当前位置: 仪器信息网 > 行业主题 > >

火焰速度场

仪器信息网火焰速度场专题为您整合火焰速度场相关的最新文章,在火焰速度场专题,您不仅可以免费浏览火焰速度场的资讯, 同时您还可以浏览火焰速度场的相关资料、解决方案,参与社区火焰速度场话题讨论。

火焰速度场相关的方案

  • 以3千赫重复频率同时测量湍流举升射流火焰的平面碳烟结构和速度场
    采用LaVision公司的时间分辨粒子成像测速系统FlowMaster-TR和时间分辨激光诱导白炽光成像FlameMaster-LII系统,以3千赫重复频率同时测量湍流举升射流火焰的平面碳烟结构和速度场。
  • 曲面内壁喷嘴燃烧器中湍流喷雾火焰流场和液滴动力学
    采用德国LaVision公司的高速时间分辨立体激光成像测速系统PIV和相位多普勒干涉仪系统,对曲面内壁喷嘴燃烧器中湍流喷雾火焰流场和液滴动力学进行了测量和研究
  • 低湍流燃烧器预混合火焰结构和紊流燃烧速度测量(MEASUREMENTS OF THE TURBULENT BURNING VELOCITY AND THE STRUCTURE OF PREMIXED FLAMES ON A LOW-SWIRL BURNER)
    报道了一种测量低湍流燃烧器预混合火焰结构和紊流燃烧速度的方法。研究了六种贫燃气比火焰对象。进行了OH激光诱导荧光,瑞利散射温度成像,以及PIV联合测量。
  • 同步激光激光诊断膨胀火焰结构与特性的实验研究
    用LaVision的高速图像增强器HS-IRO和Photron, SA5型高速相机,建立了一套时间分辨高重复频率平面激光诱导荧光和粒子成像速度场联合同步测量系统,并利用这一系统研究了膨胀火焰结构与特性。
  • 使用高速激光诊断技术对旋流喷雾火焰中心涡核的实验研究。
    中心级旋流燃烧可以有效地降低NOx排放。但是,这种复杂的燃烧场容易产生大规模的相干结构,例如旋转涡核和中心涡核(CVC)。本研究主要利用10 kHz高速CH化学发光(CL)、20 kHz颗粒图像测速仪(PIV)和CH2O平面激光诱导荧光(PLIF),在高温高压下研究中心级旋流喷雾燃烧器中CVC对流场和火焰的影响。对于试验火焰,CH CL和CH2O PLIF火焰都是三叉形状的,并且火焰动力学的中心部分表明了CVC结构。对于分层火焰,在燃烧器中心线附近的一个强旋涡带区域内存在CVC结构。适当正交分解(POD)模式的分析表明,CVC的运动主要是摆动,其次是进动。同时诊断表明,CVC的吸入导致CH2O从剪切层输送到燃烧器的中心区域。总体而言,CH2O信号主要分布在两个正的速度区域,即主燃气和中心涡核周围。利用CVC对自由基输运的作用是改善燃烧器混合,例如温度分布的潜在方法。
  • 北京东西分析仪器:波长扫描技术在原子吸收分析中的应用―—火焰法多元素分析的实现
    摘要 本文研究了波长扫描技术在火焰原子吸收分析中的应用的可能性,证明它完全可以在通用的原子吸收分光光度计上实现。它的主要用途是进行多元素分析,并已用于血液中五元素的快速分析。除此而外,还能够带来一些其它的扩展功能,是一种很有发展前途的新技术。关键詞 波长扫描; 多元素分析; 火焰法原子吸收1 前言从1955年A.Walsh推出实用的原子吸收分析装置以来,原子吸收技术因其优异的分析性能、较低的分析成本而成为仪器分析领域最重要的测试手段之一。仪器的构造以及配套设备(尤其是计算机数据处理系统)也得到突飞猛进的发展。但是有些工作需要测定样品中的多个元素,而原子吸收一次只能测定一个元素,这无疑是一个重大的缺憾。实现一次进样测定几个元素无疑是很有意义的,从原子吸收分析法产生的初期至今,人们一直对此进行努力〔1〕。原子吸收法的多元素分析大体可以分为顺序多元素分析和同时多元素分析。