当前位置: 仪器信息网 > 行业主题 > >

火焰诱导抑制

仪器信息网火焰诱导抑制专题为您整合火焰诱导抑制相关的最新文章,在火焰诱导抑制专题,您不仅可以免费浏览火焰诱导抑制的资讯, 同时您还可以浏览火焰诱导抑制的相关资料、解决方案,参与社区火焰诱导抑制话题讨论。

火焰诱导抑制相关的仪器

  • 作为一套现代化、模块化的数据采集分析和成像系统,平面激光诱导荧光(PLIF) 是对燃烧实验进行诊断的独特工具。通过对燃烧自由基、污染物、燃料示踪剂等的测量,该系统可以对诸如燃料注入、点火现象和火焰锋面等现象进行研究,从而加深对燃烧过程的理解。PLIF 中的LIF- 激光诱导荧光(LIF) 技术LIF 技术的工作原理为:调谐激光波长,使激光的光子输出频率和燃烧场内待探测离子的某一对上下能级间的跃迁频率相同,形成共振吸收,将下能态粒子泵浦到上能态,当相应的上能态粒子向下跃迁时,会产生荧光信号,然后通过分析荧光信号的强度或光谱形态,获得燃烧场内探测分子浓度、分布及温度等燃烧参量信息。激光诱导荧光LIF 技术对燃烧诊断的优点调谐激光实现待测分析或离子的共振吸收,选择性激发荧光,选择性探测荧光,极大的提升探测灵敏度与信噪比。可通过后数据分析获得被探测分子浓度,分布场和温度等丰富的燃烧参量信息。该系统具有如下特点1、激光辅助光学诊断,是光学非侵入式燃烧组分分析与成像的手段, 配套标准化光学测试系统,可用于航空航天、先进能源等燃烧过程检测2、集成一体式可调谐染料激光系统,稳定,易操作,易维护3、宽动态范围的高灵敏度的影像强化ICCD 实现纳秒级别的影像或光谱采集4、PLIF 系统具有亚纳秒级的同步时间精度5、具有系统搭建、数据采集、数据分析、结果可视化的完整软件平台6、系统具备燃烧自由基LIF 和燃料示踪剂LIF 的专用分析软件7、可实现单组份及多组份测试需求8、可根据用户实际需求, 提供个性化光学实验方案9、可扩展离子图像测速技术(PIV)平面激光诱导荧光(PLIF)PLIF: (Planar Laser Induced Fluorescence) 即所谓的“平面激光诱导荧光”,平面激光诱导荧光实验系统为二维测量系统。如下图所示:实验中通过柱面透镜,将激光光束厚度进行整形,形成激光片(laser sheet), 激光片穿过火焰与火焰相交,形成一个二维截面,通过光学成像的办法,测量火焰中探测粒子的二维荧光图像,从而求出探测粒子在火焰中的浓度分布及温度场的分布等信息。小结:平面激光诱导荧光PLIF 是在LIF 基础上,将激光整形成片状光,切入到燃烧场内,从而激发并探测二维的燃烧场信息。本公司代理ICCD 拍摄的PLIF 图像OH LIF, CO LIF, reaction rate (RR), temperature (T),and mixturefraction (f)平面激光诱导荧光(PLIF)系统架构&bull 染料激光系统:可以根据测试对象的不同,调谐输出不同的输出波长与能量;&bull 激光整形与传输光路:用于把激光变成可以用于PLIF 系统的片状光;&bull 探测系统:根据要求采用合适的ICCD,进行适当的延迟后得到特定时刻的荧光信息;同时还可以加上光谱仪等设备,进行光谱分析,以便得到更丰富的信息;&bull 时序控制装置:对整个实验的时序进行控制;&bull 附属设备:附属设备主要包括用于搭建光路所必须采用的光学平台,光具座,调整架以及反射镜,激光功率能量计等光学配件;&bull 数据采集与分析软件:可以对温度以及浓度场进行分析研究。PLIF图像处理框图配套推荐设备分项参数可调谐染料激光器及片光源整形传输光路&bull 激发波长:220-780nm 连续可调,可以根据要求延展到200-4500nm&bull 线宽: 0.06cm-1&bull 单脉冲能量:110mJ@560nm&bull 柱面镜焦距:50mm&bull 球形聚焦透镜:焦距500mm&bull 片光厚度:0.1-0.3mm&bull 重复频率:10Hz常用激发波长对应测试自由基及本设备对应激光能量时间延迟同步装置&bull 时间延时范围:0-2000s&bull 时间延迟精度5ps&bull 延迟同步通道:4 通道,可根据要求延展到8 通道超快探测器本公司提供多种纳秒超快探测器ICCDiStar 系列ICCD 采用高品质二代或三代像增强器,采用光纤锥高效耦合科学级CCD。 iStar 系列影像ICCD 是目前高端科研市场上应用*为广泛的带有时间闸门的增强型CCD。真实光学门宽小于2ns,该系列产品主要用于燃烧过程、生物发光机制、化学反应过程等研究领域,利用其信号增强功能和时间闸门控制特点,实现极弱信号采集、纳秒时间分辨影像捕捉等实验功能。主要特点&bull 18mm 或25mm 像增强器可选&bull 提供P43 和P46 两种类型的荧光屏&bull *短时间闸门宽度: 2ns( 真正光学闸门宽度)&bull 光阴极重复频率高达500KHz&bull 半导体制冷温度-40℃&bull 内置多通道数字延时发生器,可轻松同步多台设备&bull 内置数字延迟发生器&bull 10ps 的延迟分辨率&bull *低的传输延迟:19ns&bull In telligateTM 微通道板与光阴极实现同步门控,在深紫外段也保持1:108的开关比&bull USB2.0 计算机接口技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机IntelligateTM: 优化 的 UV-VUV 区域门控技术( 标准配置)iStarCMOS 相机,更高帧率!ANDOR 的*新的iStar sCMOS 系列像高灵敏度瞬态探测器可提供要求高分辨率,高帧频以及纳秒时间分辨测试的解决方案。2560×2160 分辨率的探测器广泛应用于时间分辨实验的应用领域,例如等离子体分析。做PLIF 实验测试时,可满足快速瞬态现象采集实验,提供多兆赫兹读出速度,USB3.0 接口,以及配置一台完全集成的、软件控制的数字延时脉冲发生器。该系列探测器可应用于各种复杂的试验中,可通过软件对时间和增益进行控制,二代及三代像增强器可配合各种入射窗口光阴极材料。&bull USB3.0 接口: 即插即用&bull 550 万像素高分辨率sCMOS&bull 50 帧每秒全幅帧频,203 帧@512*512 ROI&bull 内置脉冲延时发生器: 功能软件可控&bull 光学快门: 小于2ns 的真实光学门宽&bull *低的插入延时: *低19ns&bull 独特PIV 模式: 两幅连拍*小间隔200ns&bull IntelligateTM 微通道板与光阴极实现同步门控: 紫外关断比优于10-8:1&bull 光阴极开关速率高达500kHz: 高速激光实验中,增加信噪比&bull 独特的Crop 模式: 专门的采集模式,实现*快的图像采集速度&bull GII 及GIII 像增强器可选&bull 热电制冷*低0℃ C: 理想的低光应用领域&bull 实时控制: 用户界面实时采集优化&bull 光阴极干燥气体吹扫端口: 减小EBI,适用于微光测试领域技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机行业**的影像采集速度 超快多通道模式读出速度通道数( 中心垂直 )通道高度(h 像素数 )通道间隔(d 像素数 )*快帧速fps212121,967220201,37021547726520121222220202013550121289502020542568052
    留言咨询
  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。 二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等 光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 仪器简介:燃烧是获得能量的一种主要方式,同时又是造成大气污染的重要因素之一。使用Lavision公司的FlowMaster可以实时、在线的对火焰成像,并且得到组分浓度、气体组成与火焰温度的定量信息。(激光)汽缸内成像技术的发展在很大程度上推动了新的发动机技术的出现(如直接注入技术和倾斜发动机)Lavision的EngineMaster可以提供关于燃料准备情况、热点成像、火焰传播、No形成和烟雾生成的有关信息技术参数:应用 研究火焰、燃烧炉/器、涡轮机、高压燃烧系统、化学反应器等燃烧现象 研究点火现象, 激波管,汽油机、柴油机的内部燃烧现象.测量能够给出的信息: OH*, CH*, C2*等成分的分布火焰温度,火焰位置与稳定性火焰前端位置及传播, 点火现象的发生 总气体浓度, 温度场 气体组成,燃料/空气混合, 温度 烟雾体积分数 燃料预燃情况, 尾气回收成像 OH 形成, NO 产生,冲击效应火焰中的自由基如:CH, CN, NH, CO, C2, NO2, SO2 等性能 进行指定曲柄角分辨测量, 和曲柄角周期相关的统计分析 具有发动机同步接口 在一个曲柄角周期内的高速测量 (瞬态分析)主要特点:特殊应用和配置 在极小通光孔经情况下可以进行的内窥镜式(钥匙孔式)成像 用于火焰冷却的尾气再循环过程 玻璃器件成型所用火焰的性能分析 CVD 过程控制:石英生产的火焰水解 应用于高压燃烧过程分析的激光诱导白炽光 (LII)技术 电荷分层现象的化学计量学 地图 (l-值)可升级到:SootMaster :用于 LII测量, SprayMaster 和 FlowMaster
    留言咨询
