当前位置: 仪器信息网 > 行业主题 > >

计算流体力学

仪器信息网计算流体力学专题为您整合计算流体力学相关的最新文章,在计算流体力学专题,您不仅可以免费浏览计算流体力学的资讯, 同时您还可以浏览计算流体力学的相关资料、解决方案,参与社区计算流体力学话题讨论。

计算流体力学相关的资讯

  • 赛默飞世尔科技与德累斯顿工业大学流体力学学院展开合作
    &mdash &mdash 推出&ldquo 流变学入门课程&rdquo 培训包,内含实践实验指导德国卡尔斯鲁厄(2010年6月7日) &mdash 全球服务科学领域的领导者赛默飞世尔科技有限公司与德累斯顿工业大学流体力学学院展开密切合作,为其学生提供流变学培训课程。此次合作可为公司的所有意向客户提供有关Thermo Scientific HAAKE Viscotester 550 粘度计的各种实践实验资料。 流变学研究对于新产品的开发和质量控制来说正变得日益重要 &mdash 例如,从低粘度的眼药水到固体聚合物。因此,早期培训对于了解流变现象就显得更为重要。赛默飞世尔的&ldquo 流变学入门课程&rdquo 培训包中包括具有特殊配置的HAAKE Viscotester 550粘度计和两个实践实验的说明。该培训可用于普通学校、职业学校、公司和大学。此外,培训包还为授课教师准备了教学指导和实验结果示例。为确保培训包的效果,赛默飞世尔科技将在研讨会活动中对授课教师进行一天的培训。 &ldquo 我们在学生培训课上使用HAAKE Viscotester 550等旋转粘度计进行流变测量教学。该仪器是实践实验的理想之选,通过使用预设的内部程序或软件,操作变得非常简单,可快速培训多个用户。&rdquo 德累斯顿工业大学流体力学学院磁流体动力学系主任Odenbach教授说道:&ldquo 在更复杂的流变测量中,我们使用诸如Thermo Scientific HAAKE MARS之类的仪器。它是一个模块化的流变仪平台,能够针对各种应用进行校准,并提供多种附件。 培训包优点一览: · 坚固可靠的旋转粘度计,带预设的内部程序。 · 适用于介质粘度试验的同心圆筒测量转子,可选用多种测量转子进行扩展(例如、平行板、锥板、旋转式或悬挂式同心圆筒) · 用户友好的Thermo Scientific HAAKE RheoWin测量和评估软件,适用于初学者或熟练用户,可在www.thermoscientific.com/mc 网站上进行免费升级。 · 文件资料中包含流变学基础知识和两个实践实验的说明,还包括授课教师的教学指导。 · 在授课教师的进一步培训中,可有针对性地讲授流变学基础知识或巩固已有知识。 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35,000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。请访问www.thermofisher.com 或中文网站www.thermo.com.cn, www.fishersci.com.cn。
  • 美国TSI公司流体力学网上讲座
    题目:利用互相关峰率量化PIV不确定度演讲人:普渡大学 Pavlos Vlachos教授; TSI 公司Stamatios Pothos 和 Aaron Boomsma 博士;日期:2014年12月18日时间:美 中央时区早上9:00 点(北京时间 晚10:00点)在粒子图像测速系统(PIV)中,误差取决于PIV算法、用户设置、流动特征与实验装置。之前,PIV系统的误差分析是在理想或约束的实验与分析条件下建立的。然而,这些条件与随着时间空间变化的实验和流动实际条件不同。因此,误差及广义的PIV不确定度不能基于现有的误差分析。John Charonko and Pavlos Vlachos博士发现PIV不确定度是与互相关信噪比密切相关。互相关信噪比的一个主要指标是第一峰率(PPR),PPR是互相关分析图上的第一高峰与第二高峰比值。总之,不确定度是与PPR呈负相关。本次研讨会,Pavlos Vlachos教授将介绍量化PIV不确定度的方法及其在TSI Insight4G软件中的实现。请您点击以下链接尽快注册参加此网上讲座:https://www3.gotomeeting.com/register/269024462
  • 联合仪器制造工作正在研制俄罗斯首款工程计算系统
    据报道,2016年7月4日,新型100%国产程序将在“厄尔布鲁士”平台上开发。  联合仪器制造公司与莫斯科SPARC技术中心、TESIS公司联合开发俄罗斯首款工程计算系统。新程序将在“厄尔布鲁士”平台上进行开发。  联合仪器制造公司已经完成“厄尔布鲁士”平台复杂空气动力学和流体力学FlowVision转化的第一阶段,创造了国内工程计算软硬件系统的新型工作样件。  FlowVision可解决水力、气体动力学及燃烧过程中的各种问题。该系统广泛用于军工企业、导弹航天领域、航空及船舶制造业和“俄罗斯原子能公司”。利用该系统可以进行复杂计算,例如,描述各种管线和泵的特性,计算航天器的降落,绘制舰船或飞机外层流线图。  联合仪器制造公司IT部门主管帕韦尔赫里蓬诺夫表示,“各合作企业共同推进全寿命周期的国产工程任务解决方案软硬件系统的研制进程”。  赫里蓬诺夫表示,该项目实施的迫切性取决于工业领域,特别是国防工业领域日益提升的各项需求。  赫里蓬诺夫强调,“该系统可与国外类似产品相媲美,价格具有竞争力,已准备全面应用于企业,以对抗西方制裁”。  目前FlowVision软件可兼容四路服务器“厄尔布鲁士-4.4”开展计算工作,以及 “厄尔布鲁士401” 可视化及数据分析工作站。
  • 奥影闪耀亮相全国固体力学学术会议
    近日,备受瞩目的“2024年全国固体力学学术会议”在江苏省南京市隆重召开,本次会议吸引了众多国内外知名专家学者和研究生齐聚一堂,共同探讨固体力学的前沿和挑战。在会议现场,奥影设立展位与现场的学者与业界同仁互动交流,展示奥影工业CT系统在固体力学领域的创新应用与实践案例。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”,聚焦新形势下固体力学领域的科技创新和人才培养,研讨主题包括不限于固体力学及其分支学科的主要进展、创新方法、现存挑战及未来方向。借助工业CT的高精度三维成像能力,为固体力学研究者提供了前所未有的观察和分析手段。无论是复杂的材料内部结构,还是微小的形变和裂纹,都能通过工业CT的扫描图像得以清晰展现。这不仅有助于我们深入理解材料的力学行为,更能为优化材料设计、提升产品性能提供有力支持。此外,工业CT还可在原位加载实验中得到应用。在进行原位加载实验时,工业CT可持续监测试件在加载过程中的内部结构变化,如裂缝的产生、扩展以及材料的形变等。这些信息对于理解材料的失效机制、优化材料设计以及提升产品的耐用性具有重要意义。本次会议作为固体力学领域的年度盛会,不仅汇聚了众多专家学者,为他们提供了一个展示前沿成果、深入交流学术思想的平台,更在推动固体力学领域的科技创新和人才培养方面发挥了重要作用。同时,奥影也将继续深耕工业CT技术的研发与应用,不断为固体力学领域的研究和发展贡献新的力量,共同推动该领域的繁荣与进步。
