当前位置: 仪器信息网 > 行业主题 > >

激发光散射光

仪器信息网激发光散射光专题为您整合激发光散射光相关的最新文章,在激发光散射光专题,您不仅可以免费浏览激发光散射光的资讯, 同时您还可以浏览激发光散射光的相关资料、解决方案,参与社区激发光散射光话题讨论。

激发光散射光相关的资讯

  • Sanotac发布蒸发光散射检测器技术 高性能的ELSD 检测器
    全新的Omnitor低温型蒸发光散射检测器(ELSD检测器)重磅上市!三为科学蒸发光散射检测器技术团队通过独创的卧式结构,全新的光散射光路设计,智能的自动化功能、友好的用户界面和多平台控制,Omnitor蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。 三为科学本次推出全新ELSD900和ELSD6000两个型号蒸发光散射检测器参加慕尼黑分析仪器展览,新产品几个亮点:一、仪器内部温度场合理设计使体积小到26*19*46cm,和液相色谱泵同等宽度;二、定量重复性达到RSD6≤1.5%,最小检测浓度为≤5.0×10-6 g/mL (胆固醇-甲醇溶液)。三、信号稳定、噪音低,信号噪音0.01 mV(企业标准),优于《JJG1512-2015液相色谱仪型式评价大纲》要求的<1mV。 三为科学技术总监姜总向我们介绍Omnitor的仪器性能、参数和工程设计等方面已经达到国外品牌蒸发光散射检测器的同等品质,这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中化合物的分析和中草药、天然药物、食品科学领域天然产物活性成分分离纯化过程中的在线检测。这两款检测器可以消除梯度洗脱时溶剂峰的干扰,大大提高药物化合物库筛选效率。 姜总还向我们介绍了品牌蒸发光散射检测器应该具备的技术特点:紧凑的结构——独创的全新光散射光路和卧式仪器结构,并且对仪器内部温度场进行合理设计,仪器结构紧凑合理安全、长寿命——16项仪器自检,多重安全设计,避免流动相进入检测室检测性能优异——定量重复性达到RSD6≤1.5%,基线噪声低至0.01 mV,漂移小方便用户使用——10组方法存储管理(25个参数),多重报警模式,雾化管前置,便于用户观察和清洗智能温控——漂移管辅助快速降温系统可以完成不同方法间的快速切换,喷嘴加热及雾化管角度调整功能为高端用户提供个性化实验参数定制需求灵活的输出——0.3 ~ 30倍的连续增益调整,提供输出自动归零功能,-1000 mV ~ 1000 mV的偏置模拟输出,并且提供数字输出功能控制采集软件——色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能,可以与任何主流HPLC系统联用多重通讯模式——RS232,RS-485,USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能——提供待机模式,检测器低功耗状态,同时节省50%以上氮气消耗,多重方式开启待机模式(内部、远程、定时器) 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 作为专业科学仪器生产企业,三为科学致力于制备液相色谱、蛋白纯化系统、色谱通用检测器的研究。对于行业热衷的液相色谱使用通用的检测器,ELSD9000和ELSD6000蒸发光散射检测器为广大分析检测和药物分离纯化领域的科学家提供了液相色谱通用检测器的解决方案和理想的性价比。在致力于优质色谱通用检测器的国产化的道路上,我们任重路远!
  • Omnitor系列蒸发光散射检测器 首次登陆慕尼黑分析生化展
    小体积高性能的ELSD蒸发光检测器 登陆慕尼黑分析生化展 三为科学Omnitor系列低温型蒸发光检测器ELSD检测器首次登陆第九届慕尼黑上海分析生化展。2018年10月31日在上海新国际博览中心慕尼黑上海分析生化展上,Omnitor系列蒸发光散射检测器解开其神秘的面纱。全新的ELSD9000低温型蒸发光散射检测器重磅上市!通过独创的卧式结构和光散射光路设计,先进的自动化功能、友好的用户界面和多平台控制,ELSD9000蒸发光散射检测器可以为不同层次和需求的用户提供不同的实验体验。研发团队对仪器内部温度场进行合理设计,使仪器结构紧凑合理,达到宽26 cm高19 cm深46 cm的尺寸,同时色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能。第九届慕尼黑上海分析生化展作为亚洲重要的分析、生化技术、诊断和实验室技术风向标盛会,今年展会共吸引来自26个国家和地区的950家行业先锋企业倾情献演,展出面积达46,000平方米,更有100余场干货满满的专业报告及技术研讨会如火如荼上演。 会议期间,ELSD9000蒸发光散射检测器得到仪器厂家和分析化学专家的充分认可,来自化学、医疗、食品、环境和医药产业的科技研发人员对ELSD9000的产品性能、结构设计、软件功能给予很大的肯定。 Omnitor 蒸发光散射检测器技术特点:结构紧凑:采用全新的光路设计,体积紧凑(26 cm*19 cm*46 cm),可以与液相色谱系统层叠使用检测性能优异:基线噪声低至0.01 mV,漂移小,精密度高快速降温:有助于在不同检测方法间的快速切换喷嘴加热:有助于提升雾化效果,特别是检测油性样品的时候线性增益调节:增益线性调节,有助于用户精细化的调整输出色谱峰的高度雾化管调节: 雾化角度自由调节,可以满足不同样品的检测需求系统自动检测:16项仪器日常自检,多重安全设计,避免流动相进入检测室,减少仪器维修,延长使用寿命方法管理:方法管理多达10组(每组25个参数),结构化菜单,简化用户的操作监控报警:温度,压力,流量的实时监控,并对异常情况进行声音和灯光报警控制采集软件:专用多平台控制软件,Clarity 动态链接库,平台支持与任何HPLC色谱系统联用多种通讯模式:RS-232, RS-485, USB,LAN(TCP/HTTP),可编程外部事件接口绿色节能:多种方式启动待机模式—检测器低功耗状态审计追踪:色谱系统软件符合FDA 21CFR Part 11要求,具有审计追踪功能 会议同期我们还展出制备色谱,蛋白分离纯化系统,高压平流泵、温控型高压计量泵、防爆高压输液泵。我们相信客户的满意,市场的认可,业界的肯定,是我们不断前行的动力。感谢客户们一直以来的大力支持,产品销售不是结束,我们的销售从客户收到我们的产品开始,尽善尽美、精细入微,用我们的产品品质和服务质量让新的销售从客户开始延伸。 再次感谢您的关注和选择,2020年慕尼黑分析生化展会我们再相见!
  • 岛津推出ELSD-LT II低温型蒸发光散射检测器
    ELSD-LT II低温型蒸发光散射检测器是ELSD-LT的改进型。新产品延续了前一代产品低温蒸发技术的特点,使得在蒸发管温度低于40度的情况下,流动相也能够有效的蒸发。保证了对于半挥发性或热不稳定性化合物的高灵敏度检测。ELSD-LT II型低温型蒸发光散射检测器在灵敏度和易操作性上均优于竞争对手。高灵敏度、优秀的重现性、出色的易用性和安全性是这一款产品的显著特点,加上更丰富的自动化功能,减少了操作成本。此外,由于ELSD-LT II是专为低温蒸发技术而设计的检测器,它还具有如下一些优点:  大部分被蒸发的流动相溶剂重新变成液体。因此,对于环境的影响很小。  在无人值守的状态下运行也具有高安全性。  节省开关机所需等待时间。 不必为每一次分析设定专门的操作温度。screen.width-300)this.width=screen.width-300"ELSD 检测器应用范围:ELSD 检测器是一种质量型通用HPLC检测器,对色谱柱流出物雾化并加热蒸发流动相,溶质形成的细小颗粒遇到光束引起光散射,通过对散射光强度的测量实现对目标化合物的检测。除了挥发性化合物以外的几乎所有化合物都能检测,并给出和质量数相应的响应值。因此,ELSD检测器非常适合应用于无紫外吸收或紫外末端吸收化合物,如糖、脂类、表面活性剂、甾体、合成聚合物等,这些化合物使用常规的紫外或荧光检测器很难检测。 ELSD检测器适合于所有能用示差折光检测器检测的化合物的测定,并且能提供更高的检测灵敏度和用于梯度洗脱分离化合物的测定。ELSD检测器可以使用和LC-MS 完全一致的流动相条件,因此易于对LC-MS分析的色谱条件进行评估并提供更为丰富的补充信息。
  • 低温蒸发光散射检测器的技术规格包括哪些?
    低温蒸发光散射检测器是一种常用于液相色谱分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。 以上是常见的一些技术规格,不同型号和品牌的低温蒸发光散射检测器可能会有细微差别和附加功能,可根据具体需要选择符合实验要求和预算限制的型号。
  • 低温蒸发光散射检测器的技术规格包括以下几个方面
    低温蒸发光散射检测器的技术规格包括以下几个方面低温蒸发光散射检测器(LowTemperatureEvaporativeLightScatteringDetector,LT-ELSD)是一种常用于液相色谱(LiquidChromatography,LC)分析中的检测器。其技术规格包括以下几个方面: 待测物范围:低温蒸发光散射检测器适用于各种化合物的检测,包括有机化合物、无机化合物和生物大分子等。 灵敏度:该检测器具有较高的灵敏度,在微量样品中也能够实现可靠的检测。通常以信噪比或最小可检出量来评估灵敏度。 动态范围:动态范围指在同一样品中可以线性地量化不同含量的待测物。宽动态范围使得该技术能够适应不同样品的分析需要。 检出限:指在给定条件下对目标化合物所能达到的低检测限制。这通常取决于仪器本身和分析方法设置。 准确性和重复性:准确性表示待测结果与真实值之间的接近程度;重复性则是指重复进行多次测试时结果之间的一致性。这些指标对于仪器的可靠性和分析结果的可信度至关重要。 温度控制范围:低温蒸发光散射检测器通过控制样品在某一特定温度下蒸发,从而实现检测。因此,该设备应具备能够精确控制和调节温度的功能,并且适用于不同类型待测物的分析需求。 数据采集速率:数据采集速率表示该检测器能够以多快的频率获取并记录结果。较高的数据采集速率有助于更好地观察和解释峰形及其变化。
  • 网友调查显示:蒸发光散射检测器异军突起
    仪器信息网讯 日前,仪器信息网网友公布了其近日在做仪器信息网仪器论坛做的一个关于我国液相色谱仪检测器配置的调查结果(原贴网址:http://bbs.instrument.com.cn/shtml/20130630/4824110/)。  本次调查从2011年11月开始,到2012年5月结束,历时一年半,共在仪器信息网的液相色谱版块收集了157个样本,调查了可紫外检测器、蒸发光散射检测器、二极管阵列检测器、示差折光检测器、荧光检测器、电化学检测器、质谱、核磁共振等八类检测器的分布情况。  从其调查结果显示,配置排名前三的检测器为:紫外检测器(27%)、二极管阵列检测器(22%)、荧光检测器(14%)。  具体结果分析:  1、紫外检测器还是液相色谱的主导,因为它可以检测大部分液相色谱可以检测的化合物。VWD和DAD两项的投票基本一致,只是现在检测器在可变波长与二极管阵列的价格上有很大出入,VWD相对价格便宜,所以仪器配置的比例还是更高。  2、示差折光检测器已经商品化很多年,再加上其独特的检测领域,特别是GPC分析仪器上的配置,所以它还占有很大比例。  3、异军突起的我想应该是蒸发光散射检测器(ELSD)了,它的出现没有多少年,而它的配置居然占到了12%。目前虽然ELSD的很多检测方法没有标准化,但是中国药典在一部已经有很多采用了ELSD检测,而中药的分析,也是药品分析中的重要组成,很多药品企业应该都会考虑它。 另微博网友@野菠萝是祖国花朵不是热带水果认为,因为蒸发光散射检测器是通用性的检测器,可以弥补示差折光检测器的灵敏度、梯度的不足 另外,蒸发光散射检测器的方法可以平移到HPLC-MS,非常适合经费有限才起步的小公司。免得到做质谱的时候,临时开发方法,拖延进度。  4、荧光检测器由于其灵敏度高,而且在液相领域应用也很广,检测机构一般都会配置。  5、而目前有几个检测器,比如电化学检测器、电喷雾检测器等,这些都具有专一行,通用性差,所以基本都是专用液相配置的多。
  • 新品上市:月旭科技低温型蒸发光散射检测器
    待测样品物质没有生色基团,无法用紫外-可见光检测器检测该怎么办?别担心,这期小编给大家带来了月旭科技的低温型蒸发光散射检测器,无论物质是否具有生色基团都逃不过他的“眼睛”。下面就由小编给大家介绍一下月旭科技新推出的低温型蒸发光散射检测器吧!蒸发光散射检测器检测原理 仪器优点高灵敏度,优化了对非挥发性、热不稳定和半挥发性化合物的敏感性;专用的高效液相色谱雾化器和创新的流通池设计,使谱带展宽最小化;容易拆卸和安装的雾化器,流量范围涵盖200μl /min~2ml/min;通过自动增益调整,检测器可以自动调整增益设置;完全远程控制,气体、加热器、光电二极管、光源均可在分析结束之后自动关闭;可以为符合GLP和验证程序提供了完整的SOP方案;仪器寿命长,具备很高的可靠性和稳定性;低温蒸发,避免温度过高化合物分解导致的检测不准。Welch ELSD-5450可用工作站列表应用案例同步测定银杏中萜烯内酯和类黄酮:采用HPLC/ELSD法对四种萜烯内酯和三种黄酮类化合物进行了色谱分析。1 -银杏内酯,2 -银杏内酯C, 3 -银杏内酯A,4 -银杏内酯B,5 -槲皮素,6 -异鼠李皮素,7 -山奈酚
  • 通微蒸发光散射检测器十周年活动火热来袭
    2007年,上海通微分析技术有限公司(以下简称通微)研发的UM3000蒸发光散射检测器问市,彻底打破进口蒸发光产品的垄断地位。作为国家“十五”科技攻关重大项目,UM3000在各个技术环节都不输于进口设备,稳定的性能和极高的性价比使她迅速站稳国内蒸发光市场地位。 当然,通微的研发脚步没有就此停歇,糅合美国通微(通微美国总部)带来的先进技术,通微将每个环节继续精心打磨,贴合不同客户的需要,定制多款蒸发光散射检测器。通微蒸发光散射检测器系列产品在国内市场占有率稳居第一,2015年底新推出的UM5800凭借小巧的外形、应势的全触屏设计、更高的性能吸引众多客户的关注。 为了庆祝UM系列蒸发光散射检测器在中国市场的迅猛态势,更为了解广大用户的仪器使用情况,完善仪器品质,提高服务质量,通微启动了系列ELSD用户体验有奖征文暨UM3000以旧换新活动,诚邀您的参与!
