当前位置: 仪器信息网 > 行业主题 > >

级元素杂质

仪器信息网级元素杂质专题为您整合级元素杂质相关的最新文章,在级元素杂质专题,您不仅可以免费浏览级元素杂质的资讯, 同时您还可以浏览级元素杂质的相关资料、解决方案,参与社区级元素杂质话题讨论。

级元素杂质相关的资讯

  • PerkinElmer推出元素杂质检测解决方案应对美国药典232/233杂质元素检测要求
    美国药典(U.S.Pharmacopeia,简称USP) 是一家制定法定公共医药保健产品标准的权威机构,主要药品质量标准和检定方法作出的技术规定。美国食品药品监督管理局(Food and Drug Administration,简称FDA)的职责是对药品进行管理和监督,在管理和监督过程中就会引用USP相关标准。很多没有法定药典的国家通常都采用美国药典作为本国的药品法定标准,因此国内相关药厂向美国以及这些国家出口的药品或原材料或辅料时就必须符合美国药典的要求。药物杂质按其性质可以分为有机杂质、无机杂质、残留溶剂三大类,其中对于无机杂质主要涉及杂质元素的检测,美国药典2008年9月份提出对杂质元素的检测进行修改,正式实施的日期是2015年12月1号。美国药典USP232明确要求测定各元素杂质含量,并规定了15 种金属元素杂质(Cd、Pb、As、Hg、Ir、Os、Pd、Pt、Rh、Ru、Cr、Mo、Ni、V和Cu)的每日允许暴露值(PDE),USP233提供了两种基于现代分析仪器的检测方法,并已由USP 下属的分析开发部门验证。新通则中所述两种方法分别是电感耦合等离子体原子发射光谱法(ICP-AES法或ICP-OES法)、电感耦合等离子体质谱法(ICP-MS 法),样品均采用封闭容器微波消解法。对于准备进入美国或相关市场或已在该市场有销售的原料药或制剂厂家,必须在新法规执行之前做好充分的准备,提前对即将上市申报的产品进行金属元素杂质风险评估;同时需要做好硬件和软件上的升级,按照法规的要求,开发和验证适合自己公司产品的金属杂质检测方法,保证上市产品符合法规要求。否则,即使现在药品申请已被FDA批准,在2015 年12 月1日新法规正式执行生效后,还需对工艺中的各个阶段潜在的、加入的或不经意引入的金属元素杂质进行风险评估,并再次经FDA批准,后续工作将非常烦琐。针对以上情况,PerkinElmer推出针对USP 232/233的解决方案来应对美国药典元素杂质的检测要求。解决方案下载地址:http://go.perkinelmer.com/l/32222/2014-08-26/28svh/32222/57362/PerkinElmer_USP232233.pdf
  • 锂电池正极材料中杂质元素的准确测定,很难吗?
    锂电池的正极质量影响着电池的充放电性能,其中正极的主量元素配比以及杂质元素的浓度尤为重要。当正极材料中存在铁 (Fe)、铜 (Cu)、铬 (Cr)、镍 (Ni)、锌 (Zn)、铅 (Pb) 等金属杂质时,电池化成阶段电压达到这些金属元素的氧化还原电位后,它们就会先在正极氧化,然后再到负极还原成单质。当负极处的金属单质累积到一定程度,其沉积金属坚硬的棱角就会刺穿隔膜,造成电池自放电,对电池造成损害,甚至致命影响。因此,从正极源头上保证其纯度,防止金属杂质异物的引入,对电池生产质控就显得格外重要。目前的锂电池企业通常采用电感耦合等离子体发射光谱法 (ICP-OES) 测定主量元素配比以及杂质元素含量。ICP-OES仪器相对较低的购买和使用成本,使之在相关企业有着广泛的使用。随着锂电池产业升级加速,生产质控愈发严格,对正极材料中元素杂质含量限度要求越来越苛刻。ICP-OES由于其自身原理的局限性,在部分含量较低的杂质元素如Cr、Cu、Fe、Zn、Pb的准确检出方面出现瓶颈。例如,在某些生产工艺控制严格的企业,上述5个元素的控制浓度在1ppm左右(个别厂家Fe含量在10ppm以内),在日常检测中,经过100倍固液稀释比的样品前处理后,样品上机测定时的浓度低至10ppb以下。由于在主要检测观测区的谱线干扰严重,能否实现上述杂质元素浓度的准确分析,对ICP-OES的性能提出了非常大的挑战。与ICP-OES相比,电感耦合等离子体质谱(ICP-MS)的测定灵敏度更高,检出能力更强,检测下限更低,更加符合锂电池企业高效率准确检测低含量杂质元素的需求。ICP-MS的工作原理决定了其受到的干扰与ICP-OES有较大的区别。ICP-MS受到的干扰主要分为基体干扰和质谱干扰。通常情况下,锂电池正极样品前处理的固液稀释比例在100~200倍,而且前处理时使用较多的酸,使得样品中的固溶含量和酸度都很高,造成ICP-MS的空间电荷效应和电离抑制,待测元素受到基体干扰;对于正极材料样品来说,较高浓度的主量元素会与O、Cl、N等元素结合,形成分子量为M+16、M+35、M+14等质谱干扰。另外,主量元素的高浓度还会产生拖尾,影响分子量M±1元素的测定。如何帮助锂电池企业使用ICP-MS有效克服上述诸多干扰,提高生产效率以及产品质量和性能,成为ICP-MS供应商面临的重要任务。标配全基体进样系统 (AMS) 的珀金埃尔默NexION系列ICP-MS,配合大锥孔三锥设计,QID四极杆离子偏转器,以及具备标准、碰撞和反应三种模式的UCT通用池,可以获得优异的基体耐受性、仪器稳定性和更低的记忆效应。通过进行简单易行的仪器参数优化、干扰消除模式选择和同位素质量数选择,有效消除基体和质谱干扰,准确测定锂电池正极样品中的低含量杂质元素。下述表格显示了NexION 1000G ICP-MS对来自锂电池生产企业的正极材料样品中Cr、Cu、Fe、Zn、Pb杂质元素含量的测定结果,以及仪器方法的优异性能。表1.锂电池正极样品测定结果表2.锂电池正极样品加标回收率测定结果** Cu、Pb、Cr加标5μg/L;Zn、Fe加标50μg/L如何简单有效地做到准确测定锂电池正极材料中低含量杂质元素?请扫描下方二维码即刻获取《ICP-MS测定锂电池正极材料中Cr,Cu,Fe,Zn,Pb杂质元素含量》。扫描上方二维码即可下载右侧资料➡
  • 美国药典(USP)公布其新的元素杂质标准
    日前,美国药典(USP)公布了其新的元素杂质标准,并公开征求意见,新的标准将于2010年4月15日执行。  USP计划将在2010年执行新修订的3个专论,即关于元素杂质限度、检测方法和饮食补充剂金属残留限度专论。这些新标准已经在USP论坛和标准研讨会上进行了讨论,修订的原因和标准的适用性已经药典委员会专家一致通过。  这些修订更新了药品和饮食补充剂中元素杂质检测方法,要求采用现代分析技术进行元素检测。设定了金属杂质限度,这些金属杂质包括但不限于已知明显毒性的铅、汞、砷和镉,这4个元素的限度值分别是1.0ppm、1.5ppm、1.5ppm和0.5ppm。
  • 安捷伦助力光刻胶国产化,提供杂质元素测定方案
    工欲善其事,必先利其器。半导体设备与材料作为半导体行业的前端供应基石,其进步与发展是整个行业持续向前的源动力。目前,我国半导体材料国产化替代市场需求期望大、发展空间广阔,同时各方资源共同推动行业上游材料、设备的进步。其中,光刻胶自 1959 年被发明以来,就成为半导体工业最核心的工艺原材料,可谓是推动实现摩尔定律的重要力量。但目前,我国集成电路用半导体光刻胶仍大规模依赖进口,是近几年国产化替代期望较高、国内半导体行业重点支持的核心项目,这也为国内光刻胶企业提供了市场空间和发展机遇。但由于半导体光刻胶有较高的行业技术壁垒和客户认证壁垒,为国产化道路造成了极大挑战。在半导体光刻胶的众多质控项中,除去关键的光学及物理性能,金属离子污染是晶圆制造三大常规污染中影响最为严重的一类,加之光刻工艺中光刻胶的特殊操作及所发生的光化学反应,现也成为质量管控中非常重要的一项图为:光刻胶产品制作工艺流程图对此,作为拥有多年半导体光刻胶研发经验的业内人士,上海新阳半导体材料股份有限公司研发部耿志月部长认为:“光刻作为集成电路制程中的核心步骤,其过程中的试剂及材料的金属离子污染会直接导致制程良率降低甚至废品产生,尤其对于影响最为严重的碱金属、碱土金属,管控最为严格。而光刻胶作为光刻制程中的核心材料,其产品品质要求逐步提升。金属离子含量管控需求已从成品逐步发展到全产业链,尤其对于基础原料中金属离子含量的控制,会直接影响后续工艺和最终成品。”安捷伦元素分析解决方案是基于半导体光刻胶全产业链,从原料到光刻胶成品的杂质元素含量管控体系。半导体光刻胶一般由光引发剂、树脂、单体、溶剂和其他助剂等组成,所用原料的品质会直接影响最终产品的品质;同时也决定了生产工艺的复杂程度、效率、成本等。安捷伦新一代 ICP-OES 可提供有机类样品直接进样的简便分析方法,同时具有更加智能化的分析模式,全谱扫描可自动鉴定光谱干扰,可用于筛查高含量杂质元素,这也为最终光刻胶产品的分析方法提供一定的指导信息,可最大程度减少样品复测率、保证测试准确性,为原料选择及追溯提供可靠保证。紧随半导体集成电路技术的发展需求,安捷伦 ICP-MS 通过不断的技术革新和行业经验积累,满足半导体行业对于痕量金属离子分析能力数量级式的提升。对于光刻制程用到的光刻胶及其配套试剂等有机化学品的检测,安捷伦专有的温焰模式(Warm Plasma)分析方法可对有机基体产生稳定的等离子体,同时加之样品引入部分特有的补偿气调节,可达到高灵敏度、低背景值检测,大大优化信噪比,有效实现 ppt 级及以下的检出能力。针对半导体光刻胶,从样品制备,到针对各种有机样品ICP-MS仪器参数选择,安捷伦与业内专家共同整理了《ICP-MS/MS 测定半导体光刻胶中的杂质元素 SOP》,期望助力光刻胶国产化。
  • 还在为元素杂质担心吗?微波消解系统助力药品质量控制
    微波消解系统助力药品质量控制由于药品中的元素杂质不仅构成患者的毒理学风险,而且可能影响药物产品的质量和功效。因此,元素杂质分析在药物开发和质量控制中起着重要作用。与药品质量控制相关的法规有哪些? 国际人用药品注册技术协调会(ICH) 在ICH 指导手册中 Q3D生效以前,重金属分析采用的是硫化物沉淀法,是根据 USP231, Ph.Eur.2.4.8 规定中的限制测试。这项超过100 年的旧版操作规程是不明确的,而且不能确定具体的量化结果。终于经过这么久的发展后,在相关的法律法规中,过时的湿法化学分析已逐步被现代仪器分析取代。由于 ICP-OES 和 ICP-MS 的使用,随之相关的样品前处理技术,例如微波辅助消解,目前已成为定量元素分析的主流前处理方式。自 2014 年 12 月起,ICH 指导手册中 Q3D 步骤 4 生效,并且市场中的所有产品都必须遵循遵循该步骤(从 2018 年 1 月开始,新的提案已提交并且已获批准)。指导手册中根据元素杂质的毒性和它们在药物中产生毒性的可能性,将其分为四类 – 1, 2A, 2B 和 3,并且详细说明了元素的种类,剂型(口服,注射以及吸入)以及允许日常接触量(PDE)。值得注意的是,等级1中的Cd、Pb、As、Hg 和等级2中的Co、V、Ni 是人体致毒物,所含 PDE 较低。对于这些元素,即使这些金属没有人为添加,也必须进行风险分析,以防超过其 PDE。根据评估结果,定义一个合理的控制策略,从没有任何分析到定期研究,再到最终成品的理性测试。 美国药典-USP2015年12月,USP 232章节中元素杂质—限制和233章节元素杂质—规程正式生效,并在 2018年1月,取代了所有对旧版USP的引用。232章节中所规定的限制完全符合ICH Q3D的要求。对于膳食补充剂而言,USP章节2232从2013年8月开始正式生效,它参考了 USP233关于全元素污染物的分析规程,自 2018 年1月起开始执行。欧洲药典-Ph.Eur.欧洲药典委员会决定重新逐字修订Ph. Eur. chapter5.20中的ICH Q3D指导方针,自 2018年1月开始,欧盟市场上的所有现有产品都需考虑此问题。2020版中国药典2020版中国药典,9102药品杂质分析指导原则,无机杂质参照ICH Q3D进行研究,并确定检查项目。为什么以上法规都对元素杂质含量进行了限定?元素杂质可能会存在于原料药、辅料、制剂中的催化剂或环境污染物中。这些杂质可能是自然生成的,也可能是人为加入或不可逆引入的(例如与生产设备的相互反应)。当我们知道元素杂质有产生的可能性时,就必须保证杂质符合指定的限度。要注意的是,砷、镉、铅和汞在自然中普遍存在,所以我们在采用基于风险的控制策略时必须包括对这四种元素的考虑。不论采用何种方式,由于元素杂质并不给患者提供任何治疗益处,在药品中的水平应被控制在可接受限度以内。 微波消解技术成为元素杂质定量的技术 由于2020版中国药典、美国药典(USP 232和233),欧洲药典(Ph。Eur。5.20)和国际协调会议(ICH Q3D)的新规定,使用ICP—OES或ICP—MS与可靠的样品制备技术(例如基于加压消解腔(PDC)的超级微波消解仪)已成为元素杂质定量的技术。例如易挥发元素铂元素Os,已知Os在某些活性药物成分(API)的生产链中被用作催化剂。样品基质的消化主要是通过氧化无机酸(例如HNO3)来完成的,这将在确定Os痕迹时引起问题。原因是在这种条件下,Os元素形成了不同种类的挥发性氧化物,导致了Os的失控。四氧化锇不仅具有高度挥发性,还可通过吸入、食入和皮肤接触从而产生剧毒。 安东帕Multiwave 7000可一次性消解所有类型的样品。针对不同元素的特性,您可以根据待测的元素选择压力密封样品管或密闭石英管,同时也可以根据所需样品的处理量、样品量、样品体积和反应混合物等进行支架选择。如上图所示,不仅可选择石英管用来应对Os元素易挥发的状况,同时使用压力样品密封管对其他样品进行消解。满足所有药典,完美助力药品质量控制!
