当前位置: 仪器信息网 > 行业主题 > >

激光吸收修正

仪器信息网激光吸收修正专题为您整合激光吸收修正相关的最新文章,在激光吸收修正专题,您不仅可以免费浏览激光吸收修正的资讯, 同时您还可以浏览激光吸收修正的相关资料、解决方案,参与社区激光吸收修正话题讨论。

激光吸收修正相关的论坛

  • 物质的吸收光谱曲线及光吸收定律

    内容摘要:根据光吸收定律,在理论上,吸光度对溶液浓度作图所得的直线的截距为零,斜率为£6。实际上吸光度与浓度关系有时是非线性的,或者不通过零点,这种现象称为偏离光吸收.如果溶液的实际吸光度比理论值大,则为正偏离吸收定律;吸光度比理论值小,为负偏离吸收定律。1.物质的吸收光谱曲线物质的吸收光谱曲线是通过实验获得的,具体方法是:将不同波长的光依次通过某一固定浓度和厚度的有色溶液,分别测出它们对各种波长光的吸收程度(用吸光度A表示),以波长为横坐标,以吸光度为纵坐标作图,画出曲线,此曲线即称为该物质的光吸收曲线(或吸收光谱曲线),它描述了物质对不同波长光的吸收程度。图2—21所示为三种不同浓度的 KMnOt溶液的三条光吸收曲线。由图中可以看出:①高锰酸钾溶液对不同波长的光的吸收程度是不同的,对波长为525nm的绿色光吸收最多,在吸收曲线上有一高峰(称为吸收峰)。光吸收程度最大处的波长称为最大吸收波长(常以Amax表示)。在进行光度测定时,通常都是选取在A。。。的波长处来测量,因为这时可得到最大的灵敏度。②不同浓度的高锰酸钾溶液,其吸收曲线的形状相似,最大吸收波长也一样。所不同的是吸收峰峰高随浓度的增加而增高。③不同物质的吸收曲线,其形状和最大吸收波长各不相同。因此,可利用吸收曲线来作为物质定性分析的依据。2.光吸收定律(1)朗伯一比尔定律朗伯定律:当一束平行的单色光垂直照射到一定浓度的均匀透明溶液时,入射光被溶液吸收的程度与溶液厚度的关系为式中,志为另一比例常数,它与入射光波长、液层厚度、溶液性质和温度有关;c为溶液浓度。这就是比尔(Beel’)定律。比尔定律表明;当溶液液层厚度和入射光通量一定时,光吸收的程度与溶液浓度成正比。必须指出的是:比尔定律只能在一定浓度范围内才适用。因为浓度过低或过高时,溶质会发生电离或聚合而产生误差。光吸收定律(朗伯一比尔定律):当溶液厚度和浓度都可改变时,这时就要考虑两者同时对透射光通量的影响,与入射光的波长、物质的性质和溶液的温度等因素有关。这就是朗伯一比尔定律,即光吸收定律。它是紫外一可见分光光度法进行定量分析的理论基础。光吸收定律表明:当一束平行单色光垂直入射通过均匀、透明的吸光物质的稀溶液时,溶液对光的吸收程度与溶液的浓度及液层厚度的乘积成正比。光吸收定律应用的条件:一是必须使用单色光;二是吸收发生在均匀的介质中;三是吸收过程中,吸收物质互相不发生作用。(2)吸光系数K称为吸光系数,其物理意义是:单位浓度的溶液液层厚度为1cm时,在一定波长下测得的吸光度。K值的大小取决于吸光物质的性质、入射光波长、溶液温度和溶剂性质等,与溶液浓度大小和液层厚度无关。但K值大小因溶液浓度所采用的单位不同而异。①摩尔吸光系数e。当溶液的浓度以物质的量浓度(mol/L)表示,液层厚度以厘米(cm)表示时,相应的比例常数K称为摩尔吸光系数。以e表示,其单位为L/(m01.cm)。这样,可以改写成A—abe’.摩尔吸光系数的物理意义是:浓度为ltool/L的溶液,于厚度为1cm的吸收池中,在一定波长下测得的吸光度。摩尔吸光系数是吸光物质的重要参数之一,它表示物质对某一特定波长光的吸收能力。e愈大,表示该物质对某波长光的吸收能力愈强,测定的灵敏度也就愈高。因此,测定时,为了提高分析的灵敏度,通常选择摩尔吸光系数大的有色化合物进行测定,选择具有最大e值的波长作入射光。一般认为s6×10。L/(。mol·cm)属高灵敏度。摩尔吸光系数由实验测得。在实际测量中,不能直接取1mol/L这样高浓度的溶液去测量摩尔吸光系数,只能在稀溶液中测量后,换算成摩尔吸光系数。已知含Fe。+浓度为500tzg/L溶液用KCNS显色,在波长480nm处用2cm吸收池测得A—O.197,计算摩尔吸光系数。②质量吸光系数。质量吸光系数适用于摩尔质量未知的化合物。若溶液浓度以质量浓度p(g/L)表示,液层厚度以厘米(cm)表示,相应的吸光度则为质量吸光度,以n表示,其单位为L/(g·cm)。这样可表示为A—n(3)吸光度的加和性在多组分体系中,在某一波长下,如果各种对光有吸收的物质之间没有相互作用,则体系在该波长处的总吸光度等于各组分吸光度的和,即吸光度具有加和性,称为吸光度加和性原理。各吸光度的下标表示组分1,2,…,n。吸光度的加和性对多组分同时定量测定、校正干扰等都极为有用。(4)影响吸收定律的主要因素根据光吸收定律,在理论上,吸光度对溶液浓度作图所得的直线的截距为零,斜率为£6。实际上吸光度与浓度关系有时是非线性的,或者不通过零点,这种现象称为偏离光吸收.如果溶液的实际吸光度比理论值大,则为正偏离吸收定律;吸光度比理论值小,为负偏离吸收定律。引起偏离光吸收定律的原因主要有下面几方面。①入射光非单色性引起偏离。吸收定律成立的前提是:入射光是单色光。但实际上,一般单色器所提供的入射光并非是纯单色光,而是由波长范围较窄的光带组成的复合光。而物质对不同波长光的吸收程度不同(即吸光系数不同),因而导致了对吸光定律的偏离.入射光中不同波长的摩尔吸光系数差别愈大,偏离光吸收定律就愈严重。实验证明,只要所选的入射光,其所含的波长范围在被测溶液的吸收曲线较平坦的部分,偏离程度就要小。②溶液的化学因素引起偏离。溶液中的吸光物质因离解、缔合,形成新的化合物而改变了吸光物质的浓度,导致偏离吸收定律。因此,测量前的化学预处理工作是十分重要的,如控制好显色反应条件,控制溶液的化学平衡等,以防止产生偏离。③比尔定律的局限性引起偏离。严格说,比尔定律是一个有限定律,它只适用浓度小于O.01 mol/I。的稀溶液。因为浓度高时,吸光粒子问平均距离减小,以致每个粒子都会影响其邻近粒子的电荷分布。这种相互作用使它们的摩尔吸光系数e发生改变,因而导致偏离比。尔定律。为此,在实际工作中,待测溶液的浓度应控制在0.01 mol/L以下。