  • 平面激光诱导荧光测试系统PLIF-80【简介】: 平面激光诱导荧光测试系统PLIF-80基于平面激光诱导荧光PLIF及平面激光诱导炽光PLII测试原理进行各种燃烧器、高压燃烧系统中燃烧火焰及碳烟排放特性的测试研究。平面激光诱导荧光测试系统PLIF-80采用紫外片激光激发燃烧场相关燃烧成分发射相关特定光谱,对该特定光谱进行记录,通过图像处理,得到相关成分浓度或者燃烧场温度,从而确定不同环境燃烧情况、燃烧效率。平面激光诱导荧光测试系统PLIF-80主要应用于固体推进剂、液体推进剂、气体推进剂燃烧,研究火焰、化学反应器等燃烧现象 ,研究点火现象,激波管,汽油机、柴油机的内部燃烧现象。可测量:(1)物质燃烧产生的各种自由基的浓度二维分布;(2)测量不完全燃烧的碳烟浓度;(3)测量喷雾的几何参量,如喷雾角,贯穿度,对称度等。 平面激光诱导荧光测试系统PLIF-80【技术指标】: 序号名称参数1YAG脉冲激光器品牌:光谱物理脉冲能量:1000mJ@1064nm,500mJ@532nm,250mJ@355nm,110mJ@266nm光束直径:10mm重复频率:10 Hz2染料激光器在利用YAG激光器激发后,利用不同的染料可以532nm或355nm泵浦,分别得到可激发OH、NO、CO、CH四种不同自由基的激光;配有BBO晶体组。3紫外片光源组件焦距:0.3-2m可调片光厚度:0.5mm-1.5mm范围内可调;片光高度:30-50mm范围内可调;配备紫外准直器配备紫外棱镜组,可用于调节片光高度4精密激光光导臂大于1.6米,360°自由旋转,重锤稳定设计,532nm及266nm波长,高损伤阈值,透过率高达96%;5图像记录系统CCD相机具有双曝光功能;动态范围:12 bit;分辨率:1344 x 1024 像素;光谱范围:290-1100 nm;量子效率:65% 以上@ 500 nm;帧频:10 帧/秒;UV镜头,光圈F/2.8,小对焦距离45cm;250-410nm投射效率不小于90%。6像增强器部分紫外量子效率15%-30%门宽:10 ns-80 ms ( 小能到3ns更好 )时间延迟:60 ns- 80 msTTL 触发7高精度同步器8通道输出,2通道输入,4种以上触发方式,250ps时间分辨率,可实现计算机编程及手动同时控制;建议配内燃机同步器,可实现全自动低频循环相位扫描功能,在循环周期的不同时刻(相位)连续记录现象的变化过程。8其他配备激光器安装架;配备标定炉;系统工作可靠、稳定及安全。平面激光诱导荧光测试系统PLIF-80【应用领域】: 平面激光诱导荧光测试系统PLIF-80应用于航空、航天、航海发动机研究,汽车发动机研究、燃烧物理、工程热物理、爆轰物理等科研领域。
    留言咨询
  • 塑料差示扫描量热法(DSC)第6部分:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定1、氧化诱导期分析仪范围GB/T19466的本部分规定了用差示扫描量热法(DSC)测定聚合材料氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的试验方法。本部分适用于充分稳定混配的聚烯烃材料(原料或最终制品)。本部分也适用于其他塑料。2、氧化诱导期分析仪规范性引用文件下列文件中的条款通过GB/T19466的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T1845.2—2006塑料聚乙烯(PE)模塑和挤出材料第2部分:试样制备和性能测定(ISO1872-2:1997,MOD)GB/T2035—2008塑料术语及其定义(ISO472:1999,IDT)GB/T2546.2-2003塑料聚丙烯(PP)模塑和挤出材料第2部分:试样制备和性能测定(ISO1873-2:1997,MOD)GB/T9352—2008塑料热塑性塑料材料试样的压塑(ISO293:2004,IDT)GB/T17037.3—2003塑料热塑性塑料材料注塑试样的制备第3部分:小方试片(ISO294-3:2002,IDT)GB/T19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则(ISO11357-1:1997,IDT)ISO8986-2:1995塑料聚丁烯(PB)模塑和挤出材料第2部分:试样制备和性能测试3、氧化诱导期分析仪术语和定义GB/T2035-2008和GB/T19466.1确立的以及下列术语和定义适用于本部分。3.1氧化诱导时间oxidationinductiontime等温OIT,isothermalOIT稳定化材料耐氧化分解的一种相对度量。在常压、氧气或空气气氛及规定温度下,通过量热法测定材料出现氧化放热的时间。注:以分(min)表示。3.2氧化诱导温度oxidationinductiontemperature动态OIT,dynamicOIT稳定化材料耐氧化分解的一种相对度量。在常压、氧气或空气气氛中,以规定的速率升温,通过量热法测定材料出现氧化放热的温度。注:以摄氏度(C)表示。4、氧化诱导期分析仪原理4.1概述在氧气或空气气氛中,在规定的温度下恒温或以恒定的速率升温时,测定试样中的抗氧化稳定体系抑制其氧化所需的时间或温度。氧化诱导时间或氧化诱导温度是评价被测材料稳定水平(或程度)的一种手段。试验温度越高氧化诱导时间越短;升温速率越快氧化诱导温度也越高。氧化诱导时间和氧化诱导温度还与试样承受氧化的表面积有关。应注意,在纯氧中测试会比普通大气环境下测得的氧化诱导时间短或氧化诱导温度低。注:氧化诱导时间或氧化诱导温度能评价试样中抗氧剂的效果,但在解释数据时须注意,因为氧化反应动力学与温度和样品中添加剂的固有性质有关。例如经常用氧化诱导时间或氧化诱导温度对树脂的配方进行优选,某些抗氧剂尽管在最终制品的使用温度下性能优异,但由于抗氧剂的挥发或氧化反应活化能的差异,也可能导致较差的氧化诱导时间或氧化诱导温度测试结果。4.2氧化诱导时间(等温OIT)试样和参比物在惰性气氛(氮气)中以恒定的速率升温。达到规定温度时,切换成相同流速的氧气或空气。然后将试样保持在该恒定温度下,直到在热分析曲线上显示出氧化反应。等温OIT就是开始通氧气或空气到氧化反应开始的时间间隔。氧化的起始点是由试样放热的突增来表明的,可通过差示扫描量热仪(DSC)观察。按照9.6.1测定等温OIT。4.3氧化诱导温度(动态OIT)试样和参比物在氧气或空气气氛中以恒定的速率升温,直到在热分析曲线上显示出氧化反应。动态OIT就是氧化反应开始时的温度。氧化的起始点是由试样放热的突增来表明的,可通过差示扫描量热仪(DSC)观察。按照9.6.2测定动态OIT。5、氧化诱导期分析仪器和材料5.1概述仪器和材料见GB/T19466.1-2004第5章,以及下述5.5至5.8(5.7和5.8仅适用于氧化诱导时间测试)。5.2差示扫描量热仪(DSC)仪器差示扫描量热仪(DSC)仪器的最高温度应至少能达到500℃。对于氧化诱导时间的测试,应能在试验温度下、整个试验期间(通常为60min),保持士0.3℃的恒温稳定性。对于高精度测试,建议恒温稳定性为0.1℃。5.3坩埚将试样置于开口或加盖密封但上部通气的坩埚内。最好使用铝坩埚,通过有关方面商定后,也可使用其他材质的坩埚。注:坩埚的材质能显著影响氧化诱导时间和氧化诱导温度的测试结果(即具有相关的催化作用)。容器的类型决定于被测材料的用途。通常,用于电线电缆工业的聚烯烃可用铜坩埚或铝坩埚,而用于地膜和防雾滴膜的聚烯烃仅使用铝坩埚,5.4流量计流速测量装置用于校准气体流速,如带流量调节阀的转子流量计或皂膜流量计。质量流量计应用容积式测量装置进行校准。5.5氧气99.5%工业氧一等品(特别干燥)或更高纯度的氧气。警告——使用高压气体应进行安全、妥当的处理。另外,氧气是极强的氧化剂,能加速燃烧。应将油脂远离正在使用或载氧的设备。5.6空气干燥且无油脂的压缩空气。5.7氮气99.99%纯氮(特别干燥)或更高纯度的氮气。5.8气体选择转换器及调节器氮气和氧气或空气之间的切换装置,用于测量氧化诱导时间时气体的切换。为使切换体积最小,气体切换点和仪器样品室之间的距离应尽量短,滞后时间不能超过1min。对于50mL/min的气体流速,死体积不应超过50mL。注:若滞后时间可知,则能获得更高的测试精度。测定滞后时间一种可行的方法是对一种在氧气中立即氧化的不稳定材料进行测试。用该测试所得的氧化诱导时间可对以后的等温OIT测定值进行修正。6、氧化诱导期分析仪试样6.1概述试样见GB/T19466.1—2004第6章。试样厚度为(650土100)μm,要求厚度均匀、表面平行、平整、无毛刺、无斑点。注:样品和试样的制备方法取决于材料及其加工历史、尺寸和使用条件,它们对测试结果与其意义的一致性是非常关键的。另外,试样的比表面积、样品不均匀、残余应力以及试样与坩埚接触不良都会显著影响试验精度。若要进行横穿样品厚度方向的OIT测试,可能需要厚度远小于650μm的试样。应在试验报告中注明。6.2模压片材的试样为获得形状和厚度一致的试样,应按照GB/T9352-2008或其他与聚烯烃制品相关的标准,如GB/T1845.2-2006、GB/T2546.2—2003,以及ISO8986-2:1995标准,将样品模压成厚度满足6.1要图片转文字台井拆分水印PDF压缩文栏对比搜索与替换求的片材。也可从较厚的模压片材上切取适当厚度的试样。如果相关产品标准没有规定加热时间,在模压温度下最多加热5min。用打孔器从片材上冲出一直径略小于样品内径的圆片。从片材上冲取的试样圆片应足够小,平铺在坩埚内,不应叠加试样来增加质量。注:试样质量随直径变化而变化。根据材料的密度不同,通常对于直径为5.5mm、从片材上切取的试样圆片,其质量应在(12~17)mg之间。6.3注塑片材或熔体流动速率测定仪挤出料条的试样从厚度满足6.1要求的注塑试样上取样。注塑样品时按照GB/T17037.3-2003或其他与聚烯烃制品相关的标准,如GB/T1845.2-2006、GB/T2546.2-2003以及ISO8986-2:1995。最好用打孔器从片材上冲出一直径略小于样品内径的圆片。也可从熔体流动速率测定仪挤出料条上切取试样。此时,应从垂直于料条长度方向上切取,并通过目测观察试样以确保其没有气泡。最好用切片机切取厚度为(650土100)μm的试样。6.4制品部件的试样按照相关标准从最终制品(如管材或管件)切取圆形片材,获得厚度为(650±100)μm的试样。建议采用下述步骤从较厚的最终制品上取样:用取芯钻快速直接穿透管壁以获得一个管壁的横断面,芯的直径刚好小于样品的内径。注意在切取过程中防止试样过热。最好使用切片机,从芯上切取规定厚度的试样圆片。若期望得到表面效应的特性,则从内、外表面切取试样,然后将原始表面朝上进行试验。若期望得到原材料本身的特性,应切去内、外表面,从中间部分切取试样。7、氧化诱导期分析仪试验条件和试样的状态调节见GB/T19466.1—2004第7章。8、氧化诱导期分析仪校准8.1氧化诱导时间(等温OIT)采用两点校准步骤。对聚烯烃可用钢和锡作为标准物质,因为两者的熔点涵盖了规定的分析温度范围(180℃~230℃)。若分析其他塑料,可能需要改变标准物质。按照GB/T19466.1-2004第8章校准仪器。在氮气气氛中使用密封坩埚进行校准。若校准程序中未提供升温速率的校正,则采用下列熔融步骤:钢:以10℃/min从室温升至145℃;再以1℃/min从145℃升至165℃。锡:以10℃/min从室温升至220℃;再以1℃/min从220℃升至240℃。8.2氧化诱导温度(动态OIT)应按照GB/T19466.1—2004第8章所述步骤对仪器进行校准,所用吹扫气为氮气或空气。