当前位置: 仪器信息网 > 行业主题 > >

基本性能测试

仪器信息网基本性能测试专题为您整合基本性能测试相关的最新文章,在基本性能测试专题,您不仅可以免费浏览基本性能测试的资讯, 同时您还可以浏览基本性能测试的相关资料、解决方案,参与社区基本性能测试话题讨论。

基本性能测试相关的资讯

  • 皮革及鞋材、鞋类基本测试项目介绍
    标准集团(香港)有限公司皮革及鞋材测试仪器供应齐全,作为标准实验室鞋类测试的仪器的专业供应商,拥有Gellowen品牌的核心竞争力和专业的技术团队,其产品几乎涵盖了鞋类测试的所有项目,为您提供鞋材及鞋类全方位的物理性能测试和化学测试选择。  以下为您介绍鞋材及鞋类测试的一些基本项目和标准分类。一、鞋材及鞋类产品测试项目:  1. 外观测试  凭借人的感觉器官及借助一些标样、标准照片、图片、图谱等来评估外观的测试(色牢度测试、耐黄变测试、移色测试)  2. 物理测试  评估产品的性能、舒适度、安全性和质量的测试(鞋跟拉脱强度、天皮附着力、配件拉脱、车缝强度、条带拉力强度、耐曲折、胶着力、抗张强度、撕裂强度、爆裂强度、剥离强度、耐磨测试、防滑测试)  3. 人体力学性能测试  评估使用者和产品的互动协调性(能量吸收、压缩回弹、垂直回弹)  4. 环境试验  评估产品对外界环境的抵抗和适应性,功能性测试(防水性、隔热性、水汽渗透和吸收性能)  5. 使用和寿命测试  评估产品实际使用性能和寿命的相关测试(试穿评估测试、抗老化测试)  6. 生物和化学测试(限制物质测试)  7. 辅料的安全性能测试(小物件测试、纽扣拉链性能测试)  二、鞋材及鞋类产品主要测试标准:  美国纺织化学家和染色学家协会(AATCC)  美国测试和材料学会(ASTM)  澳大利亚标准学会(AS)  英国标准学会(BS)  加拿大标准委员会(CAN/CGSB)  德国标准学会(DIN)  欧洲标准化委员会(EN)  中国国家标准化管理委员会(GB)  国际标准化组织(ISO)  日本工业协会(JIS)  鞋类贸易研究协会(Satra)  多年来,标准集团和多家欧美知名仪器设备制造商建立了长期战略合作关系,从而保障了客户能得到始终如一的高品质服务。多年的专业积累,使得我们不仅能为国内科研单位、企业、质检机构提供高品质的测试仪器设备,还能为材料测试相关的实验室提供整体的解决方案。从前期标准化的实验室规划、设计和施工流程,到后续的培训、资质认证和规范化运作,我们努力为客户想的更深,做得更多。  活动期间,我公司不仅对产品价格上做出优惠,同时免费提供相关附件和测试培训。  活动详情:http://www.standard-groups.com/  产品详情:http://www.selaoduyi.com/  或来电咨询:021-64208466,13671843966(24小时服务热线)
  • 包亦望教授:工程材料力学性能评价技术与技巧
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。  如下为中国建筑材料科学研究总院包亦望教授所作报告的精彩内容:中国建筑材料科学研究总院包亦望教授报告题目:工程材料力学性能评价技术与技巧  包亦望教授在报告中谈到,力学性能测试的常规方法主要有拉、压、弯和扭,另外还有痕迹法、相对法、预测法三种新检测方法,随后,包亦望教授就这三种新检测方法做了具体的介绍。  包亦望教授介绍到,痕迹法中通过三角棱压痕和四方棱压痕两种常用方法可以证明材料的能量吸收能力,甚至材料断裂阻力特性都可以很简单地通过材料的硬度和弹性模量来估测,对材料结构设计以及选材均有重要意义;表面残余痕迹能够确定材料的基本性能,并用于失效分析和恶劣环境下的材料性能评价,对于材料的失效诊断以及监测材料在特种环境下的性能演变具有实用价值,而且可以推广应用到建筑工程、地质勘探、宇航探险、无损在线性能评价等领域;球压法可以确定脆性材料局部强度,而且将声发射与材料试验机配合,可以评价材料的常规力学性能,材料或薄膜的抗摩擦、抗划伤能力以及表面和界面的力学性能;而缺口环法可以评价材料在超高温条件下的力学性能,无需任何夹具,操作方便。  相对法能够测试陶瓷高温条件下的弹性模量,评价陶瓷或硬脆膜的性能以及厚膜的弹性模量和强度,可以反映不同材料的弹性恢复差异;材料性能预测法,可以预测压痕过程中的能量耗散能力、弹性恢复能力和陶瓷材料损伤容限。  最后包亦望教授还介绍了材料结构设计中需要考虑的几个重要的材料性能配合比等相关情况。会议现场
  • 三泉中石参与起草的《鲁尔圆锥接头性能测试仪校准规范》开始实施
    三泉中石参与起草的《鲁尔圆锥接头性能测试仪校准规范》开始实施Sumspring三泉中石作为检测仪器行业的佼佼者,以其强大的技术实力努力推动本行业国家标准的建立和更新。近日,Sumspring三泉中石参与起草的JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》已通过严格的审核程序,于2024年7月1日开始实施,适用于鲁尔圆锥接头性能测试仪的校准。这一规范填补了我国对于鲁尔圆锥接头性能测试仪校准方法的空白。JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》的制定过程,充分参考了国内外相关标准要求,如药包材标准《4040 预灌封注射器鲁尔圆锥接头检查法》、GB/T 1962.1-2015《注射器、注射针及其他医疗器械 6%(鲁尔) 圆锥接头》、GB/T 1962.2-2001《注射器、注射针及其他医疗器械 6%(鲁尔)圆锥接头》,以及YY/T 0916.1-2021《医用液体和气体用小孔径连接件》和YY/T 0916.20-2019《医用液体和气体用小孔径连接件》等。这些标准均为药品及医疗器械领域的重要指导文件,此次校准规范的制定,对于规范行业、提升产品品质,为我国在此领域与国际标准接轨具有重要意义。在规范编制过程中,三泉中石充分发挥了其在药包材和医疗器械测试领域的专业优势,结合实际使用情况,对校准流程、参数设置、测试方法等进行了细致的梳理和优化。同时,该规范还严格遵循了国家计量技术规范JJF1071-2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》以及JJF1059.1-2012《测量不确定度评定与表示》等标准,确保了校准结果的准确性和可靠性。随着JJF(京) 139-2024《鲁尔圆锥接头性能测试仪校准规范》的实施,将有力推动我国药包材和医疗器械校准工作的规范化、标准化进程。同时,这也将有助于提高药品和医疗器械的安全性和有效性,保障人民群众的生命健康。作为参与起草单位之一的Sumspring三泉中石,将继续秉承“专业、精准、高效”的服务理念,为中国包装和医疗器械检测技术与世界同步而不懈努力。
  • 科技部调查地方分析测试中心基本情况
    关于转发科技部《关于协助开展地方分析测试中心基本情况调查的函》的通知  各有关单位:  地方分析测试中心建设对于推动测试行业服务于区域经济建设和科技发展具有重要意义。为此,科技部条财司启动地方分析测试中心基本情况调查工作。  现转发科技部《关于协助开展地方分析测试中心基本情况调查的函》,请贵单位协助我们做好调研工作,并请各分析测试中心按照要求,认真填写《地方分析测试中心基本情况调查表》,于2012年4月8日前将调查表反馈至如下通信地址,同时将电子版材料发送到lucialq@sina.cn信箱。  联系人:苏立清  联系电话:010-66163464  通信地址:北京市西城区西直门南大街16号北京市科委西楼209室  邮 编:100035  附件:地方分析测试中心基本情况调查表.doc  北京市科委条财处  2012年3月28日
  • FDA拟修订激光产品性能标准
    美国食品药物管理局(FDA)正就修订激光产品性能标准的提议向有关方征求意见 评议截止期为 9 月 23 日。该提议旨在:(i) 使当前标准与激光产品和医疗激光产品生产商已使用的国际标准更协调一致 (ii) 降低相关制造商的经济负担 (iii) 增强 FDA 对激光产品的监管有效性 (iv) 更好地保护和促进公众健康。  FDA建议修订适用于激光产品的《美国联邦法规》第 1 章,第 21 款的 J 节。  因为当前激光产品性能标准的最后一次更新是在 1985 年,是基于过时的光生物科学成果,已无法反映该技术性行业的现状。例如,目前广泛应用于半导体和通信行业的激光产品在上次标准更新时还未发明问世。FDA 的修订提议旨在使标准符合当前的科学发展状况,并使其与相关国际标准更协调一致。这些标准包括国际电工委员会(IEC)标准 60825–1《激光产品的安全—第一部分:设备分类和要求》(第二版,2007–03) 经 IEC 更正的 60825–1(第二版,2007),以及 IEC60601–2–22《医用电气设备—第二部分 2–22:外科、美容、治疗和诊断激光设备基本安全和基本性能的特殊要求》(第三版,2007–05)。  目前,美国境内外销售激光产品的生产企业必须遵守 IEC 和 FDA的标准。  统一这些标准就意味着,目前遵守两套不同标准的公司将只需遵守一套标准,除非这些标准有相左之处(如间接辐射限值)。此外,美国FDA也指出这项提议会更好地保护公众健康。  该拟议法规将直接影响激光产品生产企业。一般情况下,含有激光或激光系统的所有产品都均需符合当前性能标准。医用激光产品还要符合 FDA 其他医疗设备相关规定。FDA 计划自《联邦纪事》发布之日两年内实施一项最终法规。
  • 炭黑含量测试仪:基本原理、使用方法及应用场景
    炭黑含量测试仪是一种用于测量材料中炭黑含量的仪器。本文将介绍炭黑含量测试仪的基本原理、使用方法及其优缺点,并结合实际应用场景阐述其重要性和应用价值。上海和晟 HS-TH-3500 炭黑含量测试仪基本原理炭黑含量测试仪的基本原理是通过在氧气环境中燃烧样品中炭黑,对材料中的炭黑进行定量分析。使用方法使用炭黑含量测试仪需要按照以下步骤进行:准备样品:将待测1g样品,并按照测试并放入燃烧舟。开机预热:打开测试仪,通几分钟氮气,设置升温程序。放置样品:将准备好的样品放入石英管中。开始测试:按下测试按钮,试验结束后拿出样品。数据处理:根据公式计算出测试结果。炭黑含量测试仪的优点包括:精度高:可以精确测量材料中的炭黑含量。快速方便:测试速度快,操作简单方便。适用范围广:可以用于测量各种材料中的炭黑含量,如塑料、橡胶、涂料等。炭黑含量测试仪的缺点包括:价格较高:仪器价格相对较高,不是所有用户都能承担。需要专业操作:需要对操作人员进行专业培训,否则会影响测试结果的准确性和可靠性。实际应用炭黑含量测试仪在工业生产、科学研究、质量检测等领域有广泛的应用。在工业生产中,可以利用炭黑含量测试仪对原材料中的炭黑进行定量分析,从而控制生产过程中的原料配比和产品质量。在科学研究领域,可以利用炭黑含量测试仪对新型材料中的炭黑进行定量分析,从而了解材料的物理和化学性质。在质量检测中,可以利用炭黑含量测试仪对产品中的炭黑进行定量分析,从而保证产品的质量和安全性。结论未来,随着科学技术的不断发展和进步,炭黑含量测试仪将会更加完善和先进,为材料研究和生产提供更加准确和可靠的数据支持。同时,随着人们对材料性质和反应过程的理解不断深入,炭黑含量测试仪将会发挥更加重要的作用,为科学研究和社会发展做出更大的贡献。
  • 国际首台材料超高温力学性能测试系统在中国问世
    &ldquo 把脉&rdquo 极端环境下的材料性能&mdash &mdash 中国建材检验认证集团首席科学家包亦望教授专访  2000℃的环境下,铁已熔成液体,有人想到变通办法,在铁表面镀一层&ldquo 膜&rdquo &mdash &mdash 可以胜任高达2000℃以上超高温氧化环境的陶瓷材料。但问题接踵而至,现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温氧化极端环境,如何评价材料的可靠性?这个问题曾经难倒了我国科研人员,也包括国际同行。  如今,问号已经拉直。  1月9日,在2014年度国家科技奖励大会上,中国建筑材料科学研究总院博导、中国建材检验认证集团(CTC)首席科学家包亦望教授和他的团队凭借&ldquo 结构陶瓷典型应用条件下力学性能测试与评价关键技术及应用&rdquo 捧得国家科技进步二等奖。包亦望在操作超高温极端环境力学测试系统  缺失的极端环境下材料评价方法  2003年,包亦望还在中科院金属所做&ldquo 百人计划&rdquo 研究,所里一位研究人员找到他,寻问有没有陶瓷复合构件界面强度的评价方法。这个问题来源于工程实践。  之所以找到包亦望,不仅因为他是有名的&ldquo 点子王&rdquo ,更重要的是,解决这个世界性难题已经越来越迫切。  结构陶瓷具有高强耐磨、抗腐蚀、耐高温等许多优异性能,因此被广泛应用于航空航天、机械、石油化工和建筑等高技术领域。  但陶瓷本身是脆性的,具有&ldquo 宁碎不屈&rdquo 的特点,服役中的陶瓷及构件容易发生突发性灾难事故,故又成为最不安全的材料。  时隔近30年,1986年的&ldquo 挑战者&rdquo 号航天飞机灾难仍被多次提及,刚起飞73秒,航天飞机发生解体,机上7名机组人员丧命。这次灾难性事故导致美国航天飞机飞行计划被冻结了长达32个月之久。最终调查发现,原因之一是陶瓷隔热瓦与母体界面脱粘后失去隔热能力,导致价值12亿美元的航天飞机被炸成碎片。  如果能对结构陶瓷力学性能做出准确评价,不仅可以保证构件安全可靠,还能对其失效时间做出预测。  但由于涂层与基体间难以剥离作为单质材料进行测试,如何评价材料的可靠性是一项国际难题。  