  • [求助] 到那里找光吸收曲线

    尿常规干化学试纸条与尿液发生颜色反应后,每项物质(胆红素,白细胞。。。。。)它们可见光吸收曲线怎么找呢???

  • PET薄膜的紫外可见光吸收光谱?

    看文献中将PET溶解后旋涂在石英载玻片上得到PET薄膜,然后在紫外可见分光光度计上测量薄膜的紫外可见光吸收光谱。后面这一步从载玻片上的膜得到吸收光谱就木有详细解释了,不知道这种几十微米的薄膜如何用普通的分光光度计测量吸收光谱?我也看到很多公司的仪器介绍说有什么支架的,但是还是不是很清楚。这里牛人比较多。请问谁做过薄膜的紫外可见光吸收光谱呢?还请点拨一二。初来论坛,多多指教~

  • [求助]新手关于聚氨酯紫外-可见光吸收谱图 问题!

    [求助]新手关于聚氨酯紫外-可见光吸收谱图 问题!

    新手第一次发帖求助,谢谢各位帮忙[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606091005_19871_1659951_3.jpg[/img]上图是聚氨酯薄膜本体紫外-可见光吸收,可不知为什么没有吸收峰,只是在313nm处就直接降到了0, 不知道是什么原因啊?膜太厚?仪器出问题?[img]http://ng1.17img.cn/bbsfiles/images/2006/06/200606090955_19869_1659951_3.jpg[/img]上图是聚氨酯的四氢呋喃溶液做的紫外-可见光吸收谱,参比是四氢呋喃,但不知为什么280nm以下吸收峰很乱?上面两图是同一仪器做的,是不是仪器有问题了啊,作出来的谱线太差了。自己是新手,第一次做紫外,还请大家帮忙,谢谢了~

  • 薄膜样品如何测紫外可见光吸收光谱

    薄膜样品如何测紫外可见光吸收光谱?直接测量就可以吗?好像看文献都是把薄膜样品刮下来,溶解在溶液里然后再测,是不是这样?另外看到紫外吸收光谱图,横坐标为wavelength/nm是波长,纵坐标是Reflectance /a.u.作何解呢?单位是什么?本人对分析化学实在不是很懂,忘大侠们指教,多谢!