9、氧化诱导期分析仪操作步骤9.1仪器准备见GB/T19466.1—2004中9.1。9.2试样放置见GB/T19466.1—2004中9.2。若试样是切自管材或管件内、外表面,应将其关注的表面朝上放入坩埚内。由于此时不测定热流,称量试样时可精确至土0.5mg。将试样放到适当类型的锅内。必须加盖时,应将其刺破以使氧气或空气流至试样。除非坩埚是通气的,否则不能密封坩埚。9.3坩埚放置见GB/T19466.1-2004中9.3。9.4舞气、空气和氧气流速设定采用与校准仪器时相同的吹扫气流速。气体流速发生变化时需重新校准仪器。吹扫气流速通常是(50士5)mL/min。9.5灵敏度调整调整仪器的灵敏度以使DSC曲线突变的纵坐标高度差至少是记录仪满量程的50%以上。计算机控制的仪器无需此调整。9.6测量9.6.1氧化诱导时间(等温OIT)在室温下放置试样及参比样,开始升温之前,通氮气5min。在氮气气氛中以20℃/min的速率从室温开始程序升温试样至试验温度。恒温试验温度的选取尽量是10℃的倍数,而且每变化一次只改变10℃。可按照参考标准的规定或有关方面商定采用其他的试验温度。当试样的OIT小于10min时,应在较低温度下重新测试;当试样的OIT大于60min时,也应在较高温度下重新测试。达到设定温度后,停止程序升温并使试样在该温度下恒定3min。打开记录仪。恒定时间结束后,立即将气体切换为同氮气流速相同的氧气或空气。该氧气或空气切换点记为试验的零点。继续恒温,直到放热显著变化点出现之后至少2min(见图1)。也可按照产品技术指标要求或经有关方面商定的时间终止试验。试验完毕,将气体转换器切回至氮气并将仪器冷却至室温。如需继续进行下一试验,应将仪器样品室冷却至60℃以下。每个样品的试验次数可由有关方面商定。建议重复测试两次,报告其算术平均值、低值和高值。注:由于氧化诱导时间与温度和聚合物中的添加剂有复杂的关系。因此外推或比较不同温度下得到的数据是无效的,除非有试验结果能证实。t1——氧气或空气切换点(时间零点);t2——氧化起始点;t3——切线法测的交点(氧化诱导时间);t4——氧化出峰时间。图1氧化诱导时间曲线示意图切线分析方法9.6.2氧化诱导温度(动态OIT)开始升温之前,在室温下用测试用吹扫气(即氧气或空气),将载有试样及参比样坩埚的仪器吹扫器5min。在氧气或空气气氛中从室温开始程序升温试样至放热显著变化点出现后至少30℃(见图2)。尽量采用10℃/min或20℃/min的升温速率。也可按照产品技术指标要求或经有关方面商定的温度终止试验。试验完毕后,将仪器冷却至室温。如需继续进行下一个试验,应将仪器样品室冷却至60℃以下。每个样品的试验次数可由有关方面商定。建议重复测试两次,报告其算术平均值、低值和高值。T1——聚合物的熔融温度;T2——氧化起始点;T3——切线法测的交点(氧化诱导温度);T4——氧化出峰温度。图2氧化诱导温度曲线示意围——切线分析法9.7清洗在空气或氧气中至少升温至500℃并保持5min以清洗污染的DSC测量池,清洗频率可根据相关认可程序或结果偏离情况而定。作为预防措施,清洗频率应按照实验室的规程执行。10、氧化诱导期分析仪结果表示将数据以热流速率为Y轴,以时间或温度为X轴进行绘图。采用手工分析时,为便于分析应尽量扩展X轴。记录的基线应充分延长至氧化放热反应起始点之外,外推放热曲线上最大斜率处的切线与延长的基线相交(见图1或图2)。该交点对应的时间或温度即是氧化诱导时间或氧化诱导温度,保留三位有效数字。上述切线分析法是确定交点的优选方法。但当氧化反应缓慢时,可能会产生逐步放热的峰,此时在放热曲线上选择合适的切线比较困难。若用切线分析法时选择的基线很不明显,可使用偏移法。在距离第一条基线0.05W/g处(见图3或图4)画一条与其平行的第二条基线。将第二条基线与放热曲线的交点定义为氧化起始点。有逐步放热峰的热分析曲线也可能是由于试样制备欠佳,如,试样厚度不均、不平或有毛刺、斑痕造成的。因此,在用偏移分析法对结果进行评价时,建议在确保试样满足第6章中需求后重复扫描,以确认有逐步放热峰的热分析曲线的存在。经有关方面商定,也可采用其他处理手段或基线间距。t1——氧气或空气切换点(时间零点);t2——氧化起始点;t3——偏移法测的交点(氧化诱导时间);t4——氧化出峰时间。图3有逐步放热峰的氧化诱导时间曲线——偏移分析法T1——聚合物的熔融温度;T2——氧化起始点;T3——偏移法测的交点(氧化诱导温度);T4——氧化出峰温度。图4有逐步放热峰的氧化诱导温度曲线——偏移分析法11、氧化诱导期分析仪精密度11.1氧化诱导时间精密度三种聚乙烯和三种聚丙烯样品精密度试验结果见表1。表1聚乙烯和聚丙烯氧化诱导时间的精密度数据11.2氧化诱导温度精密度因未获得实验室间数据,氧化诱导温度试验方法的精密度尚不可知。待得到实验室间数据后,将在下次修订中增加有关精密度的内容。注:ISO的精密度参见附录A。12、氧化诱导期分析仪试验报告试验报告应包括GB/T19466.1-2004第10章中要求的信息以及下列内容:a)样品及试样制备方法的详细描述;b)所用的吹扫气类型及流速;c)试验温度;d)所用的测量技术(切线法、偏移法或其他协定的方法);e)氧化诱导时间(min),或氧化诱导温度(℃),均保留三位有效数字;f)升温程序(包括氧化诱导温度的升温速率);g)任何与GB/T19466本部分规定有差异的条件或材料的细节。附录A(资料性附录)lSO11357-6:2008的精密度A.1精度及偏差由瑞士材料测试协会EMPA于1998和2000年对四种不同PE在14和16个实验室间进行了循环测试,相应的等温及动态OIT试验结果见表A.1、表A.2。表A.1等温OIT的重复性和再现性表A.2动态OIT的重复性和再现性
    留言咨询
  • 作为一套现代化、模块化的数据采集分析和成像系统,平面激光诱导荧光(PLIF) 是对燃烧实验进行诊断的独特工具。通过对燃烧自由基、污染物、燃料示踪剂等的测量,该系统可以对诸如燃料注入、点火现象和火焰锋面等现象进行研究,从而加深对燃烧过程的理解。PLIF 中的LIF- 激光诱导荧光(LIF) 技术LIF 技术的工作原理为:调谐激光波长,使激光的光子输出频率和燃烧场内待探测离子的某一对上下能级间的跃迁频率相同,形成共振吸收,将下能态粒子泵浦到上能态,当相应的上能态粒子向下跃迁时,会产生荧光信号,然后通过分析荧光信号的强度或光谱形态,获得燃烧场内探测分子浓度、分布及温度等燃烧参量信息。激光诱导荧光LIF 技术对燃烧诊断的优点调谐激光实现待测分析或离子的共振吸收,选择性激发荧光,选择性探测荧光,极大的提升探测灵敏度与信噪比。可通过后数据分析获得被探测分子浓度,分布场和温度等丰富的燃烧参量信息。该系统具有如下特点1、激光辅助光学诊断,是光学非侵入式燃烧组分分析与成像的手段, 配套标准化光学测试系统,可用于航空航天、先进能源等燃烧过程检测2、集成一体式可调谐染料激光系统,稳定,易操作,易维护3、宽动态范围的高灵敏度的影像强化ICCD 实现纳秒级别的影像或光谱采集4、PLIF 系统具有亚纳秒级的同步时间精度5、具有系统搭建、数据采集、数据分析、结果可视化的完整软件平台6、系统具备燃烧自由基LIF 和燃料示踪剂LIF 的专用分析软件7、可实现单组份及多组份测试需求8、可根据用户实际需求, 提供个性化光学实验方案9、可扩展离子图像测速技术(PIV)平面激光诱导荧光(PLIF)PLIF: (Planar Laser Induced Fluorescence) 即所谓的“平面激光诱导荧光”,平面激光诱导荧光实验系统为二维测量系统。如下图所示:实验中通过柱面透镜,将激光光束厚度进行整形,形成激光片(laser sheet), 激光片穿过火焰与火焰相交,形成一个二维截面,通过光学成像的办法,测量火焰中探测粒子的二维荧光图像,从而求出探测粒子在火焰中的浓度分布及温度场的分布等信息。小结:平面激光诱导荧光PLIF 是在LIF 基础上,将激光整形成片状光,切入到燃烧场内,从而激发并探测二维的燃烧场信息。本公司代理ICCD 拍摄的PLIF 图像OH LIF, CO LIF, reaction rate (RR), temperature (T),and mixturefraction (f)平面激光诱导荧光(PLIF)系统架构&bull 染料激光系统:可以根据测试对象的不同,调谐输出不同的输出波长与能量;&bull 激光整形与传输光路:用于把激光变成可以用于PLIF 系统的片状光;&bull 探测系统:根据要求采用合适的ICCD,进行适当的延迟后得到特定时刻的荧光信息;同时还可以加上光谱仪等设备,进行光谱分析,以便得到更丰富的信息;&bull 时序控制装置:对整个实验的时序进行控制;&bull 附属设备:附属设备主要包括用于搭建光路所必须采用的光学平台,光具座,调整架以及反射镜,激光功率能量计等光学配件;&bull 数据采集与分析软件:可以对温度以及浓度场进行分析研究。PLIF图像处理框图配套推荐设备分项参数可调谐染料激光器及片光源整形传输光路&bull 激发波长:220-780nm 连续可调,可以根据要求延展到200-4500nm&bull 线宽: 0.06cm-1&bull 单脉冲能量:110mJ@560nm&bull 柱面镜焦距:50mm&bull 球形聚焦透镜:焦距500mm&bull 片光厚度:0.1-0.3mm&bull 重复频率:10Hz常用激发波长对应测试自由基及本设备对应激光能量时间延迟同步装置&bull 时间延时范围:0-2000s&bull 时间延迟精度5ps&bull 延迟同步通道:4 通道,可根据要求延展到8 通道超快探测器本公司提供多种纳秒超快探测器ICCDiStar 系列ICCD 采用高品质二代或三代像增强器,采用光纤锥高效耦合科学级CCD。 iStar 系列影像ICCD 是目前高端科研市场上应用*为广泛的带有时间闸门的增强型CCD。真实光学门宽小于2ns,该系列产品主要用于燃烧过程、生物发光机制、化学反应过程等研究领域,利用其信号增强功能和时间闸门控制特点,实现极弱信号采集、纳秒时间分辨影像捕捉等实验功能。