  • 祝贺UM 3000蒸发光散射检测器荣获2007 BCEIA金奖
    2007 BCEIA于10月21日圆满落幕,上海通微分析技术有限公司在展会上得到了广泛的关注,其中,UM 3000蒸发光散射检测器更是荣获了BCEIA金奖。UM 3000 蒸发光散射检测器是由上海通微倾力研究开发,“十五”国家科技攻关计划重大项目的研发成果——首台国产化蒸发光散射检测器,该仪器的性能指标已达到国际同类产品水平。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 蒸发光散射检测器已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。screen.width-300)this.width=screen.width-300"screen.width-300)this.width=screen.width-300"
  • 首台国产化蒸发光散射检测器(ELSD)全新推出
    UM 3000 蒸发光散射检测器是由上海通微倾力研究开发,“十五”国家科技攻关计划重大项目的研发成果——首台国产化蒸发光散射检测器,该仪器的性能指标已达到国际同类产品水平。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 蒸发光散射检测器已被广泛应用于碳水化合物、类脂、脂肪酸和氨基酸、药物以及聚合物等的检测。 通微(上海)分析技术有限公司 http://tongwei.instrument.com.cn
  • 安捷伦科技公司推出高灵敏度蒸发光散射检测器
    安捷伦科技公司推出高灵敏度蒸发光散射检测器 2012 年 11 月 12 日,加利福尼亚州圣克拉拉市 &mdash 安捷伦科技公司(纽约证交所:A) 今日宣布推出两款新产品 &mdash 1290 Infinity 蒸发光散射检测器和 1260 Infinity 蒸发光散射检测器,这两款产品的灵敏度比目前市面上的任何一款蒸发光散射检测器 (ELSD) 高 9 倍,效率和重现性也更高。 这两款检测器非常适合制药、药物开发、质保/质控、食品质量检测、保健品和精细化学品分析领域中不挥发和半挥发化合物的分析。二甲基亚砜是药物研发领域广泛应用的样品储存溶剂,这两款检测器可以消除二甲基亚砜的干扰,因而不需要进行繁琐的样品制备就可筛选药物化合物库,而且,这两种检测器还是Agilent 6100 系列质谱系统的补充。 &ldquo 我们的行业热衷于液相色谱使用通用的检测器,Agilent 1260 Infinity 和 Agilent 1290 Infinity 检测器是两种最佳解决方案,&rdquo 安捷伦生命科学部业务开发经理 Graham Cleaver 说道。 新型的基于激光的 1290 Infinity ELSD 的浓度检测下限比上一型号低了9 倍。独特的蒸发器设计与其专有的气流程序,使其可以在低于环境温度的条件下分析半挥发化合物,而这些化合物是任何其他品牌的 ELSD 所无法检测的。 1260 Infinity ELSD 较高的性能得可靠的发光二极管 (LED) 光源和蒸发器设计,及理想的性价比。待机模式不仅节能,还能降低 50% 至 75% 的氮气消耗量。 这两款产品现已上市。更多信息,请访问 www.agilent.com/chem/1260elsd 或www.agilent.com/chem/1290elsd。 关于安捷伦科技 安捷伦科技(纽约证交所:A)是全球领先的测量公司,是化学分析、生命科学、诊断学、电子和通讯领域的技术领导者。公司的 20,000 名员工为 100 多个国家的客户提供服务。在 2011 财政年度,安捷伦的业务净收入为 66 亿美元。有关安捷伦科技的更多信息,请访问:www.agilent.com.cn 。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 好消息!英国PL蒸发光散射检测器(ELSD)新年大促销
    原价:140000RMB,抢购价:118000RMB,直降22000RMB 促销时间:2010年3月1日-2010年6月1日 促销型号:Varian 380-LC 现货供应,数量有限,先到先得,售完为止。 产品相关链接: http://www.instrument.com.cn/netshow/SH100505/C12122.htm# 为了庆祝北京绿绵巨贸科贸有限公司成为PL全线产品的大中华地区总代理,特推出品牌推广促销活动,产品为新型专利化设计的蒸发光散射检测器(ELSD)。PL公司引领了蒸发光散射检测器(ELSD)技术的发展,在这个领域有15年以上的行业经验,仪器的设计、外形、服务、技术支持等方面都居于世界领先地位。ELSD对分析物质有着广泛的响应性,不依赖于被分析物的光学性质;PL公司的ELSD可匹配安捷伦Chemstation和EZChrom,戴安Chromeleon,瓦里安Galaxie等多家公司的软件,无需其他配件,可直接控制,采集分析数据。Varian 380-LC专利的雾化设计保证了最有效的雾化效果,使得高沸点溶剂也能在低温下蒸发,如流动相是100%的水,也可在25℃蒸发,在半挥发化合物检测中比同类产品表现出明显的优势;也正是这种成功的雾化设计,使得PL公司的ELSD应用同类仪器中最短的漂移管,在保证良好的雾化同时,减少样品分散,保证低谱带展宽;高精密质量流量计控制载气流速,低流速即可完成高效雾化和蒸发过程,载气消耗量接近其它品牌1/3,大大的降低了使用成本;而且,这款设备的独到的内外双漏液传感设计,以及精巧有效的废液处理装置,使得这款设备在目前此类设备的发展水平下臻于完美。 2010-3-1日欢迎广大用户来电咨询,先到先得,售完为止!北京绿绵巨贸科贸有限公司北京总部联系电话:010-82735800 传真:010-82735809上海办联系电话:021-51822712/3/5 传真:021-51822714广州联系电话: 020-62819687 传真:020-62819523-803
  • 高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊图谱成像新方法
    研究背景癌变细胞和正常细胞在形态、化学性质和力学性质等方面有明显差异,肿瘤组织细胞化学和力学性能的检测可为细胞及人体组织病变过程提供多维信息。现有组织细胞形态、力学性能、化学性能的检测方法中,共焦拉曼光谱显微技术可对样品微区化学性能进行非接触、无标记探测,共焦布里渊光谱显微技术可对样品微区力学性能进行非接触、无损探测,将共焦拉曼光谱与布里渊光谱检测技术结合,来同时、同位检测组织甚至亚细胞结构的微区三维形貌、化学性能和机械力学性能,有望为组织细胞多维病变信息的检测提供新手段。创新研究现有共焦拉曼/布里渊光谱显微成像技术由于缺少高精度实时定焦能力,致使扫描过程中聚焦在样品上的光斑大小随着样品的高低起伏而变化,从而制约了共焦光谱显微系统理论空间分辨力的实现;其次,由于拉曼和布里渊散射光谱强度较弱,成像积分时间较长,共焦光谱显微系统极易受系统漂移的影响而导致离焦,进而影响空间分辨力和成像质量等;此外,在对生物组织切片样品进行成像时,垂直入射产生的荧光信号会降低样品拉曼光谱的信噪比,从而影响拉曼光谱和布里渊光谱探测的准确性,降低检测精度。鉴于此,在国家自然基金重点项目“机械形态性能激光分光瞳差动共焦布里渊—拉曼光谱测量原理与传感系统(51535002)”等项目支持下,北京理工大学赵维谦教授团队发明了图1所示的高稳定、高分辨、抗散射分光瞳激光差动共焦拉曼-布里渊(Divided-aperture Laser Differential Confocal Raman-Brillouin,DLDCRB)图谱成像新方法(授权中国发明专利ZL 201410086366.5和欧洲发明专利EP 3118608 B1),该方法将分光瞳激光差动共焦显微技术与拉曼光谱和布里渊光谱探测技术相结合,通过差动共焦测量技术进行纳米精度的样品定焦,来提高系统空间分辨力和稳定性;通过分光瞳斜向激发与探测技术进行反射光和层间散射光等干扰光的抑制,来提高系统的光谱探测信噪比;通过拉曼光谱与布里渊光谱的同源激光激发与高分辨分离探测,来实现微区几何形貌、拉曼光谱和布里渊光谱的高稳定、高分辨原位图谱成像。图1. DLDCRB光谱显微成像原理基于该方法研制了图2所示的具有高空间分辨力和三维成像聚焦跟踪能力的DLDCRB光谱显微镜,其轴向定焦分辨力达1nm、光谱成像横向分辨力达400nm、拉曼光谱分辨力达0.7cm-1、布里渊光谱探测分辨力达0.5GHz等。图2. DLDCRB光谱显微镜利用研制的DLDCRB光谱显微镜,对条形样品进行了清晰成像,结果如图3所示,验证了所提方法的抗漂移能力;对PMMA/SiO2双层样品进行了检测,结果如图4所示,验证了所提方法抑制离焦层散射光干扰的能力。图3. 传统共焦光谱系统与DLDCRB光谱显微镜结果对比(a)经典共焦光谱系统成像(模糊) (b) DLDCRB光谱系统成像(清晰)图4. 系统抗离焦噪声干扰机制 (a) 斜向激发与收集光路 (b) 压缩了散射体轴向尺寸利用研制的DLDCRB光谱显微镜,对胃癌组织和癌旁正常组织进行了拉曼-布里渊光谱成图实验分析,证实了之前有关癌组织中蛋白质物质发生变化以及组织之粘弹性变化导致浸润性增加的假设。图5给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的化学成像结果,浓度由拉曼光谱特征峰的强度来表征。胃癌组织与癌旁正常组织化学成像结果相比:胶原蛋白浓度低且分布离散;胃癌细胞的DNA物质浓度高且分布范围大;胃癌组织细胞基质内的蛋白质浓度低;胃癌组织的脂质在基质内浓度高,而正常组织的脂质分布相对均匀。图5.胃癌组织与癌旁正常组织化学成像结果图6给出了DLDCRB光谱显微镜对胃癌组织与癌旁正常组织的力学性能成像结果,布里渊光谱的频移表征物质的储能模量(弹性性能),布里渊光谱的半高宽表征物质的损耗模量(粘性性能)。胃癌组织与癌旁正常组织力学成像结果相比,胃癌细胞和细胞间质的弹性低于正常细胞和细胞间质,癌细胞细胞核的弹性高于正常细胞;胃癌细胞和细胞间质的粘性低于正常细胞和细胞间质,癌细胞细胞核的粘性高于正常细胞。图6. 胃癌组织与癌旁正常组织的力学性能对比图本研究提出了具有高稳定、高分辨、抗散射的分光瞳激光差动共焦拉曼-布里渊图谱成像方法,研制成功了相应的仪器,实现了样品三维形貌、力学性能和化学组分的多维信息检测,并在肿瘤组织表征分析中进行了应用验证,本检测方法可为癌变过程和癌症治疗等领域的研究提供一种新的手段。
  • 大塚电子发布大塚电子小角激光散射仪PP-1000新品
    小角激光散射仪 PP-1000 PP-1000小角激光散射仪利应用了小角光激光光散射法(Small Angle Laser Scattering,简称SALS),可以对高分子材料和薄膜进行原位检测,实时解析。与SAXS和SANS的装置相比,检测范围更广。利用偏光板的Hv散射测量可以进行光学各向异性的评价,解析结晶性胶片的球晶半径,Vv散射测量可以进行聚合物混合的相关距离的分析。 特点l 0.33 ~ 45°散射角度的测量,最短测试时间10 毫秒l 检测范围0.1μm ~数十微米l 可以在专用溶液单元中测量溶液样本l Hv散射,Vv散射测量可以在软件上轻松切换 用途l 高分子材料评价→结晶性胶片结晶化温度、球晶直径、结晶化速度配光、光学异方性→聚合物混合相分离过程和相关距离(分散度)→高分子凝胶三维架桥结构的大小→树脂热硬化树脂和UV硬化树脂的硬化速度 l 粒子物性评价粒子直径,凝聚速度 检测原理 小角激光散射仪由光源、偏振系统、样品台和记录系统组成。单色激光照射到样品时发生散射现象,散射光投射到屏幕上并被拍摄下来,得到样品的散射条纹图。操作过程:1.在样品台上放置样品。2.根据想要测量的对象调整检偏片。3.来自样品的散射图案会被相机记录下来。 当起偏片与检偏片的偏振方向正交时,得到的光散射图样叫做Hv散射;当起偏片与检偏片的偏振方向均为垂直方向时,得到的光散射图样叫做Vv散射。从这些散射图形中可以获取球晶半径、相分离结构、分散相颗粒平均粒径、配向状态等信息。l Hv散射 球晶半径解析:R = 4.09 / qmax(R:球晶半径,qmax:散射光强度最大的散射向量) q = 4πn/λsin(θ/ 2)(q:散射向量, λ:介质中的波长,n:样品折射率,θ:散射角) l Vv散射 对聚合物混合的相分离过程的评价连续相与分散相的大小,分散相颗粒平均粒径(分散度)粒子直径的评价相分离构造与相关距离检测 技术参数 应用案例 l PVDF球晶半径分析 溶融温度230℃結晶化温度160℃PP-1000散射图样 偏光显微镜图样 各时间45°方向的散射向量提取 球晶半径计算创新点:1.0.33 ~ 45° 散射角度的测量,最短测试时间10 毫秒2.检测范围0.1μ m ~数十微米3.可以在专用溶液单元中测量溶液样本4.Hv散射,Vv散射测量可以在软件上轻松切换大塚电子小角激光散射仪PP-1000
  • 通微蒸发光散射检测器成为上海市重点新品
    由上海通微研制的首款国产蒸发光散射检测器产品UM-3000近期通过了上海市科学技术委员会的认定,成为上海市重点新产品。为UM-3000的荣誉榜上再添了重重的一笔。 自从UM-3000问世以来,受到了各级领导和广大用户的鼎立支持和帮助,上海通微在此表示深深的感谢和敬意,并承诺继续投入到精密分析科学仪器研制过程,为自主产权的中国民族科学仪器产业尽一份力。
  • 祝贺首台国产化蒸发光散射检测器通过验收
    由上海通微分析技术有限公司倾力开发的UM3000蒸发光散射检测器(ELSD)“十五”国家科技攻关计划重大项目,于2007年5月15日通过国家验收。由于性能指标达到国际同类产品水平,又具有国产仪器的价格优势,在项目验收之际,项目中生产的十台样机已被定购一空。
  • 上海通微推新品“一键智能反控”蒸发光散射检测器(ELSD-UM5000A)
    上海通微分析技术有限公司(以下简称:上海通微)是首台国产化蒸发光散射检测器的研发生产厂家,第一台国产蒸发光散射检测器UM3000作为“十五”国家科技攻关计划重大项目的研发成果,从诞生伊始就获得业内专家一致肯定,并于2007年10月获得BCEIA金奖。该仪器的性能指标媲美国际同类产品水平。 为了更好的服务于用户,上海通微一直密切关注客户使用情况,于2012年对UM 3000进行了技术和设计多方位升级,升级后的版本为UM5000,市场口碑和地位直线攀升。上海通微蒸发光散射检测器成为国内各专业使用者的首选产品,截止2013年7月,上海通微蒸发光散射检测器市场使用数量达到600多台。 随着分析技术不断向智能方向发展,上海通微于2013年11月再次对UM5000蒸发光散射检测器进行了升级,升级后的版本为UM 5000A。 UM 5000A蒸发光散射检测器不但外观变得时尚,更让人无法忽略的是它拥有更加灵活的控制方式,轻松实现“一键智能反控”,再续金奖风范。无论您正使用上海通微EasySep-1020液相色谱系统还是任何其他厂商生产的HPLC液相色谱系统,UM 5000A蒸发光散射检测器都能与其进行完美连接,带来操作与快捷的完美体验,是您进行药物分析检测、碳水化合物、类脂、脂肪酸和氨基酸、以及聚合物等的检测的有力武器。 蒸发光散射检测器是一种通用型的检测器,可检测挥发性低于流动相的任何样品,而不需要样品含有发色基团。蒸发光散射检测器灵敏度比示差折光检测器高,对温度变化不敏感,基线稳定,适合与梯度洗脱液相色谱联用。 了解更多上海通微蒸发光散射检测器UM5000A的性能、参数,请点击:http://www.instrument.com.cn/netshow/C192554.htm
  • 通微发布UM5800Plus蒸发光散射检测器新品
    产品简介UM5800Plus是通微公司新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。创新力作 针对非紫外吸收物质的检测√更加人性化的设计l 同时具备数字信号输出与模拟信号输出(±2.4V),可兼容不同厂家的液相色谱仪使用。l 1-7档信号增益调节,可根据样品浓度调节信号响应。l 多达100组方法存储空间,对于药典品种,可直接调用已存储的方法。l 仪器面板含有谱图显示功能,可实时监测谱图采集,有利于预实验进行。√可靠性与安全性的全面提升l 仪器开机多项自检,同时具备出错修正控制,温度、压力及流量等实时监控报警且异常情况具备声音和灯光报警,多重安全保护设计,有效提升仪器维护方式方法,降低仪器维护成本,延长仪器使用寿命。l 待机及工作模式等多种模式自有切换,有效降低功耗。l 密码锁屏,防止误操作,显示错误日志,满足GLP要求。√适应新时代的智能化操作l 温度、流量、信号增益等仪器各项参数的控制,仪器实现全反控;状态参数实时反馈,及时有效反应仪器工作状态,切实保证实验顺利进行。√强大的技术与售后保障l 深耕蒸发光检测器领域数十载的上海通微分析技术有限公司,为用户提供完善的售前售后服务支持,专业的应用团队帮助用户进行方案开发及分析技术支持服务,另外还会不定期根据用户需求举办应用技术培训,此外还会长期优惠供应零配件及耗材试剂等。创新点:UM5800Plus是通微公司最新推出的一款全面升级的通用型的蒸发光散射检测器:1.针对非紫外吸收物质的检测,可检测挥发性低于流动相的样品,不需要样品带有发色基团;2.同时具备数字信号输出与模拟信号输出,可与多种液相色谱系统联用(包括常规分析型液相系统、高压制备型液相系统以及Flash快速制备色谱等);3.新增7档信号增益调节功能,可根据样品浓度调节信号响应;4.提供100组分析方法存储,常见检测品种,可直接调用已存储的方法。5.新增面板谱图显示功能,实时检测谱图采集。5.温度、流量、信号增益等参数,全面实现软件智能全反控,符合相关法规要求。UM5800Plus蒸发光散射检测器
  • 新品发布会 | 重新定义动态光散射分析!