  • 高精度真空控制技术在激光吸收光谱气室气压调节中的应用

    高精度真空控制技术在激光吸收光谱气室气压调节中的应用

    [size=16px][color=#339999][b]摘要:目前用于气体吸收池真空压力控制的压力控制器存在有残留气体和无法进行高真空测量的问题,无法进行微量气体的光谱分析。为此,本文提出了动态平衡法的解决方案,即采用两个高速真空低漏率的电子针阀分别调节进气和出气流量,电子针阀由连接电容压力计的真空压力控制器进行调节。此解决方案可在非常宽的量程范围内实现真空压力精密控制,并彻底解决了残留气体问题,并为微量气体进样和测量奠定了的技术基础。[/b][/color][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][img=高精度真空压力控制技术在长光程气体吸收池气压控制中的应用,600,438]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061007336504_5804_3221506_3.jpg!w690x504.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 长光程气体池主要应用于空气污染研究、环境监测、气体纯度分析、工业生产过程监测、排放气体分析和石油勘探地质录井过程监测等领域。如图1所示,长光程气体池由防震底座、池体、凹面反射镜、平面反射镜、窗片、标准光纤接头和气体进出口等组成。在具体应用中,需将池体防震底座安装在仪器箱体内,待测气体经过气体进口进入气体池,由出口排出。测量光射入气体池并在池体内多次反射后进入光谱仪分析。[/size][align=center][size=16px][color=#339999][b][img=01.长光程气体池,500,334]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061009532830_1898_3221506_3.jpg!w540x361.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 长光程气体池[/b][/color][/size][/align][size=16px] 在气体池具体应用过程中,需要对气室内的真空压力进行精确控制以消除温度和内部气压变化对气体折射率和气室尺寸的影响。特别是对气室内部气体压强的精密控制,还存在以下问题:[/size][size=16px] (1)目前很多气体吸收池的压力控制基本都是采用压力控制器模式,如图2所示,即采用集成了真空度传感器的单阀结构的绝对压力控制器来控制进气口或出气口压力。由于这种方法是一种控压模式,只能快速调节进气或出气的单端通断,无法在对应的出气或进气端进行调节,尽管可以将吸收池内的压力进行准确控制,但气室内还会残留被测气体之外的其他气体。[/size][align=center][size=16px][color=#339999][b][img=02.绝对压力控制器方式,400,200]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061010180936_7162_3221506_3.jpg!w295x148.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 压力控制器模式[/b][/color][/size][/align][size=16px] (2)无法进行高真空控制,对于微量气体导入后的气压无法控制,同时也存在残留气体。[/size][size=16px] 为了解决上市后问题,特别是真正解决气体吸收池内部真空压力的全量程精密调节,并为微量气体进样提供准确的控制,本文将提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案将采用一种不同于上述压力控制的动态平衡法,即通过调节气室的进气和出气流量并达到平衡,从而使气室内的压力精确达到设定值。气室真空压力控制装置的结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=动态平衡法流量调节模式下的吸收池真空压力控制装置,650,262]https://ng1.17img.cn/bbsfiles/images/2023/06/202306061010386786_9043_3221506_3.jpg!w690x279.