  • 凯尔测控2024年全国固体力学学术会议完美落幕
    会议概况 “2024年全国固体力学学术会议”于 2024年3月29日至4月1日在江苏省南京市南京国际博览会议中心顺利召开。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”。大会组委会热忱邀请全国固体力学领域的专家学者及研究生参会交流,分享最新的研究进展,共同研讨固体力学及相关领域的发展机遇以及面临的挑战。 凯尔测控-作为本次会议国内高端疲劳试验机厂商赞助商,展示了固体材料力学检测设备:微型电磁式动态力学试验机和原位拉压力学试验机。
  • INNOVATEST轶诺仪器与固体力学会议携手推动力学性能测试
    由中国力学学会固体力学专业委员会主办,中国工程物理研究院总体工程研究所,西南交通大学力学与工程学院,四川大学破坏力学与工程防灾减灾省重点实验室,顶峰多尺度科学研究所,成都大学承办的“2014年全国固体力学学术会议”于金秋十月在四川隆重举办。此次会议共设2个主会场,27个分会场,会议规模宏大,会场组织有序。作为赞助商之一,轶诺仪器(上海)有限公司亦亲自派出市场与技术团队,全心助力此次大会。 现场与会专家多达1200余人,在为期2天的会议中,来自中国科学院力学所的白以龙教授、王自强教授,自然科学基金委的杨卫教授,美国西北大学的黄永刚教授,哈尔滨工业大学的杜善义教授,中国工程物理研究院的孙承伟教授,西南交通大学的翟婉明教授,香港科技大学的余同希教以及美国普渡大学的陈为农教授分别作了特邀报告,会场气氛轻松热烈,不时传来听众的阵阵掌声。 所谓固体力学,就是研究可变形固体在外界因素作用下所产生的应力、应变、位移和破坏等的力学分支。一般包括材料力学、弹性力学、塑性力学等方向。其中,材料力学是固体力学中发展最早的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。之后发展起来的弹性力学是研究弹性物体在外力作用下的应力场、应变场以及有关的规律;塑性力学则是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。 众所周知,金属材料的主要力学性能包括硬度、弹性、塑性、刚性、冲击韧性、疲劳强度、断裂韧性等;而硬度作为一项综合的力学性能指标,与材料的其他性能之间存在一定的联系,比如,金属的抗拉强度便可由硬度经过换算得到。另外,金属的硬度与冷成型性、切削性、焊接性等工艺性能也有密切关系;硬度实验能敏感地反映出材料的化学成分、金相组织和结构的差异,因此被广泛用来进行原材料的质量检验,以及检验零件的热处理质量。硬度试验具有设备简单、操作方便快捷、压痕小以及便于现场操作等特点,是产品研发和生产中最常用的力学性能试验方法,在测试金属材料机械性能上得到了广泛应用。 INNOVATEST轶诺仪器,全球领先的硬度计制造商,位于欧洲荷兰,集设计,研发,生产于一身,深谙力学,视质量为第一生命,致力于提供高端、精密、可靠、稳定的硬度检测设备。为此,INNOVATEST轶诺仪器不断契合广大用户的需要,为其量身定做最合适的硬度测试解决方案。 INNOVATEST轶诺仪器在其荷兰总部和上海子公司均设有展厅,随时恭候您莅临体验!
  • 空气动力学研究常用测量技术及应用网上讲座将举办
    空气动力学研究常用测量技术及其应用  演讲人: 许荣川博士 高级应用工程师  张鑫 应用工程师  崔军磊 应用工程师  网上讲座: 2011年6月2日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这是TSI公司第四次推出流体测量技术系列中文网上讲座(可以网上同时收看收听音视频内容),以帮助您了解流体测量技术及提高应用水平。我们将于2011年6月2日上午10点开始此次讲座,重点介绍空气动力学研究中常用的几种测量技术。  具体内容:介绍空气动力学研究特征及测量需要 介绍几种常用测量技术原理,特点及其典型应用:激光多普勒测量技术(LDV/PDPA),粒子图像测量技术(PIV),体三维测量技术(V3V)与热线热膜风速仪测量技术(HWFA)。  讲座将会进行40分钟及预留15分钟答疑环节。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 荧光/磷光体系溶液结构测定动静态激光光散射谱仪
    成果名称荧光/磷光体系溶液结构测定动静态激光光散射谱仪单位名称中国科学院化学研究所联系人程贺联系邮箱chenghe@iccas.ac.cn成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 &radic 合作开发 □其他成果简介:荧光/磷光体系溶液结构测定动静态激光光散射谱仪通过引入二向色镜,采取叠光的手段,将785nm、633nm、532nm和457nm的激光作为光源,根据样品不同的吸收谱带选择样品无吸收的激光,解决了商业化动静态激光光散射谱仪无法测量荧光/磷光体系溶液结构的难题。该谱仪可精确测定流体力学半径在1nm-100&mu m,均方旋转半径在20nm-300nm尺寸范围的纳米、胶体、团簇颗粒等的溶液结构。应用前景:本项目可以吸引国内院所同行,尤其是本身已有商业化动静态激光光散射谱仪的同行的注意,吸引他们向我方申请加工、或者直接购买,在市场上有一定的应用前景。近两年来,仅德国ALV公司在中国市场购买就销售了15台左右谱仪,按每台谱仪的改装费80万元计算,我们的潜在市场至少有1200万元。
  • 美国TSI公司“体三维速度场仪系统(V3V)”网上讲座4月26日举办
    体三维速度场仪系统(V3V)网上讲座  演讲人: 张鑫 应用工程师  崔军磊 应用工程师  网上讲座: 2011年4月26日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司第三次推出流体测量仪器的系列中文网上讲座,以帮助您提高利用V3V系统测量流体速度的技术水平。 我们将于2011年4月26日上午10点开始此次讲座,介绍V3V三维成像原理,系统校准及数据处理。  具体内容:V3V原理,系统布置,三维成像介绍,相机校准;数据处理流程及算法介绍;应用。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 兰光发布塑料包材水蒸气透过率测试仪新品
