当前位置: 仪器信息网 > 行业主题 > >

基本性质

仪器信息网基本性质专题为您整合基本性质相关的最新文章,在基本性质专题,您不仅可以免费浏览基本性质的资讯, 同时您还可以浏览基本性质的相关资料、解决方案,参与社区基本性质话题讨论。

基本性质相关的论坛

  • 甲基二氯化物基本性质

    甲基二氯化物基本性质甲基二氯化物又名二氯,分子式: CH3OPSCL 2 化学名:O—甲基硫代磷酰二氯外观呈微黄色透明液体或无色透明液体,甲基二氯化物,英文名称:Dichloride methyl,是农药、化工产品的重要中间体,它是生产甲胺磷、乙酰甲胺磷、甲基对硫磷、甲基立枯磷、对硫磷、倍硫磷、氯硫磷、甲基辛硫磷、甲基毒死蜱、甲基嘧碇磷杀螟松、杀螟腈等农药和化工产品的重要中间体。指标控制:甲基二氯化物不溶于水,比重>1.45, 三氯硫磷含量<0.2%,一氯化物<3%,含量98%,分子量:164.97,检验方法:气谱法技术指标名称: 指标甲基二氯化物主含量: ≥98%甲基一氯化物<3%三氯硫磷含量;<0.2甲基二氯化物是生产甲基一氯化物,甲基对硫磷的中间产物,甲基二氯化物目前在国内外市场中的状况 全国甲基对硫磷产能为9万吨,占5种高毒有机磷农药总产能的21.8%;产量5.1万吨,占18.8%;销售额7.4亿元,占14.9%;出口量2.6万吨,占27.3%。统计显示,全国甲基对硫磷产能未变化,2005年产量比2003年下降24.5%,销量下降23.3%,在总产量下降的情况下,出口量呈逐年上升之势,相比2003年,2005年出口量由占总产量的43.2%增长到62.1%,同比增长8.5%。这表明在过去3年里,甲基对硫磷的削减成效明显,国内用量逐渐减少,转向以出口为主。 甲基对硫磷产品是一种高效的有机磷杀虫剂,但毒性较大,随着一些低毒性农药的生产,它的产量也在逐渐下降,有着被其它农药取代的趋势。甲基二氯化物的生产方法 由于三氯硫磷制得甲基二氯化物,三氯硫磷中的 氯原子具有一定的活泼性,比较容易被有机基团取代。当第一个 原子被取代其他原子被取代的难度比较大,因此只有控制好反应条件使三氯硫磷一个 氯原子被取代而不发生深的反应,就能得到纯度比较高的甲基二氯化物

  • 连接器的基本性能有几类?

    连接器的基本性能可分为三大类:即机械性能、电气性能和环境性能。 另一个重要的机械性能是连接器的机械寿命。机械寿命实际上是一种耐久性(durability)指标。它是以一次啮合、分离为一个循环,以在规定的啮合、分离循环后连接器能否正常完成其连接功能(如接触电阻值)作为评判依据。

  • 锂离子电池负极材料石油焦的基本性质介绍

    石油焦(Petroleumcoke)是原油经蒸馏将轻重质油分离后,重质油再经热裂的过程,转化而成的产品,从外观上看,焦炭为形状不规则,大小不一的黑色块状(或颗粒),有金属光泽,焦炭的颗粒具多孔隙结构,主要的元素组成为碳,占有80%以上,含氢1.5%-8%,其余的为氧、氮、硫和金属元素。  石油焦属于易石墨化炭一类,石油焦的微晶与冶金焦比较,碳网格片状体之间的叠合比较整齐,片状体之间距离较小;在石墨化的高温下,碳网格片状体的晶粒平均厚度(Lc)和平均宽度(La)增大,片状体层面间距(d)缩小;(图1)晶格常数(a0和c0)接近天然石墨,电阻率显著降低而真密度相应提高。所以使用石油焦为原料可以制造电阻率较低的石墨电极。  石油焦具有其特有的物理、化学性质及机械性质,发热部份的不挥发性碳,挥发物和矿物杂质(硫、金属化合物、水、灰等)这些指标决定焦炭的化学性质。物理性质中孔隙度及密度,决定焦炭的反应能力和热物理性质。颗粒组成、加工方式、硬度、耐磨性、强度和其他机械特性决定其机械性质。

  • 【资料】常用化学药品基本性质小结!