  • 关注|药典委公示药包材元素杂质测定法标准草案
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。今年上半年,国家药典委员会曾发布了一系列的方法通则的修订草案,公开征求意见。近期,药典委再次集中发布一批标准草案,涉及多个方法通则。相关新闻可点击下方专栏关注其中,4214药包材元素杂质测定法标准草案公示稿公开征求社会意见,以下为公示原文:https://www.chp.org.cn/#/business/standardDetail?id=0613de93-f9ff-4f6e-8cad-4415a22ef115 4214药包材元素杂质测定法标准草案的公示一、药包材元素杂质测定法起草说明:制定的目的意义 药品包装容器及组件在生产加工过程中因原料引入、工艺残留的有害元素杂质可能影响药品质量和安全,因此对其进行控制是非常有必要的。形成 “药包材元素杂质测定法”方法标准,科学有效指导药品包装容器及组件元素杂质的测定。二、制修订的总体思路遵循药典委对药包材标准体系的架构思路,基于《国家药包材标准》中塑 料类、玻璃类、橡胶类包材金属元素及金属离子的测定方法,以及国内外药典 中关于元素杂质的测定方法,制定本测定法。三、需说明的问题 1. 供试品的制备:“元素杂质总量”项下塑料类及含纸类的制样方法按 照 YBB 标准中相关方法,增加了微波消解法。“元素杂质浸出量”项下塑料类及弹性体类、金属类参照药包材溶出物测定法(通则 4204)项下或各品种 项下溶出物试验的方法制备样品;玻璃类、陶瓷类的制样方法按照 YBB 标准 中相关方法。2. 测定法:本方法收载了《中国药典》2020 版四部通则中电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、砷盐检查法。新增了原子荧光光谱法测定砷、锑浸出量,未收录前处理复杂、污染环境的紫外-分光光度法。本方法中各测试方法项下载明的元素杂质已经过方法学验证,本方法中未载明的元素杂质如采用上述方法进行测定,需进行方法学验证。1.4214 药包材元素杂质测定法公示稿.pdf2. 反馈意见表.xlsx
  • 药典新标准公示|复方氨基酸类注射液中铝元素杂质测定指导原则
    铝元素如果通过注射液进入静脉,会不经过胃肠道消化吸收过程直接进入血液,对人体有一定的毒性。美国药典和日本药方局均对肠外营养制剂中的铝含量进行限度控制。目前,《中国药典》还未收载与氨基酸类注射液中铝元素杂质测定方法相关的通用技术要求。2023年11月14日,国家药典委将拟制定的复方氨基酸类注射液中铝元素杂质测定指导原则公示征求社会各界意见(详见附件),原文链接点击:原文链接。公示稿中,辽宁省药品检验检测院分别采用电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、高效液相色谱法、原子吸收分光光度法等方法对复方氨基酸类注射液中杂质铝元素的含量进行测定对比,最终形成3个通用方法,即ICP-MS法、ICP-OES法、HPLC法。指导原则对三个方法进行详细描述,每个方法均包含标准曲线法和限度检查法。ICP-MS法、ICP-OES法均为常见的金属元素测定方法,本文详细介绍HPLC法测定复方氨基酸类注射液中铝元素杂质含量。色谱条件:根据复方氨基酸类注射液处方组成选择适宜的固定相和流动相。固定相推荐使用苯乙基键合硅胶为填充剂。流动相推荐使用8-羟基喹啉乙腈溶液-醋酸铵溶液,柱温30℃;流速0.1mL/min;进样体积100µL;以荧光检测器(激发波长为380nm,发射波长为520nm)进行测定。分析方法:本法系依据复方氨基酸类注射液中游离态铝和 8-羟基喹啉形成铝离子荧光络合物,采用配有荧光检测器的高效液相色谱仪测定该荧光络合物的含量,一般可采用标准曲线法或限度检查法。衍生化方法:取空白溶液、标准品溶液、供试品溶液各 4.5mL,分别加入盐酸 0.5mL,并在 50℃水浴中水解30min 后,精密量取水解液 0.1mL,精密加入衍生试剂 0.9mL,混匀。衍生试剂:取流动相 30mL,加入 50% 氢氧化钠溶液 180μL,混匀即得,该试剂需临用前新制。本标准的制定将更好地保障我国人民群众用药安全,并使《中国药典》通用技术要求与国际标准接轨。更多药典相关新闻可点击下方专栏关注。附件:复方氨基酸类注射液中铝元素杂质测定指导原则起草说明公示稿.pdf复方氨基酸类注射液中铝元素杂质测定指导原则公示稿.pdf
  • 手持式光谱仪提高了药品元素杂质分析的研发效率
    制药企业通常将新药研究重点聚焦于未满足的医疗需求上,新药的研发速度往往由患者驱动。因此,在药物研发过程中快速做出决策,可更快地提高患者的治愈率,元素杂质分析是可提高研发效率的一个步骤。金属催化剂通常用于原料药的合成中,研发者需要监测各种原料和合成工艺中金属催化剂的残留情况,从而实施有效的控制策略。通常使用灵敏度、精密度高和选择性好的电感耦合等离子体原子发射光谱法(ICP-AES或ICP- -OES)或ICP-MS对药物中的元素杂质进行分析。然而,在药物研发期间,许多样品是不需要这些昂贵、费时、灵敏度高的技术。 研发者通常需要快速确定元素含量,以提高优化合成工艺的效率。XRF可更快速、 更简便地测定原料、中间体和研发样品中的元素杂质含量,同时保证必要的准确度。如今,手持式X射线荧光光谱仪正在成为原料药采购中质量控制的有力分析工具。其被广泛接受的原因是,它用于仓库化学品的快速识别,比传统的实验室分析技术更具成本效益。长期以来莱雷科技公司在现场金属分析方面积累了丰富的经验,其产品在全国各地已经成为此类仪器的标准。莱雷科技的美国SCIAPS手持式X射线荧光光谱仪小型,轻便、计数率高,结果准确、速度快(2秒),被广泛用于现场金属材料的分析和分选。SCIAPS手持式光谱仪采用高效的激发源和检测器,实现了高精度,快速,安全的现场金属分析。把实验室级别的分析结果和轻松方便的操作方式完美地结合在一起。 检测范围广SCIAPS手持式光谱仪有无与伦比的轻元素分析功能,可在2秒钟内快速准确的分析出元素周期表多种元素,以其人性化的设计,快速识别,交互体验极简,技术先进等优点迅速得到客户群认可. 先进技术确保准确结果SciAps所有的XRF仪器为18年新的研发成果,采用的都是市面上技术尤为先进的元器件。在每次仪器检测完毕后自动校准仪器任何偏差可立刻检测到并自动修正。所以,仪器始终处于良好状态,保证了分析结果的准确性。 安全性能好X系列仪器采用X射线技术,安全符合《中华人民共和国放射污染防治法》《放射性同位素与射线装置安全和防护条例》等法律法规的规定。当仪器前端无样品时,仪器自动终止X射线管工作状态。 应用广泛手持式光谱仪的广泛应用于:地质、采矿、土壤监测、环境监测、电子、医药、石化、考古、木材、电力、玩具、金属加工、压力容器、废旧物资回收、航空航天、金属冶炼、大型工程、锅炉制造、再生资源金属、玻璃的回收、刑事证据鉴定等众多领域。 不得不说,多种技术的发展促进了便携光谱仪器技术的进步,使得该仪器非常适合于原料药的表征。这些技术包括:先进的制造程序、创新的光学设计、紧凑和高稳定性的探测器、更小的电子元件、触摸屏的发展、计算能力的进步,以及使用时间更长、性能更好的电池。
  • 岛津推出ICPMS新品 扩大药品元素杂质分析解决方案
    2016年3月7日,岛津公司宣布推出ICPMS-2030电感耦合等离子体质谱仪。新ICP MS-2030是岛津公司应对药品元素杂质ICH * Q3D准则所推出的新产品。ICH * Q3D准则规定了24种有毒元素每天摄入的限制量,并要求对这些元素进行高灵敏度、高精度测量。ICP MS-2030满足这些要求的ppt水平高灵敏度,主要是因为新产品中采用了新开发的碰撞池、内部结构优化、FDA 21 CFR Part 11合规性、自动分析方法开发功能、独特的测量结果评价功能,优秀的性能能够为客户提供高可靠性的分析结果。  美国药典规定了杂质元素限量(USP 232)和推荐的检测方法ICP-MS(USP 233),将在2018年1月生效。  USP 735中,X射线荧光光谱法被采用为一般的分析方法。对于这些需求,岛津提供了元素杂质分析的整体解决方案,从FDA 21 CFR Part 11规定的不需要样品制备的筛查分析EDX-7000/8000,到ICPMS-2030的高灵敏度和高精度分析。  ICPMS-2030将在近日在美国亚特兰大召开的PITTCON 2016上展出。关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • “双碳”目标下再看太阳能光伏电池—硅料、硅片杂质元素分析技术
    材料是社会进步的重要物质条件,半导体产业近年来已成为材料产业中备受瞩目的焦点。从沙子到晶片直至元器件的制造和创新,都需要应用不同的表征与检测方法去了解其特殊的物理化学性能,从而为生产工艺的改进提供科学依据。仪器信息网策划了“半导体检测”专题,特别邀请到布鲁克光谱中国区总经理赵跃就此专题发表看法。布鲁克光谱中国区总经理 赵跃赵跃先生拥有超过20年科学分析仪器领域丰富的从业经历,先后服务于四家跨国企业,对于科学分析仪器以及材料研发行业具有深刻理解,促进了快速引进国外先进技术服务于中国的科研创新和产业升级。2020年9月,习近平主席在第75届联合国大会上,明确提出中国力争在2030年前实现“碳达峰”,2060年前实现“碳中和”的目标。“双碳”目标的直接指向是改变能源结构,即从主要依靠化石能源的能源体系,向零碳的风力、光伏和水电转换。加快能源结构调整,大力发展光伏等新能源是实现“碳达峰、碳中和”目标的必然选择。目前,光伏产业已成为我国少有的形成国际竞争优势、并有望率先成为高质量发展典范的战略性新兴产业,也是推动我国能源变革的重要引擎。太阳能光伏是通过光生伏特效应直接利用太阳能的绿色能源技术。2021年,全球晶硅光伏电池产能达到423.5GW,同比增长69.8%;总产量达到223.9GW,同比增长37%。中国大陆电池产能继续领跑全球,达到360.6GW,占全球产能的85.1%;总产量达到197.9GW,占全球总产量的88.4%。截止到2021年底,我国光伏装机量为3.1亿千瓦时。据全球能源互联网发展合作组织预测,到2030、2050、2060年我国光伏装机量将分别达到10、32.7、35.51亿千瓦时,到2060年光伏的装机量将是今天的10倍以上。从发电量来看,虽然其发电容量仍只占人类用电总量的很小一部分,不过,从2004年开始,接入电网的光伏发电量以年均60%的速度增长,是当前发展速度最快的能源。2021年我国光伏发电量3259亿千瓦时,同比增长25.1%,全年光伏发电量占总发电量比重达4%。预计到2030年,我国火力发电将从目前的49%下降至28%,光伏发电将上升至27%。预计2030年之后,光伏将超越火电成为所有能源发电中最重要的能源,光伏新能源作为一种可持续能源替代方式,经过几十年发展已经形成相对成熟且有竞争力的产业链。在整个光伏产业链中,上游以晶体硅原料的采集和硅棒、硅锭、硅片的加工制作为主;产业链中游是光伏电池和光伏组件的制作,包括电池片、封装EVA胶膜、玻璃、背板、接线盒、逆变器、太阳能边框及其组合而成的太阳能电池组件、安装系统支架;产业链下游则是光伏电站系统的集成和运营。硅料是光伏行业中最上游的产业,是光伏电池组件所使用硅片的原材料,其市场占有率在90%以上,而且在今后相当长一段时期也依然是光伏电池的主流材料。在2011年以前,多晶硅料制备技术一直掌握在美、德、日、韩等国外厂商手中,国内企业主要依赖进口。近几年随着国内多晶硅料厂商在技术及工艺上取得突破,国外厂商对多晶硅料的垄断局面被打破。我国多晶硅料生产能力不断提高,综合能耗不断下降,生产管理和成本控制已达全球领先水平。2021年,全球多晶硅总产量64.2万吨,其中中国多晶硅产量50.5万吨,约占全球总产品的79%。全球前十硅料生产企业中中国有7家,世界多晶硅料生产中心已移至中国,我国多晶硅料自给率大幅提升。与此同时,在多晶硅直接下游硅片生产中,因单晶硅片纯度更高,转化效率更高, 消费占比也不断走高,至 2020 年,单晶硅片占比已达 90%的水平。用于光伏生产的太阳能级多晶硅料一般纯度在6N~9N之间。无论对于上游的硅料生产,还是单晶硅片、多晶硅片生产,硅中氧含量、碳含量、III族、V族施主、受主元素含量、氮含量测量是硅材料界非常重要的课题,直接影响硅片电学性能。故准确测试上游硅料、单晶硅片中相应杂质元素含量显得尤为必要、重要。在过去的十几年中,ASTM International(前身为美国材料与试验协会)已经对上述杂质元素的定量分析方法提出了国际普遍通行的标准,其中,分子振动光谱学方法因其相对低廉的设备成本、快速、无损、高灵敏度的测试过程,以及较低的检测下限,倍受业内从事品质控制的机构和组织的青睐。值得一提的是,我国也在近几年陆续制定和出台了多个以分子振动光谱学为品控方法的相关行业标准 (见附录)。这标志着我国硅料生产与品控规范进入了更成熟、更完善、更科学、更自主的新阶段。德国布鲁克集团,作为分子振动光谱仪器领域的领军企业,几十年来坚持为工业生产和科学研究提供先进方法学的助力。由布鲁克光谱(Bruker Optics)研发制造的CryoSAS全自动、高灵敏度低温硅分析系统,基于傅立叶变换红外光谱技术,专为工业环境使用而设计。顺应ASTM及我国相关标准中的测试要求,此系统可以室温和低温下(<15K)工作,通过测试中/远红外波段(1250-250cm-1)硅单晶红外吸收光谱(此波段红外吸光光谱涵盖了硅晶体中间隙氧,代位碳,III-V族施主、受主元素以及氮氧复合体吸收谱带。),可以直接或间接计算出相应杂质元素含量值。检测下限可低至ppta(施主,受主杂质)和ppba量级(代位碳,间隙氧),很好地满足了上游硅料品控的要求,为中游光伏电池和光伏组件的制作打下了扎实的原料品质基础。随着硅晶原料产能的逐年提高,布鲁克公司的 CryoSAS仪器作为光伏产业链上游的重要品控工具之一,已在全球硅料制造业中达到了极高的保有量。随着需求的提升,电子级硅的生产需求也在持续增加。布鲁克公司红外光谱技术也有成熟的方案和设备,目前国内已有多个用户采用并取得了良好的效果。低温下(~12 K),硅中碳测试结果(上图),硅中硼、磷测试结果(下图)附录:产品国家标准:《GB/T 25074 太阳能级多晶硅》《GB/T 25076 太阳能电池用硅单晶》测试方法国家标准:《GB/T 1557 硅晶体中间隙氧含量的红外吸收测量方法》《GB/T 1558 硅中代位碳原子含量红外吸收测量方法》《GB/T 35306 硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法》《GB/T 24581 硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法》(布鲁克光谱 供稿)