主要特点&bull 18mm 或25mm 像增强器可选&bull 提供P43 和P46 两种类型的荧光屏&bull *短时间闸门宽度: 2ns( 真正光学闸门宽度)&bull 光阴极重复频率高达500KHz&bull 半导体制冷温度-40℃&bull 内置多通道数字延时发生器,可轻松同步多台设备&bull 内置数字延迟发生器&bull 10ps 的延迟分辨率&bull *低的传输延迟:19ns&bull In telligateTM 微通道板与光阴极实现同步门控,在深紫外段也保持1:108的开关比&bull USB2.0 计算机接口技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机IntelligateTM: 优化 的 UV-VUV 区域门控技术( 标准配置)iStarCMOS 相机,更高帧率!ANDOR 的*新的iStar sCMOS 系列像高灵敏度瞬态探测器可提供要求高分辨率,高帧频以及纳秒时间分辨测试的解决方案。2560×2160 分辨率的探测器广泛应用于时间分辨实验的应用领域,例如等离子体分析。做PLIF 实验测试时,可满足快速瞬态现象采集实验,提供多兆赫兹读出速度,USB3.0 接口,以及配置一台完全集成的、软件控制的数字延时脉冲发生器。该系列探测器可应用于各种复杂的试验中,可通过软件对时间和增益进行控制,二代及三代像增强器可配合各种入射窗口光阴极材料。&bull USB3.0 接口: 即插即用&bull 550 万像素高分辨率sCMOS&bull 50 帧每秒全幅帧频,203 帧@512*512 ROI&bull 内置脉冲延时发生器: 功能软件可控&bull 光学快门: 小于2ns 的真实光学门宽&bull *低的插入延时: *低19ns&bull 独特PIV 模式: 两幅连拍*小间隔200ns&bull IntelligateTM 微通道板与光阴极实现同步门控: 紫外关断比优于10-8:1&bull 光阴极开关速率高达500kHz: 高速激光实验中,增加信噪比&bull 独特的Crop 模式: 专门的采集模式,实现*快的图像采集速度&bull GII 及GIII 像增强器可选&bull 热电制冷*低0℃ C: 理想的低光应用领域&bull 实时控制: 用户界面实时采集优化&bull 光阴极干燥气体吹扫端口: 减小EBI,适用于微光测试领域技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机行业**的影像采集速度 超快多通道模式读出速度通道数( 中心垂直 )通道高度(h 像素数 )通道间隔(d 像素数 )*快帧速fps212121,967220201,37021547726520121222220202013550121289502020542568052
    留言咨询
  • 麻醉诱导箱 400-860-5168转4586
    产品介绍在进行动物手术时,采用异氟烷吸入式气体维持麻醉前,首先需要对动物进行诱导麻醉,将动物快速麻倒。将动物放入此透明诱导盒中进行诱导麻醉,整个过程只需2-5分钟即可达到效果,选择透明材料方便实验人员随时观察动物麻醉状态。 诱导箱为透明PMMA材质,密闭性好,无泄漏,有三种规格可选,其他可定制。尺寸选择标准:24cm×12cm×15cm小号:12.8cm×13.6cm×9.4cm大号:45cm×30cm×20cm其他尺寸可定制
    留言咨询
  • 仪器简介:北京欧兰科技正式推出当前市场上最先进的激光诱导白炽光烟雾粒子测试系统LII 300. 激光诱导白炽光是一种精确的,非介入式时间分辨测量方法,用于测量烟雾粒子浓度,特征表面积,以及初级粒子粒径等参量.技术参数:浓度测量:低端: 1.0 parts per trillion, 2 微克/立方米高端: 10 ppm, 20 克/立方米量程: 1,000,000:1精度 +/- 2%初级粒径测量量程: 10 &ndash 100 nm精度 +/- 2% of max.Specific Surface AreaSoot Surface Area / Primary Particle Diameter主要特点:实时测量烟雾浓度 (基于质量或体积度量), 特征表面积, 以及初级粒子粒径快速,可靠, 简便易用.测量样品可来自原始尾气或定容采样系统(CVS)不需要对样品进行稀释不需假设烟雾粒子聚集体为球形对烟雾粒子的测量不受浓缩的挥发性物质和有机材料的干扰具有高度选择性专利技术的 NIST 标准可溯源标定方法.系统坚固耐用, 可长期免维护运行测量动态范围可达 1: 1,000,000
    留言咨询
  • 麻醉诱导盒 400-860-5168转1886
    麻醉诱导盒采用吸入式气体维持麻醉前,首先需要将动物放入此透明诱导盒中进行诱导麻醉,整个过程只需2-5分钟即可达到效果。另外,诱导盒出口可连接麻醉气体过滤罐,吸收麻醉废气,避免直接排放到环境中对空气或实验人员产生有害影响。特殊亚克力材料制成,结实耐用,方便清洗,也方便观察动物的麻醉状态翻盖式设计,顶盖加厚,顶盖与盒体接触的中间部分添加塑料密封条确保密闭性良好翻盖后有挡板,防止顶盖坠落或折断 -规格参数-型号V101品牌RWD尺寸240×120×180 mm
    留言咨询
  • 产品介绍:DZ-DSC100A是南京大展检测仪器一款主要测量熔点和氧化诱导期的差示扫描量热仪,采用全新的炉体设计,上盖示设计,测试样品方便,炉体保温性高,精度高,7寸彩色触摸屏显示,信息全面。测试范围:DZ-DSC100A差示扫描量热仪测材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、热稳定性、氧化诱导期、氧化诱导温度、比热容、固化/交联都是DSC的研发领域。应用范围:DZ-DSC100A差示扫描量热仪主要研究金属、塑料、陶瓷等材料的热稳定性、熔点和氧化诱导期等。性能优势:1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片。2.数字式气体流量计,控制吹扫气体流量,数据直接记录在数据库中。3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。4.采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更稳定。5.采用USB双向通讯,操作更便捷。技术参数:温度范围室温~600℃ DSC量程0~±600mW升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃气体流量0~200ml/minDSC精度0.01mW控温方式全程序自动控制工作电源AC220V/50Hz(或定制)气氛控制仪器自动切换显示方式24bit色,7寸 LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质,带有一键校准功能,用户可自行校正温度和热焓客户案例: 南京理工大学 安徽理工大学 湖南大学 湖南理工大学河南工业大学 华南理工大学 南京工业大学 南京师范大学 西安理工大学 西北大学 太原理工大学 西华师范大学
    留言咨询
  • 产品介绍:DZ-DSC100A是南京大展检测仪器一款灵敏度较高的氧化诱导期测试仪,采用上开盖式的炉体设计,保温性高,耐高温,同时测试样品方便,双向操作,7寸彩色触摸屏显示,操作便捷。测试范围:DZ-DSC100A氧化诱导期测试仪主要测材料的熔点和氧化诱导期,同时可测玻璃化转变温度、冷结晶、相转变、熔融、结晶、热稳定性等。应用范围:DZ-DSC100A氧化诱导期测试仪主要应用在材料科学、化学、生物医学和食品工业等领域。性能优势:1.新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片。2.数字式气体流量计,控制吹扫气体流量,数据直接记录在数据库中。3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。4.采用USB双向通讯,操作更便捷。5.采用7寸24bit色全彩LCD触摸屏,界面更友好。6.采用专业合金传感器,更抗腐蚀,抗氧化。技术参数:温度范围室温~600℃ DSC量程0~±600mW升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃气体流量0~200ml/minDSC精度0.01mW控温方式全程序自动控制工作电源AC220V/50Hz(或定制)气氛控制仪器自动切换显示方式24bit色,7寸 LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质,带有一键校准功能,用户可自行校正温度和热焓
    留言咨询
  • LIFS-405:有稳光谱稳功率的半导体激光器作为激光光源,小型化在线检测的微型光纤光谱仪接收,通过稳定可靠的荧光探头来采集激光诱导荧光的便携式光谱仪。新一代的量子点荧光标记检测量子点:一种由II-Ⅵ族或III-V族元素组成的纳米颗粒,尺寸小于或者接近激子波尔半径(一般直径不超过10nm),具有明显的量子效应。 图1 不同大小的CdSe量子点暴露在紫外光下会发出不同颜色的荧光农药残留检测:油溶性的CdSe/ZnS转移到水相,然后通过阴阳离子共轭作用与有机磷水解酶形成生物共轭体,通过该方法研制了一种新型的量子点生物传感器,制备的生物传感器可用来检测对氧磷农药,最低检测限达到10~8mol/L。 量子点生物荧光探针:利用量子点极强的荧光特性长期实时监测和跟踪生物分子间相互作用。不同颜色量子点同时观测活细胞中或其表面的多个靶分子的优点,通过检测药物作用前后的各量子点的荧光。 快速、高效、高灵敏度地寻找到药物作用的真正靶点,加快药物研发和论证。 基于激光诱导的水果糖分无损测定利用405激光诱导荧光光谱获取400~ 1000 nm 范围内的特征变量。提取12个特征变量时, 建立的猕猴桃糖度多元线性回归(MLR)模型的校正集相关系数Rc为0.932,预测均方根误差( RMSEC ) 为0. 476 4  Brix,预测集相关系数Rp为0. 822 7,预测均方根误差( RMSEP )为0. 564 5 B rix。 图2 基于405激光诱导荧光测量的糖分准确度对比图 油料检测/ 石油污染物检测石油以碳氢化合生成的烃类为主要成分(95%~99%),同时还有一些非烃类组分,其中芳烃族尤其是多环芳烃具有很高的荧光效率,通过激光诱导荧光对芳香烃及其衍生物的测定来实现汽油或石油类污染物组分测定和鉴别。 编号油类品种峰数目峰值波长/nm相对强度a高真空油244049524033286b0#柴油1499524c美孚速霸10W40润滑油3414442494890870809d美孚速霸5W30润滑油244048220341451e-10#柴油243849016891991f航空煤油243248814611419g胜利油田原油2442486423397h97#汽油2441488688690i93#汽油2442484403360图3 基于405激光诱导荧光测量的汽油、石油类数据表