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 吸收池真空压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 图3所示的真空压力控制装置主要由数字针阀、真空计、真空泵和PID控制器构成,其中真空泵提供负压源,两个电子针阀分别用来调节进气和出气流量,真空计用来检测气室内的气压值并将测量信号传输给控制器,PID控制器则根据设定值或设定程序分别对两个电子针阀进行调节并最终达到控制要求。采用图3所示控制装置进行长光程气体吸收池内真空压力控制的步骤如下:[/size][size=16px] (1)排除吸收池气体:首先关闭进气针阀,并使排气针阀全开。启动真空泵将整个气室和管路内的气体完全排出,即气体吸收池内的真空度达到极限真空(气压最小),由此使得吸收池和管路内的环境气体浓度达到最低,避免对样品气体的检测形成干扰。[/size][size=16px] (2)进样气体导入:打开进气针阀,导入样品气体。[/size][size=16px] (3)气室压力控制:真空压力PID控制器根据设定值或设定曲线,并依据真空计测量值对进气针阀和出气针阀的开度进行快速调节,使得真空计测量值与设定值快速重合,实现准确控制。[/size][size=16px] 从上述结构和操作过程可以看出,此种真空压力控制方法和装置具有以下优点:[/size][size=16px] (1)可以有效的排出环境气体,并在整个测试过程中不会再有环境气体的残留。[/size][size=16px] (2)整个真空压力的控制过程,仅是对样品气体进行进气和排气流量操作,而且真空压力控制范围可以覆盖负压和正压,如0.001Pa~0.5MPa(依据所用真空压力传感器量程)。[/size][size=16px] (3)由于采用了高速和真空低漏率的电子针阀,其全程运行时间小于1s,漏率小于-11量级,高压耐压达到了0.7MPa,这是保证真空压力宽量程和快速控制的基础。电子针阀采用0-10V模拟电压进行控制,可直接与各种控制器连接进行调节。[/size][size=16px] (4)电子针阀还可以配备FFKM全氟醚橡胶密封件,具有超强耐腐蚀性,可用于各种腐蚀性气体的检测。另外,电子针阀有多种流量通经规格,可适用于各种型号和尺寸规格的气体吸收池的真空压力控制。[/size][size=16px] (5)真空压力PID控制器是一种双通道超高精度PID控制器,两个通道是独立的闭环控制通道,每个通道都是24位AD、16位DA和0.01%最小控制输出百分比,这使得控制可以达到很高的精度。此控制器的两个输入端可连接两个真空压力传感器来实现全量程的覆盖,两个输出通道可连接两个电子针阀。整个控制器带有RS485通讯和计算机软件,可通过计算机直接进行各种控制参数设置、控制程序运行、过程参数显示和存储,整个控制过程显示直观。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,采用本文解决方案中的进气和出气流量调节方法的吸收池压力控制,除了可以宽量程和高精度控制之外,优势是可以完全消除残留环境气体对测量的影响。更重要的是,这种真空压力控制方式也同样非常适用于微量样品气体的检测,为某些稀少气体和毒性气体进行高真空微量气体的检测奠定的硬件基础。[/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 一种基于紫外—可见光吸收光谱的COD在线监测方法

    【题名】:一种基于紫外—可见光吸收光谱的COD在线监测方法【期刊】:【年、卷、期、起止页码】:【全文链接】:https://t.cnki.net/kcms/detail?v=kxaUMs6x7-4I2jr5WTdXti3zQ9F92xu0jPYZ-6FemR80TpIUx9Y4vpRh2vkVskFh1PV5ClLEPJEf0KYBVfy9JBKrm74m79Y-&uniplatform=NZKPT

  • 分享:激光光谱(发射光谱、吸收光谱、荧光光谱及激光联用分析技术)研讨会会议信息

    分享:激光光谱(发射光谱、吸收光谱、荧光光谱及激光联用分析技术)研讨会会议信息初步定于12月中旬有一个关于激光光谱(发射光谱、吸收光谱、荧光光谱及LA-ICP-MS/OES)研讨会,此次会议主要是围绕与激光相关的分析技术进行展开,会议时间为3天,目前暂定不收会议注册费。希望通过此次会议,加强国内激光光谱分析工作者之间的技术交流与合作。此次会议准备邀请国外一些专家做报告,论坛里有对激光分析技术应用或硬件研发感兴趣的同行,请给我发邮件chauchylan@163.com

  • 如何测定薄膜的日光吸收率

    制备了一种镀金属的碳纤维布,对方要求给出该材料的日光吸收率,请教各位如何测定它的日光吸收率?用什么仪器测?