    (1)化学药品性质:1. 硫酸:H2SO4-无色油状液体,比重15℃时1.837(1.84)。在30-40℃发烟;在290℃沸腾。浓硫酸具有强烈地吸水性,因此它是优良的干燥剂。 2. 硝酸:HNO3-无色液体,比重15℃时1.526、沸点86℃。红色发烟硝酸是红褐色、苛性极强的透明液体,在空气中猛烈发烟并吸收水份。 3. 盐酸:HCl-无色具有刺激性气味,在17℃时其比重为1.264(对空气而言)。沸点为-85.2。极易溶于水。 4. 氯化金:红色晶体,易潮解。 5. 硝酸银:AgNO3-无色菱形片状结晶,比重4.3551,208.5℃时熔融、灼热时分解。如没有有机物存在的情况下,见光不起作用,否则变黑。易溶于水和甘油。能溶于酒精、甲醇及异丙醇中。几乎不溶于硝酸中。有毒! 6. 过硫酸铵:(NH4)2S2O8-无色甩时略带浅绿色的薄片结晶,溶于水。 7. 氯化亚锡:SnCl2无色半透明的结晶物质(菱形晶系)比重3.95、241℃时熔融、25℃时沸腾。能溶于水、酒精、醚、丙酮、氮杂苯及醋酸乙酯中。在空气中相当稳定。 8. 重铬酸钾:K2CrO7-橙红色无水三斜晶系的针晶或片晶,比重2.7,能溶于水。 9. 王水:无色迅速变黄的液体,腐蚀性极强,有氯的气味。配制方法:3体积比重为1.19的盐酸与1体积比重为1.38-1.40的硝酸,加以混合而成。 10. 活性炭:黑色细致的小粒(块),其特点具有极多的孔洞。1克活性炭的表面积约在10或1000平方米之间,这就决定了活性炭具有高度的吸附性。 11. 氯化钠:NaCl-白色正方形结晶或细小的结晶粉末,比重2. 1675,熔点800℃、沸点1440℃。溶于水而不溶酒精。 12. 碳酸钠:Na2CO310H2O-无色透明的单斜晶系结晶,比重1.5;溶于水,在34℃时具有最大的溶解度。 13. 氢氧化钠:NaOH-无色结晶物质,比重2.20,在空气中很快地吸收二氧化炭及水份.潮解后变成碳酸钠。易溶于水。 14. 硫酸铜:CuSO45H2O-三斜晶系的蓝色结晶,比重2.29。高于100℃时即开始失去结晶水。220℃时形成无水硫酸铜,它是白色粉末,比重3.606,极易吸水形成水化物。 15. 硼酸:H3BO3-是六角三斜晶白色小磷片而有珠光,比重为1.44。能溶于水、酒精(4%)、甘油及醚中。