    塑料包装水蒸气透过率测试仪 C360H水蒸气透过率测试系统——本产品基于重量法水蒸气透过的测试原理,参照ASTME96,GB 1037标准设计制造,为低、中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学等领域的薄膜、片材、纸张、织物、无纺布及相关材料的水蒸气透过性能测试。塑料包装水蒸气透过率测试仪产品优势:只为精准——先进流体力学和热力学设计的专利测试舱和透湿杯;立体空间恒温技术;精密科学的测试条件调节计算;高效合规——12个测试工位;支持增重法和减重法测试模式;节省人力——风速自动调节;湿度自动调节;无需更换内芯的气体干燥装置和高效水蒸气发生装置;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。4、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。5、先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。塑料包装水蒸气透过率测试仪测试原理:在预先处理好的测试杯中放置水或者干燥剂,然后将预先处理好的试样夹紧在测试杯上,测试杯放置于测试舱当中。测试舱根据指定测试条件生成稳定的温度、湿度和气流吹扫环境。水蒸气通过试样进入干燥一侧,通过测定测试杯整体重量随时间的变化量,计算试样水蒸气透过量等结果。参照标准:ASTM E96、GB 1037、GB/T 16928、ASTM D1653、ISO 2528、TAPPIT464、DIN 53122-1、YBB00092003-2015塑料包装水蒸气透过率测试仪技术参数:最大量程:减重法:10000/n(1-12件)g/(m2day);645/n(1-12件)g/(100in2day)增重法:每件1200 g/(m2day);每件77g/(100in2day)测试工位:12个测试温度:20℃~55℃±0.2测试湿度:10%RH~90%RH±1%扩展功能:DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:样品尺寸:Φ74mm样品厚度:≤3mm测试方法:增重法,减重法标准测试面积:33cm2载气规格:压缩空气载气干燥:长寿命干燥装置,不需要更换内芯载气加湿:内置高效无水雾加湿气源压力:≥0.6MPa接口尺寸:Φ6mm聚氨酯管创新点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。塑料包材水蒸气透过率测试仪
  • 过程工程所在液液萃取技术研究中获进展
    p style="text-align: justify text-indent: 2em "液液萃取分离是过程工业中重要的单元操作,传统的箱式混合澄清槽密封性能差,有机相挥发极易带来溶剂损失和严重的火灾隐患。近日,中国科学院过程工程研究所自主设计的5套新型密闭管式萃取器在河北兰润植保科技有限公司除草剂原药生产车间替换原有全部间歇釜式生产装置,并实现稳定连续运行1个月,运行后该车间产能由20吨/月提高至104吨/月,有机相挥发损失大大减少。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "新装置的成功应用,降低了液液溶剂萃取过程中的溶剂损失和火灾风险,同时也突破了化学制药生产过程中部分特殊液液萃取体系无法连续化生产的瓶颈,提高了生产能力,具有进一步推广至湿法冶金、废水处理、精细化工、石油化工等众多液液萃取领域的示范作用,对提升相关企业绿色化、安全化生产有重要意义。/span/pp style="text-align: justify text-indent: 2em "化学制药过程(如农药)中的液液萃取分离涉及的物系性质较为复杂,如有机相溶剂性、挥发性强;水相酸性强且常含氯离子;待萃物浓度高,萃取前后两相物性差变化大;两相乳化随pH敏感等。采用传统箱式混合澄清槽进行连续生产困难,原有生产过程只能采用釜式间歇操作,产量低且产品质量不稳定。间歇操作过程有机相挥发严重,带来溶剂损失的同时,恶化了工人操作环境,存在严重的火灾隐患。/pp style="text-align: justify text-indent: 2em "过程工程所资源与环境研究部湿法冶金与先进材料课题组长期从事液液萃取工艺及装备的研究。研究团队根据化学制药过程中两相物系的特殊物理化学特性,采用先进在线测量手段原位获取了两相混合行为和传质数据,结合CFD(计算流体力学)与PBM(群体平衡)模型计算,揭示了液液萃取装备几何结构对两相间微观传质、宏观流动和液滴“破碎-聚并”的相互作用规律,进一步设计出新型高效管式萃取器。据项目负责人、研究员王勇介绍,该新型萃取器具有较高的单级效率和更低的两相夹带量;密闭性好、不易泄漏,便于VOC(挥发性有机物)的集中收集处理;适用于强有机溶剂和强腐蚀性体系;特殊的轻相、重相界面调节系统,实现了两相界面的稳定控制;界面污物可在线连续采出、分离,提高了系统连续运行能力。/pp style="text-align: justify text-indent: 2em "该项装备技术获得科技部重点研发计划(2019YFC1907700)支持,并已申请国家发明专利。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/3be854e5-41c7-407d-9dcb-01ec9772db32.jpg" title="管式混合萃取器应用现场.png" alt="管式混合萃取器应用现场.png"//pp style="text-align: center text-indent: 0em "管式混合萃取器应用现场/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/a11872b4-35d1-4375-a05c-42a174b3765c.jpg" title="管式萃取器流体力学计算.png" alt="管式萃取器流体力学计算.png"//pp style="text-align: center text-indent: 0em "管式萃取器流体力学计算/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/ba102d80-70ab-4efa-857a-eced0d6a7e45.jpg" title="管式萃取器模型.png" alt="管式萃取器模型.png"//pp style="text-align: center text-indent: 2em "管式萃取器模型/p
  • 热分析结合机器学习实现烟叶风格评价达国际领先水平 福建中烟两项目获行业科技奖