    留言咨询
  • 小动物诱导箱、麻醉箱(针对大鼠、小鼠、兔子等动物有不同的型号,敬请来电咨询)在进行动物手术时,采用异氟烷吸入式气体维持麻醉前,首先需要对动物进行诱导麻醉,将动物快速麻倒。将动物放入诱导箱中进行诱导麻醉,整个过程只需1-2分钟即可达到效果,选择透明材料方便实验人员随时观察动物麻醉状态。麻醉诱导箱出口可连接麻醉废气清除装置,可将排出的麻醉气体清除,避免直接排放到环境中或被实验人员吸收。多种规格诱导盒(详见订货信息),满足不同种类和大小动物的实验需求。我们可根据您的实验需要,量身订做合适的尺寸。 动物麻醉箱的产品特点 :可对小动物进行气体麻醉的前期诱导;也可用于实验动物的安乐处死(符合动物福利);密闭性好,结实耐用;材料透明,方便观察;尺寸可以订做,也可以进行其他特别的改进和设计。主要规格型号:可根据需求,选择自动型小动物安乐处死系统:CL-1000型小动物安乐处死系统采用自动化控制的二氧化碳缺氧致死的方式,控制和增加箱体内二氧化碳的浓度,并在达到一定的浓度后,自动切断气源,维持一定的诱导时间,在没有惊扰、极轻微的痛苦中,对动物进行快速的诱导死亡。CL-1000型小动物安乐si系统与常规型手控流量控制式安乐处死箱相比较,有明显的优势:使用便捷:自动化程度高,一键式完成操作;省事省力:系统可自动进行充气、维持和清除废气的作业;参数可调:流速、通气时间、维持时间、废气清洗时间可调可控;使用更安全:自动清除箱体内的大量二氧化碳和废气,确保实验室的安全,可连续进行多批次的实验操作;还可根据需求,选择一体式小动物安乐处死系统主要特点: 设备为一体式设计,可隔放在实验台上使用 系统可预设程序,自动往安乐处死箱内通入设定量的二氧化碳 多种参数可进行设置:流速、通气时间、维持时间、废气冲洗时间,紫外杀菌时间 设置参数后,可一键式操作即可完成动物麻醉、安乐处死、废气清除的整个操作,过程中无需有人值守 二氧化碳气体通入流速:0-50L/min,数字化显示,调控精度为0.01L/min 设备具有CO2传感器,能实时检测箱体内CO2浓度,并可调节和控制箱体内CO2的浓度 全触摸屏操作,人性化界面设计,显示屏上可同屏显示多种运行状态参考文献:1. Lu, Zhenyao, et al. "Quantitative analysis of 20 purine and pyrimidine metabolites by HILIC-MS/MS in the serum and hippocampus of depressed mice." Journal of Pharmaceutical and Biomedical Analysis 219 (2022): 114886. doi: 10.1016/j.jpba.2022.1148862. Ma, Peipei, et al. "Wound healing of laser injured skin with glycerol monooleicate cubic liquid crystal." Burns 46.6 (2020): 1381-1388. doi: 10.1016/j.burns.2020.03.0163. Sun, Xian, et al. "Yishen Qingli Heluo granule in the treatment of chronic kidney disease: network pharmacology analysis and experimental validation." Drug Design, Development and Therapy (2022): 769-787. doi: 10.2147/dddt.s3483354. Sun, Xian, et al. "Yishen Qingli Heluo granule ameliorates renal dysfunction in 5/6 nephrectomized rats by targeting gut microbiota and intestinal barrier integrity." Frontiers in Pharmacology 13 (2022). doi: 10.3389/fphar.2022.8588815. Zhao, Xiaoye, et al. "An injectable and antifouling self-fused supramolecular hydrogel for preventing postoperative and recurrent adhesions." Chemical Engineering Journal 404 (2021): 127096. doi: 10.1016/j.cej.2020.1270966. Liu, Bin, et al. "JS-K, a nitric oxide donor, induces autophagy as a complementary mechanism inhibiting ovarian cancer." BMC cancer 19.1 (2019): 1-15. doi: 10.1186/s12885-019-5619-z7. Li, Xiaozhou, et al. "Antibacterial, antioxidant and biocompatible nanosized quercetin-PVA xerogel films for wound dressing." Colloids and Surfaces B: Biointerfaces 209 (2022): 112175. doi: 10.1016/j.colsurfb.2021.1121758. Kan, Mo, et al. "Investigating the mechanism of ShengmaiYin (codonopsis pilosula) in the treatment of heart failure based on network pharmacology." Combinatorial Chemistry & High Throughput Screening 25.13 (2022): 2191-2202. doi: 10.2174/13862073256662202210934159. Chen, Yongli, et al. "Microfluidic chip interfacing microdialysis and mass spectrometry for in vivo monitoring of nanomedicine pharmacokinetics in real time." Journal of Chromatography A 1683 (2022): 463520. doi: 10.2139/ssrn.405357010. Jia, HuiJie, et al. "Anti-inflammation and anti-aging mechanisms of mercaptopurine in vivo and in vitro." Biochemical and Biophysical Research Communications 638 (2023): 103-111. doi: 10.1016/j.bbrc.2022.11.03511.苏鹏亮,沈明勤,许尤琪.健脾活血方对肝癌原位移植瘤的抑制作用及机制探讨.现代中西医结合杂志, 2021 年11月,30( 33).12.张娇娇,谢晨龙,雍玥等.电针对心肌梗死后小鼠长期生存率的影响及其机制研究.针刺研究,2022年3月第47卷第3期.13.汤倩倩,卢山,蒋敏海.SCID小鼠永久性左侧大脑中动脉阻塞模型的制备及评价. 浙江医学,2017 年第39 卷第6 期.14.张芯,杨宁,蔡伟等.丙氨酰谷氨酰胺对脑缺血再灌注损伤小鼠肠道通透性改变的影响.中华老年心脑血管病杂志,2019年2月第2l卷第2期.15.王晓冬,王莹,王彩霞等,5-HT1A和5-HT3受体在七氟烷诱发老龄大鼠脑神经毒性中的作用.中华麻醉学杂志,2021年5月第41卷第5期. 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 激光诱导击穿光谱(LIBS)技术是一种激光烧蚀分析技术,它是将激光聚焦到样品表面,当激光脉冲的能量密度大于击穿阈值能量时,就会在样品局部产生等离子体,随着外界膨胀逐渐冷却,并发射出表征样品组分信息的光谱,然后通过高分辨率光谱仪来对光谱进行收集,是一种快速定性及定量的工业分析技术。手持式LIBS镁铝合金光谱仪是一款先进的光谱分析工具,集成了激光诱导击穿技术和光谱分析方法,轻便易携、操作简单,具有分析速度快、无需样品准备、破坏性小、点探测作用面积小、多元素同时在线检测等特点,可对金属材料进行精确的牌号识别及元素定量分析特别适用镁、铝、硅等轻质元素的检测。为金属材料、冶金冶炼等行业提供了一种便捷、高效的元素分析解决方案,为用户在复杂环境中进行精确、实时的样品分析提供了可靠的工具。使用优势一秒检测一键式操作,灵活高效1秒检测,2秒出结果。便携轻巧整机重量仅1.65千克,体积小,符合人体工程学要求,续航能力强,可满足野外应用的测试需求。安全激光使用基于高能脉冲安全(3B)激光技术,正常使用对人体绝无危害。此外,仪器配备传感激光安全互锁装置,以帮助降低激光误射的风险。烧灼伤小可以实现微损检测,对于样品靶面的烧蚀损伤越小,裸眼基本无法察觉。无需备样可以用于对任何形态物质(固体、液体、气体及混合态)进行元素分析,且无需或仅需少量的样品制备。低检出限高分辨硬件配置和自主拟合算法,为仪器带来更高的精确度和更低的检出限。在大多数常规应用中,LIBS的检出限可以从几ppm一直到%级的范围。应用场景汽车制造航空航天金属加工废旧回收建材行业电子工业规格参数核心技术集成了激光诱导击穿技术和光谱分析方法尺寸255 x 294 x 80 mm(L×W×H)重量1.65KG(含电池)储存器32G防水性能IP54显示系统4.3英寸工业级电阻触摸屏自动根据外部环境亮度调节显示器亮度激光器固态激光器光谱仪 <0.2nm分辨率单次测试时间1秒出结果高精度测试模式快检、普检、精检模式(可通过算法分析多个单次测试值后的平均值)合金基体铝合金、铜合金、镍合金、钛合金、铅合金、锌合金、镁合金及不锈钢、中低合金钢等合金牌号和主要元素含量可测试元素Mg、Al、Cr、Cu、Fe、 Mn、Ni、Si、Li、Ti、Zn、Zr、Pb、Sn、Sr等样品种类圆柱体,薄板,直径1mm以上线材,箔片(~0.02mm),大碎片(无粉末)检测限根据不同基体及元素而异工作温度标准0~40℃,建议5~35℃软件应用程序更新,数据下载及牌号库自定义编辑,生成检测报告、校准文件编辑等安全性传感激光安全互锁装置电源系统配备MSBUS总线智能电池2块单电池可持续工作8H左右,可直接查看电池剩余容量符合航空危险品运输条例
