当前位置: 仪器信息网 > 行业主题 > >

极性组分

仪器信息网极性组分专题为您整合极性组分相关的最新文章,在极性组分专题,您不仅可以免费浏览极性组分的资讯, 同时您还可以浏览极性组分的相关资料、解决方案,参与社区极性组分话题讨论。

极性组分相关的资讯

  • 食用油极性组分检测仪适用于哪些食用油
    食用油极性组分检测仪适用于哪些食用油,食用油极性组分检测仪适用于多种食用油,包括但不限于煎炸用的植物油、动物油及精炼油。它能够快速检测食用油中的极性化合物组分含量,从而评估食用油的品质和安全性。这种检测仪尤其适用于餐饮企业、食品加工厂、超市等场所,用于定期检测食用油的质量和安全性,确保食品的质量和安全。同时,它也适用于食药局、质监部门、学校企业食堂、连锁快餐店、油炸食品制造商、面包房等行业,以及用户实验室对食用油品质的初步筛选。以上信息仅供参考,如有需要,建议您查阅食用油极性组分检测仪的产品说明书或咨询相关厂家。
  • 独家专利实现超宽极性分析,岛津全谱二维液质助您突破“极”限!
    导 读全谱二维系统(左)可与三重四极杆(右上)或飞行时间质谱(右下)组成联用系统在生物医药、食品分析、环境毒理等领域,通常需要分离、分析多种目标物质,当各目标物极性差异很大时,则难以用一个方法完成对所有物质的分析。高极性和低极性目标物,在常规的色谱分离方案中,正如同鱼和熊掌,不可兼得。目前普遍的应对方案,是采用两种色谱分离方法,如亲水作用色谱柱和反相色谱柱,分别对应进行高极性物质和中低极性物质的分析。这样的处理方式,往往需要耗费双倍的前处理时间、分离分析时间,不利于提高分析效率;且会产生双份数据、交叉冗余数据,定性分析难度高。那么,有没有鱼和熊掌兼得的方案呢?答案是肯定的,岛津全谱二维液质应运而生,通过创新设计,满足超宽极性化合物的一针分离需求,突破您的分析“极”限!独家专利——超宽极性分析得心应手该系统拥有岛津独家专利和特色技术,具有以下特点:全谱二维液相关键技术示意图&bull 极性覆盖范围宽 使用了“极性分流”技术,一针同时分离超宽极性目标物,极性范围宽达-8.79~26.86,涵盖适用于ESI、APCI离子源的绝大多数化合物,助您突破“极”限!全谱二维液相与各普通色谱系统的极性范围(LogP值)对比&bull 高效在线稀释 专利技术,可实现大体积强溶剂中目标物的在线稀释,并达到目标物在反相色谱柱的柱头聚焦的效果。&bull 超低极性化合物的分离 使用“双重梯度”技术,实现超低极性化合物的洗脱和分离,为极性范围拓宽锦上添花。&bull 其他特点(1)分析效率高。将正相色谱和反相色谱合二为一,因此只需原来分别进样分析的一半时间,包括前处理、分离平衡、数据处理时间,大大提高分析通量。(2)一机多用,自由切换 内含一套标配UHPLC,无需任何管路或软件改动,即可自由切换常规UHPLC和全谱二维液质系统,满足不同的分析需求。案例分享——三大典型应用场景01代谢组学中全组分分析代谢组学是利用统计学手段,对比不同组别间代谢物数量和含量上的差异,从而得到组别间的差异代谢物,并为生物、生理、医药、临床、环境、营养等学科提供重要指导的热门领域。常见的代谢物有高极性的如氨基酸、有机酸等,低极性的有各类脂质、脂肪酸等。因此,代谢组学的分析分离方法,涵盖代谢物越多越全面,则统计分析的数据越加可信,得到的差异代谢物更为真实。因此,全谱二维液质其超宽极性化合物分析的特点,与代谢组学分离需求完美匹配。全谱二维液质与传统液相检测数量(A)和目标物分布(B)比较图摘自文献《Simultaneous Analysis of the Metabolome and Lipidome Using Polarity Partition Two-Dimensional Liquid Chromatography&minus Mass Spectrometry》, Anal. Chem. 2021, 93, 15192&minus 15199.02宽极性多目标物数据库的建立在公安、疾控、农兽残食品相关、医药、临床等行业,大规模目标物筛查数据库已成为防控、质检的重要手段。质谱因其灵敏度高、定性能力强,已成为数据库的主要检测仪器。一个完整的数据库包含所有筛查化合物的质谱信息,还需提供如色谱柱、流动相等分离条件以确定出峰时间并对目标物色谱峰进行定量。然而,目前常见的色谱系统,分为反相和正相,分别适用于中低极性和高极性化合物的分离。如果把目标物筛查比喻成钓鱼,则数据库就是鱼塘,鱼塘里的化合物越多,则筛查(钓鱼)成功的概率就越大。但反相和正相两个色谱系统,则相当于淡水鱼鱼塘和咸(海)水鱼塘,一般需要分开前往钓鱼。而全谱二维液质相当于将两者合二为一,大大简化色谱分离程序,提高筛查成功率。基于全谱二维液质建立的代谢组学数据库(左)和化妆品数据库(右)03极性相差较大的两类关联物质的同时分析在某些应用场景,需要关注同一基质中,具有关联功能的不同极性化合物,比如生物基质中的药物及其代谢产物,植物、药材中极性差异较大的两类天然产物,或一大类化合物中极性差异较大的不同小类化合物,如种类繁多的硝基多环芳烃。全谱二维液质因其宽极性覆盖特性,在这类应用场景中也可以得展所长,帮助科研人员简化分离过程,创新的解决问题。A全谱二维同时分离丹参四种活性物质;B、C药典需分开两个方法分离结语全谱二维液质系统拥有在线稀释专利技术和极性分流、双重梯度特色技术,是岛津独家产品,适合于代谢组学中全组分分析,可作为宽极性多目标物数据库的通用分离平台,并适用于极性相差较大的两类关联物质的同时分析,而且该系统内含一个UHPLC子系统,方便日常常规检测。该系统为新一代多功能质谱前端平台,可与三重四极杆和飞行时间质谱联用,助力复杂基质中宽极性痕量物质的定性、定量、筛查和分析。如对本技术感兴趣,欢迎联系技术负责人钟博士skczqs@shimadzu.com.cn。撰稿人:钟启升本文内容非商业广告,仅供专业人士参考。
  • 视频:博纳艾杰尔首次推出油中极性组分分离系统
    仪器信息网讯 2014年9月24-26日,第七届慕尼黑上海分析生化展(analytica China 2014)在上海隆重召开,天津博纳艾杰尔科技有限公司销售总监牛玉峰先生接受了仪器信息网的视频采访。
  • 烯烃中常量和微量组分分析,中心切割一招搞定
    导读烯烃是人类社会经济和生产生活的重要原料之一,它是含有碳碳双键的一类碳氢化合物,通过聚合反应能形成具有各种特性与牌号的功能高分子材料,经过再加工成型为众所熟知的塑料器具、管材、人造纤维、合成橡胶等,满足并丰富人们多彩的物质生活需求。烯烃中不仅有常量组分,还有微量物质,它们共同影响着最终加工成型材料的特性。烯烃中乙烯、丙烯,一直被誉为石油化工的基石,如今,乙烯被视为定义化工产业水平的关键指标,丙烯则被称为化工产业链延伸的重要基础原料。我国现有⼄烯产能约4200万吨/年,丙烯产能约5000万吨/年,预计到“十四五”末,国内⼄烯产能将达到6500万吨/年,丙烯产能将达到7200万吨/年。市场需求带动烯烃的增长动力持续强劲,对于高品质烯烃质量的要求也更加严格。常见的乙烯、丙烯和丁烯等烯烃主要源于能源化工生产,不同厂家烯烃的生产工艺路线各异,既有石油催化裂化和裂解产生,也能从煤基合成气进行制备,组成比较复杂,往往含有大量烷烃、烯烃,同时还存在微量的杂质如极性的含氧化合物等。这些杂质不仅增加了烯烃聚合加工过程的氢耗和催化剂损耗,也影响了聚合烯烃的等级与品质。常规的气相色谱方法需要多次进样并更换不同色谱柱才能完成烯烃中的主要成分和各种杂质分析。有没有一种简便方法,一次进样就能实现烯烃中常量组分和微量物质的分析呢?答案是肯定的。想要“一招搞定”,实现如此复杂样品的高效率分离,就不得不提“先进流路技术”。先进流路技术——实现复杂组成的高效分离先进流路技术是什么?岛津公司的先进流路技术(Advanced Flow Technology,简称AFT)是采用新型流路控制技术的毛细管分析系统,可以高精度地将目标成分从复杂的原始样品中分离出来,实现高分离度并提高分析工作效率。它主要分为四种方式:反吹,检测器分流,检测器切换和中心切割。岛津先进流路技术软件界面主要特点和应用场景各控制方式的主要特点和应用场景示例如下。表1. 先进流路技术的控制方式特点与应用场景示例中心切割——简单实用的二维色谱分离中心切割是二维气相色谱常用的一种操作方式,通过无阀自动气体控制实现在设定时间段被分离物质切换流向,从第一根色谱柱一维模式进入第二根色谱柱二维模式分离。与全二维气相色谱中需要将所有一维分析组分再通过第二维分离的方式相比,采用中心切割后,可以根据需要选择一维色谱中难以分离的组分进入二维色谱继续分离,其他组分则在一维色谱中被分析检测。目前在能源化工分析领域已有很多标准方法都采用了中心切割二维色谱方法,常见的列于下表。对于烯烃分析,现在仍通过不同的方法去分别检测其中的含氧化合物和烃组成,影响分析效率,中心切割的方法有望在未来烯烃分析工作中大放光彩。表2. 国内外采用中心切割二维色谱方法的部分标准应用案例分享——烯烃的中心切割色谱分离• 仪器GC-2010Pro气相色谱仪• 分析条件进样方式:高压液体阀,0.2μL内置定量环;六通进样阀,500μL定量环进样口温度:150℃;分流比:3:1;FID检测器温度:200℃柱温程序:60℃(3min)→15℃/min→150℃(2min)→15℃/min→170℃(6min)色谱柱:Lowox 10m×0.53mm×10μm(1st柱);PLOT Al2O3/S50m×0.53mm×15μm(2nd柱);Rtx-1 1.8m×0.32mm×5μm(平衡柱)• 典型二维色谱图中心切割二维气相色谱法通过特殊的接口,两种分离机理不同的色谱柱串接在一起,将第一根色谱柱难分离的部分转移到第二根色谱柱做进一步分离分析。图1. 烯烃中常量和微量组分分析色谱图• 重复性和检出限采用中心切割技术,对烯烃样品连续进样6次,计算各组分的重复性和检出限(S/N=3),结果显示该方法对含氧化合物的检出限1 ppm,重复性RSD0.4%;烃类检出限0.4 ppm,重复性RSD0.5%。结语“十四五”期间我国烯烃产能持续攀升,尤其是高品质烯烃新工艺与新产品的开发水平不断提高,将对化工行业高质量发展起到积极促进作用。岛津先进流路控制的中心切割二维色谱可以有效应对愈加严格的烯烃质量控制,一招搞定烯烃中复杂常量和微量化合物组成分析,提高质量分析能力和工作效率。本文内容非商业广告,仅供专业人士参考。
  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 1.2万手机型空气颗粒物监测仪遭顺手牵羊
    志愿团队遗失的同型号检测仪  &ldquo 那部监测仪器对我们十分重要,请大家多多帮忙!&rdquo 26日上午,广州蓝天行动科普志愿小组、广州清气团科普小组联合发布了一条紧急求助,寻找他们遗失在珠江新城的一台重要仪器。  华南农业大学在校大学生、环保志愿者小周在进行公益活动时丢失了一部昂贵的监测仪器。该仪器是手机型空气颗粒物监测仪。据描述,该仪器椭圆形,黑色,背面凸出,有手机界面和空气检测界面,主要利用光散射原理,监测pm10/pm2.5/pm0.3等空气污染物。该仪器国内产量很少且价格高昂,出产时市场价格在1.2万元左右,是社会爱心人士捐赠的。&ldquo 本次也是国内环保界首次使用手持式仪器做监测。仪器对于项目团队来说十分重要。&rdquo 而根据监控录像显示,仪器极有可能是路过的两位大妈顺手牵羊偷走的。  据小周回忆,10月24日下午3时,他和另外两名志愿者队员,来到冼村路靠近广州图书馆路段的天桥下,坐在花圃旁边分工,三人将小组分到的两个测试仪拿出来,放在花基上,其中一个仪器怀疑在不经意间被推入了花圃中。  下午5时左右,该小组使用其中一个仪器完成了测试,在清点物品时才发现遗漏了另一个。小周等人急忙原路返回寻找,最后在花圃内找到了装仪器的盒子。谁知打开一看,盒内的监测仪及数据已经丢失。  据介绍,该环保小组的志愿者在辖区猎德派出所调看了相关时段的监控录像。发现可能是两名过路的中年妇女捡拾。&ldquo 这两名一胖一瘦的中年妇女,在仪器遗失地点的草丛,确有明显的弯腰、摸索和捡拾物品的动作。&rdquo 不过,暂时他们还无法联系上这两位妇女,也无法寻找到仪器的下落。  如果有了解仪器下落的市民,可致电联系人晏生:13650731269或向猎德警方提供相关线索。
  • 北京协和医学院药物研究所靳洪涛、贺玖明团队成果:空间代谢组整合网络毒理学和质谱成像探究何首乌D组分肝毒性机制
