Carestream多模式小动物活体成像仪器使用中,如有涉及专利方面的事宜,请直接与我们联系,我公司将会认真处理,避免给客户带来任何损失。  如有任何疑问请致电我公司  电话: 021-3852 6888  Carestream  Molecular Imaging
  • Kodak多模式活体成像系统连续中标
    Kodak多模式活体成像系统,集多种成像模式于一身,性能卓越,受到了国内越来越多活体研究用户的青睐,近日又连续中标两台。  1)吉林大学生科院:设有分子生物学系、生物药学系、生物大分子研究室、考古DNA实验室、Edmond H.Fischer细胞信号传导实验室等单位及校直属科研单位分子酶学教育部重点实验室,现有PI近40人。为满足该院多方向的活体成像研究,该院中心实验室公开招标活体成像仪器。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。  2)中国医科大学附属第一医院:创院有有百年历史,现有中国工程院院士1人,副教授和教授级460人,拥有多个国家重点科室。该院中心实验室公开招标活体成像仪器,构建活体成像研究平台。Kodak多模式活体成像系统凭借先进的产品理念和出色的性能,成功中标,并签署合同。  欲了解Kodak多模式活体成像系统更多信息,请访问东胜创新网站:www.eastwin.com.cn  或拨打技术专家咨询热线:15010 596317
  • 文献速递ㅣ动物活体成像系统在外泌体研究中的应用
    细胞外囊泡(Extracellular vesicles,EVs)是来源于细胞的脂质双层包裹的纳米囊泡。外泌体(Exosomes)作为EVs的一个亚型,由于具有体积较小、能跨越生物屏障、循环稳定和固有靶向性等特性,成为非常有吸引力的药物输送载体。目前对于外泌体的获取,主要是基于差速超速离心,对细胞培养上清液的外泌体进行离心分离、收集和浓缩;但是在分析外泌体的内容物、研究其功能或用于治疗应用之前,储存条件对sEVs(small EVs)特性的影响还没有完全阐明,也缺乏对不同储存条件的对比评价。▲ 典型的外泌体结构。外面由磷脂双层包围,含有对运输很重要的膜联蛋白;用于细胞靶向的四环素以及参与其他生物过程的蛋白。近日,中南大学、湖南省转化医学与创新药物工程研究中心向大雄教授课题组通过差速超速离心分离获得bEnd.3细胞来源的sEVs,并测试了保存条件对sEVs的大小、数量、蛋白质/RNA含量和与治疗应用相关的性质影响。在研究不同储存温度对sEVs在活体治疗应用的影响时,采用博鹭腾AniView100多模式动物活体成像系统进行了连续纵向检测sEVs在活体体内生物分布。结果直观清晰地显示储存会显著影响bEnd.3细胞来源的sEVs的脑靶向能力;因此,对于sEVs的治疗应用,应使用新鲜的sEVs或可在-80℃下短期保存备用。相关成果已发表在期刊《Drug Delivery》,可为未来sEVs的商业化储存提供参考。▲ 使用博鹭腾AniView100拍摄的sEVs在小鼠体内和体外器官的生物分布结果。(A) sEVs在健康小鼠体内的生物分布(B) 在小鼠主要器官的生物分布(C) sEVs在小鼠脑部生物分布比较(D) sEVs在小鼠器官中的荧光信号强度(E) sEVs在小鼠脑部荧光信号的强度参考文献:1、Wu J Y , et al. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions[J]. Drug Delivery, 2021, 28(1):162-170.2、Kourembanas, Stella. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy[J]. Annual Review of Physiology, 2015, 77(1):13-27.AniView100多模式动物活体成像系统应用实例肿瘤学研究新药筛选评价干细胞研究病毒感染模式疫苗开发基因表达调控研究
  • 发布小动物活体共聚焦成像新品
    创新点:卓越的性能和独特的功能使活体动物形象化 超高速成像(最高100 fps-512x512像素) 4D动物运动补偿(X、Y、Z和时间) 自动、无障碍、GPU加速处理 世界上第一个用于活体动物模型的一体式活体显微镜 单箱型IVM系统 完全集成体内成像 体内维护单元/体内动物阶段 动物活力的监测和稳态调节 四色同时成像(共焦/双光子模式) 小动物活体共聚焦成像
  • 科学家首次3D打印出“活体组织”
    具生物学功能,未来有望应用于医疗领域利用一台3D打印机,科学家将这些小水滴组装成一种与胶状物类似的物质。  研究人员日前创造出一种水滴网络,能够模仿生物组织中的细胞的一些特性。利用一台3D打印机,一个英国牛津大学的研究小组将这些小水滴组装成为一种与胶状物类似的物质,从而能够像肌肉一样弯曲,并能够像神经细胞束一样传输电信号,这一成果将来有望应用在医疗领域。  研究人员在4月5日出版的美国《科学》杂志上报告了这一研究成果。  研究人员说,这样打印出来的材料其质地与大脑和脂肪组织相似,可做出类似肌肉样活动的折叠动作,且具备像神经元那样工作的通信网络结构,可用于修复或增强衰竭的器官。由于这是合成材料,因此它还可避免一些用干细胞等方式制造活体组织而引发的问题。  这项研究的合作者、剑桥咨询公司——这是一家技术转移公司——的Gabriel Villar指出,这些网络能够包含多达35000个小水滴,从而有朝一日能够成为一个合成人造组织或提供器官功能模型的平台。他说:“我们想要看看到底能够把对活体组织的模仿做到一个什么样的境界。”  这一网络依赖于每个小水滴都拥有一个脂质涂层,它是将液滴放入一个油与一种纯脂的精调混合物中后形成的。  这种脂分子具有一个亲水的前端——它能够黏附在水滴的表面,以及一个憎水的末端——它能够戳到油脂溶液。当两个具有脂质涂层的小水滴碰到一起后,利用由憎水末端形成的“毡毯”,它们能够彼此像维可牢一样紧紧地粘在一起,从而形成一个双层脂膜,这一点与细胞膜非常类似。这种双层脂膜从而在小水滴之间形成了一种结构与功能联系。  尽管之前的研究已经表明,具有脂质涂层的小水滴能够形成这样的连接,但它们水汪汪的成分以及球形结构使其非常难以组装。“我已经制造出了大量黏结在一起的小水滴,”并未参与此项研究的欧登塞市南丹麦大学的生物医学工程师David Needham表示,“但是把它们打印出来真是一项成就。”  为了完成这项伟大的壮举,当时还是一名牛津大学黑根贝利实验室研究生的Villar研制出一台打印机,它能够从一根玻璃喷嘴向一个装满了油脂混合物的5毫米深的容器中喷射小水滴。