  • 气体检测设备的基本性能

    [font='宋体'][size=10.5pt]气体[/size][/font][font='宋体'][size=10.5pt]检测设备的基本性能[/size][/font][font='宋体'][size=10.5pt]评价检测设备件能的指标主要有以下几个方向[/size][/font][font='宋体'][size=10.5pt]1[font=宋体].[/font][/size][/font][font='宋体'][size=10.5pt]气体[/size][/font][font='宋体'][size=10.5pt]检测设备精确度[/size][/font][font='宋体'][size=10.5pt] 日常描述精确度的指标有精密度、准确度和精确度。精密度描述仪表和设备指示值的分散性,准确度描述检测设备指示值与真值的偏离程度,精确度则是精密度和解确度的综合反映。精确度通常以测量误差的相对值表示:[/size][/font][font='宋体'][size=10.5pt] 2[font=宋体].[/font][/size][/font][font='宋体'][size=10.5pt]稳定性[/size][/font][font='宋体'][size=10.5pt] 检测设备的稳定性指标市两个:一是设备指示值随时间的稳定性,以稳定度表示,如某仪表电压指示值变化为[font=Times New Roman]0[/font][font=宋体].[/font][font=Times New Roman]1mv/h[/font][font=宋体];二是设备外部环境和工作条件变化[/font][font=Times New Roman]([/font][font=宋体]如温度、湿度、气压、振动、电源波动[/font][font=Times New Roman])[/font][font=宋体]影响到设备指示值的稳定性,用影响量表。说明影响量时必须将影响量与示值偏差向时表示。[/font][/size][/font][font='宋体'][size=10.5pt] 3[font=宋体].输入输出特件[/font][/size][/font][font='宋体'][size=10.5pt] 检测设备的输入与输出特性有静态特性和动态特件两大类。所谓静态特性是指检测设备的输入量[font=Times New Roman]([/font][font=宋体]被测参数[/font][font=Times New Roman])[/font][font=宋体]不随时间变化或随时间变化很缓慢时输出与输入的关系。讨论静态特性时,输出与输入的关系式是不含时间变量的代数方程。动态特性是指当输入量随时间快速变化时检测设备输出与输入的关系,此时的关系式是含有时间变量的微分方程。[/font][/size][/font][font='宋体'][size=10.5pt] 静态特件和动态特性相互牵制,当静态特件显尔出非线性和随机性时、静态特性会影响功态条件下的测量结果,工程上要做近似处理。[/size][/font][font='宋体'][size=10.5pt] 由于非电量的检测元件和设备大多是将非电量转换为电量进行处理的,它们都存在着产生电磁干扰和受电磁干扰影响的问题,工业发达国家越来越重视[/size][/font][font='宋体'][size=10.5pt]检测[/size][/font][font='宋体'][size=10.5pt]仪器设备的电磁兼容件研究,并订立了相应法规。电磁兼容性将是今后检测设备一个重要的性能指标。[/size][/font][font='宋体'][size=10.5pt] 一、测量、量值、约定真值[/size][/font][font='宋体'][size=10.5pt] 测量方法及分类[/size][/font][font='宋体'][size=10.5pt] 测量足以确定被测物属性量值为目的的一组操作,这种测量操作是—个比较过程,是将被测参数的量值与同性质标准量进行比较,比出的倍数即为测量的结果。测量单价、测量方法、测量仪器与设备是测量的“二要素”。[/size][/font][font='宋体'][size=10.5pt] 测量力法技测量的方式[font=Times New Roman]([/font][font=宋体]测量路径[/font][font=Times New Roman])[/font][font=宋体]分有:直接测量、间接测量、联立测量;按测量方法[/font][font=Times New Roman]([/font][font=宋体]度量器多与形式[/font][font=Times New Roman])[/font][font=宋体]分有:偏差式测量法、零化式测量法和微差式测量法;按被测参量变化快慢分有:静态测量、动态测量;按被测显在变化过程巾被测情况分有:在线测号、离线测量;按测量敏感元件与被测介质接触形式分合:接触式测量与非接触式测员。[/font][/size][/font]