    何首乌(PM)作为传统中药具有广泛的药理活性且临床应用广泛,其肝毒性一直备受关注,但由于其多成分、多靶点的特性,其毒性物质和机制尚未阐明。前期研究发现PM 70%乙醇提取物中,D组分(95%EtOH洗脱,PM-D的肝毒性最高,然而PM-D的肝毒性机制尚不清楚。  2022年8月,北京协和医学院药物研究所靳洪涛、贺玖明团队在Journal of Ethnopharmacology发表了题为“Integrated spatially resolved metabolomics and network toxicology to investigate the hepatotoxicity mechanisms of component D of Polygonum multiflorum Thunb”,提出系统整体的中药毒理研究策略,整合网络毒理学和空间质谱成像技术探究何首乌D组分肝毒性的潜在靶点及代谢机制,为何首乌肝毒性机制发现及中草药的相关组分药理毒理机制研究提供了新的方法和技术支持。  研究背景  前期基于斑马鱼胚胎模型对何首乌不同组分及单体成分进行肝毒性评估,发现何首乌D组分的急性毒性和肝毒性明显高于其他提取物,并分离鉴定了PM-D中27个化学成分,主要包含蒽醌类、多酚类、蒽酮类、二蒽酮类等,进一步以斑马鱼胚胎模型的表型终点(肝脏大小、肝脏灰度值和卵黄囊面积)评价何首乌D组分中主要化学成分的毒性,发现蒽醌和二蒽酮类与其他成分相比具有显著的肝毒性。前期的毒性筛选确定潜在毒性物质基础有助于进一步阐明其肝毒性分子机制。  本研究首次整合了网络毒理学和质谱成像技术应用于中药毒理机制研究,网络毒理学基于系统和整体的角度衡量复杂的“成分-靶点-疾病”网络关系为中药毒性机制探索提供了新的思路。基于质谱成像技术衍生的空间分辨代谢组学技术可在保留空间位置信息的基础上揭示生物组织中代谢物的时空分布特征,有助于理解代谢活动时空变化与组织病理和生理功能之间的关联和作用机制。以何首乌D组分的肝毒性机制研究为例,两种方法的整合应用为中药药理毒理机制研究提供新的研究策略。  技术流程    研究结果  1、病理及生化指标  急性毒性实验中,14 d内所有剂量均未观察到小鼠死亡或异常毒性症状且大体解剖未见明显病理改变。2g/kg剂量反复给药7天后,组织病理学检查发现给药组肝细胞肿胀,肝窦轻度扩张,少量微肉芽肿,肝细胞轻度变性/坏死等改变,血清生化分析显示,血清AST活性和TBIL含量显著升高,ALT和ALP活性水平呈上升趋势(图1)。  图1 | PM-D给药后小鼠病理及生化指标变化  2、毒性物质的定量检测  PM-D中蒽醌类化合物大黄素和大黄素-8-β-D-葡萄糖苷的含量分别为3,989.820 μg/g和12,677.423 μg/g (图2)。反式-大黄素-大黄素二蒽酮和顺式-大黄素-大黄素二蒽酮含量分别为1,847.708 μg/g和1,455.940 μg/g(图3)。    图2 | HPLC谱图  标准溶液(A)和样品溶液(B), 大黄素-8-β-D-葡萄糖苷(1)和大黄素(2)    图3 | MS谱图  标准溶液(A)和样品溶液(B), 反式-大黄素-大黄素二蒽酮(1)和顺式-大黄素-大黄素二蒽酮(2)。  3、网络毒理学分析  3.1PM-D肝毒性靶点和网络构建  经药物靶点预测和疾病靶点收集共获得了30个目标靶点网络构建结果显示mTOR、PIK3CA、AKT1、EGFR、ERBB2、ESR1、RPS6KB1、CTNNB1是核心的相关靶点(图4)。    图4 | 网络构建及靶点分析  (A)共同靶标集合  (B)药物-靶点-疾病网络  (C)PPI网络。  3.2 GO和KEGG富集结果分析  GO富集结果主要集中在生物过程中,涉及细胞内信号转导的正调控、TOR信号、对外来生物刺激的响应、细胞对内源性刺激的反应、激酶活性的正向调节、MAPK级联调控、凋亡过程的调控、活性氧代谢过程的调控等(图5A)。KEGG的富集信号通路主要包括PI3K-Akt信号通路、ERBB信号通路、AMPK信号通路、mTOR信号通路、肝细胞癌、HIF-1信号通路、Ras信号通路及MAPK信号通路等(图5B)。  图5 | GO富集分析(A)和KEGG富集分析(B)  3.3分子对接  分子对接结果显示大部分核心毒性成分都能与靶点紧密结合,二蒽酮类化合物顺式-大黄素-大黄素二蒽酮(Cis-emodin-emodin dianthrones),反式-大黄素-大黄素二蒽酮(Trans-emodin-emodin dianthrones),Polygonumnolide C4相较于其他成分结合能更低。 图6 | PM-D中成分与核心靶点的分子对接分析  (A)结合能热图分析 (B-D)结合构象可视化:  (B)反式-大黄素-大黄素二蒽酮- mTOR   (C)反式-大黄素-大黄素二蒽酮- EGFR   (D)Polygonumnolide C4- mTOR。  4.质谱成像分析  4.1高分辨、高覆盖、高灵敏的代谢物成像  质谱成像在单个像素点提取的代谢物峰可达数万种,覆盖了丰富的代谢物。作者发现两种含量较高的药物成分大黄素和大黄酸相关代谢产物仅在药物组的肝脏中高度富集。内源性代谢物精氨酸和牛磺胆酸等分布具有区域特异性(图7)。  图7 |AFADESI-MSI可视化PM-D给药后代谢物变化 (A)负离子模式下平均质谱  (B-E)内外源性化合物的空间可视化:大黄素(B), 大黄酚(C),精氨酸(D),牛磺胆酸及牛磺去氧胆酸(E)。  4.2代谢轮廓分析及差异代谢物鉴定  差异代谢物经过MS/MS鉴定,并采用MassImager软件可视化其空间分布特征,代表性差异代谢物的质谱图像如图8所示, 可观察到精氨酸、鸟氨酸、脯氨酸、牛磺酸类和肉碱类代谢物显著上调,部分脂质类代谢物显著下调。  图8 | 代表性差异代谢物质谱成像图  4.3通路富集分析  基于通路富集的结果,构建了包括已鉴定的关键生物标志物在内的代谢网络,揭示了胆汁酸合成、嘌呤代谢、脂肪酸氧化、三羧酸(TCA)循环和脂质代谢等参与了PM-D致肝毒性过程的代谢变化(图9)。图9 | 代谢网络分析  研究讨论  本研究首次应用质谱成像技术可视化PM-D中关键代谢物在肝脏中的分布并首次对PM中毒性成分二蒽酮类化合物进行定量检测及网络药理学分析预测潜在毒性靶标为何首乌毒性物质基础研究及潜在肝毒性靶点发现奠定了新的基础。  空间分辨代谢组学进一步挖掘出何首乌D组分的肝毒性生物标志物,包括氨基酸、酰基肉碱、胆汁酸、脂类等。基因富集和代谢网络综合分析表明,何首乌D组分的毒性机制可能涉及氧化应激、线粒体损伤和AMPK通路等导致的胆汁酸代谢、能量循环、嘌呤代谢和脂质代谢的紊乱相关,该研究有望为临床诊断和监测何首乌肝毒性的发生发展提供参考,并作为代谢适应和重编程的资源,以指导未来临床预后研究,为探索中药毒性机制提供新思路。
  • 全二维气相色谱-飞行时间质谱仪:破译白酒风味组分的秘密武器——访中国食品发酵工业研究院标准信息研究发展部基础研究中心高红波主任
    在竞争激烈的白酒行业,白酒的“品质”越来越受到社会和广大消费者的关注。为了更深入了解“十四五”白酒品质和安全标准化研究方向,日前,仪器信息网采访了中国食品发酵工业研究院标准信息研究发展部基础研究中心(以下简称:发酵院)高红波主任,请其为大家介绍白酒食品质量安全、风味标准化研究相关的内容。发酵院标准信息研究发展部长期致力于食品与发酵工业领域标准化工作,承担了全国白酒(SAC/TC358)、酿酒(SAC/TC471)等7个全国标准化技术委员会秘书处工作。高红波,教授级高工,2008年硕士毕业后入职发酵院标准信息研究发展部,专注于酒类食品质量安全标准基础研究工作,参与完成国家级、省级科研课题6项,负责完成酒类等食品质量安全检测标准近20项、授权专利2项,参与编写酒类检测标准化书籍2部;在酒类食品全产业链潜在食品安全风险因子预警检测技术及预防控制措施技术、危害分析与关键控制点技术体系等、酒类特征风味物质鉴定研究技术等具有十分丰富的经验。中国食品发酵工业研究院标准信息研究发展部基础研究中心 高红波主任仪器信息网:请介绍下您现在主要的研究方向?高红波:我本人2008年入职发酵院标准化中心,我们研究团队主要从事酒类食品质量安全指标、酒类风味组分标准化基础研究,具体工作如下: 食品安全方向:跟踪国际食品质量安全风险最新动态,开展酒类全产业链潜食品质量安全风险研究,研究其酿造全过程(酿酒原料-酿造过程-成品酒及酒接触的包装材料等)潜在食品安全风险因子的形成机理、最新检测技术、预防控制措施技术、酒类系列重要食品安全风险因子快速检测仪器的开发应用等。 食品风味研究方向:采用气相色谱、气相色谱质谱联用仪、气相色谱-嗅闻-质谱联用仪、全二维气相色谱-飞行时间质谱联用仪、高分辨质谱仪等国际领先综合分析技术开展酒类关键风味物质分析、年份酒的鉴别、基酒分级等技术研究应用,构建中国白酒关键风味物质标准化数据库和高通量风味物质标准化检测技术,为白酒质量分级、白酒品质可视化表达等相关标准研制提供技术支持和科学依据。仪器信息网:酒类食品安全与品质检测目前最常用的仪器及技术手段有哪些?它们的优劣势分别是什么?高红波:白酒风味物质分析从薄层层析色谱法开始,逐渐采用气相色谱仪与红外光谱仪及质谱仪联用鉴定香味组分。然而,由于白酒的风味物质有上千种,用传统一维色谱作分离基础的分析技术存在严重的峰容量不足问题,白酒风味物质无法有效分离,使得质谱定性非常困难。同一样品通常需要采用多种不同极性的色谱柱进行分离,再通过保留指数等进行定性 ,难以满足白酒类等复杂体系的风味物质剖析研究工作。仪器信息网:请问您团队当时为什么选择使用全二维气相色谱-飞行时间质谱联用仪进行酒类风味分析研究工作?高红波:我工作以来采用过各类分析技术开展酒类食品质量安全检测方法标准制定和相关科研项目研究,白酒风味物质的研究之前主要是采用固相微萃取(SPME)-气相色谱-质谱仪,但由于白酒的风味成分特别多,某些风味组分物质无法较好地分离鉴定。机缘巧合下,我们接触到了禾信仪器的全二维气相色谱-飞行时间质谱联用仪(GGT 0620),并采用该仪器合作开展白酒风味物质分析研究,该设备具有峰容量大、分离能力强、灵敏度高、定性准确度高,且拥有便捷的前处理进样平台和联动的软件控制功能。可以有效避免色谱峰共流出的问题,一次进样分析可得到几百种甚至上千种有效风味组分,极大提高了我们白酒风味物质分析的准确性和工作效率,这是常规的一维气质联用仪无法企及的。同时禾信仪器采用固态热调制器技术,摆脱了传统的液氮和其他制冷剂的使用,它无需使用任何制冷剂、成本也低、操作非常简便,且不受使用环境的影响,大大提高了用户体验,可极大程度地降低全二维气质联用仪的使用门槛,此外,该设备不需要频繁更换液氮和其他制冷剂,仪器的操作便捷性和低成本都利于推进该技术在食品行业风味分析中的应用研究。 全二维气相色谱-飞行时间质谱联用仪(GGT 0620) 酱香型白酒风味物质质谱图(GGT 0620) 典型白酒风味物质的比例示意图仪器信息网:基于科研需求和食品行业需求,您认为现在全二维气质联用技术有哪些需要提升或者改进的地方?高红波:全二维气质联用仪较一维气质联用仪具有更高的分辨率、灵敏度和更大的峰容量,在食品风味分析中发挥重要的作用,该技术解决了一些复杂组分定性定量分析的难题,能够同时对多种化合物进行定性定量分析,并对复杂体系中的未知成分具有更好的非靶向鉴别能力,在现代食品风味分析中有着广泛的应用前景。同时全二维气质联用仪作为一种新型的分析技术仪器,许多研究及相关技术需要进一步深入和改进。如全二维气质联用仪可分离出许多新型化合物,目前这些化合物缺少有效的标准样品,且现有的质谱库未收录相关的质谱数据,因此建立专业化标准化全二维气质联用仪定性谱库具有重要意义。其次,经全二维气质联用仪分析产生了大量数据,这些海量数据需要应用统计学方法或其他技术来分析,因此希望合作单位可以深度优化数据分析软件功能,把大量的化合物信息充分利用好,配置一个功能全面、强大的软件,比如嵌入一些常用的统计学软件,进行聚类分析、差异化分析等。另外希望完善中英文翻译功能,让企业用户方便使用。酒类风味分析室掠影仪器信息网:能否介绍下贵单位在白酒风味物质标准化数据库相关的工作?高红波:我国已经建立了近千种农药残留标准化数据库,但白酒风味研究还存在专业风味数据库缺乏的问题。在没有合适的谱图库的情况下,为了提高风味剖析的的准确性和科学性,相关高校、科研院所及龙头生产企业都会分别购买几百种或上千种风味标准物质,但是相关资源共享还存在一定难度。发酵院作为白酒行业的第三方权威单位,正在联合有能力并且愿意为行业做贡献的仪器公司,一起开展白酒挥发性和非挥发性风味物质标准化数据库开发,该数据库可进行资源共享推广到白酒行业及科研院所,极大提高白酒行业风味分析的准确性,推动技术进步、减少行业的重复工作。开展不同香型、相同香型不同产区白酒样品的风味物质分析,不断完善升级中国白酒风味物质大数据库组分数量和相关信息,建立白酒的风味物质标准化数据库,为白酒真实性鉴别提供科学技术依据。白酒风味物质标准化数据库仪器信息网:请介绍下“十四五”期间贵单位计划在白酒领域开展哪些基础研究工作?高红波:“十四五”期间白酒标准基础研究工作主要从白酒酿造微生态大数据、白酒感官标识、白酒关键风味等三个方面开展白酒品质表达标准化关键技术研究等,同时基于全二维气相色谱-飞行时间质谱联用仪(GGT 0620),开展白酒风味物质的高通量鉴定分析,结合风味阈值和风味特征等,筛选出关键组分物质,形成白酒关键风味物质可视化表达体系,积累白酒质量评价科学大数据,为白酒质量分级、白酒品质可视化表达,制定科学合理的白酒技术标准体系提供支持依据,丰富和完善标准内容,提升标准修订工作水平,发挥白酒国家标准的技术引领作用。
  • 【飞诺美色谱】极性农残检测,还是得请专业的!