  • 干货 | ICH Q3D指导原则与中国、美国和欧洲药典中杂质元素的检测要求
    元素杂质控制在药物安全中扮演着重要的角色,制药工业中引入杂质元素的途径多种多样,主要有原料药生产中使用的金属催化剂、动植物原材料、药辅料、包装材料与药品之间的杂质元素迁移、生产设备带入等。因此,国际人用药品注册技术协调会(ICH)在2014年针对性发布了元素杂质指导原则Q3D,适用于原料药、制剂中元素杂质的风险评估,对由合成、生产工艺步骤的变化,原料药、药辅料以及密闭容器系统的使用等而引入的元素杂质进行控制。ICH Q3D指导原则ICH Q3D指导原则主要分为三个部分:评估潜在元素杂质的毒性数据;确定每一种有毒元素的每日允许暴露量(PDE);运用ICH Q9质量风险管理指导原则来评估和控制药品中的元素杂质。下表列举了ICH Q3D按对人体安全危害程度对各种元素进行的分级。1级2A级2B级3级药品生产中限制使用或禁止使用的有毒元素在药品中出现可能性较高的元素因丰度低或与其它材料分离的可能性较低,所以在药品中出现可能性较低的元素通过口服给药途径毒性较低的元素要求风险评估要求风险评估无需进行风险评估吸入和非口服途径需进行风险评估砷As, 镉Cd, 铅Pb, 汞Hg钴Co, 镍Ni, 钒V银Ag, 金Au, 铱Ir, 锇Os,钯Pd, 铂Pt, 铑Rh, 钌Ru, 硒Se, 铊Tl钡Ba, 铬Cr, 铜Cu, 锂Li, 钼Mo, 锑Sb, 锡Sn 为满足和适应ICH Q3D指导原则,美国和欧洲等相关标准做出了如下调整:美国药典(USP)在2018年1月生效的USP-40将杂质元素种类和限度与ICH Q3D保持一致。欧洲药典(EP)先后颁布多个文件,引用ICH指导原则对原料药、药物制剂中的元素杂质进行控制,并成为强制要求。中国药典(ChP)由于更新周期等方面的原因,目前中国药典(ChP)中的元素杂质检测方法并没有完全追随ICH Q3D原则,其设计和要求主要针对的是中药中的有害残留物质的限定,并不是针对低水平金属催化剂和试剂的残留,难以满足药品安全性控制的需要。下表总结了最近更新的中、美、欧药典中对元素杂质的限定状况。药典版本通则要求检测方法USP-41USP232,23324种元素,种类和限度与ICH Q3D一致ICP-OES和ICP-MSEP-9.65.20 元素杂质,2.4.20 元素杂质测定,2034 原料药,2619 药物制剂24种元素,引用ICH Q3D;术语、内容与ICH Q3D一致;强制要求遵循ICH Q3D;强制要求遵循ICH Q3DAES, AAS, XRFS, ICP-OES, ICP-MSChP-20159302 中药有害残留物限量制定指导原则9种杂质元素,铅Pb, 汞Hg, 镉Cd, 铜Cu, 银Ag, 铋Bi, 锑Sb, 锡Sn, 砷AsAAS, ICP-OES, ICP-MS 针对于美国、欧洲药典和中国原料药出口厂商对 ICH Q3D的严格遵循,以及中国药典对中药质量严格控制,珀金埃尔默提供全面的元素分析解决方案,全面覆盖从样品前处理到实验数据合规处理各个环节。近日,珀金埃尔默推出《珀金埃尔默药品质量控制应用文集》电子版,包含多篇杂质分析应用文章,完美解决您的顾虑。扫描下方二维码,即可获取详细资料!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 二次公示|药典委发布药包材元素杂质测定法标准草案
    2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。一段时间以来,国家药典委员会发布了一系列的方法通则的修订草案,公开征求意见。近期,药典委再次集中发布一批标准草案,涉及多个方法通则。相关新闻可点击下方专栏关注其中,此前曾经公开征求过意见的4214药包材元素杂质测定法标准草案进行了第二次公示。第一次公示新闻请见:https://www.instrument.com.cn/news/20230918/684450.shtml 4214药包材元素杂质测定法标准草案的公示 本次公示期自发布之日起三个月。相关人员若有异议,可及时在线反馈,并附相关说明、实验数据和联系方式。公示网站:https://www.chp.org.cn/#/business/standardDetail?id=65e05db7bd8cfbb6c02c8f37。药包材元素杂质测定法起草说明:一、制定的目的意义1. 药品包装容器及组件在生产加工过程中因原料引入、工艺残留的有害元素杂质可能影响药品质量和安全,因此对其进行控制是非常有必要的。2. 形成“药包材元素杂质测定法”方法标准,科学有效指导药品包装容器及组件元素杂质的测定。二、制修订的总体思路遵循药典委对药包材标准体系的架构思路,基于《国家药包材标准》中塑料类、玻璃类、橡胶类包材金属元素及金属离子的测定方法,以及国内外药典中关于元素杂质的测定方法,制定本测定法三、需说明的问题1. 本标准分为三个部分,第一部分为供试液的制备,包括“元素杂质总量”和“元素杂质浸出量”,按各品类制样法分别制备供试液;第二部分为标准溶液的制备;第三部分为测定法,包括电感耦合等离子体质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、原子荧光光谱法、砷盐检查法。2. 供试品的制备:“元素杂质总量”项下塑料类及含纸类的制样方法按照 YBB 标准中相关方法,增加了微波消解法。“元素杂质浸出量”项下塑料类及弹性体类、金属类参照药包材溶出物测定法(通则 4204)项下或各品种项下溶出物试验的方法制备样品;玻璃类、陶瓷类的制样方法按照 YBB 标准中相关方法。3.测定法:本方法收载了《中国药典》2020 版四部通则中电感耦合等离子质谱法、电感耦合等离子体原子发射光谱法、原子吸收分光光度法、砷盐检查法。新增了原子荧光光谱法测定砷、锑浸出量,未收录前处理复杂、污染环境的紫外-分光光度法。本方法中各测试方法项下载明的元素杂质已经过方法学验证,本方法中未载明的元素杂质如采用上述方法进行测定,需进行方法学验证。4214 Determination of Elemental Impurities inPharmaceutical Packaging Materials (公示稿).pdf4214 药包材元素杂质测定法公示稿.pdf
  • 【安捷伦】USP 232/233 和 ICH Q3D 制药行业元素杂质分析现场解决方案
    美国药典通则 USP232(限度)和 233(方法)已于 2018 年 1 月 1 日起执行(FDA)。欧洲药典标准 Ph. Eur 5.20 与 Ph. Eur 2.4.20 已于 2017 年 12 月 1 日起执行(EMA)。目前,ICH 元素杂质指导原则 Q3D 已被广泛采纳,作为全球认可的药品申报注册标准。在此形势下,制药企业都必须要根据 ICH Q3D 指导原则对所有药品中的元素杂质状况进行风险评估,而风险评估与常规测试所采用的所有分析方法,都必须进行方法验证。新法规下,制药实验室的新痛点执行法规缺乏经验可循,新手上路实验问题重重,人员培训,方法建立,大量的数据验证需求给制药企业带来了时间和资金的双重考验。如何确定药品中可能存在的元素杂质?如何评估其含量是否超过法规规定的每日限量?如何设计最恰当的样品前处理方法保证样品溶解的同时不会带来金属元素的损失并减低后续验证步骤的风险?如何在短时间内完成大量的方法学验证工作?如何充分应对监管机构补充验证数据的要求以确保申报过程不会被延长?如何控制实验室环境与实验耗材导致的元素背景干扰?如何确认验证方法已满足 USP 232/233 法规的要求?如何选择最合适的元素含量计算方法?风险评估选择产品法还是原料法?安捷伦的“软”实力安捷伦 ICP-MS 不仅具有优异的硬件性能指标,MassHunter 软件更是为制药用户量身定做了方法模板,装机预设了制药行业常用的 USP232、ICH Q3D 方法。调用模板后即可得到优化后的 Q3D 中 24 元素仪器测量参数;相对常规功能,方法模板中增加了 ICH Q3D 中“每日最高剂量”的设置,“J 值”的计算,“口服、注射、吸入”三种剂型 QC 的设置;分析结束后还有 USP - ICH 分析报告模板供参考使用。Agilent 7850 ICP-MS 安捷伦解决方案安捷伦制药行业元素分析全流程现场支持方案帮助您高质量、无风险、快速、准确的解决合规问题。以客户样品为出发点,以预开发的应用方法为手段,一次解决前处理与上机分析的两步需求;服务的设计基于方法验证相关通则 USP1225 与 ICH Q2(R1);高效完成仪器分析和生成方法验证报告,简化步骤,提高效率;基于实际样品提供符合法规要求的工作流程并现场完整验证;缩短方法开发与验证周期,节省成本,降低风险;方案附带可编辑的实验室 ICP-MS 元素分析 SOP 模板和安捷伦认证的 24 元素混合标准溶液组(符合 USP/ICH 口服限量)。服务详情现场服务基于 ICP-MS 仪器平台与客户实际样品提供符合 USP 通则 232 规定的元素列表与通则 233 性能要求的方法验证工作流程;由安捷伦中国应用工程师针对中国制药市场的产品特点和用户需求设计开发;提供样品前处理方案个体化定制咨询,操作流程标准化示范;使用方案附带的安捷伦混合标样,完成标准曲线配制与样品加标;附带一套 24 种元素和内标的安捷伦认证混合标样(完整包装),中文解决方案操作指南,可编辑的实验室 ICP-MS 元素分析 SOP 模板,帮助用户在日常实验和管理中实现方法的稳定运行。安捷伦认证混合标样现场支持服务流程如果您对此方案感兴趣,扫描二维码并填写您的个人信息及实际需求,我们将尽快与您取得联系。关注安捷伦微信公众号,获取更多市场资讯
  • 珀金埃尔默发布《药物元素杂质检测解决方案》
    珀金埃尔默发布《药物元素杂质检测解决方案》ICH Q3D指导原则与中、美药典国际人用药品注册技术协调会(ICH)在2014年发布元素杂质指导原则Q3D,适用于原料药和制剂中元素杂质的风险评估,对由合成、生产工艺步骤的变化,原料药、药辅料以及密闭容器系统的使用等而引入的元素杂质进行控制。《中国药典》接轨ICH规则已成趋势,2020版药典《元素杂质限度和测定指导原则》和《分析方法验证指导原则》的部分内容即参照ICH Q3D完成修订,检测方法和方法验证必须符合中国药典要求。《美国药典》(USP) 通则232根据ICH Q3D规则,规定了不同给药途径的元素杂质限值和使用ICP-MS和ICP-OES 两种分析方法;而USP通则233则提供检测方法的验证指导。珀金埃尔默药物元素杂质检测解决方案珀金埃尔默一直致力于为药物生产和监管提供真正合规、全面、有效、创新的药品安全解决方案。最新发布《药物元素杂质检测解决方案》,全面覆盖从样品前处理到实验数据合规处理的各个环节,帮助中国制药企业顺利应对2020版中国药典的变化和原料药出口业务严格遵循ICH Q3D的要求。 欲了解制药杂质元素的相关法规,以及珀金埃尔默解决方案是如何满足法律合规性的,请扫描下方二维码即刻获取《珀金埃尔默药物元素杂质检测解决方案》。扫描上方二维码即可下载资料
  • 给“锂”一瓶魔法药水-ICP-OES助力NMP中杂质元素检测