    Microtrac MRB 动态光散射系统即将发布关注我们收看2022年3月7日Microtrac MRB - 新品发布会!发布会相关细节时间:2022年3月7日 09:00 AM CET2022年3月7日 04:00 PM CET注:若您不便观看现场直播,您也可以报名,我们将在会后向您发送带中文字幕的视频回放链接,供您查看。扫码参与本次新品发布会Microtrac MRB:作为一个颗粒表征解决方案的供应商,提供三条产品线,在三大洲拥有研发和技术中心。- 散射光分折- 图像分析- 比表面和孔径测量Microtrac MRB一直致力于为全球客户提供先进的测量技术,来获得可靠的测量结果。大昌华嘉科学仪器部作为Microtrac MRB三大产品线的中国区总代理,我们为用户提供完善的售前、售后服务及全面的技术和应用支持。
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • 天津市医药行业协会发布《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》等四项团体标准
    各有关单位:《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》等4项团体标准于2023年8月1日立项,由天津市药品检验研究院、天津天士力之骄药业有限公司、现代中药创制全国重点实验室、天津药物研究院有限公司、天津红日药业股份有限公司、津药达仁堂集团有限公司中药研究院、天津宏仁堂药业有限公司、津药达仁堂集团股份有限公司乐仁堂制药厂等多家单位联合起草,根据《天津市医药行业协会团体标准管理办法(试行)》有关规定,在专家的指导下,高质量完成了4项团体标准的编制和必要流程,并通过审查。该4项团体标准于2024年5月31日发布并实施,现予以公告。本次发布的4项团体标准如下:T/TPPA 0007–2024《基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程》T/TPPA 0008–2024《麦冬(供注射用)质量标准》T/TPPA 0009–2024《五味子(供注射用)质量标准》T/TPPA 0010–2024《中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法》团体标准发布公告20240531.pdf团体标准-TPPA0007-2024-基于血小板活化生物标志物CD62p检测的中药注射剂活血化瘀活性评价方法操作规程.pdf团体标准-TPPA0008-2024-麦冬(供注射用)质量标准.pdf团体标准-TPPA0009-2024-五味子(供注射用)质量标准.pdf团体标准-TPPA0010-2024-中药注射剂(真溶液型)中高分子杂质的测定高效分子排阻色谱-蒸发光散射检测法.pdf
  • 高分子表征技术专题——光散射技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!光散射技术在高分子表征研究中的应用Laser Light Scattering and Its Applications in Polymer Characterization作者:郑萃,刘芷君,梁德海 作者机构:中国石化北京化工研究院,北京,100013 北京大学化学与分子工程学院,北京,100871作者简介:梁德海,男,1971年生. 1994年获南开大学环境科学系理学学士,同年进入南开大学化学系攻读硕士. 2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后. 2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年任教授. 2011年得到教育部新世纪优秀人才计划的支持,2015获得Elsevier第九届冯新德高分子奖最佳文章奖. 研究方向为高分子溶液物理,主要项目包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究.摘要光散射技术是高分子领域中重要的表征手段之一. 静态光散射和动态光散射的结合能够获得丰富的关于高分子的信息,如重均分子量、回转半径、第二维里系数、流体力学半径、尺寸分布、分子链构象等. 除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为. 本综述重点介绍稀溶液中静态光散射和动态光散射的历史、基本理论和实验技巧. 对于浓溶液适用的交叉相关技术和扩散波谱技术以及固体光散射也做简要介绍. 为了帮助初学者更好地理解并掌握光散射技术,综述的最后介绍了4个应用实例:动、静态光散射相结合跟踪研究线团到密实球的转变过程,光散射确定超支化分子的标度关系,时间可分辨的光散射来剖析聚合诱导胶束化的机理,以及去偏振动态光散射研究纳米粒子在生物介质中的聚集行为.AbstractLaser light scattering (LLS), which includes static light scattering (SLS) and dynamic light scattering (DLS), has been widely applied in characterization of polymer samples in dilute solutions. SLS measures the angular dependence of the excess scattered intensity, from which the weight average molecular weight, radius of gyration, and second viral coefficient are obtained. DLS measures the intensity-intensity time correlation functions, from which the hydrodynamic radius and size distribution are obtained. The combination of SLS and DLS enables information on chain conformation. Beside synthetic polymers, LLS is also suitable for the solutions and suspensions of biopolymers, microbial, colloids, nanoparticles, virus, and vesicles. The history, theory, and experimental techniques of SLS and DLS specific for dilute solutions are summarized. In recent years, the cross-correlation techniques, diffusing wave spectroscopy, and other related techniques have been developed to expand LLS to study samples in semi-dilute and even concentrated solutions. These techniques, as well as solid light scattering, are also briefly introduced in this review. In the last, we provide four typical examples of light scattering experiments: the coil-to-globule transition as studied by the combination of SLS and DLS, the scaling of hyperbranched polymers as determined by LLS, the polymerization-induced micellization process as monitored by time-resolved LLS, and the aggregation of nanoparticles in biological media as investigated by depolarized DLS.关键词光散射  高分子表征  分子量  回转半径  相关函数KeywordsLaser light scattering  Polymer characterization  Molecular weight  Radius of gyration  Correlation function 1光散射技术的发展简史人们对光散射的认识最早可以追溯到1869年著名的丁达尔(Tyndall)凝胶散射实验. 1871年,瑞利对空气中的光散射现象进行了理论研究[1],推导出了球形粒子的散射公式,解释了晴空蓝和夕阳红的成因[2]. 之后,德拜(Debye)和甘(Gans)分别把瑞利的散射理论拓展到了非球形粒子[3] 和大尺寸的粒子[4],完善了气体中粒子的光散射理论.在液体等凝聚相(condensed phase)中,散射强度的实测值通常比瑞利理论的预测值小一个数量级以上,这是由散射波的相消干涉造成的. 针对这种现象,斯莫鲁霍夫斯基(Smoluchowski)和爱因斯坦(Einstein)[5]从密度涨落的角度出发,提出了光散射的涨落理论(fluctuation theory of light scattering),极大地拓展了光散射的应用范围. 1940年前后,德拜和齐姆(Zimm)将涨落理论与溶液中的高分子表征相结合,实现了光散射对高分子的分子量、分子尺寸、分子形状和分子间相互作用的测量[6].静态光散射(static light scattering, SLS)也称为弹性光散射,是指不考虑散射波长(或能量)变化的光散射. 1914年,布里渊(Brillouin)预测固体中热声波的散射光频率会出现双峰分布,后被实验所证实,从而开启了人们对准弹性光散射,即动态光散射(dynamic light scattering, DLS)的研究. 由于对光源单色性的苛求,动态光散射技术直到1960年前后激光光源趋于成熟之后,才得到了较好的发展. 1964年,佩科拉(Pecora)[7]利用高分子溶液中散射光的频率变化,计算出了高分子的扩散系数,并得到了高分子的流体力学半径、链柔顺性等信息.当溶液中粒子的浓度增加到一定程度时,就会发生多重散射,即散射光再次或多次与粒子发生作用. 这种浓度下溶液的光散射理论较为复杂. 近年来,科学家们针对这类体系设计了许多特殊的方法或仪器,如折射率匹配法(1991年)[8],微样品池法(1998年)[9,10]、光纤准弹性散射法(fiber optical quasi elastic light scattering, FOQELS,1991年)[11,12]、时间交叉相关法(1981年)[13]、3D交叉相关法(1999年)[14]、互相关法(1997年)[15]等. 2006年,得益于电荷耦合器件(charge coupled device,CCD)以及计算机的发展,基于光斑(speckles)的互相关法得到了实质性发展[16],得以对亚浓溶液或浓溶液进行较为深入的研究. 当溶液体系达到浑浊状态时,极其严重的多重散射使得光在体系中的行进可以按扩散过程来处理,扩散波谱(diffusing wave spectroscopy, DWS)理论应运而生[17],基于该理论的技术可适用于多种不同的浑浊体系.固体介质中也存在光散射现象,但在原理和应用等方面与溶液中的光散射都有很大差别. 固体中很容易产生严重的多重散射,且固体表界面的强烈散射常会对内部的散射造成严重干扰,这些都使得固体的光散射结果难以解读. 早在1922年,布里渊[18]就用光散射对固体振动进行了研究,但这不是严格意义的弹性光散射. 1960年斯坦因(Stein)[19]优化了垂直偏振光散射方法,极大地简化了散射结果,使得固体光散射在测定聚合物的链取向和晶体结构的研究中得到广泛应用[20,21].2光散射原理2.1气体光散射光的本质是电磁波,含有周期变化的电场E. 原子或分子在电场作用下会发生极化,强度与极化率α相关. 原子在周期性变化的电场中会被周期性地极化,从而转变为一个次级光源,向周围发射同频率的电磁波,即散射光(图1).Fig. 1Scattered light generated by a scatterer as it is induced to be an oscillating dipole in the incident beam. θ is the scattering angle, and the inset shows the angular dependence of the scattered light from small particles, such as atoms or molecules. The polarization of incident beam is not considered.单原子产生的散射光强Is由原子的极化率α和入射光波长λ决定. 另外,在空间某点测定的散射光强还与观测点到散射点的距离r有关. 1871年,瑞利推导出如下的散射公式:其中I0为入射光强度. 单个原子、分子和粒子在空气中的散射光强都可以用公式(1)描述. 对于多粒子体系,可表示为体积V中存在N个散射粒子,如果粒子尺寸小(半径小于入射光波长的1/20),且数目较少,粒子之间的散射光不发生干涉,散射光强可表示为:公式(2)表明,散射光强度与波长的4次方成反比,波长短的蓝色光的散射明显强于波长更长的红色光,因此天空在阳光的照耀下显示为蓝色.2.2溶液光散射光散射技术在溶液体系中具有非常广泛的应用. 在稀溶液中,利用静态光散射技术能够测定散射粒子的绝对分子量M、回转半径Rg、第二维里(Virial)系数A2等信息;利用动态光散射技术能够测定散射粒子的流体力学半径Rh及其分布等信息. 光散射技术在亚浓溶液或浓溶液中也发挥了重要作用,但该类体系中的多重散射使得散射理论变得十分复杂. 本文重点介绍稀溶液中的光散射理论,对非稀溶液体系的散射理论只做简要介绍.2.2.1稀溶液中的静态光散射在稀溶液中,根据Clausius-Mossoti公式,可将难以测量的极化率α转化容易测量的折光指数n:其中n0是纯溶剂的折光指数,M为粒子的绝对分子量,NA为阿伏伽德罗(Avogadro)常数,c (=MN/VNA)为质量浓度. 值得一提的是dn/dc, 即溶液折光指数n对溶液质量浓度c的导数,称为折光指数增量,可以用专有仪器测定,或是从相关手册[22]中查到. 当dn/dc = 0时,预示体系中测不到反映溶质结构信息的光散射信号.对于dn/dc ≠0的单组分体系,将公式(3)代入(2)中,可得到瑞利散射公式:其中H称为光学常数,R为瑞利比.忽略由溶剂自身密度涨落引起的散射. 根据涨落理论,散射光强I仅与光学常数H、质量浓度c和渗透压π相关,并遵循如下的关系式:根据van’t Hoff关系式:其中,M为溶液中粒子的绝对分子质量,A2为第二维里系数,用来定量描述溶剂-溶质之间的相互作用. 将公式(6)代入(5)中,可以得到:式(7)中只有2个未知数M和A2. 理论上只要测量2个不同浓度溶液的散射光强I,就可以计算得到粒子的绝对分子量M和第二维里系数A2. 但是,由于每一台光散射仪的探测器面积和探测器到样品的距离都可能不同,激光束的粗细和样品池的大小也可能存在差异,因此对于同一个样品,每台光散射仪得到的信号都可能是不同的. 仪器测得的光强,必须要转化为绝对散射光强,才可以进行下一步的计算. 在实际操作中,常用瑞利比R代替I,并考虑以下这些影响因素:第一步,偏振校正. 取决于样品的性质,散射光的偏振方向会发生变化,且会影响散射光强的大小. 偏振的校正较复杂[23]. 目前绝大多数光散射仪均使用了VV偏振散射设计,即入射光与观测的散射光都是垂直(vertical)偏振的,相应的散射光强标记为Rvv.第二步,散射体积校正. 常见的散射仪器一般用小孔和狭缝来限制检测器接收的散射光. 激光束中被小孔或狭缝截留的光路在空间中所占的体积称为散射体积(图2). 对于同一个体系,散射体积越大,测得的散射光越强. 在激光光束和小孔或狭缝固定的情况下,散射体积与散射角θ (入射光矢量与散射光矢量的夹角)存在sinθ的定量关系. 因此在静态光散射实验中,在θ角测定的散射光强需要进行sinθ的校正.Fig. 2Geometry of a typical laser light scattering setup (top view).第三步,净剩光强校正. 公式(7)中的光强是散射粒子自身的光强,在溶液中又称净剩光强,即溶液的散射光强Isolution减去溶剂的散射光强Isolvent.在实验中,以瑞利比Rvv已知的标准溶剂为参照,在同一台散射仪器上进行样品的测量是最常用的做法. 例如温度为T时,样品在θ角的瑞利比RTθ 通过以下公式得到:其中ITθ、RTθ、nT为样品在温度T下的净剩光强、瑞利比和折光指数,I25θ,standard、R25θ,standard和n25standard分别为标准溶剂在25 oC的散射光强、瑞利比和折光指数,也可以选用其他温度的配套数值. 当样品溶液和标准试剂的折光指数不同时,也需要进行校正. 狭缝和小孔所对应的指数分别为1和2. 甲苯是目前最常用的标准试剂,25 °C和632.8 nm波长下的瑞利比为8.70×10-6 cm-1. 甲苯与苯在不同波长和温度下的瑞利比可以从参考文献中查阅[24,25].将散射光强用瑞利比表示后,公式(7)可改写为:公式(9)适用于描述小粒子(尺寸小于波长的1/20)在溶液中的散射行为. 通常测量多个浓度下的Rvv值,将Hc/Rvv对c作图,从拟合直线的截距和斜率中分别求得M和A2值.当高分子的尺寸较大时,同一高分子内部不同重复单元的散射光会发生干涉现象,从而导致散射光强出现了散射角度的依赖性(图3). 从光强角度依赖性数据可以反推粒子的尺寸和形状. 具体做法是在公式(9)的基础上,引入与散射角度相关的形状因子(form factor)P,其中包含了粒子的尺寸和结构信息.Fig. 3Interference pattern of light scattered from two segments in a large particle or polymer chain. The inset shows the angular dependence of the scattered light.在光散射中,习惯上使用散射矢量q表示散射角. 散射矢量q定义为散射光波矢量与入射光波矢量的差. q与散射角度θ之间的数值关系为[24]:由式(10)可知,散射矢量q的单位为长度的倒数. 在波长和溶液体系固定的前提下,q是由散射角θ决定的变量,此时形状因子可相应地记为P(q). 经P(q)修正后的散射光强公式为[23]:对于小粒子而言,P(q) = 1,与散射角度无关.用回转半径Rg来描述高分子的尺寸,当qRg 1时:将公式(12)代入公式(11)中,并做近似处理,可得到:公式(13)是经典的静态光散射方程. 通过配置若干不同浓度的样品,测定每个样品的散射光强随角度的变化,利用公式(13)就可以得到样品的分子量M,回转半径Rg以及第二维里系数A2. 需要强调的是,对于具有一定多分散度的高分子样品,静态光散射测定的是绝对“重均”分子量和“z均”回转半径. 因此对于关联分子量和回转半径的研究,如确定二者的标度关系,必须采用分布尽可能窄的样品,测得的光散射数据才有分析处理的意义.对于浓度较高或分子量较大的样品,公式(13)有时并不能给出令人满意的结果. 在这种情况下,可以尝试利用改进的公式来进行数据处理:其中k为和第二维里系数相关的常数. 根据公式(14)绘制的图称为Berry Plot,同样可以得到重均分子量和回转半径.当qRg 1时,不同形状粒子的P(q)存在较大差别[23,26].回转半径为Rg的无规高分子线团:半径为R的均匀实心球:半径为R的空心薄球壳:半径为R的薄圆盘:其中J1为一阶贝塞尔函数.长度为L的细圆柱:其中Si(x)为sinus积分函数:通过测定待研究体系的形状因子P(q),并与标准体系进行对比,就能够判断粒子的构象并确定其特征尺寸参数. 当体系浓度足够小,2A2c一项相对于1/MP(q)可以忽略时,公式(11)可转化为:即:在公式(22)中,M/Hc是与散射角θ或散射矢量q无关的量. 因此,测定各个散射角度下的Rvv,用零角度的数值归一化,再对q作图就得到了P(q)曲线. 为了提高用P(q)确定体系构象的准确性,尽量选用窄分布的样品,并在测定时覆盖尽可能宽的散射角度.利用静态光散射来测定共聚物比均聚物要复杂很多. 由公式(4)可知,决定体系散射性能及强度的内在因素是dn/dc. 共聚物等体系包含有2种或2种以上的组分. 当这些组分的(dn/dc)不同时,散射方程将急剧地复杂化. 以AB两嵌段共聚物为例,体系总的(dn/dc)AB = wA(dn/dc)A + wB(dn/dc)B,wA和wB分别为A和B嵌段的质量分数. 