  • 【我们不一YOUNG】+可调谐半导体激光器吸收光谱监测气体技术应用

    可调谐半导体激光器吸收光谱(Tunable Diode Laser Absorption Spectroscopy)技术简称 TDLAS 技术,该技术是根据气体选择吸收理论为基础,即不同的气体只对特定波长范围内的光进行吸收,利用可调谐半导体激光器可以输出窄带激光的特点,波长可以通过电流和温度控制调谐的特点,将激光器输出波长控制在待测气体吸收波长附近扫描输出。这样在激光透射气体前后会产生光强差,只需测得这个光强差即可获得气体浓度信息。这种技术可以实现对甲烷气体的在线实时测量,并且由于每种气体的吸收波长峰值不同,因此在检测单一气体浓度时不容易被其他气体干扰,灵敏度较高,分辨率较高,并且由于近年来半导体激光器的发展,可做到检测装置的小型化,为该技术在实际生产生活中的应用提供了便利条件,有相当广阔的发展应用前景。

  • 【二虎笔记11】紫外与可见光吸收光谱的形成

    [size=5][b][font=宋体][/font][/b][/size][color=black][font=宋体]原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。正像我们在光度分析中经常见到的,有色物质的溶液对不同波长的入射光线有不同程度的吸收。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。分子吸收光谱形成中所吸收的能量与电磁辐射的频率成正比,符合普朗克条件:[/font][/color]

  • 关于激光脉冲法测试热扩散的几点疑问

    关于激光脉冲法测试热扩散的几点疑问

    众所周知,激光脉冲法测试原理是试样在绝热条件下前表面受瞬时脉冲热流加热根据试样背表面温度随时间的变化情况,确定试样的热扩散率。问题: 1 每种材料吸收激光的速度对测试结果有影响吗? 2 材料有没有反光的问题,如果是镜面,存在部分反光,那吸收的激光能量就没有那么多了,这样对最终测试结果有没有影响? 3 再添加一问题,采用激光脉冲法测试透明半透明材料时,在脉冲照射后样品起始升温的区域存在基线的“跃迁”,这个“跃迁”是什么导致的?耐驰说明书上写这种情况需要选择辐射模型+脉冲修正,难道说这个跃迁是材料本身辐射导致的?怎么产生辐射的?http://ng1.17img.cn/bbsfiles/images/2013/03/201303272042_432667_1698940_3.jpg

  • 【求助】请问如何测量多层薄膜的紫外可见吸收

    请教各位,我想测量一个不透光薄膜的光吸收,但薄膜很难与基底分离。我是利用积分球,扫描完光吸收曲线后,再扫一遍薄膜生长的基底的吸收曲线,然后将其做为背底直接扣掉,这样得到的薄膜光吸收曲线数据可以用么?不对的话,应该怎么做?或者一般大家是怎么处理类似的数据的。谢谢了

  • 1.1 原子吸收光谱研究的历史

    人们对光吸收现象的研究始于18世纪初叶。光吸收现象是指光辐射在通过晶体或液体介质后,其辐射的强度和方式会发生变化的现象。通过研究这种光辐射吸收现象,人们注意到:原始的光辐射在经过吸收介质后,能量可以分为三个部分:(1)散射的,(2)被吸收的,(3)发射的辐射。根据粒子从基态到激发态对辐射的吸收原理可以建立各种吸收光谱法,如分子、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]分析;相反,根据粒子从激发态到基态的光能辐射可以建立各种荧光发射光谱分析,只是在测量方向上和光路垂直。

