当前位置: 仪器信息网 > 行业主题 > >

基体干扰

仪器信息网基体干扰专题为您整合基体干扰相关的最新文章,在基体干扰专题,您不仅可以免费浏览基体干扰的资讯, 同时您还可以浏览基体干扰的相关资料、解决方案,参与社区基体干扰话题讨论。

基体干扰相关的资讯

  • 如何解决ICP-MS使用过程中高盐基体的干扰?
    ICP-MS虽然具有检出限低、灵敏度高、线性动态范围宽、谱线简单和同时测定多种元素含量等优点,但是高盐基体样品的测定一直是ICP-MS仪器的巨大挑战。大量的基体不仅堵塞采样锥和截取锥,而且在分析过程中会影响ICP-MS的灵敏度、稳定性等参数,造成基体干扰,甚至会导致仪器熄火无法正常使用。 如何解决高盐基体的干扰? 谱育科技最新研发的元素分析技术——全自动离子交换浓缩富集系统,该系统由注射泵、定量环、十通阀、样品预浓缩柱和痕量金属去除柱组成。样品预浓缩柱的填料为亚氨基二乙酸和乙二胺三乙酸混合树脂,该填料对碱金属、碱土金属及阴离子没有吸附作用,对很多过渡金属元素有极强的吸附作用,故用于螯合海水中待测金属元素;痕量金属去除柱,主要用于去除缓冲溶液中的痕量金属,降低进样空白。注射泵推动定量环中的样品在十通阀与缓冲液混合后,进入样品预浓缩柱,等样品上样后,十通阀切换为进样状态,淋洗液将预浓缩柱上的样品洗脱下来,进入ICP-MS 分析,即为预浓缩模式分析过程,该模式可分析Cu、Pb、Zn、Cd、Fe、Mn、Ni、V、Co 等元素。 全自动离子交换浓缩富集系统的价值是什么? 全自动离子交换浓缩富集系统是一个高性能自动处理系统,可用于未稀释的海水和其它高基质样品中超痕量金属的测定。全自动完成吸附、洗脱、收集等过程,去除干扰基体,富集过渡金属元素,提高了元素的检出限和灵敏度。1.通过一系列注射泵、十通阀、离子交换柱实现未稀释的海水和其它高基质样品中超痕量金属的测定;2.选择性吸附特定元素(Cu,Pb,Zn,Cd,Fe,Mn,Ni,V,Co,稀土元素 等),达到样品浓缩的作用,样品基体(盐类)不吸附(碱金属、碱土金属及阴离子没有吸附作用),达到去除基体的作用;3.吸附、洗脱等过程全自动完成;4.收集系统。 实际应用案例有哪些?样品选用海水标准溶液GBW(E)080040, 使用全自动离子交换系浓缩富集系统与ICP-MS联用进行分析,对样品进行20倍浓缩测试。 实验器材经过严格的清洗流程、试剂选用高纯试剂(乙酸铵缓冲溶液、稀硝酸作为洗脱液)。全自动离子交换浓缩富集系统适用于海水、高盐(Li、Na、K等)基体等样品中微量元素检测,可以解决ICP-MS对于高盐基体样品的超痕量元素测定所遇到的困难,该系统全自动完成吸附、洗脱、收集等过程,且提高了各种痕量元素的检出限。
  • 高纯金属基体的ICP-OES分析 | 强大的干扰消除能力:Avio ICP-OES分析金属镍中的杂质
    伦敦金属交易所(London Metal Exchange,LME)是世界上最大的有色金属交易所,成立于 1876 年,于 2012 年被香港证券交易所英镑收购,成为其全资附属公司。伦敦金属交易所的交易品种主要有铜、铝、铅、锌、镍和铝等,发布的成交价格被广泛作为世界金属贸易的基准价格,其价格和库存对世界范围的有色金属生产和销售有着重要的影响。如同 24K 金与 18K 金的差价一样,不同纯度金属的价格差异明显。因此,伦敦金属交易所对交易金属的纯度有着严格的分级和要求,对检测手段也有着严格的规范。从本文开始,我们将陆续推出伦敦金属交易所有色金属质量控制系列 —— 高纯基体金属的 ICP-OES 分析,以镍、铅、铝等为例,让大家了解电感耦合等离子体发射光谱(ICP-OES)技术在分析高纯度金属基体中的杂质元素的应用,以及珀金埃尔默 Avio 系列 ICP-OES 在此领域应用的技术特点和优势。ICP-OES 的英文为 Inductively Coupled Plasma Optical Emission Spectrometer,基本原理简单说来就是元素的原子或离子受热或电激发后,发生电子层跃迁,随后从激发态回到基态时发射出具有特征波长和强度不同的电磁辐射,从而进行元素的定性和定量。ICP-OES 系统的组成如下图所示。ICP-OES 技术具有高效稳定,连续快速多元素同时测定,精确度高,检测线性宽等特点,能够进行 70 多种金属元素和部分非金属元素的分析,多数元素的检出限能达到 ppb 级,在地质、冶金、环保、化工、生物、医药、食品、农业等方面用途广泛。那么,让我们先从用途最为广泛的合金材料之一金属镍中的杂质检测开始说起吧!金属镍中的杂质检测金属镍(Ni)由于其具备高温和低温下的高耐腐蚀性和高强度,成为合金材料生产制备中最广泛使用的金属材料之一。伦敦金属交易所发布了不同规格的金属镍的杂质要求,表 1 列举了99.80% 纯度金属镍标准规范中的杂质要求。表1.伦敦金属交易所 99.80% 纯度金属镍(镍标准规范)众所周知,谱线干扰是使用 ICP-OES 检测高纯基体金属样品中的杂质时常常遇到的难题。我们看看珀金埃尔默如何使用 Avio 500 电感耦合等离子体光谱仪(ICP-OES),并利用多谱拟合专利技术(MSF)解析谱线,成功消除主体元素 Ni 对 某些杂质元素如 Bi 和 Sn 的测定干扰,准确检测高纯度金属镍中的杂质元素。样品样品以 5% 硝酸(v/v)消解。按照“99.80% 纯度金属镍标准规范”的要求,所有分析在 1% Ni 溶液中进行,并按照其对杂质元素含量的规定进行加标回收实验。标准工作曲线用 5% 硝酸(v/v)溶液配制浓度水平为 0.25,0.5 和 1.0 ppm 的混合标准溶液。仪器珀金埃尔默 Avio 500 ICP-OES,仪器参数、实验条件设置见表 2,各杂质元素的测定波长见表 3。表2. Avio 500 ICP-OES 仪器参数和实验条件表3. 各杂质元素的测定波长回收率混合标准溶液加到 1% Ni 溶液中的回收率均在 ±10% 以内,结果如图 1 所示,表明能够准确检测低浓度的杂质元素。图1. 各杂质元素在 1% 浓度 Ni 溶液中的加标回收率干扰消除在检测中,Bi 和 Sn 的测定会明显受到 Ni 基体的光谱干扰。使用珀金埃尔默多谱线拟合(MSF)专利技术(原理如图 2 所示),建立模型,可以消除 Ni 谱线干扰。图2. 珀金埃尔默多谱线拟合(MSF)专利技术方法检出限方法检出限定义为连续 7 次测量 1% Ni 溶液中各杂质元素为 0.25 ppm 的测量值的标准偏差的 3 倍,结果如图 3 所示,表明方法的检出限符合金属镍标准规范要求。图3. 1% Ni 溶液中各杂质元素的检出限(蓝色)和金属镍标准规范要求(红色,按100倍稀释99.80%纯 Ni 计算)仪器稳定性通过 6 小时连续分析 1% Ni 溶液中内标物 钪(Sc)的光谱信号强度的变化考察仪器的稳定性,结果见图 4,信号强度的变化在 ±10% 以内,表明仪器有着良好的稳定性 。图 4. 1% Ni 溶液中内标物钪(Sc)的光谱信号强度变化本文证明了珀金埃尔默 Avio ICP-OES 可以对高纯 Ni 中的杂质元素进行准确分析,符合伦敦金属交易所对高纯金属 Ni 的要求。通过使用多谱线拟合(MSF)技术解析谱线, 成功消除了主体元素 Ni 对 Bi 和 Sn 的测定干扰。 Avio 200 ICP-OESAvio 500 ICP-OES 扫描下方二维码,即可下载珀金埃尔默ICP-OES相关应用资料。下期预告伦敦金属交易所有色金属质量控制系列(2),高纯金属基体的ICP-OES分析:Avio 500 分析金属铅中的杂质,将介绍伦敦金属交易所对金属铅的标准规范,以及Avio 系列ICP-OES在其分析中,特别是在成本控制方面的表现,敬请期待。
  • 单颗粒ICP-MS应用 | 通用池技术消除铁纳米颗粒质谱干扰
    随着纳米颗粒在工业上的广泛应用,采用单颗粒模式电感耦合等离子体质谱法(SP-ICP-MS)分析金属纳米颗粒成为最有前途的技术之一。由于其高灵敏度、易用性和分析速度快等特点,ICP-MS是一种理想的技术,用于检测纳米颗粒的特性:无机成分、浓度、尺寸大小、粒度分布和聚集等。除了金和银纳米颗粒以外,零价铁纳米颗粒具有独特的化学特性和相对大的比表面积,更广泛应用于环境修复项目中,用于取出有机溶剂中氯、转化废料中有害化合物、降解杀虫剂和固定金属等。但不同于金和银纳米颗粒未受到基体干扰或常规质谱干扰问题,等离子体产生的信号ArO+对同样质量数(56)铁的最高丰度同位素(56Fe+丰度91.72%)形成严重干扰。消除这种干扰的最有效方式是采用氨气作为反应气的反应模式ICP-MS。已有的大多数SP-ICP-MS报道聚焦于无干扰的纳米颗粒,而这种反应模式SP-ICP-MS还未被广泛使用。本文将证明在反应模式SP-ICP-MS下,NexION通用池技术应用于测定纳米颗粒。实验所有分析采用NexION 350D型 ICP-MS (珀金埃尔默公司,谢尔顿,CT),操作条件见表1。用去离子水稀释金和铁纳米颗粒标准,分别在质量数197和56处测定。实验结果实验首先在标准模式下运行。接下来,为评价加入反应气对SP-ICP-MS分析的影响,相同溶液在反应模式下运行。图1显示了标准和反应模式SP-ICP-MS测定100nm金颗粒谱图。两个图相似结果表明,反应模式并未改善纳米颗粒测定能力,因为金可能与氨气不发生反应。图1.反应(a)和碰撞(b)模式下SP-ICP-MS测定100nm金粒子两种模式下实际金颗粒检测数量比较列于表2。该数据表明,两种模式下颗粒具有同样数量,表明使用反应模式对测量颗粒并不偏差。存在的高背景掩盖了铁纳米颗粒中56Fe+,标准模式下铁测量不能完成。反应模式下测定60nm氧化铁纳米颗粒溶液,结果列于图2。与图1a中反应模式下金谱图相比,二者相似。尽管碰撞模式同样具有去除干扰能力,但在不严重损失仪器灵敏度前提下,不能完全消除ArO+对56Fe+干扰,意味着纳米颗粒检测限将大大降低。碰撞模式下使用其它低丰度铁同位素是有可能的,但低丰度意味着纳米颗粒将不能被检测到。因此,高信噪比的氨气反应模式测定m/z56是铁纳米颗粒最佳选择。图2.SP-ICP-MS反应模式下测定60nm的铁氧化物颗粒谱图结论本工作证实了珀金埃尔默NexION系列ICP-MS反应模式具有测定铁纳米颗粒能力。因为,铁受到来源于等离子体的干扰,必须采用反应模式测定铁纳米颗粒,具有远超碰撞模式的优势。该工作可以扩展为其它受干扰的金属纳米颗粒,如钛、铬、锌或硅。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 重磅发布:干扰无忧——珀金埃尔默NexION 2200 电感耦合等离子体质谱仪新产品