包亦望告诉记者,具体来说,难题体现在四个方面:界面问题:陶瓷复合构件界面强度和不同环境下的服役安全评价;异型件:管状或环形陶瓷构件的力学性能无法参照现有标准和检测技术;陶瓷涂层:热障涂层、耐磨涂层的模量或强度无法直接测试 极端环境:超高温氧化环境下陶瓷性能评价无技术,无标准,无测试设备 构件性能预测:通过表面痕迹和接触响应非破坏性的监测和预测构件可靠性。  &ldquo 因为评价标准缺失,目前大多采用&lsquo 牺牲层&rsquo 的办法。&rdquo CTC研究中心副主任万德田解释,所谓&ldquo 牺牲层&rdquo ,是指本来只要10毫米的涂层,被加厚到了15&mdash 20毫米,这样虽然安全系数提高了,代价是飞行器重量也提高了,成本随之增加。  随着航天、航空、航海、化工、冶金等工业的快速发展,准确评价涂层材料力学性能显得越来越紧迫和重要。  中国工程院院士杜善义曾经说过,超高温试验是一个很复杂的技术问题,每一系统的建立难度都很大,但我国航空航天工业的发展需要建立超高温测试技术。  &ldquo 雕虫小技&rdquo 解决大难题  &ldquo 方法非常简单,在外行看来可能就是雕虫小技。&rdquo 但包亦望说,这其中最难的是首先要想到捅破那一层窗户纸的方法,而这得建立在大量分析计算基础上。  随手翻开一本笔记本,除了看似简单的图示,就是密密麻麻的计算式。  &ldquo 有时候为了一个小公式,花几个月推导都是正常的。&rdquo 经过长达十多年的研究,包亦望和团队不断试验,反复采集整理数据,发明了一系列评价新技术。  陶瓷材料难以直接进行拉伸载荷试验,如何测得界面拉伸强度和界面剪切强度?传统的测试方法将试验样品叠加或者拼接,然后在叠加处或拼接处施力,但都无法获得界面拉伸强度。  &ldquo 十字交叉法&rdquo 提出,将两根矩形截面短棒以十字交叉方式粘接成测试样品,设计专用带槽夹具和圆弧形压头,分别测得界面拉伸强度和界面剪切强度。  这项技术适用任何固相材料之间的界面强度和疲劳性能评价,并可推广到各种高强粘接剂的强度和耐久性评价,此方法一经推广,受到国内外无机材料检测领域专家的赞赏。  但新课题又来了。  不是所有产品的样品都能加工成常规的矩形截面,而这类产品的应用范围又很广,如模拟核爆用石英玻璃管,光纤套管,火箭或导弹的尾喷管,石油化工用防腐内壁管等。  &ldquo 缺口环法&rdquo 能简单、方便、快捷的评价管状和环状脆性材料的基础力学性能。  &ldquo 无需特殊的夹具,节省了大量的试验经费和时间。&rdquo 包亦望说。  &ldquo 相对法&rdquo 则是通过已知或容易测量的材料参数去计算出无法直接测量的未知参数。  &ldquo 这就好比即使没有秤砣,只要知道一公斤白糖在杆秤的什么位置,就能称出同样质量的其他物质。&rdquo 包亦望说,这解决了陶瓷涂层的基础力学评价问题。此前涂层材料力学性能测试基本上空白,世界各国都在寻求测试技术。  试验证明该方法简单、准确、可靠达到事半功倍的效果,解决了热障涂层、防腐涂层和耐磨涂层等力学性能测试的空白。  &ldquo 局部受热同步加载法&rdquo 解决了超高温氧化环境下测试的国际难题。  &ldquo 痕迹法&rdquo 则有点类似于&ldquo 中医号脉&rdquo ,通过分析试验后样品残余压痕痕迹的形貌和尺寸,推测出几乎全部的材料力学性能。该方法受到国内外专家的高度赞赏,国际评审专家认为&ldquo 这项工作确实是对纳米压痕技术的一个新贡献&rdquo ,并在国际综述文献里被称为&ldquo BWZ method&rdquo (其中B指包亦望)。  主导制定国际标准提高话语权  建立方法、发明技术,包亦望和团队不满足于此,近年来一直致力于将技术转化为国家标准和国际标准。  &ldquo 国际标准的形成过程是一个博弈过程,体现了技术、产业乃至国家的综合影响力和话语权,是市场的竞争源头,为此国际上对标准的竞争极为激烈。&rdquo 包亦望印象深刻的是将&ldquo 相对法&rdquo 形成国际标准中的波折。  2007年,包亦望将发明的&ldquo 相对法&rdquo 在国际刊物发表,受到国际同行的高度认可,实验证明该方法简单、准确、可靠。此前虽然国内外有用纳米压痕技术来评价陶瓷涂层的弹性模量,但反映的仅仅是局部甚至某晶粒的性能,只对理想均匀致密材料有效,而且设备昂贵,尚不能测量涂层的强度。  2013年,ISO组织向全世界征求陶瓷涂层测试技术时, &ldquo 相对法&rdquo 评价技术与日本提出的类似国际标准草案形成竞争,最后交由ISO顾问Peter(皮特)先生仲裁,由于相对法具有原创性,适用范围更广泛,最后被成功立项。  利用自主知识产权转化成的国际、国内及行业标准,已被用于1000多家陶瓷企业和军工企业的相关产品各项力学性能检测与分析,经济效益数亿元。  包亦望认为,标准的社会效益意义更重大。大量性能检测方面的标准技术的制定,对于促进工程陶瓷和玻璃行业健康发展、无机非金属材料力学性能的学科发展、切实保障老百姓生命财产安全方面具有重要意义。  2007年,包亦望向ISO组织提交的以&ldquo 十字交叉法&rdquo 技术为基础的国际标准获得一致通过,在此前的陈述环节中,他提出的创新性、实用性受到高度关注,与会的六七个国家代表找到包亦望,反映该标准简洁明了,并找他要PPT,提出在自己的国家先用。  不将技术装在口袋里  让科技成果落地开花,而不是将技术装在口袋里。  有别于大多数科研工作者,包亦望不仅建立了很多创新的理论,还能将抽象的理论转化为可操作的方法与技术,并通过仪器设备这种载体来实现,反过来,自主研发的科学仪器设备又成为产生新观点的重要工具。  在中国建筑材料科学研究总院的实验室里,庞大的超高温极端环境力学测试系统塞满了约40平米的屋子。  &ldquo 该系统是国际上唯一针对陶瓷、复合材料的超高温力学性能测试仪器,温度最高可达2200℃,已经为多家合作单位进行了材料的超高温测试试验,解决了材料的超高温力学性能评价技术难题。&rdquo 万德田言语间透出自豪,他告诉记者,以近地空间用超高声速飞行器为例,该系统可为飞行器所用特种材料的服役安全和结构设计提供重要技术支撑,此外还有助于低成本选材。  超高温氧化耦合极端环境下,航天、航空飞行器的外围材料,如发动机和喷火管等处材料的安全性性能评价和设计至关重要。现有试验机的夹具和压头材料本身难以承受1500℃以上的超高温极端环境,这样使得材料的力学性能试验样品无法测试。该系统就是包亦望和团队运用&ldquo 局部受热同步加载法&rdquo 生产出来的。  包亦望教授率领他的团队不断攻克难题,从理论到技术、从实验到装置,发明了一套评价材料在极端超高温氧化环境下的力学性能测试方法与评价技术,开发了国际上首台&ldquo 材料超高温力学性能测试系统&rdquo ,并获得863计划和首批国家重大科学仪器设备开发专项的支持。  这些年,包亦望和团队将取得的理论成果和新方法、新技术转化为一系列有特色的仪器设备,包括常温和高温固体材料弹性模量测试仪、安全玻璃冲击失效检测仪、多功能零能耗钢化玻璃检测器、钢化玻璃表面平整度测试仪、钢化玻璃缺陷和自爆风险检测仪、硬脆材料性能检测仪、幕墙松动脱落风险测试仪等,这些仪器设备有的已经进入国内多所高校和科研机构的实验室,成为科研工作者探索科学的有力工具。
  • 最新科研:DSC助力我国聚丙烯材料性能扩展
    在现代高分子材料学发展中,树脂行业的发展尤为迅速,其中聚丙烯(PP)是热塑性树脂中增长速度最快的品种之一,其较高的性价比也使得它成为商家竞相追逐的焦点。通过一定的技术手段,还可以赋予其更多的优异性能。譬如利用调控PP的晶型就是PP改性的重要手段之一。 中国科学院化学研究所的科研人员最近通过一定的技术手段合成了具有&beta -定向结晶特性的PP树脂,其中&beta 晶含量占80%左右,且结构稳定。 该研究组利用DSC(示差扫描量热法)方法对&beta -定向结晶PP树脂的结晶动力学做了进一步探究,并与普通PP树脂的结晶行为进行了对比,得出其结晶速率的优越性。进而从结晶过程的微观角度对釜内聚合获得&beta -定向结晶PP树脂的方法进行了评价。 &beta 晶型PP不仅具有普通树脂材料的基本性能,还具有较高的冲击强度,热变形温度以及加工延展性。基于这些优良特性,&beta 晶型PP作为抗冲工程塑料制品及抗高温热变形制品在建筑、包装、家电及高速交通等行业都具有广泛的应用前景。
  • 薄膜拉伸强度测试仪如何区分弹性变形和塑性变形
    在薄膜拉伸强度测试中,准确区分弹性变形和塑性变形对于材料工程师、物理学家以及产品开发者而言,是至关重要的一环。这两种变形类型不仅决定了材料的基本性能,还直接关系到产品的使用寿命和安全性。本文旨在深入探讨薄膜拉伸强度测试中弹性变形与塑性变形的区分方法,以及它们在材料科学领域的应用。一、弹性变形与塑性变形的基本概念弹性变形,指的是材料在外力作用下产生变形,当外力消失时能够恢复到原始形状和尺寸的现象。这种变形是可逆的,不涉及材料的内部结构变化。而塑性变形则是指材料在外力作用下产生变形后,即使外力消失也不能完全恢复到原始形状和尺寸的现象。塑性变形是不可逆的,通常伴随着材料内部结构的改变。二、薄膜拉伸强度测试中的变形观察在薄膜拉伸强度测试中,我们可以通过观察材料的应力-应变曲线来区分弹性变形和塑性变形。在弹性变形阶段,应力与应变之间呈线性关系,即应力增加时,应变也按一定比例增加。当应力达到弹性极限时,材料开始进入塑性变形阶段,此时应力-应变曲线呈非线性关系,应变继续增加但应力增长缓慢或不再增长。三、区分弹性变形与塑性变形的具体方法应力-应变曲线分析:如前所述,通过分析应力-应变曲线的形状和变化,可以判断材料是否进入塑性变形阶段。在弹性变形阶段,曲线呈直线状;而在塑性变形阶段,曲线则呈现弯曲或平坦的趋势。卸载试验:在拉伸测试过程中,当材料达到一定的应力水平时,可以突然卸载并观察材料的恢复情况。如果材料能够迅速恢复到原始长度,则说明之前的变形主要是弹性变形;如果材料不能完全恢复,则说明存在塑性变形。残余应变测量:在拉伸测试结束后,通过测量材料的残余应变可以判断塑性变形的程度。残余应变越大,说明塑性变形越显著。四、弹性变形与塑性变形在材料科学中的应用材料选择:了解材料的弹性变形和塑性变形特性有助于选择合适的材料以满足特定需求。例如,在需要高弹性的场合(如橡胶制品),应选择弹性变形能力强的材料;而在需要承受大变形而不破裂的场合(如金属薄板),则应选择塑性变形能力强的材料。产品设计:在产品设计过程中,考虑到材料的弹性变形和塑性变形特性,可以优化产品结构以提高其性能和安全性。例如,在设计弹性元件时,需要充分利用材料的弹性变形能力;而在设计承力结构时,则需要考虑材料的塑性变形特性以确保结构的稳定性和安全性。质量控制:通过测量材料的弹性模量、屈服强度等力学性能指标,可以评估材料的性能是否满足要求。同时,通过观察材料的变形行为(如弹性变形和塑性变形)可以判断材料是否存在缺陷或质量问题。五、结论在薄膜拉伸强度测试中准确区分弹性变形和塑性变形对于材料科学领域具有重要意义。通过分析应力-应变曲线、进行卸载试验和测量残余应变等方法可以判断材料的变形类型。了解材料的弹性变形和塑性变形特性有助于选择合适的材料、优化产品设计和提高产品质量。未来随着材料科学的发展和技术的进步相信我们将能够更加深入地理解材料的变形行为并开发出更多高性能的材料。
  • 小载荷疲劳测试,那都不是事儿~
    疲劳性能作为材料的一项基本性能指标,在日常的测试中,我们会碰到各种各样的挑战。其中有一些材料:如生物材料、电子元器件等,所用到的载荷较小,因此对试验设备配置的要求也更高。您是否还在苦苦找寻如何进行小载荷疲劳测试的配置?您是否还在担心小载荷疲劳测试结果不稳定且易受影响?别慌!英斯特朗给你支招!一般来说,低于10N的测试我们称之为小载荷测试。此类测试中有各种因素影响测试结果,如试样的制备、夹持和测量误差都有可能会导致测试结果的显著差异。英斯特朗Eletropuls动静态万能试验机结合专利的Dynacell动态载荷传感器以及基于刚度的调谐方式可实现精确的小载荷疲劳测试。另外,可配置高低温环境箱、水浴槽和非接触式视频引伸计等进行试样在特定环境条件下的材料力学性能。那么英斯特朗Eletropuls动静态万能试验机到底可以做哪些小载荷疲劳测试呢?让我们一起来一睹为快!英斯特朗小载荷测试应用案例1软组织测试一般而言,软组织材料如水凝胶、硅胶、树脂等,测试力值相对较低,因此,测试设备的配置和测试方法对测试结果的准确性至关重要。Instron电子动静态万能试验机E1000非常适用于对软组织材料的循环或疲劳测试。在此类测试中,E1000将会配合小载荷传感器如250N Dynacell载荷传感器、100N、50N或10N静态载荷传感器用于更精确的载荷测试。以下为使用E1000配合250N Dyancell载荷传感器及水浴箱进行的水凝胶的动态拉伸测试,测试条件为载荷1±0.5N,2Hz。此测试优势在于应用250N Dynacell载荷传感器消除惯性力,并使用高级幅度控制方式确保载荷峰值。同时如需要消除测试过程中的外部噪音,可在软件中设置过滤消除噪音功能,确保得到您想要的测试数据。2金属薄片测试此测试是根据标准ASTM B593对电子元器件如电路板上、插座上的铜合金材料进行弯曲疲劳性能进行验证,确认其疲劳寿命。ASTM B593在该测试中,由于加载链运动会产生惯性力,使用Instron专利Dynacell载荷传感器可以减轻这种影响。由于惯性力和加载链共振问题,在任何试验机上实现对柔性样品的纯载荷控制历来都具有挑战性。ElectroPuls基于刚度的调谐考虑了这些因素,可以更好地实现柔性样品的载荷控制测试。3电子元器件薄片测试该测试是对一种较小较薄的电子元器件材料进行循环测试。由于样品载荷达到mN级别,测试难度较大,无法进行自动调谐,故需进行手动回路调谐。且经过空载下的噪音比较,显示夹具的重量对于噪音的产生有很大影响。故我们最终通过使用客户自制夹具(重量仅为几克)来减轻噪音影响(下图左)。下图右显示采用客户自制轻夹具空载噪音低至±1mN。该测试使用Instron Electropuls E3000动静态测试系统配置10N载荷传感器。如需消除噪音,可开启波形过滤功能,但由于客户要求最原始数据,因此未启用该功能。测试条件:载荷峰值-25 mN ,80mN,位移振幅控±0.5mm,10Hz,200周期循环测试英斯特朗ElectroPuls动静态万能试验机测试范围广泛,可实现从单轴试验到拉扭双轴测试。不仅可用于小载荷疲劳测试,同样可用于金属、塑料等材料测试,其最大测试能力可达到10kN/100Nm。ElectroPuls,以更简单、更智能、更安全的方式满足您的测试需求。如您需了解更多英斯特朗有限公司,请拨打英斯特朗官方热线:400-820-2006。