    留言咨询
  • 随着新能源产业的快速发展,动力性锂电池需求量在大幅提升,对锂矿石的需求逐步走高,锂价格持续攀升,锂资源争夺加剧。锂(Lithium)是一种金属元素,元素符号为Li,对应的单质为银白色质软金属,也是密度最小的金属。用于原子反应堆、制轻合金及电池等。锂电池拥有开路电压高,比能量高,工作温度范围宽,放电平衡,自放电子等优点,在新能源汽车动力电池和储能领域具有长期需求刚性和需求前景。 一直以来,对锂矿石中锂元素的测量方法比较复杂,需要送到实验室用专业设备进行检测,前期需要经过复杂的制样过程,整体测试周期较长,成本也比较高。 激光诱导光谱技术的问世,为锂元素的检测带来了一种全新的方法,通过手持(便携)式激光诱导击穿光谱仪可以对锂矿石(原矿、粉末)进行现场快速的定性及定量分析,而简单的制样压片及全自动的操作,可以让用户轻松使用。 激光:1064nm LASER 分析范围:Li元素检测 工作环境温度:0°C至40°C 显示器:彩色,电阻式触摸屏显示器蓝牙:支持打印功能内存/数据存储: 16 GB工业级存储数据传输:WiFi,蓝牙操作系统:Linux安全性:受密码保护的用户安全性语言:英语、中文、日语、韩语、德语、法语、意大利语、俄罗斯语标准配件:带锁屏蔽防爆手提箱气体保护:高纯氩
    留言咨询
  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。 二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等 光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 仪器特点: 1、专为塑料、橡胶行业测量氧化诱导期设计,整机一体化,减少信号损失,减少干扰。 2、样品在仪器上方,操作方便。 3、小型化加热炉,减小热惰性,从室温开始就能保证对样品进行线性升温,恒温控制更精确。 4、完善的两路气氛控制系统,采用质量流量控制器。测量过程中,氮气、氧气自动切换。 5、用户利用标准试样可进行温度、恒温系数校正,减少误差。 6、可自动测出氧化诱导期数据和自动生成曲线。 7、可自动作出切线,求出交叉点并能直接得到该交叉点到氮氧切换的实际时间长. 8、仪器可自动生成氧化诱导期实验报告。 9、大屏幕液晶显示,实时显示仪器的状态和数据,两套测温电偶,一套电偶实时显示炉温(无论加热炉工作与否)另一套电偶显示工作时样品温度。 10、用户给出计算的公式或计算方法,我厂能及时提供相应的软件研制产品。 11、仪器具有远程操作维护、调校功能(通过互联网可对仪器进行远程操作)。 概述氧化诱导期热稳定实验适用于国标GB/T17391-1998、GB/T19466.6-20091、 主要参数: 温度控制精度0.1度 2、 试验方法: 截取少量样品放入仪器样品架内,接通氧气和氮气在氮气状态下,以20℃/min的速率升温到200℃±0.1℃保持恒温7分钟,迅速切换成氧气,并记录曲线明显变化的时间即氧化诱导期时间。 仪器指标温度数据 温度范围: 室温~500℃ 温度准确度:±0.1℃升温速率:0.1℃/min至80℃/min 气氛系统:氮气、氧气自动切换 DSC数据 DSC测量范围:0-±500mw最小分辨率:±0.1μw准确度:±0.1μw坩埚容积 0.06ml或0.12ml
    留言咨询
  • 仪器简介: 这是一种能够获得定量的空间分辨的碳烟粒子体积分数的非介入式激光测量系统。被激光脉冲加热的粒子所发射的激光诱导白炽光信号(LII)用来测量高空间分辨和时间分辨的粒子浓度(体积分数)。相机配有可控的能够快速开启和关闭的快门并和激光脉冲的发射同步运转,从而能够记录瞬态的碳烟浓度分布. 初级粒径分布信息也能够从LII 信号中提取出来。 仪器能够获得: 1。即时的粒子浓度分布场 2。提供统计信息 (平均量和均方根偏差数值) 3。初级粒径分布 SootMaster 能够容易地升级,添加其它片状光源照明成像测量系统功能来获得关于(反应)流场更丰富的信息。: 碳烟-LII 化学特性-LIF, Raman, Emission 流场-PIV SootMaster是一种激光片状光源照明成像测量系统,设计用来在线地,实时地测量和揭示柴油发动机,直接喷射火花隙点火发动机,气体涡轮机,透平机,以及各种金属或陶瓷粒子流对象之中,碳烟粒子的生成及分布特征。 LII 的灵敏度比标准的重力分析技术要高若干个量级,能够探测监控现代车辆引擎在瞬态条件下超低含量的碳烟粒子生成过程。 Laser-Induced Incandescence 激光诱导白炽光 (LII) 技术采用高强度片状激光束照明 (反应的) 粒子流场中用户选择的特定区域的颗粒流动. 片状激光束中照明区域中的粒子被加热到接近碳的气化温度 ( 4000K). 探测相机的高速快门和激光脉冲同步开启记录被加热粒子所发射的白炽光 (黑体辐射) 信号。选择恰当的波长滤波和时间门控制可以保证精确地测量碳烟粒子的体积分数参量。初级粒径分布可以由LII信号的比率求出. LII 信号的标定通过测量已知粒子浓度的参考源或采用光束视线消失方法来完成. 三维测量可以通过光束扫描方法实现. 系统由高功率脉冲激光器,片状照明激光束成型组件,带有快速开关快门的光学测量用CCD相机系统,带有滤波片的成像光学元件,带有图像采集卡的计算机,以及图像数据采集,处理和显示软件SootMaster 构成.可根据用户个性化应用需要提供定制的系统和升级.主要特点: 在线式碳烟体积分数(初级粒径)成像 高灵敏度 (低探测极限) 同时具有大的动态范围 高时间分辨 (10ns) 和高空间分辨测量 具有片状光源和图像畸变校正功能 利用照明光消光现象或参考源进行信号标定
    留言咨询
  • 在进行动物手术时,采用异氟烷吸入式气体维持麻醉前,首先需要对动物进行诱导麻醉,将动物快速麻倒。将动物放入此透明诱导盒中进行诱导麻醉,整个过程只需2-5分钟即可达到效果,选择透明材料方便实验人员随时观察动物麻醉状态。另外,诱导盒出口可连接麻醉气体过滤罐(装有活性碳),可将排出的麻醉气体清楚,避免直接排放到环境中或被实验人员吸收。瑞沃德自行开发有多种规格诱导盒(详见订货信息),满足不同种类和大小动物的实验需求。突出特点:l 有机玻璃透明材料制成,结实耐用,方便清洗,也方便观察动物的麻醉状态l 翻盖式设计,且顶盖加厚,顶盖与盒体接触的中间部分添加塑料密封条,密封性非常好l 翻盖后,有挡板,防止顶盖坠落或折断l 入口与出口分别位于对侧,且入口位置相对高于出口,符合空气与麻醉气体的物理特性,保证麻醉气体充满整个诱导盒。订货信息规格产品名称备注V100麻醉诱导盒-小鼠(15cm*10cm*10cm)含1个有机玻璃盒、1.2米长的波纹管和1个气体过滤罐R510-31SV101麻醉诱导盒-大鼠(24cm*12cm*18cm)含1个有机玻璃盒、1.2米长的波纹管和1个气体过滤罐R510-31SV102麻醉诱导盒-兔猫(40cm*18.5cm*25cm)含1个有机玻璃盒、1.2米长的波纹管和1个气体过滤罐R510-31SV103麻醉诱导盒-大动物(50cm*30cm*30cm)定制含1个有机玻璃盒、1.2米长的波纹管和1个气体过滤罐R510-31S
    留言咨询
  • 激光诱导荧光光谱仪 400-860-5168转3408
    上转换激光诱导荧光光谱仪型号 : LIFS808-BUP产品介绍LIFS808-BUP上转换激光诱导荧光光谱仪主要由三个部件组成:808nm半导体激光器、808nm激光诱导上转换荧光探头和微型光纤光谱仪。相比于传统的荧光光谱仪,808nm上转换激光诱导荧光光谱仪的具有激光功率小、灵敏度高、测量不受样品形态影响等特点。样品可以是固体、粉末、液体等。主要应用领域可分为:生物医疗、宝石鉴定、纳米材料等。特点列表◆ 灵敏度高,相对传统的0/90的采样方式荧光信号提高2个数量级◆ 采样灵活,固体、液体、粉末均可检测◆ 内部增加了窄线宽滤光片,有效屏蔽激发光本身噪声影响◆ 半导体808nm激光器,体型小,功耗低◆ 20mW-500mW,激光功率可调,利用效率更高◆ 共聚焦设计,OD3的滤波效果◆ 可适配显微镜产品参数项目值整机尺寸180mm*135mm*70mm整机重量2Kg激光器波长808nm+/-3nm预热时间:15 Min激光器线宽2nm输出功率20mW-500mW功率稳定性3% RMS使用寿命5000hrs滤光片激光截止深度3荧光波长范围400nm-750nm适应激光器波长范围808nm+/-3nm尾纤长度100cm工作距离7.5mm探头直径9.6mm光谱范围400-1100nmA/D16信噪比300:1分辨率1nm工作温度10-35℃电源电压5V 3A操作软件结构图实物图下转换激光诱导荧光光谱仪产品介绍主要由三个部件组成:808nm半导体激光器、808nm激光诱导下转换荧光探头和微型光纤光谱仪。相比于传统的荧光光谱仪,808nm下转换激光诱导荧光光谱仪的具有激光功率小、灵敏度高、测量不受样品形态影响等特点。样品可以是固体、粉末、液体等。主要应用领域可分为:生物医疗、宝石鉴定、纳米材料等。特点列表◆ 灵敏度高,相对传统的0/90的采样方式荧光信号提高2个数量级◆ 采样灵活,固体、液体、粉末均可检测◆ 内部增加了窄线宽滤光片,有效屏蔽激发光本身噪声影响◆ 半导体808nm激光器,体型小,功耗低◆ 20mW-500mW,激光功率可调,利用效率更高◆ 共聚焦设计,OD3的滤波效果◆ 可适配显微镜产品参数项目值整机尺寸180mm*135mm*70mm整机重量2Kg预热时间15 Min激光器波长808nm+/-3nm激光器线宽2nm输出功率20mW-500mW功率稳定性3% RMS使用寿命5000hrs滤光片激光截止深度3尾纤长度100cm适应激光器波长范围808nm+/-3nm荧光波长范围850nm-1100nm工作距离7.5mm探头直径9.6mm光谱范围400-1100nm分辨率1nm信噪比300:1A/D16工作温度10-35℃电源电压5V 3A操作软件结构图实物图
    留言咨询