    近日,中国烟草总公司表彰奖励了一批重大项目和优秀科技工作者,其中福建中烟两个项目和两位同志获得殊荣,分别是:《天然茶香料规模化精准制备关键技术开发及应用》获中国烟草总公司技术发明奖二等奖《基于计算流体力学的细支卷烟燃烧机理研究及应用》获中国烟草总公司科学技术进步奖三等奖技术中心李华杰、邓其馨获中国烟草总公司创新争先奖一起来看看这些创新项目和创新达人吧01《天然茶香料规模化精准制备关键技术开发及应用》主要完成人:范坚强 张峰 伊勇涛 谢金栋 胡军 洪祖灿 茅中一 刘珊该项目针对天然香料存在的特色原料筛选及处理不够精准、开发技术不够高效、规模化生产香料存在质量波动、功能传导精准应用有待提升等行业共性问题,以福建最具特色的茶叶为研究对象——● 形成了以“一种制备香料的方法、香料及其用途”为核心专利的茶原料精准筛选处理、茶香料高效开发、稳定可靠规模化制备及功能作用精准传导等4大专利技术板块;● 建成了行业首条天然茶香料生产线;● 开发生产出一系列茶香料、茶香基模块,并拓展开发出其它多种天然香料、香基模块。目前,茶香料等自主研发生产的香料已成功应用于20个卷烟产品中,并以天然茶香料为核心香料开发出茶香风格突出的高价位“金砖”系列卷烟。项目不仅显著提升了企业香精香料的自主研发和自我保障水平,也为行业天然香料研发应用提供了可复制、可推广的范本和共性生产平台。关键技术已推广至郑州烟草研究院、河南中烟等多家单位,推广应用效果显著。02《基于计算流体力学的细支卷烟燃烧机理研究及应用》主要完成人:李跃锋 李斌 李巧灵 谢卫 刘泽春 李华杰 钟洪祥 邓小华 王乐 张齐该项目通过对卷烟燃烧时物理化学过程的数学表达,搭建设计要素、燃烧状态和设计目标间的构效关系。● 采用计算流体力学(CFD)的方法构建细支卷烟燃烧模型,阐述了卷烟燃烧传递机理及各设计要素的作用机理;● 基于对卷烟燃烧机理的深入研究,首次将热分析技术与机器学习算法结合,实现对烟草质量风格的量化评价;● 最终形成计算流体力学导引下的细支卷烟系统化设计体系,并应用于福建中烟多个牌号的新产品开发和老产品维护。项目填补行业在卷烟燃烧数值模拟研究领域的空白,为行业细支卷烟开发设计提供快速便捷的工具。鉴定委员会一致认为,项目在“细支卷烟燃烧数值模拟”和“基于热分析图谱结合机器学习算法实现烟叶风格评价”两个方面具有显著创新,达到国际领先水平。03李华杰:守护工艺 创想当“燃”人物名片2004年入职,高级工程师,主要负责卷烟工艺技术研究,多次参与行业重大专项项目和福建中烟科技项目,2016年以来获得中烟科技进步奖项4项,获得授权发明专利7项,实用新型专利12项。研究制定行业标准5项,并作为第一副主编编著30万字以上书籍3本。作为一名潜心钻研的科技工作者,多年来,李华杰立足自身技术领域,积极投身企业及行业的科研创新与服务工作,推进行业重大专项工作实施,推动卷烟生产过程品质控制,增强工艺装备技术支撑能力,促进行业质量管控标准化和规范化… … 可以说,他是一个研究型的实践者,亦是一个实践型的探索者。● 推动生产制造工艺技术及装备功能的不断完善优化,为企业产品、原料等各领域的集成协同提供了很好的生产制造与创新平台;● 完成了《再造烟叶涂布率的测定 烘箱法》等行业标准的研究和编制工作,填补了行业关键领域质量管控标准的缺失;● 作为卷烟产品工艺的“守护者”,近几年他和项目团队积极开展库存不适用烟叶加工技术研究,为提前一年半完成了国家局布置的30万担不适用烟叶的消化使用任务作出积极贡献。04邓其馨:埋首耕耘探“气”之路人物名片2009年进入福建中烟技术中心实验室,主要从事卷烟烟叶及烟气化学成分分析与应用、卷烟原辅材料质量安全保障及产品降焦减害的技术研究。2016年破格评为高级工程师,2017年入选中国科协“青年人才托举工程”。五年来,授权发明专利10项,发表SCI论文4篇,在《德国烟草科技》《烟草科技》《中国烟草学报》等核心期刊发表论文5篇,多次获得福建中烟科技进步奖项。从关注实验本身到关注实验与卷烟产品之间的联系,将研发新技术、共性规律应用到产品开发当中,真正让技术研发落地,这是邓其馨从事十多年科研工作最大的收获。入职至今,邓其馨一直在福建中烟技术中心实验室,与烟草化学打交道。● 在基于烟气化学成分的通风卷烟调控技术研究方面,首次采用“卷烟烟气截留释放模型”尝试探究了滤嘴通风影响卷烟烟气化学成分变化差异的根本原因,为通风卷烟产品通风设计开发优化,产品维护等方面提供技术支撑,并应用于福建中烟在产卷烟规格分析及新产品设计,取得显著经济效益。● 此外,他在卷烟原辅材料质量安全保障及产品降焦减害方面努力探索,对福建中烟卷烟品牌发展具有积极的促进作用。
  • 美国TSI公司空气动力学粒径谱仪获评“2014科学仪器行业最受关注仪器”
    2015年4月22日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2015 (第九届)中国科学仪器发展年会(ACCSI 2015)在北京京仪大酒店召开,会议主题为&ldquo 创新创造价值&rdquo , 出席会议人数达800余位。作为ACCSI 2015的&ldquo 重头戏&rdquo ,年会主办方颁布了多项产品奖项。其中,TSI公司的空气动力学粒径谱仪(APS-3321)获得&ldquo 2014科学仪器行业最受关注仪器&rdquo 大奖。 TSI3321型空气动力学粒径谱仪 (APS) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。 APS 粒径谱仪使用取得专利(美国专利号5561515)的双峰光学系统,具有无与伦比的粒径检测精度。它还包括新设计的喷嘴结构和改进的信号处理。因此,它具有更大的小粒径检测效率、提高的质量分布精确度并有效消除错误背景计数。 TSI公司的空气动力学粒径谱仪(APS-3321)可广泛用于各类相关科学研究和实际应用,如究吸入毒理学,给药研究,大气研究,环境空气监测,室内空气质量监测,滤料和空气清洁器测试,气溶胶特性测试和粉尘粒径检测等。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 兰光发布高精度C230H氧气透过率测试仪新品