根据原子化器的不同也可以分为火焰法多元素分析和石墨炉法的多元素分析。对于石墨炉原子吸收来说,由于样品的分析流程较长,要经过干燥、灰化和原子化等过程,不同元素的干燥、灰化、原子化条件差异很大,而在原子化阶段原子蒸气浓度变化率极大,能用于采集数据的时间很短,往往还要测量背景吸收。综合这些情况,在石墨炉法中实现多元素分析的难度较大,耶拿公司的contrAA和日立公司的Z9000用独特的技术和光路结构在这方面有较大的突破。在火焰法原子吸收分析中,一经开始进样,原子化器中原子蒸气的浓度能够持续稳定较长的时间,实现多元素测定相对较为容易。Varian公司、JENA公司和TJA公司等已经推出各自的产品。例如,Varian公司的AA280FS型仪器可以装8个单元素空芯阴极灯,各个灯发出的的光线用一个反射镜反射到原子化器(火焰)上,通过转动反射镜顺序测量各个待测元素。德国耶拿公司的contrAA型仪器则用特制的高聚焦短弧氙灯作为连续光源,采用高分辨率的中阶梯光栅双单色器进行分光,CCD阵列检测器(512 点阵)进行检测,当进行快速顺序多元素分析时, 可以达到每分钟分析10-20 个元素的分析速度。这些新技术的应用、新型仪器开发无疑是原子吸收分析技术的新进展。但是,这些新型仪器因为采用昂贵的元器件且整体结构复杂,所以价格很高,难以在短期内普及。东西分析仪器有限公司在原有AA7000系列原子吸收分光光度计的基础上,参照顺序扫描发射光谱法的工作方式,研发出AA-7003M原子吸收分光光度计,实现了火焰法顺序波长扫描多元素分析的功能。......(未完)全文(pdf文档)下载,请点击页面上方链接
  • 在一个双稳湍流涡旋火焰中,对间歇性动态的时间-频率定位
    本研究考察了一个双稳湍流旋转火焰中的复杂流场,其中火焰不规则地在离开的M形和附着的V形之间交替。流场由于火焰形状转换在不同的时间尺度上出现各种类型的间歇性动力学。为了正确识别、分离和时间上解析这些动态组分,通过将多维数据序列的最大重叠离散小波包变换(MODWPT)与常规瞬态POD相结合,开发了一种新的多分辨率proper orthogonal decomposition(MRPOD)方法。特别注意选择小波滤波器、分解水平和重构带宽以实现可变的频谱通带和足够的时间分辨率。当应用于双稳旋流火焰中高速三分量速度场测量的数据序列时,MRPOD能够隔离通常被合并为单个POD模式的频率组分,对于即使是弱的和高度间歇性的动力学,增强了空间/时间的一致性。由于改进的频谱纯度,一系列先前未知的动态被揭示出来,其中包括预旋涡核(PVC)和热声(TA)不稳定性等已被描述的不稳定性。特别是,在火焰形状转换期间,发现非周期切换模式只与先前确定的转移模式相耦合,在倒流和燃烧器进口附近产生显著的修改,这是一个已知会影响PVC增长率的区域。在M-V转换期间,TA振荡驱动反复的火焰再附着,最终稳定为V火焰。但是,持续高的TA振幅似乎并不一定预示着这种转换的开始。发现了PVC的更高阶谐波以及TA调制PVC动力学的证据,它们也表现出双峰行为:虽然保持其特征频率,但这些不稳定性在V-或M火焰期间才能发挥作用,且只能具有单螺旋或双螺旋结构。
  • 非定常火焰放热区突发模式OH / CH2O平面激光诱导荧光成像
    采用LaVision的突发式PLIF测量系统及双像器,对非定常火焰放热区进行了突发模式OH/CH2O平面激光诱导荧光成像测量研究。
  • 采用微波消解火焰原子吸收光谱法及FAST火焰自动进样器测定强化早餐谷物中的微量营养元素