    作为技术创新的践行者,珀金埃尔默持续为分析仪器与技术带来新的篇章。今天,珀金埃尔默向中国市场推出电感耦合等离子体质谱仪新产品——NexION ®2200 ICP-MS。这款仪器将ICP-MS 的灵活性、准确性和可重复性提升到新的水平,为高端制造、半导体、石化、科学研究等行业和市场持续赋能,为您元素痕量分析与应用提供前所未有的体验。NexION 2200 依托四十年的ICP-MS创新历史,秉承着珀金埃尔默可靠、易于使用、低维护的传统理念,可为开展痕量元素分析的分析测试实验室提供理想的性能、准确性和可重复性。其独特的三组四极杆质谱平台设计结合新颖成熟的技术可提供强大的灵活性、卓越的干扰消除和无与伦比的基质耐受性,使其成为您值得信赖的首选痕量元素分析解决方案。NexION 2200 ICP-MS拥有一系列独特的专有技术组合:• 三组四极杆,提供三级质量分辨和干扰消除能力,超越传统的单四极杆ICP-MS系统,实现ppq检测限。• 具有动态带宽调谐功能的四极杆碰撞反应池,可在反应副产物形成新干扰之前将其消除,从而实现卓越的干扰消除。• 领先的LumiCoil ™射频线圈技术结合专为ICP-MS设计的平衡驱动自激式高频固态发生器和带OmniRing™技术的三锥接口,提供了等离子体极强的稳健性,前所未有的灵活性,能够高效处理各类应用。• 具有快速四极杆扫描和高达100000 数据点每秒的超强数据采集能力,特别有利于单颗粒、单细胞,激光成像微区和多元素形态分析等。• 独一无二的智能稀释技术,匹配无差别的最大200倍稀释的全基体进样系统和专有的可进行选择性元素稀释的电子稀释技术,实现更轻松,更灵活的高低含量分析,提升效率和运营。此外,创新的LCD 触摸屏和专为ICP-MS 设计的绿色环保GreenCT 冷却技术,持续引领ICP-MS 风尚。
  • 科研赋能:珀金埃尔默助力半导体材料研发
    近年来中国在半导体领域的发展已经取得了一定的成就,想进一步的突破,仍面临着很大的挑战,限制中国半导体发展的关键因素集中在半导体设备和先进材料等方面。在材料方面,包括光刻胶、前驱体、硅材料、电子化学品等,是技术壁垒高的半导体关键材料,亟待广大科研单位及相关企业进行攻关。对这些关键材料的研发过程中,包括材料的优化开发、作用机理探究、定性定量分析、材料性能评估以及质量控制等,都需要使用各类分析手段。珀金埃尔默(PerkinElmer)作为分析仪器领先的全球供应商,广泛和深入的服务于全球研究机构和企业,助力半导体材料的研发。 珀金埃尔默分析技术在半导体材料研发中的应用 △点击查看大图 1 光刻胶 光刻胶是半导体制造和微电子制造中的关键材料之一,其研发和生产是半导体产业链中的关键环节,对于提升半导体制造工艺的精细度和效率具有重要意义。 光刻胶中金属元素杂质的存在会对其感光性能和成品质量产生影响,如降低分辨率、增加胶层的不均匀性等。光刻胶主要成分是树脂、光引发剂,单体等,主要成分都是有机物。在使用ICP-MS分析光刻胶中的金属杂质时,遇到的主要挑战是仪器对有机试剂的耐受能力以及反应池消除质谱干扰的能力。为了避免前处理可能带来的污染,通常采用有机溶剂稀释后直接进样的方式测试。珀金埃尔默NexION系列ICP-MS采用独有的34 MHz频率,使等离子体具有更强的趋附效应,中心通道更宽,有机类样品在经过等离子体时解离更完全,仪器测试有机样品时具有更好的稳定性。 NexION ICP-MS点炬状态直接进空气不熄炬, 体现出强大的基体耐受能力 △点击查看大图 同时,在进行ICP-MS分析时,光刻胶中大量的碳、作为等离子体的氩等会带来严重的质谱干扰,如12C12C+对24Mg+的干扰、12C15N+对27Al+的干扰,40Ar12C+对52Cr+的干扰、40Ar16O+对56Fe+的干扰等,NexION系列ICP-MS具有化学分辨能力,其核心就是采用具有专利技术的配备轴向加速电压的四极杆作为反应池,配合使用反应活性强的纯氨气作为反应气,在反应模式下能够彻底消除干扰,保证测试结果的准确度,达到精确评估光刻胶质量的目的。 光刻胶中受干扰元素典型检出能力 元素 检出限(DL/ppt) 背景等效浓度(BEC/ppt) Mg 0.05 0.20 Al 0.07 0.35 Cr 0.32 0.78 Fe 0.26 0.65 轴向加速四极杆通用池技术, 确保质谱干扰的去除 △点击查看大图 曝光动力学研究对于光刻胶的研发异常关键,因为其效能直接决定了制程良品率和生产效率。利用紫外光谱能够监测光刻胶在曝光过程中发生的光化学反应,通过跟踪特定化学键或官能团的变化,研究人员可以评估光刻胶的反应动力学和光化学稳定性。 高性能紫外-可见-近红外分光光度计 (辅助建立DILL透光模型) △点击查看大图 为了更加准确原位模拟光刻胶在不同紫外-可见波段下的曝光历程,可采用差示扫描量热分析仪(DSC)和紫外光源联用进行分析,两者的联用,适合用于研究光刻胶的固化动力学过程,为研发更加稳定可靠的新一代无机金属氧化物复合光刻胶提供准确热力学数据支撑。 紫外光-差示扫描量热分析仪 △点击查看大图 在光刻胶配方开发过程中,出色的分析手段将极大帮助研究人员获取反馈信息。单独的手段往往具有局限性,比如热重(TG)没有结构定性能力,因此研究人员往往只能依靠个人的主观经验推测每个分解温度区间所产生组分的化学结构归属,这对于光刻胶配方逆向开发和性能优化等领域的应用存在较大的不确定性。而单独的红外(FTIR)或者气质(GC/MS)均存在单一温度维度测试的局限性,无法有效的还原温度维度或实现原位检测的要求。而采用分析技术的联用,就可以实现设备间的“协同效应,扬长避短”,比如热重引入的温度维度可以结合红外或气质的定性能力,赋予实时分析光刻胶组分随温度的动态逸出过程,做到原位监测、还原真实的反应/分解过程,应用于光刻胶配方开发和环境颗粒物的相互作用研究。 热重/红外/气质(TGA/IR/GC/MS) 联用逸出气体测试平台 △点击查看大图 2 前驱体 前驱体是半导体薄膜沉积工艺的主要原材料,在薄膜、光刻、互连、掺杂等半导体制造过程中,前驱体主要应用于气相沉积(包括物理沉积PVD、化学气相沉积CVD和原子气相沉积ALD),以形成符合半导体制造要求的各类薄膜层。此外,前驱体也可用于半导体外延生长、刻蚀、离子注入掺杂和清洗等,是半导体制造的核心材料之一。 前驱体介绍 分类 示例 用途 硅前 驱体 TEOS(正硅酸乙酯)、DIPAS(二异丙胺硅烷)、4MS(四甲基硅烷)等 用于多晶硅/氧化硅/氮化硅薄膜沉积 金属 前驱体 TFMAT(四(二甲基胺基)钛)、TiCl4(四氯化钛)等 用于各类金属化合物薄膜沉积 用ICP-MS对前驱体样品中金属杂质分析时,由于样品中的金属元素杂质含量低,稀释倍数受到限制,导致前处理后的溶液样品中总固体溶解含量(TDS)较高,对ICP-MS耐盐能力提出了很高的要求。珀金埃尔默NexION系列ICP-MS采用独特的大锥孔三锥设计(TCI)和90度四极杆离子偏转技术(QID),配合全基体进样系统(AMS),具有更加优异的基体耐受能力,以及更加优异的长期稳定性。 (a)大锥孔三锥设计(TCI) 和90度四极杆离子偏转技术(QID) (b)NexION ICP-MS优异稳定性 (2000 ppm 硅中35元素100ppt) △点击查看大图 前驱体中高基体的硅(Si)或金属(如Ti)也会产生严重的质谱干扰,比如高硅会对磷(P)、钛(Ti)、镍(Ni)等。利用NexION 系列ICP-MS的化学分辨能力,可以很好的实现前驱体中痕量杂质分析。 (a)高硅基体中对相关元素的质谱干扰 (b)NexION ICP-MS 典型受硅基体干扰元素分析 △点击查看大图 3 硅基材料 半导体硅基材料的研发是半导体集成电路发展的核心,集成电路制造技术已进入了后摩尔时代,传统硅基材料在尺寸微缩极限下遇到的关键挑战,是造成集成电路工艺复杂性和系统设计难度显著提升的重要因素。发展新材料(如三代半导体SiC等),探索与硅基技术兼容的新材料、新结构器件集成制造技术,是未来集成电路的重要发展趋势,也是后摩尔时代集成电路发展的主要技术路线之一。 利用晶圆表面分解技术(VPD)与NexION 系列ICP-MS结合,不仅可以对晶圆表面金属杂质分析,也可以对晶圆进行剖面分析。得益于NexION系列ICP-MS出色的性能,每平方原子数检出能力可达105。 (a)硅片经VPD处理后照片 (b)硅片表面金属杂质 分析 (c)掺硼硅片剖面分析 △点击查看大图 配备 MappIR 晶圆分析系统的珀金埃尔默Spectrum 3,不仅可以快速和简易的实现硅基材料中的碳和氧的杂质分析,还可以对涂层、电介质以及外延膜进行测量。 (a)Spectrum 3 FT-IR 和 MappIR 系统 (b)不同工艺硅片 光谱差异比较 (c)硅片中碳和氧分析 △点击查看大图 4 电子化学品 电子化学品是半导体生产过程一类重要的辅原料,品种很多,包括氢氟酸、硝酸、硫酸、盐酸、氨水、双氧水等超纯无机试剂和异丙醇(IPA)、丙酮、四甲基氢氧化铵(TMAH)、N-甲基丙络烷酮(NMP)、丙二醇甲基醚乙酯(PGMEA)等超纯有机试剂。电子化学品生产工艺和应用研发是科研工作者的重要目标,其内容包括高纯度原料的选择与预处理、提纯技术、复配技术以及各类功能性电子化学品的开发与应用等方面。 ICP-MS作为电子化学品无机杂质分析的最重要手段,已经广泛应用于电子化学品开发与生产质量控制中。珀金埃尔默拥有全套的电子化学品ICP-MS分析标准操作方法,将极大的减少分析方法的开发,提升工作效率,加速研发过程。 NexION 系列ICP-MS 电子化学品标准操作方法 △点击查看大图 ——更多方案细节,欢迎联系我们,让我们共同为中国半导体材料突破贡献力量。 扫描左侧二维码 咨询产品详情 关注我们
  • PerkinElmer成功举办环保系统系列重金属监测培训班暨技术交流会
    应环保部对监测站技术人员的培训要求,加强环境监测系统的重金属监测等能力建设,广西、上海、湖南省环境监测中心在11月中下旬先后开展了重金属监测培训班暨技术交流会,分别邀请了全省(直辖市、自治区)市、区(县)级相关环境监测站技术骨干及学员代表前来参加。为提高培训及技术交流效果,原子光谱领导者--PerkinElmer以丰富的重金属检测技术应用及服务经验,很荣幸分别受主办方邀请作为唯一协办方全程参与了此次培训及技术交流活动。 系列活动现场剪影 在此次系列活动中,除了有关监测站的领导、专家做了精彩报告及讲解外,PerkinElmer公司多位应用工程师分别负责重点介绍了ICP-MS在水质、空气颗粒物等样品中重金属检测的常规及最新技术应用;ICP-OES在土壤检测的基体干扰去除技术及联用技术,以及石墨炉原子吸收的基体干扰去除技术等相关内容。另外,PerkinElmer公司数位服务工程师也全力为培训学员们分享了有关ICP-MS,ICP-OES的使用、保养及维护经验,获得了主办方主管领导及学员代表们的一致好评,对于提高学员们的技术应用水平及仪器使用效率方面会有很大的帮助,并期待更进一步的合作。
  • 锂电池正极材料中杂质元素的准确测定,很难吗?
    锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁 (Fe)、铜 (Cu)、铬 (Cr)、镍 (Ni)、锌 (Zn)、铅 (Pb) 等金属杂质时,电池化成阶段电压达到这些金属元素的氧化还原电位后,它们就会先在正极氧化,然后再到负极还原成单质。当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,对电池造成损害,甚至致命影响。因此,从正极源头上保证其纯度,防止金属杂质异物的引入,对电池生产质控就显得格外重要。目前的锂电池企业通常采用电感耦合等离子体发射光谱法 (ICP-OES) 测定主量元素配比以及杂质元素含量。ICP-OES仪器相对较低的购买和使用成本,使之在相关企业有着广泛的使用。随着锂电池产业升级加速,生产质控愈发严格,对正极材料中元素杂质含量限度要求越来越苛刻。ICP-OES由于其自身原理的局限性,在部分含量较低的杂质元素如Cr、Cu、Fe、Zn、Pb的准确检出方面出现瓶颈。例如,在某些生产工艺控制严格的企业,上述5个元素的控制浓度在1ppm左右(个别厂家Fe含量在10ppm以内),在日常检测中,经过100倍固液稀释比的样品前处理后,样品上机测定时的浓度低至10ppb以下。由于在主要检测观测区的谱线干扰严重,能否实现上述杂质元素浓度的准确分析,对ICP-OES的性能提出了非常大的挑战。与ICP-OES相比,电感耦合等离子体质谱(ICP-MS)的测定灵敏度更高,检出能力更强,检测下限更低,更加符合锂电池企业高效率准确检测低含量杂质元素的需求。ICP-MS的工作原理决定了其受到的干扰与ICP-OES有较大的区别。ICP-MS受到的干扰主要分为基体干扰和质谱干扰。通常情况下,锂电池正极样品前处理的固液稀释比例在100~200倍,而且前处理时使用较多的酸,使得样品中的固溶含量和酸度都很高,造成ICP-MS的空间电荷效应和电离抑制,待测元素受到基体干扰;对于正极材料样品来说,较高浓度的主量元素会与O、Cl、N等元素结合,形成分子量为M+16、M+35、M+14等质谱干扰。另外,主量元素的高浓度还会产生拖尾,影响分子量M±1元素的测定。如何帮助锂电池企业使用ICP-MS有效克服上述诸多干扰,提高生产效率以及产品质量和性能,成为ICP-MS供应商面临的重要任务。标配全基体进样系统 (AMS) 的珀金埃尔默NexION系列ICP-MS,配合大锥孔三锥设计,QID四极杆离子偏转器,以及具备标准、碰撞和反应三种模式的UCT通用池,可以获得优异的基体耐受性、仪器稳定性和更低的记忆效应。通过进行简单易行的仪器参数优化、干扰消除模式选择和同位素质量数选择,有效消除基体和质谱干扰,准确测定锂电池正极样品中的低含量杂质元素。下述表格显示了NexION 1000G ICP-MS对来自锂电池生产企业的正极材料样品中Cr、Cu、Fe、Zn、Pb杂质元素含量的测定结果,以及仪器方法的优异性能。表1.锂电池正极样品测定结果表2.锂电池正极样品加标回收率测定结果** Cu、Pb、Cr加标5μg/L;Zn、Fe加标50μg/L如何简单有效地做到准确测定锂电池正极材料中低含量杂质元素?请扫描下方二维码即刻获取《ICP-MS测定锂电池正极材料中Cr,Cu,Fe,Zn,Pb杂质元素含量》。扫描上方二维码即可下载右侧资料➡
  • 德国斯派克推出紧凑双观测ICP-OES新品——SPECTROGREEN TI
    p style="text-align: justify text-indent: 2em "近日,德国斯派克分析仪器公司推出了最新版本的电感耦合等离子体光谱仪(ICP-OES) 分析仪:SPECTROGREEN TI,该仪器具有双观测(TI)设计。可自动结合轴向和径向等离子视图优化灵敏度、线性度和动态范围,同时避免矩阵。/pp style="text-align: justify text-indent: 2em "据悉,SPECTROGREEN TI是SPECTROGREEN紧凑型中端 ICP-OES 分析仪的最新版本。它坚固、简单易用,耐用性和可靠性好,可以快速分析,提高生产率。斯派克独特的径向双观测提供两倍于传统径向视图的灵敏度。SPECTROGREEN SOP 具有专用的径向式单侧接口,在不需要DSOI增加灵敏度时实现稳定性和精确性能。/pp style="text-align: justify text-indent: 2em "所有三个SPECTROGREEN版本都提供超可靠、准确的元素分析,包括某些具有挑战性的基质(如某些废水、土壤和污泥)以及有机、高盐样品。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/61793cba-018f-42ad-9b84-5912679215d6.jpg" title="spectrogreen_instrument_2020_315x220.jpg" alt="spectrogreen_instrument_2020_315x220.jpg"//pp style="text-align: justify text-indent: 2em "strong更多详情:/strong/pp style="text-align: justify text-indent: 2em "TI技术带来的高灵敏度,能够实现对痕量元素进行测量,即使在充满挑战性的环境基体也能确保准确度,避免基体干扰。/pp style="text-align: justify text-indent: 2em "新推出的GigE读出系统,能够在不到100毫秒的时间内收集、传输光谱及数据,从而加快分析速度,缩短了样品切换的时间,使单位时间内的样品分析数量大大增加。/pp style="text-align: justify text-indent: 2em "极为灵敏及响应快速的LDMOS发生器,不需要外部冷却:具有分析高重的复杂基体的能力 -- 而无需稀释样品 – 仪器开机速度快(约10分钟)-- 生产率高/pp style="text-align: justify text-indent: 2em "新的New SPECTRO ICP Analyzer Pro 操作软件采用了简单直观的界面,易于使用/p
  • 珀金埃尔默酒精基体洗手液质量快速检测解决方案
    当前,COVID-19 新型冠状肺炎全球疫情呈加速扩散蔓延态势,公众如何做好自身防护?毋容置疑,勤洗手是必选项之一。WHO推出《手部卫生指南》,为如何做好手部卫生做了详尽的指导。针对此次疫情,WHO推荐了以酒精为基体成分的消毒洗手液,其配方组成(v/v)为乙醇(80%)或异丙醇(80%)、甘油(1.45%)、过氧化氢(0.125%)、无菌水或去离子水。随着各类卫生消毒用品需求量剧增,包括最经常使用的酒精基质消毒洗手液在内的各类卫生消毒用品出现严重供应短缺。因此,各个生产厂家无不开足马力,加紧生产。但是,消毒产品的质量却容不得半点忽视。研究发现,当消毒洗手液酒精浓度低于 60%(v/v)时,是没有消毒杀菌效果的,同时会让使用者处于较高感染风险状态。因此,急需一种测试方法快速准确测试洗手液产品中乙醇和异丙醇含量。珀金埃尔默最新推出Spectrum 2 Hand Sanitizer Analyzer专用洗手液分析方案 ——《酒精体系消毒洗手液产品中乙醇和异丙醇红外快速定量测试》,只需要几滴样品,可以在20秒钟左右,快速的给出酒精体系消毒洗手液中乙醇和异丙醇含量;配以流程化操作软件,所有操作可以“一键”完成,无论是否有红外分析基础,都可以直接使用。方案特别适用于洗手液生产厂的质控、商检质检单位的产品合格性检测。搭配便携式电池,此设备还可以拿到现场,直接做产品质量检查。珀金埃尔默酒精基质洗手液质量快速检测解决方案乙醇、异丙醇标准溶液,含甘油和过氧化氢成分珀金埃尔默Spectrum Two 红外光谱仪,带ATR 衰减全发射附件采用朗伯-比尔定律分别计算样品中的乙醇或异丙醇含量乙醇和异丙醇标准工作曲线的线性相关系数 R2 分别为0.998 和 0.999Spectrum Two 红外光谱仪电池供电,防震坚固,不需氮气,实时扣除二氧化碳和水的干扰,在潮湿环境中保持正常运行,适合实验室/现场检测。内置甲烷池,以绝对标准校对谱峰,能为用户提供业界最佳光谱质量和分析性能,提供在合规环境下安心执行红外分析所需的一切功能。软件内置Spectrum Quant™ 的预测功能、Spectrum 10™ 定量计算模型、Touch 流程化操作软件等三种定量、校准模型,操作简单方便。扫描上方二维码即可下载应用资料《酒精体系消毒洗手液产品中乙醇和异丙醇红外快速定量测试资料》
  • 伦敦金属交易所有色金属质量控制系列(3)高纯金属基体的ICP-OES分析
    我们在1月份连续推出了《伦敦金属交易所有色金属质量控制系列 —— 高纯基体金属的 ICP-OES 分析》(1)Avio 500 分析金属镍中的杂质和(2)Avio 500 分析金属铅中的杂质,介绍了伦敦金属交易所对金属镍和铅中的杂质要求,以及珀金埃尔默 Avio ICP-OES 在相关检测中表现出来的优异的干扰消除能力、检出能力、稳定性,可靠性和准确性等,以及明显降低仪器运行成本的Ar低消耗量。本期我们将继续介绍系列的第三部分《高纯基体金属的 ICP-OES 分析(3)Avio 200 分析金属铝中的杂质》,了解伦敦金属交易所对金属铝的标准规范,以及 Avio ICP-OES 在检测方面表现出来的多种优异性能,特别是在波长稳定性和光谱分辨率上的表现。金属铝(Al,英文Aluminium,原子序数为13,原子量26.98)。铝元素在地壳中的含量仅次于氧和硅,居第三位,是地壳中含量最丰富的金属元素。铝及其合金的独特性质能够满足航空、建筑、汽车三大重要工业发展所要求的材料特性,使得金属铝的生产和应用极为广泛。伦敦金属交易所发布了两种规格的金属铝(99.5%纯度和99.7%纯度)的杂质要求,表 1 列举了对其中一种铝(99.7%纯度)中杂质的要求;同时,也将中国国标对铝锭中杂质的要求也列入表中(GB/T 1196-2008)。表 1. 伦敦金属交易所 99.7% 纯度金属铝中的杂质要求样品样品以 5% 硝酸(v/v)消解,所有分析在 1% Al 溶液中进行(与样品消解后的溶液介质接近),并按照其对杂质元素含量的规定进行加标回收实验。标准工作曲线用 5% 硝酸(v/v)溶液配制浓度水平为 0.5,2.0 和 8.0 ppm 的混合标准溶液(含相应 Sc 作为内标),方法设置中使用“添加方法-样品截距”作为校准计算方法克服等离子体中的基质效应。仪器珀金埃尔默 Avio 200 ICP-OES,仪器参数、实验条件设置见表 2;各杂质元素的测定波长见表 3。标准进样系统配置和参数用于所有分析。矩管位置设置为 -3。在考虑氩气(Ar)成本时,Avio 200 的低氩气消耗可以大大节省成本。表 2. Avio 200 ICP-OES 仪器参数和实验条件表 3. 各杂质元素的测定波长 回收率浓度如表 1 所示的杂质元素混合标准溶液加到 1% Al 溶液中的回收率均在 ±5% 以内,结果如图 1 所示,表明能够准确检测低浓度的杂质元素。图 1. 杂质元素混合标准溶液在 1% 浓度 Pb 溶液中的加标回收率仪器稳定性通过 4 小时连续分析 1% Pb 溶液中内标物 钪(Sc)的光谱信号强度的变化考察仪器的稳定性,结果见图 2,信号强度的波动在 ±4% 以内,表明仪器有着良好的稳定 。