    C230H氧气透过率测试系统——本产品基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。适用于食品、药品、医疗器械、日用化学、光伏电子等领域的薄膜、片材、包装件及相关材料的氧气透过性能测试。产品优势:只为精准——先进流体力学和热力学设计的专利测试集成块;空间立体恒温技术;独立监测各腔测试情况的温湿度传感器;高效合规——同时测试3个相同试样,符合平行试验的标准要求;支持同一条件下3个不同试样测试;节省人力——自动温度、湿度控制;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。2、自动温度、湿度控制——设备内部温度、湿度自动调节。测试腔各自安装温湿度传感器监测温湿度情况,控制测试过程更加精准。3、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接4、入第三方软件。先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。测试原理:将预先处理好的试样夹紧于测试腔之间,氧气或空气在薄膜的一侧流动,高纯氮气在薄膜的另一侧流动,氧分子穿过薄膜扩散到另一侧中的高纯氮气中,被流动的氮气携带至传感器,通过对传感器测量到的氧气浓度进行分析,计算出氧气透过率等结果;对于包装件而言,高纯氮气则在包装件内流动,空气或氧气包围在包装件外侧。参照标准:ASTM D3985、ASTM F1307、ASTM F1927、GB/T 19789、GB/T 31354、DIN 53-3、JIS K7126-2-B、YBB 00082003-2015技术参数:测试范围:0.01~200cm3/(m2day) (标准);0.0007~12.9cc/(100in2day);0.00005~1cm3/(pkgday)(包)分辨率:0.001cm3/(m2day)重复性:0.01cm3/(m2day)或2%,取大者测试温度:10~55℃±0.2℃测试湿度:0%RH,5%RH~90%RH±1%RH,100%RH附加功能:包装件测试(最大3L):可选DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:测试腔:3样品尺寸:108mm×108mm样品厚度:≤3mm标准测试面积:50cm2载气规格:99.999%高纯氮气(气源用户自备)气源压力:≥0.28MPa/40.6psi接口尺寸:1/8 英寸金属管创新点:C230H氧气透过率测试系统基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。创新技术特点:(1)新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。(2)搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;高精度C230H氧气透过率测试仪
  • 喜讯!Tinius Olsen与同济大学航空航天与力学学院签署实验室共建协议
    近日,全球领先的百年试验机厂商Tinius Olsen(天氏欧森,以下简称Tinius Olsen)与国内知名高等学府同济大学航空航天与力学学院签署实验室共建协议。作为国内工科首屈一指的一流大学,此次合作,Tinius Olsen将助力同济大学在航空航天及力学领域的科研及日常教学工作的开展。同济大学是一个以工科为主的大学,学生也以工科为主,多数学生都要学习力学相关课程,同时也要参加力学的相关实验研究。在力学学科人才培养方面,航空航天与力学学院承担了全校广范围的基础力学课,包括材料力学、理论力学、流体力学等等。同时包括独立设课的课程实验,学院每年力学相关实验课程达到5000个学时,30000个课时。在悠久力学学科发展的基础上,学院先后获批了国家级的力学实验教学示范中心、国家级力学虚拟仿真实验教学中心和复合材料工程实验中心,面向全校本科生开设基础力学课程的教学、各类力学和航空的实验课与创新实验。力学学科的发展离不开先进的力学测试仪器设备,在此次的合作项目中,本着建设既能“满足学生日常学习实践需求”,又能“达到国际实验室技术水平”来满足科研需求的初衷,Tinius Olsen与同济大学航天航空与力学专业签署的协议中,一共包括了11个测试站,来满足不同材料和类型的测试需求: 1个30吨常温合金类材料测试站1个15吨特殊材料测试站4个10吨金属材料测试站1个10吨加高型金属材料测试站1个10吨碳纤维复合材料测试站1个10吨高温合金和钛合金类材料测试站1个5吨高分子材料和碳纤维复合材料测试站1个500公斤轻型材料测试站Tinius Olsen一站式测试站值得一提的是,在这11个不同类型的测试站中,除了基础的试验机架、专业夹具、环境箱、高温炉之外,Tinius Olsen还将提供其最新的附件设备,比如行业领先的视频引伸计、光学引伸计、无线手持控制器、实现全程测试回放(带有实时曲线)的摄像系统,以及最新的Horizon测试软件等。这些先进设备的引入,旨在匹配同济大学航空航天与力学学院力争打造国际一流现代化实验中心的目标。Tinius Olsen视频引伸计 Tinius Olsen光学引伸计在台式试验机上的应用 其实,放眼过去,这并不是同济大学与Tinius Olsen的第一次合作,事实上,在上世纪40年代,同济大学力学学院就引入了一台Tinius Olsen(天氏欧森)早期的杠杆式试验机,这台试验机,也是目前能考证到的,亚洲范围内,最古老的一台试验机。去年4月,Tinius Olsen走访了同济大学航空航天与力学学院,对这台古老设备以及学院的李岩院长进行了拍摄及采访。(点击此处查看去年相关报道)作为同样拥有超过百年历史的一家组织机构,Tinius Olsen对此次的合作,感到万分荣幸,Tinius Olsen十分尊敬并高度赞扬同济大学航空航天与力学学院对国内航空航天以及力学事业做出的杰出贡献和取得的卓越成就。Tinius Olsen也将继续延续并不断完善百年传承的制造工艺,协助同济大学航空航天与力学学院建成国内乃至国际一流的教学科研实验中心。同济大学航空航天与力学学院简介同济大学航空航天与力学学院成立于2004年1月,是学校为了适应中国航空航天事业迅速发展以及上海将航空航天作为支柱产业的需求,在原工程力学与技术系的基础上,发挥学校学科交叉、人才集聚的综合优势而设立的。学院现有工程力学和飞行器制造工程2个本科专业,有力学一级学科博士点和航空宇航科学与技术一级学科硕士点,设有力学一级学科博士后流动站。学院设有国家级力学实验教学示范中心、国家级力学虚拟仿真实验教学中心和复合材料工程实验中心,面向全校本科生开设基础力学课程的教学、各类力学和航空的实验课与创新实验。学院目前的主要研究方向有先进材料与结构的力学行为、流体力学、动力学与控制、现代力学测试技术,先进复合材料与结构、飞行器设计与制造等。近三年,承担国家自然科学基金重点项目2项、重大项目1项、国家973课题1项、国家863项目2项、国家自然科学基金面上项目23项、省部级以上项目49项,以及77项横向课题;共发表SCI论文近200篇、获省部级科技奖13项。学院现有在职教师90人,在其中的专技类教师69人中,有正高30人,副高26人;学院现有长江学者特聘教授1名,国家杰出青年基金获得者3名,同济特聘教授4名,教育部“新世纪优秀人才计划”入选者2名、“新世纪百千万人才工程”国家级人选1名、上海市“优秀学科带头人”3名,上海市“领军人才”2名,以及若干上海市“曙光计划”“启明星”以及“浦江计划”入选者。