    食品中极性农药的分析是食品安全和质量控制的一个重要方面。阴离子和阳离子极性农药是水溶性的,由于其物理化学性质,分析起来特别困难。此外,食品样品通常含有复杂的基质,会干扰目标分析物。色谱分析中,关键对的分离对样品定量和数据准确性起着重要作用,而关键对的分离离不开合适的样品制备和色谱柱选择性。传统上,使用多根色谱柱分析不同类别的极性农药,需要使用2套不同的仪器系统且选用2种不同的色谱柱,降低了实验室通量。此外,根据实验室Quppe提取方法中的多孔碳基分析柱可能需要多达30次菠菜提取物进样后才能达到平衡,这增加了复杂性,并且非常耗时。Phenomenex推出了Luna极性农药检测专用柱,可仅使用一根HPLC色谱柱对各种阴离子和阳离子极性农药进行“快准狠”的分离。该色谱柱可有效保留阴离子和阳离子农药,表明同一根色谱柱可用于正极性和负极性模式的分析。如图1和图2所示,该色谱柱的多功能选择性可实现阴离子和阳离子农药的反相和HILIC保留。极性农药残留分析的挑战图1:Luna极性农药检测专用柱对非衍生阴离子农药的分析结果图2:Luna极性农药检测专用柱对非衍生阳离子农药的分析结果
  • 全自动Digital Western Blot揭示多小脑回畸形发病新机制
    日本横滨市立大学医学研究生院的科学家,利用全自动Digital Western Blot,研究多小脑回畸形发病新机制,相应结果发表在Science Advances(IF:14.136):De novo ATP1A3 variants cause polymicrogyria.研究背景多小脑回畸形当神经母细胞增殖、分化、迁移或皮质组织在人类大脑发育过程中被中断时,就会发生皮质发育畸形。多小脑回是皮质发育畸形的一种常见形式,表现为存在许多异常小的脑回,产生不规则且融合的皮质表面。临床上,多小脑回导致各种神经系统症状,如癫痫、智力障碍和口运动功能受损。多小脑回畸形常见发病机制和临床特征编码α3-subunit的ATP1A3中的显性突变导致ATP1A3相关疾病的特征性功能性脑疾病,其至少具有三种不同的表型:儿童交替性偏瘫(AHC);快速发作性肌张力障碍帕金森综合征(RDP)和小脑性共济失调、反射消失、弓形足、视神经萎缩和感音神经性耳聋(CAPOS)。同时,ATP1A3的显性突变也会导致各种形式的发育性和癫痫性脑病,例如伴有或不伴有呼吸暂停的早期婴儿癫痫和脑病(EIEE)、伴有小脑共济失调的复发性脑病或发热引起的阵发性无力和脑病。研究内容日本横滨市大学医学院人类遗传学教研室的Satoko Miyatake等科学家,对124名患有多小脑回的患者进行了全外显子组测序,在8名患者中发现了de novo ATP1A3变体,且这8名患者没有表现出AHC、RDP或CAPOS的临床特征,而是出现了完全不同的表型:严重形式的多小脑回,伴有癫痫和发育迟缓。与AHC、RDP或CAPOS相关变体相比,检测到的变体在ATP1A3中具有不同的位置和不同的功能特性。在发育中的小鼠大脑皮层中,最严重患者过度表达ATP1A3变体的神经元中径向神经元迁移受损,表明该变体参与了皮质畸形的发病机制。全自动Digital Western Blot检测技术揭示ATP1A3损害Na+/K+ATPase亚基之间相互作用的分子机制利用全自动Digital Western Blot检测发现,与野生型相比,所有多小脑回相关变体的ATP1A3和成熟β1亚基的表达均降低,表明αβ-异二聚体的结合、折叠或运输受损。免疫共沉淀后,用全自动Digital Western Blot分析ATP1A3和ATP1B1(形成Na+/K+ATPase β亚基的蛋白之一)的结合。结果表明,多小脑回相关变体既影响了与β1-亚基的结合,也影响了αβ-异二聚体的正确折叠。最后用全自动Digital Western Blot检测了ATP1A3不同变体在细胞质、细胞器和质膜部分中ATP1A3和β1-亚基的相对表达,发现多小脑回相关变体在质膜组分中,ATP1A3和成熟的β1-亚基表达低。表明高尔基体中的两个亚基之间存在关联机制,以及它们随后向膜的异常运输。
  • 沃特世科技举办极性化合物分析网络讲座
    色谱条件优化之极性化合物分析挑战--沃特世全面解决方案    仪器信息网讯 随着液相色谱技术的发展,色谱柱技术也得到了迅速发展。针对常规色谱柱无法检测的极性化合物,waters 的宋兰坤博士利用仪器信息网的网络讲堂在12月23日为大家带来了一场非常精彩的在线讲座,她详细讲解了极性化合物分析带来的挑战和解决方案。本次讲座吸引了来自科研院所、检测机构及医药领域的专家学者等共计79人参加。  宋兰坤博士在讲座中首先介绍了反相色谱分析极性化合物时容易遇到的疏水塌陷问题。她指出疏水塌陷是和色谱柱固定相的设计有关,Waters的Atlantis T3亲水性化合物保留专用柱是采用三官能键合和封端技术,在增强极性化合物保留能力的同时,维持了对中等和强疏水化合物的适度保留能力。  Atlantis T3色谱柱分析极性化合物的机理为疏水作用力,可以采用纯水为流动相,最大程度的增加样品保留 其次通过减少填料上C18的覆盖率,使得样品更容易与残留硅羟基相互作用,也起到增加样品保留的效果。图 使用Atlantis T3 柱检测尿嘧啶  随后,宋兰坤博士指出如果反相色谱条件下仍没有好的保留或者MS响应很低,可以尝试选用HILIC柱。HILIC也叫亲水作用色谱,是正相色谱的一个“变种”,它避免了使用与水不相容的有机溶剂,流动相中含有水,又称“水相正相色谱”。  HILIC模式的三大优势在于:1、与反相色谱互补,可以检测在反相色谱柱中没有保留的强极性化合物 2、高比例的有机相可以增加ESI-MS响应,增强质谱的灵敏度 3、增加样品的高通量,通过PPT,LLE和SPE净化提取后为高比例有机相,HILIC模式不需要挥干和复溶,可以采用直接进样。  HILIC模式的保留机理,是极性待分析物在HILIC填料表面的水层和乙腈/水流动相之间进行分配,带电荷的极性分析物同带电荷的硅羟基发生阳离子交换作用,在带正电的分析物和带负电的硅胶表面存在氢键作用力。同时介绍了分析极性化合物时不同流动相的溶剂选择性和洗脱强度,并总结到随着溶剂极性的减弱,化合物的保留是在增加的。图 HILIC模式的保留机理  同时宋兰坤博士为大家对比了杂化颗粒和硅胶基质的HILIC色谱柱,在PH为5.5的条件下,进样2000针后,Xbridge HILIC 色谱性能仍然完好,硅胶基质HILIC色谱性能则有相当大的退化。图 杂化颗粒VS.硅胶基质HILIC的色谱柱化学稳定性  在将近1个小时的讲座之后,仪器信息网的网络讲堂进入在线提问环节,与会者踊跃提出问题,宋兰坤博士一一为大家做了详细解答。
  • 赫施曼助力多组分配液
    多组分配液常见于食品、药品、化妆品、化工、生物等试验及配方研发当中,一般有多种组分,每种组分有多种备选,而每种备选又有多种浓度。以锂电池电解液为例,如下图所示,其主要成分有溶剂、锂盐和添加剂三大组分,每个组分有多种选择。涉及的试验量会非常大,有大量的移液、配液和混液的工作。移液体积如果很小,是微升级别,实验室一般会用移液器(手动和电动两种)。手动移液器需要手转旋钮调节数值,手指按压进行吸排液。Miragen电动移液器,数值靠设定或选定(可储存6个移液程序),电机控制活塞运动,而且吸液和排液可分次数且各段体积可调,可实现单吸多排、多吸单排等效果,具有步骤少、更稳定、调数快、模式多等诸多优势。移液体积在零点几毫升到几十毫升,一般会用瓶口分液器来进行便捷、准确地分液。体积的调节方面,目前主流的有游标式、数字转盘式和刻度环量阶式。这三种方式中,游标式和数字转盘式是线性滑动,移液体积会随着相关部件的磨损、变形而发生变化。刻度环量阶式不是线性滑动,它将整个量程分为若干阶梯,每一阶梯始终对应一个量程,所以重复性更好,从设计上保证精度且终身无需校准。另外体积设定也非常快,半圈内就可以完成。移液体积如果稍大,处理次数很多,可采用赫施曼opus电动瓶口分液器,可用触屏设置分液的体积、次数、间隔时间,其中10ml的规格,单次排液体积小至10ul,大到500ml,单次程序中可设置分液次数1-9999次,非常适合试剂的大批量添加和分装,另外还有不等体积分液、双主机混液等应用。移液工作量进一步加大,到小试、中试等环节,需要仪器连续长时间移液,或者液体性质较为特殊,则可以考虑赫施曼的智能工作站。智能工作站能处理绝大多数的液体体积问题,类似稀释、定容、灌装、快速分装、液体量取、多道移液等,配备了不同类型、功率的电机且对转速有极好的控制,转速低至每分钟不到一转,高至每分钟几千转,流量覆盖了每分钟从几微升到几升的超大范围。工作站不仅用氟塑料和陶瓷等极耐腐蚀的材料,还针对不同类型的液体选配不同材质的泵管来解决腐蚀、析出、高温、消毒等各方面问题。常用于食品、制药、电子化工、政府等行业检测部门中的培养基分装、样品精密稀释、高粘度液体分装,甚至高温腐蚀性液体处理。
  • 光波诱导下光电流极性反转现象
    近日,中国科学技术大学龙世兵、孙海定研究团队联合武汉大学刘胜教授团队,以及合肥微尺度国家实验室胡伟研究员、香港城市大学He Jr-Hau教授和澳大利亚国立大学傅岚教授,将分子束外延生长的III族氮化物纳米线与无定型硫化钼材料结合,构筑了新型GaN/MoSx核壳纳米线结构,应用于光电化学光探测领域。通过将氮化镓半导体内光电转化过程与该结构在电解质溶液中的电化学反应过程相交叉,成功在纳米线中观察到光波长控制下的光电流极性翻转现象,实现了不同波长可分辨探测功能。该成果以“Observation of Polarity-Switchable Photoconductivity in III-nitride/MoSx Core-Shell Nanowires”为题发表在Light: Science & Applications,并被选为第 11 期封面文章。III族氮化物纳米线具有良好的导热性,载流子有效质量小、载流子迁移率高、吸收系数高、化学稳定性和热稳定性良好等各种优异特性,被广泛应用于晶体管、激光器、发光二极管、光电探测器和太阳能电池等领域,是现代半导体器件领域的重要组成部分。特别地,由于其独特的一维几何形状和大的比表面积,III族氮化物纳米线表现出许多对应体相材料不存在的独特特性。相比于薄膜结构,纳米线生长不受制于晶格匹配生长规则的约束,完美解决了异质外延生长及集成所面临的困境。同时,在III族氮化物纳米线外延过程中,材料内的应力易得到释放,位错则终止在III族氮化物纳米线的侧壁,有效减少了外延材料中的堆垛层错和穿透位错密度。此外,相较于薄膜结构,纳米线中的低缺陷密度可大幅提高纳米线中施主、受主杂质的掺杂效率,具有高效载流子导电特性。并且,得益于其高晶体质量和大的比表面积,纳米线阵列拥有较高的光提取/吸收效率和较强的光子局域化效应。此外,纳米线结构可以通过有效的应变弛豫来缓和有源区内的极化场,显著降低材料内位错密度和压电极化场,增强了电子和空穴之间的波函数重叠。同时,基于分子束外延自发生长的III族氮化物纳米线表面为氮极性,赋予了其较高的化学稳定性。尽管III族氮化物纳米线有诸多优势,然而,仅依靠其固有的物理和材料特性构筑器件,限制了该类材料功能的进一步拓展。通过将纳米线中的经典半导体物理过程与化学反应过程相结合,有望突破传统III族氮化物纳米线的功能限制,拓展新的应用场景。针对上述问题,中科大孙海定课题组利用分子束外延(MBE)技术所制备的高晶体质量氮化镓(GaN)纳米线,开展了系列研究工作。在构建高性能光电化学光探测器的基础上[Nano Lett., 2021, 21 (1): 120-129 Adv. Funct. Mater., 2021, 31 (29): 2103007 Adv. Funct. Mater., 2022, 2201604 Adv. Opt. Mater., 2021, 9 (4): 2000893 Adv. Opt. Mater., 2022, 2102839 ACS Appl. Nano Mater., 2021, 4 (12): 13938–13946], 通过将光电化学光探测器中载流子的产生、分离及传输过程与电子和空穴在半导体表面/电解液界面处的氧化/还原反应过程相结合,实现了载流子输运过程的有效调制,在该器件中观察到独特的双向光电流现象[Nature Electronics, 2021, 4 (9): 645-652 Adv. Funct. Mater., 2022, 2202524 Adv. Funct. Mater., 2022, 32 (5): 2104515]。