  • 【原创大赛】防护热板法导热系数测量装置基本性能的验证与考核

    【原创大赛】防护热板法导热系数测量装置基本性能的验证与考核

    隔热材料的导热系数一般会采用防护热板法导热系数测试仪器来进行测量,防护热板法导热系数测试仪器一般都来自不同的渠道,有购置的商品化设备,有定制的设备,有自行研制的设备等。这些设备在验收和正式使用前,都需要进行测量装置的基本性能验证与考核,以保证测试设备符合标准测试方法的要求和达到测量不确定度要求。为了系统和有效的进行验证与考核,根据国标GB/T 10294-2008“绝热材料稳态热阻及其特性的测定 防护热板法”,制订了以下验证和考核内容。1. 仪器中与试样接触面的平整度考核 在任何操作条件下,工作表面的平整度均应优于0.025%。如下图所示,假定一个理想平面与板的表面在P点接触,表面上任何其他点B与理想平面的距离AB与A点到参考接触点P的距离AP之比应小于0.025/100。http://ng1.17img.cn/bbsfiles/images/2017/10/2015072222513288_01_3384_3.jpg表面偏离真实平面 工作表面的平整度用四棱尺或金属直尺检查,将尺的棱线紧靠被测表面,在尺的背面用光线照射棱线进行观察,可容易地观察小到25 的偏离,大的偏离可用塞尺或薄纸测定。 2. 测试仪器电气连接和自动控制器考核 将薄的、低热阻的试样装入装置内,并让整个装置在室温中与实验室空气热平衡,所有温度传感器指示的温度应很接近室温,检查每个温度传感器的噪声,用欧姆表检查所有电器的绝缘状况。 在加热单元的金属面板与计量单元或防护单元加热器的一条引线之间,加上加热单元加热器预期的最大工作电压(应无电流流过)。如果温度传感器的接地、屏蔽、电气绝缘正常,则温度传感器的读数不会产生波动。在装置工作温度的两端重复上述检查。在低于室温时,降低电气绝缘的一个常见的原因是湿度。在高温下,电气绝缘也会有较大的变化范围。 检查不平衡检测仪表和所有自动化控制仪器的噪声及漂移。 3. 温度测量系统考核 把装有试样的放护热板组件密封于空气调节箱内,调节冷却单元的温度为其使用范围内某一适当值。把箱体内部的环境温度控制到同一温度。 不向加热单元的计量加热器和防护加热器施加电功率。此时加热单元的温度必须与冷却单元温度一致,差异应在测量系统的噪声范围内。此外,防护单元温度与计量单元温度不平衡亦应在不平衡检测仪表的噪声范围内(这种均温布置也能用于检查热电堆)。可能产生错误结果的原因是由于空气调节箱的设计不良,装置的绝缘不良或温度传感器的布线和连接不当造成。 4. 护热温度不平衡误差考核http://ng1.17img.cn/bbsfiles/images/2017/10/2015072223030430_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223042493_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223072425_01_3384_3.jpghttp://ng1.17img.cn/bbsfiles/images/2017/10/2015072223084997_01_3384_3.jpg 不平衡检测装置的噪声和漂移必须小于在最恶劣试验条件下允许的最小不平衡电压值。 5. 热防护装置边缘热损失考核 当试样的厚度和热阻为最大,而试样的温差为最小时,边缘热损失使测量的误差最大。 检查时放入厚度和热阻接近最大设计值的试样,以设计的最小温差进行测定。测量防护单元的输入功率,它不应比理想一维条件下防护单元流过试样的热流量所需的功率相差太多。 然后必须用试验检验边缘热损失对测得的热性质的影响。可能时,唯一的直接方法是改变环境温度,观察防护单元加热器的功率和测定的热性质的变化。这项信息有助于确定任何形式的试样(均质的或非均质的,各向同性或非各向同性等)的环境温度允许漂移的范围。 当不可能改变环境温度时,确定边缘绝热或防护是否满足要求的有效方法是:在埋入试样边缘中心的薄金属片上焊上热电偶测量试样边缘中心的温度Te。 (Te-Tm)/ΔT 值应小于0.1,此处Tm 是试样的平均温度, ΔT是试样两侧的温差。本方法仅适用于均质材料。要得到最高准确度时,此值应小于0.02。 6. 装置工作面的热辐射率测量 按照标准测试方法的要求,在工作温度下,所有面板的工作表面的总半球辐射率应大于0.8。http://ng1.17img.cn/bbsfiles/images/2015/07/201507222317_556774_3384_3.jpg 7. 线性试验 装置讲过以上检查,满足要求后,装入一个(或一对)由热稳定的并且导热系数与温度成线性关系的材料制作的试样,如欧盟和美国标准机构的导热系数标准参考材料。在给定的平均温度下,以不同的温差如10K、20K 和 40K 测量导热系数,其结果应与温差无关。 以不同的平均温度重复这种检查。如果结果不理想,这有可能是边缘热损失和不平衡传感器的安装位置不合适的联合影响。 8. 综合性能检查 所有上述检查满足后,至少应对两套曾在国家认可的实验室标定过的,热性质稳定的材料进行测定。每套试样应在运行的温度范围内两个典型的平均温度下进行测定。所有测定宜在标定的90天内进行。若测定结果有差异,应详细研究其产生原因,采取恰当的措施将其消除。

  • 【资料】等离子体的基本概念和性质!

    看到版内有版友提到物质第四态——等离子态,特将等离子方面的知识和大家共享!离子体的基本概念和性质 近代科学研究的结果表明,物质除了具有固态、液态和气态的这三种早为人们熟悉的形态之外,在一定的条件下,还可能具有更高能量的第四种形态——等离子体状态。例如通过加热、放电等手段,使气体分子离解和电离,当电离产生的带电粒子密度达到一定的数值时,物质的状态将发生新的变化,这时的电离气体已经不再是原来的普通气体了。由于这种电离气体不管是部分电离还是完全电离,其中的正电荷总数始终和负电荷总数在数值上是相等的,于是人们将这种由电子、离子、原子、分子或者自由基团等粒子组成的电离气体称之为等离子体 。 不管在组成上还是在性质上,等离子体不同于普通的气体。普通气体由电中性的分子或原子组成,而等离子体则是带电粒子和中性粒子的集合体。等离子体和普通气体在性质上更是存在本质的区别,首先,等离子体是一种导电流体,但是又能在与气体体积相比拟的宏观尺度内维持电中性;其次,气体分子间不存在净电磁力,而等离子体中的带电粒子之间存在库仑力;再者,作为一个带电粒子体系,等离子体的运动行为会受到电磁场的影响和支配。因此,等离子体是完全不同于普通气体的一种新的物质聚集态。 应当指出,并非任何的电离气体都是等离子体。众所周知,只要绝对温度不为零,任何气体中总存在有少量的分子和原子电离。严格地说来,只有当带电粒子地密度足够大,能够达到其建立的空间电荷足以限制其自身运动时,带电粒子才会对体系性质产生显著的影响,换言之,这样密度的电离气体才能够转变成等离子体。除此之外,等离子体的存在还有其特征的空间和时间限度,如果电离气体的空间尺度L不满足等离子体存在的空间条件LD(德拜长度D为等离子体宏观空间尺度的下限)的空间限制条件,或者电离气体的存在的时间 不满足p(等离子体的振荡周期p为等离子体存在的时间尺度的下限)时间限制条件,这样的电离气体都不能算作等离子体。