  • 差示扫描量热议产品介绍:DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。差示扫描量热议测量范围:材料的特性:如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、氧化诱导期、氧化诱导温度、比热容、固化/交联,都是DSC的研发领域。DZ-DSC100A差示扫描量热仪的优势:1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片。2.数字式气体流量计,控制吹扫气体流量,数据直接记录在数据库中。3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。4.采用Cortex-M3内核ARM控制器,运算处理速度更快,温度控制更。5.采用USB双向通讯,操作更便捷。6.采用7寸24bit色全彩LCD触摸屏,界面更友好。7.采用专业合金传感器,更抗腐蚀,抗氧化。DZ-DSC100A差示扫描量热仪的技术参数:温度范围室温~600℃ DSC量程0~±600mW升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃DSC噪声0.01μWDSC解析度0.01μWDSC灵敏度0.001mW控温方式全程序自动控制曲线扫描升温扫描气氛控制仪器自动切换显示方式24bit色,7寸 LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质,带有一键校准功能,用户可自行校正温度和热焓
    留言咨询
  • STZ诱导糖尿病小鼠体脂比分析仪糖尿病是一种慢性疾病,其特点是相对或绝对胰岛素缺乏,导致高血糖。慢性高血糖可导致多种并发症,如神经病变、肾病和视网膜病变,并增加心血管疾病的风险。据世界卫生组织(WHO)数据,2030年之前糖尿病将成为全球第七大死亡原因。STZ (Streptozotocin) 是一种常用的化学物质,被广泛用于实验室研究中诱导糖尿病小鼠模型。通过注射STZ,可以损伤胰岛的β细胞,导致胰岛素分泌不足,从而模拟人类糖尿病的病理过程。STZ诱导糖尿病小鼠模型是一种常用的研究工具,可以帮助科学家们更好地理解糖尿病的发病机制和病程进展。STZ诱导糖尿病小鼠模型具有与人类糖尿病相似的病理生理特征,如高血糖、胰岛素抵抗和β细胞功能受损等。通过研究STZ诱导糖尿病小鼠模型,科学家们可以深入探讨糖尿病的治疗方法和潜在机制,而STZ诱导糖尿病小鼠体脂比对于糖尿病治疗的药物评价起到重要作用。STZ诱导糖尿病小鼠体脂比研究面临的问题?1、 老鼠个体差异性的影响,无法长期考察各种药物及外界因素、营养对动物体生理指标的影响。2、 如何得到活体老鼠测脂肪等体成分含量,传统的监测方法是宰杀后作组织形态学检查,部分基因模型昂贵且难建模,老鼠不舍得杀。3、 解剖分离不完全,无法分离皮下脂肪。STZ诱导糖尿病小鼠体脂比检测---QMR清醒小动物体成分技术QMR清醒小动物体成分技术在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小动物的生理参数,考察各种药物、运动、外界因素及营养对动物体生理指标的影响。清醒小动物体成分分析仪主要用于与代谢有关的脂肪、瘦肉及体液等的成分的定量分析,协助实现药物有效部位(成分)的活性筛选,代谢性疾病的病因、病机等研究。QMR清醒小动物体成分技术可应用在药学、医学、公共卫生学、运动健康、动物科学、营养学等领域的学科研究,用于活体小动物的脂肪、瘦肉、体液的检测。STZ诱导糖尿病小鼠体脂比分析仪主要功能:快速,无损测量小鼠的肌肉、脂肪和体液含量。应用于代谢、内分泌、糖尿病和肥胖症等研究。检测方式:低场核磁共振测定法STZ诱导糖尿病小鼠体脂比分析仪主要技术指标:磁体技术:永磁体;探头线圈:小鼠体成分专用探头;无损测试:对操作者和实验动物无任何损伤(动物无需麻醉) 纽迈专用小鼠体成分分析软件;STZ诱导糖尿病小鼠体脂比分析仪产品优势:STZ诱导糖尿病小鼠体脂比分析仪是一款基于低场核磁共振技术,可测量活鼠体内脂肪、瘦肉、水分的含量的仪器。仪器通过定量磁共振技术与多元变量数学分析技术,实现清醒状态下活鼠的实时无损检测与持续监测,具有快速、精准、稳定、安全等优点。STZ诱导糖尿病小鼠体脂比分析仪性能特点:1、测试迅速:测试简单、快速、整个测试过程在1min内;2、样品无需预处理:样品无须麻醉,无须处死;3、测试结果:测试结果为脂肪含量,肌肉含量,可靠真实且稳定性高、重复性好;4、适用性: 活体大鼠、小鼠、兔子等小动物均可测量;
    留言咨询
  • 激光诱导荧光(Laser-induced flourescence, LIF)技术是上世纪80年代出现的一种检测方法,由于其具有高检测灵敏度以及适合于微区检测的特点,获得了快速的发展和广泛的应用。近年来,随着电子科学技术的发展,依据物质发射的辐射能或辐射能与物质的相互作用的光谱分析方法在各个领域中的应用越来越广泛。本公司激光诱导荧光检测仪是由将激发光源,发射光检测及样品盘集成为一体的小型测试仪器。仪器采用通用的96孔板,可对被测样品进行高通量的荧光实时检测,并对其荧光信号进行详细分析。由于采用了固体激光器作为光源,不仅简化了结构且具有较高的激发光强,加之高灵敏度的光信号检测设计,使本仪器成为了一台高效、灵敏且体积较小的的检测仪器;由于设计有便于修改的参数系统,既可供科研工作设置各种实验条件,对被测样品进行实时观测及动态分析,提供完整的实验数据;也可向批量检测、试剂研发等应用方面发展,实现样品批量测试的一致性。本仪器可以被应用于药物检测、免疫分析、矿物分析、环境监测、生化试剂研究以及生命科学等相关领域。仪器特点:1. 激光诱导荧光具有极高的灵敏度,比通常荧光检测仪高出几个数量级;2. 特殊的光学设计,有效增强了光信号的检测效率;3. 选择性高,特异性强,仅对产生荧光或被荧光物质标记的样品产生响应,能有效消除基体成分的干扰;4. 采用96孔板样品池,试剂用量少,能实现生物样品批量检测,确保实验结果在同一条件下进行。5. 孔板设计有振动功能,可使样品溶液混合均匀;应用领域:Y 蛋白质、氨基酸、多肽、DNA和细胞等多种生化样品的分析Y 矿石、染料、衍生的金属离子、超痕量生物活性物质的分析Y 环境分析、药物质量检测,食品安全检测以及医学检测Y 基因组学、蛋白质组学、单分子及单细胞分析、以及临床诊断Y 荧光检测机理应用研究Y 纳米科学、生物探针、量子点探针方面应用研究Y 生物试剂以及医疗试剂的研发生产技术参数:2 测量动态范围:大于5个数量级2 测量精度:优于0.05%2 倍增管工作电压:300 ~ 1000 V2 放大器增益:1×,10×,100×,1000×,10000×,100000×2 放大器输出漂移:优于0.05%2 采样速率:10,50,100,200,375,750,1500,3000 T/S2 系统自动调零2 光电倍增管波长范围:230 — 920 nm(峰值波长:630 nm)2 激发波长:470 nm(可选)2 发射波长:525 nm(可选)2 样品盘:96孔板2 振动功能:弱,中,强
    留言咨询
  • 概述国内首创专用氧化诱导期测试仪,内嵌工控电脑,无需连接电脑,一键式操作测试氧化诱导期,自动生成氧化诱导期图谱,自动打印测试结果。自动氧化诱导期操作结束后仪器蜂鸣提示,过程无需人员看管,简单高效。符合国标GB/T2951.42-2008、GB/T15065-2009、GB/T17391-1998、GB/T19466-2009,IEC60811-4-2:2004、GB/T19466.6-2009。技术特点1、工业级别的微电脑宽屏触摸结构,显示信息丰富,包括设定温度,样品温度,氧气流量,氮气流量,差热信号,各种开关状态。2、网络通讯接口,通用性强,信号可靠不中断,支持自恢复连接功能。3、炉体结构紧凑,升降温速率任意可调。4、改善了安装工艺,全部采用机械固定方式,完全避免炉体内部胶体对差热信号的污染。5、双温度探头,保证样品温度测量的高度重复性。6、数字气体质量流量计自动切换两路气流量,切换速度快,稳定时间短。7、标配标准样品,带自动温度校准功能。8、内嵌工控电脑,无需连接电脑,直接测试氧化诱导期时间,自动打印测试结果。9、可用U盘导出氧化诱导期测试图谱。10、PC机软件自适应各种分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统。技术参数1、DSC量程:0~±200mW2、温度范围:室温~500℃3、升温速率:0.1~80℃/min4、温度分辨率:0.01℃5、温度精度:±0.1℃6、温度重复性:±0.1℃7、DSC精度:±2%8、DSC分辨率:0.001mW9、DSC解析度:0.001mW10、控温方式:升温、恒温、降温、循环控温(全程序自动控制)11、曲线扫描:升温扫描12、气氛控制:气体质量流量计自动切换两路气体13、显示方式:24bit色,7寸LED触摸屏显示14、数据接口:RJ45网络接口、标准USB接口、RS232,配套相应操作软件15、参数标准:配有标准校准物,带一键校准功能,用户可自行对温度进行校准16、工作电源:AC220V50Hz/60Hz
    留言咨询