上述工作中,实现双向光电流的必要条件之一是利用纳米线表面贵金属修饰策略,改善纳米线表面的载流子分离效率及化学吸附能。如何利用纳米线独特的一维几何形状和大的比表面积特性,将其与其他低成本、易合成的功能材料相结合,是实现对贵金属材料的替代,降低器件制备成本并进一步提升器件多功能特性的关键。与此同时,为了更好分析双向光电流现象的内部机制,需要探索新的表面修饰手段,以保证复合纳米线结构的均一性,稳定性。作为过渡金属硫属化物材料的一员,近年来,无定形硫化钼(a-MoSx)在实现高效能量收集和转换方面受到了广泛关注。由于其独特的由二硫配体桥接的一维(1D)a-MoSx链结构,丰富的表面活性位点可以与周围环境紧密接触,表现出出色的反应活性,可实现高效的电荷转移和传输。更重要的是,在温和的室温条件下,简单的电沉积方法(循环伏安法)即可以轻松合成a-MoSx材料。通过电沉积法,a-MoSx可以直接包裹于纳米线表面上,实现a-MoSx和纳米线之间的高效耦合,有效改善纳米线表面的载流子分离效率及化学吸附能。在此,我们以实现对不同波长的光分辨探测为目标,提出了一种基于在Si衬底上外延生长的p-AlGaN/n-GaN纳米线构建的光电化学光探测器(图1)。图1 基于纳米线的PEC PD的器件结构和工作原理示意图在光电化学光探测器的工作过程中,光电流响应信号的大小由有效参与氧化还原反应的光生载流子的数量决定,光电流的极性(正或负)则由在半导体/电解质界面发生的化学反应的种类决定。换句话说,通过入射光的波长控制在光电化学光电探测器中占主导地位的化学反应种类(氧化反应或还原反应),可以实现光电流极性的翻转。图1展示了光电化学光电探测器中的基本光电极结构和简化的工作原理。由于设计的顶部p-AlGaN层的带隙较大,它对低能光子(例如365 nm光照)是透明的,对光电探测过程没有贡献,只有n-GaN部分吸收光子并且参与氧化反应,光电探测器呈现正光电流。而在254 nm照射下,顶部p-AlGaN和底部n-GaN部分均能吸收高能光子并于半导体/电解质界面发生氧化反应和还原反应。然而,由于纯p-AlGaN/n-GaN纳米线表面的氢吸附能(ΔGH)不适合实现高效的还原反应(换句话说,还原过程很慢),氧化反应过程仍然在净光电流极性中占主导地位。纯p-AlGaN/n-GaN纳米线,在254 nm照明下产生小的光电流。这表明改变纳米线表面的ΔGH是实现双向光电流的关键。为了在不同波长的光照下实现双向光电流响应,我们选择用a-MoSx修饰III族氮化物纳米线以提高还原反应速率。图2在p-AlGaN/n-GaN纳米线的表面可以观察到一层明显壳层,表明III族氮化物核壳结构纳米线的成功制备。图2无定型MoSx修饰的p-AlGaN/n-GaN纳米线的结构表征。(a)SEM.(b)低倍率TEM.(c)高分辨率TEM图像(d)低倍率STEM图像(标尺 = 100 nm),(e)高角环形暗场(HAADF)STEM图像和(f)环形明场(ABF)STEM图像。(g)STEM-EDS 图像和(h)对应位置的线扫描结果为深入理解表面修饰对光探测性能带来的影响,我们通过X射线光电子能谱(XPS)进一步研究了a-MoSx@p-AlGaN/n-GaN纳米线的化学成分和元素间键合情况(图3a,b)。这些结果与之前对[Mo3S13]2-簇的XPS研究一致,证实了a-MoSx被成功修饰在p-AlGaN/n-GaN纳米线上。图3 (a)(b) p-AlGaN/n-GaN纳米线上电沉积a-MoSx壳层的XPS谱。(c)a-MoSx修饰前后的光响应对比。(d)a-MoSx@p-AlGaN/n-GaN纳米线的光谱响应为了进一步评估纳米线的光响应行为,我们构建了光电化学光探测器。由图3c可知,纯p-AlGaN/n-GaN及无定型MoSx修饰后的纳米线均显示出稳定且可重复的开/关光电流循环。纯p-AlGaN/n-GaN纳米线在254 nm或365 nm光照下则均表现为正的光电流响应,这与图1所示的纯p-AlGaN/n-GaN纳米线的工作原理一致。因其对不同光子能量的入射光子有不同的光响应特性,a-MoSx@p-AlGaN/n-GaN纳米线能够通过表现出不同极性的光电流来区分不同的光波段。如图3d所示,光电流信号在255 nm光照下为负,然后当波长超过265 nm时切换为正,证实了其波段可分辨性能。此外,对可见光照射的光响应可以忽略不计,表明器件具有出色的可见光盲特性。同时,我们还深入探讨了该器件的性能可调性,并利用第一性原理计算揭示了a-MoSx修饰实现双向光电流性能的内在机制。
  • IC-MSMS极性阴离子型农残解决方案
    2019年11月5日,赛默飞在捷克布拉格的RAFA会议上正式发布了离子色谱和质谱联用的完整解决方案,专门用于食品中极性阴离子型农残分析。 农残检测一直是食品安全的重要项目,关乎民生,也是国内外公众共同关注的焦点问题。在GC、GCMS、LC和LCMS方法不断发展和完善的今天,仍然有一小部分的农药处于分析难点,无法做到尽善尽美。 例如以草甘膦、草铵膦、双丙氨膦、乙磷铝、乙烯利等为代表的极性阴离子型农药,它们具有分子量小,水溶性强、极性大的特点,常规反相色谱柱需要衍生化反应才能有所保留,Hilic色谱柱需要平衡时间长,重复性较差。 此外,欧盟在风险评估中,强烈建议将包含农残及其代谢产物在内的总和作为农药残留定义。例如草甘膦残留物包含了Glyphosate、AMPA、N-acetyl-AMPA和N-acetyl-glyphosate四种化合物总和。因此,最大残留量的限定就要求农残分析还需要有更高的灵敏度来满足更低含量测定的要求。极性阴离子型农残IC-MS/MS解决方案应运而生 针对极性离子型农残分析的特殊需求,赛默飞结合了离子色谱可以直接进样分析极性、离子型化合物的特点,兼具流路无金属材质的优势,与高灵敏度、高选择性的质谱检测器相结合,于2019年11月5日,在捷克布拉格的RAFA会议上正式发布了离子色谱和质谱联用的完整解决方案,专门用于食品中极性阴离子型农残分析,完全满足极性离子型农残分析的需求。一种全新的极性农药残留和污染物在食品分析中的解决方案——高灵敏度、高效、高耐受性的IC-MS/MS系统一针进样,同时分析15种化合物。该解决方案可以满足一针进样,同时分析15种化合物,包括极性阴离子型农残及其代谢物,以及常见阴离子型污染物。(Glyphosate、AMPA、N-acetyl-AMPA、N-acetyl-glyphosate、Glufosinate、N-acetyl-glufosinate、MPPA、Ethephon、Fosetyl-Al、Phosphonic acid、Cyanuric acid、Bialaphos、Chlorate、Perchlorate、HEPA)这套解决方案包含了样品前处理过程、仪器配置、耗材供应、软件方法预置和专业的技术支持:整套IC-MS/MS联用系统原理图:系统配置仪器配置方案优势(一)IC-MS/MS联用系统亮点1.阴离子交换柱,高效分离待测物,无需衍生,节约成本,简化分析流程。2.全流路PEEK材质,耐酸碱和有机溶剂,不与待测物络合干扰测定结果。3.EGC淋洗液在线制备,可提供稳定准确的等度和梯度淋洗功能,只加水就可以在线自动产生淋洗液,方便使用,降低泵头维护。4.在线电解抑制器提供持续稳定的抑制功能,使离子色谱系统与质谱兼容。5.Altis质谱检测器具备高灵敏度和高选择性特点。6.联用系统可以提供三重保护,确保质谱系统不被污染。 (二)方法验证与欧盟规定一致1.前处理方法优化本套解决方案会给客户提供优化后的前处理方法,参照欧盟实验室的QuPPe提取方法,针对不同种类的样品,优化提取过程和净化过程,赛默飞可以提供前处理相关的所有耗材。目前已有的相关前处理方法包括谷物、水果、蔬菜和婴幼儿食品等。后续还在继续开发不同样品的前处理方法… … 2.方法学验证本套解决方案的方法学验证工作,都是依照欧盟SANTE 11813/2017中的规定,包括线性考察、加标水平及重复性实验,所得全部结果都与该规定一致,满足回收率70%-120%,重复性RSDs小于20%的要求。 方案应用(一)灵敏度面粉被普遍认为是基质很复杂的一类样品,下图是在面粉基质中,标准曲线最低点(相当于4 ng/g样品含量)的峰形图。15种化合物的灵敏度均可满足欧盟要求。(二)回收率和重复性以面粉为例的10ng/g加标回收率结果,四种面粉样品结果如下图所示,满足EU SANTE 11813/2017中回收率在70%-120%,RSDs小于20%。(三)系统稳定性和耐受性以葱基质中的草甘膦为例,进样124针的离子对比例和保留时间统计:连续进样含基质样品500针前后峰形对比图:IC-MS/MS联用解决方案,帮助客户突破更多的技术难题,科研之路,赛默飞与你同在。色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 多组分检测:让煤气分析再简单一点
    煤的气化是我国煤化工工业的重要组成部分,特别是在石油资源日益紧张的条件下显得更加重要。煤气成分的检测分析是气化炉优化控制的前提,也是煤化工行业其他工序的重要参数。此外,高炉、转炉,焦炉以及玻璃,陶瓷等工业领域也经常需要进行煤气成分的检测。本文将详细介绍一种采用新型的电调制多组分红外气体分析方法,配合最新发展的MEMS 技术热导 TCD 气体传感器以及长寿命电化学 O2、H2S传感器开发的集成化多组分煤气分析仪Gasboard-3100的技术应用。希望对你从事煤气成分检测有所裨益。1红外线多组分气体分析上图为 ndir 红外气体分析原理图:以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm 波长的窄带滤光片后,由红外传感器监测透过4.26um 波长红外光的强度,以此表示 CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,如CO2、CO、CH4以及参考的滤光片,就可在一台仪器内完成对煤气成分中 CO2、CO、CH4的同时测量。煤气分析仪Gasboard-3100红外测量部分技术在一体化的四元探测器上安装有四个不同的滤光片(CO2、CO、CH4、参考),可实现对三种气体的同时测量(如下图)。 滤光片一体化四元红外探测器2MEMS 技术热导 tcd分析目前国内H2分析大都采用双铂丝热敏元件制成的热导元件,体积大精度低,传感器的死区(dead space)大。煤气分析仪Gasboard-3100采用了国际最新发展的基于MEMS技术的TCD气体传感器,只需要加上合适的电压就可以输出一个与浓度对应的毫伏级信号。3电化学氧气、硫化氢分析在煤气成分分析中,O2是一个安全参数,有些时候H2S 也是一个重要参数。煤气分析仪Gasboard-3100采用了一种长寿命(6年)的电化学 O2传感器和H2S 传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。4多组分煤气分析仪特点煤气分析仪Gasboard-3100包括用于CO、CO2、CH4的 NDIR 红外气体探测器,测量 H2的TCD热到探测器,O2、H2S 探测器;ADUC842测控系统及软件; ICD、键盘、打印机、气泵、以及报警等外部装置。电调制红外光源传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备。其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。煤气分析仪Gasboard-3100采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200HZ,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。