  • 河南举办“国际单位制(SI)——根本性飞跃”专题报告会

    计量是人类认识世界和改造世界的工具,也是探索动态变化世界的一把钥匙,科技要进步,计量需先行。今天上午,我市联合中国计量科学研究院、河南省市场监管管理局共同主办了“国际单位制(SI)——根本性飞跃”专题报告会,邀请中国计量科学研究院党委书记段宇宁、中国计量科学研究院热工所所长王池出席。[align=center][img=,600,450]http://media.zzwb.cn/picture/thumb/maini/ui/201905/8ba383de0c9846f3a4babe1792307642_790x0.png[/img][/align] 5月20日是第20个“世界计量日”,今年世界计量日的主题是“国际单位制(SI)——根本性飞跃”。“今年的世界计量日意义重大。”段宇宁说,2018年11月16日由国际计量局(BIPM)组织,在国际计量大会(CGPM)上全票通过了关于“修订国际单位制(SI)”的决议,根据决议,千克、安培、开尔文和摩尔等4个SI基本单位的定义将改由常数定义,彻底告别使用实物来定义测量单位的时代,这一决议将在今年5月20日正式生效。 “可以说,SI的修订是科学进步的一座里程碑,国际计量单位制重新定义,计量单位量子化,量值溯源扁平化,这一变革将带动相关产业实现跨越式发展。目前,量子技术与信息技术正在相互融合,量子技术+互联网技术的发展模式,将掀起一场真正的计量科学、甚至是整个测量科学的革命,更加精准、更加快速、更加尖端、更加泛在的计量,不再是遥远的期待。”段宇宁说。 会上,段宇宁作了《国际单位制重大变革》专题报告,王池作了《时间和空间上大气污染物排放量监测》项目成果汇报。专题报告既有理论高度,又紧密结合实际,对推进郑州高质量发展、加快建设国家中心城市具有很强的指导意义。 据了解,作为全市计量工作主管部门,郑州市市场监管局围绕今年的“520世界计量日”活动主题,自5月14日起,全市系统上下联动,开展为期一周的“科学计量服务美好生活”的系列宣传服务活动,通过民生计量进社区、精准计量进企业、诚信计量进市场、光明计量进校园、实验室检测公益开放、计量技术论坛、科普讲座、主题征文等丰富多彩的活动,为公众献上丰盛的计量服务“大餐”。

  • 【资料】X射线荧光光谱仪的分析基本原理及详解

    X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。激发单元的作用是产生初级X射线。它由高压发生器和X光管组成。后者功率较大,用水和油同时冷却。色散单元的作用是分出想要波长的X射线。它由样品室、狭缝、测角仪、分析晶体等部分组成。通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。记录单元由放大器、脉冲幅度分析器、显示部分组成。通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。X射线荧光能谱仪没有复杂的分光系统,结构简单。X射线激发源可用X射线发生器,也可用放射性同位素。能量色散用脉冲幅度分析器 。探测器和记录等与X射线荧光光谱仪相同。X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。X射线荧光分析法用于物质成分分析,检出限一般可达10-5~10-6克/克(g/g),对许多元素可测到10-7~10-9g/g,用质子激发时 ,检出可达10-12g/g;强度测量的再现性好;便于进行无损分析;分析速度快;应用范围广,分析范围包括原子序数Z≥3的所有元素。除用于物质成分分析外,还可用于原子的基本性质如氧化数、离子电荷、电负性和化学键等的研究。 [~104490~]

  • 【分享】环刀测物理性质

    基本上用测定土壤物理性质时,环刀法常会用到。现将环刀法测得指标的方法及计算方法分享给大家。详见附件。

  • 【讨论】X射线的性质

    X射线四1895年由德国物理学家伦琴发现的。其后人们运用光学手段对X射线的本质这一问题研究了十几年。到了1912年,德国的科学家劳厄与X射线束照射闪锌矿等,在照片底板上得到了有名的劳厄斑。这才搞清了X射线是一种电磁波,同时也证明了物质的基本结构是晶体结构。并查明,X射线的波长在0.1[font=宋体]~100唉之间,比同样是可见光的波长要短,即具有跟可见光类似的性质,又具有一些可见光所没有的特性。[/font][color=#f10b00]大家一起谈谈X射线有哪些性质![/color]

  • 【转帖】什么叫元素?