当这些小水滴沉入容器底部后,它们便获得了自己的脂质涂层。目前这种打印机喷出的液滴直径约50微米,有5个活体细胞那么大,但相信将来能够将液滴尺寸缩小。  一个电动平台随后非常轻微地移动着这个容器,从而使下一个液滴恰好能够跌落在上一个液滴的上面或旁边,并最终形成一个形状看起来像圆球、立方体,甚至城堡和花朵的水滴网络。  Villar随后加入了第二根喷嘴,从而使得两种类型的液滴能够同时被喷出。为了使网络能够弯曲,他将一层含盐的液滴紧挨着低盐的液滴打印出来。由于水能够穿透双层脂膜,从而使含盐的液滴内充满了来自其邻居的水,并最终使整个结构产生弯曲。而为了给电流创造一条路径,Villar打印了一种包含有可在双层脂膜上打洞的毒素的液滴,最终使电流得以通过。  美国南卡罗来纳州克莱姆森大学的生物工程师Karen Burg认为,这项技术依旧太过于初级,而无法用于临床环境,或用于模拟真实器官中。他说:“你可以长久而热烈地讨论,这些给你带来有用信息的东西是多么的复杂。”  “如果他们的想象力真的能够变成组织,我认为他们依然有很长的路要走。”Needham说,“但我认为他们正在一条正确的道路上前进。”  近年来,3D打印技术飞速发展,从工程到航天,从教育到医疗,应用越来越广泛。今年2月,美国康奈尔大学研究人员就曾报告说,他们利用牛耳细胞通过3D打印机打印出人造耳朵。
  • 藻类活体荧光法技术研讨会
    近日,上海市水文协会领导一行莅临宝怡环境,双方各围绕藻类监测的活体荧光法技术进行了交流和探讨。宝怡环境产品经理朱平介绍了公司的技术和产品,汇报了宝怡环境在藻类监测、叶绿素a监测方面的优势和应用案例。宝怡环境是水生态在线监测世界知名品牌德国bbe在中国大陆设立的德国境外唯一的合资企业。公司以水环境(常规9参数),水生态(生产者,消费者,分解者)自动监测为主营业务,为广大客户提供:饮用水水源地安全预警自动监测、河湖水生态健康评价自动监测、蓝藻水华预报预警自动监测、湖泊营养物基准自动监测(总磷,总氮,叶绿素a)等相关业务的技术咨询,方案设计,系统集成及总包。藻类是水环境中的初级生产者,藻类的叶绿素a含量是衡量水体富营养化的重要指标。准确测定叶绿素a的含量是合理评价水体富营养化现状及预测的基础。常用的方法有分光光度法、荧光光谱法、色谱法和遥感监测。bbe藻类分析仪系列产品采用了世界领先的活体荧光法。这种方法具有操作简便、分析速度快、精准度高等优势,在全球广泛应用近三十年,在国内也超过10年,全国销量超过500台,在千岛湖、淀山湖、富春江、陈行水库等各大湖泊水库运行良好。实验数据显示:采用活体荧光法的bbe藻类分析仪不仅可以更精准地监测叶绿素a含量,还可以监测到不同藻种的浓度,这一点是其他荧光法做不到的。同时,与化学监测相比,这种方法不需要化学试剂,对环境和人都非常友好;也不需要取样,没有繁琐的操作流程和高深专业的方法,容易上手,提高了工作人员的效率,减轻了技术培训的负担。无论是岸边监测站,还是水上浮标站,无人船,bbe藻类分析仪在野外监测、应急保障监测方面都具有无可比拟的优势,今年杭州亚运会也选用了bbe藻类分析仪。上海市水文协会领导对宝怡环境的先进技术做出了高度评价,肯定了宝怡环境在藻类监测市场的领先地位,提出了一些问题和建议,并表示协会会支持和帮助宝怡环境,共同推动活体荧光技术的广泛应用。未来,宝怡环境将和上海市水文协会开展更多交流合作,携手助力环境监测技术的创新发展。
  • 中国小动物活体成像仪市场销售及使用情况简析
    随着医学和生命科学领域的快速发展,动物模型在研究人类生命奥秘中扮演着至关重要的角色。1999年,分子影像学的概念应运而生,它通过影像学方法使得活体动物体内成像成为可能。这一技术的出现极大地推动了生命科学研究的进步,尤其是在特异性细胞研究、靶细胞追踪、药物和基因治疗优化等方面。活体成像技术是一系列用于观察活体动物体内过程的非侵入性技术。这些技术包括光学成像、核素成像(PET、SPECT)、磁共振成像(MRI)、CT成像、超声成像以及磁粒子成像(MPI)。它们各自具有独特的优势,通常不是相互竞争,而是互补共存,共同为生命科学研究提供支持。光学成像技术光学成像技术是小动物活体成像系统中应用最为广泛的一种技术。它利用生物发光和荧光原理,通过特定的成像设备捕捉活体动物体内发出的光信号,从而实现对细胞、分子和组织等生物过程的实时、动态监测。光学成像技术具有操作简便、结果直观、测量快速、同时可检测多个动物费用低廉等优点,因此受到生命科学、医学研究等各领域研究者的广泛关注和应用。基于此,本文聚焦以光学成像技术为核心的小动物活体成像仪,通过对2023年中国小动物活体成像仪(单价大于100万元)市场销售情况的调研统计,并以重大科研设施与仪器国家网络管理平台(以下简称“重大平台”)所收录的超过12万台重大仪器设备(货值大于100万元)为数据基础,对当前中国小动物活体成像仪的销售及使用情况进行简要分析。一、2023年中国小动物活体成像仪市场销售情况分析 根据仪器信息网调研统计,2023年中国小动物活体成像仪市场销售额约为5.6亿元,其中约90%为近红外一区小动物活体成像仪,10%为近红外二区小动物活体成像仪。瑞孚迪Revvity以69.5%的市场份额,毫无争议地成为了市场的领头羊。2023年中国小动物活体成像仪主要品牌销售额市场分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 从销售额分布来看,2023年中国小动物活体成像仪市场占比最高的是瑞孚迪Revvity,以69.5%的市场占比高居榜首之位。其他品牌均在10%以内,博鹭腾、德国伯托、上海恒光智影、北京DPM、和法国Vilber等,其市场占比分别约为9%、3.6%、2.9%、2.7%和2.5%。自2011年收购专注于生命科学研究、成像和检测服务的Caliper Life Sciences公司以来,瑞孚迪Revvity已经成为全球小动物成像领域最大的供应商,除了整机产品之外,还提供种类丰富的生物发光细胞株、细菌、生物发光底物及丰富的活体荧光成像试剂。据报道,瑞孚迪Revvity IVIS系列高端小动物活体光学成像系统在国内装机量已经超过1000台,在生命科学研究领域中扮演着重要的角色。二、重大平台小动物活体成像仪使用情况分析重大平台小动物活体成像仪单位类型分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月据仪器信息网统计,重大平台收录登记的小动物活体成像仪共398台,小动物活体成像仪使用单位主要以大专院校和科研院所为主,两者合计约占9成。进一步分析发现,大专院校用户单位中,双一流大学占据较大比例,约占2/3。