    整个世界都会享受一天的开始,在强化谷物中加入牛奶盒水果能简单快速地解决一个营养的早餐。强化早餐麦片也是儿童摄取营养的一个重要来源,而消费者也期待各种谷物质量的提高,并且能持续从市场上选择到强化商品。对于这些营养强化早餐谷物的高效生产,需要生产厂家认真进行配方,而且保证批与批之间必须保持一致。如今正在盛行的对谷物和营养添加剂中微量营养元素的测定,可以使食品生产商对谷物产品质量进行量化并确保产品一致性。具备快速,准确,简便地分析他们样品的能力对于及时出报告起着至关重要的作用,同时能保证实时对样品进行批量调整并对生产过程进行连续控制。食品生产商还必须满足营养标签准则,其中规定其能准确评估微量营养元素。电感耦合等离子体发射光谱法(ICP-OES)作为多元素分析的一种方法一直备受人们的青睐,而火焰原子吸收光谱法由于其运行成本低,速度快,操作简单,成为备受关注的一个替代方案。而进行多元素测定时,火焰原子吸收光谱法需要单独对每个样品的每个元素进行测定,这影响了火焰法测定速度快的优势。为了解决运行速度的问题,我们将使用到一个快速、高通量的自动进样系统装置。虽然每个样品仍需要进行多次分析,但是每个样品的分析时间得到显著的减少,因此相对于手动进样来说,提高了样品引入的通量。此外,自动进样系统能提高分析的精度,而且实验操作人员可以闲置去执行其它的任务。此项工作中,我们证明了珀金埃尔默的PinAAcle900系列原子吸收光谱仪(火焰操作模式)连同快速火焰自动进样附件能对各种强化谷物中的营养元素进行测定。
  • 射频等离子体放电激发氧原子对大气压下部分预混合CH4/O2和H2/O2火焰流场的影响
    采用LaVision的ImagerIntense型CCD相机和NewWavePIV激光器对甲烷加氧气和氢气加氧气两种燃料混合物火焰流场进行了测量,并研究观察了高压高频放电对流场形态,燃烧形态的影响,分析了影响机理,并探讨了可能的应用。
  • 火焰原子吸收光谱法测定水中重金属
    采用火焰原子吸收法测试水样中的钾钠钙镁铁锰具有检出限低,灵敏度高,光谱干扰少,分析速度快,应用范围广的特点,在水质金属元素监测中广泛使用。采集好的水样经酸化调整pH值为2.0,用0.45μm滤膜过滤,测定水样中可溶态金属含量。
  • 连续光源原子吸收直接固体进样石墨炉法测试土壤中Cd火焰法测试Zn
    连续光源原子吸收的多元素顺序测定和灵敏度,石墨炉法主要考察了固体直接进样测土壤中Zn。从现场测试结果看,火焰法的灵敏度高、稳定性好、分析速度快,能用火焰法在波长217.0005nm处检测土壤中Pb(1g样品分解后定容250mL);石墨炉固体直接进样测土壤中Cd,国家环境土壤标准物质ESS—3红壤之Cd的定值=44±14μg/kg,测定值=48.7±4.5μg/kg,结果准确可靠,且没有前处理——即没有空白,没有污染,没有损失,没有稀释,数据直接、真实、快速
  • 连续光源原子吸收直接固体进样石墨炉法测试土壤中Cd火焰法测试Pb
    连续光源原子吸收的多元素顺序测定和灵敏度,石墨炉法主要考察了固体直接进样测土壤中Pb。从现场测试结果看,火焰法的灵敏度高、稳定性好、分析速度快,能用火焰法在波长217.0005nm处检测土壤中Pb(1g样品分解后定容250mL);石墨炉固体直接进样测土壤中Cd,国家环境土壤标准物质ESS—3红壤之Cd的定值=44±14μg/kg,测定值=48.7±4.5μg/kg,结果准确可靠,且没有前处理——即没有空白,没有污染,没有损失,没有稀释,数据直接、真实、快速
  • 连续光源原子吸收直接固体进样石墨炉法测试土壤中Cd火焰法测试Cd、Pb、Zn
    连续光源原子吸收的多元素顺序测定和灵敏度,石墨炉法主要考察了固体直接进样测土壤中Cd。从现场测试结果看,火焰法的灵敏度高、稳定性好、分析速度快,能用火焰法在波长217.0005nm处检测土壤中Pb(1g样品分解后定容250mL);石墨炉固体直接进样测土壤中Cd,国家环境土壤标准物质ESS—3红壤之Cd的定值=44±14μg/kg,测定值=48.7±4.5μg/kg,结果准确可靠,且没有前处理——即没有空白,没有污染,没有损失,没有稀释,数据直接、真实、快速