    在古代把元素看作是物质的一种具体形式的这种近代观念并不存在。无论在我国古代的哲学中还是在印度或西方的古代哲学中,都把元素看作是抽象的、原始精神的一种表现形式,或是物质所具有的基本性质。[color=#00008B]大约在公元前900年前后,我国西周时代的《易经》中有这样几句话:"易有太极,是生两仪,两仪生四象,四象生八卦。"这是一个以"太极"为中心的世界创造说。 到公元前403一公元前221年,我国战国时代又出现一些万物本源的论说,如《老子道德经》中写道:"道生一,一生二,二生三,三生万物。"又如《管子水地》中说:"水者,何也?万物之本原也。" 我国的五行学说是具有实物意义的,但有时又表现为基本性质。[/color]

  • 聚乙烯醇的性质?

    今天做压片法,需要用到一种粘结剂,记得有一次老师说过,用水可以配制聚乙烯醇水溶液作为粘结剂,但是今天做一下发现,聚乙烯醇基本不溶于水,请问大家聚乙烯醇到底有哪些性质特点,可以做粘结剂?

  • 【原创大赛】快闪视频:传统经典测量理论的最基本测量概念错误

    【原创大赛】快闪视频:传统经典测量理论的最基本测量概念错误

    在多篇国际论文的基础上,通过本视频介绍了传统经典测量误差理论的最根本性问题在于违背了最基本的数学概念:常数的方差是0,以致于衍生出诸多其他概念错误。本视频将为广大测量科技工作者以及高等学校相关专业师生带来巨大的启发。[size=14px]视频微信分享:[/size][img=,152,231]https://ng1.17img.cn/bbsfiles/images/2020/08/202008171309219000_5540_2101846_3.png!w152x231.jpg[/img]

  • 构成宇宙万物的基本粒子都是永动永存的吗?

    永动永存(守恒)定律 宇宙是由大量可以永动永存的基本粒子构成的一个大统一整体,光粒子和物质粒子只不过是永动永存的基本粒子的两种不同存在状态,或者说是两种不同的运动形式,这些永动永存的基本粒子是既不会凭空产生,也不会凭空消失,只会就不同的运动形式或不同的存在状态发生相互转变而已,而且在转变过程中,始终维持着粒子与动的本性的不变。或者说始终维持着粒子及动的守恒,这就是永动永存(守恒)定律.也叫宇宙守恒定律.从本质上讲光粒子与物质粒子都是属于同一类粒子(永动粒子),而从表象上说,它们则是同一类粒子(永动粒子)的不同存在状态或不同运动形式罢了。地球是通过吸收光粒子转化形成的。构成宇宙万物(包括物质和能量)的基本粒子是永动永存(守恒)的.宇宙之所以能千变万化是与构成宇宙的基本粒子都是具有原动力分不开的。这种原动力是在变化中永远也不会增减或消失的。

  • 【转帖】蛋白质的分离纯化

    蛋白质分离纯化鉴定包括蛋白质样品的基本处理注意事项,蛋白质分离纯化方法的基本原理和选择,纯化后蛋白质浓度及蛋白质基本性质的研究方法。 [URL=http://www.instrument.com.cn/bbs/shtml/20081009/1522386/]http://www.instrument.com.cn/bbs/shtml/20081009/1522386/[/URL]