  • R&S推出全新LCX测试仪,强化高性能阻抗测量产品组合
    R&S LCX系列的LCR表能够用于传统的阻抗测量以及针对特定元件类型的专门测量,并提供研发所需的高精度以及生产测试和质量保证所需的高速度。用于高精度阻抗测量的R&S LCX LCR测量仪。   罗德与施瓦茨推出的新款高性能通用阻抗测试仪系列能够覆盖广泛的应用领域。R&S LCX支持的频率范围为4Hz至10 MHz,不仅适用于大多数传统家用电源的50或60 Hz频率以及飞机电源的400 Hz频率,还适用于从低频震动传感器到工作在几兆赫的高功率通信电路的所有设备。   对于选择合适的电容、电感、电阻和模拟滤波器来匹配设备应用的工程师来说,R&S LCX提供了市场领先的高精度阻抗测量。与此同时,LCX还支持以生产使用精度进行更高速度的质量控制和监控测量。测试方案包含生产环境所需的所有基本软件和硬件,包括远程控制和结果记录,仪器的机架安装,以及用于全系列测试的夹具。   R&S LCX使用的自动平衡电桥技术通过测量被测设备的交流电压和电流(包括相移)来支持传统的阻抗测量。然后用该数据来计算任何给定工作点的复阻抗。作为一种通用LCR测量仪,R&S LCX涵盖了许多应用,如测量电解电容和直流连接电容的等效串联电阻(ESR)和等效串联电感(ESL)。   此外,除了全方位的阻抗测量之外,用户还可以测试变压器及测量直流电阻。为了研究元件的阻抗值在不同频率和电平下的变化,选配装置R&S LCX-K106能支持以频率、电压或电流作为扫描参数,进行动态阻抗测量。   R&S LCX系列推出两个型号:R&S LCX100的频率范围为4 Hz至300 kHz,R&S LCX200的基本配置频率范围为4 Hz至500 kHz,可选配覆盖高达 10 MHz 所有频率的选件。两种型号均配备出色的测量速度、精度和多种测量功能。包括:配备大型电容式触摸屏和虚拟键盘,支持所有主要测量工作的点击测试操作。   用户也可以使用旋钮设置电压、电流和频率值。不常用的功能则可以使用菜单操作。设置、结果和统计数据可以显示在屏幕上,还能导出以便进行自动后处理。用户最多可选择四个测量值并绘制成时间曲线,将最大值和最小值显示在屏幕上,一目了然地进行通过/失败分析。   罗德与施瓦茨的子公司Zurich Instruments AG生产的MFIA阻抗分析仪作为R&S LCX的完美补充,能够支持更多材料的阻抗研究。通过MFIA,研究人员可以表征半导体或进行材料研究,范围包括绝缘体、压电材料、陶瓷和复合材料,组织阻抗分析、细胞生长、食品研究、微流体和可穿戴传感器。
  • 颠覆物理学基本认知:量子跃迁可以被预测了
    量子力学理论的标准解释认为,量子场内的变化不可预测且是瞬时的。在难以观测的微观世界里,阐明量子跃迁的性质,一直是困扰物理学家的重要难题。1986年,研究人员通过实验首次证实量子跃迁是一种能被观测和研究的实验现象。从那时起,科学家借助不断发展的技术,对这种神秘现象进行了更深入的观察。2019年的一项研究显示,量子跃迁的过程可以被预测,且开始后可以被阻断。近期,一项新的理论研究更深入挖掘了量子跃迁过程,以及它何时会发生。研究显示,这个看上去简单和基础的现象,实际上十分复杂。预测量子跃迁美国耶鲁大学研究人员通过一种干扰度最小的装置来监测量子跃迁进程。每一次跃迁都发生在一个超导量子比特的两个能态之间,这个小循环可用于模拟原子中离散量子能态的超导微环路。研究人员测量了低能态系统中量子比特的“附加活动”——可被观测设备捕捉但不会影响量子系统的运行。研究中的“附加活动”是一种监测设备所捕捉的、由系统散发的光子信号,这表明光子未被系统吸收、跃迁尚未发生。这种方式首次实现了对量子跃迁的间接监测,揭示了一个重要的性质:在“附加活动”中,量子向高能态跃迁之前会有一个停顿。而科学家可以通过这种停顿预测甚至阻止量子跃迁。跃迁过程由系统低能态开始也称为基态;当跃迁至系统高能态时,也称为激发态,随后跃迁路径转向,再次回到基态。文章作者Kyrylo Snizhko是德国卡尔斯鲁厄理工学院的一名博士后学者,他表示,模拟实验显示,在这个可间接预测或干扰量子跃迁中,一定存在一个不可捕捉的组分。具体来说,量子跃迁从激发态向基态的回落过程,并不总是平滑和可预测的,这就是作者所描述的“不可捕捉”的组分。研究指出,观测设备与受测系统的“连接度”,对系统跃迁有直接影响。在这一过程中,量子跃迁由观测的时间尺度而非跃迁过程定义。观测设备和量子系统的连接可能很弱,在这种情况下,通过信号的暂停能预测量子跃迁。量子系统的转变通过基态和激发态的混合实现,这称为量子系统的叠加态。然而,在观测设备和系统的联系超过一定阈值时,这种系统叠加态就会趋向某一个能值,并保持相对稳定,直至再次突然回到基态。论文的共同作者Parveen Kumar解释道,这意味着,即使我们一开始成功预测了量子跃迁发生,但无法避免会再次“跟丢”系统。而即使在跃迁可预测的期间,也会存在一些差异。Snizhko表示,这些过程中还包含着一种不可预测的组分。可捕捉的量子跃迁通常具有一个处在基态和激发态的叠加态上的跃迁“轨迹”,但整体的跃迁轨迹并没有明确的方向或终点。量子物理正在坍缩Zlatko Minev是微软托马斯沃森研究中心的研究员,也是这项耶鲁大学研究的第一作者。他表示这项新的理论研究“在以量子比特作为参数的实验条件下,描绘阐述了一个简单清晰的量子跃迁模式”。他认为,这项研究与先前的耶鲁实验互相参照,显示“相比于我们之前的认识,量子跃迁轨迹的离散性、随机性和可预测性还有待更广阔而充分的研究。”具体而言,耶鲁大学进行的研究首次揭示了量子跃迁的微妙行为——系统从基态到激发态的跃迁能被预测,表明量子世界中部分是可以预测的。这在此前曾被认为是不可能的。当Minev首次与组内的其他研究者讨论预测量子跃迁的可行性时,受到了一位同事激烈的回击:“跃迁轨迹如果能预测,量子物理界就要坍缩了!”“我们的实验最终成功了,并且推断出量子跃迁整体路径是随机和离散的。然而,在更精密的时间尺度上,每一步跃迁都是连续而逐步开展的。这二者尽管看似矛盾,却是量子跃迁中同时存在。” Minev解释道。而这一跃迁过程能应用到整个物质世界吗,如预测实验室外的原子?Kumar还不确定,而很大部分原因在于研究条件上的过多限制。Kumar说:“推广这项研究当然很令人兴奋。”如果未来不同的观测设备都得到了类似结果,那么这种量子行为将能解释量子世界的更多基本性质:在量子世界中,事件在某种意义上同时具有随机性和可预测性、离散性和连续性。量子跃迁是自然界中最基本、最原始的物理问题,但一直很难被真正观测到。直到最新的科技进展扭转了这一局势。美国华盛顿大学的助理教授Kater Murch表示:“耶鲁大学的实验启发了这项理论研究,为解决这个数十年的物理难题打开了全新的局面。在我心目中,实验与理论的相辅相成,最终转变我们这些理论物理学家对世界的认知,为日后的新发现奠定了基础。”
  • 环保部部长:2035年基本实现美丽中国目标
    p strong 十九大视点/strong/pp  23日,在十九大新闻中心举行的“践行绿色发展理念 建设美丽中国”记者招待会上,环境保护部党组书记、部长李干杰表示,十八大以来,党中央谋划开展了系列根本性、长远性、开创性工作,生态文明建设取得显著成效,是成效最好的时期。/pp  李干杰说,当前的情况有五个“前所未有”。“一是思想认识程度之深前所未有。”李干杰说,全党全国贯彻绿色发展理念的自觉性、主动性显著增强。/pp  二是污染治理力度之大前所未有。据统计,自从我国发布实施三个“十条”,即大气、水、土壤污染防治三大行动计划以来,污水和垃圾处理等环境基础设施建设加速推进。到目前为止,累计淘汰1800多万辆黄标车和老旧车 开展农村环境综合整治,近2亿农村人口从中受益。/pp  “三是制度出台频度之密前所未有。”李干杰说,中央全面深化改革领导小组审议通过了40多项生态文明和生态环境保护具体改革方案。/pp  “四是监管执法尺度之严前所未有。”环保法、大气污染防治法、环境保护税法、核安全法等多部法律完成制修订,新规定、新机制在推动企业守法方面发挥了很好作用。/pp  五是环境质量改善速度之快前所未有。2016年,京津冀、长三角、珠三角三大区域PM2.5年均浓度与“大气十条”制定出台的2013年相比均下降30%以上。/pp  十九大报告对生态文明建设和生态环境保护提出了一系列新思想、新要求、新目标和新部署。李干杰说,新目标是:到2020年,坚决打好污染防治攻坚战 到2035年,生态环境根本好转,美丽中国目标基本实现。/pp  李干杰认为,建设美丽中国,需要扛起政治责任 推进形成绿色发展方式和生活方式 解决大气、水、土壤污染等突出环境问题 加强生态系统保护和修复 深化生态文明体制改革等。/pp  对公众非常关心的空气污染问题,李干杰强调,现在要“打赢蓝天保卫战”。“十三五”生态环境保护规划里设定的目标一定要实现,即全国338个地级城市空气质量优良天数比率必须达到80%以上,未达标城市PM2.5浓度比2015年下降18%等。/pp  “到2035年生态环境根本好转这个目标,我们现在也正在研究。”李干杰说。/pp  在流域治理方面,根据《长江经济带生态环境保护规划》,预计到2017年底,11个省将完成省级的生态保护红线划定。环保部已启动长江经济带饮用水源地生态环境保护整治工作,准备用两年时间,对整个长江经济带所有县级以上1320处集中饮用水源地全面整治。/p
  • 网络性能测试工具关于5G承载网测试
    网络性能测试工具关于5G承载网测试背景5G时代已经来临,而业界众所周知的一句话“5G商用,承载先行”,由此可见5G承载网的重要性。承载网是基础资源,必须先于无线网部署到位,而5G典型的应用场景为:增强移动宽带:eMBB超低时延高可靠通信:uRLLC海量连接:mMTC5G应用要求承载网能够提供低时延、高带宽、高可靠性的网络,为了满足5G应用的要求,FlexE/50G PAM4/EVPN/SR/SR-TE/SR-BE/SRv6/PCEP等新技术孕育而生。解决方案针对5G承载网能提供的低时延、高带宽、高可靠性的网络,信而泰提供完整的测试解决方案: 高带宽低时延: DarYu系列X1-100G(支持100G/50G/40G/25G/10G多速率)、X1-400G(支持400G/200G/100G/50G多速率)系列测试模块是信而泰推出的面向高端路由器、高端交换机、数据中心交换机以及高性能应用层设备的测试产品,具有高性能、高密度、高速率、多速率等特点,帮助运营商、网络设备制造商及企业用户轻松应对测试业务的快速增长和未来业务发展。 高可靠:Xcompass-S系列网络损伤仪是信而泰推出的基于现场可编程门阵列(FPGA)的平台,可提供最真实且可重复的网络损伤仿真测试。具有带宽限制、延时/抖动、丢包、乱序、重复报文、物理链路损伤等典型损伤仿真功。方案优势国产高性能网络测试仪 支持大规模2-3层流量及路由交换协议仿真 单端口最多支持64K流量的独立发送统计和128K流量统计 单端口最多支持400万的离散路由插入表 支持路由、组播、接入、MPLS、VXLAN以及分段路由(SR)等协议的极限性能测试 基于FPGA的100%线速流量生成、统计与捕获功能 支持RFC2544、RFC2889、RFC3918等基准测试套件 支持中英文测试操作软件 支持中英文测试报告系统产品特点  ★基于软件的网络及应用服务性能测试工具  ★通过测试端点产生网络流量对性能进行测量  ★TCP、UDP、PING   ★ 语音、视频、HTTP、FTP、MAIL、组播  ★支持1ms精度的分布式WLAN漫游测试◆产品组成  X-Launch由控制端(TestConsole)和测试端点(TestPoint)组成:  ★X-Launch 控制端软件安装于Windows 7\10(64位),需要4核CPU,8 GB内存以上150 GB硬盘。  ★测试端点软件支持Linux、Windows、Android、VxWorks、各种国产OS。◆测试类型  X-Launch持双臂测试和单臂测试两种类型。  ●双臂(Two-Arm)测试  被测试对象(网络\设备)的两边都是X-Launch测试端点,在测试端点之间产生真实的流量对被测试对象进行性能测试。  ●单臂(One-Arm)测试  测试端点发起应用会话对真实服务器(如网站)进行测试。在测试结构中一侧是测试发起点,另外一侧是被测试的真实服务。
  • 事关流式细胞仪性能验证!国家卫健委发布《临床血液与体液检验基本技术标准》等4项推荐性卫生行业标准