  • PerkinElmer:采用微波消解火焰原子吸收光谱法及FAST火焰自动进样器测定强化早餐谷物中的Mg元素
    整个世界都会享受一天的开始,在强化谷物中加入牛奶盒水果能简单快速地解决一个营养的早餐。强化早餐麦片也是儿童摄取营养的一个重要来源,而消费者也期待各种谷物质量的提高,并且能持续从市场上选择到强化商品。对于这些营养强化早餐谷物的高效生产,需要生产厂家认真进行配方,而且保证批与批之间必须保持一致。如今正在盛行的对谷物和营养添加剂中微量营养元素的测定,可以使食品生产商对谷物产品质量进行量化并确保产品一致性。具备快速,准确,简便地分析他们样品的能力对于及时出报告起着至关重要的作用,同时能保证实时对样品进行批量调整并对生产过程进行连续控制。食品生产商还必须满足营养标签准则,其中规定其能准确评估微量营养元素。电感耦合等离子体发射光谱法(ICP-OES)作为多元素分析的一种方法一直备受人们的青睐,而火焰原子吸收光谱法由于其运行成本低,速度快,操作简单,成为备受关注的一个替代方案。而进行多元素测定时,火焰原子吸收光谱法需要单独对每个样品的每个元素进行测定,这影响了火焰法测定速度快的优势。为了解决运行速度的问题,我们将使用到一个快速、高通量的自动进样系统装置。虽然每个样品仍需要进行多次分析,但是每个样品的分析时间得到显著的减少,因此相对于手动进样来说,提高了样品引入的通量。此外,自动进样系统能提高分析的精度,而且实验操作人员可以闲置去执行其它的任务。此项工作中,我们证明了珀金埃尔默的PinAAcle900系列原子吸收光谱仪(火焰操作模式)连同快速火焰自动进样附件能对各种强化谷物中的营养元素进行测定。
  • PerkinElmer:采用微波消解火焰原子吸收光谱法及FAST火焰自动进样器测定强化早餐谷物中的Zn元素
    整个世界都会享受一天的开始,在强化谷物中加入牛奶盒水果能简单快速地解决一个营养的早餐。强化早餐麦片也是儿童摄取营养的一个重要来源,而消费者也期待各种谷物质量的提高,并且能持续从市场上选择到强化商品。对于这些营养强化早餐谷物的高效生产,需要生产厂家认真进行配方,而且保证批与批之间必须保持一致。如今正在盛行的对谷物和营养添加剂中微量营养元素的测定,可以使食品生产商对谷物产品质量进行量化并确保产品一致性。具备快速,准确,简便地分析他们样品的能力对于及时出报告起着至关重要的作用,同时能保证实时对样品进行批量调整并对生产过程进行连续控制。食品生产商还必须满足营养标签准则,其中规定其能准确评估微量营养元素。电感耦合等离子体发射光谱法(ICP-OES)作为多元素分析的一种方法一直备受人们的青睐,而火焰原子吸收光谱法由于其运行成本低,速度快,操作简单,成为备受关注的一个替代方案。而进行多元素测定时,火焰原子吸收光谱法需要单独对每个样品的每个元素进行测定,这影响了火焰法测定速度快的优势。为了解决运行速度的问题,我们将使用到一个快速、高通量的自动进样系统装置。虽然每个样品仍需要进行多次分析,但是每个样品的分析时间得到显著的减少,因此相对于手动进样来说,提高了样品引入的通量。此外,自动进样系统能提高分析的精度,而且实验操作人员可以闲置去执行其它的任务。此项工作中,我们证明了珀金埃尔默的PinAAcle900系列原子吸收光谱仪(火焰操作模式)连同快速火焰自动进样附件能对各种强化谷物中的营养元素进行测定。
  • 欧罗拉生物:火焰原子吸收光谱法测定水中重金属
    采用火焰原子吸收法测试水样中的钾钠钙镁铁锰具有检出限低,灵敏度高,光谱干扰少,分析速度快,应用范围广的特点,在水质金属元素监测中广泛使用。采集好的水样经酸化调整pH值为2.0,用0.45μm滤膜过滤,测定水样中可溶态金属含量。