  • 【分享】【分享+讨论】超临界萃取基本介绍,另,欢迎大家交流讨论

    【分享】【分享+讨论】超临界萃取基本介绍,另,欢迎大家交流讨论

    如果你对超临界萃取的操作有什么心得体会,或者建议见解,或者相关资料分享,或者其它任何与微波萃取的相关内容,欢迎讨论,参与有奖~超临界萃取基本介绍(附小文献一篇)一、超临界萃取的基本原理1、萃取剂 超临界萃取所用的萃取剂为超临界流体。· 超临界流体是介于气液之间的一种既非气态又非液态的物态,这种物质只能在其温度和压力超过临界点时才能存在。 · 超临界流体的密度较大,与液体相仿,而它的粘度又较接近于气体。因此超临界流体是一种十分理想的萃取剂。 2、超临界流体的溶剂强度取决于萃取的温度和压力 利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来。(1)在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。(2)温度变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。(3)除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。二、超临界萃取的实验装置与萃取方式1、超临界萃取的实验装置 设备图片http://ng1.17img.cn/bbsfiles/images/2010/10/201010091301_250229_1745326_3.jpg多功能超临界多元流体分步萃取、重组萃取、有毒物成份萃取囘收、超低微量成份萃取回收、精馏、萃取精馏、逆溛萃取、液液萃取、萃取冷冻结晶、多元溶媒的全封闭循环系统以及保健食品的膨化、脫色、脱硫、脱腥异味、着色、加香等的精制加工工业试验装置。http://ng1.17img.cn/bbsfiles/images/2010/10/201010091302_250230_1745326_3.jpg單纯超临界CO2萃取成套设备2、超临界流体萃取的流程如附图所示,它包括:(1)超临界流体发生源,由萃取剂储瓶、高压泵及其他附属装置组成,其功能是将萃取剂由常温压态转化为超临界流体。(2)超临界流体萃取部分,由样品萃取管及附属装置组成,处于超临界态的萃取剂在这里将被萃取的溶质从样品基质中溶解出来,随着流体的流动,使含被萃取溶质的流体与样品基体分开。(3)溶质减压吸附分离部分,由喷口及吸收管组成,萃取出来的溶质及流体,必须由超临界态经喷口减压降温转化学常温常压态,此时流体挥发逸出,而溶质在吸收管内多孔填料表面,用合适溶剂洗吸收管,就可把溶质

  • 【分享】两个关于土壤调查的表格

    【分享】两个关于土壤调查的表格

    大家在测定土壤样品前,往往会先对样地植被状况与土壤基本性质进行调查测定,而记录调查结果就需要一个合适的表格,现将我们做记录的表格分享给大家。。。。。见下图 http://ng1.17img.cn/bbsfiles/images/2010/11/201011261646_262137_1634750_3.jpg

  • 【转帖】什么叫元素?

    在古代把元素看作是物质的一种具体形式的这种近代观念并不存在。无论在我国古代的哲学中还是在印度或西方的古代哲学中,都把元素看作是抽象的、原始精神的一种表现形式,或是物质所具有的基本性质。 大约在公元前900年前后,我国西周时代的《易经》中有这样几句话:"易有太极,是生两仪,两仪生四象,四象生八卦。"这是一个以"太极"为中心的世界创造说。 到公元前403一公元前221年,我国战国时代又出现一些万物本源的论说,如《老子道德经》中写道:"道生一,一生二,二生三,三生万物。"又如《管子水地》中说:"水者,何也?万物之本原也。" 我国的五行学说是具有实物意义的,但有时又表现为基本性质。我国的五行学说最早出现在战国末年的《尚书》中,原文是:"五行:一曰水,二日火,三曰木,四曰金,五曰土。水曰润下,火曰炎上,木曰曲直,金日从革,土爱(曰)稼穑。"译成今天的语言是:"五行:一是水,二是火,三是木,四是金,五是土。水的性质润物而向下,火的性质燃烧而向上。木的性质可曲可直,金的性质可以熔铸改造,土的性质可以耕种收获。"在稍后的《国语》中,五行较明显地表示了万物原始的概念。原文是:"夫和实生物,同则不继。以他平他谓之和,故能丰长而物生之。若以同稗同,尽乃弃矣。故先王以土与金、木、水、火杂以成百物。"译文是:"和谐才是创造事物的原则,同一是不能连续不断永远长有的。把许多不同的东西结合在一起而使它们得到平衡,这叫做和谐,所以能够使物质丰盛而成长起来。如果以相同的东西加合在一起,便会被抛弃了。所以,过去的帝王用土和金、木、水、火相互结合造成万物。" 在古印度哲学家的思想中也有和我国五行相似的所谓五大。这就是公元前7世纪一公元前6世纪古印度学者卡皮拉(Kapila)提出来的地、水、火、风、空气。 西方自然哲学来自希腊。被尊为希腊七贤之一的唯物哲学家塔莱斯认为水是万物之母。希腊最早的思想家阿那克西米尼认为组成万物的是气。被称为辩证法奠基人之一的赫拉克利特(Heraclito,公元前535一公元前475)认为万物由火而生。古希腊的自然科学家、医生恩培多克勒(EmpedOCles,公元前490一公元前430)综合了以前的哲学家们的见解,在他们所指的水、气和火之外,又加上土,称为四元素。古希腊哲学家亚里士多德(Aristotle,公元前384 一公元前322)综合了但也歪曲了这些朴素的唯物主义的看法,提出"原性学说"。他认为自然界中是由4种相互对立的"基本性质"--热和冷、干和湿组成的。它们的不同组合,构成了火(热和干)、气(热和湿)、水(冷和湿)、土(冷和干)4种元素。"基本性质"可以从原始物质中取出或放进,从而引起物质之间的相互转化。这样,宇宙的本源、世界的基础便不是物质实体,而且可以离开实物而独立存在的"性质"了,这就导向唯心主义了。 13-14世纪,西方的炼金术士们对亚里士多德提出的元素又作了补充,增加了3种元素:水银、硫磺和盐。这就是炼金术士们所称的三本原。但是,他们所说的水银、硫磺、盐只是表现着物质的性质:水银--金属性质的体现物,硫磺--可燃性和非金属性质的体现物,盐--溶解性的体现物。 到16世纪,瑞士医生帕拉塞尔士把炼金术士们的三本原应用到他的医学中。他提出物质是由3种元素--盐(肉体)、水银(灵魂)和硫磺(精神)按不同比例组成的,疾病产生的原因是有机体中缺少了上述3种元素之一。为了医病,就要在人体中注人所缺少的元素。 无论是古代的自然哲学家还是炼金术士们,或是古代的医药学家们,他们对元素的理解都是通过对客观事物的观察或者是臆测的方式解决的。只是到了17世纪中叶,由于科学实验的兴起,积累了一些物质变化的实验资料,才初步从化学分析的结果去解决关于元素的概念。