    流式细胞术多次被提及,卫健委发布多个检验相关的重要文件今日,国家卫生健康委官网发布了多个和检验相关的重要文件,包括1项《国家检验医学中心设置标准》和《临床化学检验基本技术标准》等4项行业标准。前者是我国国家级检验医学中心建设的指导性文件,后者是对所有层级检验医学实验室开展日常工作和进行科室建设与管理的基本要求,需要广大检验同仁关注、学习并了解这些内容。点击阅读:流式必备|免疫功能检测项目列入国家检验医学中心设置标准!现发布《临床化学检验基本技术标准》等4项推荐性卫生行业标准,编号和名称如下:WS/T 804—2022     临床化学检验基本技术标准WS/T 805—2022     临床微生物检验基本技术标准WS/T 806—2022     临床血液与体液检验基本技术标准WS/T 807—2022     临床微生物培养、鉴定和药敏检测系统的性能验证上述标准自2023年5月1日起施行。特此通告。                              国家卫生健康委2022年11月2日这四项行业标准均是国家卫生标准委员会临床检验标准专业委员会组织领域内知名专家精心编写、反复打磨制定的,对临床生化、临床微生物、临床血液与体液检验专业常用检验项目/检测技术的开展提出了标准化的要求,也是实验室应该遵守的基本要求。这4项标准将于2023年5月1日起正式实施,将成为相关实验室的建设、运行管理和认可评审的重要依据。其中【WS/T 806—2022 临床血液与体液检验基本技术标准】规定了医学实验室在临床血液与体液检验领域的基本技术要求,包括血液一般检验、血栓与止血检验、流式细胞分析、体液检验常用检测项目的基本技术要求。该标准适用于开展血液与体液检验的医学实验室。文中针对从事流式分析的专业技术人员要求、对于流式细胞分析的常用检测项目中抗体选择要求、对流式细胞分析仪的性能验证内容等均做阐述。
  • SAMPE2019复合材料性能表征和测试技术论坛召开
    p  strong仪器信息网讯/strong 2019年5月7日,SAMPE中国2019年会暨第十四届先进复合材料制品、原材料、工装及工程应用展览会召开同期,作为重要分会场——复合材料性能表征和测试技术论坛成功举办。br//pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/9048b206-469a-49a0-966c-07f96df852fc.jpg" title="IMG_1110.jpg" alt="IMG_1110.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "SAMPE中国2019展会入口一角/span/pp  借助SAMPE中国平台,该论坛由中国航发北京航空材料研究院发起并已成功举办了7届,与往届不同的是,本届(第8届)论坛由中国航发北京航空材料研究院首次与天氏欧森测试设备(上海)有限公司共同主办。邀请11位复合材料性能表征和测试技术领域专家依次分享精彩报告并现场交流互动。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/2e74dd34-9fc7-4f33-be34-9072102b4bd6.jpg" title="IMG_1222.jpg" alt="IMG_1222.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "复合材料性能表征和测试技术论坛现场/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/1874e0a9-42e8-47d6-b005-f014f5884a1f.jpg" title="IMG_1657.jpg" alt="IMG_1657.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "中国航发北京航空材料研究院高级工程师陈新文主持会/span/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/244bbf31-17b2-4c4a-aec3-ed808366fc49.jpg" title="IMG_1266.jpg" alt="IMG_1266.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "报告人: 清华大学航天航空学院 王申博士/spanbr/span style="color: rgb(0, 176, 240) "/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:复合材料结构非接触测试技术及应用/span/pp  非接触测试是以光电、电磁等技术为基础,在不接触被测物体表面情况下,得到物体表面参数信息的测量方法。王申首先介绍了非接触测试技术的典型方法、特点等。接着分别重点介绍了基于3D扫描技术的物体形貌与损伤检测技术、数字图像相关方法(DIC)、基于红外热成像泄露定量测试方法、红外技术与数字图像相关技术结合等相关技术,包括基本测试原理、测试方法、实验装置等,并结合复合材料内部损伤检测、内部应力应变检测、飞行器结构在线健康检测等案例介绍了这些技术的相关应用。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/f5955fd9-c4fb-4447-8df4-5c1128e1ec4b.jpg" title="IMG_1290.jpg" alt="IMG_1290.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:天津工业大学先进纺织复合材料教育部重点实验室 郭玉路/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:含减纱点三维角联锁石英织物剪切性能试验研究/span/pp  郭玉路主要介绍了其关于三维角联锁石英织物剪切性能试验的相关研究研究,结果表明,含减纱点的三维角联锁石英织物的剪切性能会降低,且不同减纱方式对其剪切性能的影响不大。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/66146969-6673-4492-bf52-32d2d0ac6ee5.jpg" title="IMG_1302.jpg" alt="IMG_1302.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:日本龙派公司首席官 细川 雅彦博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:多轴编复合材料的力学性能研究/span/pp  细川 雅彦结合日本龙派公司在多轴编复合材料生产研发过程,介绍了系列相关力学性能的研究,研究表明,多轴编复合材料的抗拉强度与剪切角度无关,而抗拉模量则当剪切角为零度时最大。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/a04e7c75-2e7c-4a87-b41c-e61cbe33f788.jpg" title="IMG_1342.jpg" alt="IMG_1342.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:泰国拉贾马拉理工大学 萨蒙曼 尼姆朗教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:芳纶增强聚酰胺编制复合材料力学性能研究/span/pp  关于芳纶增强聚酰胺编制复合材料的力学性能研究,萨蒙曼 尼姆朗首先介绍了样品的制备和前处理方法。接着利用微滴包埋拉出法测定了复合材料界面剪切强度,结果表明,该样品进行去油处理后,其界面剪切强度可以提高约26%。而通过对芳纶增强聚酰胺编制复合材料拉伸试验表明,表面预处理可以将样品的拉伸强度提升9.1%,成型时间为40分钟时比成型时间8分钟的拉伸强度高18.1%。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/0a68c222-a98b-4ce0-8483-007857c01f46.jpg" title="IMG_1367.jpg" alt="IMG_1367.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:北京理工大学 刘刘教授/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:有限元模型修正结合数字相关技术在复合材料本构参数识别中的应用研究/span/pp  由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。而材料表征技术、无损检测技术、疲劳机构分析及失效分析等测试技术,可以有效的为复合材料的安全使用寿命提供保障。刘刘主要介绍了基于数字图像相关技术(DIC)和有限元模型修正(FEMU)相结合的方法,及在复合材料本构参数识别中的应用。研究结果表明,通过对高孔隙率陶瓷基复合材料的拉伸和v型缺口剪切试验,提取了具有参数的复杂本构模型。且该方法可以扩展全场变形测量的能力,以识别疲劳损伤的演化过程。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/be041841-694b-47d4-ba82-6213e8ffd3a0.jpg" title="IMG_1454.jpg" alt="IMG_1454.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人: 赛默飞世尔科技大客户经理 蔡传忠/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:DVC技术在生物力学变化的体积表征中的应用/span/pp  数字体积相关(Digital Volume Correlation,简称DVC)技术能测量出三维图像变形前后,任意位置的采样点的位移和应变,可用于分析物体内部的三维变形情况。该技术相关研究发表文章量也在逐年增长。蔡传忠主要介绍了DVC技术的最新进展、实验设计方法等,接着讲解了赛默飞Amira-Avizo软件在DVC方面的应用,该软件提供高性能3D可视化和分析解决方案,适用于科学和工业数据。最后结合在生物学、地质学、化学等领域的应用实例讲解了Amira-Avizo在DVC方面实际应用方案。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/ec41418e-9740-48db-9b42-054b928ce463.jpg" title="IMG_1437.jpg" alt="IMG_1437.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:京都工艺纤维大学 西谷 圭吾博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:注射工艺制造碳纤维复合材料界面性能评价/span/pp  西谷 圭吾在报告中表示,PP和PC复合材料的界面性能可以通过100摄氏度热水处理碳纤维得以提高。纤维取向和残余纤维长度两个因素对注塑产品拉伸强度的影响要大于对其界面剪切强度的影响。而关于注塑成型的界面剪切强度的计算,Kelly Tyson方程计算相比微滴包埋拉出测试法更加精确。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/7be59fa3-7b34-4a3a-90e8-faffde76e4db.jpg" title="IMG_1518.jpg" alt="IMG_1518.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人: 梅特勒-托利多技术应用顾问 陈成鑫/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:热分析技术在复合材料中的应用/span/pp  常用热分析手段包括DSC、TGA、TMA、DMA等,陈成鑫首先按照检测项目不同分类,逐一介绍了此四种热分析技术在复合材料表征中的推荐应用情况。接着分别以案例形式介绍了四种热分析技术的应用方案,包括DSC技术用于环氧树脂固化度的测试、评价固化促进剂的影响、复合材料的后固化等 TGA技术用于玻璃纤维含量、固化产品质量的鉴定等 TMA技术用于纤维方向的影响、PCB爆板时间、凝胶时间等 DMA技术用于通过Tg进行质量监控、聚合物-填料体系的分析、取向的影响等。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/56c1974c-4d25-49cd-b907-b498e00faa28.jpg" title="IMG_1676.jpg" alt="IMG_1676.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:天氏欧森测试设备(上海)有限公司大客户经理 黄安超/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:视频引伸计在复合材料测试中的应用/span/pp  黄安超首先介绍了聚合物基复合材料(PMC)和纤维增强材料(FRP)两种材料测试的国际标准情况,包括椎板/层板相关标准近40项、结构相关标准近20项、夹层结构相关标准近10项等。