科研院所用户单位则主要以医学研究所、药物研究所、动物研究所、肿瘤研究所等为主。除了大专院校和科研院所用户单位之外,以疾控、医院等为代表的卫生系统用户单位也占据了一部分比例,所占比例约为6%。小动物活体成像仪重大平台用户省份分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 重大平台数据分析表明,小动物活体成像仪用户分布涉及29个省份/直辖市/自治区,主要分布在江苏、北京、广东、浙江、上海、河南等地区。由此可见仪器资源依然集中分布在高等教育强省,存在资源分布不均的问题。重大平台小动物活体成像仪品牌分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月重大平台数据分析表明,目前国内用户登记使用的小动物活体成像仪主要以进口品牌为主,其中瑞孚迪Revvity以68%的占比排在首位,遥遥领先其他品牌,其次是美国Carestream(原Kodak),所占比例约为8%。德国伯托和布鲁克也占据了一定的比例,分别约为6%和5%。除了以上品牌之外,其他品牌所占比例不超过1%。由此可见,瑞孚迪Revvtiy深受高校、科研院所等用户的欢迎。重大平台江苏地区小动物活体成像仪品牌分布数据来源:信立方科学仪器产业大数据、仪器信息网,2024年6月 从江苏地区重大平台小动物活体成像仪品牌分布来看,整体趋势与全国重大平台品牌分布相似,瑞孚迪Revvity在江苏地区有着绝对的竞争优势,所占比例高达83%,这不仅证明了其产品的卓越性能,也反映了市场对其品牌的深厚信任。
  • 突破光学透射深度瓶颈,NIR-II小动物活体成像装机量攀升——恒光智影CTO艾中凯博士
    小动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。广泛应用于生物医学、药物筛选等领域。为帮助广大用户及时了解小动物活体成像前沿技术、产品与整体解决方案,仪器信息网特别策划“小动物活体成像技术”主题征稿活动。本期,特别邀请到恒光智影联合创始人兼CTO艾中凯博士围绕小动物活体成像技术发展与应用展开阐述,着重就恒光智影聚焦的近红外二区(NIR-II)成像技术的优势及未来发展进行分享。 本期嘉宾:艾中凯博士,上海恒光智影医疗科技有限公司CTO/联合创始人2008年-2014年,博士毕业于新加坡国立大学电气与计算器工程系。 2015年 至2019年就职于美国普林斯顿仪器公司 (Princeton Instruments),担任应用科学家职位,负责探索弱光信号探测技术在前沿科学中的结合,深度参与许多前沿的科技项目,在弱光成像技术上有多年持续的积累。2020年至今,作为恒光智影联合创始人之一,参与公司技术专利8项,推出了新一代平台型近红外二区活体成像系统,具有丰富的产学研结合经验。 01 从动物模型到小动物活体成像技术人类疾病动物模型是现代生物医学研究中重要的实验方法与手段,是对医学研究和药物研发的有力支撑,有助于更方便、更有效地认识人类疾病的发生、发展规律以及研究防治措施。与此同时,由于大鼠、天竺鼠、小鼠等小动物作为动物模型具备诸多优势,在生命科学、医学研究及药物研究开发等多个领域的应用日益增多。众所周知,影像技术在基于动物模型的研究过程中发挥着至关重要的作用。近些年随着科学仪器设备技术的创新与突破,面对层出不穷、日新月异及个性化的科研需求,市场涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 02 市场规模破百亿,小动物活体成像五大主流技术路线据调研机构对小动物成像(活体内)行业市场数据的统计显示,2022年全球小动物成像(活体内)市场容量为115.86亿元(人民币)。预计全球小动物成像(活体内)市场规模在预测期将以9.94%的CAGR增长并预估在2028年达203.38亿元。动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术目前主要分为光学成像 (optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。根据数据类型,又可以分为绝对定量数据和相对定量数据两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量。光学成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI则介于两者之间。 分子成像技术使活体动物体内成像成为可能美国哈佛大学Weisslede于1999年提出分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。此前传统成像技术大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件,而分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。活体动物体内光学成像主要采用生物发光与荧光两种技术。生物发光是用荧光素酶基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cy5及Cy7等)进行标记。该技术最初是由美国斯坦福大学的科学家采用了世界上最优秀的高性能CCD研发与生产制造商最新研发的背部薄化、背照射冷CCD,配合密闭性非常好的暗箱,使得直接监控活体生物体内的细胞活动和基因行为成为现实。科学家借此可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。所以说该技术是伴随着背部薄化、背照射冷CCD的产生而产生,并随着该CCD技术的发展而发展。由于具有更高量子效率CCD的问世,使活体动物体内光学成像技术具有越来越高的灵敏度,对肿瘤微小转移灶的检测灵敏度极高。在该技术诞生后的10几年间,科学家借此取得了大量的科学成果,发表了几千篇文献资料,大部分都是应用以背部薄化、背照射冷CCD为核心部件的成像系统而得出的。活体动物光学成像技术的应用史,从设备技术层面,也是生物学家应用背部薄化、背照射冷CCD进行生物微弱发光检测的应用史。该技术之所以促进活体动物光学成像技术的发展,主要是由于超低温的CCD芯片,CCD镜头温度越低,噪音越小,信噪比越好,灵敏度越高因此对物微弱发光具有极高的灵敏度,使近年来产生了大量的高水平的应用活体成像技术进行肿瘤学、基因治疗、流行病学等研究的文献,极大的促进了生物医学在分子成像方面的发展。 03 突破透射深度瓶颈的近红外二区(NIR-II)成像技术 荧光成像技术,对比X-ray CT、PET-CT、MRI、超声等技术,在多个方面具有优势并拥有广阔的应用前景,但透射深度是光学活体成像最关键的瓶颈所在。