    给“锂”一瓶魔法药水-ICP-OES助力NMP中杂质元素检测贺静芳 刘莉 引言宇宙很有趣,将我们的物质世界分成有机和无机两大类。NMP(氮甲基吡咯烷酮)作为有机物中最特别的存在,可以与大多数有机物以及水互溶,因其毒性低、沸点高、极性强、粘度低、溶解能力强、化学稳定性好等“魔法”特点,在半导体行业和锂电池行业成为不可或缺的溶剂。电池级NMP的纯度要求极高,除含水率要求之外,由于金属离子对锂电池的性能和安全性产生较大的影响,为了保证锂离子电池的性能和安全性,电池级NMP中杂质元素的含量要求非常严格,通常需要小于10-20μg/L。检测难点:限量低,要求设备灵敏度高,检出限低;有机物含量高,容易在进样系统积碳,碳分子光谱带对杂质元素造成干扰;如果采用前处理消解的方法,程序繁琐,容易引入环境元素如钠、钙、铝、铁等的污染。赛默飞iCAP&trade PRO系列电感耦合等离子体发射光谱仪针对NMP中多种杂质元素的检测可实现简单快速测定。方案亮点:iCAP PRO高效变频的RF发生器和防腐蚀进样系统设计,在测试NMP样品时,无需对样品进行稀释和复杂的前处理,直接进样,避免沾污;远紫外区优异的灵敏度,NMP中铝元素167.079nm可达μg/L级 其使用精密的质量流量计优化氧气流量从而减少进样系统积碳和碳分子光谱带的干扰,杂质元素的检出限达μg/L级;所有元素浓度范围内线性关系良好(r² 0.999),方法测试精密度RSD2%,样品加标回收率在85%-110%之间。方案细节展示氧气流量优化在等离子体中通入氧气不但可以减少有机溶剂对炬管的积碳效应,同时可以降低C2背景对Na589.592 nm的干扰。但加氧流量过大又容易导致等离子体熄灭,加氧流量过少则干扰去除不彻底。本实验选择通入50ml/min的氧气来测试,试验证明既可有效减少积碳和降低C2对Na589.592 nm的干扰,又保证了等离子体的稳定性,下图为加氧50ml/min Na 元素(NMP中加标0, 0.02, 0.0.5, 0.1, 0.5mg/L)subarry图。(点击查看大图)仪器参数(点击查看大图)方法检出限和样品检测结果实验采用半导体级别NMP溶液作为空白,进行连续11次的测量,以11次空白的3倍标准偏差做为该实验条件下的方法检出限。(点击查看大图)准确性实验实验选择2个半导体级NMP样品进行了加标回收率实验:加标浓度为0.05mg/L和0.1mg/L,回收率均在85~110%之间。(点击查看大图)重复性实验实验选用NMP样品,加标量为0.1mg/L,重复进样测定7次,计算相对标准偏差均在2%以内。(点击查看大图)总结赛默飞iCAP PRO系列电感耦合等离子体发射光谱仪,测试单个样品可在一分钟之内完成进样和数据采集。NMP等有机样品可以直接进样,等离子体依然保持稳定,样品测试重复性好。直接进样法相对消解法或稀释法具有较高的分析效率和分析灵敏度,且获得极低的检出限和超高的准确度。赛默飞iCAP PRO系列ICP-OES保障NMP溶剂成为锂离子电池合格的“魔法”药水。如需合作转载本文,请文末留言。
  • 【安捷伦】一文读懂 |《 2020 版中国药典》化药元素杂质检测的那些事儿
    p style="text-align: center"img style="max-width: 100% max-height: 100% width: 476px height: 188px " src="https://img1.17img.cn/17img/images/202006/uepic/cdf4b992-4fcd-42e2-a5cc-4fe1148a78cb.jpg" title="元素-1.png" alt="元素-1.png" width="476" height="188"//pp style="text-align: justify text-indent: 2em "随着中国加入 ICH(人用药品注册技术要求国际协调会),中国药典的步伐也更加贴近 ICH 的相关要求以及指导原则。ICH-Q3D 元素杂质指导原则已进入到 Step4 的阶段,对于元素杂质的种类根据给药途径做了相应的限量要求,并对风险评估给出了建议。br//pp style="text-align: justify text-indent: 2em "元素杂质可能来源于化药中原辅料、催化剂以及环境污染物,2020 版《中国药典》对于化药中元素杂质检测也进行了规范,首次提出元素杂质限度和测定指导原则。/pp style="text-align: left text-indent: 2em margin-top: 15px "span style="color: rgb(0, 112, 192) "strong2020 版中国药典中关于化药元素检测有哪些修改和新增内容?/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/71bfaa63-151a-48c1-828c-3db8a413d761.jpg" title="元素-2.png" alt="元素-2.png"//pul style="list-style-type: disc " class=" list-paddingleft-2"lip style="text-align: justify text-indent: 0em "胶囊用明胶空心胶囊 —— Cr 检测,为了增强检测方法的专属性,新增 ICP-MS 法为仲裁方法。/p/lilip style="text-align: justify text-indent: 0em "相比于 2015 版药典,2020 版药典化药部分修订了元素杂质限度和测定指导原则。/p/lilip style="text-align: justify text-indent: 0em "将药品中元素杂质 PDE 值的 30% 定义为控制阈值,作为元素杂质水平显著性的衡量指标。/p/lilip style="text-align: justify "关于元素形态部分,元素杂质测定指导原则中指出当总砷测定量超过了限度,为证明无机态砷是否符合规定,则可能需要测定不同形态的砷量;对于有可能含有甲基汞的品种(例如,从鱼中得到的物质)的限度则应在各品种项下列出。/p/lilip style="text-align: justify "元素杂质测定指导原则规定的限度不直接适用于原料药和辅料。/p/li/ulp style="text-align: justify text-indent: 2em "针对 2020 版中国药典化药元素杂质的分析方法及限量,安捷伦的两套方案均可以更加高效,准确满足其要求。/pp style="text-align: left text-indent: 2em "span style="color: rgb(0, 112, 192) "strong快速智能化方案 — 电感耦合等离子发射光谱法/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/c28c0cae-c630-42d4-8590-2475b8406597.jpg" title="元素-2.png" alt="元素-2.png"//pp style="text-align: justify text-indent: 2em "自 2015 版开始,电感耦合等离子体发射光谱(ICP-OES)法作为化药元素杂质检测手段,被新增入中国药典。该方法具有快速、基质耐受性强等优势。/pp style="text-align: justify text-indent: 2em "安捷伦全新一代 ICP-OES 独有的超低检出限可以实现 24 个元素同时分析,充分满足 2020 版药典中元素杂质的限量要求:/pul style="list-style-type: disc " class=" list-paddingleft-2"lip style="text-align: justify text-indent: 0em "安捷伦 ICP-OES 业内首家实现水平垂直双观测的技术,对于药典中元素杂质不同的限度要求可以轻松应对。/p/lilip style="text-align: justify text-indent: 0em "全新升级的光路系统,可以有效提升 Pb、As 等元素的检出能力,应对口服类用药不再有后顾之忧。/p/lilip style="text-align: justify text-indent: 0em "在业内,安捷伦 ICP-OES 仪器首次配备智能定量大师 IntelliQuant,该模块将根据实际药品的分析智能化给出谱线的推荐星级排名,所以即便是元素分析新手,也不会因为谱线的选择而发愁,可以轻松实现化学药品的多元素同时分析;曾经有过选错谱线而造成假阳性的不堪经历将不再出现,让谱线选择交给强大的智能数据系统。/p/lilip style="text-align: justify "全新安捷伦 ICP-OES 软件中的智能拓展 QC 功能,可以更加快速简单实现 ChP 方法学验证。/p/li/ulp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 281px " src="https://img1.17img.cn/17img/images/202006/uepic/d6431328-7210-4975-988e-2597a90102d1.jpg" title="元素-3.png" alt="元素-3.png" width="560" vspace="0" height="281" border="0"//pp style="text-align: center margin-bottom: 15px "span style="font-size: 14px "strong图 1 Agilent 5800 ICP-OES测试低浓度Pb的标准曲线(根据药典限值)/strong/span/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 350px height: 267px " src="https://img1.17img.cn/17img/images/202006/uepic/1d97f3fe-f6af-4dd7-ba65-58ab3d0969ea.jpg" title="元素-4.png" alt="元素-4.png" width="350" vspace="0" height="267" border="0"//pp style="text-align: center "span style="font-size: 14px "strong图 2 Agilent ICP-OES 智能拓展 QC 功能/strong/span/pp style="text-align: left margin-top: 15px "span style="color: rgb(0, 112, 192) "strong全能高效方案 — 电感耦合等离子体质谱法/strong/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/7d7398ab-4e0d-40d0-873b-4d35a7ef92ce.jpg" title="元素-2.png" alt="元素-2.png"//pp style="text-align: justify text-indent: 2em "电感耦合等离子体质谱法(ICP-MS),因其快速多元素同时测定、质谱干扰少、检出限低以及专属性强等优势,已然撑起各国药典的检测大梁,成为元素杂质分析的首选技术。/pp style="text-align: justify text-indent: 2em "针对 2020 版药典化药限量要求,安捷伦 ICP-MS 系统的硬件及软件也有更好的应对方案。/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong1、软件内置药典元素杂质指导原则方法/strong/span/pp style="text-align: justify text-indent: 2em "针对 2020 版药典要求,安捷伦 ICP-MS 的 MassHunter 软件内置中国药典以及 ICH 和 USP 化药分析方法,一键调用,看似复杂的方法验证,软件已都内置好,只需根据给药途径进行选择,便可以轻松达成方法到报告的完美工作流。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 231px " src="https://img1.17img.cn/17img/images/202006/uepic/9b0330b6-4eaa-4bb8-b817-e78ee1a95c7a.jpg" title="元素-5.png" alt="元素-5.png" width="560" vspace="0" height="231" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 3 MassHunter 中预设“元素杂质测定指导原则”方法/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong2、化药测定,消解有困难,直接有机进样/strong/span/pp style="text-align: justify text-indent: 2em "元素杂质检测,传统的化药前处理方式就是水溶、酸溶、湿法消解或者微波消解。