接着分别介绍了PMC/ FRP平面拉伸试验、平面压缩、平面剪切、弯曲、层间剪切强度、断裂韧性等相关力学试验的通用试验标准、夹具和附件的选择等。接着,介绍了天氏欧森视频引伸计在实时测试工程中的同心度检测应用,包括论证力学测试过程中实时同心度偏差、计算方法、搭配对中系统实时微量调整同心偏移等。天氏欧森光学视频引伸计在高低温应用方面,有效使用温度为,高分子材料(-150度至280度)、金属材料和复合材料(-150度至600度)等/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/14ce7618-35f3-4c01-bfa9-2c5e74468a8c.jpg" title="IMG_1673.jpg" alt="IMG_1673.jpg"//pp style="text-align: center "  span style="color: rgb(0, 176, 240) "报告人:中国航发北京航空材料研究院检测研究中心 王雅娜博士/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "  报告题目:复合材料ENF试验Ⅱ型层间断裂韧性数据处理方法综述/span/pp  复合材料层板结构层间较弱,分层易于发生,王雅娜通过对层间断裂韧性原理的计算推导,与大家分享了ENF试验Ⅱ型层间断裂韧性数据处理方法综述。结论表示,面积法和J积分法不受线弹性断裂力学的限制。柔度标定方法依靠试验数据的拟合确定柔度表达式,试验过程比基于梁理论的方法繁琐,被认为具有更高精度。在三种柔度标定方法中,CCI方法被认为是准确性和实用性的最佳组合。J积分法不依赖裂纹的观测,利用对ENF试验件梁截面旋转角度的测量,对裂纹长度在试验件宽度方向分布不均的情形具有显著的优势,是一种很有前景的方法。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201905/uepic/59201d77-0202-4df7-bbe1-603fc910da73.jpg" title="互动.png" alt="互动.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "现场互动/span/p
  • 技术线上论坛| 5月31日《从基本制冷原理到顶级的低温设备 ——如何发挥设备的低温性能》
    [报告简介]本次报告将结合具代表性的低温设备为大家介绍科研中常用制冷技术与制冷设备的工作原理, 让您了解低温设备在设计细节上的精益求精。 我们以广受关注和好评的 Montana超精细多功能无液氦低温光学恒温器、 OptiCool 超全开放强磁场低温光学研究平台、综合物性测量系统(PPMS)、磁学测量系统(MPMS)、 mK 光学恒温器、 mK 快速换样低温系统等设备为例,来介绍性能背后的温度控制技术、样品粘贴与导热技术、低温导线选择与连接技术、窗口的尺寸与厚度、低温设备的真空密封等低温知识和实验技巧。Quantum Design 中国子公司长期致力于为国内用户提供多种用途的低温光学、低温强磁场设备和测量系统,了解这些设备的特点并使设备发挥出应有的性能将会有效的提升实验结果。[直播入口]您可通过扫描下方二维码,关注QuantumDesign官方视频号,届时观看直播,无需注册!扫描上方二维码,即刻观看直播![报告时间]2022 年 5月 31 日 10:00—11:00[主讲人介绍]魏文刚 博士魏文刚,凝聚态物理博士,科研背景为低温、表面磁学与磁性材料相关领域。Quantum Design产品经理。主要负责低温恒温器、低温强磁场光学设备和低温测量设备的销售与技术沟通工作。
  • 透气仪用于安全气囊的安全性能测试意义
    安全气囊在汽车工业使用飞非常的广泛,而且对于汽车的安全性能也是一个重要的指标,安全气囊的透气情况直接影响到其打开时的安全情况。  在频发的汽车意外事故中,安全气囊作为车身被动安全性辅助配置能有效地降低司乘人员的死亡率。汽车在行驶过程中,如果控制系统感知到车辆发生了碰撞,就会发出相应信号,使安全气囊装置中的推进燃料燃烧并产生高温高速气流,使原先折叠隐藏在车内的安全气囊瞬间充气展开,乘员通过与展开的气囊接触,可减少碰撞产生的能量对人体的伤害,从而达到保护乘员的目的。在安全气囊完全展开后,又将以一定的方式放气。一般来说,安全气囊从决定展开到完全展开应该在35 ms内完成。可见,安全气囊的充气速度十分重要,而在头部碰到安全气囊后,气体按照一定的速率释放,以确保人体缓慢地减速。因此安全气囊织物需要准确预计并控制其透气性能。  一、透气性测试  织物的透气性是指织物透过空气的性能,用透气量来表征,即织物两侧面在规定的压差下,单位时间内通过织物单位面积的空气体积。透气量越大,织物的透气性越好。  1、静态透气性测试方法  安全气囊用织物的透气性研究最早采用的是静态透气性测试方法,即在规定的压差下,测量一定时间内垂直通过试样给定面积的气流流量,计算出透气率来表征透气性。但由于没有统一的标准,学者们所用的压差各不相同。1997年侯大寅研究了织物结构参数及特殊后整理技术对汽车用非涂层安全气囊织物透气性的影响,设定的织物两侧面的压力差为500 Pa。茅惠伟 初步探讨了织物性能和轧光后整理工艺对非涂层安全气囊织物透气性的影响,设定织物两侧的空气压力差为125 Pa。庞明军等 则设定织物两侧面压差为200 Pa,对处理前后的安全气囊用织物透气性进行了研究。学者们对安全气囊用织物的透气性研究压差设定不统一,并且因为安全气囊在工作时是瞬间充胀展开和泄气的,织物两侧的空气压差并不是恒定不变的,因此静态透气性测试方法不能准确完整地表征安全气囊用织物的透气性能。  2、动态透气性测试方法  我国专家近年来对安全气囊动态性能的研究非常重视,分别提出了基于激波管试验和理论的安全气囊用织物透气性测试方法,间隔薄膜爆破的安全气囊用织物动态透气性测试方法等。国外学者提出的测试方法有气流充胀法等,但这些方法都还没有成熟的仪器设备可用于商业测试。  最先提出的是基于激波管试验和理论的安全气囊用织物透气性测试方法 ,但该装置对操作人员的专业要求高,占地面积大,不适宜推广使用。  随后,有学者提出了一种间隔薄膜爆破的安全气囊用织物动态透气性测试方法。该方法通过压力传感器感应高、低压气室内压力随时问变化的情况,通过计算得到安全气囊用织物的透气量。  2007年,孙利哲研制了一种新的安全气囊动态性能测试装置。其优点在于较好地模拟了安全气囊真实的展开过程。气流充胀法利用压缩空气虽然实现了高压下的安全气囊透气量测试,但实质上仍然是定常态下静态测试织物的透气性,并不能体现安全气囊受高速气流冲击时的动态行为。  目前,国际上测试安全气囊用织物动态透气性时,一般采用ASTM D 6476 8《充气减震织物动态透气性测定的标准试验方法》。该标准采用的测试方法是让已知体积和压力的干燥压缩空气,通过被测织物试样进入标准大气环境中。在模拟气囊膨胀阶段,试样两侧的压力差上升到充气压力的峰值 在模拟气囊泄气阶段,气体通过织物,压力差下降到0。压力达到最大值的时间和随后泄气的时间分别与气囊在展开使用过程中所用的时间相接近。我国研究人员也对安全气囊用织物动态透气性能进行了一定的研究,但目前尚未制定测试安全气囊用织物动态透气性的相关国家或行业标准。  二、测试仪器  国内外已经有很多仪器用于普通服用织物的静态透气性能的测试。而对于织物动态透气性能的测试,虽然国内外专家学者们提出了多种测试方法,也研制出了一些测试装置,但是这些方法和装置大部分还处于实验室阶段,只能用于科学研究而不能用于商业测试。目前,国际上大多使用瑞士Textest公司的织物动态透气性能测试仪,来测试安全气囊用织物的动态透气性。该测试仪能够按照ASTM D 6476—08的要求,模拟气囊遭遇突然气流冲击、膨胀和泄气的情况下,给试样施加气流。仪器包含两个气室,制造气流时,气流经空气压缩机压缩后进人储气室并达到设定的压力,压缩气体通过一个中间气室释放出来,穿过试样。透过试样的气压在l5~25 ms内可上升到100 kPa,并在100~200 ms内回复为0,整个测试过程大约为0.5 S。在两个气室内分别装有传感器感应气室内压强的变化,由连接的计算机处理检测数据,并绘制出气压一时间函数。Paridge 的研究结果表明,动态透气性能试验仪适用于测试安全气囊用织物的透气性,测试时压强应达到100 kPa,则测试结果更有意义。  3、结语  安全气囊作为汽车的重要辅助安全装置,关系到乘员的人身安全,其产品质量应引起相关部门的高度重视。发达国家在2O世纪末就制定了相应的法规,对包括安全气囊在内的汽车安全部件进行规范。目前我国越来越多的汽车上都已经安装了安全气囊,安全气囊的需求增长迅速。但我国目前还没有配套标准,只有三项部件推荐性国家标准,标准的研究制定工作已经落后于安全气囊产品技术的发展需要。动态透气性作为安全气囊用织物的一个重要指标也没有专门的测试标准,标准的缺失使得安全气囊用织物的产品质量得不到有效保证。因此相关标准的制定非常必要,相关测试仪器和测试机构的配套也亟需发展。  资料转载自:http://www.gnxcs.com/  标准集团(香港)有限公司
  • 美国UL建立输液泵性能测试相关实验室
    美国UL公司宣布,其可执行国际标准IEC 60601-2-24,即医疗用电子设备第2-24部分输液泵和控制器的特殊要求的测试实验室正式落成,通过这一世界顶级的实验室,UL的测试范畴将进一步扩大至输液泵专业性能测试领域。  IEC 60601-2-24输液泵性能标准获得了世界各地的广泛认可。由于输液泵装置在病人医疗的过程中起到至关重要的作用,该标准要求通过特定设备和测试机构来对这些产品进行性能评估。迄今为止,输液泵生产商在提交全球法规批准时,可选择的性能测试渠道甚少。一方面厂商通过自己的研发人员和设备进行测试,但同时不得不搁置其他重要的在建项目 另一方面厂商投资购买复杂的测试设备,并且将其安置在低振动的环境下,邀请来自UL的第三方机构工程师代表目击整个测试过程。  通过这家测试实验室,UL还将扩大包括IEC 60601-2-24在内的IECEE系列测试范畴,使通过UL测试的输液泵厂商同时也将获得CB认证,将其作为他们申请全球法规批准的技术文件之一。  目前在中国医疗市场输液泵是一个新兴产业。近几年来,随着医疗水平的不断提高,自主研发的国产输液泵已取得长足发展,产品的质量、性能及可靠性都已接近国外先进水平。随着国内产品的竞争力逐步增强,对于产品性能测试的需求也日趋旺盛,UL的测试能力将对中国制造商在国际市场崭露头角起到促进作用。
  • HPLC性能测试方法标准研制工作组将成立
    10月8日,中国分析测试协会网站发布《关于成立高效液相色谱仪性能测试方法标准研制工作组的通知》。通知中提到,为研究制定我国高效液相色谱仪性能测试方法的标准草案,分析测试协会将成立高效液相色谱仪性能测试方法标准研制工作组。并欢迎各单位推荐在高效液相色谱仪生产、性能测试、应用等方面具有较强能力的专家以个人的身份参加工作组的工作。
  • 上海光源线站工程光源性能拓展通过工艺测试
    2022年8月12日,国家重大科技基础设施——上海光源线站工程的光源性能拓展部分顺利通过了中国科学院条财局组织的工艺测试。 工艺测试专家组由中国科学院近代物理研究所、中国科学院高能物理研究所、中国科学技术大学、上海交通大学等单位的7位专家组成,夏佳文院士任测试组长,徐刚研究员任测试组副组长。此外,线站工程工艺测试组总组长胡天斗研究员参加了测试,中科院条财局重大设施处樊潇潇视频参加了工艺测试会议。专家组听取了工程加速器分总体负责人姜伯承研究员汇报的光源性能拓展部分建设情况及自测报告,讨论确定了工艺测试内容和测试大纲,进行了现场实测。经现场测试和对以往测试的确认,结果表明光源性能拓展后的储存环加速器总体性能参数,以及超高磁场弯铁及长直线节双腰磁聚焦系统、低温系统、束流测量系统、束流控制系统、插入件系统、轨道快反馈系统、SLEGS光源系统的技术性能参数值均达到或优于设计指标。 上海光源二期线站工程根据光束线站的建设需求对储存环加速器进行了升级改造,即光源性能拓展: 将储存环的第3和第13单元改造成带2.29T超高磁场弯铁的DBA磁聚焦结构单元,增加2段1.89m直线节用以引出更多束线(图1),提高弯铁辐射光子特征能量至18.7keV以满足用户的需求(图2);将第11和16单元的超长直线节改造成双腰低βy直线节(图3),以满足安装两条高性能束线的要求;将第12单元的标准直线节进行局部消色散光学改造,以满足安装超导扭摆器的需要;以上改造均对局部光学函数进行了匹配(图4),以使全环的光学函数得到优化。储存环聚焦结构改造于2019年完成,随后投入日常运行,改造完成后的上海光源在第三代同步辐射光源中继续处于先进水平(表1)。图1. 超高磁场弯铁的DBA磁聚焦结构单元布局图及实景照片图2. 超高磁场弯铁照片以及常规和超高磁场弯铁的辐射功率谱比较图图3. 长直线节双腰布局图及实景照片图4. 改造前后的储存环光学函数(局部)对比图表1. 上海光源储存环主要参数改造前后的对比研制了13台插入件(表2、图5),包括6台真空内波荡器(IVU)、3台低温永磁波荡器(CPMU)、1台椭圆极化波荡器(EPU)和1组双椭圆极化波荡器(DEPU)、1台多磁极永磁扭摆器(MPW)和1台超导扭摆器(SCW),并陆续安装到储存环上;在此基础上,新建了基于康普顿散射的激光和电子束伽玛源(图6),伽玛能量范围0.4~20 MeV,满足了新光束线站建设的要求。 表2. 上海光源线站工程插入件参数图5. 各种类型插入件图6. SLEGS光源系统 新建了束团纯化系统和纯度监测系统,获得10-5量级的高纯净度的高流强单束团束流(图7)来满足时间分辨实验的需求。 图7. 束团纯化系统照片和效果图 新建了被动式超导三次谐波腔系统及配套的650W/4.5K液氦低温系统(图8、图9)并已完成调试,实现了24.5mA高流强单束团和200mA束团串混合填充模式的稳定运行,满足了快速成像线站的技术要求。图8. 超导三次谐波腔和束团纯化测量装置测得单束团流强图9. 低温系统(液氮/氦气储罐、4.5K和2K冷箱) 此外,还增加了轨道快反馈系统矫正铁数量,提高轨道快反馈系统的抑制带宽和抑制效果(图10);升级改造了横向束流反馈系统,实现了混合填充模式逐束团反馈,增加了系统动态范围到31db。图10. 轨道快反馈系统(左图参与快轨道反馈系统的轨道稳定性(快轨道反馈系统8小时工作);右图束流轨道噪音积分谱(FOFB打开/关闭)) 上海光源线站工程于2016年11月动工建设,在工程经理部的组织下,光源性能拓展部分按进度计划节点推进。2017年7月完成长直线节双腰改造,2018年7月完成第一台插入件(IVU)上线安装,2019年1月低温系统完成全部设备安装,2019年9月完成3和13单元超高磁场二极铁改造,2020年9月完成SLEGS光源系统相互作用腔上线安装,2021年3月完成超导扭摆器(SCW)上线安装,2021年9月完成三次谐波腔上线安装,并在2021年12月调试达到束线要求,实现了24mA单束团+200mA束团串填充模式,支撑快速成像线站完成了工艺测试(新闻链接:上海光源线站工程建设取得新进展)。截止目前,上海光源线站工程已完成了用户支撑实验系统、实验辅助系统、光源性能拓展和11条光束线站(20个实验站)的工艺测试,新建光束线站试运行已支撑用户取得了一批高水平研究成果。 通过加速器性能拓展工程的实施,拓展了光源光子能谱范围,增加了插入件直线节占比,即增加了可建束线的数量,实现了快速成像要求的高流强单束团和束团串的混合填充模式,同时,保持了加速器主要性能参数的先进性,提高了光源运行稳定性。