按照均聚物的测定方式,利用公式(13)能够得到共聚物的表观分子量Mapp[27]:其中:由公式(23)和(24)可以得到如下结论:(1) Mapp由两嵌段的(dn/dc)决定. 当所选溶剂的(dn/dc)AB接近0时,Mapp趋于无穷大.(2) 公式中有3个独立的未知数Mw,A,Mw,B和wA,因此需要在3种不同折光指数的溶剂中测定样品的Mapp,然后解方程得到两嵌段共聚物的真实分子量Mw [27]. 对大多数嵌段共聚物体系,找到3种可单分散溶解共聚物的溶剂并不容易. 吴奇等人在1994年报道了只用2种溶剂就可利用静态光散射测定共聚物分子量的方法[28],但数据处理稍显繁琐.(3) 当在选用的溶剂中A嵌段的(dn/dc)A= 0时,直接测定的是B嵌段的分子量,反之亦然. 利用这种掩盖法,只需要2种溶剂就能精确测定A嵌段、B嵌段以及共聚物总的分子量.公式(23)还可以改写为:[28]其中P和Q是与嵌段共聚物组分非均匀分布相关的常数.由上式可知,当A和B两嵌段的dn/dc相等或接近时,所测定的表观分子量与真实值一致. 同理,也只有在这种情况下,才能够利用公式(13)来测定共聚物的回转半径Rg. 如果A和B两嵌段的dn/dc相差较大,特别是当(dn/dc)AB接近0时,Hc/Rvv在小角度会出现负斜率,导致外推得到的Rg为负值.利用静态光散射还可以测定粒子的分形维数. 一般来讲,若物体的维数是d,则其质量M和尺寸R应满足如下的标度关系:例如:三维的实心物体,质量M 与 R3成正比,而二维的实心物体,M与R2成正比. 维数d在一定程度上反应了粒子的结构和形状. 而高分子线团、空心粒子或具有不规则形状的物体,其维数通常不是整数. 静态光散射是测定粒子分形维数的有效工具. 对于尺寸为R的粒子,当满足qR 1 (一般大于3)时,绝对散射光强Rvv和散射矢量q之间的标度将满足[23]:Rvv和q的双对数图是一条直线,直线斜率的相反数就是该粒子的分形维数d. 该方法的准确度与q有效的数据范围有关,一般需要跨越数量级. 因此,不是所有体系都适用这种方法. 表1列出了常见拓扑结构的分形维数.2.2.2稀溶液中的动态光散射散射体积一般是固定的,其中往往包含有多个散射粒子. 由于布朗运动,散射体积内粒子的数目和位置都在发生变化,这导致在固定检测位置测定的散射光强会随时间发生涨落. 图4所示是2个高分子相对位置发生改变引起的光强涨落. 看似无规的涨落信号中埋藏了粒子扩散的信息. 挖掘扩散信息的途径是从随时间变化的I ~ t曲线得到光强-光强的时间相关函数.Fig. 4Time dependence of the interference pattern. The inset shows the change of scattered intensity with time at fixed scattering angle.首先介绍相关函数的概念. 在I-t 曲线中,t和t + τ时刻分别对应着光强It和It+τ,τ称为延迟时间. 当τ→0时,总有It = It+τ,而当τ→∞时,It和It+τ则是围绕平均光强It的2个随机值,无任何相关性. 用符号表示对其中的物理量作统计平均. It⋅It+τ是以τ为变量的光强-光强时间相关函数,即It和It+τ乘积的统计平均随延迟时间τ的变化. 当τ=0时,It⋅It+τ有最大值I2t;当τ趋近于∞时,It⋅It+τ有最小值It2:令:g2(τ)称为归一化的光强-光强时间相关函数[29].将动态光散射中的g2(τ)对τ作图,得到如图5中所示的曲线. 如果体系中只包含一种散射体A,则g2(τ)随τ呈现单一的快速衰减,衰减最快处对应的时间τA反映了体系的特征性质.Fig. 5Intensity-intensity correlation function.在现代的光散射仪中,光强的测定和g2(τ)的计算都是由硬件直接完成. 测定光强常用的仪器是雪崩光电二极管探测器(avalanche photodiode detector, APD);从光强到g2(τ)是由相关器来完成的[24].从g2(τ)到粒子扩散的信息,还需要经过以下步骤:第一步,求解电场-电场时间相关函数g1(τ). g2(τ)是光强的相关函数,需要将其转换为电场的相关函数g1(τ),才能和扩散过程直接相关联. 在光的波动理论中,光强是电场的平方. 而g2(τ)和g1(τ)的关系比简单的平方关系要复杂,称为西格特关系式(Siegert relation)[30]:其中β是和测量光路相关的系数. 当检测器前的狭缝或小孔合适,只测到单光斑(speckle)时,β=1.第二步,求解粒子自扩散系数Ds. 这个求解的过程是动态光散射理论的核心. 这里只简单介绍基于van Hove自相关函数Gs(r, τ) 的推导过程. 假定某个粒子在时间t的位置为0, Gs(r, τ)就是在时间t+τ时在位置r处发现该粒子的概率. 由于g1(τ)是随散射矢量q而变化的,可写成g1(q, τ). g1(q, τ)和Gs(r, τ)符合傅里叶变换(Fourier trans-formation)的关系:对于单分散、各向同性粒子的扩散运动(布朗运动或无规行走),Gs(r, τ)仅依赖于距离r = | r |,且符合高斯方程:从Gs(r, τ)的半峰宽可以解出散射粒子的均方位移ΔR(τ)2. 在布朗运动中,ΔR(τ)2与粒子的自扩散系数D0的关系为:求解方程(31)可得:其中Γ=q2D0,称为线宽. 据公式(34),将ln(g1(τ))对τ作图,从直线的斜率直接得到D0.第三步,求解流体力学半径Rh. 利用Stokes-Einstein方程:其中k为玻尔兹曼(Boltzmann)常数(1.38×10-23 J/K),T为绝对温度,η为溶剂黏度,可从扩散系数直接得到流体力学半径. 对于有一定分散度的样品而言,DLS测定的流体力学半径和扩散系数都是z均值.由于粒子各向异性等因素的影响,在不同散射角度测定的扩散系数存在差异,因此在固定角度测定的是表观扩散系数Ds,app. 另外,光散射直接测定的是粒子的互扩散系数(mutual diffusion coefficient),只有在零浓度时才与自扩散系数一致[23,31,32]. 因此,利用动态光散射求算扩散系数的公式包含了散射角度和浓度的依赖性:其中k1和k2是2个常数. k1和样品的分散度以及拓扑形状有关,k2和样品与溶剂的相互作用有关. 公式(36)与静态光散射公式(13)在形式上是类似的. 在实验中,同样需要对不同浓度的样品在不同的散射角进行测量,然后按照公式(36),通过角度和浓度的外推,得到粒子扩散系数D0.以上介绍的是单分散粒子的动态光散射理论. 当样品呈多分散时,扩散系数D0或线宽Γ会出现相应的分布,一般用G(Γ)表示. 由公式(34)可得:g1(τ)是由G(Γ)经拉普拉斯变换得到的,而实际过程中是通过测定g1(τ)来反推样品的分布G(Γ),因此是反拉普拉斯变换. 针对动态光散射实验开发的反拉普拉斯变换的方法有许多,如累积矩(cumulant)法、双指数(double-exponential, DE)法、直方图(histogram)法,离散变换(discrete inversion)法、熵最大化(maximum entropy method, MEM)法、非负值最小二乘法(nonnegatively least squares, NNLS)法、指数抽样(exponential sampling, ES)法和CONTIN法等. 关于各算法的优劣,可参考具体文献[33~36]. 在这些方法中,CONTIN是使用较为广泛且适用大多数多分散体系的算法.2.2.3稀溶液中静态光散射和动态光散射的结合应用不难看出,静态光散射和动态光散射是对同一个样品的浓度系列进行了2种不同方式的测量. 2种测量方式的有机结合,能够得到关于样品更多或更深入的信息.首先,对于单分散样品,比值Rg/Rh反应了粒子的拓扑结构. 表2列出了一些常见粒子的Rg/Rh的理论值.其次,对于双分布或多分布样品,静态光散射只能得到样品Rg和Mw的平均值. 而如果动态光散射能够在不同的散射角对多分布,特别是双分布,进行明确区分,就可以把在该角度的散射总光强按照峰的比例进行分配,从而得到各个组分的光强角度依赖性,再利用静态光散射理论,得到不同组分的Rg和Mw[37~39].最后,结合静态散射理论,能够把动态光散射测到的线宽分布G(Γ)转换为分子量的分布G(M),前提是需要知道样品分子量和扩散系数的标度关系[40~42].2.2.4非稀溶液中的动态光散射非稀溶液体系中的动态光散射研究近年来取得了较多进展,已有不少成功应用的例子,并可以预期它在未来的科研中将发挥更重要的作用. 非稀溶液动态光散射主要面临2个共性问题:多重散射和非遍历(non-ergodicity). 扩散波谱也是一种特别且重要的非稀溶液动态光散射技术. 下面将分别进行介绍.非稀溶液中的多重散射可以通过设计特殊的仪器设备来进行削弱或抑制. 例如:扁平池光散射仪[43]就是采用光程非常小的扁平样品池(厚度可小至10 μm),并辅以相应的散射体积校正,从而大幅减少多重散射,使得测量体系浓度可以比通用光散射仪大1000倍左右.光纤准弹性光散射仪(FOQELS)[11,12]是利用背散射来消除多重散射的影响. 入射光通过光纤导入到待测溶液中,该光纤同时也是信号接收器,接收(180±3)°范围内的散射光,背散射光和主光束用单模光纤定向耦合器进行区分. 浓度高达40 wt%的浑浊乳胶样品中也能利用该仪器进行DLS研究,且无需除尘.利用2束激光进行交叉相关是抑制多重散射的有效方式[14,44]. 双色交叉相关仪采用2束不同波长的激光同时照射样品;3D交叉相关仪则采用2束同波长但分别略高和略低于散射平面的激光同时照射样品. 这2种仪器大致上是利用非相干光的相关性为0,来消除有限次多重散射对相关函数的影响,从而得以对高浓体系进行光散射的测量. 这类仪器的测量角度也是大幅度可变的,在这一点上比FOQELS具有明显的优势. 双色交叉相关仪对光路准直的要求非常高,甚至0.01 oC的温度涨落所导致的光路波动都有可能破坏仪器的准直性. 相对而言,3D交叉相关仪对此的要求低得多.在非稀溶液中,由于粒子运动过慢或粒子过大等因素,导致实际的测量结果不是对样品所有可能状态的综合,这就是非遍历问题. 非遍历测量的直接后果就是数据不具有统计性,导致测得的g2(τ)数据无法解出样品真实的g1(τ).解决非遍历问题的首要思路是如何尽可能多地得到g2(τ)的信息. 可采用的方法包括对同一个体系用不同的方法测得g2(τ),如用CCD面探测器测得多个光斑的变化然后进行互相关,对不同位置的测量结果取平均,或是用串联的双样品池进行目标样品和参考溶液的相关等.如何从g2(τ)中解出接近真实的g1(τ)也是解决非遍历问题的必经步骤. 目前常用的方法是对西格特关系式(公式(30))进行变换,如其中f(g1(τ))是与实验装置相关的函数,具体的装置设计和对应的算法可参考文献[45]. 根据公式(37)可在非遍历条件下求得较准确的g1(τ).扩散波谱是针对极浓溶液的一种特殊的动态光散射方法,基本思路和常规的动态光散射法相同:仪器测定g2(τ),算出g1(τ),通过变换得到扩散系数Ds,从而算出Rh. 所不同的是,从g1(τ)到Ds涉及了特殊的理论,具体的推导过程可参考文献[17,45,46]. 对于单分散样品,g1(τ)和Ds的关系式可表示为:将ln(g1(τ))对τ−−√作图,数据将呈现一条直线,从斜率即可求出Ds. 可以看出,对于极浓溶液,g1(τ)和q或散射角无关,这也是合理的.更重要的是,扩散波谱能够测定介质的储能模量G' 和损耗模量G' ' 的频率依赖性,也就是介质的黏弹性[47~49],这类似于流变仪扫频实验得到的数据. 由Stokes-Einstein方程(公式(35))可知,扩散系数D与ηR的乘积呈反比关系,这3个参数可以知二求一. 对于常规的动态光散射而言,溶剂黏度η已知,可求出Rh. 在极浓溶液中放入给定尺寸Rh的小球,根据小球的D(τ)能够得到η*(ω),即溶液复合黏度随频率的变化曲线. 由该曲线可计算求得G' (ω)和G' ' (ω).2.3固体光散射固体光散射在高分子球晶的研究中发挥了重要作用,可得到球晶分布、取向和尺寸信息. 虽然球晶也可用偏光显微镜(POM)和原子力显微镜(AFM)进行观测,但偏光显微镜有光学分辨极限,对尺寸小于5 μm的球晶几乎无法观测,而原子力显微镜对样品制备有着较为严格的要求,也无法观测固体内部的球晶形态. 因此,在球晶研究方面,固体光散射有着不可替代的优势. 球晶固体光散射的理论比较复杂[19~21], 本节仅简单介绍球晶呈现的四叶草瓣形状的散射图样和球晶尺寸的求算.2.3.1球晶的VH散射四叶草瓣图样光穿过具有取向的结构后,沿非取向方向偏振的光将被抑制或滤去(图6(a)),这也是许多偏振片的工作原理. 常用的VH固体光散射的光路设计是在样品的前后分别放置偏振片,偏振方向相互垂直(图6(b)). 这样的实验设计滤去了偏振不变的散射光,只有改变了偏振方向的那部分散射光才能被检测到. 对于许多结晶高分子而言,球晶的散射信号是唯一偏振有变化的散射信号.Fig. 6Spherulite studied by solid light scattering.球晶内部的取向结构是中心对称的(图6(c)). 经过第一个V偏振片的入射光,在球晶的V方向和H方向上遇到的球晶内部的取向结构均是垂直或平行于V方向的,光将直接通过或是被完全滤去,方向不发生偏转. 因此,在这2个方向上的散射光在第二块H偏振片后面,完全不会被检测到. 而除了V方向和H方向,散射光均和球晶内部的取向结构有一定夹角,光将偏转方向,得以被最终检测到. 因此,散射图样常出现黑十字消光现象(图6(d)),呈现四叶草瓣形状. 消光十字的方向分别平行于2个偏振片的取向方向. 图6(d)还表明散射图样不是连续的,而是由多个分散的斑点所构成,其中每一个亮斑都是之前动态光散射理论中所说的斑点(speckle). 这不是因为检测器的精度不够造成的.2.3.2球晶的尺寸计算球晶属于大粒子,其固体散射也存在形状因子P(θ). 在VH光路下[19],其中:R' 为球晶半径.对于无取向的球晶时,理论和实验均表明,在花瓣散射光强最亮点处,近似有U=4.0[19]. 因此:其中θm即最亮点处的散射角. 公式(42)即广泛使用的无取向球晶的尺寸计算公式. 对于有取向的球晶,最亮点处的U值有时会发生变化. [21]3实验技巧在上面介绍的光散射技术中,稀溶液体系的光散射应用目前最为广泛,所得到的信息也最丰富,但相应的样品制备和实验过程也比较复杂. 本节将简要介绍稀溶液光散射的实验技巧和数据处理方式.3.1样品溶解首先是要选择合适的溶剂来溶解样品. 重点考虑光散射衬度,即(dn/dc)的大小. 若(dn/dc) = 0,将得不到任何散射信号. 在保证溶解性能的前提下,通常选择折射率和溶质差别较大的溶剂. 对于共聚物体系而言,需要根据体系的性质和实验的需求来选择溶剂. 例如:在测定有机共聚物的精确分子量时,则应当选择多种良溶剂或共溶剂进行实验.其次是要选择合适的样品浓度来进行测量. 一方面浓度要足够稀,使得分子间的相互作用可以忽略. 高分子的临界交叠浓度(overlap concen-tration) c*是浓度上限的参考点. 另一方面,浓度越稀,散射信号也越弱,测量将变得困难. 对于未知且不易估算c*的高分子体系,0.1 mg/mL可以作为初始的浓度进行尝试.最后需要溶解样品,形成均一体系. 高分子的溶解过程耗时较长,通常需要2~24 h. 搅拌仅能有限地加速溶解过程. 升温会使得高分子体系氧化,应尽量避免. 超声也是不推荐的.3.2除尘由于散射光强与粒子尺寸的4~6次方成正比,直径在微米级的灰尘粒子会对高分子样品的散射实验造成毁灭性的破坏,因此要尽量避免样品溶液中掺杂有灰尘粒子. 灰尘是极性的. 水溶液体系的除尘往往比有机溶液体系要困难. 除尘操作包括样品瓶除尘和溶液样品除尘.光散射样品瓶的除尘通常采用类似于索式提取的装置,利用蒸发后再冷凝的丙酮间歇性地对倒置样品瓶的内部进行多次冲刷. 除尽灰尘的样品瓶要封口并倒置保存.样品的除尘通常有过滤法和离心法. 过滤法更易操作,需要在空气尽量净化的环境中,使用孔径在样品尺寸之上,且在灰尘粒径之下的滤膜,用注射器将待测样品过滤后注入到除尘后的样品瓶中. 可供选择的商业化滤膜有很多,可选用的孔径在200~600 nm之间. 过滤时滤膜上的压力不宜过大,因此过滤需缓慢进行. 如果所测体系较为复杂,没有合适的滤膜可选,则可考虑离心法.3.3仪器准直仪器的准直性是光散射实验的前提. 溶剂分子(一般选甲苯)的散射光强在校正散射体积后是没有角度依赖性的(图1),可用来验证仪器的准直程度. 对除尘后的甲苯样品进行角度扫描,角度范围一般在20°~150°. 如果每个角度的散射光强都围绕某一平均值波动,且波动不超过2%,则可认为仪器的准直是良好的. 若该条件不满足,则需要对仪器的准直进行校准.3.4实验过程静态光散射实验中散射角度的选择很重要. 原则上,只有在qRg 1的情况下才能用公式(13)准确测定粒子的回转半径. 对于尺寸较大的样品,需要在小的散射角度或q范围内测量多个数据点(减小角度间隔),以保障角度外推的可靠性. 另外,在小角度时,灰尘的影响会变得更加明显,这对样品特别是水溶液中的样品的除尘提出了更高的要求. 大尺寸样品的光强角度依赖性很强,小角度的光强比大角度会高出有4~5个数量级,因此要注意检测器的线性响应范围,必要时可用非偏振类滤光片调节入射光的强度.动态光散射数据的根源是g2(τ). 在样品除尘合格的前提下,选择合适的延迟时间τ范围,并累积足够长的时间是获得可靠g2(τ)的前提.检测器前端的小孔(pinhole)或狭缝是可调的. 对于静态光散射,通常需要选择较大尺寸(如1 μm)以测得具有统计性的散射光强. 对于动态光散射,通常需要选择较小的尺寸(如200 nm),以保证只测到单一光斑,从而使得西格特关系式中的β值趋近于1.对于碳纳米管、石墨烯、金纳米颗粒、荧光分子等具有光吸收能力的样品,静态光散射和动态光散射的校准方式也是不同的. 静态光散射需要通过测定光吸收系数,通过朗伯比尔定律来校正不同角度的净剩散射光强;而动态光散射则需要测定在不同入射光强下的样品扩散系数,通过外推到零入射光强的方式来消除光吸收对扩散的影响. 如果样品的吸光性太强,引入的误差增加,不提倡用光散射进行测量.3.5数据处理绘制Zimm图是静态光散射最常用的数据处理方法. 这是一个初学者经常会出错的处理过程,其中最关键的是各物理量单位的转化. 简单的处理方式是采用非国际单位:q以nm作为长度单位,其他所有物理量的长度单位均转化为cm. 光学常数H和质量浓度的单位则分别为cm2⋅g-2⋅mol和g⋅cm-3. 在绘制Zimm图时,如果数据点偏离了线性,可以从样品是否多分散、是否聚集以及是否满足qRg 1等方面进行分析.尺寸小于激光波长1/20的粒子通常不会出现散射角度的光强依赖性,不需要做角度扫描. 为了尽量降低灰尘对散射实验的影响,一般选择90°进行各浓度溶液的测量,然后直接运用公式(9)计算M和A2.如果实验中只关注回转半径,且要求的准确度不高,可选择一个较低的样品浓度进行角度扫描,不需要dn/dc的测量. 具体处理如下:取x列为散射角度θ,y列为光强值I原始数据,将x列转换为q2,单位为nm-2,将y值转换为(I - Isolvent)⋅sinθ(即只做净剩光强校正与散射体积校正),单位任意;(2)将x和1/y作图,线性拟合,取3倍截取/斜率,并开平方,即得到回转半径Rg,单位为nm.对于多组分体系的动态光散射,尺寸相差2倍以上的粒子才有可能被分辨为2个组分. 如果体系中组分的数量大于3,或得到的Rh分布图的峰数量大于3,则需要对结果的准确性持较谨慎的态度,需要从原理上判断结果是否合理,或通过其他手段适当进行辅证.3.6(dn/dc)测量(dn/dc)通常需要专用的仪器进行测量. 折光指数和原子极化率相关,极大地受原子序数的影响. 相对于C和H元素而言,Na和K等元素的原子序数要大得多,因此溶剂中的微量溶盐将极大地影响(dn/dc)的测量准确性. 为了确保对未知体系的准确测量,最好使用同一批溶剂,分别进行(dn/dc)的测量以及所有的光散射实验.4典型应用光散射技术在高分子表征中的应用非常广泛. 感兴趣的人士可以查阅相关书籍、专著和文献. 从掌握光散射基本理论和实验技巧、了解光散射技术发展趋势的角度出发,结合实验体系的代表性, 我们选取了4个经典的应用案例,来具体说明动、静态光散射的使用技巧,二者相结合的必要性,时间可分辨光散射技术的优势,以及如何开发光散射技术在复杂溶液体系中的应用.4.1动、静态光散射相结合表征溶液中高分子行为动、静态光散射技术相结合能够对溶液中的高分子进行深入、系统的表征. 跟踪高分子链从线团到球的转变(coil-to-globule transition)过程是该技术最典型的应用之一. 在不良溶剂中,高分子链会发生塌陷,同时会伴随着高分子链之间的聚集. 如果观测单个高分子链在不良溶剂中的构象转变,要考虑多方面的因素[50,51],一般采用尽可能高的分子量、尽量窄的分布、并在尽可能稀的溶液中来进行. 一方面可以避免分子链之间的聚集,另外也可以保持较高的净剩散射光强. 吴奇课题组结合分级和过滤得到了分子量极高、多分散度窄的水溶性聚N-异丙基丙烯酰胺(PNIPAM)样品(Mw=1.3×107 g/mol,Mw/Mn 1.05),并配制了10-7 g/mL级别的极稀水溶液,用光散射首次观测到了高分子单链塌缩的构象转变.PNIPAM的低临界溶液温度(lower critical solution temperature,LCST)约为32 °C. 