  • 【分享】数本行业标准汇编,杂七杂八的

    几本行业标准汇编,杂七杂八的,这些资料全部来源于网络,有些比较新,有些标准有些旧了,我挑体积小的先上传了10本,这些资料全部来源于网络,供大家参考使用。另外还有十几本,有的体积比较大,慢慢在后面的跟帖里面传,多数是PDF格式的,也有超星的和chem格式的,那chem格式的不太懂,上次上传时明明可以用的,后来被指无内容,疑为灌水帖,被删除了,至于积分是否被扣,没有去关注了,反正现在的积分还是可以下载一点东西的哈[em0814] 。如果重复和雷同,请斑竹自行删除哈,因为有些册子就搜索过,有些没有了。先上传的ASME BPVC IX-2007 焊接与钎焊评定 API美国石油学会标准手册产品技术文件标准汇编 技术制图卷(2007)0卧式车床标准汇编中国机械工业标准汇编-风机卷 上 (第二版)中国机械工业标准汇编-风机卷 下 (第二版)中国机械工业标准汇编 减速器和变速器卷(上)(下),滚动轴承标准汇编下面还有些电力和管道之类的待传。地址http://www.instrument.com.cn/download/search.asp?keywords=foggyb&sel=admin_name&SN=&Submit=%C1%A2%BC%B4%B2%E9%D1%AF08-08-31增加电能计量装置技术管理规程配套工作规定和标准汇编国内摩托车标准汇编

  • 【试剂耗材系列话题】采购试剂之----石油醚

    1 基本简介  石油醚(Petroleum ether)是一种轻质石油产品,其沸程为30~150℃,收集的温度区间一般为30℃左右,一般有30~60℃、60~90℃、90~120℃等沸程规格。2 基本性质  物理性质  外观与性状:无色透明液体,有煤油气味。  熔点(℃):-73  相对密度(水=1):0.64~0.66  沸点(℃):40~80  相对蒸气密度(空气=1):2.50  主要成分:戊烷、己烷。  饱和蒸气压(kPa):53.32(20℃)  闪点(℃):-20  爆炸上限%(V/V):8.7  引燃温度(℃):280  爆炸下限%(V/V):1.1  溶解性:不溶于水,溶于无水乙醇、苯、氯仿、油类等多数有机溶剂。  挥发性:易挥发  极性:0.01.属于弱极性有机溶剂,常与其他强极性溶剂(如:乙酸乙酯)混合作为薄层色谱分析的展开剂  化学性质  其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。完全燃烧时不产生任何烟雾。与氧化剂能发生强烈反应。高速冲击、流动、激荡后可因产生静电火花放电引起燃烧爆炸。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。

  • 这种产品能用液相做吗?

    产品情况如下,请教高人紫外液相色谱能做吗?需分析物料的基本性质:组成:醋酸35—40%叔丁醇3一6%醋酸叔丁醇0.5一2%水4一6%二叔丁基次磷酸纳42一47%单叔丁基次磷酸纳8一10%次磷酸纳1—2%不确定物质1一5%此物料在常温下为固体.熔点在60一70度左右.溶于水和有机溶剂、其中三种纳盐为产品。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制