图 2. 1% Al 溶液中内标物钪(Sc)的光谱信号强度变化方法检出限方法检出限定义为连续 7 次测量 1% Al 溶液中各杂质元素测量值的标准偏差的 3 倍,结果如图 3 所示,表明方法的检出限符合金属镍标准规范要求。图 3. 1% Al 溶液中各杂质元素的检出限(深蓝色)和伦敦金属交易所金属铝标准规范要求(浅蓝色,按 100 倍稀释 99.70% 纯 Al 计算)Avio ICP-OES的波长稳定性和光谱分辨率1. Avio ICP-OES 具备极佳的波长稳定性(图 4)在 1 nm 波段内进行波长校正,具有极好的波长稳定性,不需要外界恒温即可进行样品测定热气流循环恒温,温度恒定 38 ± 0.01°C,波长变化率 0.00025 nm/小时 所有光学元件安置在基座上成为一个整体,没有任何易动元件图 3. 10 – 35 °C 环境下连续测量 20 小时的波长稳定性2. Avio ICP-OES 具备极佳的光谱分辨率紫外与可见光完全分开,同时检测谱线清晰,杂散光极少,检测器边缘亦具有与中间相同的分辨率独有的三狭缝设计,对干扰较小的谱线,可用宽的狭缝以获得更高的光通量;对干扰较大的谱线,可用窄的狭缝以获得更好的光谱分辨信息采用大面积光栅,有极好的色散率,即使在 200 nm处也可获得优异的光学分辨率(图 4)图 4. 每一根谱线由 1 – 30 个像素组成, 在 200 nm 处的分辨率可达 0.003 nm结论本文证明了珀金埃尔默 Avio ICP-OES 可以对高纯 Al 中的杂质元素进行准确分析,符合伦敦金属交易所对高纯金属 Al 的要求。Avio ICP-OES 在实验过程中显示了优异的波长稳定性和光谱分辨率。Avio 200 ICP-OESAvio 500 ICP-OES扫描下方二维码,下载珀金埃尔默Avio ICP-OES分析金属铝中的杂质相关资料。
  • 盐湖提锂测元素,赛家光谱显身手
    盐湖卤水✦锂离子电池是新能源汽车的重要组成部件,随着新能源汽车的快速发展,人们对锂的需求量逐年攀升,提锂工艺技术的发展也日益受到重视。地壳中锂的含量仅为0.0065%左右,其中少部分存在于岩石矿床中,而约80%的锂资源蕴含于盐湖卤水中。我国是一个锂资源大国,锂资源总储量位居世界di二位,其中盐湖卤水锂资源储量占我国锂总储量的79%,主要分布于我国的青海和西藏等省。盐湖卤水成分复杂,含有大量金属和非金属元素,其中的锂含量小到10 mg/L大到4000 mg/L。为了评价盐湖的开采价值以及开采费用,测试锂含量是非常必要的。而其他痕量元素在整个提取过程中会直接影响最终产品的品质,因此,也常常需要测试其他杂质元素。测试难点: 盐湖卤水盐分高:容易堵塞雾化器和在炬管处积盐,影响测试准确性。 基体干扰:如何在高盐基体中准确测试主量Li和其他杂质元素的含量。 炬管寿命:盐湖卤水中存在的大量碱金属以及Li和Na,在高温状态,与石英炬管中的二氧化硅反应,生成硅酸盐,硅酸盐与石英成分不同,出现玻璃析晶,即石英炬管变得不透明,进而产生裂缝或断裂,缩短炬管的使用寿命。图1 A为高盐样品通入等离子炬中的状态B为析晶的石英炬管赛默飞解决方案01仪器:iCAP PRO Series ICP-OES Duo图2 iCAP PRO Series外观图02进样系统为了应对这种复杂基体测试,我们采用了D-Torch陶瓷炬管,陶瓷炬管材质为氮化硅,氮化硅陶瓷材料具有热稳定性高、抗氧化能力强以及产品尺寸精确度高等优良性能。由于氮化硅是键强高的共价化合物,并在空气中能形成氧化物保护膜,所以还具有良好的化学稳定性,1200℃以下不被氧化,1200~1600℃生成保护膜可防止进一步氧化,并且不被铝、铅、锡、银、黄铜、镍等很多种熔融金属或合金所浸润或腐蚀。图3 石英炬管和陶瓷炬管03仪器参数和配置表1 仪器参数和配置04样品制备实验中,为了模拟盐湖样品,所有样品的制备均采用25%的饱和食盐水作为基体溶液,然后向其中加入一定量的杂质元素和Li元素。另外,采用Y溶液作为内标元素校正仪器的波动。05标准溶液配制表2 待测元素标准溶液浓度(单位:ppm)图4 紫外区元素的谱图叠加表3 各元素选择的波长,观测方式,线性相关系数和方法检出限06实验准确性实验中选择含3000 mg/L Li并含有18种0.5 mg/L微量元素的样品作为QC样品,测试了该样品中微量元素的11h准确性,测试结果如图4。痕量元素的波动范围在90%-110%之间。图5.QC样品中痕量元素11h准确性07内标回收率实验过程中监控了11h内标元素的回收率,回收率在90%-115%。图6. 11h内标元素的回收率iCAP PRO优势iCAP PRO是耐高基体的垂直炬管双向观测,采用空气动力学设计的全新炬室,强耐腐蚀氮化硅-刚玉吹扫接口。iCAP PRO的精密恒温光室以及内光路无可动器件和全质量流量计保证了无与伦bi的测试稳定性。作为光谱仪最为核心的CID检测器,它的天然防溢出和非破坏读取,实现了高低含量元素的同时检测。检测器有2048 x 2048 像素点,全波长范围一次读取,读取速率为2MHz,实现了快速测试。设置有单手即可拆卸的插拔式进样系统以及具有自动调谐、一键优化的Qtgera智能软件,为用户提供极大的便利。Li元素标准曲线的浓度为从10mg/L到5000mg/L,相关系数为R2为0.9999,可见仪器具有很宽的线性范围,对盐湖样品,不需要进一步稀释即可进行测试。图7 Li元素标准曲线结论与展望iCAP PRO 系列 ICP-OES可以耐受盐湖卤水样品的高基体,实现了高含量Li和杂质元素的同时检测,Li元素线性范围宽,Li元素和杂质元素的测试准确性高,因此,iCAP PRO 系列 ICP-OES完全可以胜任盐湖提锂工艺中元素测试。作为一种清洁能源,新能源汽车受到了广泛的青睐并且得到了长足的发展,在未来的十年,新能源汽车的市场份e有望在目前的基础上翻10倍以上,经过几年的快速增长,全球将有超过1000万辆的新能源汽车在路上,并且预测在2030年将达到4000万辆,到2050年将会增长到3亿辆。我国作为盐湖大国,盐湖提锂势必迎来新高潮,赛默飞光谱仪将助力盐湖提锂的快速发展。
  • 洞微知物、“微”力无限 | 谱育科技EXPEC 750型全自动离子交换系统
    EXPEC 750型 全自动离子交换系统有效去除干扰成分,重塑基体环境高通量处理样品,自动化流程,工作效率高离子交换树脂可重复使用,实践绿色分析化学产品介绍可根据不同样品的目标分析元素,选择合适的树脂填装离子交换层析柱。活化之后,采用匹配的上样、淋洗、洗脱等方法流程,利用树脂与目标分析元素及干扰元素的物理化学过程,完成分离、富集。产品特点自动化活化、上样、淋洗、洗脱等流程可组合编辑,一键启动。高精度闭环式系统,承压式分离柱,样品/试剂恒速过柱(0.5~100mL/min)。高效率可实现最多六个通道样品同时处理,处理时间在10~20min之间。智能化程序控制智能化,界面简洁、可视化,状态实时显示。高兼容性自动上样、自动收集装置一体化设计,同时兼容ICP/ICP-MS自动进样。模块化方式,灵活组合,有机结合前处理与分析检测过程,构建自动化分析系统,实现实验室4.0。离子交换+快速进样+智能稀释+检测终端(ICP/ICP-MS/… )产品应用EXPEC 750型全自动离子交换系统可应用于无机元素的分离富集前处理,对于高基体样品,可分离基体干扰;对于低浓度样品,可实现目标元素的富集。通过对样品中痕量元素进行除盐分离富集前处理,可以去除碱土金属及F-、Cl-、Br-等基体,重塑样品的分析基体环境,提升样品回收率至95%-105%。对于低至ppt数量级样品进行富集处理,提高检测终端对样品检测分析的检出限、准确度。
  • “食品重金属检测方法与技术”研讨会召开
    仪器信息网讯 2011年4月21日,2011第四届中国北京国际食品安全高峰论坛在北京九华国际会展中心开幕。本次高峰论坛持续两天,主题为“产业链的全过程控制”,旨在打造一次高层次、高水平、高质量的学术盛会。参展本次高峰论坛吸引了800余名业内人士参加、60余家企业参展,仪器信息网作为特邀媒体亦参加了本次会议。  本次会议专门设立了“食品安全的检测方法和技术”系列专题研讨会,共包括食品中非法添加物检测技术、食品中致病菌及毒素检测技术、农兽药残留检测方法与技术、食品重金属检测方法与技术、食品安全快速检测方法与技术、食品安全检测新产品与新技术六个系列专题。“食品重金属检测方法与技术”专题研讨会现场  4月21日下午,“食品重金属检测方法与技术”专题研讨会召开,共有50余名专家学者及分析技术人员参加了此次研讨会。  “食品重金属检测方法与技术”专题研讨会国家质检总局《检验检疫科学》责任副主编 周锦帆教授食品中有害重金属/非金属的疑难光谱/离子电极分析的核心展望  周锦帆教授指出食品中有害重金属分析,其难点在于消除基体干扰和降低分析方法检测下限。所以如何选择性地从复杂的样品,例如高盐样品中可靠、有效、实用地将微量重金属分离/富集,从而提高分析方法的灵敏度和准确度并得到可信的结果,对我国分析化学工作者来说是很实际的问题。  周锦帆教授在报告中主要介绍了食品中铅、镉、汞、硼、铀、钍、碘、氟和六价铬的不同离子交换树脂及活性氧化铝分离/富集的方法及实施要点,以及解决疑难的光谱/离子选择电极分析问题,即消除基体(如,大量钠)干扰并降低分析方法检测下限。周锦帆教授介绍说小型离子交换柱法可用于绝大多数金属离子的离子交换分离/富集。采用树脂量为1.0mL的小型离子交换柱,可以解决95%以上的有害金属分离富集问题。例如,测定铅、铅+镉、汞,可用Chelex-100螯合树脂 单独测定镉,首选用Dowex 1-X8离子交换树脂 测定硼可选择用Amberlite743树脂 分离富集Cr(Ⅵ)以活性氧化铝为首选等。国家食品质量安全监督检验中心无机室主任 林立女士食品中无机元素检测的关键技术分析  林立女士首先从食品中无机砷的测定(LC-ICPMS联用)、面包饮料中溴酸盐的测定、酱油等氯化钠含量很高的样品中铅的测定、植物样品中稀土氧化物的测定、鸡蛋中总硒的测定、食品中铝的测定等实际案例向与会者介绍了食品中无机元素的检测技术。此外,对于常规无机元素在原子吸收光谱仪、原子荧光光谱仪、ICP以及ICP-MS等仪器上检测时的优缺点,林立女士做了系统的说明。最后,林立女士介绍了以ICP-MS做为检测器,与GC、LC/IC、Laser Ablation、CE等仪器的联用,以及在一些复杂基质样品中的分析应用。国产科学仪器应用示范中心主任 陈舜琮研究员国产光谱仪器在食品安全检测中的应用  陈舜琮研究员介绍了国产原子吸收光谱仪、原子荧光光谱仪以及微波消解仪的发展现状、以及在食品安全检测中的应用。  陈舜琮研究员表示国产原子吸收光谱仪凭借其日益提升的分析性能、优质的售后服务以及价格等方面的优势,在食品安全检测领域正在发挥越来越大的作用。原子荧光光谱仪是我国自主研发,具有完全知识产权的分析仪器。原子荧光光谱法具有谱线简单、灵敏度高、检出限低、基体干扰少,在砷、汞等挥发性元素的测定中表现出极大的优越性。微波制样具有速度快、效率高、回收完全、试剂耗用少、环保清洁的显著优点,正越来越成为替代传统方法的新技术。  同期召开的“食品安全的形势、管理和应对措施”主论坛
  • 技术干货 | 无惧干扰,快速分析土壤中放射性核素污染