  • 国家实验室必须具备这五大基本特征
    p  ■白炎/pp  习近平总书记《关于〈中共中央关于制定国民经济和社会发展第十三个五年规划的建议〉的说明》中指出,要加快建设以国家实验室为引领的创新基础平台,并将国家实验室定位于体量更大、学科交叉融合、综合集成、聚集国内外一流人才的高地,成为抢占科技创新制高点的重要载体。他强调国家实验室应以国家目标和战略需求为导向,瞄准国际科技前沿,通过组织具有重大引领作用的协同攻关,形成代表国家水平、国际同行认可、在国际上拥有话语权的科技创新实力。/pp  习近平总书记的讲话,高屋建瓴地阐释了国家实验室的目标、定位、方向、发展模式与路径,广大科技工作者备受鼓舞。但如何谋篇布局,将党中央的关怀和殷切期望转化成中国科技界的新局面,转化成中国经济社会发展的核心驱动力,正考验着中国科技界的胸怀、智慧与战略眼光。/pp  目前,关于国家实验室的建设方案,可谓众说纷纭。笔者认为,一切讨论应该严格遵循习近平总书记的讲话精神,应该准确把握中国科技发展的客观现实,应该勇于打破“条条框框”和“坛坛罐罐”,从最有利于国家发展的高度,来思考国家实验室建设的原则性要求与具体的运营举措。/pp  首先应该明确,作为国家实验室必须具备下列五个基本特征:/pp  strong战略性:/strong国家实验室必须服从国家战略性的科技目标,一方面要通过重大科技创新以实现科技与经济社会发展的良性互动,解决科技与经济社会发展“两张皮”等根本性问题 另一方面,要集中在事关长远和根本的核心科学领域,作出关键性的、里程碑式的科技贡献,担当大国责任,维护大国尊严。/pp  strong引领性:/strong国家实验室必须指引国家科技发展方向,必须引领未来产业结构与模式,必须带领国家科技体系的各路大军协同创新与共同发展。最紧迫的战略性需求、最核心的科学问题、国际一流的团队、最相适应的科技体制与科研条件,要在国家实验室实现融合。/pp  strong整体性:/strong在保障每个国家实验室运营自主性的基础上,加强国家实验室的整体性,形成协同攻关能力,从而强化示范与引领的作用。这其中,应充分发挥科学共同体的作用,建立国家实验室领导组织,独立于国家任何行政机构。国家科技管理部门,应着眼于服务的功能,协调好国家实验室与国家现有科技力量的衔接,并根据国家实验室的发展需要,重新梳理和优化国家科技发展的战略规划、制度体系与科技力量总体布局。/pp  strong法理性:/strong国家实验室对于我国来说,还是一个新鲜事物。需要通过立法来固化国家实验室作为创新基础平台引领者的地位,避免在混乱的竞争格局中丧失定位与目标。与此同时,以立法来保障国家实验室的运行,也是规范各类科研群体职责的重要契机,我国依法治理科技发展的程度和水平也将借此实现跨越性发展。/pp  strong继承性:/strong作为发展中国家,我们不可能“重打锣鼓另开张”来建设国家实验室,应该继承现有国立科技机构等的人才、科研保障条件和运行机制中的积极因素,以提升国家实验室建设与产出的速度与质量。国家实验室的建设,不应是白手起家,而应是凤凰涅槃。/pp  如果坚持国家实验室的上述基本特征,其建设和运营的基本思路也就自然清晰了,可以形象地概括为“国家出钱、部委点菜、国立科研机构提供厨房、募集的国际领先团队掌勺、社会公众品尝打分”。这其中涵盖着建设什么、怎么建设和怎么运营等几个重要问题。/pp  实现国家意志,是国家实验室建设的根本要求。为了有效达成这一目的,必须审慎确定建设的领域。建议由国家发展改革委和国防部等部委根据国家经济发展和国防建设的战略部署,提出建设国家实验室的优先领域,并由党中央和国务院研究决策。不受现有研究体系的羁绊,不受现有势力与利益格局的左右,避免矬子里拔高个、新瓶装老酒、穿新鞋走老路。国家意志是硬性约束,在勇于“破”的同时,更要提升“立”的决心与信心,对于国家发展的急所,没有条件,创造条件 没有人才,引进和培养人才 没有合适的体制机制,创造新的体制和机制。/pp  探索具有中国特色的国家实验室建设模式,是国家实验室成败的关键。科技发展的中国特色,从经验和传统来说,我们有成功运营世界上最大体量国立科研机构的经验、有“两弹一星”等通过集中攻关快速取得重大科技突破的辉煌成就、有通过改革开放实现科技快速发展的道路自信 从困难和不足来说,我国科技陷入大而不强的发展瓶颈,科技对于国家经济和社会发展的现实驱动力不足,科技治理格局相对混乱。在这样的现实条件下,要更快、更好地建设国家实验室,首先要依托现有国立科研机构的大型、先进科学装置与大集群科技创新的管理模式等,高起点发展。在此基础上,“腾笼换鸟”,着力建设学科交叉融合、国际一流、高度流动性的国际化团队。在团队的构建上,应采用国际先进经验——“铁打的营盘流水的兵”,即以职业管理人员和高级支撑人员为固定人员,享受公务员待遇,以具有国际竞争力的市场价格,按照实验室目标与方向,全球招募合同制的科研人员和团队,并适时更新实验室负责人、方向与团队。国家实验室依托的国立科研机构,应该拿出资源,充当新旧体制之间的“适配器”,协调国家实验室的用人新机制与我国现行人事制度之间的冲突,消除高水平科技团队的后顾之忧。至于国家实验室的运行与科研经费,可以5年为一个周期,打包向国家财政集中申请,国家实验室全职人员不再牵头申请其他渠道国家科研经费。这样既保证了国家实验室科学家的目标和精力集中,又可促进国家实验室与其他创新单元的实质性交流与合作。/pp  科学的评估评价是国家实验室持续健康发展的重要保障。国家实验室的评价,应是相对长周期的、科技战略诊断类的评价。其中,以定性评价为主,重点关注相关行业和社会公众对于国家实验室的满意程度,而以定量评价为辅,委托权威的科技智库,对国家实验室所在领域的国际地位进行计量分析。依据评价的结果,国家实验室领导机构作出实验室、研究方向和资源的调整决定。在具体的定性评价方案上,各个国家实验室的评价,应以相关部委牵头,组织行业高级管理人员、社会公众、科技管理专家等进行评价 国家实验室作为一个整体,应由国家实验室领导机构负责人定期向人民代表大会进行工作汇报,并据此审定下一个周期的经费预算。这样的评价,有利于跳出科技圈内的自说自话,国家实验室必须直接对国家发展和人民福祉负责任。/p
  • 材料在紫外线照射下的耐候性能测试方法
    材料在紫外线照射下的耐候性能测试方法:紫外线耐候试验机用于测试材料在紫外线照射下的耐候性能。本产品采用最佳类比阳光中UV段光谱的荧光紫外灯,并结合控温、供湿等装置来类比对材料造成变色、亮度、强度下降、开裂、剥落、粉化、氧化等损害的阳光(UV段)高温、高湿、凝露、黑暗淋雨周期等因素,同时通过紫外光与湿气之间的协同作用使得材料单一耐光能力或单一耐湿能力减弱或失效,从而广泛用于对材料耐气候性能的评价,设备具有提供最好的阳光UV模拟,使用维护成本低廉,易于使用,设备采用控制自动运行,试验周期自动化程度高,灯光稳定性好,试验结果重现率高等特点。 1. 准备样品:根据需要,准备测试材料的样品。通常样品应具有一定的面积和规格,并且要保证样品的表面平整。2. 设置参数:根据测试要求,设置紫外线耐候试验机的参数。包括紫外线辐照强度、温度、湿度等参数。根据材料的使用环境,合理设置参数以模拟真实环境。3. 安装样品:将准备好的样品安装到试验机的样品架上。确保样品的安装位置平整,且不与其他样品或试验室设备发生干扰。4. 开始测试:按下开始按钮,启动紫外线耐候试验机。紫外线灯管会开始照射样品,同时控制系统会对温度和湿度进行调节。5. 观察记录:在测试过程中,定期观察样品的变化。可以使用放大镜或显微镜观察样品表面的细微变化。同时,记录下测试时间、温度、湿度等相关信息。6. 结束测试:根据测试要求,当达到设定的测试时间或样品发生明显变化时,停止测试。关闭紫外线耐候试验机并拆下样品。7. 分析结果:根据测试结果,分析样品在紫外线照射下的耐候性能。可以进行表面变色、龟裂、变形、质量损失等方面的评估。以上就是紫外线耐候试验机的使用方法。使用过程中,请遵循相关的安全操作规程,并注意保护眼睛和皮肤避免紫外线辐射。
  • 2565万!河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-5672、项目名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目3、采购方式:公开招标4、预算金额:25,650,000.00元最高限价:25650000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230881-3C包110000011000002豫政采(2)20230881-5E包105000010500005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1标的名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:国产设备:设备验收合格后3年(以最终验收结果单据签订时间为准)。进口设备:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:国产设备:签订合同150天内达到供货条件,接到采购人供货通知45天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)进口设备:签订合同240天内达到供货条件,接到采购人供货通知30天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:合格,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年08月10日 至 2023年08月16日,每天上午00:00至11:59,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心(http://www.hnggzy.net)3.方式:供应商凭CA登陆(http://www.hnggzy.net)市场主体登录系统,在规定时间内按网站提示下载招标文件及相关资料(详见http://www.hnggzy.net公共服务-办事指南)。CA数字证书办理详见河南省公共资源交易中心门户网站(http://www.hnggzy.net/)“办事指南”专区。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院碳基复合材料研究院地址:河南省郑州市金水区明理路266-38号联系人:王沛联系方式:0371-663227662.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:郭峰联系方式:0371-861360693.项目联系方式项目联系人:郭峰联系方式:0371-86136069