气体干扰校正从原理上讲,CO,CO2,CH4之间由于采用了特征波长,彼此测量间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO 与CO2,以及 CO2与参考通道之间具有一定的干扰,因此成分之间具有一定的干扰,如果不加以校准,测量的误差将达到10% 以上,很难达到工业应用的要求,如按照单一标准气体 CO2标定后,如果通入不含CO2的70%的 CO进入仪器,CO2读数将达到7%左右。为了消除红外分析气体之间的相互干扰,煤气分析仪Gasboard-3100设置了10点标定程序,采用计算机算法得到了气体干扰校正方法,通过该方法的使用,可使CO、CO2、CH4的精度达到2%以上。研究表明,采用以往单一组分红外气体分析仪组成的煤气分析系统,如果直接采用测量读数,将可能得到不准确的测量结果。同时,煤气成分中的CO、CH4、N2、O2对 H2的测量准确性影响不大,主要是CO2的影响。通过大量实践证明,CO2对H2的影响是线性的,每1%含量的CO2将降低 H2含量为0.08%, 如果没有 CO2数据的校准,当CO2含量达到40%,则H2的误差将超过3%。这也充分说明,要想得到准确的煤气成分分析结果,各组分必须同时测量。测量流量控制虽然红外以及电化学气体分析在一定程度上受测量流量影响较少,但是对于 TCD 热导H2分析来说,气体流量的稳定直接关系到 H2的测量精度。为了保证测量流量的稳定,煤气分析仪Gasboard-3100采用了微型的柱塞气泵,将测量气体压缩到0.2mPa, 通过气体稳压和稳流阀后进入气体分析仪,这样可以将整个气体的测量流量维持在1L/min。流量的稳定在一定程度上,也提高了红外以及电化学气体测量的精度和稳定性。通过以上技术的采用,多组分煤气分析仪可以实现以下组分和精度的测量(表1),并已经应用在包括高炉、转炉、煤气发生炉等工业现场,取得了良好的成绩。表1:多组分煤气分析仪技术参数结论(1)通过采用新型电调制红外光源,省却了以往红外气体分析仪器复杂和昂贵的电机调制系统,大大降低了系统成本和功耗。实现了CO、CO2、CH4的同时测量。(2)通过采用MEMS 技术的 TCD 热导,以及长寿命的 O2、H2S 电化学气体传感器与红外气体测量的组分,实现了煤气多组分的同时在线测量。(3)红外测量组分间由于受滤光片带宽的限制,存在一定的相互干扰,通过计算机校正算法可以将组分的测量精度提高到2%以上,这也说明,以往单一组分的红外气体分析仪直接用于煤气分析,很可能造成测量数据不准确。(4)TCD 热导 H2分析必须进行 CO2气体的校准,否则将可能造成超过3%的误差。因此如果仅仅采用单一H2分析仪而没有其他气体气体的校准,以往组合式的煤气成分监测系统很可能得不到准确的测量数据。
  • Illumina与索尼合作推出基因组分析业务
    据知情人士透露,日本消费电子巨头索尼(Sony)公司计划与 Illumina 成立一家合资企业,并推出人类基因组分析业务。这家合资企业将在日本开展基因组信息分析,并向制药公司出售数据库中的信息。索尼公司目前已将医疗领域作为核心业务。  这家合资企业将由索尼的子公司 M3 与 Illumina 合作成立。它将利用 Illumina 的测序仪器对医院及其他医疗机构提供的血液样本进行分析。此外,它还会积累来自患者个体的分析数据,并出售给制药公司、科研院所及其他机构。  实际上,去年 10 月,索尼总裁平井一夫(Kazuo Hirai)就宣布,到 2020 年之前,该公司医疗业务的销售额将从目前的数百亿日元提高到 2000 亿日元(折合 20.4 亿美元)。  基因组信息分析将为索尼的医疗部门带来快速扩张的机会。它目前的应用也在不断扩展,如预测个体是否有可能罹患疾病。之前,好莱坞明星安吉丽娜&bull 朱莉通过基因检测发现她患上乳腺癌的风险较高,故接受了双侧乳腺切除术。  在日本,基因组分析目前主要由理化学研究所(Riken national research institute)及其他大型研究机构来开展。理化学研究所的一位高级官员表示,越来越多的公司将也有可能开展基因组分析业务。  &ldquo 多亏了先进设备的引入,基因组分析才变得更加容易开展,&rdquo Riken基因组网络分析支持项目的主管 Naoto Kondo 谈道。  索尼子公司 M3 为医生提供医学论文的信息及其他服务,目前在日本已有一些固定的客户。利用 M3 的知名度和坚实的客户基础,索尼希望其新业务能收到尽可能多的订单。  因传统电子业务的增长空间有限,索尼等电子巨头也开始进军新的市场,希望能够找到新的利润增长点。医疗器械等领域便成为他们主攻的方向之一。  今年 4 月,索尼和奥林巴斯共同宣布成立索尼奥林巴斯医疗解决方案公司。新公司注册资金 5000 万日元,由索尼控股 51%,奥林巴斯持股 49%,旨在整合索尼在数码影像等电子领域的技术与奥林巴斯的镜头光学技术及其在医疗产品领域的制造和研发经验,从事创新医疗产品的研发、设计、生产和营销。
  • 两会观点:激发科研机构积极性 提升科技创新能力
    “政府工作报告提到,要深入实施创新驱动发展战略,推动实体经济优化结构,不断提高质量、效益和竞争力。”3月6日,谈及今年的政府工作报告,全国政协委员、家蚕基因组生物学国家重点实验室主任夏庆友颇有感触。他认为,提升科技创新能力,可以从进一步调动科研院所、科技人员的积极性着手。  “报告中提到,完善对基础研究和原创性研究的长期稳定支持机制。我认为非常有必要。”夏庆友说,科学研究大致可分为基础研究和应用研究两大类。基础研究一般没有专门的目的或特定目标,主要注重基本原理和理论性研究,是科研的基础,对一个国家而言非常重要。而应用研究则是主要针对某一特定目的或目标开展的研究,实用性很强,更多体现了科研院所的自主性。  夏庆友说,十八大以来,国家先后出台多项政策,不断加强市场对科研资源配置的调控作用,让科研资源向重点领域、重点行业倾斜,起到了良好效果,也激发了科研院所和科研人员的积极性。报告中提出的“落实股权期权和分红等激励政策,落实科研经费和项目管理制度改革”等内容,更让人信心倍增。他认为,要进一步调动科研院所和科研人员的积极性,就应该让科研院所得名,让科研人员得利。  “科研人员研究出成果、创造出价值,获得收益是应该的,而科研院所的存在和发展,也是建立在院所的声望和研究成果上的。”夏庆友说,科技创新为产业转型升级、经济社会发展提供动力,科研院所和科研人员功不可没,报告中提到这一点,表明了国家对提升科技创新能力的重视,让他十分期盼。
  • 不同极性色谱柱检测三乙胺的差异
    三乙胺作为常规溶剂应用于不同领域,对其残留的检测也有相关规定,药典规定如下:胺类物质在检测时比较容易出现拖尾的现象,今天就给大家看一下不同极性的色谱柱中相同浓度的三乙胺的测试情况:色谱条件谱图和数据结论月旭科技胺改性柱WM 5-Amine 30m*0.32mm*1.0μm 检测三乙胺有很好的峰形和柱效。由于这一类物质在系统中也可能有残留,故仪器各部件也进行对应的清洗更换。
  • 食品药监局调整化妆品中禁用组分、限用物质
    关于征求《化妆品卫生规范》(2007年版)中禁用组分、限用物质表等内容校核和勘误意见的函  食药监许函[2010]464号  2010年11月22日 发布各省、自治区、直辖市食品药品监督管理局(药品监督管理局),各有关单位:  为进一步完善《化妆品卫生规范》(2007年版),切实做好化妆品安全监管工作,我司组织对《化妆品卫生规范》(2007年版)中化妆品禁用组分、限用物质表等有关内容进行了校核和勘误。现公开征求意见,请将修改意见于2010年11月30日前反馈我司。  附件:  1. 《化妆品卫生规范》(2007年版)中禁用组分、限用物质表等内容校核和勘误情况说明.rar  2. 《化妆品卫生规范》(2007年版)表2(1)化妆品禁用组分更正表.rar  3. 《化妆品卫生规范》(2007年版)表2(2)化妆品禁用组分更正表.rar  4. 《化妆品卫生规范》(2007年版)表3化妆品组分中限用物质更正表.rar  5. 《化妆品卫生规范》(2007年版)表4化妆品组分中限用防腐剂更正表.rar  6. 《化妆品卫生规范》(2007年版)表5化妆品组分中限用防晒剂更正表.rar  7. 《化妆品卫生规范》(2007年版)表6化妆品组分中限用着色剂更正表.rar  8. 《化妆品卫生规范》(2007年版)表7化妆品组分中暂时允许使用的染发剂更正表.rar  国家食品药品监督管理局食品许可司  二○一○年十一月十九日
  • 多组分时空分析:走进单细胞的“社会”
    p style="text-indent: 2em "1952年,美国细胞生物学家威尔逊曾提出,“一切生命的关键问题都要到细胞中去寻找答案。”纵观近50年来荣获诺贝尔奖生理学或医学奖和化学奖的重大突破,70多个都与细胞生物学密切相关。/pp style="text-align: center text-indent: 2em "img title="20197282317511500.jpg" style="max-height: 100% max-width: 100% " alt="20197282317511500.jpg" src="https://img1.17img.cn/17img/images/201907/uepic/8e8f4b00-dde2-40b2-8c13-4213c687f8ec.jpg"//pp style="text-align: center text-indent: 0em "span id="_baidu_bookmark_start_182" style="line-height: 0px display: none "?/span研究团队进行相关实验/pp style="text-align: center text-indent: 0em "图片来源于网络/pp style="text-indent: 2em "作为研究细胞生命活动规律的科学,细胞生物学在科学家的显微镜下经历了近180年的历史,但细胞对人类来说依然是“黑箱”一般的存在。如今,研究人员正在尽力通过对单个细胞进行研究来阐明细胞的“天性”。/pp style="text-indent: 2em "自2014年起,在国家自然科学基金重大项目“单细胞多组分时空分析”支持下,中国科学家在有关单细胞生物学的重大科学问题上取得了一系列进展。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong没有两个细胞是完全相同的/strong/span/pp style="text-indent: 2em "如果把细胞环境比作一个社会,每个细胞就是一个独立的人。/pp style="text-indent: 2em "在对人类社会的研究中,不仅个体的特征和行为值得关注,研究所处环境中个体之间相互协调或对抗作用等关系以及群体所产生的集体行为,也相当重要。细胞研究亦是如此。/pp style="text-indent: 2em "多年来,通过对细胞的研究,科学家已经对生命体的生长发育、遗传变异、认知与行为、进化与适应性等若干生命科学问题有了较为清晰的认识。不过,在清华大学副教授陆跃翔看来,这些还远远不够。/pp style="text-indent: 2em "“在之前的研究中,科学家探索出细胞新陈代谢、生命运动过程中的各种表征方法,如蛋白表达分析、基因转录检测(反转录PCR)等,这些方法更多的是在大样本的细胞中进行观察与测量后,得到一个平均结果。”陆跃翔解释到。/pp style="text-indent: 2em "然而,没有两个细胞是完全相同的。这些平均结果掩盖了细胞之间微小的差异,这些差异可能在某些关键生命过程如细胞分化、肿瘤的发展过程中起着决定性作用。/pp style="text-indent: 2em "为了获取细胞生理状态和过程中更准确、更全面的信息,科研人员将目光瞄准单个细胞。/pp style="text-indent: 2em "“单细胞内部的生命活动,可以被认为是生物活性分子之间复杂的化学反应的结果,正是这些分子的时空分布、结构、功能及其相互作用方式,决定了细胞增殖、分化、凋亡以及重大疾病发生、发展、迁移等过程。”