小动物活体成像技术路线特点分析红外光线应用于活体层面,科学家们常用拓展到 760~900 nm 的近红外一区(NIR-I)窗口进行成像。然而,在该窗口内,在生物组织中传播的光子仍然受到较强的散射作用,这严重限制了组织荧光成像的成像深度和图像分辨率。2003年, 哈佛医学院 Frangioni教授及麻省理工学院 Bawendi 教授等预测了大于 1000 nm 光学窗口的大深度成像潜力。2009年,斯坦福大学戴宏杰教授团队利用单壁碳纳米管实现了首例大于1000 nm的近红外活体荧光成像。不久后,1000~1700 nm 作为第二个近红外成像窗口(近红外二区 NIR-II,又称短波红外波段SWIR)被大家熟知。NIR-II比NIR-I拥有更低的水吸收,不易受组织自发荧光或者实验室光照环境影响,更低光散射等特性,使得NIR-II比NIR-I拥有更佳的组织穿透性,从而获得高清晰度的活体成像数据。近6年,人们发现NIR-II和NIR-I成像更重要的是检测器上的差别。传统NIR-I成像使用的是Si检测器,NIR-II成像使用的是InGaAs检测器。其检测灵敏度如下图所示:传统Si检测器的响应范围在400nm到1000nm之间,InGaAs检测器的响应范围在1000nm到1700nm之间。于此同时NIR-I,NIR-II荧光成像波长的差别带来的荧光成像透射深度及分辨率的差别极为明显,如下图所示:NIR-II染料CH1055-PEG 在1200~1700nm对小鼠脑部血管成像的效果远远好于临床应用的NIR-I染料ICG(750~900nm)。脑部主要血管(~4mm深度)在NIR-II荧光成像中清晰可见,但在NIR-I成像中难以分辨清楚。如下图对比所示,在类似的曝光时间下,3mm深度NIR-II的空间分辨率可达0.04mm,而且产生极少量的自荧光现象。 NIR-II染料与三维光学断层成像技术相得益彰光学分子影像具有高度灵敏、实时直观、成像快速、操作简便、成本低、无放射性危害且可同时观测多分子事件等优点。 尽管光学分子影像学技术已被广泛应用于药物开发、肿瘤早期诊断及复发监测、辅助治疗、预后判断等生物医学领域,但是它也有一些不足,如但荧光分子不稳定性导致其存在重现性差、光在体内散射致使探测深度较浅等问题。此外,由于空间分辨率相对较差并缺乏深度信息,常规平面光学成像不能用于定位组织深处的光学探针,因此难以通过其获得特定分子或目标在组织内的空间分布信息。近年来,多功能光学分子探针和各种三维光学断层成像技术,包括光学相干断层成像(Optical Coherence Tomography,OCT)、荧光分子断层成像(Fluorescent Molecular Tomography, FMT)、生物自发光断层成像(Bioluminescence Tomography, BLT)、切伦科夫荧光断层成像(Cerenkov Luminescence Tomography, CLT)等新技术的发展,提高了光学成像的灵敏性和特异性,探测深度、范围和空间分辨率,使光学分子影像技术在生物医学的基础和应用研究中展现出良好的前景。就荧光分子断层成像(FMT)而言,能够提供目标物在生物体内的分布信息,克服平面荧光成像的局限性,在肿瘤检测、基因表达、蛋白质分子检测、揭示机体功能变化等方面有着很大的应用潜力【1】。荧光分子断层成像以荧光探针标记的分子或细胞为成像源,在外部光源的激发下产生荧光,通过测量组织边界处的荧光光强,结合光子在组织中传播的模型,来重建出组织内部的荧光光学特性的分布图像以及组织光学参数。由于NIR-I染料的兴起,NIR-I荧光分子断层扫描(NIR-I FMT)已被充分开发用于临床前诊断和小动物实验,然而NIR-I FMT要达到令人满意的效果仍然是一个具有挑战性的问题),因为NIR-I光在生物组织中的强烈散射,NIR-I FMT仍然呈现严重的缺陷和问题。NIR-II比NIR-I减少了组织散射效应和更长波长产生的最小自发荧光,因此NIR-II荧光成像具有更深的组织穿透深度(厘米级)和更高的空间分辨率。NIR-II FMT预计可以进一步提高重建精度和空间重叠。另一方面,有效且临床可用染料的缺乏也在技术发展初期限制了NIR-II成像的临床应用。但是最近的研究报道吲哚菁绿(ICG)在NIR-II窗口中发出尾部荧光,适用于NIR-II FMI。这些进展促进了NIR-II成像的发展,为NIR-II FMT创造了有利的条件【2】。 聚焦NIR-II成像,恒光智影突破多项技术攻关上海恒光智影医疗科技有限公司成立于2019年,由海外留学归国团队创办,公司的研发团队核心成员来自斯坦福大学、新加坡国立大学、中国科学院大学、武汉大学、哈尔滨工业大学、中国科学技术大学、浙江大学等国内外知名高校,60%以上具有博士学位,技术研发专注于近红外二区(900-1700nm)及全光谱(400-1700nm)小动物活体成像系统,并整合CT、X-ray、光谱、超声、光声成像技术,可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。2022年被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。自公司成立以来,恒光智影坚持以产品研发和技术创新为核心驱动力,突破了多项技术攻关,完成新产品研发和交付:• 2020上半年疫情期间,团队克服种种困难,没有间断产品研发,于2020年7月1日,恒光智影自主开发的近红外二区小动物活体成像系统MARS正式面市;• 2020年12月,在南方科技大学完成MARS的首台装机。MARS面市后,凭借出色的产品性能与售后服务,得到了用户和市场的广泛认可。自2021年起,在近红外二区小动物活体成像系统领域的市场占有率遥遥领先;• 2021年7月,恒光智影推出近红外二区高光谱小动物活体成像系统;• 2021年8月,MARS推出自主研发的多波长融合激光光源;• 2022年1月,恒光智影推出全球首款近红外二区小动物体视活体成像系统并实现首台装机交付;• 2022年11月,推出并实现首台全光谱小动物活体成像系统装机;• 2022年11月,推出全球首台近红外二区+CT小动物活体成像系统并实现首台订单;• 2023年6月,推出X射线辐照近红外二区小动物活体成像系统并实现首台装机;• 2023年9月,推出全球首台近红外二区双光子共聚焦成像系统并完成首台装机; 跨尺度全光谱小动物活体成像凸显核心竞争力恒光智影聚焦在近红外二区成像技术,提出跨尺度活体成像概念,其产品组合已覆盖宏观成像、体视成像、共聚焦显微成像、X射线和PET-CT模块、荧光寿命模块、荧光光谱、拉曼光谱等模块,并且整合可见光至近红外一区系统,推出全光谱小动物活体成像设备,全方位满足生物医学、临床前和临床应用科研工作对活体成像的需求。