但对于某些含有复杂官能团的化学药,常会遇到以上几种方式都处理不了情况,这可怎么办?对于安捷伦 ICP-MS 来说,最简单的方式就是 100% 有机溶剂溶解后直接进样。/pp style="text-align: justify text-indent: 2em "What?ICP-MS 能耐 100% 有机溶剂吗,分析还能稳定吗,是否需要很强的参数调节经验?这些问题是来自很多药厂 ICP-MS 分析猿的心声。安捷伦 ICP-MS 拥有 20 年左右的有机样品直接分析经验,第一批使用 100% 有机溶剂直接进样的客户都是在 21 世纪初,直至今日该技术已经过 4-5 代的迭代,可实现有机分析方法内置化,无需优化常见的有机分析参数即可直接进样分析。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 207px " src="https://img1.17img.cn/17img/images/202006/uepic/a4c35f71-7091-4d40-b949-fd4eff0fe89f.jpg" title="元素-6.png" alt="元素-6.png" width="560" vspace="0" height="207" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 4 有机样品分析方法内置化/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "有机溶剂溶解样品后,24 个元素都可以稳定分析吗?一个新的问题又出现了,接下来可以看看针对 2020 版中国药典中 24 元素,安捷伦 ICP-MS 测试 DMSO 溶解的这 24 类元素的表现。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 600px height: 533px " src="https://img1.17img.cn/17img/images/202006/uepic/d2d911c2-f3e0-4c70-8435-aa78c894e6bf.jpg" title="元素-7.png" alt="元素-7.png" width="600" vspace="0" height="533" border="0"//pp style="text-align: center text-indent: 2em "span style="font-size: 14px "strong图 5 DMSO溶解 24 元素标准曲线 (根据药典限值)/strong/span/pp style="text-align: justify text-indent: 2em margin-top: 15px "span style="color: rgb(227, 108, 9) "strong3、方法学验证,专业的工作流/strong/span/pp style="text-align: justify text-indent: 2em "安捷伦是业内唯一家推出 2020 版中国药典化药中 24 元素配套标液的厂商,该标液可以满足口服和注射给药类型的样品测试。/pp style="text-align: justify text-indent: 2em "商品化的 2020 版药典的分析服务方案,由制药行业资深工程师在客户现场采用客户提供药品进行方法验证和培训指导,同时附带全流程 SOP。对于难做的、易挥发、不稳定的元素,您所想要的 know-how 或许就能在这一本专业的 SOP 中探寻到。/pp style="text-align: center margin-top: 10px "img style="max-width: 100% max-height: 100% width: 560px height: 296px " src="https://img1.17img.cn/17img/images/202006/uepic/214046de-8836-4268-851b-0d8397c93183.jpg" title="元素-8.png" alt="元素-8.png" width="560" vspace="0" height="296" border="0"//pp style="text-align: center text-indent: 2em margin-bottom: 10px "span style="font-size: 14px "strong图 6 Agilent 制药行业元素分析完整方案/strong/span/pp style="text-align: justify text-indent: 2em "对于元素杂质的控制是药品整体控制策略的一部分,采用专属性更强的方法可以更好确保元素杂质的测试和评估,安捷伦快速智能的 ICP-OES 方案突破传统仪器的检出能力,可以满足药典中口服类药物全元素的测试;全能高效的 ICP-MS 方案标配高基体引入系统,内置有机进样方法,可以高效完成 100% 有机溶剂溶解进样,兼顾高效和准确性,可以更好保证符合药典的测试。/pp 【安捷伦】供稿br//p
  • 岛津推出ICP-MS新品 扩大药品元素杂质分析解决方案
    p style="text-align: center "img src="http://img1.17img.cn/17img/images/201603/insimg/1a44defd-ec76-4b81-a77c-10a8d9ee6a07.jpg" title="ICP-MS2030.jpg"//pp  2016年3月7日,岛津公司宣布推出ICPMS-2030电感耦合等离子体质谱仪。新ICP MS-2030是岛津公司应对药品元素杂质ICH * Q3D准则所推出的新产品。ICH * Q3D准则规定了24种有毒元素每天摄入的限制量,并要求对这些元素进行高灵敏度、高精度测量。ICP MS-2030满足这些要求的ppt水平高灵敏度,主要是因为新产品中采用了新开发的碰撞池、内部结构优化、FDA 21 CFR Part 11合规性、自动分析方法开发功能、独特的测量结果评价功能,优秀的性能能够为客户提供高可靠性的分析结果。br//pp  美国药典规定了杂质元素限量(USP 232 )和推荐的检测方法ICP-MS(USP 233 ),将在2018年1月生效。/pp  USP 735 中,X射线荧光光谱法被采用为一般的分析方法。对于这些需求,岛津提供了元素杂质分析的整体解决方案,从FDA 21 CFR Part 11规定的不需要样品制备的筛查分析EDX-7000/8000,到ICPMS-2030的高灵敏度和高精度分析。/pp  ICPMS-2030将在近日在美国亚特兰大召开的PITTCON 2016上展出。/pp style="text-align: right "编译:刘丰秋/p
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP232对元素杂质的限量要求及USP233对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP233规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。
  • 肝素钠与其类似物杂质的高效分析
    由于肝素钠在分子量分布和电荷差异上的异质性,对其进行有效分析一直是一个挑战。而且,这些杂质通常具有与肝素钠相类似的特性,使得在使用分析方法时很难区分肝素钠与其杂质。为了有效将肝素钠从杂质中(包括生产过程产生的杂质如硫酸皮肤素和非法添加的杂质如多硫酸软骨素)分离出来,美国药典(USP)颁布了一种采用离子交换色谱鉴定肝素钠及其杂质的色谱方法(注:中国药典对肝素钠的检测方法和USP相同)。然而,目前市面上的离子交换色谱柱很少能够满足USP的分离度标准,因此,迫切需要有一种新型填料来对其进行改善。赛分科技近日开发了一种离子交换色谱柱&mdash &mdash Glycomix&trade SAX,可对如肝素钠这样的带多电荷聚糖样品实现高效分离。图1肝素钠、硫酸皮肤素和多硫酸软骨素在Glycomix&trade SAX上的分离色谱图色谱条件Column:Glycomix&trade SAX, 4.6 x 250 mm Guard column: Glycomix, 4.6 x 50 mmMobile phase:A: 0.04% NaH2PO4, pH 3.0 B: 0.04% NaH2PO4+14% NaClO4, pH 3.0Flow rate:0.22 mL/minGradient:20% - 90% B in 60 minutesWavelength:202 nmColumn temp:25 ℃Injection volume:10 mLPressures:9.5 barSample:20 mg/mL Heparin sodium 1 mg/mL Dermatan sulfate (DS) 1mg/mL Oversulfated chondroitin sulfate (OSCS) in H2O 在Glycomix&trade SAX柱上,肝素钠和硫酸皮肤素的分离度为3.8,肝素钠和多硫酸软骨素之间的分离度为5.8,远远超过USP所要求的1.0和1.5。图2 肝素钠、硫酸皮肤素和多硫酸软骨素的标准曲线图3 Glycomix&trade SAX的批次重现性 更多信息:http://www.sepax-tech.com.cn/products/tjpz1/lzjh/Glycomix/13.html 《Glycomix&trade SAX产品手册》 点击下载关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站:www.sepax-tech.com.cn www.sepax-tech.com
  • 检测药物杂质,保障药品安全——“化学药物杂质研究及检测技术”网络会议,7月27日开播!
    众所周知,青霉素类注射剂使用前需要进行皮试。由于批次不同,使用前需要严格进行确认时候过敏。否则会导致严重的超敏反应,重则危及生命。资料表明,青霉素过敏中有90%都是由于其中的杂质过敏。由于药物化学和提纯工艺的发展完善,制剂的质量也在不断提高,因此过敏反应发生的概率降低。那么危及生命安全的杂质究竟是何物呢?在药品中都有哪些类型的“杂质”呢?药物杂质的分类和相关政策 药物杂质是指无治疗作用或影响药物的稳定性以及疗效的物质。由于杂质检测和含量控制对药品质量控制以及安全用药密切相关,国家药品监督管理局(NMPA)对药物临床前研究中的杂质分析越来越重视。因此,在已经实施的2020年版《中国药典》中对于药品安全性的监管更加严格。尤其是在化学药品杂质检测方面,相对2015版有较大程度的增修。在二部化学药部分,直接指出需要加强杂质检测的力度:“进一步完善杂质和有关物质的分析方法,推广先进检测技术的应用,强化对有毒有害杂质的控制;加强对药品安全性相关控制项目和限度标准的研究制定”。四部通则中新增《遗传毒性杂质控制指导原则审核稿》,对药物遗传毒性杂质的危害评估、分类、定性和限值制定进行了指导。我国早在2017年6月14日正式加入ICH (人用药品注册技术要求国际协调会),成为全球第8个监管机构成员,此次,化学药部分对元素杂质的控制要求引入了ICH(Q3D)部分,与ICH的规定几乎一致。可见,2020 年版《中国药典》编制大纲要求化学药基本达到国际标准。因此,从“杂质限量”这个维度来看,药物的规格只有两种,即“合格”与“不合格”。药物的杂质有哪些类型呢?应用什么样的分析方法可以进行检测呢?化学药物杂质的分类与检测方法化药中的杂质可分为有机杂质、无机杂质、残留溶剂。对于新药及其制剂来说分为:有活性组分的降解产物、活性组分与赋形剂和(或)内包装/密封系统的反应产物、遗传毒性杂质以及药包材杂质。关于杂质的分析方法,对于有机杂质的分析(起始物、副产物、中间体、降解产物等),使用色谱法分析居多;对于无机杂质(重金属,无机盐等),通常采用ICP/AA/ICPMS等仪器分析;对于残留溶剂杂质,则以GC分析为主。贯穿于药品研发的整个过程的理念就是保证安全。选择合适的分析方法,准确地测定杂质的含量,综合毒理及临床研究的结果可以更好地研究药物杂质。基于此,7月27日,仪器信息网(instrument.com.cn)与天津市分析测试协会共同举办“化学药物杂质研究及检测技术”网络主题研讨会,以期为广大生命科学、制药工作者们提供交流平台,促进相关技术的发展。本次会议特邀报告嘉宾:天津医科大学刘照胜教授、天津大学药学院陈磊副教授、天津市药品检验研究院抗生素室杨倩药师以及河北省药品医疗器械检验研究院化学药品室副主任徐艳梅工程师。同时邀请到来自赛默飞世尔科技的刘钊工程师、岛津企业管理(中国)有限公司的孟海涛工程师以及沃特世科技的陆金金工程师为我们解读药典相关的政策变化和最新的仪器应用案例。(会议详情请您报名或点击阅读原文获取)【报名二维码】小惊喜:成功报名会议+转发会议页面至朋友圈或专业群+截图后—可加专业交流群、会议预告、资料获取、会议回看… … 关注微服务,参会不迷路微信搜索“仪器信息网微服务”,获取百场会议信息,做仪器行业学习的领航者。