陆跃翔分析道。/pp style="text-indent: 2em "但是想要研究这些生物活性分子形成的精密复杂的相互作用和调控网络并非易事。它不仅要求科学家了解其化学成分,更要理解它们之间相互作用的复杂过程,以及在细胞内部细胞器中特定位置的作用区域和时空变化。/pp style="text-indent: 2em "strong2014年,国家自然科学基金委员会发布重大项目“单细胞多组分时空分析”申请指南,/strong清华大学化学系教授张新荣组织的研究团队的申请获批。他们凝练出strong荧光探针制备与合成、新型时空分辨成像方法以及在细胞内生物分子相互作用/strong研究等关键科学问题。/pp style="text-indent: 2em "“我们希望发展建立适于单细胞中多种生物活性分子时空分辨的荧光分析新方法,驱动生命科学和基础与临床医学研究进步。”谈及科学目标,张新荣如是说。/pp style="text-indent: 2em "span style="color: rgb(255, 0, 0) "strong新技术带你深入了解“社会”/strong/span/pp style="text-indent: 2em "如何实现这一目标?在张新荣看来,这需要从单细胞中多组分分子的时空信息获取方法出发。为此,项目组将其分为“荧光探针制备与合成”“新型时空分辨成像方法”以及“细胞内生物分子相互作用”三大方向进行攻关。/pp style="text-indent: 2em "strong要了解细胞这个独特的“社会”,首先需要的是一台可以钻进细胞内部获取关键分子信息的“放大镜”。因此,荧光探针制备与合成至关重要。/strong/pp style="text-indent: 2em "针对单细胞中极低含量分子检测问题,山东师范大学教授唐波课题组综合运用共轭聚合物信号放大、无光源激发、光谱红移、核酸杂交链式放大等技术,构建了若干超灵敏的分子与纳米荧光探针,实现了细胞及活体中某些活性分子浓度皮摩尔水平的原位、动态检测。/pp style="text-indent: 2em "同时,细胞中生理过程的发生和发展往往不是一类分子的孤立事件,涉及到多种分子的参与。因此课题组还开发了一系列的两组分、三组分和四组分同时检测的荧光探针,并设计了多模态探针来获取更丰富的成像信息。/pp style="text-indent: 2em "“本项目的一个重要特色工作是时任中国科学院上海应用物理研究所研究员樊春海课题组基于框架核酸构建的多组分分析探针和成像方法。”张新荣介绍,框架核酸是一类人工设计的结构核酸,具有尺寸精确、结构精确、修饰精确的特点,通过精确的化学修饰,可以将多种小分子及大分子探针负载到框架核酸上,实现多组分探针的可控构建。/pp style="text-indent: 2em "不过,实现探针在亚细胞区域内对胞内生物活性分子的精确定位和实时检测可并不那么容易。/pp style="text-indent: 2em "“细胞核内分子密度大且背景荧光特别高,导致人们对单分子的观察非常困难。传统光学显微成像分辨率,不足以解析染色体DNA的构造。”陆跃翔告诉记者,尤其在超高空间分辨率的前提下,要实现持续的动态观察,对荧光探针和成像方法都提出了更大的挑战。/pp style="text-indent: 2em "在活细胞超分辨成像方面,北京大学生物动态光学成像中心研究员孙育杰课题组研发了高性能探针Gmars-Q,使其在光照时进入暗态,从而延长成像时长,比已有最好探针的活细胞超分辨成像时间长一个数量级,这种超高分辨成像技术实现了纳米尺度的活细胞核内动态观测。/pp style="text-indent: 2em "“Gmars-Q的独特机制打开了基于蛋白结构和动力学优化荧光蛋白的设计策略。”德国卡尔斯鲁厄理工学院教授Gerd Ulrich Nienhaus曾对此给予高度评价。/pp style="text-indent: 2em "strong在现代分析化学的发展中,大科学装置的应用也越来越受到科学家的重视。/strong/pp style="text-indent: 2em "依托中国科学院高能物理研究所和中国科学院上海应用物理研究所的两台strong同步辐射光源,/strong樊春海课题组和中国科学院高能物理研究所研究员高学云课题组开展了strong同步辐射X射线细胞成像方法/strong的研究。/pp style="text-indent: 2em "实验团队通过搭建X射线全场三维成像平台,合成了一系列X射线成像探针,发展了细胞成像算法,实现了单细胞的X射线三维成像。为了应对单一技术无法在高分辨率下同时实现细胞的结构与功能定位的挑战,课题组又发展了X射线与超分辨荧光联用技术,实现了在纳米分辨下的细胞结构与功能融合成像的突破。/pp style="text-indent: 2em "已有研究发现DNA不仅有序列信息,还有三维结构信息。基于此,北京大学教授、中国科学院外籍院士谢晓亮课题组通过对sgRNA改造,开发了一种全新的活细胞染色质DNA的多色、稳定标记系统,实现对活细胞内基因位点的长时间连续观察追踪。/pp style="text-indent: 2em "2018年,该重大项目迎来一项重磅突破。谢晓亮课题组在《科学》上发表文章,介绍他们在单细胞水平研究双倍体哺乳动物细胞的基因组结构研究方面取得的成果。利用新发展的Dip-C技术,项目组构建了人源双倍体细胞的具有高空间分辨率的单细胞基因组三维结构。/pp style="text-indent: 2em "“这种结构分型对研究细胞功能有着至关重要的作用,也为唐氏综合症等染色体非整倍体疾病提供了研究和干预手段。”谢晓亮说。/pp style="text-indent: 2em "strongspan style="color: rgb(255, 0, 0) "让基础研究走出实验室/span/strong/pp style="text-indent: 2em "对于细胞“社会”的深层解析,不仅为了阐明各种生命现象与本质,科学家更是希望据此对这些现象和规律加以控制和利用,以达到造福人类的目的。在该重大项目支持下,诸多研究展现出了良好的社会应用前景。/pp style="text-indent: 2em "“许多疾病的研究和治疗最终都必须回归细胞水平。”在张新荣看来,一系列单细胞多组分时空分析技术能够有效加深人们对生命现象的本质理解,也有助于了解疾病机理,进而促进生物医药科学和相关产业的发展。/pp style="text-indent: 2em "strong“项目研发的诊疗一体化功能纳米探针,为相关重大疾病成因、诊断提供表征手段和依据,对疾病的早期预警以及提高疾病治愈率有着重要意义。/strong”张新荣讲道,部分创制的探针已经进行了市场转化,基于探针建立的荧光成像技术也成为国家重大新药创制课题中药效评价的关键技术之一。/pp style="text-indent: 2em "例如,唐波课题组研究的“超高灵敏度—可逆探针”能够在活体水平上示踪炎症发生发展过程中超氧阴离子的浓度水平及动态变化过程,缩短了药物临床试验周期,提高了药物筛选效能。为即将进入临床Ⅱ、Ⅲ期的鼻敏胶囊、咳敏胶囊、结肠炎栓3个中药新品种的作用靶点、药效评价研究提供了技术支撑。/pp style="text-indent: 2em "而基于同步辐射装置的X射线细胞显微成像技术,分辨率很容易达到数十纳米,可以在大视场下实现完整细胞的纳米分辨无损成像,与荧光显微装置相比具有巨大优势,在细胞显微成像方面也展现出了巨大的应用前景。/pp style="text-indent: 2em "然而,对于人类来说,走进细胞“社会”是一个任重而道远的过程。还有无数未知的奥秘等着科学家去探索。/pp style="text-indent: 2em "张新荣表示,该重大项目成果为下一步融合多种分析方法、发展全器官跨尺度高灵敏三维成像提供了基础。/pp style="text-indent: 2em "“通过研发同步辐射X射线相衬—电镜融合成像,有可能在全脑三维微米精度地图引导下选取局部特征区域进行纳米精度的结构解析,大幅降低高精度神经网络解析的盲目性。在特定位点,也可利用荧光分子成像和质谱分子解析,进一步作功能研究。”项目组成员表示,在有关“社会”的探索与发现之旅上,中国科学家一直砥砺前行。/p
  • VOCs分析检测中高沸点组分响应低的原因及解决办法
    实验背景目前采集环境空气中挥发性有机物有三种方式:吸附管采样、袋采样和罐采样。罐采样由于具有分析组分多、存储时间长以及可实现长时间采样的优势,而得到vocs分析检测实验室的广泛应用。分析难点及常见问题随着罐采样使用频次增加,近来我们会碰到如下问题:1、测试标气中高沸点组分(含氧类组分)比例下降或完全不出峰(即响应低),如图1:图1而如果出峰正常,谱图应该如图2:图22、标准曲线中一些高沸点组分和含氧组分经常出现负截距,如图3:图3萘和1,2,4-三氯苯的校准曲线出现负截距难点问题原因分析产生高沸点组分响应低、含氧组分出现负截距的主要原因如下:存储装置和系统管线没有经过惰性化涂覆或者惰性化涂覆效果不好;惰性涂覆好与不好质谱离子源不干净;预浓缩系统温度参数设置不准确,导致高碳物质没有完全转移;管线、预浓缩系统捕集阱以及采样罐其一被污染。原因初步排查确保与样品接触的部位,都是经过惰性化涂覆,且具有惰性化涂敷测试报告;清洗离子源,确保质谱离子源干净;确保预预浓缩系统的捕集阱温度传感器是经过校准的,entech 7200的分流阀在m2向m3转移时流量为3-5ml/min,且测试方法为北京博赛德所提供。如果初步排查出现问题,请及时解决或联系工程师;如果无上述问题,说明预浓缩系统或采样罐已经被污染。问题解决方案罐采样属于全组分采样方式,所以除了挥发性有机物,也会将空气中的半挥发性有机物、气溶胶和颗粒物采集到采罐内,尤其当采样流速大的时候,颗粒物更易进入。这些颗粒物和气溶胶又很难通过常规的方式清洗干净,导致在采样罐内形成吸附点,当高沸点物质经过时,很容易被吸附,从而导致响应值下降;这些杂质亦有进入预浓缩系统的隐患。一、防止颗粒物进入采样罐,而且根据epa to15a-2019和hj759-2015的要求,用采样罐采集环境空气时一定要加装过滤装置,以过滤掉杂质;但是,这样也不代表万无一失,所以同时epa to15a-2019还规定:过滤器应经常清洗或更换,以减少对所收集空气样本产生负面影响。清洗方法:用水或甲醇超声清洗15分钟,再用纯水清洗,然后放入烤箱里(是真空炉)烘干;污染不严重的也可用高纯氮气吹扫,时间5分钟左右。二、预浓缩系统引起的高沸点组分出峰低与曲线负截距的问题解决方案首先整体升高预浓缩系统的bake温度,包括阀温、bulkhead、m1和m2,延长烘烤的时间;其次对m3捕集阱,可将柱流速调大(根据色谱柱的内径),然后把预浓缩系entech7200的分流阀和进样阀同时打开3-5min;若还无效果,可样品经过的管线卸下,用高纯氮气对其进行吹扫,氮气分压表压力为0.4mpa,每段吹扫5分钟;或将管线放在甲醇中冲洗,再用清水冲干净,然后放入烘箱(50℃,真空烘箱)烘干,并用湿润的零空气或氮气吹扫,每段吹扫5分钟。通过预浓缩系统的自身或手动操作逐一排查,若还不能达到预期效果,BCT要更换预浓缩系统的配件:在m1向m2转移时,只升高m1温度(升高BCT50℃),如果高沸点物质响应提高,说明m1被污染,更换m1冷阱;将m2向m3转移的时间延长BCT10分钟,如果高沸点物质响应提高,说明m2被污染,更换m2冷阱;将进样时间延长BCT10分钟,如果高沸点物质响应提高,说明m3被污染,将m3冷阱调换进出口或者更换m3冷阱。结 论在确保质谱离子源干净与预浓缩系统温度参数设置准确的前提下,对于罐采样分析,采样罐必须要加颗粒物过滤器,且孔径10um以下,并根据采样实际情况对其定期清洗;如果条件允许,建议每次采样前都用氮气吹扫清洗,谨防采样罐、预浓缩系统被污染。
  • “左右开弓”——为什么说 HILIC 也是您纯化极性化合物时所需方法?