著名力学家、桥梁家李国豪先生等知名学者曾在此任教。Tinius Olsen(天氏欧森)简介Tinius Olsen(天氏欧森)是行业领先的致力于静态材料试验技术的制造商。公司于1880年在美国费城建立,创始人为全球第一台万能材料试验机的设计者及专利拥有者Tinius Olsen(天氏欧森)先生本人。130多年来,Tinius Olsen(天氏欧森)为数万家制造商出谋划策,提供产品研发及质量控制的解决方案。目前,在材料测试设备的开发与制造领域,已成为行业的领导者。随着时代的发展,我们产品的测试范围不断扩大,获取与显示测试数据的技术和方法也不断增加。我们同时拥有当今市场上最先进的材料测试软件,我们的开发人员与客户紧密合作,为客户独特的测试及生产需求提供解决方案。与此同时,我们的现场校准与维护团队已得到A2LA与UKAS的认证,他们不懈地提高自己的能力及服务素质,以达到客户的要求与期望。Tinius Olsen(天氏欧森)的设备广泛应用于化工、金属、纺织、医药、汽车、航空航天、食品、包装、粘合剂、复合材料、建筑材料与纸张制造等多个行业。不仅可以设计并制造满足您的测试样品的设备,而且可以开发测试控制与数据分析的软件程序。Tinius Olsen(天氏欧森)的设备久经考验,它们的性能不因时间的流逝而逊色分毫。我们的翻新计划可以保证Tinius Olsen(天氏欧森)及其它测试设备的良好性能并延长其使用寿命。Tinius Olsen的测试系统和程序可以满足您的测试需求,进行拉伸、压缩、弯曲、穿刺、撕破、剥离、剪切、熔融指数、冲击强度、热变形温度、维卡软化点、硬度、脆性与摩擦等多项测试。其中我们的冲击试验机,是美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)的指定计量测试设备。Tinius Olsen(天氏欧森)把130多年的测试经验应用于测试设备的开发,只要您提出您的测试要求,我们就可以为您提供相应的完整测试方案。
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 鲨鱼为什么游得快?岛津CT为您揭开谜题
    曾经在国际游泳比赛中风靡一时的鲨鱼皮泳衣(快皮),是仿照鲨鱼皮的结构制作的高科技材料泳衣,穿上它能让人在水中游得更快。那么它是怎么被研发出来的呢?学者发现,鲨鱼皮的构造能够有效地降低流体阻力,所以鲨鱼的游速非常快。目前,各国学者仍在研究鲨鱼皮的构造,本文简单介绍鲨鱼皮的盾鳞在流体力学方面的研究。 岛津制作所参与了东京工业大学联合日本国立博物馆对《降低流体阻力的课题》的研究。以下为研究内容的简介: 研究目的验证鲨鱼身体各个部位盾鳞的表面小波纹结构是否能有效降低流体阻力。 试验方法★ 对大白鲨盾鳞采集测量数据★ 利用采集的数据建模★ 利用建模数据,通过逆向工程制作实验用真实模型★ 在流动水槽中使用制作的模型测量流体的阻力 工业CT主要应用于第一步。以下就本研究的数据采集和试验结论进行介绍。 数据采集本次研究对象外观图:鲨鱼体表的盾鳞,如图1所示。 图1 鲨鱼盾鳞的SEM图像 本课题的适应性★ 取材的盾鳞在结构上的相异不妨碍身体的变形★ 各种承受外力的可活动盾鳞的结构均可实现降低阻力的功能。 验证前的设问★ 鲨鱼皮上的盾鳞是否真的能够有效降低阻力?★ 盾鳞的形状和小波纹的间隔是否会阻挡局部液体的流动? 制样首先,从大白鲨鱼身的5个不同部位各取1块表皮,使用微焦点CT SMX-100CT 对其进行扫描,采集数据并重建图像。如图2所示。 图2 上排图片:盾鳞的CT图像(VR)下图:取样部位 其中,对所取盾鳞部位的定义,如图3所示。 图3 使用三坐标扫描的鲨鱼全身图(总长3.16m) (中间步骤省略)试验的基本原理如下:小波纹形状的评价方法:点参数S+uτ:摩擦系数 ν:海水动态粘度系数 ρ:海水的密度 图4 图5 小波纹结构:S+=5~25时,有降低阻力的作用S+=15~20时,降低阻力的效果达到最大(Dean,2010) 利用模型测量的试验结果如下★ 设定大白鲨的游泳速度为2【m/S】、6.7【m/S】(Watanabe et al .,2019)对小波纹间隔进行测量的结果,如图6 图6 对小波纹间隔测量的结果 测量可知,身体部分小波纹间隔:80~100μm;胸鳍或尾鳍的小波纹间隔:50~80μm。★ 当大白鲨以2【m/S】的速度在岛屿之间移动时的S+值如图7 图7 2【m/S】的速度时点参数S+的计算结果 ★ 当大白鲨以6.7【m/S】的速度进行捕食时的S+值如图8 图8 6.7【m/S】的速度时点参数S+的计算结果 (中间过程省略) 本试验的结论★ 大白鲨盾鳞的小波纹的间隔显示其有降低阻力的效果与2D小波纹的理论相比,所有部位的小波纹都有降低抵抗的效果★ 当大白鲨以高速游泳进行捕食时,降低阻力的效果可能达到最大★ 局部的流动显示表面存在小波纹间隔的原因像尾鳍等盾鳞间隔较小的部位,表面小波纹也有降低阻力的效果 本试验的后继课题★ 各部位盾鳞的形状是否与身体变形相对应★ 研究各种承受外力的可活动盾鳞的结构对降低阻力的效果 岛津工业CT助力流体阻力研究岛津微焦点CT inspeXio SMX-100CT Plus
  • 郑哲敏:爆炸力学家的家国情怀
    八十七岁的郑哲敏最令人难忘和喜欢的是他的笑容,笑容中透着的那份孩童般的天真和机灵很容易让人忘记他是当今中国力学界德高望重的泰斗,郑哲敏是著名的力学家,同时是三院院士:中国科学院院士、中国工程院院士及美国国家工程科学院外籍院士,他曾任中国科学院力学研究所所长、中国力学学会理事长等职。  他身材瘦小,行动灵活,思维敏捷,说起许多往事,总是和蔼地笑着,并带着几分孩子气地手舞足蹈。在他的身上,有许多同时代科学家的共同烙印:聪颖好学,名校出身,师从名师,游学西方,归国报效,成就斐然……但对于这一切,他本人只是淡淡地说,“都是机缘和运气。”直到与他深入地交谈了两个多小时之后,记者才慢慢地了解和读懂了些许老人阳光笑容和“一蓑烟雨任平生”的淡泊背后,是他面对命运时浪漫的天性和对家国始终放不下的情怀。  遵父命,不经商  在郑哲敏的人生中,父亲是第一个对他影响深刻的人。  父亲郑章斐出生在浙江宁波的农村,自幼家贫,念书不多,但聪敏勤奋,16岁时到上海打拼,从学徒做起,最终成为著名钟表品牌“亨得利”的合伙人,分号遍布全国多地,还说得一口流利的英文。  郑哲敏于1924年出生在山东济南,是家中次子。他幼时顽皮,心思不在读书上,喜欢搞恶作剧,甚至仅仅因为对父亲店铺里一个男伙计女性化的打扮不满,就发动弟弟妹妹搞起了“小游行”。郑哲敏终生难忘,8岁那年,父亲对他说,经商让人看不起,以后不要走做生意这条路,要好好读书。在郑哲敏的印象中,父亲没有一般商人的恶习,他正直良善,崇尚文化,决心不在子女中培养一个商业接班人,不娶一个姨太太,朋友也多是医生或大学教授。