图7对比了6.7×10-7 g/mL PNIPAM在相变前后的动、静态光散射结果. 在35.9 °C时,水是PNIPAM的不良溶剂,Rg从30.1 oC的127 nm减小到17.9 nm,Rh也发生了类似变化. Rg/Rh在2个温度的数值分别为1.5和0.72,表明PNIPAM在30.1 oC时为线团构象,而升温到35.9 °C时则转变为密实球的构象.Fig. 7Typical angular dependence of Hc/Rvv of PNIPAM in water at two different temperatures, where the polymer concentration is 6.7×10-7 g/mL. The inset shows the corresponding hydrodynamic radius distributions f(Rh) of the PNIPAM chains respectively in the coil and the globule states. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).在连续的升温和随后的降温过程中,Rg/Rh随温度并不是单调变化的. 如图8(a)所示,在升温过程至30.6 °C之前,Rg/Rh基本保持在1.5左右,表明PNIPAM为无规线团构象;在30.6~31.6 °C 温度区间,Rg/Rh 从1.5快速降低到1.0,此时的链构象可归结为褶皱的线团(crumpled coil);继续升温到32.4 °C时,Rg/Rh骤降到0.56,所对应的是熔融球构象(molten globule),即表面密度低、内部密度高的球体;在随后的升温过程中,Rg/Rh逐渐增加到0.775, 所对应的是常规的球体. 图8(b)对比了不同温度时PNIPAM的链构象示意图及相应的链密度分布. 在随后的降温过程中,Rg/Rh的变化过程出现了明显的滞后,这可能是在球体状态下形成了某种链内结构所造成的.Fig. 8(a) Temperature dependence of Rg/Rh of PNIPAM chains during coil-to-globule (heating) and globule-to-coil (cooling) transitions. (b) Schematically showing the four thermodynamically stable states and their corresponding chain density distributions (W(r)) along the radius during coil-to-globule transitions. (Reprinted with permission from Ref.[50] Copyright (1998) American Chemistry Society).4.2光散射测定超支化分子的标度关系除线性高分子外,光散射在测定具有复杂构型的高分子样品中也具有独到的优势. 以支化高分子为例,李连伟课题组制备得到了支化点间长度等同的“完美”支化高分子,并利用光散射技术确定了支化高分子尺寸和聚合度之前的标度关系[52].对于满足支化随机、支化点间长度等同的单分散高分子样品,其回转半径Rg与支化分子总的单体数Nt以及临界支化点间的单体数Ns之间存在如下的标度关系:其中b是库恩长度. 对于在θ溶剂中ν值的大小,不同理论有着不同的认识. 平均场理论认为 ν=0.25,而Flory理论则预测ν=0.44. 由于理想的支化高分子难以得到,在此之前尚无实验数据进行验证.李连伟课题组合成了不同分子量的支化聚苯乙烯(h-PS),并用静态光散射测定了重均分子量. 对于高分子量样品,qRg 1,采用Berry plot(参见公式(14))进行数据处理. 低温下,环戊烷是h-PS的不良溶剂,而高温下是良溶剂. 通过测量多个温度下体系的第二维里系数A2,找到其由正值转变为负值的临界点,即可得到θ温度,其值为304~307 K.通过对静态光散射数据进行处理得到了形状因子Rvv(q)/Rvv(0) (图9(a)). 线性拟合qRg 3的数据,利用公式(27)得到支化分子的分形维数为2.4,并进一步求得ν约为0.42. 另外,ν值还可以从支化样品的Rg~Mw 的双对数关系中直接得到. 如图9(b)所示,h-PS在环戊烷溶剂中302.1 K的ν约为0.47. 2种方法得到的结果是吻合的,均支持Flory理论的预测.Fig. 9(a) qRg dependence of the normalized excess Rayleigh ratio [RVV(q)/RVV (q=0)] for h-PS and (b) weight-average molar mass (Mw) dependence of chain size (R) for different h-PS in cyclopentane at 302.1 K (Reprinted with permission from Ref.‍[52] Copyright (2020) American Chemistry Society).4.3用时间分辨光散射表征体系的动态变化前文中介绍的光散射理论都是针对平衡态体系的. 如果体系发生变化所需的时间远超过光散射的采样时间,就能够在保证准确度的情况下,利用光散射技术原位、在线跟踪聚合、组装、解离、降解等过程,获得分子量、尺寸等随时间变化的信息,并以此来剖析机理,也就是常说的时间分辨的光散射技术. 这里以聚合诱导的胶束化过程为例来说明该技术的特点和优势[53]. 类似的经典案例还有利用GPC-LLS联用技术监测高分子的降解过程[54],监测支化高分子的聚集与解散[55],以及监测噬菌体喷射DNA的过程[56]等.氯仿是聚氧乙烯(PEO)的良溶剂, 苯乙烯(S)和马来酸酐(MAn)交替共聚物的不良溶剂. 运用可逆加成断裂转移(RAFT)活性聚合技术,让含有PEO(聚合度114)的大分子链转移剂在氯仿中进行苯乙烯和马来酸酐的交替共聚,生成PEO-b-P(S-alt-MAn). 当P(S-alt-MAn)的聚合度达到某临界值时,就会发生胶束化. 取决于浓度、温度、链长等因素,该过程的时间跨度可达10 h,因此适合用时间可分辨的光散射技术进行表征.聚合反应的各种试剂和溶剂经滤除尘后,收集于无尘的光散射样品瓶中,并用高纯氮吹扫5 min以除去体系中的氧气. 把样品瓶放入恒温(55±0.01) °C散射仪中,计时开始,交替进行SLS和DLS测量. 取决于散射光强,DLS的采样时间从10 s到2 min不等. 图10 是PEO引发剂为1.38 mg/mL时,Rh分布随时间的变化情况. 在229 min时,体系中除了聚合物单分子外(Rh为2~3 nm),还出现Rh约100 nm聚集体(图10(A)),但散射光强弱,证明此类聚集体比较松散. 随时间推移,单分子含量减少,聚集体含量增加,尺寸分布也变窄(图10(B)). 在373 min时,体系中出现了Rh约20 nm的另外一种聚集体(图10(C)),并伴随着大分子单体和100 nm聚集体含量的减少(图10(D)),此时散射光强开始急剧增加,说明新聚集体的链密度较高. 最终体系中仅存在尺寸为20 nm的聚集体,即大分子胶束.Fig. 10Distribution of hydrodynamic radius during polymerization at different time at 30°. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.[53] Copyright (2008) American Chemistry Society).由于在373 min之前体系中存在多分布,用静态光散射测定分子量和Rg没有实际意义. 当体系中只存在20 nm的聚集体时,就可以用静态光散射测定Rg,并结合动态光散射的结果,对粒子构象进行分析. 由于光强随时间在发生变化,而Rg的测定需要同一时间的光强角度依赖性数据. 可行的做法是依次测量30°、45°、60°、75°、90°这5个角度下光强数据,并记录时间,直至反应结束. 这样就得到了5条不同角度的散射光强随时间的变化曲线. 使用MATLAB中的cubic spline平滑拟合并插值,可得到任意时间下的光强角度依赖性数据,从而分析得到Rg和分子量. 尽管胶束化过程与浓度相关,无法进行浓度外推,但从严格意义上来讲,这种单一浓度测定的胶束尺寸仍然是表观数据. 如图11所示,随着聚合反应的进行,Rh,app从380 min的23 nm单调增加至840 min的40 nm;而Rg,app在500 min之前快速减小,从53 nm减至20 nm,后基本保持不变. Rg,app/Rh,app则从~1.8降低至~0.5,说明了该聚集体的构象从松散的聚集体向密实球转变. 由于最终聚集体的核是P(S-alt-Man)形成的密实球,而外围的PEO链仍然处在良溶剂中,为线团构象,因此Rg,app/Rh,app可低至0.5左右,类似熔融球构象. 这些结果表明,当P(S-alt-MAn)的聚合度到达临界聚集值时,嵌段共聚物并不是一步组装成胶束结构,而是首先形成具有松散结构的聚集体,继而发育成胶束结构.Fig. 11Time dependence of Rg,app and Rh,app in the polymerization-induced self-assembly process. The inset shows the changes in Rg,app/Rh,app. The concentration of PEO macro-CTA is 1.38 mg/mL. (Reprinted with permission from Ref.‍[53] Copyright (2008) American Chemistry Society).4.4去偏振光散射表征生理介质中的纳米粒子随着现代生物医学技术的发展,纳米粒子在药物缓释、基因传递、生物传感和成像等领域得到了长足发展. 纳米粒子与生物介质的相互作用决定了纳米粒子的细胞中的归宿,包括吸附、分布、代谢和清除,因此原位、无扰跟踪纳米粒子在生物介质中的动态过程就显得尤为重要. 荧光标记是目前最常用的方法,但荧光基团毫无疑问会改变纳米粒子的表面性质.原位、无扰对体系进行检测是光散射技术的优势. 由于生物介质中高含量的蛋白质等物质会严重干扰纳米粒子的散射光,这使得常规的偏振光散射(VV)并不适于复杂生物体系的研究(图12(a)). 但由于多晶结构的存在,无机纳米粒子不会是完美的球形,总会存在非均质的内部结构,从而能够改变偏振光的方向. 因此采用去偏振动态光散射(depolarized DLS,DDLS),即入射光为V方向偏振,但收集H方向偏振的散射光,就能够有效滤除生物介质产生的背景散射光(图12(b))[57].Fig. 12Depiction of nanoparticles and the bio-matrix background as seen in standard polarized (a) and depolarized (b) dynamic light scattering experiments, respectively. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).Balog团队利用DDLS技术对比研究了柠檬酸稳定的金纳米颗粒以及不同端基聚乙二醇链包覆的金纳米颗粒在四种不同的生物介质(磷酸盐缓冲液PBS、牛血清白蛋白的PBS溶液、培养基DMEM以及添加了牛血清蛋白的DMEM)中的动态行为. 所使用的仪器是商业化的3D光散射仪. 激光光源为21 mW,632.8 nm的氦氖激光器,散射光信号由装有集成准直光学元件的单模光纤收集,并传递至2个高灵敏度的APD探测器进行分析. 结果表明,DDLS有效地屏蔽了背景散射光,从而能够跟踪金纳米颗粒在不同介质中的聚集过程. 如图13所示,金纳米颗粒形成的聚集体尺寸及其分布既与颗粒表面的涂层有关,更受介质组分的影响. 所得结果得与扫描电镜的结果一致,证明了DDLS原位、无扰跟踪研究复杂体系动力学过程的可靠性.Fig. 13Time-resolved DDLS study started promptly after incubating the Au NPs in the biological media. The dashed lines correspond to the Au NPs in PBS buffer. (Reprinted with permission from Ref.[57] Copyright (2015) The Royal Society of Chemistry).5结语与展望本文介绍了分别对应高分子稀溶液、浓溶液和固体的光散射技术. 其中针对高分子稀溶液的动、静态光散射技术和针对高分子球晶的固体散射技术都是比较成熟的手段,在高分子体系的研究中发挥着不可替代的作用. 光散射技术最显著的优势是能够对体系实现原位、无扰的表征. 伴随着生物医学、活性软物质等领域的发展,针对复杂体系的光散射技术将具有更广阔的应用前景.致谢感谢赛普瑞生的牛爱珍博士和布鲁克海文的王继军工程师提供商业化仪器的相关资料.参考文献1Rayleigh L. Phil Mag, 1871, 41: 107-1202Rayleigh L. Phil Mag, 1899, 47:566-572. doi:10.1080/147864499086212983Debye P. Ann Phys, 1915, 351: 809-823. doi:10.1002/andp.191535106064Gans R. Ann Phys, 1925, 381: 29-38. doi:10.1002/andp.192538101035Einstein A. Ann Phys, 1910, 338: 1275-1298. doi:10.1002/andp.191033816126Berne B J, Pecora R. Dynamic Light Scattering. With Applications to Chemistrys, Biology, and Physics. New York: Dover Publications, Inc., 2000. 57Pecora R. J Chem Phys, 1964, 40: 1604-1614. doi:10.1063/1.17253688MegenVan, Pusey P N. Phys Rev A, 1991, 43: 5429-5441. doi:10.1103/physreva.43.54299Urban C, Schurtenberger P. J Colloid Interface Sci, 1998, 207: 150-158. doi:10.1006/jcis.1998.576910Lehner D, Kellner G, Schnablegger H, Glatter O. J Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532711Lilge D, Horn D. Colloid Polym Sci, 1991, 269: 704-712. doi:10.1007/bf0065740812Wiese H, Horn D. J Chem Phys, 1991, 84: 6429-6443. doi:10.1063/1.46027213Phillies G D J. J Chem Phys, 1981, 74: 260-262. doi:10.1063/1.44088414Pusey P N. Curr Opin Colloid Interface Sci, 1999, 4: 177-185. doi:10.1016/s1359-0294(99)00036-915Meyer W, Cannell D, Smart A, Taylor T, Tin P. Appl Opt, 1997, 36: 7551-7558. doi:10.1364/ao.36.00755116Zakharov P, Bhat S, Schurtenberger P, Scheffold F. Appl Opt, 2006, 45: 1756-1764. doi:10.1364/ao.45.00175617Maret G, Wolf P E Z. Phys B, 1987, 65: 409-413. doi:10.1007/bf0130376218Brillouin L. Ann Phys, 1922, 17: 88-122. doi:10.1051/anphys/19220917008819Stein R S, Rhodes M B. J Appl Phys, 1960, 31: 1873-1884. doi:10.1063/1.173546820Stein R S, Chu W. J Polym Sci, Part A: Polym Chem, 1970, 8: 1137-1157. doi:10.1002/pol.1970.16008070921Van Aartsen J J, Stein R S. J Polym Sci, Part B: Polym Phys, 1971, 9: 295-311. doi:10.1002/pol.1971.16009020622Huglin M B. Light Scattering from Polymer Solutions. London: Academic Press, 1972. 204-28923Wolfgang S. Light Scattering from Polymer Solutions and Nanoparticle Dispersions Series. Translated by Zheng Cui, Liang Dehai. Beijing: China Machine Press, 2012. 1-2524Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 19. doi:10.1016/b978-0-12-174551-6.50005-725Hua W. Chem Phys, 2010, 367: 44-47. doi:10.1016/j.chemphys.2009.10.01926Zhao Zeqing(赵择卿), Lu Danian(陆大年), Yang Dingchao(杨定超). Light Scattering Technology(光散射技术). Beijing(北京): China Textile&Appare lPress(纺织工业出版社), 1989. 28-3027Bushuk W, Benoit H. Can J Chem, 1958, 36: 1616-1626. doi:10.1139/v58-23528Wu C, Fai K, Luo W, Zhu X, Ma D. Macromolecules, 1994, 27: 6055-6060. doi:10.1021/ma00099a01829Teraoka I. Polymer Solutions: An Indroduction to Physical Properties. New York: John Wiley&Sons, Inc. 2002. 168-171. doi:10.1002/047144026430Chu B. Laser Light Scattering: Basic Principles and Practice. 2nd ed. New York: Academic Press Inc, 1991. 