  • 连续光源原子吸收直接固体进样石墨炉法测试土壤中Cd火焰法测试Cd
    连续光源原子吸收的多元素顺序测定和灵敏度,石墨炉法主要考察了固体直接进样测土壤中Cd。从现场测试结果看,火焰法的灵敏度高、稳定性好、分析速度快,能用火焰法在波长217.0005nm处检测土壤中Pb(1g样品分解后定容250mL);石墨炉固体直接进样测土壤中Cd,国家环境土壤标准物质ESS—3红壤之Cd的定值=44±14μg/kg,测定值=48.7±4.5μg/kg,结果准确可靠,且没有前处理——即没有空白,没有污染,没有损失,没有稀释,数据直接、真实、快速
  • PerkinElmer:采用微波消解火焰原子吸收光谱法及FAST火焰自动进样器测定强化早餐谷物中的Ca元素
    整个世界都会享受一天的开始,在强化谷物中加入牛奶盒水果能简单快速地解决一个营养的早餐。强化早餐麦片也是儿童摄取营养的一个重要来源,而消费者也期待各种谷物质量的提高,并且能持续从市场上选择到强化商品。对于这些营养强化早餐谷物的高效生产,需要生产厂家认真进行配方,而且保证批与批之间必须保持一致。如今正在盛行的对谷物和营养添加剂中微量营养元素的测定,可以使食品生产商对谷物产品质量进行量化并确保产品一致性。具备快速,准确,简便地分析他们样品的能力对于及时出报告起着至关重要的作用,同时能保证实时对样品进行批量调整并对生产过程进行连续控制。食品生产商还必须满足营养标签准则,其中规定其能准确评估微量营养元素。电感耦合等离子体发射光谱法(ICP-OES)作为多元素分析的一种方法一直备受人们的青睐,而火焰原子吸收光谱法由于其运行成本低,速度快,操作简单,成为备受关注的一个替代方案。而进行多元素测定时,火焰原子吸收光谱法需要单独对每个样品的每个元素进行测定,这影响了火焰法测定速度快的优势。为了解决运行速度的问题,我们将使用到一个快速、高通量的自动进样系统装置。虽然每个样品仍需要进行多次分析,但是每个样品的分析时间得到显著的减少,因此相对于手动进样来说,提高了样品引入的通量。此外,自动进样系统能提高分析的精度,而且实验操作人员可以闲置去执行其它的任务。此项工作中,我们证明了珀金埃尔默的PinAAcle900系列原子吸收光谱仪(火焰操作模式)连同快速火焰自动进样附件能对各种强化谷物中的营养元素进行测定。
  • 测定银量的应用方案(火焰原子吸收光谱法)
    试样用盐酸、硝酸溶解,在15%体积分数的盐酸介质中,使用空气-乙炔火焰,于原子吸收光谱仪波长328. 1 nm处,测量银的吸光度。按标准曲线法计算银的含量。
  • 连续光源原子吸收石墨炉法测试土壤中Cd火焰法测试Cu、Ni、Pb、Zn
    用火焰法测如此低浓度的Pb、Ni、Cu等正是CS-AAS高灵敏度的表征,实际上Pb、Ni还可低至0.05mL/L,Cu可低至0.02 mL/L,Zn、Cd可低至0.01 mL/L。典型的0.5 mL/L的Cu能产生0.153Abs(正常3个像素时),则1 mL/L的Cu就能得到0.3Abs;用石墨炉法测Cd,能测出0、0.01、0.02、0.03、0.04、0.05μg/L(ppb)的标准曲线。这等高灵敏度是传统AAS所不可能具有的。这是源于短弧氙灯的高强度,棱镜—中阶梯光栅两级色散的高分辨率和CCD检测器实时背景校正的高精确性。这等高灵敏度,在实际分析中就可实现少称样或增大定容体积,降低基体浓度和影响,得到准确的定量结果,而不是半定量的“<X”或未检出的“ND”。本法与ICP法符合得较好,ESS—4土壤标准物质的测定值与标准定值也对得较好,无论火焰法还是石墨炉法RSD也较好。有关测定土壤中Pb、Ni的标准方法都规定用石墨炉法,这是由于火焰法没有足够的灵敏度,但CS-AAS则可用火焰法测。自然FL法比GF法抗基体干扰能力强,分析速度快。