  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。 图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 什么是激光诱导激光光谱系统?激光诱导击穿光谱(LIBS)是一种原子发射光谱仪。可以对固相、液相和气相基体中几乎所有元素进行定性和定量的分析。不同于传统的检测方法如ICP-OES或者XRF,LIBS在检测过程中无需进行复杂的样品制备。为了达到这个目的,LIBS采用高能量聚焦脉冲激光光束将样品激发至等离子态,对产生的对应元素发射谱进行分析。元素发射谱的波长与元素的种类直接相关,而元素谱线的强度则和元素的含量相关。 激光诱导击穿光谱技术特点激光诱导击穿光谱技术系统在进行元素分析的时候,需要样品量极少,对样品的破坏性小;具有自清洁能力,几乎不需要样品制备;可以实现快速实时在线分析;具有遥测能力,可实现有毒、强辐射等恶劣环境中的远距离、非接触性测量;具有ppm量级探测灵敏度,可对痕量元素进行探测。 激光诱导击穿光谱产品构成海洋光学多通道光谱仪MX2500+,凭借其高效的外部同步时钟,完美的协同了所有通道实现精确的延迟采集,准确的在原子激发辐射突出时采集到完整的原子谱线信号。同时,MX2500+可以应客户的需求在180-1037nm的范围内自由的配置光谱仪的通道数量和覆盖范围,系统自带的高效时钟可以完美的同步所有通道,并同时实现精确触发两台外部设备。(如激光器或微波增强设备)激光器:常使用Nd:YAG激光器,激光器的脉冲宽度一般为纳秒量级,能够在极短时间内在极小面积上集中大量能量,作为系统激励源,将样品表面微量物质剥离并激发出等离子体。样品仓:密闭稳定的仓式结构,一般会包含样品平台,激光聚焦和收光光路,气体吹扫系统,成像系统,激光安全保护等配套装置。产品特点:可搭配稳定高效的样品仓系统可升级光谱模块支持双脉冲激光器宽光谱高分辨力测量,180-1037nm范围内多达16384个像元高触发信号精度(±10ns)应用方向:环境监测(土壤污染,工业生产)材料分析(金属,煤炭,塑料)医学和生物化学(骨骼,牙齿)国家安全(爆炸,生化武器)艺术品鉴定(颜料,陶瓷,宝石) LIBS系统应用:土壤&农作物污染检测:2012年8月,海洋光学HR2000光谱仪搭建的激光诱导击穿光谱系统顺利完成八个月的太空之旅抵达火星。美国国家航空和航天管理局(NASA)于2011年11月发射了装载有海洋光学HR2000定制光谱仪的火星科学实验车--“好奇”号火星探测车,抵达后将对火星表面土壤成分进行探测,使用的就是这种技术,随着工业的发展,土壤污染也日益严重,从而会对植物,尤其是农作物造成很大影响。海洋光学的客户使用MX2500+光谱仪组合样品仓,在实验室内使用激光诱导击穿光谱技术进行土壤和农作物中重金属成分进行研究,结合对应重金属元素的浓度标定,可以实现对应元素在土壤和农作物中的含量测量。由于激光诱导击穿光谱技术无需样品制备的特点,能够实现快速测量,因此研究结果对未来的土地污染防治,农作物生产方面起到很大的指导意义。 古玩鉴定:在经济日渐繁荣的今天,古玩收藏已不再是文人雅士的专利,而逐渐成为人们经济生活的一部分。北京古玩城是亚洲zui 大的古玩交易中心,北京古玩城古玩珠宝检测修复中心的专家最近将海洋光学的MX2500+激光诱导等离子体光谱分析仪引进到古玩鉴定中,以实现更快、更准确地鉴定古玩真伪的目的。 系统用极其微小的一束激光打在鉴定样品上,通过接收激发的等离子体实现对微量样品的光谱分析。该检测对样品的损伤是分子级别的(相对于把样品放到桌子上产生的损伤还小);同时,MX2500+具有体积小巧、便于携带的优势。一直以来,中国的古玩鉴定一直依赖“白发”专家,MX2500+系统将为古玩鉴定专家带来更高的准确性,使这个古来的行业焕发青春活力。多通道应用:煤炭&金属测量:冶金行业属于我国国民经济的支柱型产业。传统的合金组份测量和都是在合金生产完成以后,对成品取样、处理、制样的方式进行成分分析,速度较慢,一旦检出结果不达标,会报废整批样品,带来很大的损失,MX2500+多通道光谱仪,作为一种灵活配置的设备,在合金生产过程的在线分析和质量控制应用上能够大显身手。海洋光学提供了用于激光诱导击穿光谱的完整系统部件。沈阳自动化所采用海洋光学的MX2500+进行合金组份检测研究,同时进行了MX2500+用于合金定量分析的算法模型优化,在优化的模型下,进行了合金元素的定性半定量分析和钢水在线监测分析。煤炭作为我国最重要的能源,同样也存在类似钢铁行业的问题,传统的煤炭分析方法耗时长,无论在煤炭生产或是使用中无法实现实时的成分分析,尤其是对于其中部分成分(硫)含量的实时检测无法实现,因而无法进行实时的质量控制。海洋光学的MX2500+组成的激光诱导击穿光谱测量系统作为一种紫外波段特殊优化的快速成分分析设备,可以实现从煤炭生产到煤炭燃烧各个环节的实时监控。 等离子体发光测量:MX2500+不仅仅可以组建激光诱导击穿光谱系统,还可以用在各种各样的原子光谱测量场合。例如电感耦合等离子体原子发射光谱法(ICP-OES)联合使用,作为燃烧炉后端光谱采集设备。宽波段、高分辨的多通道光谱仪MX2500+也是激光的测量的应用中的一把利器。大气压辉光放电过程中会生成等离子体,采用多通道光谱仪MX2500+测量等离子体,对使用大气压辉光放电的工作实现了实时过程监测。等离子刻蚀是半导体及微系统制造超大规模集成电路制造过程中的关键步骤,使用多通道光谱仪MX2500+实时监测等离子体光谱,即可在刻蚀过程中精确的定位蚀刻终点,提升刻蚀的工艺水平。技术参数系统性能参数可测元素原子序数Z≥1浓度范围≥10ppm,取决于元素种类样品性状固体或压片粉末zui 大样品尺寸30*30*20mm(x*y*z)zui 大样品重量2kg平移台行程范围60*60*60mm(x*y*z)光斑尺寸≤50um,激光波长1064nm激光器波长Nd:YAG 1064nm/532nm可选激光器能量50mJ/200mJ可选光纤抗紫外光纤成像可选高倍微观视野软件控制硬件设备,获取数据支持二次开发,动态链接库光谱处理算法,荧光背景扣除光谱仪参数波长范围180nm-1037nm通道数1~8通道光学分辨率0.1nm(FWHM)探测器线阵CCD/面阵CCD可选积分时间1ms~65s触发延迟±450ns触发抖动±10ns尺寸重量MX2500+尺寸(8通道)460mm*150mm*165mmMX2500+重量(8通道)7kg样品仓尺寸450mm*360mm*460mm样品仓重量25kg激光驱动器尺寸360mm*133mm*435mm激光驱动器重量14kg
    留言咨询
  • 激光诱导击穿光谱(Laser Induced Breakdown Spectroscopy, 简称 LIBS)是一种原子发射光谱。它利用高能量聚焦脉冲激光光束激发样品表面,对产生的原子光谱通过算法分析得到对应元素。2012 年 8 月,美国宇航局(NASA)的“好奇号(Curiosity)”探测车正式登陆火星,该探测车上搭载了一套 LIBS 设备对火星岩石进行了成分分析实验,出色的完成了检测任务,从而 LIBS 技术开始被人所熟知。由苏州星帆华镭光电科技有限公司成功研制的手持(便携)激光诱导击穿光谱仪可用于铁基、铝基、铜基、镍基等合金材料的牌号鉴别及所含元素的定量分析,并拓展至非金属材料的元素测量,特别是锂矿石中锂的测量,锂电池材料如磷酸铁锂中锂含量的测量。
    留言咨询
  • 机台型号:ZB-422B 氧化诱导期测试仪一.概述ZB-422B型氧化诱导期测试仪为触摸屏式,主要针对塑料行业订制,可测各种塑料的熔融、块状、颗粒、薄膜、管道、套管等氧化诱导期的测试。二.符合标准?GB/T 19466.6-2009/ISO 11357-3:1999 第6部分:氧化诱导时间和氧化诱导温度的测定三.技术参数:1.温度范围: 室温~500℃ 2.温度分辨率: 0.01℃3.温度波动: ±0.1℃4.温度重复性: ±0.1℃5.升温速率: 0.1~100℃/min6.恒温时间:建议<24h7.控温方式:升温,恒温(全自动程序控制)8.DSC量程: 0~±600mW9.DSC解析度: 0.01mW10.DSC灵敏度: 0.01mW11.工作电源: AC220V/50Hz或定制12.气氛控制气体:氮气、氧气(仪器自动切换)13.气体流量:0-300mL/min 14.气体压力:0.2MPa15.显示方式: 8寸 LCD触摸屏显示,超硬度仪器面膜设计。四.技术特点: 1.工业级别的8寸触摸屏,仪器面框与触摸屏完美结合。2.传感器与炉体紧密结合,使基线更平稳,灵敏度和分辨率大大提升。3.USB通讯接口,通用性强,通信可靠不中断,支持自恢复连接功能。4.数字流量计,气流控制更准确。5.自动切换两路气氛流量,切换速度快,稳定时间短。同时增加一路保护气体输入。6.软件简单易操作。
    留言咨询
  • 叶绿素荧光光谱包含了植物丰富的光合作用的信息,一直是光合生理研究的热点课题,且被成为研究植物光合作用快速无损的敏感探针。结合荧光光谱的特征和叶绿素等生化生理参数的测定,可为不同水、肥、病胁迫下荧光光谱指标与其他生化参数间的关系,为精准农业和林业研究等提供优化调控和精准管理的理论依据和技术支持。 由于仪器硬件的限制,长久以来,对植物叶绿素荧光的限制光谱的研究大都限制在实验室研究或者卫星高光谱数据的分析,而无法通过有人机载平台进行大面积高精度的高光谱成像遥感探测。作为全球高光谱成像仪领军的制造商之一,Headwall公司推出的 Hyperspec Fluorescence叶绿素高光谱成像仪,专门针对日光诱导叶绿素荧光(Solar-Induced chlorophyll Fluorescence, SIF)的光谱范围(670-780nm),以0.1~0.2nm的光谱分辨率为用户提供叶绿素a和叶绿素b科研级的高光谱立方体数据。 Hyperspec Fluorescence基于Headwall公司独占的像差校正型凸面全息反射光栅专利技术,并选用TE制冷型sCMOS感光器件,以峰值120:1的信噪比(SNR,unbinned),为用户提供高质量的荧光高光谱数据基础。 Hyperspec Fluorescence结构紧凑,尺寸 30 x 30 x 20cm,重量仅为6.3kg左右,可满足众多有人机平台的挂载要求。主要特点:亚纳米级分辨率,具有分辨日光诱导叶绿素荧光的能力制冷型科学级CMOS探测器,在弱光下也有极高的灵敏度在670-780nm范围内,具有2160个光谱通道,光谱采样率约为0.05nm可选配Trimble APX-15 高精度IMU/GNSS模块和紧凑型高速数据处理单元组成机载高光谱系统
    留言咨询
  • 激光诱导击穿光谱技术(LIBS),利用脉冲激光产生的等离子体烧蚀并激发样品(通常为固体)中的物质,并通过光谱仪获取被等离子体激发的原子所发射的光谱,以此来识别样品中的元素组成成分,进而可以进行元素鉴定、材料的识别、分类、定性以及定量分析。 CNI生产的激光诱导等离子体光谱仪中,激光器稳定可靠,光谱仪分辨率高,软件分析快速准确,是实验室、工业现场的实用分析仪器。■ 基本组成 脉冲激光器、光纤光谱仪、聚焦透镜、样品、转台、耦合透镜、光纤座、光纤。■ 激光器的选择固态物质LIBS检测金属样品(金属、合金、钢、矿石等组分检测)高能脉冲激光器E:100μJ~10mJ样品导热性好,激光器能量足够高即可非金属多组分样品(土壤中重金属、氮磷钾肥检测、煤质分析等)低频高能脉冲激光器E:10mJ~100mJ样品导热性,高温易化学反应或燃烧液态物质LIBS检测液体样品(海水、工业污水检测等)高能脉冲激光器E:100mJ~500mJ由于等离子体冲击波作用,液面波动影响探测稳定性气态物质LIBS检测气体或气溶胶(空气成分、大气污染物、汽车尾气、工业废气检测等)低频高能脉冲激光器E:100mJ~1000mJ气体击穿阈值大,需要高能激光作为激发光源
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制