84. doi:10.1016/b978-0-12-174551-6.50005-731Kanematsu T, Sato T, Imai Y, Ute K, Kitayama T. Polym J, 2005, 37: 65-73. doi:10.1295/polymj.37.6532Delaye M, Gromi Ec A. Biopolymers, 1983, 22: 1203-1221. doi:10.1002/bip.36022041333Vanhoudt J, Clauwaert J. Langmuir, 1999, 15: 44-57. doi:10.1021/la980747r34Gulari Esin, Gulari Erdogan, Tsunashima Y, Chu B. J Chem Phys, 1979, 70: 3965-3965. doi:10.1063/1.43795035Kim S H, Ramsay D J, Patterson G D, Selser J C. J Polym Sci, Part B: Polym Phys, 1990, 28: 2023-2056. doi:10.1002/polb.1990.09028111136Benmouna M, Vilgis T A, Hakem F. Macromolecules, 1992, 25: 1144-1152. doi:10.1021/ma00029a02237Buhler E, Rinaudo M. Macromolecules, 2000, 33: 2098-2106. doi:10.1021/ma991309+38Litmanovich E A, Ivleva E. M Polym Sci, 2010, 52: 671-678. doi:10.1134/s0965545x1006014339Corrotto J, Ortega F, Vázquez M, Freire J J. Macromolecules, 1996, 29: 5948-5954. doi:10.1021/ma950739740Murphy R M, Yarmush M L, Colton C K. Biopolymers, 2010, 31: 1289-129541Casassa Edward F. Polym J, 1972, 3: 517-525. doi:10.1295/polymj.3.51742Chi W. Polym Adv Technol, 2015, 8: 177-18343Lehner D, Kellner G, Schnablegger H, Glatter O J. Colloid Interface Sci, 1998, 201: 34-47. doi:10.1006/jcis.1997.532744Stieber F, Richtering W. Langmuir, 1995, 11: 4724-4727. doi:10.1021/la00012a02445Zakharov P, Scheffold F. Light Scattering Reviews 4. Bremen: Berlin Heidelberg: Springer-Verlag, 2009. 433-467. doi:10.1007/978-3-540-74276-0_846Pine D J, Weitz D A, Chaikin P M, Herbolzheimer E. Phys Rev Lett, 1988, 60: 1134-1137. doi:10.1103/physrevlett.60.113447Mason T G, Gang H, Weitz D A. J Opt Soc Am A, 1997, 14: 139-149. doi:10.1364/josaa.14.00013948Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N. Am Inst Phys, 2008,1027: 1150-1152. doi:10.1021/la802323x49Morse D C. Macromolecules, 1998, 31: 7044-7067. doi:10.1021/ma980304u50Wang X, Qiu A X, Wu C. Macromolecules, 1998, 31: 2972-2976. doi:10.1021/ma971873p51Wu C, Zhou S. Macromolecules, 1995, 28: 8381-8387. doi:10.1021/ma00128a05652Zhu M, Yang J, Li L, Duan X, Li L. Macromolecules, 2020, 53: 7980-7987. doi:10.1021/acs.macromol.0c0140753Ji W, Yan J, Chen E, Li Z, Liang D. Macromolecules, 2008, 41: 4914-4919. doi:10.1021/ma800531254Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Macromolecules, 2019, 52: 1173-1187. doi:10.1021/acs.macromol.8b0178455Hao N, Duan X, Yang H, Umair A, Zhu M, Zaheer M, Yang J, Li L. Macromolecules, 2019, 52: 1065-1082. doi:10.1021/acs.macromol.8b0236456Löf D, Schillén K, Jönsson B, Evilevitch A. Phys Rev E, 2007, 76: 011914. doi:10.1103/physreve.76.01191457Balog S, Rodriguez-Lorenzo L, Monnier C A, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Nanoscale, 2015, 7: 5991-5997. doi:10.1039/c4nr06538g原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21184&lang=zhDOI:10.11777/j.issn1000-3304.2021.21184《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 2150万!中国科学技术大学合肥先进光源国家重大科技基础设施项目-多尺度时空分辨共振相干散射光束线
    一、项目基本情况项目编号:ZF2023-06-1195项目名称:中国科学技术大学合肥先进光源国家重大科技基础设施项目-多尺度时空分辨共振相干散射光束线预算金额:2150.000000 万元(人民币)最高限价(如有):2150.000000 万元(人民币)采购需求:多尺度时空分辨共振相干散射光束线采购,交付内容包括1条光束线主体、配套服务、技术资料三部分。光束线主体包括除定制光学元件、部分真空标准件(详见采购需求表2 采购人供设备清单)等之外的光束线全部硬件及运动控制软硬件部分;配套服务包括工程设计、部件测试、采购人提供的光学元件的检测、软件开发、整体集成、离线安装调试、现场安装准直和同步光在线调试;技术资料包括全套设备的三维模型、设备级二维装配图纸、设计报告、测试报告及使用说明书等。具体详见采购需求。合同履行期限:合同签订后5个月内完成光束线工程设计及评审,合同签订后28个月内完成出厂测试(含关键元器件及系统集成),提交出厂测试报告,合同签订后35个月内完成光束线现场安装,合同签订后43个月内完成在线同步光调试及测试验收。保修期为自验收合格之日起不少于12个月,范围包括所有设备及软件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月31日 至 2024年02月07日,每天上午8:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:“优质采云采购平台”(http://www.youzhicai.com/)方式:在线下载售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:合肥市金寨路96号        联系方式:沈老师 0551-63602706      2.采购代理机构信息名 称:安徽省招标集团股份有限公司            地 址:合肥市包河大道236号            联系方式:刘志凌、张文奇(805室),0551-62220264、62220268、15209887650            3.项目联系方式项目联系人:丁老师电 话:  0551-63602055
  • 动态光散射技术入门及仪器采购指南
    作者:马尔文仪器公司纳米颗粒及分子鉴定产品营销经理 Stephen Ball  动态光散射(DLS)是一项用于蛋白质、胶体和分散体的极具价值的粒度测量技术,其应用范围可轻松扩展到1 nm以下。本文中,马尔文仪器公司产品营销经理Stephen Ball将向您介绍DLS的工作原理,并就购买光散射系统时的关注事项为您并提供一些专业建议。  通过观察散射光,可以测定粒子分散体系或分子溶液的特性,如粒度、分子量和zeta电位。光散射系统充分挖掘利用这些特性之间关联,并在近几十年间经过不断完善,目前已经能为常规实验室应用提供高度自动化的检测。利用光散射仪器的检测快速而高效,可用来表征分散体系、胶体和蛋白质。  理论上,光散射仪器中使用的各种技术看起来可能很相似,但它们的功能和检测结果却在实际应用中千差万别,从而对仪器的寿命期价值产生显著影响。光散射系统中的组件和设计的差异也会导致数据质量及仪器适用范围产生很大的差异。例如,某些光散射系统可通过测量蛋白质电泳迁移率对蛋白质电荷以及粒度进行测定,从而成为生物制药应用中高效的选择方案。  撰写本文的目的在于为考虑采用动态光散射DLS技术的读者提供一个入门指南。本文将考察DLS的主要用途、应用领域,尤其会侧重系统设计中对于特定性能的重要性,从而为那些正为自身需求而关注DLS技术的用户提供背景信息和理论支持。  了解基本知识  当我们要开始对一种新的分析技术进行评估时,第一个重要步骤就是要了解它的基本工作原理。DLS的优势之一是它操作非常简单,而这直接源于它的测量原理。  由于热能,溶剂分子不断运动,和悬浮的颗粒物产生碰撞,使得分散体或溶液中的小颗粒做无规则的布朗运动。可以通过观测散射光随时间的波动性得到颗粒布朗运动的速度,这种技术被称为光子相关光谱法(PCS)或准弹性光散射法(QELS),但现在通常称作动态光散射法(DLS)。  斯托克斯 - 爱因斯坦方程定义了颗粒布朗运动速度与颗粒大小之间的关系:    其中,D = 扩散速度, k = 波尔兹曼常数,T = 绝对温度,h = 粘度,DH = 流体力学直径  上述关系式清楚地表示了在样品温度和连续相粘度已知的情况下,如何根据扩散速度测定粒径。尽管必须是控制检测温度,但很多商用仪器还是会对温度进行测量 而对于许多分散剂,尤其是水而言,粘度是已知的。在很多情况下,DLS实验所需的补充信息也仅仅是粘度测量。  DLS的优势  DLS固有的操作简便性意味着操作者无需具备很强的专业知识就能得到详尽而有用的数据,这个优点在最新的高度自动化系统中表现得尤为明显&mdash &mdash 一般分析只需要几秒钟的时间,并且分散剂的选择余地比较大,不管是水性还是非水性的,只要它们呈透明状并且不太粘稠,就都可以使用。这种测试方法所需的样品量也很小,最少时只需要几微升即可,这一点对于涉及宝贵的样品的早期研究而言是极具吸引力的。  实际上,DLS法在测量0.1 nm ~ 10 µ m范围的粒径时十分出色。它在测量小颗粒方面的能力尤为突出,对于绝大多数待测体系提供2nm及以上的准确、可重复的数据。从理论上讲,检测低密度分子的粒径仅仅受到仪器灵敏度的限制,但对致密颗粒而言,沉降是可能导致分析不准确的一个潜在问题。例如,对于密度为10g/ml的颗粒,最大检测粒径通常会限制在大约100nm以内。  无论是稀释样品还是混浊样品都可以用DLS法来进行测量,可分析的浓度范围最低可至0.1ppm,最高可达40%w/v。不过,由于样品浓度会大大影响其外观尺寸,因此当粒子含量较高时对样品的制备需要加倍小心。  上述适用的粒径和浓度范围以及该测量技术的高重现性(粒径20nm时可达到+/- 0.1nm),使得DLS这种测量方法具有广泛的适用性。比如,它特别适合检测平均粒径的细微变化,这种变化可能会反映出胶体样品的稳定性 它也可以测得少量聚集体的出现。上述这些现象很有可能是某种样本解体的前兆,当用于药物的蛋白质研究时,这类情况的出现有可能对药物性能产生不利甚至有害的影响。  DLS法的局限性  DLS方法的大多数局限性可以或已经通过对实验操作过程进行改进,或对DLS技术进行改进来加以克服 但在区分仪器类型,尤其是对于那些要求异常苛刻的应用而言,它的局限性仍然值得我们加以关注。一般来说,DLS使用过程中遇到的大多数问题是出于以下原因:  &diams 存在较大的颗粒  超出仪器最高量程范围的颗粒应该事先被过滤掉。或者,如果大颗粒的存在量极少也可以通过软件进行处理。  &diams 沉淀  这种现象在较为致密的颗粒中尤其比较容易出现。提高分散液密度是比较有效的抑制方法(比如在系统中加入蔗糖),但这种方法仅适用于密度不高于1.05 g/ml的样品体系。  &diams 分辨率较低  DLS不属于高分辨率的技术。当样品的粒度分布排列十分密集,且存在三种以上的粒度分布差异时,DLS 将无法对多重分散样品进行精确表征。在这种情况下,建议最好在测量之前对样品进行分离 而在测量方法上,则需要将DLS与制备技术如凝胶渗透法或尺寸排除色谱法(GPC / SEC)和(或)流场分离技术(FFF)联合使用。  &diams 多重光散射  多重散射是指从一个颗粒发出的散射光在到达探测器之前又会被其它粒子再次散射,在较致密的样品中,这种现象会使粒径计算的精确度受到影响。背散射检测器以大于90° 的角度进行测量,大大抑制了这一现象,从而扩大了该技术的测量范围。  &diams 分散剂的选择  虽然大多数分散剂都适用于DLS,但如果分散剂粘度大于100mPa.s,往往会影响测量的可靠性,另外分散剂对光的吸收也会对检测产生干扰。比如有色样品的散射光强度可能会有所降低。一种可行的解决方案是根据系统的灵敏度,采用不同的激光波长进行分析或对样品进行稀释。样品中的荧光也会对信噪比造成影响,但可以通过使用窄带滤波器来解决,以排除荧光杂散光的影响。  界定DLS检测仪的特性  上述的讨论是在对DLS仪器的界定特征进行检验的背景下展开的。对于任何分析技术,灵敏度都是最基本的要素,对于DLS系统,这方面的性能是由光学硬件和相应的设置来确定的。稀释度较高时,具有优越光学设置的系统能对较小的颗粒进行可靠测量,但对于在这些功能方面要求不高的应用而言,替代方案可能会更为经济。光学设置的主要元件包括:  &diams 激光源  具有低噪特性的稳定激光源最为合适,如某些氦氖气体激光器。也可以使用某些特定的固态激光器,但价格要贵得多 低成本的固态激光器使测量结果的精度和可重现性受到极大影响。  &diams 光学设置  光学设置的核心是进行测量的散射角。测量角固定于90o 时,可使系统简便而经济高效,为许多应用(见图1)提供合适的灵敏度级别。这类系统已得到广泛使用。  当实验需要灵敏度更高,或样品浓度更高时,最好选择较大的测量角度。例如马尔文仪器公司Zetasizer Nano系列激光粒度仪,采用非侵入式背散射检测器 (NIBS),将测量角度调到175o(参见图1),扩大了颗粒粒度与浓度的测量范围。由于入射光无需通过整个样品,因此显著减少了多重散射引起的测量不准确性,同样也排除了大灰尘颗粒的影响。  在上述两种类型的设置中采用了光纤光学收集组件,其提供的信噪比优于传统的相应部件,从而大大提高了数据质量。  &diams 检测器  检测器有两种类型:一种是便宜、灵敏度较低的光电倍增管PMT,另一种是较昂贵的、性能更好的雪崩光电二极管检测器(APD)。后者宣称效率高达65%,远远优于替代产品PMT4-20%的效率,从而使数据收集最大化,测量速度更快、质量更高。  要获得精确的DLS测量,另一项基本要求是必须对温度进行很好的控制。如同分散剂粘度一样,颗粒的布朗运动也直接和温度相关,因此温度控制较差造成的影响非常严重。例如,在环境温度下对水性体系进行测量,1oC的温度误差将导致2.4%的检测结果偏差,超过ISO13321 [1] 标准规定的+/-2% 或更新的 ISO 22412[2] 标准规定的范围。对于使用的各类比色皿,DLS仪器温度控制的合理目标是 +/-0.2oC。  比起在检测仪外部连接水浴装置,内置温度控制器在使用上更加方便,在测量精度、稳定性和重现性方面也更加可取。此外,具有高性能控制系统的仪器,既能进行快速的系统预热,又能迅速调整温度,从而对温度变化所产生的影响(如蛋白质热不稳定性)进行研究。   日常使用  当选择仪器时,评估整体性能特点尤为重要。然而,如果每天使用一个不太符合操作要求的系统所造成的不便会令人非常烦恼,甚至不想再去用它。因此,当需要在最终几个备选仪器之间进行选择时,以下几个问题是值得考虑一番的:  &diams 我最重要的需求是什么:速度还是准确性?  &diams 我的样品粒径的范围?  &diams 我要测量的样品属于什么类型,比如是否有毒?或者具有特别强的腐蚀性?  &diams 今后仪器的操作者是专家还是新手?他们具备多少关于光散射的专业知识?  速度与准确性  DLS测量通常成批进行,样品通常不同、且体积较小。测量时间一般按照能达到要求的重复性水平设置,但一般不大会超过几分钟。不过,分析效率可能因样品制备和系统清洗要求而有所不同,不同系统的使用方便性也会有较大的差异。如果DLS系统被用作 GPC/SEC 检测器,系统将设置为流体工作模式。由于样品流经仪器,为达到必要的精度,测量必须在短短几秒钟之内完成。  具有良好测试速度和准确性的仪器通常都价格较高,但考虑使用寿命期的成本更为重要。考虑到因不能满足重复性标准而进行反复实验所花费的时间和成本,以及因仪器装备不能满足常规实验室使用要求而造成的分析效率下降等因素,更昂贵一些的系统也许更能体现物有所值。  适用于各种样品类型的比色皿  大多数光散射系统在批量样品分析期间使用各种比色皿池或比色皿来盛放样品。它们通常是塑料(通常是聚苯乙烯)、玻璃或石英材质的,但大小各不相同。样品的最小用量取决于光学设置,通常为2-3 ml。不过,如果不考虑任何样品回收要求,也有一些系统测量只需要2µ l的样品用量。  一次性塑料比色皿无需清洗,消除了交叉污染的风险,特别适用于盛放有毒材料 有些比色皿只有50 &mu L大小。采用比色皿可以避免产生&lsquo 非比色皿&rsquo 系统(即把样品直接放在玻璃片上进行测量)因清洗不彻底而导致测量不准确的问题。石英比色皿具有更佳的测量质量,尤其是用于低浓度或小粒径样品时,这是因为石英材料具有优异的光学特性和抗划伤性。  减轻分析负担  光散射通常只是许多研究人员在实验室中常规使用的多种技术之一。仪器操作者可能不是光散射方面的专家,因而仪器操作的简便性是很有帮助的。  一些DLS系统在数据收集过程中即对数据进行评估,剔除因大颗粒存在而被污染的结果。这类些系统有助于提高样品制备的速度和容许范围。粒径大于10微米的颗粒主要发生向前散射,因此含背散射检测器的仪器对这些颗粒的存在不太敏感。测量浓度范围宽的系统尽可能降低了样品稀释的需求,进一步提高了测量效率。  大多数现代化测量系统在数据采集过程中都无需操作员干预,从而减少了分析师的工作量,并提高测量的可重复性。但是有些比较复杂的样本可能需要采用特殊方法进行测量,因此应在标准操作程序(SOPs) 中包含这些特殊方法,从而确保应用的标准化。  虽然自动测量现在已很普遍,但在内置数据分析支持程度方面,不同仪器之间的差异很大。如果是给非专业人员使用的光散射测量系统,那么含有内置数据分析和专家意见的先进软件将极富价值,就好像在电话另一端有一位可靠的、活生生的专家一样。  总结  DLS是一项比较成熟的技术,可为各种类型的样品进行粒径和分子尺寸测量。因此,在选择仪器时,必须将系统能力与用户要求紧密联系起来,使两者相匹配。光散射系统在测量粒径的同时,还可以测量分子量、蛋白质电荷和Zeta电位,甚至还能具有微流变学测量功能。  不同系统之间的灵敏度有很大差别,如同在高浓度下也能进行测量一样,也可对各种大小的颗粒或分子进行有效的测量。与那些90o 度探测器相比,背散射仪器具有很实际的优势。  除了性能以外,还有其它因素也会影响仪器使用寿命期内的价值,包括易于清洁 能获得的支持以及友好的用户软件界面。无论是什么规格的仪器,最好的建议是在购买前进行测试,看看你能否轻松得到有用的数据。DLS问世已经多年,因此不论你的用途是什么,你都可以期望拥有一套有使用针对性的、富有成效并且易于操作的测量系统。  结束  参考文献:  [1] ISO 13321 (1996) 粒度分析 - 光子相关光谱。  [2] ISO 22412 (2008) 粒度分析 - 动态光散射  [3] GPC / SEC静态光散射技术说明,(马尔文仪器公司白皮书)。下载网址:www.malvern.com/slsforgpc  [4] www.malvern.com/aurora  图片  图1:DLS系统的关键组件包括(1)激光器,(2)测量单元,(3)检测器,(4)衰减器,(5)相关器和(6)数据处理PC。探测器可置于90° 或更大的角度,例如这里所显示的NIBS检测器设置在175° 。  图2:在悬浮液稳定性研究中采用Zeta电位对粒子之间斥力进行量化  laser:激光器  attenuator:衰减器  detector:检测器  digital signal processor 数字信号处理器  correlator:相关器  Electrical double layer:双电层  Stern layer:严密电位层  Diffuse layer:扩散层  Negatively charged particle:带负电荷的颗粒  Slipping plane:滑动面  Surface potential:表面电位  Zeta potential:Zeta电位  Distance from particle surface:到颗粒表面的距离
  • 蔡小舒教授:浅谈光散射颗粒在线测量技术