——产品优势/核心竞争力——1、高灵敏度宏观光学系统(MARS),实现高清晰度活体动物成像:1)深制冷InGaAs相机,提供了高灵敏,低噪声,高速读出的优异性能;2)自主开发高光通量宏观镜头,光折损小,对低亮度探针成像适应性更强;3)丰富且灵活可变的荧光通道,轻松滤除干扰信号,获取目标荧光信号。2.可快速切换至体视光路(Pathfinder),1-7X连续变倍观察,实现30mm-2mm小鼠宏观整体到局部介观超宽范围FOV的成像:3.自动化激发时分复用系统(Multicolor),可整合1- 6路激光,可实现单/多波长同时激发,匹配不同探针体系;4.暗室+旋转舱门结构设计,除了提供正常成像过程中所需要的暗室环境外,打开时可提供180°的开阔空间,供2-3名研究人员同时进行手术导航等操作;5.可扩展的多模态平台架构,可在MARS宏观系统上增配体视光路系统、荧光寿命系统、X-ray和CT断层扫描模块,实现多模态功能扩展,节省设备复购的成本,更适合科研应用;——应用领域——近红外二区荧光活体成像技术适用于多个生物医药科研的应用领域,包括:1.肿瘤成像/手术导航/靶向性/诊疗一体化/抗癌药研发等;2.血管成像/颅内血管造影/血栓研究/脑中风模型/血脑屏障BBB等;3.脏器系统/药剂崩解追踪/肠道菌群/肾代谢/外泌体追踪/骨结构成像等;4.药物药理研究、药效评价、分子药物药代动力学研究等;涉及颅内血管、肿瘤、骨关节、肝胆、肠道菌群,淋巴系统等多个器官和组织的活体成像,以及荧光探针的发射光谱、靶向性能、荧光寿命、生物毒性、发光强度等性能指标的研究和测试:自2020年上市以来,恒光智影MARS已在复旦大学、上海交通大学、中科院上海药物研究所、深圳先进技术研究院、西安交通大学、北京化工大学等40多家国内知名院校及医疗机构的相关课题组和重点实验室完成了系统安装和交付使用,已协助科研人员发文20余篇。 04 展望:NIR-II成像技术多领域应用潜力可观对于肿瘤学研究,NIR-II成像为活体内三维结构、血管分布、血流和肿瘤中动态免疫细胞浸润过程的成像提供了可能。通过结合多种内源性和外源性NIR-II探针,进一步发展多种光谱成像方法,将为全面分析肿瘤的发生、发展和转移提供一种独特的工具,从而为肿瘤的精确诊断和治疗提供理论依据。就临床应用而言,NIR-II成像最有希望的应用是图像引导的肿瘤手术;在未来,先进的NIR-II成像技术可能会大大提高肿瘤手术的精度和预后。此外,与FDA批准的基于ICG的NIR-I成像相比,NIR-II成像在组织穿透深度和时空分辨率方面具有优越的性能,因此在临床心血管疾病的精确诊断和治疗方面也具有巨大潜力。在再生医学领域,无创NIR-II成像也将在探索基本生物学问题方面发挥重要作用,如胚胎和器官的发育过程以及干细胞的谱系和命运。应用多光谱NIR-II成像技术可以提供丰富的成像通道,同时监测干细胞的易位、活力、旁分泌、分化和老化,从而全面了解干细胞再生的过程和潜在机制。 05 后记:习近平总书记曾说道:“我们比历史上任何时期都更需要建设世界科技强国”。建设世界科技强国,首先必须建设世界仪器强国。中国在近红外二区荧光成像方向上的科学技术水平引领世界,恒光智影正是怀揣着这样的科研理想,通过在近红外二区成像技术的不断研发创新,打造高端科研仪器,肩负起中国仪器之崛起,助力中国走向世界科技强国,实现中华民族伟大复兴的历史使命。参考文献:【1】“Application of Three-Dimensional Optical Tomography for in Vivo Bioimaging”,LI Zhuhenga,b, ZHANG Huab, LIU Dianjunb, WANG Zhenxinb,DOI: 1000-0518(2018)12-1411-09 【2】”NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method”, Meishan Cai, Zeyu Zhang, Xiaojing Shi, Zhenhua Hu, and Jie Tian , Fellow, IEEE, DOI: 10.1109/TMI.2020.2964853征稿提纲:https://www.instrument.com.cn/news/20230925/685455.shtml欢迎持续投稿!投稿文章后续将在【小动物活体成像技术专题】展示并在仪器信息网相关渠道推广。投稿邮箱:liuld@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系刘编辑:13683372576(同微信)。
  • 苏州医工所活体成像生物安全隔离系统成功转让独家代理
    早在今年2月,由苏州医工所孵化的成果转化公司(国科智影)与小动物活体成像领域领导者PerkinElmer(现:瑞孚迪 Revvity)达成协议,将由PerkinElmer独家代理该公司产品生物安全隔离转运成像系统。该系统是在中科院院装备项目资助下,由苏州医工所和武汉病毒所联合研制,目前已取得授权发明专利2项,实审中的发明专利2项。21世纪以来新发突发传染病不断侵袭着人类社会,并表现出愈演愈烈的趋势,因此,对新发突发病毒的研究迫在眉睫。实验动物作为病毒感染机制研究、疫苗药物开发的关键实验材料,为病毒研究提供了重要的实验结果,而活体动物成像仪是其中重要的实验手段。但是在生物安全实验室中,如何将被感染的实验小鼠在生物安全防护条件下,从生物安全柜中转移到无生物安全防护的活体动物成像仪中,并进行荧光或生物发光成像实验,目前还缺少这关键一环。如何打通生物安全柜到活体成像仪之间的生物安全防护障碍,实现安全、可靠、稳定且不影响实验效果,就成为了亟需解决的问题。活体成像生物安全隔离系统作为小动物活体成像领域市场份额全球第一的PerkinElmer(现:瑞孚迪Revvity),也一直在寻找解决方案。苏州医工所研制的活体成像生物安全隔离系统,与PerkinElmer小动物成像系统完美适配,并首次解决了上述实验中所存在的问题。将生物安全柜中被病毒侵染的小鼠,麻醉后放入生物安全隔离系统,在系统自适应负压保持模块的工作下,系统始终处于负压状态,因此,可以在转运和活体成像过程中提供生物安全防护,从而可以应用到病原微生物机制研究、疫苗药物研发等多个研究领域。 未来,苏州医工所将继续大力推动高质量成果转化,为我国的科技仪器设备的产业创新发展做出更大贡献。应用场景用于P4、P3、P2等级生物安全实验室小动物活体成像用于SPF级的小动物活体成像