  • 戴安公司提供检测肝素钠中杂质的方法
    去年发生的美国百特公司使用美国SPL公司在中国控股的常州SPL公司提供的 &ldquo 肝素钠&rdquo 原料生产的&ldquo 肝素钠注射液&rdquo 在美国集中出现不良反应,美国食品药物管理局(FDA)随后公布检验结果,在药物原料中验出&ldquo 多硫酸软骨素&rdquo 的成分。 硫酸软骨素是一种从动物关节、软骨等组织中提取出来的生物衍生产品,可作为食品添加剂。在问题&ldquo 肝素钠&rdquo 里检测出来的是发生过化学变化的类似肝素钠分子的多硫酸软骨素,故美国对肝素钠原料中杂质的含量给予限定,并将新的检测方法纳入美国药典,对中国肝素钠出口厂进行限制。中国国家食品药品监管局针对此事件于去年4月要求国内肝素钠药品生产企业必须在现行的肝素钠药品质量检测标准的基础上,增加多硫酸软骨素检测项目,以确保产品质量安全。 目前美国药典中针对肝素钠杂质的检测方法有两种:液相法和离子色谱法。两种方法均涉及到了戴安公司的技术。 液相色谱或离子色谱法:该方法使用常规液相色谱仪或离子色谱仪,戴安的IonPac AS11离子色谱柱,紫外检测器。该方法能够直接分离样品中的硫酸皮肤素、多硫酸软骨素以及肝素钠,主要用于检测肝素钠中的多硫酸软骨素。 离子色谱法:该方法使用带有脉冲安培检测器的离子色谱仪。将肝素钠样品水解,肝素钠中有机杂质会水解为半乳糖胺,用戴安公司的氨基酸捕获柱、保护柱、CarboPac PA20分析柱进行分析,通过脉冲安培检测,得到半乳糖胺的含量,水解样品溶液中的半乳糖胺在总氨基己糖中的含量不得超过1%。主要用于检测肝素钠中的有机杂质。 戴安中国有限公司应用中心现可提供以上分析方法,如大家对上述分析方法感兴趣,请与戴安公司应用中心联系:010-62849182戴安中国市场部2009年4月10号
  • β-内酰胺类抗生素高分子杂质的检测
    &beta -内酰胺类抗生素中的高分子杂质是引发速发型过敏反应的过敏原,是药物质量控制过程中的重点检测项目。目前药典中关于&beta -内酰胺类抗生素中高分子杂质的测定多采用葡聚糖凝胶Sephadex G-10自填装玻璃管柱,存在柱效低、分离时间长、分离度差、批间重现性差、操作不便等缺点,为了解决这些问题,采用小粒径、高分辨率的体积排阻色谱成品柱已成为&beta -内酰胺类抗生素中高分子杂质检测的必然趋势。 赛分科技体积排阻色谱柱SRT(5 &mu m)、 Zenix&trade (3 &mu m)&mdash &mdash 水溶性体积排阻色谱柱 SRT和Zenix色谱柱固定相采用专利的表面修饰技术(专利US 7,247,387B1和US 7,303,821B1),通过在高纯度具有良好机械稳定性的硅胶基质上,键合一层均匀的纳米厚度中性亲水薄膜而制备得到。 ● 采用可控的化学修饰技术,能确保柱与柱之间有着可靠的重现性;● 精心设计的大孔体积可保证高的分离容量以及优异的分辨率;● 表面亲水涂层覆盖完全,使之具有优异的色谱柱稳定性,延长色谱柱寿命;● 低盐浓度洗脱,适合LC-MS分析;● 专利的表面修饰层,确保对样品的最大回收率;● 广泛适用于生物分子及水溶性聚合物的分离和检测。 SRT和Zenix色谱柱对于水溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。Mono GPC &mdash &mdash 油溶性体积排阻色谱柱 Mono GPC以具有极窄粒径和孔径分布的高交联度聚苯乙烯/二乙烯苯(PS/DVB)颗粒为基质,孔径分布均一,使分析中保留时间与分子量具有准确的线性关系。高交联度的多孔颗粒具有优异的化学和物理稳定性,因此在更换有机溶剂时可以使分子量校正曲线的形状及色谱柱的柱效几乎保持不变。Mono GPC填料具有大的孔体积,可确保对聚合物分离有着高的分辨率。 Mono GPC对于脂溶性&beta -内酰胺类抗生素中高分子杂质的检测具有良好的效果。Zenix-150对头孢地嗪钠高分子杂质的检测注:分离度按照2010版《中国药典》附录VH计算。&mdash &mdash 样品来源于某制药公司良好的批间重现性&mdash &mdash 色谱条件同上 Zenix SEC-150 材料 表面键合亲水薄膜的硅胶颗粒大小 3 &mu m孔径 (Å )~ 150蛋白分子量范围 500 - 150,000水溶性聚合物分子量范围 500 - 25,000pH 稳定性 2 &ndash 8.5,短时可耐pH 8.5-9.5反压 (7.8x300 mm)~ 1,500 psi最大耐受压力 (psi)~ 4,500盐浓度范围 20 mM - 2.0 M最高使用温度 (oC)~ 80流动相的兼容性 常规水相及有机相溶剂应用实例头孢地嗪钠头孢西丁头孢米诺钠头孢拉定头孢呋辛酯头孢地尼头孢泊肟酯美洛西林钠磺苄西林钠头孢尼西头孢噻肟钠头孢噻吩钠比阿培南阿莫西林头孢噻利头孢丙烯泰比培南酯磺苄西林钠破坏物盐酸头孢替安头孢硫脒头孢特仑新戊酯头孢哌酮钠 注:点击链接可见图谱。 优质服务● 提供免费的产品试用● 提供实际样品的色谱柱筛选和方法确认促销公告即日起至8月30日,凡购买一支体积排阻色谱柱,第二支体积排阻色谱柱享受五折优惠或赠送一支高端C18柱。注:第二支体积排阻色谱柱市场价不得高于第一支。订货信息产品名称粒度孔径规格订货号 SRT SEC-1005 &mu m100 Å 7.8x300 mm215100-7830 SRT SEC-1505 &mu m150 Å 7.8x300 mm215150-7830Zenix SEC-1003 &mu m100 Å 7.8x300 mm213100-7830Zenix SEC-1503 &mu m150 Å 7.8x300 mm213150-7830Mono GPC-1005 &mu m100 Å 7.8x300 mm230100-7830关于赛分科技 赛分科技有限公司(Sepax Technologies, Inc)总部位于美国特拉华州高新技术开发区,致力于开发和生产药物与生物大分子分离和纯化领域的技术和产品。赛分科技是集研发、生产和全球销售为一体的实业型企业。公司主要产品为液相色谱柱及耗材、固相萃取柱(SPE)及耗材、液相色谱填料以及分离纯化仪器设备。在液相色谱领域里,赛分科技已开发出了100多种不同型号的液相色谱材料,涵盖了反相、正相、超临界(SFC)、手性(Chiral)、离子交换、体积排阻、亲和、HILIC等各种类别,为世界范围内液相色谱产品最为完善的企业之一。 赛分科技的创新技术使之生产出具有最高分辨率及最高效的生物分离产品,包括体积排阻、离子交换、抗体分离、和糖类化合物分离色谱填料和色谱柱,可广泛地应用于单克隆抗体、各种蛋白、DNA、RNA、多肽、多糖和疫苗等生物样品的分析、分离和纯化。赛分科技先进的技术和完善的产品线已使赛分成为全球生物分离的领航者。 公司网站: www.sepax-tech.com.cn www.sepax-tech.com
  • 原料药中杂质分离和特征描述战略性方法
    原料药中杂质的分离和特征描述的战略性方法 迈克尔 道. 琼斯, 玛丽安 特渥辛, 罗布 Plumb,宋相晋, 约翰 Shockcor, 乔斯 卡斯特罗 佩雷斯 和 安德鲁 奥宾 沃特世公司, 米尔福德市, 马萨诸塞州, 美国, 01757 简介 监测化合物中的杂质对于生产制剂和原料药的公司来说是有既得利益的,除了法规要求外,还有其它很多原因。杂质的鉴定可以帮助发现潜在未知的降解途径,虚假的过程/专利保护侵害,和/或遗传毒性影响。杂质的分析是劳动密集型的工作,包括方法开发,杂质分离技术和各种各样的分析方法,以得出所感兴趣杂质的真实结构。 这篇文章介绍了一种战略性的方法,该方法应用了高分离液相色谱理论和强制降解研究,以最大化生产原料药喹硫平中的杂质。高分离液质联用和核磁被用来解释结构。 方法学 分析 仪器: ACQUITY 超高效液相 色谱柱: ACQUITY UPLC™ BEH C18 规格: 100 x 2.1mm, 1.7µ m 流动相: A: 20mM Ammonium 碳酸氢铵, pH10 B: 乙腈 梯度: 见图 1 和 2 柱温: 650C 进样量: 3 µ L 检测器: ACQUITY PDA @ 250 nm ACQUITY SQD 扫描范围 100-1000amu 质谱条件 仪器: Waters SYNAPT™ 软件: Masslynx™ 4.1 离子源: ES+ 毛细管电压 (kV): 3.2 提取电压 (V): 4.0 脱溶剂气温度 (0C): 350.0 源温度 (0C): 120.0 脱溶剂气流速 (L/Hr): 650.0 锁定质量: 300pg/µ L白氨酸/脑啡肽@ 50µ L/min 质谱/质谱参数设置 飞行时间 椎孔电压 (V): 15 碰撞能 (V): 变化从15到30 采集范围: 质谱 100 - 1000Da 质谱/质谱 50—600 Da 制备 沃特世质谱引导的纯化系统 泵 2454二元溶剂管理器 进样/收集器 2767 检测器 2998 光电二极管阵列 质谱 3100 色谱柱 100X19mm XBridge, 5 um 溶剂 A = 10 mm 碳酸氢铵 pH 10 溶剂 B = 乙腈 流速 25/mL/min 梯度 B 经过10分钟 从5% 到60% 95% 有机相保持5分钟 核磁 仪器参数见图9 观察,制备和分离 喹硫平的酸解 该杂质鉴定方法(以前建立的)被用来鉴定喹硫平原料药在0.1mol/L盐酸中降解的主要杂质。图1: pH 9 的碳酸氢铵, ACQUITY BEH C18 2.1x100 mm 1.7um, 乙腈, 0.8mL/min. 650C, 20 分钟, 15-39%B到10.5分钟, 39-43%B到14.4分钟, 43-95%B到18分钟, 保持95%B到20分钟.制备分离的准备 此方法为了更快的速度、更低的温度和更短的色谱柱,而进行了再优化,同时又能保持主要杂质和喹硫平间足够的分辨率 . 为什么呢? 在从超高效液相方法转换到制备型高效液相时,有些因素必须要考虑: 保持分离效率: L/dP (柱长度/颗粒度) 例如: 50 mm、1.7 um色谱柱的L/Dp为29,411,和具有30,000 L/Dp 值的150mm、5um制备柱等效 能使用更短的制备柱吗?在杂质402的分离中,100 mm的制备柱仍能提供足够的柱效以完全分离杂质。 在放大制备梯度中,对于制备流速,柱体积数必须保持合适的数值。如果这些因素都被考虑到,从超高效液相方法转换到制备型高效液相是能保证相似的选择性的。 从超高效液相放大到制备色谱 传统上, 从分析型高效液相放大到制备型高效液相使用同样的色谱柱长度和颗粒度,并运用下面的公式: Fp= Fa [(Dp)2]/[Da2] 注: Fp=制备柱的流速 Fa=分析柱的流速 Dp=制备柱的内径 Da=分析柱的内径 其它工具: Waters 制备放大计算器可以计算每个梯度段的时间,柱长度的变化和进样量。 聚焦梯度 *克利里等. 纯化过程中聚焦梯度的影响, Waters 应用文献 720002284EN 质谱引导的自动纯化 主要杂质m/z =402的分离在分析和化学上都很容易。 最大化产出: 8g/mL 喹硫平的储备液在 600C、0.1mol/L的盐酸中加热回流8小时, 以增加m/z=402 杂质的 产量 制备上样研究允许色谱柱进样20uL。 图3: 强制降解样品的制备色谱 仪器优势: 分离是通过Masslynx™ Fractionlynx™ 软件中的自动质量触发进行的。 ACQUITY BEH C18的方法可以无缝转换到XBridge C18 制备柱 通过超高效液相对感兴趣杂质的再优化可提供快速方法,以通过UPLC-SQD, UPLC-oaTof, 和/或UPLC MS/MS进一步确认分析 鉴定,确认和特征描述 分离的确认 通过质谱引导的纯化系统收集的m/z = 402的馏分被收集并挥干。该分离步骤得到了28.6mg m/z = 402的杂质。用甲醇稀释得到浓度为286µ g/mL和2.86µ g/mL的溶液,并用3分钟的UPLC-SQD方法进样以确认分离的质量 . 图4: 被分离杂质m/z=402的UPLC UV/SQD 确认 质量精度的重要性 杂质的质荷比为402,等于喹硫平(m/z = 384)加合了18 amu。样品进样到Waters SYNAPT™ MS可得到精确质量数以确认元素组成 . 图5: m/z = 402杂质的元素组成. 