    锶-90(90Sr)是铀和钚的裂变产物,是核泄漏的主要污染物之一。其半衰期为29 年,因此能够在环境中留存相当长的时间。90Sr 本身可以衰变为钇-90(90Y),然后再衰变成稳定的锆-90(90Zr)。当生物体摄入90Sr 时,该元素在骨骼中积累并持续产生辐射,可能对生物体产生危害。因此,评估环境中的90Sr 污染对当地人类和环境健康问题至关重要。常规的90Sr 测定技术通常耗时长(数天)、成本高,并且效率较低,无法实现大量样品的分析,从而快速确定源于核反应堆的90Sr 污染程度。利用电感耦合等离子体质谱仪(ICP-MS)进行分析能够解决上述问题,但同样存在巨大的挑战:90Sr 与锆(Zr)主要同位素的质量数相同(51.45% 高丰度),会造成质谱干扰;同时Zr 在正常环境样品例如土壤中的含量比90Sr 高约十二个数量级(Zr 含量在ppm 级,Sr 含量在sub-ppq 级)。必须克服上述挑战才能有效利用ICP-MS 测量土壤中的90Sr。样品在福岛第一核电站西北方向10 到20km 存在强辐射的区域内,在2cm 深的位置采集表层土样本(100-150g),并用塑料容器搜集、储存样本。样品前处理每个聚四氟乙烯微波消解罐中放一克干燥土壤,之后加入10mL 浓度为10% 的硝酸。按照表1 所示的微波消解程序进行消解,然后冷却至室温并保持20 分钟。之后将溶液转移至塑料离心管中,并以2500rpm 的转速进行10 分钟的离心操作。在进行ICP-MS 分析前,利用孔径为0.45μm 的滤膜过滤样品,留存上清液、去除沉淀物。可将同一采样地点采集的土壤样品同时消解和过滤后,将上清液混合在一起以增加总样品量。表1 微波消解程序由于90Sr 含量较低,所以采用珀金埃尔默FIAS 400 流动注射系统和50mm × 4.6 mm 色谱柱(Eicrhom Technology,Lisle,IL,USA,填料为锶离子选择性树脂,粒径50-100 μm)对Sr 富集并去除其他基体元素。先利用1.9 mL/min 的流速使样品流经色谱柱,然后以0.75mL/min 的流速将浓度为20% 的HNO3 泵入色谱柱,持续90 秒,以去除质谱柱中除Sr 之外质荷比为90 的全部其他同质异位素。最后,用流速为1.9 mL/min 的去离子水冲洗色谱柱90 秒,从而洗脱Sr。在去除基体和洗脱Sr 步骤之间,利用浓度为20% 的HNO3 冲洗整个系统(不包括色谱柱),以清洗阀门。FIAS流动注射系统经前处理后的样品溶液直接注入超声雾化器中,雾化后的气溶胶被导入珀金埃尔默ICP-MS 中,并利用氧气作为反应池气在DRC 模式下检测90Sr;仪器参数如表2 所示。每个样品的总分析时间是14.6 分钟,其中大部分时间主要用于预富集程序。表2 ICP-MS参数氧气反应消除干扰的原理Sr、Zr、Y 和氧气的反应速率常数如下所示: Sr+不能与氧气发生反应,而Zr+ 和Y+ 均可与氧气快速反应,这说明氧气可以将干扰物90Zr+ 和 90Y+ 从90Sr+中有效消除。虽然这些反应似乎可以解决干扰问题且无需进行基质分离,但土壤中90Zr 和90Sr 之间显著的含量差异(6.5-11 μg/g 的Zr 与ppq 含量的90Sr)构成了挑战:在反应池中用O2 除去所有90Zr+ 时,与O2 分子的碰撞会导致90Sr+动能损失。鉴于90Sr+ 含量极低,这种动能损失足以造成90Sr+灵敏度过低从而无法检测。为了克服这一问题,在前处理中特采用基质分离方法。然而,进一步研究表明,在基质分离步骤之后仍然存在显着的Zr 信号(分离之后色谱柱上仍有0.23% 的Zr 残留)。这此种低含量的Zr用氧气反应模式,则可以轻松去除,并且不会影响90Sr的灵敏度。因此,在预富集和基体分离之后利用反应池进行氧气反应去除干扰是最佳的解决方案。可用以下方程式将质量浓度转化为放射性: 表3 记录了从福岛核电站西北10 到20 公里处所取三个土壤样品的分析结果(均取四个测量值的平均值)。运用本文所述方法分离样品后进行分析,同时采用常规方法进行90Sr 测定。两种方法的结果在95% 的置信水平上显示一致。之所以结果出现了少许不吻合现象,是因为90Sr 在土壤中分布不均。表3 土壤中90Sr 分析结果此项研究证实了采用ICP-MS 方法测量土壤中90Sr 含量的有效性;由于土壤中90Sr 含量低、Zr 含量高,因而此项分析工作颇具挑战性。运用基质分离/ 预富集步骤,可将大部分基质元素去除并对90Sr 进行预富集。然而,此步骤后仍存在基质干扰,需用动态反应池进行反应模式消除干扰。与传统的90Sr 分析方法相比,本分析方法在分析效率上具有非常明显的优势。想要了解更多详情,请扫描二维码下载完整的应用报告。
  • 科学家发现增强干扰素抗病毒效应新分子新机制
    p  中国工程院院士、中国医学科学院院长曹雪涛团队日前发现,甲基转移酶分子SETD2能够显著增强干扰素的抗病毒效应,促进机体抵抗病毒能力,提高干扰素疗法清除乙肝病毒效果。该发现为抗病毒免疫应答效应机制提出了新观点,也为有效防治病毒感染性疾病提供了新思路。相关成果发表于新一期《细胞》杂志。/pp  干扰素是机体抵抗病毒感染的关键性细胞因子,可通过激活免疫细胞内信号通路而诱导出一系列抗病毒效应分子,从而激活和维持免疫系统抗病毒能力。干扰素是目前临床治疗乙型肝炎的常用药物之一,然而其疗效有限,因此,揭示干扰素抗病毒效应的具体机制以寻找有效防治病毒感染的新型免疫措施具有重要意义。在国家基金委、科技部973项目等资助下,曹雪涛院士与浙江大学医学院免疫学研究所陈坤博士以及第二军医大学医学免疫学国家重点实验室联合攻关,针对表观遗传机制参与免疫应答过程与免疫性疾病发生,而目前尚不清楚表观遗传分子如何调控干扰素抗病毒免疫功能这一重要科学问题,通过高通量RNA干扰筛选体系分析了700余种表观遗传酶分子在干扰素抑制乙肝病毒中的作用,发现了甲基转移酶分子SETD2对于干扰素抑制乙肝病毒复制至关重要。通过制备肝细胞特异性敲除SETD2基因小鼠模型的体内实验,证实SETD2能显著增强干扰素抑制乙肝病毒以及其他多种病毒复制的体内效应。机制研究表明,SETD2分子通过其甲基转移酶活性,直接催化干扰素关键性信号蛋白分子STAT1的第525位赖氨酸发生单甲基化修饰(STAT1-K525me1),从而促进干扰素效应信号的活化,诱导出更高水平的抗病毒蛋白,发挥更强抗病毒效应。/pp  该研究揭示了甲基转移酶SETD2分子能够直接诱导干扰素信号蛋白分子的甲基化并促进干扰素抗病毒效应的重要功能,表明该发现丰富了人们对于机体抗病毒免疫调控机制的认识也为下一步开展相关研究提供了新思路。鉴于干扰素信号调控异常与炎症性疾病、慢性感染疾病发生发展等密切相关,该研究也为研发抗病毒、抗炎药物提供了潜在靶标,为干扰素临床应用方案的优化提供了新方向。/pp/p
  • LUMEX高频塞曼原吸在线网络讲堂邀您报名啦
    讲堂议题:复杂基质样品重金属分析——LUMEX高频塞曼原子吸收主讲人:陆玉坡,资深产品技术经理,负责LUMEX中国大区行业应用方法开发和产品技术支持,具备丰富的原吸仪器应用经验时间:2018年11月13 上午10:00报名链接://www.instrument.com.cn/webinar/meeting_4341.html 食品、化工、疾控、土肥、环保等行业均需要对重金属进行分析测定,比如铅、镉含量是食品卫生和粮食检测中的必检项目,石墨炉原子吸收法因其快速、适用元素多样和灵敏度高成为测定重金属的常用方法,但如何针对复杂基质样品去除干扰获得稳定准确的测定结果,是当前科研人员迫切需要解决的问题。本次讲座将针对复杂基质样品如一些盐分高或较为粘稠的样品特点,如血、海水、废水、高盐食品、油类,结合高频塞曼原子吸收技术特性,通过研究石墨炉原子吸收法测定具体重金属的基体干扰模式,探讨基体改进剂、升温程序和校正模式对减少或消除氯化钠干扰的效果与能力,实现特殊及复杂样品的重金属痕量稳定准确测定。 LUMEX将其独有的高频塞曼背景校正专利技术、无极放电灯技术用于石墨炉原子吸收,并结合较优软件流程设计,研制出快速、稳定、可靠、智能的MGA1000原子吸收光谱仪。仪器方法作为常规实验室方法符合GB5009,EPA 200.12,ISO 11174:1996,GB/T-17141-1997,HJ-748-2015,HJ-673-2013,HJ-737-2015等,在食品、环保、水质、质检、疾控、法检等行业拥有成熟分析方案和客户。 MGA塞曼原子吸收采用高频塞曼技术(高达50KHz)结合STPF稳定温度平台,有效消除基质干扰,提高测定准确性。快速升温速率(最高7000℃/秒),有效提高原子化效率和灵敏度,实现快速分析。仪器设计精巧,一体化冷却循环水,仪器兼容性和适用性较好,经过近二十年的发展,具备成熟的仪器方法和配置,独特的优势特点受到用户好评。 来源:LUMEX分析仪器
  • 土壤分析检测的故事——访中国农业科学院农业环境与可持续发展研究所分析测试中心陕红副研究员
    民以食为天,农业是第一产业,是人类社会的衣食之源、生存之本,也是国民经济的基础。农业发展与生态环境息息相关,当前土地退化、土壤荒漠化及盐碱化、水土流失等现象十分严重,农业用水污染及由此导致的农田土壤污染、农药和化肥污染也时有发生。生态破坏、污染加剧等问题,严重影响着农业的持续发展和粮食的安全。为了保障国家粮食安全,提升土壤资源保护和利用水平,2022年,时隔近40年,我国再一次开启了“第三次全国土壤普查”。查清不同生态条件、不同利用类型土壤质量及其障碍退化状况,摸清特色农产品产地土壤特征、后备耕地资源土壤质量、典型区域土壤环境和生物多样性等,全面查清农用地土壤质量家底。分析检测技术发展,是进行大规模土壤普查的底气。近期,仪器信息网特别采访了中国农业科学院农业环境与可持续发展研究所分析测试中心陕红副研究员,深入了解其团队在相关领域分析检测方面所做的工作,并就其中分析检测的难点以及分析仪器技术及应用等进行了深入的交流。中国农业科学院农业环境与可持续发展研究所分析测试中心陕红副研究员中国农业科学院农业环境与可持续发展研究所分析测试中心(以下简称分析测试中心)是在中日农业技术研究发展中心公共实验室的基础上,于2005年成立。陕红表示,分析测试中心是研究所的检测支撑部门,拥有国家计量认证(CMA)和中国合格评定国家认可委员会组织的实验室认可(CNAS)资质,在为所内科研项目提供支撑的同时,也承接来自社会面的分析测试工作。目前,分析测试中心主要开展土壤、植物、水、农用固体废弃物等环境介质中无机元素及其形态分析、有机污染物及农药残留检测以及稳定同位素分析和溯源研究等工作。作为其中无机分析检测的负责人,陕红及团队依托现有的仪器设备,开展了大量不同类型环境样品中无机元素相关分析技术和方法研究探索工作。特别是在土壤重金属检测、植物中元素形态分析、农膜重金属分析等方面建立了一系列先进的分析方法,有力支撑了研究所内多项研究项目的实施。经过多年发展,分析测试中心在相关方法建立和探索方面积累了大量经验和成果,也与众多其他科研单位展开合作,为他们解决分析难题。“很多地方单位遇到难题时都会找到我们,让我们帮忙来建立方法。”土壤分析有效去除基体干扰很关键为了应对所内、所外的分析测试需求,分析测试中心配备了大量先进的仪器设备。由于分析测试中心主要面向科研项目,样品种类繁多,样品间差异也大,这对于仪器的性能、抗干扰能力等都提出了很高的要求。据陕红介绍,在无机分析领域,主要配备的原子吸收光谱仪、ICP-OES、ICP-MS等均来自珀金埃尔默公司。谈农业,肯定离不开土壤,分析测试中心日常接触最多的就是土壤样品了。