  • 浙江大学赵璐、葛栩涛:高内涵成像系统在斑马鱼活体成像中的应用心得
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术” 主题约稿活动(点击查看)。本期,特别邀请到浙江大学药学院药物信息学研究所副教授赵璐博士和研究生葛栩涛同学谈一谈高内涵成像系统在斑马鱼活体成像中的应用心得。高内涵成像技术(High-Content Imaging,HCI)近年发展迅速,2D及3D的细胞成像技术均趋于成熟。例如,Pelkin Elmers公司推出了Opera Phenix Plus高内涵成像分析系统,采用Nipkow转盘和sCMOS相机,配套Harmony®集成软件,提供了高内涵筛选的整体解决方案。Thermo Fisher公司推出了CellInsight CX7 Pro LZR高内涵筛选平台,同样采用Nipkow 旋转和sCMOS相机,配套Amira软件,助力高内涵筛选和分析。而Molecular Devices 公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统采用AgileOptix™转盘式共聚焦和 sCMOS 相机,具有大视野、宽动态范围,多种成像模式,支持自动加样等特点,同时其具有3D成像和分析的能力。新款的ImageXpress Confocal HT.ai系统进一步增加了自动水浸物镜、IN Carta 图像分析等功能,简化高级表型分类和 3D 成像分析的工作流程。模式生物斑马鱼凭借繁殖力强、发育迅速、幼鱼体积小且通体透明等特点,加上众多特定细胞标记转基因荧光鱼系的运用,成为目前适合活体高通量荧光成像的唯一脊椎模式生物,在大规模药物筛选领域被日益关注。然而,常规的荧光显微镜成像具有速度慢、清晰度不佳以及图像处理过程繁琐等问题。本文主要以Molecular Devices公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统为例,分享本团队在对斑马鱼幼鱼进行高内涵成像及图片处理分析中的一些经验。首先,为了较好的成像效果,用于成像的胚胎一般需要进行以下预处理:(1) 黑色素的抑制:斑马鱼胚胎约发育至24小时左右,躯干及脑部皮肤及视网膜会开始形成逐渐黑色素,影响胚胎成像效果,所以通常在胚胎收集后1天内在培养基中添加苯硫脲(200uM),以抑制黑色素的生成;(2) 胚胎破膜:若用以成像或药物处理的斑马鱼胚胎尚未破膜,需将胚胎孵育于蛋白酶(2mg/ml)中一段时间,随后加入培养基轻轻吹打,使胚胎与绒毛膜分离;(3) 胚胎麻醉和摆放:大部分情况下,成像需保持胚胎于静止位,可考虑使用三卡因(0.016%)对斑马鱼进行麻醉,随后将斑马鱼逐孔加入96孔板内,轻吹并尽量保证其处于侧卧的体位。01 斑马鱼动态血流成像Micro Confocal系统在细胞上能够支持心肌细胞跳动和干细胞分化等快速和罕见事件进行成像。在斑马鱼模型上同样可以支持血液流动以及心脏跳动的成像。以动态血流为例,我们选择了红细胞绿色荧光标记的鱼系Tg (Lcr:eGFP)进行测试。具体拍摄流程为:首先在 2 倍镜或 4 倍镜下定位胚胎并进行初步手动对焦,也可使用高内涵成像平台自带软件MetaXpress 编程进行自动对焦。选中血管区域(一般选择在斑马鱼背主动脉和尾静脉位点,方便后续统计),切换 20 倍镜拍摄视频。另外,后续的人工量化血细胞流动通常费时费力,可以使用MetaXpress 软件的journal模块自动测算单位时间内流过的红细胞数目(Ref. 任灿, 陈雪纯, 吴慧敏, 赵璐, 王毅. (2021). 基于高内涵成像系统的斑马鱼血流动态分析. // 高内涵成像及分析实验手册. Bio-101: e1010854. DOI: 10.21769/BioProtoc.1010854)。02 斑马鱼静态多通道成像ImageXpress支持至多5或7通道的荧光成像,因此可以实现不同荧光标记细胞的共同成像。拍摄方式与动态摄影类似:先在低倍镜下初步对焦,然后选择心脏区域,切换10倍镜分别拍摄两个通道下的荧光图像。在多孔或整板成像过程中,由于孔与孔之间的斑马鱼位置存在偏差,或不同胚胎本身发育状态有所差异等原因,不同孔的最佳聚焦平面往往会变化,限制了高通量成像。为了方便焦平面的寻找,一个应对方案是使用大步长(10~30um)的Z-stack拍摄初始焦平面上下一定厚度范围内(200um)的一系列图像,再从中挑选最清晰的一帧即可。图1a展示了3dpf斑马鱼心脏和血管内皮Tg (Cmlc2:eGFP Kdrl:mcherry)共同成像的效果图,可以清晰地看到心房和主动脉连接处存在共定位。图1b为3dpf斑马鱼红细胞和血管内皮Tg (Lcr:eGFP Kdrl:mcherry) 共同成像的效果图,可以清晰地看到红细胞位于血管中。此外,目前有一些商品化的特殊孔板可帮助保持胚胎在特定位置,但使用场景仍有较多局限性,尚需进一步优化。图1 斑马鱼静态多通道成像代表图03 斑马鱼高分辨率及3D成像斑马鱼胚胎器官厚度通常在几十至上百微米之间,或拥有复杂的立体结构,因此简单的2D图片往往不能获取高质量信息。我们同样可以使用Z-stack程序拍摄立体图像,不同的是步距需要设置比较小,通常为1~3um。拍摄结束后,可以使用Z project将堆栈图三维投影成一张2D图像,也可以使用3D project将系列图重构成立体图像。另外,10倍镜下难以拍摄全鱼,可以使用多视野拼接的方式得到全鱼荧光。这一部分同样支持多通道荧光成像,图2a展示了Z project重构的中性粒细胞和血管内皮荧光Tg (Lyz:eGFP Kdrl:mcherry)共同成像的效果图,图2b展示了红细胞和血管及淋巴管细胞Tg (Gata1:dsRed Fli1:eGFP)共同成像的效果图。补充视频1和2分别展示斑马鱼脑部血管以及血管叠加红细胞的3D重构图像。图2 斑马鱼高分辨率三维投影成像代表图视频1:斑马鱼脑部血管三维重建视频2:斑马鱼血管红细胞叠加三维重建最后,使用ImageXpress成像系统进行斑马鱼成像还存在一些问题。比如,高强度的激光光源对斑马鱼有一定的刺激,可能会导致其产生应激性游动,造成成像失败,因此对麻醉效果有较高的要求,但在减少应激反应的同时也要注意不能麻醉过度(浓度太高或时间太长)引起胚胎损伤或死亡。另外,目前大部分高内涵成像系统的配套软件在自动定位斑马鱼胚胎及寻找最佳焦平面的功能模块中还有比较大的局限性。在批量成像中,大多数只能做到相似焦平面的孔间自动成像,对于焦平面差异较大的孔,则需要手动调焦,极大影响了拍摄效率。因此,高通量成像目前仅能支持孵化天数较小的胚胎(一般3dpf以内,鱼泡尚未发育且运动能力较弱)的成像,对发育后期的斑马鱼胚胎或幼鱼还不能进行批量成像。