在家庭的影响下,郑哲敏与家中兄妹也都一生刚正不阿,一心向学。  尽管郑哲敏成长在兵荒马乱的年代,少年时又心脏不好,他的求学经历多次因战乱或生病中断,但因为父亲对子女教育的重视,所以学业却从未荒废。即使在休学期间,父亲也为郑哲敏请来家庭教师,给他补课 此外还带他到全国多地旅游,使他开阔眼界 给他买《曾国藩家书》,教他学会做人做事的道理 带他大声朗读英语,使他后来渐渐能够使用原版英文书,自学数学、物理等课程。郑哲敏说,这些点滴的往事,影响了他一生,养成了他喜欢自学、不喜求问于人的习惯。  1943年,他以优异的成绩同时被西南联合大学(抗战期间国立清华大学、国立北京大学和私立南开大学在昆明合办的大学)和国立中央大学录取,因哥哥郑维敏已在此前一年考入西南联大,郑哲敏也毫不犹豫地选择了西南联大,和他从小敬佩的哥哥同样进入了工学院电机系。     进名校,遇名师  因家境富庶,当年郑哲敏是坐着飞机去昆明上大学的。然而,1943年至1946年在西南联大读书的三年里,学习和生活条件却很艰苦。课堂就设在茅草房里,他有机会见到梅贻琦、沈从文、闻一多等名教授,他们简朴的生活让他印象深刻。  郑哲敏至今印象最深的是教授们教学时的一丝不苟。作为低年级生,他与那些名教授近距离接触的机会并不多,但是,通过听他们的报告,以及整个学校大环境的耳濡目染,他渐渐隐约感到“学术上要有追求,做人要有追求”。  同样使他记忆犹新的还有学校里浓厚的民主气氛。持不同政见的学生们经常辩论,而郑哲敏属于“中间派”。他也开始思考国家前途,并逐渐意识到当时社会的许多问题恐怕根源于体制问题。但他生性淡泊名利,很多事都是想想就放一边, “政治太危险”,还是学习要紧。在大学时代,和很多这个年龄的青年一样,他开始思考“人为什么活着”这样的哲学问题,还特意到图书馆借来哲学书籍寻找“答案”,他最后的结论是:“人终归是要死的,一个人活着的价值,还是要做一些事,为社会做点贡献。”  因为觉得和哥哥学不同专业,能对国家有更大贡献,郑哲敏从电机系转到了机械系。中学时郑哲敏的理想是当飞行员或工程师,前者可以在前线抗战,后者可以建设国家。然而,最终他还是走向“力学”这条理论研究的道路,因为他遇到了第二个对他影响深远的人——著名物理学家钱伟长。  1946年,抗战胜利后,北大、清华、南开三校迁回原址,郑哲敏所在的工学院回到北京的清华园。同年,钱伟长从美国回国到清华大学任教,在他的课上,大四的郑哲敏首次接触到弹性力学、流体力学等近代力学理论,钱伟长严密而生动的理论分析引起了郑哲敏的极大兴趣。钱伟长也很赏识这个聪明的年轻人,常叫他到家里吃饭。郑哲敏毕业后留校为钱伟长当了一年助教,还见到了回国探亲时到清华演讲并在钱伟长家小住的钱学森。  多年后,郑哲敏回忆道,钱伟长对他的重要影响,一是使他从此确定了研究力学的道路,二是钱伟长重视数学和物理等基础学科,对他影响很大 三是钱伟长是当时有名的“进步教授”,积极参与爱国学生运动,还常跟学生讲对美国社会的认识,认为美国“虽有很多科学创造,但都不能为人民所用。”  1948年,经过清华大学、北京市、华北地区及全国等四级选拔,同时在梅贻琦、钱伟长、李辑祥等人的推荐下,郑哲敏在众竞争者中脱颖而出,成为全国唯一的“国际扶轮社国际奖学金”获得者,前往美国加州理工学院留学。  国家需要什么,就做什么  美国加州理工学院是世界最负盛名的理工学院之一,培养了多名诺贝尔奖获得者,中国的多位著名科学家都先后在这里留学深造过。在这里,郑哲敏用一年时间获得硕士学位后,跟随年长他13岁、当时已誉满全球、即使在美国社会也家喻户晓的钱学森攻读博士学位。钱学森也因此成为他人生路上第三位影响深远的导师。  在加州理工学院,郑哲敏有机会聆听许多世界著名学者的课程或报告,尤其受钱学森所代表的近代应用力学学派影响很深:着眼重大的实际问题,强调严格推理、表述清晰、创新理论,进而开辟新的技术和工业,这成为郑哲敏后来一生坚持的研究方向和治学风格。  出国留学,是为了归国报效,郑哲敏“从没想过不回国”。然而,新中国成立后,美国留学生归国集体受阻,郑哲敏毕业后不得已继续留在美国加州理工学院当了两年助教。尽管美国人很友好,但他仍然感到一些微笑面孔背后的歧视,“似乎与你交往是对你的施舍”,他感到自己像一叶浮萍,扎不下根来。  1955年,郑哲敏与钱学森师生俩终于相继回国。郑哲敏回国前夕,钱学森特地跟他谈心,告诉他回国不一定能做高精尖的研究:“一直在美国,也不知道国内科研水平如何,只能是国家需要什么我们就做什么。”在此后的50多年里,郑哲敏的科研人生,始终与钱学森如影随形,也一直在践行着钱学森的这番话。  国内生活条件的确不如美国,但是郑哲敏“从来没觉得苦”。他所看重的是,街上的社会秩序不乱了,物价不再像旧社会那样一天一个价,买东西不再需要用麻袋装钱了 商店的橱窗里居然也有了一些国产的电子和五金产品。他特意到书店里买了一部《宪法》,认真研究这个他眼前的新社会。  回国后,郑哲敏投奔恩师钱伟长。当时中科院还没有力学所,力学研究室设在数学所,钱伟长专门在研究室设立了新专业——弹性力学组,由郑哲敏担任组长,研究水坝抗震,后来又领导大型水轮机的方案论证。钱学森回国后,带领创建中科院力学所,郑哲敏参加了这项工作并成为该所首批科技人员。  因中苏交恶,苏联专家从中国撤走。1960年,郑哲敏受航天部门委托,研究爆炸成形问题。钱学森预见到一门新学科正在诞生,将其命名为爆炸力学,并将开创这门学科的任务交给了郑哲敏。郑哲敏与他所领导的小组不负所托,成功研究出“爆炸成型模型律与成型机制”,并应用此理论基础成功地生产出高精度的导弹零部件,为中国导弹上天做出重要贡献,同时,相关理论和技术还广泛应用于其它国防和民用领域。4年后,在大量实验和计算分析的基础上,郑哲敏独立地与国外同行同时提出了一种新的力学模型——流体弹塑性体模型,为中国首次地下核试验的当量预报做出了重要贡献,并为爆炸力学学科建立奠定了理论基础。  文革期间,郑哲敏的研究被迫中断,他被隔离审查过,也到干校劳动过。如今,提起这段往事,他只是呵呵一笑,说:“很多事,我已经都忘了。”  1971年,从干校返回中科院力学所后,郑哲敏继续致力于爆炸力学的研究。经过10年努力,郑哲敏先后解决了穿甲和破甲相似律、破甲机理、穿甲简化理论和射流稳定性等一系列问题,改变了中国常规武器落后状况。此外,他还通过在爆炸力学和固体力学中的科学实践,为国家解决了瓦斯等生产爆炸的力学分析、港口建设中海淤软基处理等一批重大实际问题。  1984年2月,郑哲敏接替钱学森出任力学所第二任所长。虽然他不再担任爆炸力学实验室主任,而是把精力更多地放在了力学学科及相关科学的规划工作中,但还是会经常对爆炸力学的一些具体工作进行理论指导。    科研需要耐心  至今,87岁的郑哲敏依然每天会到中科院力学所上班。在记者专访的两个多小时里,仍不时有前来拜访或请教的客人。  