    当我们面对一些实验的时候,潜意识里总是更倾向于用自己非常熟悉的某种方式或方法并尝试进行稍微调整就可以让它适用于当前面对的所有应用研究。但这就像是说,您拥有一把切菜非常好用的刀并不意味着它是锯木的最佳方法。亲水相互作用色谱(HILIC)今天呢,“小布”同学在这里和您再介绍一种分离方法:亲水相互作用色谱(HILIC)。认识它,熟悉它,装备它!让您面对不同实验可以做到“左右开弓”!OK!让我们看看它可以为您的极性化合物的纯化做些什么!HILIC 是分离高极性化合物的理想选择高极性化合物通常不能用我们熟知的典型色谱柱分离,即正相色谱(NP)或反相色谱(RP)。在正相色谱当中,由于化合物本身相对极性固定相来说过于粘稠,所以会导致洗脱时间过长。而高极性化合物的特点是在水性流动相中具有良好的溶解性,并且与典型的 NP 所用溶剂不兼容。而即使使用 RP 体系,高极性化合物却几乎不与非或弱极性的固定相进行相互作用,最终与溶剂前沿一起被洗脱,达不到分离的目的。每当遇到这种情况的时候,就是 HILIC 的 Showtime!它的分离往往发生在极性固定相且可使用水的反相溶剂条件下。在这种情况下,与无水的流动相相比,含水流动相在极性固定相的表面形成了富水层。梯度洗脱从低极性有机溶剂开始,通过增加极性水的比例来洗脱极性化合物。在正相色谱中固定相具有更高的极性,在反相色谱中流动相通常由水与有机溶剂组成,而水则是色谱常用流动相体系当中使用的最强极性洗脱剂。因此,HILIC 结合了正相色谱的固定相与反相色谱的流动相的特点来专门“对付”高极性化合物。简单总结就是:HILIC 采用反相色谱流动相体系,而按照正相色谱顺序出峰。尽管 HILIC 的混合模式机制至今仍在研究中,但主要的保留机制被认为是化合物在富含有机物的流动相和后来的富含水的流动相之间分配系数的不同。除此之外,还包括其他相互作用,如氢键、静电相互作用和偶极-偶极相互作用都有助于 HILIC 分离:如果您对 HILIC 色谱也感到跃跃欲试的话,我推荐您使用乙腈,因为它与水具有良好的互溶性以及良好的 HILIC 保留和低粘度特点。当然,您也可以根据实验具体情况选择其他有机溶剂。HILIC 中的相对溶剂强度如下:丙酮 丙醇 乙腈 乙醇 二恶烷 DMF ~甲醇 水就您的色谱固定相而言,任何极性相均可用于 HILIC 分离。例如:固定相示例中性二醇;酰胺带电离子Slica;氨基丙基相两性离子氨基酸、氨基磺酸固定相相组成中性极性官能团,如:酰胺、天冬酰胺、二醇、交联二醇、氰基和环糊精带电离子阴离子或阳离子官能团两性离子永久带正电荷(铵)和带负电荷(磺酸)的官能团适用应用中性亲水化合物和混有中性、阴离子、阳离子的混合物带电离子中性极性化合物氨丙基相的伯氨基带正电荷;因此,它对阴离子酸性化合物表现出较高亲和力。Slica 表面含有 pKa 为 3.5 的酸性表面硅烷醇基团,这意味着 ≥3.5 pKa 的 pH 值时,这些基团将被离子化,从而使 Slica 固定相可以作为阳离子交换剂,与带正电荷的碱基相互作用并对待分析物进行保留。两性离子由于它们的亲水性和弱离子交换特性,这些固定相适用于分离中性、酸性和碱性分析物以及极性和亲水性化合物以及无机离子。保留机制中性亲水相互作用;无静电相互作用带电离子来自阴离子或阳离子官能团的强静电相互作用两性离子弱静电相互作用选择理想 HILIC 固定相的一个好的原则是,通常来讲中性化合物的亲水性低于带电化合物,而高亲水性固定相需要保留它们(例如两性离子和酰胺固定相)。另一方面,由于静电引力,带电化合物在带电色谱柱上的保留太强,因此中性和两性离子相提供更好的结果。其实,不管正相色谱、反相色谱还是 HILIC 色谱等,都有其最适合的应用领域。即便 HILIC 结合了正相色谱与反相色谱的部分特征,也不代表其满足所有应用。就如同我们日常吃饭时,吃面往往用筷子是最简单高效的方式;喝汤则是用勺子最佳。实验亦如此,所以在实验过程中还是要根据实际情况选择最佳纯化方式。好啦,今天“小布”同学关于 HILIC 色谱的分享就到这里啦,相信诸位小伙伴们也对其有了一定的了解。希望在今后的实验当中它能够助您摆脱纯化高极性化合物的麻烦!各位,我们下期再见!低复杂度样品纯化左右滑动色块查看系统适合的应用范围↓对于低复杂度样品,可以轻松或妥善地分离感兴趣的峰与杂质。使用中至大粒径 (15 - 60 μm) 颗粒是标准应用最经济的解决方案高复杂度样品纯化左右滑动色块查看系统适合的应用范围↓高复杂度样品难以分离并显示出部分重叠的峰需要使用小粒径 (5 - 15 μm) 硅胶颗粒以提供出色的分离度 (=纯度),但会产生高背压从低到高样品浓度的进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 300g可支持 Flash 预填充色谱柱尺寸:最大 5000g可支持耐高压玻璃柱尺寸:直径 46-100mm支持固体上样和液体上样两种方式低样品浓度进样左右滑动色块查看系统适合的应用范围↓可支持上样量最大 1g可支持高压色谱柱直径尺寸:4.6-70mm支持液体进样检测生色团化合物左右滑动色块查看系统适合的应用范围↓生色团化合物吸收紫外波段或可见光波段 (200 - 800 nm) 的光线适用于紫外线检测的化合物通常含有不饱和键、芳族基或含杂原子的官能团。检测非生色团化合物左右滑动色块查看系统适合的应用范围↓非生色团化合物不吸收光,因此不能通过紫外线检测器显现典型化合物为碳水化合物非生色团化合物可通过蒸发光散射 (ELS) 检测装置来检测
  • 月旭新品之一:国际领先的极性嵌入色谱柱——Polar-RP色谱柱
    将极性官能团嵌入烷基链中的液相色谱固定相是在上世纪90年代早期推出的,它具有的一个最大优势就是减少了填料表面游离硅烷基与碱性分析物之间的次级相互作用,从而改善了分析碱性化合物所得到的峰形。 传统的极性嵌入反相色谱柱,是将氨基酰氯基团键合在硅胶表面,这种键合方式,会造成硅胶表面有残留的氨基。残留的氨基呈现碱性特性,分析酸性物质(如有机酸)时,会造成峰形拖尾。月旭科技采用独特的键合工艺,解决了传统工艺硅胶表面氨基残留的问题,同时采用双封尾技术,进而可以得到极佳的对称峰型。Ultimate Polar-RP色谱柱——与普通C18选择性不同的反相柱比AQ柱耐相塌陷能力更强的水性柱。 极性基团的嵌入,使烷基相在流动相中有机相比例极低时(甚至100%水流动相时)也能被水溶剂化润湿,不会发生相塌陷现象。对极性物质的保留和选择性更佳。保留方面增强的例子如尿嘧啶,因为其不在大多数反相柱上有保留,通常用作死体积的标定试剂。但Polar RP柱,在100%水流动相条件下,尿嘧啶是有保留的,出峰时间甚至在5-氟胞嘧啶和胞嘧啶之后。 测定酸性化合物时,可以得到完美的峰型。由于酸性物质大部分都是极性物质,Polar-RP的极性基团对其有很好的保留,所以可以得到很好的分离和峰形。 与其它厂家同类型色谱柱测试酸性化合物得到的谱图对比 测定碱性化合物时,可以得到完美的峰型。由于极性嵌入基团把硅胶表面的残余硅醇基屏蔽掉了,所以可以得到对称的峰形。
  • 汽油中芳烃及醇醚类组分定量分析装置
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="142"p style="line-height: 1.75em "成果名称/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "汽油中芳烃及醇醚类组分定量分析装置/p/td/trtrtd width="142"p style="line-height: 1.75em "单位名称/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "中国科学院大连化学物理研究所/p/td/trtrtd width="142"p style="line-height: 1.75em "联系人/p/tdtd width="158"p style="line-height: 1.75em "关亚风/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "guanyafeng@dicp.ac.cn/p/td/trtrtd width="142"p style="line-height: 1.75em "成果成熟度/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="142"p style="line-height: 1.75em "合作方式/p/tdtd width="506" colspan="3"p style="line-height: 1.75em "√技术转让 □技术入股 □合作开发 □其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介:/strong/pp style="line-height: 1.75em "/pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/eb720d47-6740-4d0e-a41d-be0c1bfdb558.jpg" style="width: 300px height: 185px " title="芳烃及醇醚-2.png" width="300" height="185" border="0" hspace="0" vspace="0"//pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201604/insimg/5495a0ea-d95f-45a8-9020-e7f3704ae497.jpg" title="芳烃及醇醚-1.png" width="300" height="227" border="0" hspace="0" vspace="0" style="width: 300px height: 227px "/br//pp style="line-height: 1.75em "br/ 该装置和方法采用毛细管柱串联—切割反吹的方法将汽油中芳烃完全与其它烃类分离,但是所有组分从同一个检测器定量检测,因此可以与其它组分进行校正归一化定量。在切割反吹的过程中允许较长的时间窗口,从而在不采用外标的情况下,获得准确的定量分析数据。 br/ strong主要技术指标: /strongbr/ 分析沸点在380℃以下的组分。在分析汽油中含氧组分时,允许切割窗口时间:≤12sbr/ strong技术特点: /strongbr/ 传统的国标或ASTM方法分析汽油中含氧组分的中心切割时间窗口仅为0.2 s,对仪器设备和色谱柱的性能要求很高。而本方法在切割反吹的过程中允许的时间窗口为12 s,在12秒内对定量误差没有影响,而且不必采用外标定量。这项技术可用于轻质油的组分分析、ppm级苯含量测定,以及乙醇汽油中醇类含量的测定。br//p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 用于石油、化工等领域中芳烃及醇醚类组分定量分析。市场容量为200-400台/年,具有广阔的推广应用前景。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 以技术秘密形式保护知识产权。/p/td/tr/tbody/tablepbr//p
  • 高分辨QTOF创新技术巡展:稳定快速正负极性切换技术