双键等价值(DBE) 、低的同位素匹配度(low i-Fit)、毫道(mDa)和结果都支持第一个分子式 加合可以在喹硫平结构中氧化一个点,同时减少一个双键 . 图6: 建议的结构. A.) 硫代氧化物 或 B.氮代氧化物 )? 氮代氧化物为基础的结构的确认 通常, 在低PH流动相的反相液相中,含有氮代氧化物杂质的化合物在原料药后被洗脱出来。超高效液相是在pH=9.0下进行的,所以使用pH=3.0的甲酸铵和乙腈的梯度检测速度变快 。 图7: 酸性流动相条件下进样时,酸降解喹硫平的洗脱顺序。因为感兴趣的峰在喹硫平原料药前被洗脱出来,所以氮代氧化物的可能性不大 . 质谱/质谱分析 精确质量数质谱/质谱分析是为了确认任何碎片数据的存在已进一步支持喹硫平的硫代氧化物降解形式。指示性的碎片最有可能是分子量很低的碎片,在那里所发生的裂解可以区分硫代氧化物和氮代氧化物。 图 8: 裂解分析显示了硫代氧化物/裂解为基础的结构。 通过分析m/z = 137.0063的碎片可得出: -元素组成是 C7 H5 O S -质量精度为 0.2毫道尔顿 -双键等价值(DBE) = 5.5, 对于环结构转换为4.5,而对于硫代氧化物为1.0。 如果N=C是完整的,由于四价碳缺少质子,所以不可能得到228.0480和175.1428的碎片 NMR 支持的数据 核磁数据和建议的结构是一致的 图 9: 被分离的喹硫平中m/z = 402杂质的C13-NMR and H-NMR 结论 从超高效液相转换到制备色谱 -保持L/Dp不变被证明是放大可能性的关键因素 -相容的化学性质可最小化分离度差异 -利用强制降解研究可增加最大化产出的潜能 -质谱引导的馏分收集可保证正确的杂质收集 杂质确认和说明 -ACQUITY UV/SQD 为很多的馏分组成提供快速确认 -高分辨率 SYNAPT MS为母离子和产物离子的元素组成确认提供很好的质量精度 -对于有显著不同色谱行为的结构,高/低PH值流动相测试可以帮助确定建议的结构 -尽管采集了核磁数据(不是决定性的),但它的精确质量质谱/质谱数据证明了杂质是硫代氧 化物而不是遗传毒性结构。
  • 药物中为何有基因毒性杂质?质控技术应怎样保障用药安全
    药物杂质研究贯穿于整个药物质量研究过程,并且对于一些可能具有特殊的生理活性或毒性的杂质,更需要进行结构确证和安全性验证。在此背景下,仪器信息网于2024年7月30日成功举办了“第八届化学药物杂质研究及质控技术”主题网络研讨会,本次会议汇聚了来自各药物研究院所、高校和仪器厂商的专家学者,共同探讨了化学药物杂质研究的最新进展和技术应用。会议内容涵盖了药物杂质研究的新思路、新技术,以及针对基因毒性杂质、元素杂质等特定杂质的分析方法。与会专家分享了他们在药物杂质研究领域的丰富经验和研究成果,并通过实际案例分析展示了新技术和新方法在药物杂质检测中的应用价值。点击看精彩报告回放》》中国医学科学院医药生物技术研究所副研究员山广志针对化学药物杂质研究新思路和新技术,指出对于药物中的杂质研究包括对已知杂质、特定杂质、潜在杂质和毒性杂质研究四种类型。从化学药物杂质研究方法趋势上,需要更全更快的技术对化药杂质进行检测。报告中也有对水苏糖有关物质HPLC-CAD测定、UHPLC-紫杉醇有关物质检测的实例介绍,还有对二维色谱定量基因毒杂质和超临界色谱分析手性异构体实际应用案例的方法开发和优化,展现了新技术新方法助力精准化学药物杂质检测的思路。岛津企业管理(中国)有限公司高级应用工程师孟海涛从液质联用技术在药物杂质分析中应用进行了报告,包括普通杂质定性分析的方法及案例、基因毒性杂质测定的相关方案两个方面。在报告中,展示了Trap-free 2D-LC/MS杂质分析系统、多/单中心捕集环二维杂质鉴定系统和二维捕集柱杂质鉴定系统等的适用范围以及应用案例。对基因遗传毒性杂质中磺酸酯类、亚硝胺类等常见种类检测进行了介绍,并对雷尼替丁、二甲双胍中NDMA的检测进行了实际案例的介绍。最终展示了岛津在药物杂质分析上有着丰富的应用方案以及仪器技术支持。中山大学药学院副教授徐新军依据其团队对罗达那非原料药的研究进行了报告,报告介绍了其团队研究发现罗达那非是一种PDE5抑制剂,可选择性的抑制PDE5,而对其他的亚型磷酸二酯酶没有或具有微弱的抑制作用,主要用于治疗男性勃起功能障碍。同时对罗达那非原料药进行了残留溶剂分析、有关物质分析、杂质谱分析、杂质结构鉴定、含量分析等。最终依据研究结果,制定了罗达那非原料药质量标准草案,建立和验证了罗达那非原料药含量测定和有关物质检查HPLC方法,以及残留溶剂GC检查方法,还初步建立了罗达那非原料药的杂质谱。在研究过程中所展现出的晶型差异、校正因子测定和杂质谱等方面的不足是后续指导该研究推进的方向。安捷伦科技(中国)有限公司原子光谱应用工程师曾梦根据多年原子光谱检测仪器的经验,对ICP-OES/ICP-MS 在化学药物元素杂质分析中的应用研究进行了报告。曾老师提出在制药行业分析杂质元素时面临的挑战包括有如何快速建立仪器分析方法?高盐样品如何兼顾检出限和稳定性?有机溶剂直接进样?前处理过程如何保证元素的稳定性?元素质谱干扰如何消除/数据准确性如何保证?针对以上无机元素在分析中面临的挑战,展现出ICP-MS在制药行业分析无机元素时所具有的解决方案优势。另外还介绍了ICP-OES在制药行业中针对检测难点,该技术具有其Intelli Quant半定量技术、全谱直读且分析时间最优化、软件的全流程实时监测等优势,能更好的应用于药物杂质元素的检测中。广东省科学院测试分析研究所(中国广州分析测试中心)博士周熙通过高分辨技术、药物杂质、有关物质定性分析和基因毒性杂质定量分析四个部分对高分辨质谱技术在药物杂质分析中的应用进行了报告。报告中详细介绍了杂质研究的重要意义、化学结构鉴定难点,并通过实际案例进行了辅证,最终表明利用高分辨质谱技术是可以实现有关物质的快速定性。同时结合制备液相分离,可以解决液相与质谱流动相不兼容的问题。报告中也体现出高分辨质谱已经越来越广泛的应用于基因毒性杂质的定量分析。本次会议为广大药学工作者和检测人员提提供了药物杂质研究的最新进展和技术应用,有助于推动化学药物安全和质量控制水平的研究进程。会议内容丰富,案例靠实,是一次宝贵的学习和交流机会。相信在新技术和新方法的推动下,化学药物杂质研究能够朝着更全更快的检测趋势发展,为保障公众用药安全做出更大的贡献。
  • 知名专家聚姑苏,热议药物杂质研究新动向
    杂质控制是药品质量控制的核心内容之一,杂质研究及控制是药品安全保证的关键要素。我国药物杂质研究水平仍处于起步阶段,与国际前沿杂质研究相比呈现相对滞后的态势。国际上杂质研究不断吸纳分析科学成熟的新成就,分析仪器越来越专业化,联用技术越来越成熟,各类数据库越来越丰富,联机智能化解析系统越来越普及,为杂质研究提供了更为完善的利器。为助力我国药物杂质研究水平的快速提升,为期两天的“2017药物杂质研讨会苏州论坛”于11月2日在苏州市吴宫泛太平洋酒店开幕,多位业界权威专家与超过百位的与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。本论坛由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办。岛津公司倾情赞助并承办了此次论坛。“2017药物杂质研讨会苏州论坛” 于11月2日在苏州市吴宫泛太平洋酒店开幕 论坛现场传真在论坛开幕上,中国药学会制药工程专委会主任委员俞雄先生首先发表致辞为论坛的召开送上祝福。他在致辞中详细介绍并解读了近期国家重磅出台的一系列医药领域相关新政,指出这些新政的推出令我国医药领域迎来了创新发展的大好局面。他在致辞中强调为进一步提升药物杂质分析水平,先进的分析方法与分析工具必不可少,期待通过此次论坛的举办能够促进药物分析技术的发展。在致辞的最后,他特别感谢岛津公司对会议举办的赞助支持。 随后,岛津公司分析仪器事业部吴彤彬事业部长发表致辞。他在致辞中谈到,岛津公司与医药行业专家用户密切沟通,倾听用户声音,开发出一系列具有世界领先水平、独具特色的药物分析工具与应用方法。当今,药物杂质分析重要性日益增加,好的分析工具与方法已成为推进医药行业发展的重要因素。在致辞的最后他预祝论坛获得圆满成功。华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍了美中药协创建发展的历程和近年来为促进医药和生物技术的发展、促进美中生物医药科技和商业领域的合作与交流以及协助会员事业发展而开展的卓有成效的活动。他特别感谢岛津公司为美中药协举办的多个活动所给予的大力度支持。 中国药学会制药工程专委会主任委员俞雄先生发表致辞岛津公司分析仪器事业部吴彤彬事业部长发表致辞华海药业副总裁、中国药学会制药工程专委会委员李敏博士介绍美中药协简短的开幕式结束后,论坛进入大会报告环节。首先由浙江大学求是特聘教授、博士生导师潘远江先生做了题为《现代分离分析技术在药物研究中的应用》的演讲。潘教授在演讲中首先介绍了现代质谱技术的发展与应用成果,其中涉及到了诺贝尔化学奖获得者岛津公司职员田中耕一先生的研究成就以及岛津公司先进的高端质谱仪的优异性能。潘教授在演讲中基于其长期从事有机分析、药物分析与质谱分析等领域的研究所获得的丰富科研成果为与会者详尽介绍了液质联用技术、现代逆流色谱技术等在药物杂质研究中的最新应用和发展趋势。潘教授的演讲引起与会者的热烈反响,双方召开了深入探讨。浙江大学求是特聘教授、博士生导师潘远江先生做演讲潘教授的演讲引起与会者的热烈反响大会报告环节,岛津分析应用支持中心姚劲挺经理做了题为《现代色谱及其联用技术在药物杂质分析中的应用》的演讲。他在演讲中详细介绍了岛津多种先进的药物杂质分析技术与应用。演讲内容包括:LC/LCMS在药物杂质分析领域的新技术:方法开发系统,用于SFC/LC杂质分析方法快速开发,兼容超临界色谱和液相色谱;高效能制备纯化系统,提高杂质制备效率;鬼峰捕集柱,解决流动相本底干扰,确保得到准确的杂质定量分析结果;二维杂质鉴定系统,用于实现不挥发性缓冲液流动相条件下直接进样进行杂质液质联用分析;三重四极杆液质联用仪进行基因毒性杂质定量分析技术等。岛津分析应用支持中心姚劲挺经理做演讲 与会者和姚劲挺经理探讨技术细节问题随后,华海药业副总裁、中国药学会制药工程专委会委员李敏博士做了题为《药物杂质结构快速解析的策略:运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略得到高可信度的杂质结构》的演讲。他在演讲中指出,当前各国药政部门对药物杂质研究的要求越来越高,如何开展好这项研究尤其是降解杂质的研究是本讲座的重点所在。如何将强降解研究做好还存在很多误区,对此,他结合其丰富的研究成果详尽讲述了运用LC-MSn分子指纹谱技术与合理的药物强降解研究的组合策略,快速得到高可信度的杂质结构和杂质的形成机理。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲在论坛首日的最后一个演讲是华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做的题为《药物杂质研究的申报要求与基本思路》的演讲。在演讲中,他剖析了当前药物申报在杂质研究中遇到的一些常见问题以及结合丰富的案例说明了如何满足注册申报的要求。他指出有效、全面、系统的开展药物的杂质研究变的尤为重要,为保证药品质量安全性,杂质研究也正发挥着越来越重要的作用。华海药业高等分析技术中心副主任、公司原料药分析总监助理朱文泉先生做演讲 论坛报告环节结束后,组委会特别安排了与参会者互动时间。演讲嘉宾和与会者就药物杂质的研究方法与策略、申报和案例展开了深入探讨。现场气氛非常热烈。演讲嘉宾和与会者展开了深入探讨,现场气氛非常热烈李敏博士和岛津公司分析仪器事业部刘兵经理(左)主持了今天的论坛论坛次日将有如下演讲,敬请继续关注后续报道。 王玉博士,江苏省药检院原副院长, 国家药典委员会理化专业委员会委员 演讲题目:有关物质分析方法建立和验证 李敏博士,华海药业副总裁, 中国药学会制药工程专委会委员 演讲题目:药物降解化学与药物降解杂质的研究 黄伟新博士,资深药物分析专家, CMC和CGMP法规独立顾问 演讲题目:如何确保分析实验室的数据完整性 张袁超博士,前FDA临床药理高级审评员 演讲题目:从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 岛津生物药杂质和辅料分析解决方案,助推质量研究进程