陕红介绍到,土壤成分复杂,不同地区的土壤也存在差异,其样品分析时基体干扰也较大,所以,土壤分析对仪器提出了更高的要求。而在有效减轻基体干扰方面,珀金埃尔默的仪器有着技术优势。她举例说到,当时选择珀金埃尔默的原子吸收,就是看中其塞曼扣背景技术。另外,珀金埃尔默ICP-MS的碰撞反应池配备了三路反应气体,抗干扰能力强;同时锥孔比较大,在长时间进行高盐样品检测时,有效克服了由于锥孔堵塞造成的仪器灵敏度和稳定性降低的问题。实验室仪器一角同时,仪器皮实耐用也是珀金埃尔默仪器的一大优点。分析测试中心在2010年购置了珀金埃尔默的一台 ICP-OES,十多年内,仅仅在实验室搬家装修时请过一次工程师,“这十来年,大的部件从来没有出过问题。”而同期采购的珀金埃尔默ICP-MS,按照规定本来要进入报废周期,但仪器依旧可以正常使用,目前还作为“替补队员”承担着常规检测任务。因为多年使用下来的良好体验,在今年采购ICP-MS时,测试中心的采购技术小组经过严格评估再次选择了珀金埃尔默。“我们这次选择了新款的仪器,感觉到经过这些年的技术发展,珀金埃尔默的仪器在灵敏度、抗干扰能力以及应用范围等方面都有了明显进步。例如,近期,为了更好地与所内研究课题结合起来,我们着手在单细胞分析研究领域做一些扩展。而珀金埃尔默的ICP-MS仪器为该领域的科研工作提供了很好的技术支撑,期待后续我们会产出一些不错的成果。”土壤检测方法、标准、技术 还能更进一步在聊到目前土壤分析检测遇到的问题时,陕红提到,目前的土壤中无机元素检测方法,虽然比较健全,但是还有很多可提升改进的地方。她举了一个例子,例如土壤中有效态元素分析,目前不同的元素需要不同的浸提剂来提取。“这就造成我测一种元素要做一遍前处理上机测试,测另一种元素要换一个方法再重复一遍这个过程。”而实际上,现在的仪器技术,完全可以实现多元素的同时测定,受限于前处理方法,很难实现多种有效态元素同时检测,影响了效率。陕红进一步说,就拿现在行业内最大的热点“土壤三普”工作来说,为了摸清我国土壤质量的家底,有效态元素方面包含数十项检测指标,工作量巨大。“如果能解决这个问题,进一步优化检测方法,将大大提升检测工作的效率。”除此之外,相关标准的缺乏也对土壤检测工作有一些影响。以往土壤中无机元素分析主要是利用原子吸收光谱来做,相关国标也大多基于此建立方法。随着分析测试方法的快速进步,在土壤检测领域,ICP-MS在检测灵敏度、元素种类覆盖度等方面具有显著的技术优势,近年来在各大实验室的配置率也显著提升。但是受限于标准滞后,一定程度上限制了很多CMA和CNAS实验室的工作开展。“未来,在标准制修订方面,我们需要再向前推一步。”此外,陕红也提出,分析测试实验室在实际工作中,会遇到各种各样的问题,希望厂商在技术支持方面能够更多样化。从用户的实际需求出发,结合不同领域实验室的特点,给予用户更多个性化的指导。她也表示,就无机元素分析领域来说,与珀金埃尔默的工程师有很好的沟通配合。特别是在开展新的应用方面,工程师给与了实验室很多支持。例如,在进行元素形态分析方法探索时,珀金埃尔默的技术工程师在前期提供了很多帮助;近期在开展单细胞分析时,工程师也上门为实验室进行了培训。“大家相辅相成、互相配合,就会更容易的去解决一些问题,也对我们双方发展都有一个很好的推动。”后记:在采访中,笔者发现陕红老师对每一个指标的检测过程可谓了若指掌,每每谈到哪里是难点,实验过程中需要注意哪些问题,总是能脱口而出。这无疑都体现了她在检测工作中扎实的技术功底和深厚积淀。在采访的最后她也谦虚地表示:“作为一线实验室,我们做的很多东西可能不够‘高大上’,说的很多问题比较琐碎,但是都是我们实际日常工作中遇到的,希望能给大家一点帮助。”在国家大力推动加快农业农村现代化、确保粮食安全,以及积极开展第三次全国土壤普查的大背景下,土壤检测,作为提升土壤资源保护和利用水平的重要一环,必将迎来持续增长。笔者也期待分析仪器厂商能够为土壤检测提供更多创新的方法和仪器,继续为中国的可持续发展贡献力量。
  • 锂电池起火屡见不鲜,背后成因是什么?如何避免发生?
    锂离子电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池。因其具有电压高、比能量高、循环寿命长、环境友好等优点,被广泛应用于电子产品、轨道交通、新能源等动力领域。然而...关于锂离子电池起火的案例却屡见不鲜这背后究竟有怎样的成因?小谱在线来解答请输入当锂离子电池正极材料中存在铁(fe)、铜(cu)、铬(cr)、镍(ni)、锌(zn)、银(ag)等金属杂质时,电压达到这些金属元素的氧化还原电位后会到负极还原为固体单质,当累积到一定程度,沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,从而发生起火现象。所以,在新能源锂电池行业中禁用锌、铜、镍元素,其杂质含量也应得到严格管控,从而避免锂电池起火等事件发生。元素检测利器icp-oes电感耦合等离子体发射光谱仪(icp-oes)作为一种快捷、准确检测元素含量的分析仪器,是锂离子电池及相关材料元素检测的常用设备。相关标准如 gb/t 20252-2014《钴酸锂》、gb/t 24533-2009《锂电池石墨负极材料》、gb/t 30835-2014《锂离子电池用复合磷酸铁锂正极材料》、gb/t 30836-2014《锂离子电池用钛酸锂及碳复合负极材料》及iec 62321中,均规定使用icp-oes测试锂离子电池中常量及微量杂质元素含量。难点分析一、杂质元素含量低,常量及微量元素需同时检测;二、锂电池电解液含有机溶液,直接进样易形成积碳;三、基体光谱干扰严重,对仪器的基体耐受性和抗干扰能力带来极大挑战。谱育科技解决方案expec 6000 icp-oes谱育科技expec 6000 是一款经典的高性能国产icp-oes仪器,可凭借优异的产品性能帮助您解决锂离子电池元素检测中遇到的难题。- 基体耐受性强:炬管垂直放置,功率可达1600w,具备更强的抗基体干扰能力;- 高低浓度同时检测:防饱和溢出ccd,智能积分以获得最佳信噪比、高动态线性范围;- 干扰校正功能:多种干扰校正方法和全自动实时背景扣除功能,消除基体背景干扰。- 功能扩展:配置有机进样系统,有机物直接进样;超级微波消解仪实现全自动消解。典型应用数据(一) 磷酸铁锂电池材料中锂元素及13种金属元素含量采用expec 6000测定锂离子电池正极材料磷酸铁锂中13种金属元素含量,样品做5个平行加标。检测结果:各元素检测值与参考值基本吻合,方法精密度和加标回收率良好,检测结果准确可信,完全满足分析测试要求(如下表所示)。(二) 锂离子电池电解液成膜添加剂采用expec 6000测定了2种锂电池电解液成膜添加剂中8种金属元素,每个样品做5个平行加标。检测结果:方法精密度与加标回收率良好(如下表所示),检测结果稳定、准确,仪器完全满足分析测试要求。
  • BCEIA2009专题报告:材料分析
    仪器信息网11月26日讯:继BCEIA 2009分析仪器应用技术报告会成功在北京展览馆举办,分析仪器应用技术专题报告之材料分析报告会于2009年11月25日下午继续召开,参加材料分析报告的有来自全国著名教授、分析行业专家学者等与会代表近百人,就新材料究竟对分析测试提出什么要求、提出什么挑战的问题进行探讨。 国家钢铁材料分析中心王海舟教授主持报告会 机遇与挑战并存: 分析测试中的材料分析主要是给产品从原料到成品等各个环节中的化学成分与物理性能提供的检测,从而保证产品的质量,并最终对产品的品质作出全面评价,为材料在各方面的应用以及进出口贸易提供可靠依据。目前材料分析测试涉及的领域主要有:医疗卫生、环境环保、生物药品、冶金、高分子材料等。而各种新型材料的涌现,又给分析测试人员以及分析仪器生产厂家提供了新的机遇与挑战。岛津国际贸易(上海)有限公司应用工程师杨桂香女士专题报告:ICP-AES在高纯物质杂质元素分析方面的应用 随着仪器公司对ICP-AES仪器性能指标的不断提升,以及应用领域的应用工程师不断做相关的工作,因此对高纯物质杂质的研究不仅是ICP-MS仪器分析的专利,而且ICP-AES仪器也能满足检测高纯物质中杂质分析的需求。虽然ICP-AES能检测高纯物质中杂质,但在分析时还存在以下三个方面的问题:1)基体干扰——ICP光源发射连续光谱背景及某些分子光谱带;2)光谱干扰——发射光谱谱线多,经常会出现不同程度的谱线重叠干扰;3)灵敏度——痕量甚至超痕量的要求有时达不到。而针对以上问题,可以进行分离富集前处理(沉淀分离法、 萃取分离法、离子交换分离法)和采用高分辨率仪器来处理。 报告还从三个应用实例,分别使用沉淀分离法、未经分离直接测定、标准加入法检测高纯物质中杂质元素。它们的特点分别是ICP-AES测定高纯物质中杂质元素时,通过沉淀分离法分离基体,可以有效解决干扰,达到准确测定目的;采用高分辨仪器避免光谱干扰,通过数据处理扣除基体干扰,也可以达到准确测定目的;采取标准加入法使基体得到最合理的匹配,通过合理扣除背景来达到准确定量分析。 珀金埃默尔股份有限公司工程师康瑜容女士专题报告:新型联用分析技术在材料研究方面的进展 由于一般在材料分析过程中,只能对物质进行定性或者定量,很难对材料生产过程的全部面貌进行监控,而各种仪器的相互联用可以达到中间过程的监控,发展联用技术,可以更好地了解材料的世界——揭示聚合体结晶与聚合物材料组成、促进有机挥发性气体VOC的研究和逸出气体成分分析、掌握药物载体的相互作用以及多晶改变情况。而联用分析技术, 即是将各种分析技术串联而成,连接的方式包含:降解气体分析(Evolved Gas Analysis, EGA)、 同步分析 ( DSC-Raman) 、测试环境改变 (UV-DSC, Humidity-DMA)。针对不同的连接方式,康瑜容工程师特从四个联用技术与实际的应用相结合,分别做了详细的阐释:热重-红外联用技术 (TG-IR)、热重-质谱联用技术 (TG-MS)、热重-气质联用分析技术 (TG-GCMS)、差示扫描量热法-拉曼光谱联用技术 (DSC-Raman) 。上海光谱仪器有限公司高级工程师刘瑶函先生专题报告:高性能原子吸收交、直流两用塞曼背景同时校正技术 在原子吸收中,塞曼背景校正技术是原子吸收中的一个很重要的技术,而SP-3880AA不仅实现了横向可变交流磁场、直流磁场塞曼背景校正的一体化,并且实现了这两种磁场塞曼背景校正的同时测量,因而可以直接比较同一次直流塞曼与交流塞曼背景校正方式的优劣,对背景校正方式进行优化,为塞曼背景校正的深入研究提供了条件,该技术为国际首创。 另外,石墨炉火焰原子吸收一体化设计,避免了石墨炉与火焰两种模式的机械切换,操作方便,系统具有交直流塞曼扣背景功能,能较好检测高背景样品的小信号,也能直接检测高温元素,具有较广泛的应用前景。交、直流塞曼两种背景校正方式,各具特色,因此在实际应用中可根据样品、分析元素的特点选择一种最合适的背景校正方式。 SP-3880AA实现了全反射双原子化器串联型结构技术、开关型石墨炉直流加热电源技术、交直流塞曼背景校正技术均为国内首创。在硬件成本增加不多的情况下,SP-3880型交直流两用塞曼背景校正原子吸收分光光度计同时具有交流、直流塞曼背景校正功能,并可在一次测量过程中同时得到两者的校正数据与图形,这样对于两种塞曼背景校正方法的比较研究更具可比性和学术意义;直流塞曼背景校正磁场可变,可通过选择磁感应强度来获得最大相对灵敏度,而恒磁场则无法选择,因此直流可变塞曼较恒磁场塞曼背景校正方式有更高的灵敏度和选择灵活性。国家钢铁材料测试中心副主任陈吉文教授专题报告:激光原位统计分布分析技术 材料(包括金属材料)对国民经济有着很重要的应用,然而在冶金材料分析面临着原位元素分布与状态分析、管复杂体系痕量元素分析、管复杂体系痕量元素分析三大难题。在目前的表征材料成分与状态的方法,一方面利用宏观分析材料的平均成分,反映材料宏观基本属性;另一方面利用微观分析组织结构反映材料局部性质;最后可以通过原位统计分布分析在材料中较大尺度范围内化学成分及其状态的统计定量分布,从而反映材料综合性质。在原位统计分布分析中,火花源、激光源、微束X射线、辉光溅射等都可以快速获得材料中每一个位置元素原始含量及其状态。 对于激光原位统计分布分析技术可以分为激光烧蚀等离子体质谱法(LA-ICP-MS)和激光诱导击穿光谱法(LIBS)。其中LA-ICP-MS法的优点:原位、快速,灵敏度与空间分辨率高(um级),同时多元素分析;对样品尺寸、形状无严格要求,无导电性要求;固体直接取样,无须样品消解,可分析样品种类多;干扰较少。而激光诱导击穿光谱技术的特点:分析简便、快速,分析速度快无须烦琐的样品前处理过程,避免了样品被污染或损失的可能;对样品尺寸、形状及物理性质要求不严格,可分析不规则样品;可分析导体、非导体材料,以及难熔材料;可测定固态样品,还可以测定液态、气态样品;LIBS具有高灵敏度与高空间分辨率。激光烧蚀坑直径达微米级,非常适合原位统计分析技术,不仅可给出表面的一维二维成分分布,甚至可给出包含材料近表面的三维成分分布,非常适合涂层材料、薄膜材料分析;进行样品痕量分析,现场分析以及高温、恶劣环境下的远程分析。材料分析专题报告现场