期待未来在功能模块进一步完善后,可支持孔板内任意位置及焦平面的高质量成像。最后,在图像数据分析上,尽管我们的前期工作已开发了多个模型的自动分析算法(如心脏、血流动力学),但仍有许多其他模型缺乏对应的分析算法(如血管、免疫细胞、神经系统的分布和行为)等,值得进一步开拓。本文作者: 葛栩涛(研究生) 赵璐(副教授),浙江大学药学院药物信息学研究所浙江大学药学院药物信息学研究所 赵璐 副教授赵璐博士,浙江大学药学院药物信息学研究所副教授、博士生导师、浙江大学“求是青年学者”,博士毕业于美国耶鲁大学医学院。现为浙江大学中药科学与工程学系模式生物平台负责人,研究方向为基于斑马鱼多模态成像的中药药效物质发现。获浙江省杰出青年科学基金支持,主持国家自然科学基金项目2 项,浙江省自然科学基金项目2 项,研究成果获教育部自然科学二等奖1 项。以第一或通讯作者发表PNAS, Engineering等学术论文18 篇,被Nature、Lancet等期刊引用1050 余次。浙江大学药学院药物信息学研究所 葛栩涛 研究生葛栩涛,浙江大学药物信息所21级研究生。主要研究方向为斑马鱼高内涵活体荧光成像技术在中药药效物质筛选中的应用。擅长斑马鱼相关实验技术以及多种荧光显微的斑马鱼活体成像。曾获2022长三角天然药物化学研讨会论文评选二等奖,浙江大学医学院公共技术平台显微注射比赛一等奖,2022-2023学年浙大药学院研究生学术创新能力单项荣誉。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 预算超1.72亿!11月高校48项动物活体成像仪采购意向汇总
    随着2000亿贴息贷款东风吹向全国各所高校单位,瞬间点燃了第四季度高校科学仪器市场。据统计,11月全国高校仪器采购热潮中共有48项动物活体成像仪采购意向,涉及清华、复旦、同济等18所高校,累计预算金额超过1.72亿元。复旦大学以采购总预算4310万元位居榜首,意向采购数量高达10台(套)。紧随其后的是同济大学,采购总预算3420万元,拟采购数量为7台(套)。清华大学排名第三,采购总预算1463万元,拟采购数量为5台(套)。18所高校意向采购动物活体成像仪项目详情如下:序号项目名称采购单位预计采购时间采购需求概况预算金额(万元)1高分辨率X射线活体显微断层成像系统复旦大学2022-12意向原文3502活体动物体成分定量检测仪复旦大学2022-12意向原文1603近红外II区活体荧光成像复旦大学2022-12意向原文2204红外自适应光学活体成像系统复旦大学2022-12意向原文6805高分辨率X射线活体显微断层扫描成像系统复旦大学2022-12意向原文4006活体小动物全脑成像系统复旦大学2022-12意向原文6507活体鼠脑深穿透高分辨钙成像多光子系统光源复旦大学2022-12意向原文2008高通量小动物活体成像与分析仪复旦大学2022-12意向原文3209活体成像共聚焦双光子显微镜复旦大学2022-12意向原文68010小动物活体三维多模式成像系统采购复旦大学2022-12意向原文650合计431011小动物活体Micro-CT成像系统同济大学2022-12意向原文30012小动物活体三维多模式成像系统同济大学2022-12意向原文65013小动物活体Micro-CT成像系统同济大学2022-12意向原文42014小动物活体三维多模式成像系统同济大学2022-12意向原文65015小动物活体三维多模式成像系统同济大学2022-12意向原文65016小动物活体三维活体成像系统同济大学2022-12意向原文40017小动物活体Micro-CT成像系统同济大学2022-12意向原文350合计342018高分辨X射线活体显微断层成像系统清华大学2022-12意向原文30019高速高分辨率三维活体显微系统清华大学2022-12意向原文35020头戴式单光子结合光遗传微型显微成像系统(小鼠活体钙成像2)清华大学2022-12意向原文11021头戴式小鼠活体钙成像(小鼠活体钙成像1)清华大学2022-12意向原文20722活体三位多模式功能结构二合一影像系统清华大学2022-12意向原文496合计146323全光谱激光活体成像系统华东师范大学2022-11意向原文23024小动物活体成像系统华东师范大学2022-11意向原文39025小动物活体成像设备华东师范大学2022-11意向原文50026高通量活体动物荧光筛选系统华东师范大学2022-11意向原文139合计125927小动物活体成像浙江大学2022-12意向原文17028小动物活体三维多模式成像系统浙江大学2022-12意向原文68029小动物活体成像仪浙江大学2022-12意向原文16230活体成像仪浙江大学2022-12意向原文160合计117231三维活体成像仪大连理工大学2022-11意向原文42532小动物活体Micro-CT成像仪大连理工大学2022-11意向原文365合计79033TX-小动物活体原位细胞动态分析成像系统华中科技大学2022-12意向原文49034TX-小动物活体光学(1区+2区)成像系统华中科技大学2022-12意向原文280合计77035生命医学实验平台--近红外二区小动物活体荧光成像系统东北大学2022-11意向原文16036生命医学实验平台--小动物活体micro CT成像系统东北大学2022-11意向原文549合计70937小动物活体成像系统湖南大学2022-12意向原文15038小动物高分辨率活体超声成像系统湖南大学2022-12意向原文450合计60039小动物活体光学成像系统东华大学2022-12意向原文19040近红外二区小动物活体成像系统东华大学2022-12意向原文160合计35041活体原位动态分析成像系统上海交通大学2022-12意向原文72042高分辨X射线活体显微断层成像系统东南大学2022-12意向原文38043小动物活体光学成像系统北京大学2022-12意向原文37544小动物活体Micro CT成像仪四川大学2022-12意向原文34545小动物活体光学成像系统天津大学2022-11意向原文16046近红外二区荧光活体成像系统北京理工大学2022-12意向原文15047小动物活体成像厦门大学2022-12意向原文15048小动物活体成像吉林大学2022-12意向原文120共计17243附:10月高校采购意向汇总:70台套动物活体成像系统,总金额超4亿元(点击查看)为帮助大家及时了解国内高校科学仪器市场需求,仪器信息网特别开设#高校仪器采购品类盘点 话题,汇总了各所高校重点仪器品类采购最新动态。点击图片,带走商机!