  • 2565万!河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-5672、项目名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目3、采购方式:公开招标4、预算金额:25,650,000.00元最高限价:25650000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230881-1A包13100000131000002豫政采(2)20230881-2B包410000041000003豫政采(2)20230881-3C包110000011000004豫政采(2)20230881-4D包240000024000005豫政采(2)20230881-5E包105000010500006豫政采(2)20230881-6F包390000039000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1标的名称:河南省科学院碳基复合材料研究院热防护碳基复合材料性能考核测试平台建设项目5.2数量:1批(具体数量详见招标公告附件)5.3技术需求:详见招标公告附件。5.4质保期:国产设备:设备验收合格后3年(以最终验收结果单据签订时间为准)。进口设备:设备验收合格后1年(以最终验收结果单据签订时间为准)。5.5交货期:国产设备:签订合同150天内达到供货条件,接到采购人供货通知45天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)进口设备:签订合同240天内达到供货条件,接到采购人供货通知30天内安装调试完毕。(在达到供货条件至运输安装调试期间所产生的如仓库保管等一切费用由中标人承担)5.6质量标准:合格,满足采购人要求。5.7交货地点:郑州市内采购人指定地点。6、合同履行期限:同交货期7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年07月14日 至 2023年07月20日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心(http://www.hnggzy.net)3.方式:供应商凭CA登陆(http://www.hnggzy.net)市场主体登录系统,在规定时间内按网站提示下载招标文件及相关资料(详见http://www.hnggzy.net公共服务-办事指南)。CA数字证书办理详见河南省公共资源交易中心门户网站(http://www.hnggzy.net/)“办事指南”专区。4.售价:0元三、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:河南省科学院碳基复合材料研究院地址:河南省郑州市金水区明理路266-38号联系人:王沛联系方式:0371-663227662.采购代理机构信息(如有)名称:河南省机电设备国际招标有限公司地址:河南省郑州市商都路27号财信大厦14-15层联系人:郭峰联系方式:0371-861360693.项目联系方式项目联系人:郭峰联系方式:0371-86136069
  • 材料力学性能测试系统2项顺利通过科技成果评价
    近日,中国仪器仪表行业协会(简称“协会”)受中机试验装备股份有限公司委托,组织相关专家以视频会议的形式,对由中机试验装备股份有限公司完成的“3000℃保护气氛下通电加热材料力学性能测试系统”“2500℃保护气氛下辐射加热材料力学性能测试系统”2个项目进行科技成果评价。本次评价专家委员会由华东理工大学张显程院长、哈尔滨工业大学许承海教授、西北工业大学张程煜教授、西安航天动力技术研究所李耿主任、中国航天科工六院四十一所付春楠主任、航天特种材料及工艺技术研究所周金帅副总工、中国国检测试控股集团股份有限公司万德田院长共7位专家组成。张显程院长担任评价专家委员会的主任,协会副秘书长程红主持会议。中机试验装备股份有限公司试验机事业部马双伟技术副总对“3000℃保护气氛下通电加热材料力学性能测试系统”“2500℃保护气氛下辐射加热材料力学性能测试系统”2个项目进行了全面汇报。2个项目研究成果取得了多项自主知识产权,各研制出设备1台,各获得授权发明专利2件,“2500℃保护气氛下辐射加热材料力学性能测试系统”项目还发表科技报告1篇。该2个项目的成果在多家科研院所和企事业单位进行了推广应用,取得了显著的社会效益和经济效益。评价委员会专家审查了相关资料,经质询和讨论,评价专家委员会一致同意通过评价。2个项目均属国内首创,技术难度较大,成果创新性强,取得了自主知识产权,2个项目总体均达到国内领先水平。
  • 关于举办GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会的通知
    p strong 各有关单位:/strong/pp  由全国纳米技术标准化技术委员会(SAC/TC279)归口的国家推荐性标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》已于2016 年12 月13 日发布,并于2017 年7 月1 日起实施。GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》已于2018 年3 月15 日发布,并将于2018 年10 月1 日起实施。两项标准均为首次制定实施,对拉曼光谱仪器结构、测试方法、校准方法等做了详细规定。/pp  拉曼光谱技术广泛应用于纳米科技、生物、半导体、考古、宝石及司法鉴定等领域。拉曼光谱测试结果的准确性、一致性是国内/国际间科研交流、对等贸易等不可或缺的坚实基础。同时仪器性能的标准化能够大大助力我国拉曼光谱仪器产业的质量提升,增强国产仪器的市场竞争力。/pp  为了满足标准使用相关方的实际需求,进一步深化对标准的解读,解答标准使用过程中的疑问,保证标准的有效实施和利用,同时促进标准制定方、仪器制造方和仪器使用方三方的有效合作,由中国计量科学研究院(以下简称:中国计量院)主办的“GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》等国家推荐性标准宣贯会”拟定于2018 年9 月10 日在湖北省武汉市举办。届时将邀请标准主要起草人及相关专家对标准技术细节进行详细解读。欢迎相关产业、检测机构、仪器厂商技术主管和技术人员参会,就拉曼光谱的生产、使用及国家标准的有效实施进行交流,促进拉曼光谱在更广泛领域的普及和发展。/pp  同时,将于9 月11 日至13 日召开“国家质量基础设施建设助力质量提升”学术研讨会暨CSTM/FC00 领域委员会及纳标委WG5 工作组2018 年度会议(CSTM/FC00 领域委员会简介见附件1),届时将邀请相关单位领导和专家围绕“国家质量基础设施建设助力质量提升”的主题展开深入探讨,欢迎有关专家学者参会。同时,将召开由CSTM/FC00 领域委员会归口承担的《标准编制说明编写指南》等4 项团体标准的审查会和新标准立项会,欢迎有意向的专家或单位参与标准的制定工作。/pp  会议事项通知如下:/pp strong 一、时间和地点/strong/pp  会议时间:2018 年9 月9 日注册报到,9 月10 日宣贯会议/pp  会议地点:武汉 东湖开发区 二妃山庄 晴川厅会议室/pp  地址:武汉东湖高新技术开发区高新大道666 号(光谷生物城内)/ppstrong  二、宣贯内容/strong/pp  1、拉曼光谱的基本原理与应用介绍 /pp  2、国家标准GB/T 33252-2016《纳米技术 激光共聚焦显微拉曼光谱仪性能测试》宣贯 /pp  3、拉曼光谱仪的校准与溯源 /pp  4、国家标准GB/T 36063-2018《纳米技术 用于拉曼光谱校准的标准拉曼频移曲线》宣贯。/pp strong 三、考核与发证/strong/pp  培训结束后,由中国计量科学研究院颁发培训证书。该证书可作为继续教育的证明。/pp strong 四、培训费用/strong/pp  培训费:1500 元/人,包括讲义、标准复印件、培训证书。/pp  请将培训费于培训前7 天电汇到中国计量科学研究院账户,汇款/pp  信息如下:/pp  账户名:中国计量科学研究院/pp  开户行:交通银行北京分行和平里支行/pp  账号:110060224018010008693/pp  行号:301100000074/pp  电话:010-64524304/pp  银行汇款时,请备注“2018 拉曼宣贯会+姓名”字样,并详细填span style="TEXT-ALIGN: center"写参会回执(附件2)中的开票信息。/span/pp style="TEXT-ALIGN: center"img title="QQ截图20180906104247.jpg" style="HEIGHT: 701px WIDTH: 600px" border="0" alt="QQ截图20180906104247.jpg" src="https://img1.17img.cn/17img/images/201809/uepic/0ff14588-62c6-481b-8186-8894a9edc2bc.jpg" width="600" height="701"//ppstrong  附件:/stronga title="附件2. 宣贯会参会回执(1).docx" style="FONT-SIZE: 12px COLOR: rgb(0,102,204)" href="https://img1.17img.cn/17img/files/201809/attachment/195c21ad-4283-42f8-8268-18dc4ce79a19.docx"br/strong  /strong/astrong/stronga title="附件1. CSTM-FC00领域委员会简介(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/a53999e4-b632-4c8c-96f0-dd03b1a5b066.pdf"strong附件1. CSTM-FC00领域委员会简介.pdfbr/  附件2. 宣贯会参会回执.docxbr/  /strong/astrong/stronga title="附件3. 酒店交通(1).pdf" style="FONT-SIZE: 12px COLOR: #0066cc" href="https://img1.17img.cn/17img/files/201809/attachment/3fd0e349-9265-4ae7-a1dc-8d4930209fd6.pdf"strong附件3. 酒店交通.pdf/strongbr//a/p
  • 应用 | 医用口罩用新型石墨烯无纺布性能测试与评价
    研究背景自疫情爆发以来,个人防护进入常态化,消费者对口罩的要求从最开始的单一防护功能向舒适化、可复用、时尚化等多功能性转变。市场对多功能化医用口罩的迫切需求,不断推动着现代医用口罩非织造布在新材料、新技术方面的不断探索和改进。有研究表明,将传统非织造织物材料与石墨烯相结合,可开发高效、低阻的新型复合材料。同时,利用石墨烯独特的网状结构和极高的比表面积,吸附和过滤颗粒、细菌和病毒,能有效阻隔冠状病毒,大大地拓宽了石墨烯的应用领域。2020年12月25日,在深圳举行的第22届中国国际高新技术成果交易会上,一种新型石墨烯无纺布一经面世就获得优秀产品奖,引起了社会各界的广泛关注。这种新型石墨烯无纺布是将传统原料聚丙烯替换为石墨烯/聚丙烯复合母粒,采用纺粘无纺布制造工艺制备获得。本文通过对这种新型石墨烯无纺布微观组织形貌及热性能、表面亲疏水(油) 性、防水性能、透气性、压力差、 配戴时效性及是否有异味等进行测试和评价,分析研究这种新型石墨烯无纺布在医用口罩方面的应用前景,开发石墨烯在医疗器械领域的应用潜力,为口罩生产企业的产品升级、转型提供数据支撑。图1. 石墨烯无纺布和医用无纺布扫描电子显微镜照片实验方法与仪器本文采用KRÜ SS DSA25B接触角测量仪对石墨烯无纺布进行接触角测试。DSA25B接触角测试仪实验开始前,将石墨烯无纺布用蒸馏水超声清洗,并在50°C的鼓风干燥箱中烘干。实验时, 样品平铺在载玻片上,水滴(油滴)体积约为2μL。高速相机捕捉水滴(油滴)照片,采用座滴法测量接触角,即在液滴轮廓和表面投影(基线)之间的交叉点上(三相接触点)使用座滴图像量取接触角,每张照片测量10组数据,取平均值作为测试结果。结果与讨论图2. 石墨烯无纺布表面亲疏水(油)性测试结果(注:a.水(油)滴光学照片;a.水(油)接触角)在室温条件下,分别测试了石墨烯无纺布正反面水和油的静态接触角。图2a所示为测试过程中捕捉的水(油)滴光学照片,通过座滴图像法量取的接触角如图2b所示。可知,石墨烯无纺布正面水接触角为132.6°,反面水接触角为138.8°,正面油接触角为142.8°,反面油接触角为129.9°。这种新型石墨烯无纺布纤维表面张力低于水、油的表面张力,使得水滴以及油污无法在织物表面铺展,因此证明这种新型石墨烯无纺布具有拒水、拒油的特性。同时,防水性能评价测试结果显示试样表面没有润湿,存有少量水珠,依照GB/T 4745-2012《纺织品防水性能的检测和评价沾水法》评价标准,沾水等级达到4~5 级,该材料具有良好的抗沾水性能。总结可看出减少银浆层的空洞是提高芯片键合强度的一种有效方法。合适的粘合促进剂可以帮助增加银浆在基材表面的浸润并减少界面银浆层里的空洞。新型石墨烯无纺布在医用口罩的应用中体现出了组织结构稳定、拒水、拒油、抗沾水、低阻透气、口罩无异味的特性,符合当下人们对口罩的舒适性、防护性和可重复使用性的要求,有助于口罩生产企业对产品的升级、转型。随着石墨烯无纺布生产技术和表面改性技术不断完善成熟,新型石墨烯无纺布在医用口罩、医用缝合线、医用辅料等医疗器械的应用将得到进一步拓展,从而实现石墨烯在功能无纺布应用中的商业化与规模化,未来可能会有越来越多功能各异的石墨烯无纺布产品陆续出现在市场上。参考文献:[1]陈大雷,陈凡红,元瑛,梁峰,杨晓辉,贺军权.医用口罩用新型石墨烯无纺布性能测试与评价[J].中国医疗器械信息,2022,28(23):17-20+73.DOI:10.15971/j.cnki.cmdi.2022.23.038.