  • 突破封锁 协同创新 | 聚光科技子公司谱育科技联合海康威视打造RoHS检测新方案
    背景 许多电子电器产品由于功能、 性能或生产技术的需要,含有大量如铅(Pb)、汞(Hg)、镉(Cd)等有毒有害物质或元素。长期接触这些含毒有害物质的电子信息产品,会对人体健康造成不良影响;若废弃后处理不当,更会对生态环境造成危害。为管控电子信息产品污染,欧盟于2003年通过了RoHS指令,我国也于2006年发布了《电子信息产品污染控制管理办法》,对电子电气设备产品中铅、汞、镉、六价铬、多溴联苯 (PBB)和多溴二苯醚 (PBDE)等六种有害物质做出限定。难点分析 电感耦合等离子体发射光谱仪(ICP-OES)、微波消解仪是标准指定的重金属分析检测和前处理仪器。 但电子电器产品涉及部件种类众多、材料成分复杂,尤其是塑料、陶瓷、合金等成分需要超高温高压用于样品消解,一般的微波消解仪难以将其彻底消解; 且合金、塑料等样品基质十分复杂,基体光谱干扰严重,对仪器的基体耐受性和抗干扰能力带来极大挑战。 杭州海康威视数字技术股份有限公司是国内通讯行业著名的制造商,产品涵盖公安、电讯、交通、司法等多个领域。秉持对产品质量高度负责的原则,海康威视对产品及原料中重金属及杂质元素进行严格管控,对ICP-OES这一元素分析检测仪器有刚需。受制于美国《出口管理条例》,同时国内实验室高端分析仪器行业也逐渐发展成熟,海康威视把目光投向了国内。通过分析市场现状,了解相关企业的发展情况及其主要产品,最终选择了谱育科技。 杭州谱育科技发展有限公司(聚光科技实验室板块高端科学仪器平台)是国内领先的实验室高端分析仪器制造商,研发的EXPEC 6500 型ICP-OES各项性能指标不亚于进口水平,独有的全谱实时校准技术保证长时间测样分析结果的准确性,垂直炬管设计、新增的iStandby模式,可大为节省氩气用量,搭配耐300℃、200Bar的超级微波化学工作站EXPEC 790S进行消解前处理,完美适配电子电器产品元素测试需求。 使用EXPEC 790S超级微波化学工作站,升温至260℃,在预加压模式下对电线表皮、塑料外壳及合金部件样品进行彻底、高效的消解。样品消解后直接定容,用EXPEC 6500 型ICP-OES检测Pb、Cd含量, R2均 0.999,RSD均 1%(n=3),加标回收率:93%-101%,实验结果表明仪器及方法线性良好,数据稳定,结果准确,完全能满足元素精确、稳定检测的需求。 产品特点: 基体耐受性强:垂直炬管,功率1600W连续可调,具备更强的抗基体干扰能力; 高低浓度同时检测:大面阵防溢出ECCD,智能积分以获得最佳信噪比、高动态线性范围; 干扰校正功能:多种干扰校正方法和全自动实时背景扣除功能,消除基体背景干扰; iStandby模式:500W超低功率待机,降低氩气消耗50%以上。合作意义 高端分析仪器是一个国家进行科学研究的基石,长期以来,高端分析仪器制造技术却主要由几大进口企业掌控,若不能突破核心技术瓶颈,实现国产替代,在基础科学研究乃至国民生产生活上必将实时受制于人。谱育科技经过多年高比例的持续研究与开发投入,完成了近二十项国家重大科技专项研发和国家及行业标准制定工作,积累了二十余项新型技术平台。海康同为我国高新技术企业,面对国外的技术封锁和市场打压,选择与谱育科技合作,共克时艰,共同致力于攻克国外技术壁垒、打破国外垄断,为中国高科技企业创新与崛起树立了良好的合作典范。
  • 突破封锁 协同创新 | 谱育科技联合海康威视打造RoHS检测新方案
    背景许多电子电器产品由于功能、 性能或生产技术的需要,含有大量如铅(Pb)、汞(Hg)、镉(Cd)等有毒有害物质或元素。长期接触这些含毒有害物质的电子信息产品,会对人体健康造成不良影响;若废弃后处理不当,更会对生态环境造成危害。为管控电子信息产品污染,欧盟于2003年通过了RoHS指令,我国也于2006年发布了《电子信息产品污染控制管理办法》,对电子电气设备产品中铅、汞、镉、六价铬、多溴联苯 (PBB)和多溴二苯醚 (PBDE)等六种有害物质做出限定。难点分析电感耦合等离子体发射光谱仪(ICP-OES)、微波消解仪是标准指定的重金属分析检测和前处理仪器。◆ 但电子电器产品涉及部件种类众多、材料成分复杂,尤其是塑料、陶瓷、合金等成分需要超高温高压用于样品消解,一般的微波消解仪难以将其彻底消解;◆ 且合金、塑料等样品基质十分复杂,基体光谱干扰严重,对仪器的基体耐受性和抗干扰能力带来极大挑战。杭州海康威视数字技术股份有限公司是国内通讯行业著名的制造商,产品涵盖公安、电讯、交通、司法等多个领域。秉持对产品质量高度负责的原则,海康威视对产品及原料中重金属及杂质元素进行严格管控,对ICP-OES这一元素分析检测仪器有刚需。受制于美国《出口管理条例》,同时国内实验室高端分析仪器行业也逐渐发展成熟,海康威视把目光投向了国内。通过分析市场现状,了解相关企业的发展情况及其主要产品,最终选择了谱育科技。EXPEC谱育科技是实验室高端分析仪器制造商,研发的EXPEC 6500 型ICP-OES各项性能指标不亚于进口水平,独有的全谱实时校准技术保证长时间测样分析结果的准确性,垂直炬管设计、新增的iStandby模式,可大为节省氩气用量,搭配耐300℃、200Bar的EXPEC 790S超级微波化学工作站进行消解前处理,完美适配电子电器产品元素测试需求。使用EXPEC 790S超级微波化学工作站,升温至260℃,在预加压模式下对电线表皮、塑料外壳及合金部件样品进行彻底、高效的消解。样品消解后直接定容,用EXPEC 6500 型ICP-OES检测Pb、Cd含量, R2均 0.999,RSD均 1%(n=3),加标回收率:93%-101%,实验结果表明仪器及方法线性良好,数据稳定,结果准确,完全能满足元素精确、稳定检测的需求。产品特点基体耐受性强:垂直炬管,功率1600W连续可调,具备更强的抗基体干扰能力;高低浓度同时检测:大面阵防溢出ECCD,智能积分以获得最佳信噪比、高动态线性范围;干扰校正功能:多种干扰校正方法和全自动实时背景扣除功能,消除基体背景干扰; iStandby模式:500W超低功率待机,降低氩气消耗50%以上。★合作意义★高端分析仪器是一个国家进行科学研究的基石,长期以来,高端分析仪器制造技术却主要由几大进口企业掌控,若不能突破核心技术瓶颈,实现国产替代,在基础科学研究乃至国民生产生活上必将实时受制于人。谱育科技经过多年高比例的持续研究与开发投入,完成了近二十项国家重大科技专项研发和国家及行业标准制定工作,积累了二十余项新型技术平台。海康同为我国高新技术企业,面对国外的技术封锁和市场打压,选择与谱育科技合作,共克时艰,共同致力于攻克国外技术壁垒、打破国外垄断,为中国高科技企业创新与崛起树立了良好的合作典范。
  • 研究首次证实微塑料 能引发机体慢性炎症反应
    10月30日,记者从深圳市人民医院获悉,该院心内科专家团队完成了一项“聚苯乙烯微塑料暴露对血管的毒性影响”研究课题,首次证实微塑料能引发机体慢性炎症反应,并由此导致血管钙化的发生发展。相关成果近日发表在《整体环境科学》上。深圳市人民医院心内科主任医师董少红、尹达,副主任医师孙鑫及医学博士颜建龙等组成的课题组研究发现,血管钙化患者粪便中均含有不同类型的微塑料聚合物,包括聚苯乙烯、聚乙烯、聚酯纤维、聚丙烯等。“其中排在前三位的分别是聚苯乙烯、聚乙烯和聚酯纤维,占比为42.4%、16.3%和15.7%。”孙鑫介绍,研究发现粪便中微塑料的来源与饮用瓶装水、食用外卖食品、暴露于有灰尘的工作环境等息息相关,同时还发现聚苯乙烯与血管钙化有一定的关联性。为了进一步验证聚苯乙烯微塑料与血管钙化之间的关系,课题组在饮用水中添加了聚苯乙烯微塑料颗粒,给予正常大鼠与维生素D和尼古丁诱导的大鼠自由饮用。结果发现,聚苯乙烯微塑料颗粒使正常大鼠心脏和主动脉血管均产生了轻微钙化,并明显加重尼古丁诱导的大鼠心脏和血管钙化。与此同时,为了明确聚苯乙烯微塑料颗粒对肠道菌群的干扰,研究人员还对大鼠的肠道菌群进行基因测序,结果发现暴露于聚苯乙烯微塑料颗粒环境中,可致厚壁菌门和拟杆菌门丰度的下降。“肠道微生物是构成肠道屏障的基础,当肠道菌群失衡时,致病性革兰氏阴性细菌释放脂多糖,可破坏并穿透肠道屏障,并使脂多糖进入人体循环。”颜建龙介绍,血液中积累的脂多糖会触发机体慢性炎症反应“开关”,并加快血管钙化进程。结合研究发现颜建龙建议,生活中应尽量少用或不用一次性塑料制品 家庭中可用过滤装置处理自来水,不用塑料产品盛装油、酒、醋等 不食用家禽、海产品等胃肠道、内脏和腮的部分,这些部位容易贮存微塑料 不建议用塑料砧板处理生肉、蔬菜和水果等。
  • 解决方案:吹扫捕集- 气相色谱/ 质谱联用法测定水中臭味物质
    近年来,国内外水体臭味问题频发,越来越影响到饮用水和水产品的质量,进而影响水生生物以及人体健康。其中最常见的两种臭味物质是 2- 甲基异茨醇 (MIB) 和土臭素 (GSM)。我国生活饮用水卫生标准 (GB5749- 2006) 对 2- 甲基异茨醇和土臭素 ( 二甲基萘烷醇 ) 的限值均为 10 ng /L。虽然已有这两种物质的卫生标准,但是还未有它们的国家标准检测方法。因此,建立痕量典型臭味物质的快速、高灵敏度及可靠的分析方法对我国预警异味水质突发事件以及进一步探讨臭味化合物对人体产生的不良健康效应显得特别有意义。本研究建立了吹扫捕集 - 气相色谱质谱联用测定水体中的2-甲基异茨醇和土臭素的分析方法。本方法有以下优点:1.能同时将两种被测物吹扫出来,吹扫效率高,浓缩量大,灵敏度高,定量快速稳定;2. 不需使用有机溶剂,减少环境污染,保护操作人员安全;3. 取样量少,受基体干扰小,容易实现在线监测。本方法不仅操作简单,而且快速准确,精密度高,满足《生活饮用水卫生标准》(GB5749-2006) 中对饮用水和水源水的卫生检测要求。点击吹扫捕集- 气相色谱/ 质谱联用法测定水中臭味物质了解更多详情,