    前言高分辨QTOF质谱是一种先进的质谱技术,它结合了四极杆和飞行时间质谱的优点,能够提供高分辨率、高质量精度和高灵敏度的质谱分析。高分辨QTOF作为分析领域的高端仪器,始终在技术创新层面不断推陈出新。LCMS-9050是岛津最新推出的高分辨四极杆-飞行时间质谱仪,运用了多项新技术,是技术指标优异、仪器性能卓越的产品。本期将为您介绍稳定快速正负极性切换技术。技术介绍在正离子模式和负离子模式切换时,飞行管电压需要进行连续变化到目标值。如果在电压达到目标值之前进行分析,则会出现严重的质量误差。利用陈旧的技术模型进行电压稳定需要较长的时间,这使得同时进行正离子/负离子分析变得困难。LCMS-9050通过基于岛津全新电气化技术开发的高速化高压电源和UF-stabilization极性切换补偿算法,大幅缩短极性切换期间稳定待机所需的时间。达到百毫秒级稳定质量精度的快速极性切换,实现一次进样同时获得正负离子检测的所有质谱信息。主要优势01增加分析通量,提高分析速度通过一次进样即可获得正负离子检测的所有信息,无需多次进样,大大提高了分析通量。传统QTOF完成正负离子检测需要两针分别进样,而新一代岛津LCMS-9050将分析速度提高了一倍。02全面分析,结构确认正负极性切换可以提供更全面的化学信息。因为化合物在正负离子模式下可能产生不同的碎片和反应产物,所以切换极性可以增加对样品的分析覆盖范围。通过比较正负离子模式下的质谱图可以推断化合物的结构,进一步提高化合物鉴定准确度。03灵敏度增强3、灵敏度增强:极性切换可以提高分析的灵敏度。在某些情况下,化合物在正离子模式下可能检测到较强的信号,而在负离子模式下可能检测到较弱的信号,或者反之亦然。通过切换极性,可以最大程度地提高检测到的化合物数量。04质量精度稳定可靠在实际运行的实验室环境下(约3°C的室温变化),采用正负离子切换模式对6种抗生素成分进行24小时连续分析,质量误差始终在理论值的±3ppm以内。小结稳定快速正负极性切换技术将带来创新的工作流模式,挑战一次进样完成样品中农兽残、毒 品毒物以及环境污染物的高分辨靶向和非靶向筛查分析。本文内容非商业广告,仅供专业人士参考。
  • 大连化学物理研究所研制出单组分暖白光电致发光器件
    近日,大连化学物理研究所复杂分子体系反应动力学研究组(1101组)杨斌副研究员与山东大学刘锋研究员等合作,开发出了具有高效白光发射的新型双钙钛矿材料,并制备了基于该材料的单组分暖白光发光二极管(LED)。电气照明占全球电力消耗的15%,释放了全球5%的温室气体。采用更加高效、低成本的照明技术可缓解能源、环境危机,助力实现“双碳”目标。目前,绝大多数白光LED技术主要依靠蓝光LED激发多组分荧光叠加的方式产生白光,因此很容易出现显色性差、发光效率低、有害蓝光成分高、白光光谱不连续等问题。开发高效单组分白光材料被认为是解决以上问题的关键。研究人员发现,非铅金属卤化物双钙钛矿材料可在低温溶液法制备,生产成本低。此外,由于自身结构的限域以及强烈的电—声子耦合效应,双钙钛矿材料具有独特的自陷激子特性(STE),其复合发光表现出较大的斯托克斯位移及宽带光发射,从而表现出白光发射的特点。在本工作中,科研人员通过利用有机分子4, 4-二氟哌啶(DFPD)和碱金属之间的强化学键,制备了具有一维结构的(DFPD)2MIInX6 (MI= K, Rb X= Cl, Br)双钙钛矿化合物。其中,DFPD+不仅作为有效的层间间隔物来平衡电荷,而且可作为构成金属卤化物八面体的关键组分。特别地,(DFPD)2MIInX6中的电子态在空间上被限制在单个八面体中,产生了天然的电子限域效应。为了促进辐射复合,研究人员进一步采用微量Sb3+掺杂策略,将白光量子效率从5%提高到90%以上。由于所制备的低维双钙钛矿材料具有高光电性能和优异的溶液可加工性,可以通过简单的溶液法制备基于该材料的单组分暖白光LED,因此,该工作为下一代照明器件的设计提供新的思路。杨斌等近年来在基于自陷激子的单组分白光材料及其发光动力学领域开展了系统的研究:揭示了激子超快自陷过程(Angew. Chem. Int. Ed.,2019;Acc. Chem. Res.,2019),以及电—声子耦合对该超快过程的影响机制(Sci. Bull.,2020);揭示了基于自陷激子热活化延迟荧光的发光机制(Angew. Chem. Int. Ed.,2020);通过三线态自陷激子与受体离子Mn2+之间的高效能量转移,实现了胶体纳米晶中的高效白光发射(Nano Lett.,2021);并基于自陷激子独特的性质拓展了其在长余辉发光材料(Angew. Chem. Int. Ed.,2022)、高灵敏紫外光电探测器(Adv. Mater.,2021;Laser Photonics Rev.,2022)、X-射线闪烁体(J. Phys. Chem. Lett.,2022;J. Phys. Chem. Lett.,2022;Laser Photonics Rev.,2022)、超灵敏的光学测温器(J. Phys. Chem. Lett.,2022)等领域的应用。相关研究成果以“Highly Luminescent One-Dimensional Organic–Inorganic Hybrid Double-Perovskite-Inspired Materials for Single-Component Warm White-Light-Emitting Diodes”为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。该工作的第一作者是我所1101组联合培养博士研究生柏天新。上述工作得到国家自然科学基金、中科院青促会、我所创新基金等项目的支持。
  • 索尼将与Illumina成立合资公司 推出基因组分析业务
    据日本媒体报道,索尼公司计划与Illumina成立一家合资企业,并推出人类基因组分析业务。  据知情人士透露,这家合资企业将在日本开展基因组信息分析,并向制药公司出售数据库中的信息。索尼公司目前已将医疗领域作为核心业务。  这家合资企业将由索尼的子公司M3与Illumina合作成立。它将利用Illumina的测序仪器对医院及其他医疗机构提供的血液样本进行分析。此外,它还会积累来自患者个体的分析数据,并出售给制药公司、科研院所及其他机构。  实际上,去年10月,索尼总裁平井一夫(Kazuo Hirai)就宣布,到2020年之前,该公司医疗业务的销售额将从目前的数百亿日元提高到2000亿日元(折合20.4亿美元)。  基因组信息分析将为索尼的医疗部门带来快速扩张的机会。它目前的应用也在不断扩展,如预测个体是否有可能罹患疾病。之前,好莱坞明星安吉丽娜&bull 朱莉通过基因检测发现她患上乳腺癌的风险较高,故接受了双侧乳腺切除术。  在日本,基因组分析目前主要由理化学研究所(Riken national research institute)及其他大型研究机构来开展。理化学研究所的一位高级官员表示,越来越多的公司将也有可能开展基因组分析业务。  &ldquo 多亏了先进设备的引入,基因组分析才变得更加容易开展,&rdquo Riken基因组网络分析支持项目的主管Naoto Kondo谈道。  索尼子公司M3为医生提供医学论文的信息及其他服务,目前在日本已有一些固定的客户。利用M3的知名度和坚实的客户基础,索尼希望其新业务能收到尽可能多的订单。  因传统电子业务的增长空间有限,索尼等电子巨头也开始进军新的市场,希望能够找到新的利润增长点。医疗器械等领域便成为他们主攻的方向之一。  今年4月,索尼和奥林巴斯共同宣布成立索尼奥林巴斯医疗解决方案公司。新公司注册资金5000万日元,由索尼控股51%,奥林巴斯持股49%,旨在整合索尼在数码影像等电子领域的技术与奥林巴斯的镜头光学技术及其在医疗产品领域的制造和研发经验,从事创新医疗产品的研发、设计、生产和营销。
  • 合肥研究院提出三维荧光光谱组分识别新方法
    p  近期,在国家自然科学基金的支持下,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员赵南京课题组在三维荧光光谱组份识别方面取得新进展,相关研究成果发表在近期的美国John Wiley& Sons Ltd 出版社出版的J.CHEMOMETRICS 上。/pp  随着工业发展、城镇化提速以及人口数量的膨胀,水污染情况仍然非常严重。水污染主要可分为:生物污染,物理污染和化学污染三大类。多环芳烃(polycyclic aromatic hydrocarbons)具有极强的“三致”效应,在环境中很难降解,成为化学污染监测的重点之一。检测多环芳烃的传统方法主要有气相色谱法和液相色谱法,由于多环芳烃在水里的溶解度很低,这些方法通常需要对样本进行预处理,费时费力且不适合在线实时监测水中的多环芳烃。三维荧光光谱法具有非破坏性、高灵敏度等特点,已成为一种重要的多组分物质分析手段。而多环芳烃由于自身的结构受到紫外光及可见光的激发可产生荧光,因此,三维荧光光谱成为在线监测痕量多环芳烃的最佳选择。但是目前阻碍这一技术广泛应用的困难主要有:谱线较宽、同一类物质光谱相似等原因造成光谱重叠,影响单一成份提取与识别。因此,三维荧光光谱组分解析成为亟待解决的问题之一。/pp  该文中,赵南京课题组提出了右因子非负矩阵分解用于光谱组分解析,该新方法在信号提取方面有优越的表现,能实现实际水体中多环芳烃荧光光谱组分的成功提取与识别。/p
  • 青岛能源所提出混合物组分分离及结构确证的新方法
    混合物组分分离及结构确证一直是分析化学面临的重要任务。近日,中国科学院青岛生物能源与过程研究所公共实验室黄少华等利用核磁共振(nmr)技术在该领域取得了新进展,提出了一种全新的能够同时实现组分分离和结构确证的简易通行分析方法,相关成果于9月4日在线发表于《德国应用化学》( angewandtechemie)。传统混合物组分分离及结构确证方法通常利用色谱学工具与波谱学工具进行联用,比如gc-ms、hplc-ms、hplc-nmr等。近年来,nmr方法学家们开发了一种被称之为&ldquo 核磁共振中色谱技术&rdquo 的dosy技术,能够无需进行实际色谱分离就能同时实现混合物组分分离及结构确证,大幅节约了分析时间与成本。但是,纯dosy技术需要在&ldquo 虚拟色谱固定相&rdquo 辅助下,才能在实际应用中显示出其优势。黄少华带领的研究小组经过两年时间的摸索,发现了一种适用于dosy技术的通用&ldquo 虚拟色谱固定相&rdquo &mdash &mdash 聚二甲基硅氧烷(pdms)。该物质结构简单、成本低廉,并且其nmr信号接近于tms,不干扰其它分析物的信号,是天然的理想&ldquo 虚拟色谱固定相&rdquo ,可广泛应用于分析化学的各个领域。研究表明,pdms拥有强大的分离能力,所分离的化合物类型基本包括了大部分有机化合物类型。例如,pdms能够轻松基线分离氘代氯仿中的苯、萘和蒽混合物,并且能够同时得到每个组分的nmr信号。这些特点使得基于pdms的dosy技术具有重要的理论研究意义和实际应用价值。在此基础上,合成化学家们可以用该技术部分代替tlc技术,实时跟踪目标化合物,了解化合物的组成与结构信息,而无需进行大量的分离提纯工作。同时,还可利用此技术部分代替经典色谱工具对复杂混合物进行分析,节约大量分析时间和成本。上述研究得到了国家自然科学基金项目支持。  氘代氯仿溶液(0.6 mL)中苯(5 mg)、萘(5 mg)和蒽(5 mg)的1H DOSY(600 MHz)谱图。左图为溶液中没有添加PDMS的DOSY谱图;右图为溶液中添加PDMS的DOSY谱图。实验温度:298K。
  • HT8850上路啦——多组分温室气体分析走航测试
    上周,在经历了长期研发投入,昕甬智测2022年纯国产自主研发的新产品——HT8850便携式多组分温室气体分析仪首度公开亮相,搭上了合作伙伴的走航车,在宁波市郊进行温室气体观测。 图一 昕甬智测应用工程师现场操作HT8850温室气体分析仪 图二 全新开发上位机界面实时显示高精度、多组分观测数据 HT8850分析仪采用量子级联激光作为光源,专利设计中的中红外增强型积分腔,实现一机支持同时测量四温室气体组分:水汽、二氧化碳、甲烷、氧化亚氮。其特色如下:l 便携的仪器箱内实现快速响应、高准确度的温室气体测量l 多气体在吸收峰间不存在交叉干扰l 同步的水汽测量实现在线校正,一步到位获取气体的干基浓度密度l 低功耗的分析仪能够由太阳能或锂电池供电,上天下地、部署灵活 在数月的实验室测试之后,此次现场测试提供了真实现场条件下的仪器性能表现。昕甬智测将精益求精,继续更新迭代HT8850,为国家“碳中和”大目标贡献力量!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制