    生物技术药物(简称:生物药)是什么?采用DNA重组技术或其他创新生物技术生产的治疗药物。 为什么制药企业这么关注质量控制?大多生物药由微生物或哺乳动物细胞制备而来,在生产过程中极易受到各种生物或理化条件的影响。 生物药品监管中质量控制都包括哪些内容?主要包括理化特性分析、生物学活性测定、生产工艺的优化、残留杂质检测、制剂安全性研究等等,贯穿生物药整个生产过程。其中,杂质与辅料的分析与控制,是不可缺少的环节之一。 岛津有好的解决方案吗?岛津全新推出《生物药杂质和辅料分析解决方案》,快来关注。 法规与技术指南生物医药行业发展迅猛,各种新技术、新产品不断出现,生物技术产品相关标准不断提高。为指导和规范生物技术药物的研究与评价工作,国家食品药品监督管理总局(NMPA)针对生物技术药物质量控制,先后出台了若干法规和技术指南,并紧跟国际前沿、不断完善条例标准、引进成熟技术应用于生物技术药物的质量控制,使得药物安全性得到进一步提高。这些法规和技术指南均是我国生物技术药物质量控制研究的重要指导依据,为生物技术药物杂质与辅料分析提供了强有力的指导和技术支撑。 岛津《生物药杂质和辅料分析解决方案》岛津紧跟生物药行业发展,将前沿先进的分析手段应用到生物技术药物研发过程,继推出《蛋白类生物技术药物开发和临床试验解决方案》后,细化生物技术药物研究领域,推出《生物药杂质与辅料分析解决方案》,助力生物技术药物质量研究发展。 《生物药杂质和辅料分析解决方案》 典型方案概览 一、浸出物与工艺杂质分析 应用案例1:LCMS-8050定量分析单抗生产用一次性细胞培养袋浸出物抗氧化剂bDtBPP标准品色谱图 bDtBPP标准曲线相关参数(采用1/C加权) 应用案例2:LCMS-8050定量测定Fc融合蛋白药物原液中的氢化可的松残留加标样品MRM谱图(2.0 ng/mL) 校准曲线参数(线性回归,权重为1/C) 应用案例3:ICPMS-2030测定蛋白药物中的杂质元素含量 样品分析结果及加标回收率(部分元素结果)备注:1.N.D表示未检出;2.*为使用No Gas模式,其余为He气碰撞模式 二 、聚集体与不溶性微粒分析 应用案例1:利用岛津Nexera Bio生物兼容液相系统分析贝伐单抗生物类似药的多聚体UHPLC-UV (220nm) 贝伐单抗生物类似药的色谱图 UHPLC-UV (220nm) 贝伐单抗生物类似药六次进样分析的色谱图 应用案例2:动态颗粒图像分析系统iSpect DIA-10测试生物药中不溶性微粒的粒度、粒形和颗粒圆度单抗药物中不溶性微粒粒形图 三、药用辅料分析 应用案例1:LC-MSMS定量重组人白介素中十二烷基硫酸钠实际样品中SDS典型色谱图 工作曲线及相关系数不同厂家重组人白介素产品中SDS的含量测定应用案例2:应用台式MALDI-TOF对注射剂中辅料吐温80进行降解评价不同保存条件下注射液制剂中吐温80的一级质谱图 更多应用详情,请关注岛津官网,下载岛津《生物药杂质和辅料分析解决方案》。*本文内容非商业广告,仅供专业人士参考。
  • 《中国生物工程杂志》“质谱技术临床应用”专辑征稿
    《中国生物工程杂志》(CHINA BIOTECHNOLOGY)是国家一级学会——中国生物工程学会会刊,月刊,创刊于 1976 年,由中国科学院主管,科技部中国生物技术发展中心、中国生物工程学会和中国科学院文献情报中心共同主办。  《中国生物工程杂志》是《中国核心期刊要目总览》核心期刊、中国科技论文统计源期刊(中国科技核心期刊)和中国科学引文索引(CSCD)核心期刊,并被多个国内外重要检索系统收录。  《中国生物工程杂志》拟于 2023 年上半年出版“质谱技术临床应用专辑”。本期专辑由白求恩精神研究会检验医学分会董书魁主任担任执行主编,马庆伟、贾辰熙、宋文琪、李维、王晓东等质谱技术领域专家担任副主编,现邀请生物医学相关领域科研工作者投稿。  征稿栏目:研究报告、技术与方法、综述等征稿主题:  1、质谱技术发展历程  2、质谱技术在精准医学的应用进展  3、质谱技术在临床医学与基础医学研究中的应用  4、质谱技术与精准用药指导  5、质谱技术与微生物检测  6、质谱技术与微量元素检测  7、质谱技术临床应用专家共识,等  投稿方式:请将投稿发送至邮箱:biodata@sina.com,邮件主题请标明“质谱技术临床应用专辑稿件——稿件名称”。通过初审后的稿件将通知作者正式网上提交,并组织开展同行评审。稿件写作格式请登录期刊网站 www.biotech.ac.cn,查看《中国生物工程杂志投稿须知》。  投稿截止日期:2022 年 12 月底。  《中国生物工程杂志》编辑部  2022 年 9 月 30 日
  • 知名专家聚姑苏,热议药物杂质研究新动向(续)
    11月2日,由中国药学会制药工程专委会、美中药协中国分会 (SAPA - China)联合主办,岛津公司倾情赞助并承办的“2017药物杂质研讨会苏州论坛”在苏州市吴宫泛太平洋酒店进入第二天的日程。业界权威专家继续与超过百位的与会者热议药物杂质的研究方法与策略、申报和案例。论坛现场传真 在论坛次日的大会报告环节,首先由江苏省药检院原副院长、国家药典委员会理化专业委员会委员王玉博士做了题为《有关物质分析方法建立和验证》的演讲。他想演讲中深入介绍了建立有关物质分析方法的基本思路,以及分析方法应满足的要求,并通过对ICH、美国药典和中国药典中有关验证项目和参数的解读,论述了如何对有关物质分析方法进行验证,讨论验证应达到的要求和验证中的注意事项。 江苏省药检院原副院长、国家药典委员会理化专业委员会委员王玉博士做演讲 华海药业副总裁、中国药学会制药工程专委会委员李敏博士继首日演讲后,再次做了题为《药物降解化学与药物降解杂质的研究》的演讲。他从药物的结构、与辅料的相容性(对于制剂方法而言)以及相应的降解化学入手,系统地讲述水解降解化学、氧化降解化学、药物与辅料间各种常见的降解化学、并重点介绍各类氧化降解的机理,包括对开发制剂处方有重大影响的药物自氧化化学Udenfriend Reaction。根据每个药物分子的结构,判断其最可能的降解途径,然后设计合理的强降解反应,使得到的降解杂质谱与真实条件下产生的杂质谱最大程度上相似,从而为制剂的设计和高质量的指示稳定性分析方法的开发提供坚实的基础。通过对药物降解化学的理解使设计的制剂处方具有满意的稳定性,是质量源于设计(QbD)理念的一个具体表现。华海药业副总裁、中国药学会制药工程专委会委员李敏博士做演讲 随后,资深药物分析专家、CMC和CGMP法规独立顾问黄伟新博士做了题为《如何确保分析实验室的数据完整性》的演讲。他在演讲中首先指出近几年来,国外有关法规部门在CGMP检查和PAI审计期间已经观察到一些国内制药企业严重涉及数据完整性的GMP违规。这些数据完整性相关的违规会导致了法规部门对某些企业实施许多监管行动,包括警告信、进口禁令和合意判决,数据完整性的违规会破坏了公司药品质量并严重损害其业务和声誉。在药品生产和实验室检测过程中,数据完整性是其质量控制体系的一个重要环节,确保药品质量安全和有效。也是法规部门监管药物质量和保护大众健康对制药行业管理一个基本要求。他在演讲中例举了审计中观察到一些常见药企数据完整性问题和讨论生产过程和实验室数据完整性的重要性。同时按照CGMP和FDA数据完整性的指导原则探讨了药企怎样按照这个指导原则来完善其数据完整性,并基于风险的策略预防和有关数据完整性问题应采取哪些有意义和有效的措施去管理生产和QC实验室数据。资深药物分析专家、CMC和CGMP法规独立顾问黄伟新博士做演讲 前FDA临床药理高级审评员张袁超博士带来了论坛的最后一个演讲《从新药临床试验申请(IND)到新药报批(NDA):美国新药申报中FDA对药物有关物质的要求》。他在演讲中从临床前毒理学及临床安全性的角度,讨论了FDA在审核相关原料药方面的监管要求。结合CMC资料的法规要求,讨论了从最初的IND(新药临床试验申请)启动,经过临床研究各阶段,直至NDA(新药上市许可申请)申报,这当中各个不同阶段所采用的药物开发策略。并讨论了FDA关于IND/NDA的一般法规政策以及与FDA审评部门的沟通环节,包括会议及信息交流情况。前FDA临床药理高级审评员张袁超博士做演讲 在论坛次日,专家和与会者继续热议药物研究的新方法关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 飞纳电镜|锂电池全自动杂质分析方案助力锂电子电池工艺优化
    2021 年 7 月 14 日 - 16 日,以“锂电安全”为主题的第四届全国锂离子电池安全性技术研讨会在江苏省苏州市张家港隆重举行。 本次会议由清华大学核研院锂离子电池实验室和清华大学-张家港氢能与先进锂电技术联合研究中心共同发起组织并主办,由清华大学核研院何向明老师当任会议主席,清华大学王莉老师、刘凯老师和冯旭宁老师当任会议副主席。飞纳电镜的应用技术专家与来自全国新能源、汽车、船舶、电子等行业代表展开深入交流,探讨电子显微分析技术在分析检测领域的应用。 无论是正极材料,还是负极材料,一旦在原材料或者生产过程中引入杂质元素,这些杂质不仅会降低其中活性材料的比例,还会催化电极材料与电解液的副反应,甚至穿刺隔膜,严重影响电池的电化学性能,造成安全隐患。因此,严格把控锂电池的清洁度以及对杂质元素进行有效分析,至关重要。就此飞纳电镜针对锂电池行业的这一痛点,会上为大家分享了飞纳全自动锂电池杂质分析方案。 会议采取演讲加讨论的会议形式。来自清华大学、中科院青岛能源所、上海交通大学、中国科技大学、武汉理工大学、华东理工大学、中电院安全技术研究中心、比亚迪、CATL、ATL、莱茵技术有限公司、华为技术有限公司的 330 余位锂电领域的专家、学者和企业研发人员参加了本次会议。会议开幕式由清华大学锂离子电池实验室主任何向明老师主持,彰显了清华大学在锂离子电池安全性研究方面的突出地位和鲜明特色。 清华大学核研院何向明老师 清华大学王莉老师 会议围绕锂离子电池安全性问题根本起因及安全技术研发出发,从电池热失控分析、关键电池材料改进和研发进展、电池安全性设计与制造,安全测试评估以及电池安全使用等多个视角,30 位专家学者分享了他们的最新研究成果与科研理念。在为期一天半的会议中,会场充满了浓郁的学术氛围,参会代表踊跃提问,专家学者细致耐心解答,大家收获到的不只是充分的交流,还有珍贵的友谊和扎实的合作。本次研讨会的成果将推进锂电产业与技术的合作与发展,进一步提升我国安全性锂离子电池的研发与生产水平。
  • 国之重器 | 稀土——iCAP TQ ICPMS分析高纯稀土中痕量稀土杂质
    "工业的维生su"稀土元素被誉为"工业的维生su",具有丰富的磁、光、电等特性,在现代高新技术产业和功能材料中起到了至关重要的作用。这些材料主要包括稀土永磁材料、稀土催化材料、发光材料、贮氢材料、磁制冷材料、光导纤维、磁光存储材料、巨磁阻材料、稀土激光材料、超导材料、介电材料等,在航空、航天、信息、电子、能源、交通、医疗卫生等领域得到了广泛的应用。高纯稀土通常是指纯度高于99.99%的稀土金属或其氧化物。高纯稀土材料中存在的其它稀土杂质元素常会对最终产品的功能产生影响,随着提炼技术的不断改进,使得稀土氧化物纯度可达到6N(行业上通指稀土杂质元素含量),从而对于痕量稀土杂质测定方法提出了更高的要求。针对高纯稀土中的杂质检测会有下面难点。主基体的浓度太高,会干扰杂质元素的检测对于高纯稀土中的杂质检测,往往样品是5N(99.999%)及以上级别含量非常低,需要仪器有足够高的灵敏度案例分析测定6N级高纯稀土氧化钆(Gd2O3 )中的14种稀土杂质目前氧化钆中稀土杂质检测方法主要依据国标GB/T18115.7中的电感耦合等离子体发射光谱法( ICP-OES) 和质谱法( ICP-MS)。在ICP-OES分析中,由于Gd的谱线十分密集,对其他稀土杂质元素的谱线干扰非常严重,测定范围在0.001%-0.05%之间,难以满足更高纯度要求。单杆ICP-MS 质谱法具有更低的检出限,但Gd具有7个天然丰度同位素,当采用SQ-ICP-MS方法进行氧化钆中其它稀土杂质元素分析时,Yb和Lu将受到严重的[ 152 154 155 156 157 158 160 Gd16 17 18 O]+和[ 152 154 155 156 157 158 160 Gd 16 17 18 OH]+类多原子类干扰,在现有的GB/T18115.7标准方法中,针对氧化钆中镱和镥的测定制定了采用C272柱分离钆基体后再进行ICP-MS法测定方案,各杂质元素的最di定量下限可达0.0001%,能够实现近5N级钆纯度的测定。但这种分离技术非常费时,步骤繁琐,对方法测定结果的影响因素多。"赛默飞三重四极杆ICPMS"赛默飞三重四极杆ICPMS不经任何基体分离手段,能轻松解决高纯稀土元素中杂质元素检测的干扰问题,为高纯稀土质量提供有力质量控制手段。(点击查看大图)实验测定结果(点击查看大图)iCAP TQ 三重四极杆ICPMS-高纯稀土元素检测利器超qiang抗干扰能力利用 Q1的iMS智能化质量筛选功能可有效地将高纯稀土基体离子进行剔除,然后通过Q2碰撞反应池中加入特定的反应气体,如氧气或者氨气,将待测稀土杂质离子或者基体氧化物离子的质量数进行迁移,解决了质量数重叠干扰。简单操作赛默飞Qtegra™ 智能科学数据处理软件(ISDS™ )通过自带的Reaction Finder 软件工具,能够自动为分析任务确定最you测量模式,帮助用户方便地建立方法,节省了日常方法建立所消耗的时间。为全国稀土行业的客户提供解决方案赛默飞采用iCAP TQ ICPMS/MS三重四极杆质谱仪无需采用繁杂的分离稀土基体技术,就能轻松去除基体元素形成的干扰,从而准确测定稀土杂质元素的含量,为全国稀土行业的客户提供解决方案以满足行业发展的迫切需求。如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制