  • 连续光源原子吸收石墨炉法测试土壤中Cd火焰法测试Cu、Ni、Pb、Zn
    用火焰法测如此低浓度的Pb、Ni、Cu等正是CS-AAS高灵敏度的表征,实际上Pb、Ni还可低至0.05mL/L,Cu可低至0.02 mL/L,Zn、Cd可低至0.01 mL/L。典型的0.5 mL/L的Cu能产生0.153Abs(正常3个像素时),则1 mL/L的Cu就能得到0.3Abs;用石墨炉法测Cd,能测出0、0.01、0.02、0.03、0.04、0.05μg/L(ppb)的标准曲线。这等高灵敏度是传统AAS所不可能具有的。这是源于短弧氙灯的高强度,棱镜—中阶梯光栅两级色散的高分辨率和CCD检测器实时背景校正的高精确性。这等高灵敏度,在实际分析中就可实现少称样或增大定容体积,降低基体浓度和影响,得到准确的定量结果,而不是半定量的“<X”或未检出的“ND”。本法与ICP法符合得较好,ESS—4土壤标准物质的测定值与标准定值也对得较好,无论火焰法还是石墨炉法RSD也较好。 有关测定土壤中Pb、Ni的标准方法都规定用石墨炉法,这是由于火焰法没有足够的灵敏度,但CS-AAS则可用火焰法测。自然FL法比GF法抗基体干扰能力强,分析速度快。
  • 应用热成像磷光粒子进行高速平面温度和速度场测量
    可同时测量温度场分布和速度场分布。用于空气对流和热交换研究等应用领域。所采用的技术是使用既可以显示提供速度信息又可以提供温度信息的特种热敏感颗粒作为示踪粒子并应用粒子成像测速原理。成像数据的采集为高重复频率具有时间分辨本领。可以研究速度和温度的动态变化过程。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Zn
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素Mn
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中锌
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中镁
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中锌
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • PerkinElmer:快速进样系统原子吸收火焰法检测果汁中钙
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
  • 快速进样系统原子吸收火焰法检测果汁中微量元素
    水果的营养价值众所周知,而作为100%纯果汁饮料,水果的营养预期会最终转移到果汁饮料里。为了吸引消费者,并解决市场需求,许多果汁产品也可强化微量营养素,以提高或增加微量元素含量。为了保证食品质量和安全,随着食品监管要求的原来越严格,饮料制作商和生产企业要对其饮料里的微量元素和其他营养含量进行量化。质量控制过程中,例行检验要求对使用原材料和最终产品进行检测。尽管ICP-OES在多元素同时分析领域颇受青睐,但火焰原子吸收(AA)以节约成本,简单快速的特性对分析者同样很强的吸引力。然而,通过火焰AAS在多元素分析时要求对每一个元素进行单独的测定,那么它就影响了火焰分析的速度。为了很好的解决这个问题,一种快速、高样品通量的自动化进样系统就应运而生。虽然样品仍然需要多次分析,而每个样品的分析时间相对于手动分析则显著缩短;自动进样系统不仅解放了我们的双手,更让分析的系统精度和稳定性得到明显提高。这里我们将采用火焰原子吸收借助快速自动进样系统提高样品通量来进行不同类型果汁饮料里的多元素分析。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制