    p style="text-align: justify text-indent: 2em "strong编者按:/strongSARI疫情无疑是当前最牵动人心的事件,肆虐的疫情对新冠病毒快速检测、肺部用药、医疗方案等方面的研究提出了越来越高的要求。而“粒度”作为重要的颗粒物理参数对于这些研究也有重要意义。例如,2019-nCoV病毒就属于纳米颗粒,而呼吸道不同位置的用药对粒度也有不同要求。因此在医药领域,颗粒在线测量还有巨大的潜力空间待科学家们挖掘。因此,仪器信息网特约span style="color: rgb(0, 176, 240) "strong上海理工大学蔡小舒教授/strong/span为广大网友畅叙颗粒在线测量技术的脉络。虽不能直接为抗疫一线带来助益,但在家隔离的诸位仁人志士若能有缘读到,或将对未来医学等的发展和颗粒检测技术的应用带来更多的思考和契机。/pp style="text-align: justify text-indent: 2em "在今天的文章中,蔡老师重点介绍了光散射在线测量方法(正文如下):/pp style="text-align: justify text-indent: 2em "颗粒,包括固体颗粒、液体颗粒(如喷雾液滴、水中的油滴等)和气体颗粒(如液体中的气泡,气体中悬浮的气泡等)在动力、化工、材料、医药、冶金等各行各业中广泛存在。据有文献报道,80%以上的产品与颗粒有关。/pp style="text-align: justify text-indent: 0em " /pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d57d16e5-39e5-4d52-af56-4628425d716d.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术1.png"//pp style="text-align: justify text-indent: 2em "颗粒的粒度是描述颗粒最重要的物理参数,不同的应用对于颗粒粒度的要求是不同的。如在呼吸道疾病治疗中用的鼻喷剂及喷雾剂,就需要控制药物雾滴的大小来达到雾滴沉积到呼吸道具体需要药物治疗部位的目的,这才能保证药液的效果。对于需要肺部用药,药液雾滴粒度应比较很小,才能随吸入的空气流动到达肺部。大一些的药液液滴会沉积在支气管或气管里,达不到肺部用药的目的。而对于喉部或气管的疾病,液滴的粒度就必须比较大,让它们能在喉部或气管里沉积。对于支气管部位的疾病,其雾滴的粒度就要介于2者之间。这就需要对鼻喷剂的喷嘴进行精心设计,以保证雾滴的粒度可以满足治疗不同疾病的需要。/pp style="text-align: justify text-indent: 2em "在工业生产等中,经常遇到需要对颗粒进行在线检测要求,如颗粒的制备、雾化、管道输运等过程中。对颗粒粒度进行在线实时检测,然后将检测结果实时送到控制系统,对生产系统进行调整和控制,不仅可以提高产品质量,还可以提高产品生产效率。如在燃烧过程中,在线实时检测燃料粒度可以提高燃烧效率,降低污染物的产生。磨料生产中在线检测磨料粒度并反馈控制,可以极大提高磨料的质量。这样的例子可以在许许多多的场合找到。/pp style="text-align: justify text-indent: 2em "目前已有许多颗粒粒度测量仪器能对从数纳米到数千微米的颗粒进行测量,但这些仪器基本上是用于实验室分析,并不能用于在线测量。颗粒在线测量的特点是:/pp style="text-align: justify text-indent: 2em "1. 测量环境复杂,条件恶劣,如可能有高温、高压、高湿、工作环境温度变化大、存在振动、颗粒流动速度快、信号发射和接收部分的污染等,还必须考虑测量装置的磨损等;/pp style="text-align: justify text-indent: 2em "2. 测量要求高,测量时间要短,实时性好,不能因为仪器问题影响生产过程等;/pp style="text-align: justify text-indent: 2em "3. 测量对象要求不同,如高浓度及浓度变化大、被测材料不同、粒度范围不同、或粒度范围变化大等;/pp style="text-align: justify text-indent: 2em "4. 希望在线测量仪器结构简单、可靠、抗干扰、易安装、易维护或免维护等。/pp style="text-align: justify text-indent: 2em "5. 不仅测量颗粒粒度及分布,还经常希望得到颗粒的浓度,流量、形貌等参数,甚至成分参数。/pp style="text-align: justify text-indent: 2em "在线测量按照取样方式可以分成直接在线测量(in-line)和取样在线测量(on-line)2类。在直接在线测量(in-line)方法中,测量装置不对被测颗粒进行取样,被测颗粒直接流过测量区进行测量。在这类测量方法中,由于不能对被测颗粒的浓度进行调整来满足测量方法的需要,并且用户对颗粒在线测量的要求和测量对象及环境等的不同,仪器的通用性差,必须精心考虑设计测量系统来满足测量的要求。因此,这类在线测量仪器一般都是个性化的仪器,需要根据测量现场要求来设计研制。而对于取样在线测量(on-line)中,由于连续取出的颗粒样品可以根据测量装置对于颗粒浓度的要求进行稀释调整,同时可以对其中的团聚颗粒采取分散措施,大都可以设计生产相对通用的在线测量仪器。/pp style="text-align: justify text-indent: 2em "目前常用的在线颗粒粒度测量仪器的基本测量原理有光散射,超声,图像等。其中光散射大都用于气固或气液颗粒的在线测量,而超声则用于液体中颗粒的在线测量,图像法既可以用于气固、气液颗粒的测量,也可以用于液固、液液颗粒的测量。下面先重点介绍光散射在线测量方法:/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 0, 0) "strong光散射在线测量方法/strong/span/pp style="text-align: justify text-indent: 2em "光散射的基本原理是当一束激光入射到颗粒时,颗粒会向整个空间散射入射光,如图是激光入射到有颗粒的水中,颗粒向各个方向散射入射激光的照片。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a6f9425c-dcf9-47c9-b4c9-22f75bfea916.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术2.png"//pp style="text-align: justify text-indent: 2em "根据测量颗粒散射光原理的不同,可以把光散射颗粒在线测量方法分成几类:前向静态光散射法,侧向光散射法,后向光散射法,消光法,光脉动法等。在实际应用中针对不同的测量对象,须采用不同的测量方法。/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "前向静态光散射法:/span/strong这与常用的激光粒度仪的测量原理一样,一束激光从被测颗粒一端入射,在透射端安装接收散射光信号的探测器,对测量得到的散射信号进行分析反演计算,最终得到颗粒的粒度分布和平均粒径等参数。国内外一些颗粒仪器测量公司都有基于该原理的激光在线测量仪。该类仪器的特点是:颗粒粒度测量范围大,可以从亚微米到数百微米,测量速度快,一般采用连续取样方式(on-line)实现连续实时测量。但仪器复杂,安装使用要求高,无法识别颗粒是否团聚,而团聚颗粒会造成较大的测量偏差。为防止环境振动对测量的影响,除在仪器结构上采取措施外,在安装结构上也要采取措施,尽量保证仪器运行时的稳定。为防止被测颗粒对激光器和接收透镜表面的污染,须设置无油无水的压缩空气保护(俗称扫气或气帘)光学元件表面。/pp style="text-align: justify text-indent: 2em "基于该原理的在线激光粒度测量仪器可用于管内粉体颗粒的粒度在线测量和喷雾液滴测量。在在线测量管内粉体粒度时,由于颗粒浓度较高,都配有连续取样系统,将被测颗粒样品连续从管道中取出,经分散和稀释到合适浓度后送到仪器的测量区。下图是安装在现场的激光颗粒粒度在线测量仪以及仪器输出的在线测量结果。根据需要,软件可以输出实时的颗粒粒度分布,以及D50等随时间变化的曲线。为防止取样出来的颗粒发生团聚,影响测量的准确性,在取样系统中应布置使颗粒分散的气流,以尽可能保证进入测量区的颗粒处于分散良好的状态。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/b22b2599-d21f-4f9e-b16e-537e32d204fc.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术3.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光法:/strong/span当激光入射到被测颗粒时,部分入射光被颗粒散射,偏离原入射方向,部分被颗粒吸收,其余部分则透射到另一侧。透射光强由于消光作用而衰减,其衰减程度含有被测颗粒的粒度信息和浓度信息。当采用多个不同波长的激光入射,颗粒对不同波长光的散射作用不同,透射光强的衰减也不同。根据多波长消光法的理论模型,由测得的不同波长的透射光强的衰减,可以反演计算得到被测颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "该方法的特点是结构简单,对振动不敏感,但粒度测量范围较小,合适的测量范围是大约0.05微米到5微米左右。对于浓度不高的测量对象,发射和接收可以直接安装在管道2侧。在管道上开设装有石英玻璃的透明测量窗,激光束从1侧从测量窗入射,在另一侧测量窗外布置光接收器件和信号放大电路等。为防止颗粒污染测量窗口,同样需要设置无油无水的压缩空气进行保护。下图是消光法测量原理的示意图和测量装置安装在工业管道上在线测量颗粒粒度和浓度,以及烟道上在线测量烟尘的浓度。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/06be3f94-1969-48f0-a900-3db071faadcd.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术4.png"//pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em " /spanbr//pp style="text-align: justify text-indent: 2em "由于消光法的光路结构简单,可以做成探针形式,用于浓度相对较高的颗粒在线测量。下图是用于汽轮机内湿蒸汽水滴粒度和浓度测量的探针系统。在探针端部的矩形窗口就是测量区。含有细微水滴的蒸汽高速流过该测量区,仪器就可以测得水滴的大小和浓度,进而得到蒸汽的湿度。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/2cf913f6-abe3-41f3-b835-2248a3818d08.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术5.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong光脉动法:/strong/span在消光法测量中,测量光束的直径远大于被测颗粒的粒度,在测量区中颗粒数目巨大,透射光强的变化仅与测量区中的颗粒浓度变化有关,与颗粒粒度无关。但将测量光束减小到与被测颗粒粒度同一数量级时,且测量区长度较小时,透射光强信号会出现随机变化,这种随机变化是由于在测量区内颗粒数目和大小随时间变化造成的。分析这种随机变化的信号,根据光脉动原理,可以得到颗粒的平均粒度和浓度。并可能可以得到颗粒的粒度分布。下图是光脉动法的原理示意图和透射脉动光强信号。/pp style="text-align: justify text-indent: 2em "这种测量方法的最大特点是测量原理简单,易于实现在线测量,粒度测量范围可根据测量对象的大小,通过改变光束直径来调整,可以在10-数千微米之间。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/d69f90e5-d64b-409e-9232-b2c847816b4c.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术6.png"//pp style="text-align: justify text-indent: 2em "根据该原理可以在线测量粉体颗粒的粒度和浓度。如果间隔一定距离布置1对测量光束,对2个随机序列信号用互相关法原理处理,不仅可以得到颗粒的粒度,还可以得到颗粒的速度,span style="text-indent: 2em "进而得到颗粒的流量。下图是安装在现场的基于该原理的颗粒粒度在线测量装置。/span/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/a489deae-c7cf-405b-a5f6-765c92c0bdf5.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术7.png"//pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strong消光起伏相关光谱法: /strong/span与消光法和光脉动法不同,在该测量方法中,光束的直径小于被测颗粒的粒径,其透射光强不再是如消光法那样是平稳的,也不是如光脉动法那样是连续的高频脉动信号,而是如下图所示,成不连续的脉动信号。当颗粒通过测量光束时,由于颗粒尺寸大于测量光束的直径,入射激光被完全遮挡住,透射光强为零。当没有颗粒通过测量光束时,透射光强为1。采用消光起伏相关光谱法的模型对测得的时间序列信号进行分析,同样可以得到被测颗粒的粒度分布。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/788dfd6a-64c4-4942-a74b-a23cd1c19bbf.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术8.png"//pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 176, 240) "后向散射法:/span/strong对于高浓度悬浮液、乳剂等,光无法透射过被测颗粒,散射光也会被颗粒所吸收或散射,但会产生后向散射。颗粒浓度越高,这种后向散射光的强度也越高,且与颗粒的粒度有关。根据该原理,可以采用后向散射方法进行高浓度液液或液气颗粒体系,如悬乳剂、高浓度微气泡等的在线测量。该测量方法的特点是浓度测量范围大,可以到体积浓度百分之几十,而粒度测量范围较小,从亚微米到数微米。经过标定,还可以测量颗粒的浓度。/pp style="text-align: justify text-indent: 2em "合适的光路设计还可以用于气固颗粒的在线测量,以及测量气、液、固3相流动中的离散相颗粒的粒度和浓度。/pp style="text-align: justify text-indent: 2em "后向散射法测量可以做成结构非常紧凑的光纤探针形式,带尾纤的激光器发出的激光经光纤入射到被测颗粒,其后向散射光被同一根光纤接收,也可以是另一根光纤接收,然后由光纤另一端的光电探测器将后向散射光信号转换成电信号进行反演计算处理,最后得到颗粒的粒度。下图是后向散射测量的原理示意图和后向散射探针。该探针可以插入如悬乳液等高浓度颗粒两相流中进行在线测量。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202002/uepic/40bb4eb7-28dd-4fb5-8750-9533e649894a.jpg" title="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png" alt="肺部给药也有粒度“门道”浅谈光散射颗粒在线测量技术9.png"//pp style="text-align: justify text-indent: 2em "strong style="text-indent: 2em "作者简介:/strongbr//pp style="text-align: justify text-indent: 2em "img style="max-width: 100% max-height: 100% width: 300px height: 217px float: left " src="https://img1.17img.cn/17img/images/202002/uepic/1a4277d5-fe8a-48ce-a42e-05a480160d54.jpg" title="蔡小舒.jpg" alt="蔡小舒.jpg" width="300" height="217" border="0" vspace="0"/蔡小舒,上海理工大学教授。研究领域涉及到颗粒测量、两相流在线测量、燃烧检测诊断、排放和环境监测、湍流等,近年来开始涉足生命科学的测量研究。先后承担了国家两机项目、国家自然科学基金重点项目、仪器重大专项项目、面上项目、科技部和上海市项目等纵向项目,国际合作项目以及企业委托项目。/pp style="text-indent: 2em text-align: justify "曾任中国颗粒学会、中国计量测试学会、中国工程热物理学会、中国动力工程学会、上海颗粒学会等学术组织的副理事长、常务理事、理事、理事长等,是《Proceedings of IMechE Part A: Journal of Power and Energy》、《Particuology》、《KONA Powder and Particle Journal》、《Frontiers in Energy》等SCI刊物和一些国内学术刊物的编委,多个国际学术会议的名誉主席,主席等。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 0em "strongspan style="text-indent: 2em "欲知相关仪器可点击进入/spanspan style="text-indent: 2em text-decoration: underline "a href="https://www.instrument.com.cn/zc/670.html" target="_self" style="color: rgb(0, 176, 240) "span style="text-decoration: underline text-indent: 2em color: rgb(0, 176, 240) "在线粒度仪/span/a/spanspan style="text-indent: 2em "专场/span/strong/p
  • 贝拓仪器光散射学术会议圆满落幕
    贝拓仪器光散射学术会议圆满落幕2017年12月4日在广州召开第十九届全国光散射学术会议圆满落幕,会议由中山大学承办、吉林大学协办。广州贝拓仪器设备有限公司赞助此次光散射光散射学术会议,为进一步促进化学、物理、材料等领域的交流合作,光散射和光谱事业的蓬勃发展贡献了绵薄之力。光散射学术会议是我国光散射领域的一大盛会,主要集中展示我国近年来取得的成绩,同时展望光散射和光谱事业的未来。为响应此次盛会,贝拓仪器在此次光散射会议上展出了牛津液氮低温恒温器optistat dn,oto光纤光谱仪se系列,oto光纤光谱仪pkg套装等相关仪器,同时制作了最新材料综合样本产品宣传画册。此次次会议展出的还有witec高分辨拉曼光谱仪,anasys纳米红外光谱及成像系统近场光学等仪器宣传资料,德国kruss的接触角测量仪。牛津液氮低温恒温器optistat dn是理想的77k温区低温恒温器,具有较大的样品空间,并且适合于难以用传导方式冷却的样品,紧凑的结构也不需要占用太多实验室空间;oto光纤光谱仪se系列具有优异的温湿度、震动、与撞击稳定性,高灵敏度、超高分辨率、低杂散光 (杂散光比例可达0.01%)13种以上传感器,20种以上光栅供选择,全球最宽波段(180~1100 nm)等众多优点。oto光纤光谱仪pkg套装提供完整、平价、宽广波段范围350~1020 nm之光谱量测解决方案,可充分满足吸收、穿透、萤光、色彩、浓度等量测需求,适合镀膜、镜片、水质、环境、血液分析及生化检测之应用,是教学发展、实验室分析、光学研究的最佳选择。此次展会现场对拉曼仪器,低温恒温的联用等都很感兴趣,贝拓仪器此次展出的仪器以及witec拉曼光谱仪厂家在此次盛会上做了报告,吸引众多该领域的专家学者前来咨询。贝拓仪器参加第十九届光散射会议取得了较好的成果,为未来的贝拓整体发展再添一瓦。 贝拓仪器经理与客户交流 贝拓仪器展会现场
  • 532、785还是1064nm?手持拉曼激发光选择有讲究!