  • 【资料】光的吸收定律

    一. Lambert-Beer 定律——光吸收基本定律 “ Lambert-Beer 定律 ” 是说明物质对单色光吸收的强弱与吸光物质的浓度(c)和 液层厚度 (b)间的关系的定律,是光吸收的基本定律,是紫外-可见光度法定量的基础。Lambert定律 —— 吸收与液层厚度 (b)间的关系 Beer 定律 —— 吸收与物质的浓度(c)间的关系 “ Lambert-Beer 定律 ”可简述如下: 当一束平行的单色光通过含有均匀的吸光物质的吸收池(或气体、固体)时,光的一部分被溶液吸收,一部分透过溶液,一部分被吸收池表面反射;设:入射光强度为 I0,吸收光强度为Ia,透过光强度为It,反射光强度为Ir,则它们之间的关系应为: I0 = Ia + It + Ir (4) 若 吸收池的质量和厚度都相同,则 Ir 基本不变,在具体测定操作时 Ir 的影响可互相抵消(与吸光物质的 c及 b 无关)上式可简化为: I0 = Ia + It (5)实验证明:当一束强度为 I0 的单色光通过浓度为 c、液层厚度为 b 的溶液时,一部分光被溶液中的吸光物质吸收后透过光的强度为 It ,则 它们之间的关系为: 称为透光率,用 T % 表示。 称为 吸光度,用 A 表示 则 A = -lgT = K b c (7) 此即 Lambert-Beer 定律 数学表达式。 L-B 定律 可表述为:当一束平行的单色光通过溶液时,溶液的吸光度 (A) 与溶液的浓度 (C) 和厚度 (b) 的乘积成正比。它是分光光度法定量分析的依据。详细见网页http://www.foodmate.net/jianyan/lihua/yiqi/11720.html

  • 【求助】可见光的吸收能力测试问题?

    【求助】可见光的吸收能力测试问题?

    这个为什么是蓝移呢?纵轴的吸光度是什么意思呢?从图7可看出, Cu2O的负载使得复合材料相对单纯的Cu2O对可见光的吸收能力、 吸收强度均有所增加, 这将有利于光催化效果的提高。但光吸收阈值有所减少, 即发生了蓝移,这说明Cu2O负载于累托石后, 纳米Cu2O的团聚现象有所改善, 颗粒尺寸减小, 从而其量子尺寸效应导致复合材料的光吸收发生了蓝移。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191652_629359_2177411_3.jpg

  • 哪些物质或有些什么结构的物质有紫外吸收

    因为在研发,经常莫名的接到样品把个样品走下液相看看,有没有峰 及几个锋想向各位请教下 哪些物质有紫外吸收?这些物质除了有共轭双键和苯环 还有其他的什么结构使物质有紫外吸收吗?顺便问下 哪些结构的物质有荧光吸收呢

  • 【分享】紫外吸收法测蛋白质含量

    蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如生化制备中常用的(NH4)2SO4等和大多数缓冲液不干扰测定。特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。此法的特点是测定蛋白质含量的准确度较差,干扰物质多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质,有一定的误差。故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法,加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。1.280nm的光吸收法因蛋白质分子中的酪氨酸、苯丙氨酸和色氨酸在280nm处具有最大吸收,且各种蛋白质的这三种氨基酸的含量差别不大,因此测定蛋白质溶液在280nm处的吸光度值是最常用的紫外吸收法。测定时,将待测蛋白质溶液倒入石英比色皿中,用配制蛋白质溶液的溶剂(水或缓冲液)作空白对照,在紫外分光度计上直接读取280nm的吸光度值A280。蛋白质浓度可控制在0.1~1.0mg/ml左右。通常用1cm光径的标准石英比色皿,盛有浓度为1mg/ml的蛋白质溶液时,A280约为1.0左右。由此可立即计算出蛋白质的大致浓度。许多蛋白质在一定浓度和一定波长下的光吸收值(A1%1cm)有文献数据可查,根据此光吸收值可以较准确地计算蛋白质浓度。下式列出了蛋白质浓度与(A1%1cm)值(即蛋白质溶液浓度为1%,光径为1cm时的光吸收值)的关系。文献值A1%1cm,λ称为百分吸收系数或比吸收系数。蛋白质浓度= (A280´10 )/ A1%1cm,280nm (mg/ml)(Q 1%浓度»10mg/ml)

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制