  • 睿科仪器精彩亮相第十届山东国际科学仪器及实验室装备展览会
    2012年第十届山东国际科学仪器及实验室装备展览会于9月20日至9月22日在美丽的岛城青岛隆重举办,百余家仪器仪表设备制造商及供应商参与了此次盛会,吸引了大批专业观众到场参观、洽谈。 睿科仪器为广大客户展示了2012年度前处理领域和快检领域的解决方案。Fotector系列全自动固相萃取仪集活化、上样、淋洗、洗脱、浓缩和精确定容等多功能于一体,自动化程度更高,该产品已经全新登陆中国。 作为形态分析的专家,毛细管电泳仪和高分辨离子迁移谱也让广大客户眼前一亮,现场交流热烈。CEi-SP20 毛细管电泳仪 睿科毛细管电泳仪(CEi-SP20)可实现与电感耦合等离子体质谱(ICP-MS)联用,是针对食品、环境、生物样品中微量元素的形态分析而设计的分离检测设备,该联用设备不仅具备了高效毛细管电泳(CE)在元素形态分析上的优点,还具有了ICP-MS元素检测的特效性、更宽的线性范围、更低的检出限、更少的基体干扰、较高的分析精密度等优点,是一种很有潜力的元素形态分析技术。 作为世界领先的前处理仪器制造商,睿科仪器始终致力于为客户创造价值,我们的产品在众多国际、国内企业中得到广泛应用。我们将一如既往地为客户提供精确、高效、安全、可靠的解决方案。
  • 赛默飞发布生物燃油中无机阴离子的测定方案
    2014年5月29日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布阀切换技术-离子色谱法测定生物燃油中的无机阴离子技术方案。原油是全球最主要的一次能源,当前世界上的能源短缺的实质就是原油短缺。其中,车用燃料占全球原油总消耗量的70%以上。严峻的能源短缺问题以及长期高居不下的油价引发了各界对可再生能源的探索与关注,其中,生物燃油的发展前景最为可观。举例来说,甲醇汽油就是一种“以煤代油”的有效路径——其常规排放低于常用汽油,非常规排放在现有技术下可以达到甚至超过常用汽油排放水平,并且,使用甲醇汽油不需要对汽车发动机进行改造,是非常理想的汽油替代物。然而,优质的生物燃油,对其中的无机盐等杂质的含量要求十分严格,因此有必要建立一种简便、灵敏、准确的测定甲醇汽油中无机盐的方法。离子色谱法是测定无机阴阳离子的理想方法,但甲醇汽油基体复杂,不能直接进入色谱柱,样品处理十分复杂,费时费力且容易受到其他因素的干扰。ICS-1600离子色谱系统赛默飞发布的生物燃油测定方案中建立了一种利用阀切换技术,直接进样在线前处理消除基体干扰,离子色谱法测定甲醇汽油中氯离子和硫酸根离子的分析方法。使用此方法检测生物燃油中的无机阴离子,无需繁复的样品处理步骤,在线可完成样品处理及分析,方法简便、快捷,准确度高,受其他因素干扰小,具有很高的实用价值。 下载应用纪要请点击: http://www.thermo.com.cn/Resources/201404/3011241425.pdf 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 农产品重金属快速检测关键技术理论取得重要进展
    工业废气和工业废水中含有大量的重金属,没有经过处理后直接排放到土壤、水、气的生态环境中会对生态环境造成巨大的危害。资料显示,环境(土、水、气)中的污染物主要以镉(7%)、镍(4.8%)、砷(2.7%)、铜(2.1%)、汞(1.6%)、铅(1.5%)、铬(1.1%)等污染为主。资料显示,我国土壤点位总超标率为16.1%,其中1.1%为重度、1.5%为中度;耕地土壤点位超标率为19.4%,其中重度1.1%、中度1.8%。土壤、地表水和地下水中未消解的重金属进入作物和水产品,这些产品被人类食用后这些重金属在人体内累积,会对人的身体健康造成严重损害,近些年频发来的食品安全事件就是重金属污染的一个缩影。近年来农产品特别是粮食、蔬菜、水产品的重金属污染问题备受关注,但是常规的重金属检测技术耗时、费力,无法现场快速分析,难以在田间地头和生产一线及时发现重金属污染,从而采取有效防控措施。其中,电热蒸发技术(ETV)可以直接分析固体样品,无需复杂样品处理,具有快速、绿色、高效的特点。但是,该技术一直困囿于目标元素传输效率低、复杂样品基质干扰,从而影响重金属的精准测定。近日,中国农业科学院农业质量标准与检测技术研究所“农产品质量安全风险评估”创新团队,在重金属快速检测的关键技术理论方面取得重要进展,首次提出了基于电热蒸发微等离子体的重金属元素传输增强技术,揭示了重金属原子及其纳米颗粒物在传输过程中的形态演变机理。该研究首次开发了基于介质阻挡放电的微等离子体传输增强技术,电热蒸发导入砷元素的传输效率达到100%,并利用微等离子体石英阱技术,实现固体进样的基体干扰消除;同时,揭示了重金属砷在蒸发、传输、捕获和释放过程中的分子原子形态演化机理,为进一步实现重金属速测仪器的现场化和小型化提供了基础理论和技术储备。
  • 广东省开展农产品重金属检测及安全评价关键技术研究与应用
    广东省农业科学院农产品公共监测中心等单位开展的农产品重金属检测及安全评价关键技术研究,系统创建了农产品重金属总量及其形态的高效快速检测方法;研制了一系列多套重金属总量和形态检测仪器及前处理设备;在此基础上全面开展了广东省农产品重金属污染风险科学性评估,实现了检测技术方法创新、仪器设备产品创新与安全评价应用创新。成果主要亮点1.率先应用振转耦合自动前处理提取技术和整体色谱柱流速梯度形态分离技术,建立了基于液相色谱电感耦合等离子体质谱联用仪和形态分析仪的10项检测方法,涵盖12种形态砷、5种形态硒、4种形态汞和3种形态锑等。突破了重金属价态分离差的难题,灵敏度提高了10倍,为开展基于重金属不同形态毒性的风险评估提供了精准技术手段。2.创建多孔碳/石英电热蒸发样品导入技术,原子阱基体干扰消除技术和灯内紫外在线高效消解技术,并在此基础上研发了10个系列的高效重金属前处理及检测设备。突破传统酸碱消解效率低及快速测定基质干扰大的瓶颈,实现了直接固体进样,检测时间由8~10h缩短到10min左右。3.应用建立的新型检测技术和研发的高效仪器设备,检测广东省18个地市7279个样点的农产品重金属,基于获得的数据,通过对广东省农产品重金属全面系统的Monte-Carlo暴露风险评估及土壤-农产品-动物体系内的迁移和形态转化机制解析,回答了农田重金属超标而种出的农产品不一定超标的原因,提出标准制修订建议和污染物控制措施,指导安全种植、引导科学认知。主要完成单位广东省农业科学院农产品公共监测中心中国农业科学院农业质量标准与检测技术研究所北京吉天仪器有限公司深圳市易瑞生物技术股份有限公司广东海纳农业有限公司主要完成人员王旭、毛雪飞、耿安静、陈岩、王富华钱永忠、李伟、王敏、朱海、钟振芳
  • 德国耶拿公司参加“2013年北京光谱年会”并做报告
    2014年1月7日,北京理化分析测试技术学会光谱分会,在天文馆举办了“2013年北京光谱年会”,200余名来自科研院所、质检机构、知名仪器公司等单位的代表参加了此次会议。  德国耶拿公司,作为世界光谱先进技术的引领者,热情赞助此次光谱年会,并设展台介绍德国耶拿公司的光谱仪器,目前的光谱产品主要有ContrAA系列高分辨率连续光源原子吸收光谱仪,ZEEnit系列原子吸收光谱仪,PQ9000 ICP-OES光谱仪,multiN/C系列总有机碳氮分析仪,multi X 2500总有机卤素分析仪,multiEA 5000碳氮硫氯元素分析仪,SPECORD系列紫外分光光度计、Mercur原子荧光测汞仪等。详细产品信息,可登录德国耶拿公司中文网站:http://www.analytik-jena.com.cn/ 2004年,耶拿公司推出世界上第一台商品化高分辨率连续光源原子吸收光谱仪-contrAA,是原子吸收划时代的技术革命。2013年9月,PQ9000 高分辨率ICP-OES新品问世,再次引起业内专家的广泛关注。耶拿公司资深应用工程师杨静女士,在本次光谱年会上介绍了“高分辨率原子光谱的最新进展和应用”。通过contrAA高分辨率原子吸收和PQ9000高分辨率ICP-OES在各行业大量的应用实例,体现出高分辨率原子光谱技术的使用,使得谱线干扰明显减少,大大降低基体干扰,方法操作极为简便,同时得到极低的检出限,优异的精密度和准确可靠的分析结果。先进的技术优势和卓越的产品性能,带给使用者前所未有的简便、灵活、高效,获得了与会老师们的高度认可。 每年一届的北京光谱年会汇聚了来自各行业的光谱专家,就原子光谱和分子光谱分析技术动态、光谱分析仪器方面的新进展等问题进行学术交流,展现了当今最高的光谱技术水准。
  • 一项原子荧光光谱法国家标准通过审定
    近日,全国钢标委冶金非金属矿分技术委员会在山东烟台召开国家标准审定会,上海检验检疫局工业品与原材料检测技术中心主持的国家标准《萤石 砷含量测定 原子荧光光谱法》顺利通过审定。  萤石是一种重要的非金属矿资源,是一个国家经济和工业发展不可缺少的原料之一。我国萤石资源丰富,储量占世界总量的三分之一,年产量占世界总产量的一半以上,我国也是世界上最大的萤石出口国,测定萤石中砷含量是环境保护和下游产品质量控制的基本要求。  上海口岸自50年代初已开始进行萤石的出口贸易,鉴于上海特殊的历史文化、地理位置和港口交通运输的优势,上海是我国出口萤石最大的集散地。上海检验检疫局工业品与原材料检测技术中心年承担出口萤石检测量曾占到全国出口量的70%~80%,多年的检测业务保障及检测技术研究,为制订萤石中砷含量测定的国家标准,奠定了工作基础。  原子荧光光谱仪是我国具有自主知识产权的光谱分析仪器。与传统萤石中砷含量测定方法(如DDTC-Ag分光光度法、石墨炉原子吸收光谱法等)相比,氢化物发生-原子荧光光谱法测定萤石中砷含量具有灵敏度高、基体干扰小、试剂毒性小、检出限低、选择性好、操作方便等优点,适合推广应用。
  • 二手PE AAnalyst800经得起宁夏客户的校正考验
    2020年5月30日,宁夏某大型第三方检测公司,购买我司二手PerkinElmer的石墨炉火焰原子吸收光谱仪AA800 ,型号:AAnalyst800,安装调试完毕,性能优良,校正系数为0.999,有下图为证!非常感谢客户的支持与信任!我们会全心全意做好售后服务!让您无后顾之忧!感谢我们工程师高技术水平的服务与支持,谱标一直是您实验室的好帮手! 在现场测试二手PE AAnalyst800数据显示:标准标样瞬时信号峰显示:0.4112A,背景: 0.0719A标准标样峰面积吸收: 0.1046A-s,背景: 0.0100A-s标准曲线显示校正系数:0.999862 二手PE AAnalyst 800的横向加热石墨炉原子化器(THGA)系统的zui大优点是沿着整个石墨管方向温度均匀,大大消除了由于传统设计中石墨管两端温度比石墨管中央温度低很多所造成的原子蒸气的冷凝,从而减小了测定过程中的基体干扰,降低了可能产生的样品记忆效应,进一步改善了分析精度;二手PE AAnalyst 800在采用THGA石墨炉加热技术的同时,相应地采用了独特的纵向 Zeeman效应背景校正技术。它不需要使用偏振镜,提高光通量一倍以上。信噪比的增高使仪器得到更加卓越的分析性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制