    p  拉曼光谱可以高灵敏度分析化学物质的结构和组成,具有非接触、非侵入性和无损性,无需样品制备(或者只需简单样品制备)等特点。随着仪器开发和分析方法等方面的突破,如荧光校正技术等,拉曼光谱得到越来越广泛的应用,包括医疗诊断、药物分析、假冒药品鉴定、爆炸物探测、文物检测等多个领域。/pp  近年来,发展高效和易于使用的小型便携式或手持式拉曼系统是拉曼光谱一个很重要的发展方向。大多数这样的手持系统能够直接分析容器和包装袋中的样品,不需要任何样品制备,同时也避免了对化学物质的接触。/pp  目前,市场上已经有来自于10多个生产厂家的20多款商品化的手持式拉曼分析仪。/ppstrong  研究目的/strong/pp  那么,选择一款适合的手持拉曼光谱仪需要考虑哪些关键因素?本文的一个重要目的就是给出半理论、半经验的注意事项,帮助用户选择一款最适合其应用的手持式拉曼光谱仪,表1和图1对性能比较进行了汇总:/pp style="text-align: center "img title="01.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58d2f13c-6ae5-4360-aa2c-ebdd18a9d344.jpg"//pp style="text-align: center "img title="02.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/8a04e27c-774c-4267-9ec9-40513f8fc7e7.jpg"//pp style="text-align: center "图1: 532nm、785 nm、1064 nm手持式拉曼仪性能对比(单位激光功率):(a)光学透过率(b)纯分析物 (c)分析物在水中 (d)分析物在乙醇中。/pp  手持拉曼的激发波长很大程度上决定了拉曼信号的强度(分析速度和精度)。此外,还会影响到光学元件的效率和相关检测器的量子效率 (CCD、InGaAs)以及光谱分辨率等。目前,大多数商品化的手持拉曼光谱仪采用785nm或1064 nm的激发。只有少数最近生产的手持式拉曼系统使用其他激发波长,包括532nm。/pp  此外,本文还通过实验特别介绍了使用532 nm激光的手持式拉曼分析仪在假药检测以及爆炸物检测方面的性能表现(与785、1064 nm进行对比)。/ppstrong  532nm,785nm,1064nm,哪个更适合手持拉曼?/strong/pp  虽然多个商业化激光在技术上可以满足给定的应用,但对于一个特定的应用来说,通常只有一个可以提供最好的解决方案。所以选择最佳激发波长时要考虑多方面的因素:每个激发波长对应的分析速度和准确度、样品的荧光背景、样本基质的透明度(容器壁、溶剂、被测物)等等。/pp  在分析速度和准确度方面,532nm激光得到的拉曼信号强度(单位激光强度)是785nm或者1064nm的5-16倍,这是因为拉曼强度与激发波长的四次方成反比:IRaman≈(1/λEx)sup4/sup。此外,在532nm处,先进的光探测器和光学器件具有更高的量子效率(与785和1064 nm相比),可以进一步提高拉曼信噪比。/pp  相比之下,在降低荧光背景方面,1064nm是首选。然而,1064nm在分析速度方面比532nm、785 nm系统(单位激光功率)分别慢16倍和3倍。因此,1064nm激光适合具有非常强烈荧光的样品,其他情况下,785nm,特别是532 nm的激光可以提供更快的分析。/pp  为了考察样品基质对拉曼信号的影响。图1a给出了几个典型样本的透射情况:透明玻璃 (实验室小瓶或一般瓶子)、琥珀玻璃(小瓶或一般瓶子)、透明塑料(培养皿、塑料瓶、证据袋或罩板包装)、仿琥珀塑料 (医疗处方瓶)、水和乙醇等。/pp  根据图1a的数据,图1b-d给出了几种典型分析得到的相对拉曼强度 (归一化到532nm):纯被分析物,以及处于一系列不同容器中的被分析物(图1b) 分析物在水溶液中,以及处于不同容器中的情况(图1c) 分析物在乙醇溶液中,以及处于不同容器中的情况(图1d)。图1表明532nm的拉曼信号强度比其他情况要高出25-1600%。/pp  表1对图1中的数据进行了进一步的总结,通过比较发现,在9类不同条件的样品中,有7类使用532nm激发时的效果明显优于785和1064 nm,这其中包括不发荧光和弱荧光样品、一部分中等荧光样品 通过最常见的玻璃和塑料容器(包括琥珀)进行测量的样品 以及水溶液和大多数有机溶剂中分析物的检测和定量分析。/ppstrong  实验/strong/pp  所有样品分析均使用RamTest手持式拉曼 (BioTools,Inc .) 激光:532 nm 光谱范围120-4000cm-1 光谱分辨率~4 cm-1。/pp  所有测试都是在自动模式下运行,所有测量参数自动调整以优化信噪比,减少荧光,剩余的荧光背景(如果存在)自动扣除。/pp strong (1)手持式拉曼用于假冒生物制剂检测(532nm激光)/strong/pp  532 nm手持式拉曼最有前途的一个新应用就是对假冒生物制剂的检测。532 nm手持系统的优越性能包括:更强的拉曼信号,水对532nm激光更低的吸收 (图1)。这两个因素的结合使532nm手持式拉曼光谱在水溶液中各种肽或蛋白质的定量分析方面具有无与伦比的能力。/pp style="text-align: center "img title="03.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/58ccff40-3691-4d59-beed-4c7f9d828c15.jpg"//pp style="text-align: center "图2:手持式拉曼(532 nm)对两种畅销生物制剂的检测:(a)生物制剂1 (b)生物制剂2。绿色:原药 红色:假药 黑色:缓冲或安慰剂。/pp  所有案例都使用自动取样的方法,不需要很多的拉曼知识。结果显示,532nm手持式拉曼可以快速、简单、明确的鉴别原药和假冒药。同时结果也证明,532nm手持式拉曼可以为制药公司、药房等提供强大的、低成本的解决方案。/pp  strong(2)手持拉曼用于爆炸物的检测(/strongstrong532nm激光)/strong/pp  全球恐怖主义数据库的数据表明, 过去十年使用爆炸装置进行恐怖袭击的数量大大增加,包括便携式拉曼等很多分析方法都被开发用来进行爆炸物以及前体和分解产物的检测。/pp style="text-align: left "  图3显示:532nm手持式拉曼可以对炸药进行快速、可靠和安全的检测、鉴定和定量分析。值得注意的是,实验中的一些炸药或前体曾被认为具有“强烈荧光”(如二硝基萘)或使用手持式拉曼“很难检测” (如环三亚甲基三硝胺(RDX)、氨和硝酸铵)。/pp style="text-align: center "img title="04.jpg" src="http://img1.17img.cn/17img/images/201608/insimg/798cad8d-8547-4406-8e46-2548317506a1.jpg"//pp style="text-align: center "图3: 利用532nm手持式拉曼得到的爆炸物的光谱:(a)粉末状爆炸物 (b)液体爆炸物前体 (c)过氧化氢水溶液 (d)过氧化氢自动定量分析(3200-3400 cmsup-1/sup OH-s water) (c)中放大的插图为~874 cmsup –1/sup OO-s Hsub2/subOsub2/sub。/pp  应该注意的是,532nm激发可以在1-5s内可靠的识别和检测上述所有物质,而且与785和1064nm相比,532nm得到的拉曼信号更强。/pp  相比785nm和1064nm ,532 nm的激光具有更强的散射,同时手持式拉曼系统具有更宽的光谱范围的100-4000cm-1, 更好的光谱分辨率:4-6cm-1。如此宽的光谱范围也为手持式拉曼拓展了一些新的应用,包括水溶液中分析物的自动定量。图3d直接显示了水溶液中过氧化氢的自动定量,低至 0.1%。/ppstrong  结论/strong/pp  分析结果表明,作为手持拉曼的一个极具吸引力的选择,532 nm激发应该被重新审视,其优势包括:仪器成本降低两倍,很多实际应用分析速度提高5-16倍, 激光功率降低 (实现炸药的安全检测,减少激光安全问题和激光诱导的样本退化,延长电池连续操作时间),进行水和大多数有机溶剂中被分析物检测时性能优越,能够通过各种各样的玻璃和塑料容器(包括琥珀)进行分析, 光谱范围和光谱分辨率得到改善,同时也改善了光谱检测限,提高了分析精度。/pp  因此,532 nm手持式拉曼光谱可以显著改善很大一部分实际应用,并扩展新的应用领域。适合的应用包括但不限于假冒生物制剂、炸药的快速检测、复杂混合物单个成分的识别、水溶液中分析物的自动定量、在水或有机溶剂中稀释的被分析物检测,以及之前一些使用手持式拉曼认为“很难检测”的多个化合物等。/pp style="text-align: right "  (作者:Aleksandr V. Mikhonin, Susan Hodi, Laurence A. Nafie, Rina K. Dukor)br//p
  • 光散射法在难溶性药物粒度检测中的应用
    p style="text-indent: 2em "编者按:药品安全需要一致性的保障!在药物研究行业,仿制药的一致性评价试点工作早在2012年就已开展。现如今,该项工作早就由业界“雷声大雨点小”的评价,转入了如火如荼的燎原之势。根据国家《关于改革药品医疗器械审评审批制度的意见》 ,《国家基本药物目录》中自2007年10月1日前批准上市的化学药品仿制药口服固体制剂的质量一致性评价工作,将在2018年底迎来截止日期。/pp style="text-indent: 2em "作为仿制药一致性评价中必须考察的一部分,原料药的粒度控制与检测也随着这股东风,越来越受到业内的重视。而对于药物检测,特别是难溶性药物的粒度检测来说,光散射法无疑是重要手段,江苏省苏州工业园区食品药品监督管理局专家关玉晶等的条分缕析,将带我们走入光散射法在难溶性药物粒度检测中的应用天地……/pp style="text-indent: 2em "strong专家观点:/strong/pp style="text-indent: 2em "药物粒度的测定方法有显微镜法、筛分法、光散射法等。对于原料药的粒度测定首选光散射法,是中国药典规定方法之一。采用的仪器为激光粒度仪,通常由激光光源、透镜、颗粒分散装置、检测器、控制系统构成,具有测量速度快、测试精度高、可测粒径范围宽等优点。其测定的理论依据是米氏散射理论和弗朗霍夫近似理论,将样品分散到分散介质中,用单色光束照射颗粒样品,即发生散射现象,散射光的能量分布与颗粒的大小有关,通过测量散射光的能量分布,即可计算出颗粒的粒度分布。/pp style="text-indent: 2em "光散射测定法光散射测定法有两种,即湿法测定和干法测定,根据样品的性状和溶解性能不同进行选择。湿法测定用于测定不溶于分散介质的混悬样品,测定时使用较少的样品就能取得较好的分散效果,测定结果准确、重现性好。干法测定用于测定水溶性或无合适分散介质的固态样品,方便快捷,但测定时使用样品量大,重现性稍差,尤其是粘性物料测定结果误差较大。难溶性药物的粒度测定常选择湿法测定。/pp style="text-indent: 2em "在用激光粒度仪进行粒度测定时需设定的主要仪器参数有分散介质折射率、样品折射率、样品吸收率。对于较大颗粒,使用弗朗霍夫近似理论,可不考虑样品折射率,对于较小颗粒,选择米氏散射理论,需提供分散介质与样品的折射率。分散介质的折射率可通过文献查得,水的折射率为 1. 33,乙醇的折射率为 1. 36。待测样品的折射率需要根据具体情况决定,如表面粗糙度、颜色、透明度、成分等进行选择输入,并结合粒度分布图形、数据拟合、残差值综合判断,选择与实际折射率一致或者接近的输入折射率,待测样品输入折射率与实际折射率偏差直接影响测量结果的准确性与可靠性。样品的吸收率体现了其吸收光量的特性,可通过在显微镜下,对处于悬浮介质中的物质进行观察而近似估算,样品的吸收率在 0 到 1 之间,晶体粉末为 0. 01、浅色粉末为 0. 1、深色粉末或金属粉末为 1。/pp style="text-indent: 2em "对于湿法测定,选择适宜的分散介质,制备具有稳定的分散体系的样品是获得准确结果的关键,需保证颗粒之间的分散性并且在测定过程中颗粒不进一步破裂或溶解。将药物加入分散介质中,通过超声、搅拌等物理分散的方法使药物形成稳定的分散体系,如需要可加入少量的化学分散剂或表面活性剂,如六偏磷酸钠、吐温、十二烷基硫酸钠等,以消除样品的聚集及电荷效应。需确定的因素有分散介质的种类、药物分散浓度、外力因素等。选择分散介质需要满足以下条件:①液体与颗粒无反应,②颗粒在液体中无溶解和膨胀,③液体在激光波长下应是可透过(不吸收)的,④液体与颗粒的折射率不同。/pp style="text-indent: 2em "常用的分散介质有水、乙醇、丙三醇水溶液、乙醇和丙三醇混合液等。考虑到实验成本、环境危害、操作方便等因素,分散介质首选水。为减少分散介质中杂质颗粒对样品测定的影响,分散介质应选择高纯度的溶剂且在使用前应过滤处理。药物分散浓度需满足仪器灵敏度要求并使粒子保持单个原始态。浓度过高可能产生多重散射,浓度过低可能信噪比太低难以代表真实物质的颗粒分布。一般情况下,待测样品粒径越小光散射性越强,分散浓度略低。激光功率越强则仪器的散射光信号越强,分散浓度越低。药物分散的浓度常根据检测器遮光度来确定,湿法测定所需的供试品量通常应达到检测器遮光度范围的 8 ~ 20%。在合适浓度范围内,测量结果基本保持稳定。分散体系在分散后易发生再凝结,其体系的稳定性一方面取决于样品颗粒及分散液体的特性,另一方面取决于外力因素,如超声搅拌等机械处理方法、表面活性剂、添加离子化合物、分散体系的 pH 值等。超声波是打开凝结的最佳方式。样品分散的好坏可以通过改变分散能量是否引起粒度分布变化来确定,当样品分散较好时,测定过程中粒度分布不会发生明显改变。/pp style="text-indent: 2em "样品的粒度需要满足以下几个方面的因素:/pp style="text-indent: 2em "(1)精密度:精密度要求根据样品的用途、物料特点及粒度分布不同而确定。一般情况下,取一批原料药样品,重复测定 6 次,统计 6 次测定结果的 RSD,D 50 的 RSD 不大于 10%,D 10 、D 90 的 RSD 不大于 15%,对于粒径小于 10μm 的样品,RSD 可增加至 2 倍。/pp style="text-indent: 2em "(2)重现性:不同时间、不同分析人员取同一批原料药样品,用同样的方法重复测定 6 次,统计 6 次测定结果的 RSD,要求与精密度相同。/pp style="text-indent: 2em "(3)溶液稳定性考察:将样品液放置一定时间,取不同时间点的样品进行测定,统计测定结果的 RSD,要求与精密度相同。/pp style="text-indent: 2em "(4) 准确度:将测定结果与显微镜法所得到的结果进行比较,验证结果准确性。/pp style="text-indent: 2em "(5)耐用性:在分析方法开发时就应考虑,考察测定条件有小的变动时,测定结果不受影响的程度,以满足样品日常检验需要。湿法测定常需考虑的测定条件有超声(或搅拌)强度及时间、测量时间、平衡时间等。超声强度和时间应保证样品稳定分散又不得发生溶解和破裂。搅拌速度应适中,转速过快易产生气泡被当作颗粒测量使结果出现第二峰值,转速过慢大颗粒容易沉底结果不具有代表性,搅拌时间过长易导致颗粒溶胀或溶解。在保证测量结果准确性的基础上尽量缩短测量时间和平衡时间。/pp style="text-indent: 2em "对于原料药粒度标准的制定是测量原料药粒度的重要一环,制定原料药的粒度标准限度需综合考虑制剂的生产工艺、体外溶出、体内吸收等因素。原料药粒度越小,流动性越差,物料粘着性增加,混料时原料药不易混匀,从而影响制剂外观及含量均匀度。在研究中,应以休止角、外观、混合均匀性、含量均匀度等为考察指标,研究粒度分布对其造成的影响,确定符合产品要求的粒度范围。另外,需结合药物自身特性,如刺激性的药物,粒径愈小,刺激性愈大 稳定性差的药物,粒子越小,分解速度越快。原料药粒径减小,粒子比表面积增大,溶解性增强,药物能较好地分散溶解在胃肠道内,易于吸收,生物利用度高,但并不是原料的粒径越小越好,过度微粉化可能会导致过细的粉末形成静电堆积,在颗粒周围形成一层气泡囊,阻碍水分进入颗粒,从而阻碍药物的溶出。/pp style="text-indent: 2em "在仿制药体外研究中,需测定不同粒径的原料药的溶解度,找出具有区分能力的溶出条件,考察粒径大小对溶出度的影响,通过比较自制品与原研品的溶出曲线确定原料药粒度范围。进一步根据生物等效性研究结果判断粒度范围的合理性,必要时进行调整。在确定粒度测定方法及限度后,制定质量标准时方法描述要详尽,需规定参数设置、样品制备方法、分散条件等,以保证在标准的执行过程中的方法重现性和测定结果准确性。粒度分布的限度以 D 50 、D 90 或(和)D 10 来表示。/pp style="text-indent: 2em "讨论粒度研究是保证药品安全有效的基础,在研究中应确保测定结果的准确性。光散射法是原料药粒度测定的理想方法,在测定过程中要全面考虑测定因素对结果的影响,还需注意仪器校正、粒子形状、取样代表性、环境等因素。研究者在药物开发过程中,应进行详细的研究,准确的测定原料药的粒度并考察其对制剂的影响,确定符合产品特性的粒度分布范围,制得符合临床需求的药品。/p
  • 从问题出发 拉曼光谱仪器成果凸显 —— 第二十二届全国光散射学术会议报告集锦
    仪器信息网讯 2023年9月23日,由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办的第二十二届全国光散射学术会议在河南开封召开。此次会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家学者,共同探讨光散射领域的最新研究成果和发展趋势,吸引了近500人注册参会。值得一提的是,为了解决科研和实际应用中的难题,多位专家在仪器技术开发方面做了系列探索,并产出了相关的成果,吸引参会代表关注。部分报告内容分享如下:中国科学院半导体研究所 谭平恒研究员《显微共焦拉曼光谱模块及其应用》现场仪器展示:显微共焦拉曼光谱模块鉴于市场上显微共焦拉曼光谱仪的昂贵价格,是否能设计一套显微共焦拉曼光谱测量模块,可与任何光谱仪耦合成一套成本低、操作简便、光路布置合理以及后期升级方便的多功能显微共焦光谱仪是众多研究者迫切盼望的事情。22日的会前特邀讲座环节,中国科学院半导体研究所谭平恒研究员分享了其课题组的仪器成果,并在会议同期做了仪器展示。据介绍,在近25年拉曼光谱研究经验基础上,谭平恒研究员的课题组成功研制了显微共焦光谱测量模块,连续多年入选《中国科学院自主研制科学仪器》产品名录,可以实现从拉曼光谱仪到布里渊光谱仪耦合,从高信号透过率到低波数信号测量,从近红外激光到深紫外激光激发,从光栅光谱仪到光纤光谱仪耦合,从高温热台到极低温恒温器应用,从光谱多信号出口到高性价比多功能集成与升级方案,从实验室照明状态下调试和测试到超低背景噪声光谱实现等功能。中国科学院上海微系统与信息技术研究所 陈昌研究员《芯片级拉曼光谱仪的机遇与挑战》微型拉曼光谱仪使拉曼技术在更广泛的无损快速检测场景中得以应用。陈昌研究员在报告中从原理、小型化、应用等方面对色散型光栅光谱仪、迈克尔逊干涉光谱仪、空间外差干涉光谱仪等的优缺点进行了分析,并详细介绍了微型化、高性能拉曼光谱仪面临的挑战,包括高通量、高光谱分辨率等。为了攻克难题,陈昌研究员的实验室汇聚了8大类30多台拉曼光谱仪。经过课题攻关 ,其课题组开发了芯片级的空间外差拉曼光谱仪。据介绍,该产品核心部件轻于1克,实现了若干个物质的拉曼光谱重构。北京理工大学 崔晗教授《激光空间偏移/差动共焦拉曼光谱技术及应用》传统拉曼光谱技术的探测深度只有几百微米,仅可用于样品表层信息的探测,而空间偏移拉曼光谱(SORS)技术通过收集离激发光轴有一定偏移量的轴外拉曼光谱,可实现样品内部深层信息的探测。北京理工大学崔晗教授课题组提出了一种将空间偏移拉曼光谱技术与空间外差光谱技术(SHS)相结合的空间偏移外差拉曼光谱(SHORS)的方法,以对现有空间偏移拉曼光谱技术的性能进行改善。与采用光栅色散型光谱仪的空间偏移拉曼光谱技术相比,空间偏移外差拉曼光谱技术将系统的灵敏度提高了约一个数量级,为其在生物医学、地质考古等领域的进一步应用提供了技术途径。不仅如此,该课题组还基于差动共焦定焦技术构建了系列差动共焦拉曼光谱仪,实现了微区三维几何形貌和光谱信息的同步原位探测,提高了系统定焦能力,改善了系统抗漂移能力。除了以上的报告之外,还有很多老师分享了在拉曼光谱仪器技术、方法开发方面所做的系列工作,如力学拉曼光谱、紫外共振拉曼光谱、原位高温拉曼光谱、时间门控拉曼光谱等。24日,雷尼绍、牛津仪器、赛默飞、天美仪拓、光谱时代、HORIBA、长光辰英、鉴知技术等仪器企业也将分享最新的产品和技术。为期3天的报告还在继续,相关的新技术新成果精彩纷呈,鉴于篇幅的原因不能一一描述,仪器信息网也将给大家持续分享会议的精彩内容,敬请期待!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制