  • 新品!博鹭腾小动物活体三维成像系统在广州发布!
    2022年3月26日,“第一届华南动物活体成像应用研讨会暨小动物活体三维成像系统发布会”在广州隆重举办。此次会议由广东省医药行业协会和广东省实验动物学会指导,广州博鹭腾生物科技有限公司主办,广州云星科学仪器有限公司协办。大会开幕大会开始,广东省食品医药联合党委书记张俊修先生首先上台致开幕辞。张书记对此次大会的举办表示了祝贺,也肯定了博鹭腾在国产动物活体仪器方面取得的重大成果。与此同时,张书记提出了几点期望与建议:一是响应国家号召,加强对科学技术道路的坚持;二是在中医方面,运用新的思维改进现有的研究成果;三是在西医方面,希望活体成像技术的进步能够为器官移植提供新思路和新方法。张俊修 先生广东省食品医药联合党委书记广东省实验动物秘书长朱才毅研究员对大会的成功举办表示热烈的祝贺,他指出小动物活体三维成像产品的发布,将有利于推动实验动物行业的进一步发展,特别能有效减少实验动物的使用量,符合动物伦理,体现了民族科技企业的强烈社会责任感。他希望博鹭腾能够按照伟中省长提出的,加快构建基础研究+技术攻关+加成果产业+科技金融+人才支撑全过程创新生态链,强化企业创新主体责任,探索产学研相结合的路子,推出更多更好的新产品,为建设更高水平的科技自立自强贡献力量和智慧。朱才毅 研究员广东省实验动物学会秘书长最后,广州博鹭腾生物科技有限公司总经理罗文波博士致辞。罗文波总经理强调了生命科学仪器在科学进步中的重要性,尤其是高端的科学仪器对重要行业的发展有着不可或缺的推动作用。不论是当前的发展趋势还是国家出台的相关政策,都对国产科学仪器寄予了厚望。博鹭腾正是要迎难而上,开拓创新,创国产生命科学仪器先锋,为生命科学乃至世界的科技进步贡献自己的力量。 罗文波 博士广州博鹭腾生物科技有限公司总经理学术分享在各位嘉宾精彩致辞结束后,迎来了“干货满满”的应用研讨会。本次会议采用线下分享和线上直播相结合的方式,邀请了来自广州医科大学、汕头市中心医院、湖南斯莱克景达实验动物有限公司、新疆医科大学、中山大学附属第五医院的五位专家,就活体成像技术在纤维化疾病研究中的应用、光学分子影像技术在乳腺外科手术导航中的应用、常见肿瘤动物模型构建以及应用、基于近红外光辅助的活体成像与光活化治疗研究、近红外荧光成像用于食管癌术中导航的研究进行了深入的分享。专家们精彩绝伦的讲座,为本次研讨会注入了新的力量,使现场嘉宾和线上观众都收获颇多,对活体成像也有了更加深入的了解和认识。苏金 教授广州医科大学呼吸疾病国家重点实验室课题组长、博士生导师《活体成像技术在纤维化疾病研究中的应用》邱斯奇 副主任医师汕头市中心医院科研大数据中心副主任、硕士生导师《光学分子影像技术在乳腺外科手术导航中的应用》聂晶 博士湖南斯莱克景达实验动物有限公司研发部总监《常见肿瘤动物模型构建以及应用》努尔尼沙阿力甫 副教授新疆医科大学医学工程技术学院副院长、博士生导师《基于近红外光辅助的活体成像与光活化治疗研究》李丹 副研究员中山大学附属第五医院广东省生物医学影像重点实验室副主任、博士生导师《近红外荧光成像用于食管癌术中导航的研究》新品发布仪式最后是本次会议最为激动人心的新品发布仪式。随着倒计时的结束,幕布落下,Aniview Kirin现身。从此刻起, AniView Kirin小动物活体三维成像系统将正式加入博鹭腾AniView活体成像家族。来自博鹭腾的市场部经理魏宇清先生对新产品进行了详细介绍,魏经理将AniView Kirin的特点归纳为六点,灵敏、精准、形象、出色、温暖、安全。这几大特点不仅体现在优异的硬件参数上,同样也体现在智能的软件算法、人性化的设计以及优秀的使用体验等方面。魏宇清 先生广州博鹭腾生物科技有限公司市场部经理这是国产唯一集光谱分离算法与三维立体成像于一体的高端活体成像系统,打破了国外产品的技术垄断,从此高端活体成像系统领域拥有了属于中国人自己的声音。AniView Kirin小动物活体三维成像系统博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制