  • 柔性材料在温度环境下力学性能测试技术应用
    柔性材料在温度环境下力学性能测试技术应用柔性电子器件飞速发展,它们被广泛用于医疗诊断、监测和柔性机器人等领域。柔性电子涵盖有机电子、塑料电子、生物电子、纳米电子、印刷电子等,包括RFID、柔性显示、有机电致发光(OLED)显示与照明、化学与生物传感器、柔性光伏、柔性逻辑与存储、柔性电池、可穿戴设备等多种应用。随着其快速的发展,涉及到的领域也进一步扩展,目前已经成为交叉学科中的研究热点之一。Science将有机电子技术进展列为2000年世界十大科技成果之一,美国科学家艾伦黑格、艾伦马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。近几年,国内清华大学、西北工业大学、南京工业大学、华中科技大学等国内著*名大学都先后建立了柔性电子技术专门研究机构,柔性电子技术已经引起了我国研究人员的高度关注与重视,柔性电子领域的研究异常火热,使得该领域的发展日新月异并取得了长足的进展。近期,复旦大学复旦大学高分子科学系教授彭慧胜领衔的研究团队,成功将显示器件的制备与织物编织过程实现融合,在高分子复合纤维交织点集成多功能微型发光器件等相关成果发表在Nature。华中科技大学吴豪教授团队联合复旦大学李卓研究员,基于负泊松比超材料结构开发出高性能柔性电子皮肤。相关成果 “Flexible Mechanical Metamaterials Enabled Electronic Skin for Real-time Detection of Unstable Grasping in Robotic Manipulation” 发表在Advanced Functional Materials上。杭州师范大学朱雨田教授团队通过简单的原位还原和溶剂浇注技术,开发了由聚乙烯醇(PVA)、 柠檬酸(CA)和银纳米粒子(AgNPs)组成的可拉伸和透明的多模态电子皮肤传感器,它具有应变、温度和湿度方面的多种传感能力。在柔性材料(柔性玻璃、柔性OLED、柔性电池、柔性电子皮肤)以及柔性电子元器件等研究过程中,在一定温度环境下的力学性能(屈服强度、延伸率、泊松比、杨氏模量)是评价柔性材料应用场景维度的一个非常重要的指标, 也是制定柔性电子制造过程工艺关键参数。一般情况下,该类测试载荷精度要求较高,且样品小,在进行屈服、强度、延伸率等力学性能测试时,在实现温度冷热环境,拉伸功能同时还需配备非接触类视觉测量类仪器,如DIC。冷热原位拉伸微观应力应变解决方案冷热原位拉伸微观应力应变测试系统主要应用于小尺度的相关的柔性材料、生物、金属、有机聚合物、纤维等各种材料科学研究,可实现温度范围-190~600℃,温控精度±0.1℃ 最*大载荷5kN。冷热原位拉伸测试系统通过实时获取材料动态载荷下,形变和温度等数据,结合DIC联用进行材料微观结构分析数据,可实现定量分析材料微观力学性质、相变行为、取向变化、裂纹萌生和扩展、材料疲劳和断裂机制、材料弯曲、高温蠕变性、分层、形成滑移面以及脱落等现象,实现各种材料性能的研究。三维数字图像相关技术(DIC)具有准确性、稳健性和易用性的特点,已被广泛应用于应变测量。但是,对于需要高放大倍数的测量样品,3D测量仍很难达到测量需求,这主要是由于3D测量缺乏具有足够景深的光学元件,无法从不同视角获取3D分析所需的两张高放大率图像。WTDIC-Micro弥补了传统设备无法进行微小物体变形测量的不足,成为一种微观尺度领域变形应变测量的有力工具。 该测试系统采用模块化设计, 核心冷热原位拉伸台采用专利技术自主设计、加工制造,开发出集成化、多功能、兼容性强、变温范围大、灵活小巧,安装快捷方便、操作简单、性能可靠的冷热原位微观应力测试系统解决方案,且性价比高。1) 应用范围广:可用于金属、无机(半导体、陶瓷)、有机(生物、高分子、纤维)、复合涂层等多个学科的材料科学研究。2) 温控技术强:三种变温模块(半导体冷热、液氮/电热冷热等)可自由更换,变温范围-190~600℃,RT~1000℃,温控精度±0.1℃,具有自主产权核心温控模块算法;3) 载荷加载功能多:可更换多种专用夹具,可实现测试样品的拉伸、挤压、疲劳测试;最*大拉伸载荷5kN,载荷精度0.2%;拉伸速率达1 -100 um/s,最*大位移50mm;4) 变温拉伸台适应性强:可适配扫描电子显微镜、光学显微镜系统、X射线衍射仪等系统;5) 软件集成度高:集成温控、拉伸测试,可进行载荷、温度、位移多种参数设置,可结合灵活的阀值进行循环负载的复杂实验,可以实时进行材料研究应力应变;6) 软件界面表现丰富:系统软件提供多种模式的材料检测模式,温度、载荷、位移阈值设置,曲线生成,数据自动采集、多种格式输出;7) 技术支持:自主研发,定制开发灵活;提供全面的解决方案和技术指导。三维显微应变测量系统 WTDIC-Micro显微应用测量系统:光学显微镜和DIC数字图像相关技术的结合,可以满足纳米级精度测量需求。 使用方法步骤 在柔性小尺寸试样测试过程中,冷热原位拉伸测试系统的使用方法及步骤如下:(1) 通过专用的小试样散斑喷涂装置,制作散斑涂层。当然,也可以通过画线等方式制作标记,视频引伸计均可支持,但制作散斑涂层后面还可以扩展到其他用途,所以我们建议处理为散斑涂层。制作完成的试样类似下图。  小尺寸试样散斑喷涂效果 (2) 将小试样放在对应的试验机上并夹持住冷热原位拉伸测试系统加载试样测试结果(1)应变-状态曲线(2)位移-状态曲线温度波动曲线(3)数据表格计算得到的位移场(上)和应变场(下) 总结:在柔性材料研究中,高精度实时获取不同温度下的应力应变数据,是解决柔性小尺寸试样变温环境应力应变测量问题的较佳方案。文天精策仪器科技(苏州)有限公司针对小尺寸试样力学试验中的测量难题,为用户提供成套解决方案,在小试样的加载装置、夹具设计、环境控制等方面提供完整的解决方案。
  • 一文看材料力学性能测试的前世今生,从1638年开始...
    p  回顾历史长河,人类文明发展的每一脚步里都刻着材料的痕迹,而材料性能测试作为人们选取材料的衡量标准,自是有着非常重要的作用。时至今日,伴随着材料学、近代物理学、微电子学、计算机技术等的飞速发展,材料测试系统无不体现着数字化、智能化的色彩。/pp  但你可知道曾经的曾经,材料测试设备是什么样子的?今天,带你追溯一下材料力学性能测试的发展史。/pp style="text-align: center "span style="color: rgb(255, 0, 0) "strong材料力学性能测试发展史/strong/span/pp  span style="color: rgb(255, 0, 0) "strong1638年/strong/span大物理学家伽利略用施加净重的方法测量木头、金属的弯曲强度,是有记录人类第一次用严谨的试验方法计算材料的力学性能。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/87623ddd-7584-4f85-b03c-53f586fced7e.jpg" title="1.jpg"//pp style="text-align: center "strong伽利略弯曲测试装置/strong/pp  span style="color: rgb(255, 0, 0) "strong1729年/strong/spanMusschenbroek发明第一台材料试验机,它是根据杠杆原理制成的,形状很像一台大秤。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/4b3400ae-4363-4977-bcbf-71733ea3400f.jpg" title="2.jpg"//pp style="text-align: center "strong第一台材料试验机/strong/pp  span style="color: rgb(255, 0, 0) "strong1856年/strong/spanFairbairn发明第一台高温力学性能测试装置。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/ea9d6b4f-f740-45d0-bee7-2ace88f98638.jpg" title="3.jpg"//pp style="text-align: center "strong第一台高温力学性能测试装置/strong/pp  span style="color: rgb(255, 0, 0) "strong1880年/strong/span,英国生产出杠杆重锤式材料试验机,其原理也就是采用砝码加载的形式。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/0aa6e074-69c5-43fe-8deb-01bd5f3bf137.jpg" title="4.jpg"//pp style="text-align: center "strong19世纪80年代力学试验机/strong/pp  早期瑞士AMSLER公司制造的液压拉力万能材料试验机结构非常简单,框架结构内有一对拉力夹持钳口,利用液压油缸人力加载,压力表显示试验力读数,至今这种试验机仍在生产和使用。 /pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/3e783b68-242c-476b-b13a-c1a28b12efc8.jpg" title="5.jpg"//pp style="text-align: center "strong早期油压试验机/strong/pp  strongspan style="color: rgb(255, 0, 0) "1908年/span/strong又生产出螺母、螺杆加载的万能试验机,这个也就是现在电子万能试验机的雏形。在这些试验机上可进行拉伸、压缩、弯曲、剪切等试验。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/f9c24c41-ce6b-48e5-8301-c91b62c46f09.jpg" title="6.jpg"//pp style="text-align: center "strong第1台位移闭环控制电子万能材料试验机/strong/pp  span style="color: rgb(255, 0, 0) "strong1943年,/strong/span由英斯特朗研制出第1台位移闭环控制电子万能材料试验机。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/44fb55ec-c2b7-48a2-8d15-4517e5da383d.jpg" title="7.jpg"//pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong第一代万能材料试验机的实时记录和数据输出装置/strong/span/pp  span style="color: rgb(255, 0, 0) "strong20世纪50年代/strong/span,出现了电子式材料试验机,由于它具有许多优点,颇受人们重视。到现在,电子计算机技术已成熟地应用到万能材料试验机中,也是我们现在最常见的材料力学试验机。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/dc7c8536-400b-4a58-ad91-d1ac622a0bd5.jpg" title="8.png"//pp style="text-align: center "strong液压和电子机械融合的试验装置/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/50c0d3d3-44ad-471d-9bb2-fc383fe97b72.jpg" title="9.jpg"//pp style="text-align: center "strong电子万能材料试验机(附台式PC端)/strong/pp  这个万能材料试验机设备应该大家都最熟悉的了,是目前应用最普遍的力学性能测试仪器。/pp style="text-align: center"img style="width: 600px height: 426px " src="http://img1.17img.cn/17img/images/201703/insimg/b018da3a-7e73-44e0-936b-5050064723f9.jpg" title="10.jpg" height="426" hspace="0" border="0" vspace="0" width="600"//pp style="text-align: center "strong电子万能材料试验机/strong/pp  到了物联网飞速发展的大数据时代,智能设备已渗透到我们生活的每个角落。以智能制造为核心的工业4.0革命引领的材料力学性能测试又是什么样的呢?他应该是这个样子的~~/pp  span style="color: rgb(255, 0, 0) "NO 1 触控测试/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/ff0c43b4-edbe-4784-b70e-5f561cb081a7.jpg" title="1.gif"//pp  触控测试系统替代传统的台式PC端,提供高效、便捷的测试环境。/pp  同时,全触摸环境为软件开发人员提供模块化、可扩展和易于改进的空间,使得开发人员能够更进一步改善使用者的用户界面。/pp  span style="color: rgb(255, 0, 0) "NO 2 人机协同,便利操作/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/9dd54f53-9533-47b2-a19f-5c1db82d3c74.jpg" title="2.gif"//pp  即工业4.0时代的符合工位人体工程学。测试系统现可通过操作员控制面板操作,并可非常便捷地安装在测试机架的一侧,采用全面人机工程学设计,大幅提升测试效率。/pp  让整个测试操作更加高效、便捷。软件工作流程设定更加人性化,减少重复操作引起的效率低下 工作场所的布局更加合理,以最小化重复性和疲劳性操作带来的损害,工作体验变得愉悦。/pp style="text-align: left "  span style="color: rgb(255, 0, 0) "NO 3 互联网连接平台/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201703/insimg/4d025ea5-ce81-49c7-9664-fb68444aa1c2.jpg" title="3.gif"//pp style="text-align: left "  遇到问题时,用户可以直接通过用户界面安全地向技术支持人员提出问题。创新型的技术支持平台帮助用户以最快的速度恢复测试。/pp  同时,智能链接平台还帮助用户跟踪系统标定和软件版本。设置新验证或更新为最新版软件只需轻触屏幕进行操作即可。/pp  总之,随着制造业向数字化、网络化和智能化转型,材料测试系统不断以用户体验为中重心进行更新迭代。畅想未来,材料人的测试之旅也将变成不可思议的愉悦的体验。/pscript src="https://p.bokecc.com/player?vid=F67D6741D0B19ED99C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/scriptp i(本文转自于新材料在线公众微信)/ibr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制