尽管在旁人看来,郑哲敏已是了不起的享誉海内外的大科学家,但他本人却从不以为然。他说,自己有一些问题,比如“胸无大志”,从未一门心思地想过要成就些什么 还“不够勤奋”,所以没能做更多的事。  有人曾将郑哲敏与比他年长5岁、在加州理工结识且交情甚笃的学长冯元桢相比较,认为论聪明才智,郑哲敏绝不在冯元桢之下,而当年选择了留在美国的后者,如今已经是赫赫有名的“美国生物力学之父”。  对此,郑哲敏说,人到晚年,他也曾和冯元桢在美国会面,谈起过两个人不同的道路,彼此都会觉得羡慕对方——一个是功成名就,一个是尽忠报国,二者很难比较。  问及当前中国力学的发展水平,郑哲敏认为,虽然有进步,但与国际先进水平相比,仍有不小差距,他认为当下学术界浮躁的风气是制约发展的重要原因。他说:“科研需要耐心。现在,一些人都急于求成,沉不下心来坐冷板凳,这样做出的也最多是中等成果,很难有出色的、有重大影响的成果。有的人急于要实效,不重视基础理论研究,最终会极大地制约整体科技的发展。”  他语重心长地说,当科学家并不像大家看上去的那么美。“科研有突破的那一刻很快乐,但是更多的时候很苦、很枯燥,在一遍又一遍的错误中寻求突破,在反反复复的试验中总结创新。”  一口气说完上面两段话,郑哲敏又笑笑说:“人老了,很多事我也只是想想而已,想过就放下了。当前,我想得最多的事还是,如何培养好我现在唯一的研究生。”  他告诉记者,如今,他业余喜欢散步和听音乐,最喜欢听巴赫和贝多芬。  质朴——“就是老老实实做,不知道就再去学”  “没什么神秘的。”当记者问科研方法心得的时候,郑老认真地说,“就是老老实实做,不知道就再去学”。但同时他也承认,科研有时是很枯燥的,必须耐得住寂寞。“要搞科研就要有吃苦的决心。没有牺牲精神、一往直前的勇气,基础研究也是做不成事的。”  郑老的办公室在力学所的三楼,他现在依然坚持每天上午到办公室坐半天班。“今天起晚了,快7点才起来。”郑老笑说,除了上班、做点家务之外,下午天气好的话还会出去走走。  不过这几天,郑老将下午的精力放在了“上网”,浏览一些学科领域的新资讯。他说,考虑到自己研究力学性质这么多年,希望从更宏观的角度回头看看,有没有什么遗漏的地方。“如果哪天有什么想法,就去找老白(白以龙院士)聊聊。”  当后来提到本文开头的那个“奖金”的问题时,记者才明白了郑老为什么热衷于“上网”背后的原因。他说,奖金“肯定不能撒开随便用”。所以,他最近在查文献,“希望能有更多人参与进来。能起点作用就起点。”  期望——年轻人“太苦”,要正确引导  如今,年近90的郑老近年来依然工作在科研一线,除了继续学科领域内的研究外,还关注能源战略安全等重大问题,当国家重大工程遇到挫折时,郑老也会挺身而出。  “郑老是我们所多年的优秀党员,科技界的楷模。”力学所党委书记乔均录自豪地说,八十多岁的郑老有次身体不舒服住院输液,都不耽误他把研究生叫到医院里给他们辅导论文。  郑老生活简朴,一心向学,性格中透露着难能可贵的“纯粹”。在他的观念中,科研人员是不会发财的,能有个“体面的生活”就满足了。  “现在的年轻人确实压力比较大。”不过,他倒不主张用物质奖励去刺激他们,“吊他们的胃口”。“这会把人搞得非常‘烦躁’,一天到晚操心。就像无头苍蝇似的,不能想大事,不能想远的事。”在郑老看来,这种状态实在是“太苦”了。  “当然,这要从政策上来引导。”他寄语青年科研人员“要看得远一点”,不要为一时的得失计较太多。“文革时‘赶时髦’的都吃亏了,所以做点实事,或许当前会吃亏,但心情会平衡一点。”
  • 青年基金申请的一点体会
    前几天收到基金委的来信,比较幸运的中了今年的青年基金。当初写本子的时候参考了科学网上前辈们分享的一些经验,我觉得有必要在这里也分享一下自己的体会。希望对后来者能有所帮助。  这是我第二次申请青年基金,去年申请没中,很失望。有了第一次的失败,这次虽然本子的质量有所提高,但并没有抱太大的希望。因为希望越大,失望越大,所以当不抱太大希望的时候,就不会太失望。  我觉得第一次失败的原因可能是:没经验,选题有争议,发表的论文比较少。这次申请成功的原因可能是:选题没什么争议,发表文章多了几篇。还有一个原因就是今年写本子时参考了科学网上分享的经验。  一、选题  我去年的选题比较偏重基础方法,没考虑应用。当时我正在尝试解决SPH方法的应力不稳定(或称为张力不稳定)问题。由于想到了一种理论上可行的改进方法,而且初步的算例测试也通过了,就想以此为题更深入的做下去。本子中较为详细的介绍了我的改进方法,并给出了初步的测试结果。可惜的是有一个评审意见直接否定了我的选题。值得安慰的是,虽然基金没中,但我的改进方法后来还是发表成论文了。  今年我换了一个方法和应用相结合的选题,而不是在去年的基础上修改。评审意见认为项目&ldquo 具有创新性&rdquo 、&ldquo 立意新颖&rdquo 。我觉得国内很多人比较偏向于应用,尤其是搞计算流体力学的。与其选具有争议的偏重方法的基础研究,不如选争议较小的方法和应用相结合的课题。其实,这也是不得以。本应该根据自己的兴趣和研究意义来选题,可是申请不到经费就很难甚至不能开展研究。  二、写本子  理论上,本子的好坏能够直接决定结果。这里之所以说&ldquo 理论上&rdquo ,是因为评委只能通过本子来判断该项目值不值得支持。然而,很多评审人发帖说在评审的时候,根本没那么多时间来详细地看本子。也就是说,很多时候评审人在没有完全理解本子内容的情况下,就给出了评审意见。这就很容易导致评审意见并不全面。  虽然评审人不一定会细看,但申请人一定要认真地写本子。因为大致浏览一下虽不一定能分辨出好本子,但很容易分辨出烂本子。  对于写本子,说认真很容易,真正写的时候总感觉有点力不从心,没那么多东西可写。  我断断续续写了挺长时间。写初稿的时候还好,很快就把整个框架写完了,但内容不够饱满。之后就是往框架里添加详细内容。感觉有点像挤牙膏,越挤越少。到最后就成了检查错别字、语句是否通顺。  要尽量把问题说清楚。为什么要做这个项目?别人有没有做过,做到了什么程度?你打算怎么做,能做到什么程度?难点在哪?创新点在哪?  三、关系  在国内,&ldquo 关系&rdquo 是个绕不开的话题,似乎各种事情都要有&ldquo 关系&rdquo 才行。我不清楚&ldquo 关系&rdquo 对基金申请的影响到底有多大,但我相信其影响不容忽视。  在水平相当的情况下,&ldquo 关系&rdquo 决定结果还能容忍。但是当水平有差距的时候,如果&ldquo 关系&rdquo 还能决定结果,那就不能容忍。  一个公平的社会不应该让关系左右资源的分配,尤其是在科学研究上。如果科研经费能够尽量支持那些真正想做、并专心在做科研的人,科学和社会的进步应该会比现在更快更好。(作者:杨秀峰)
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
  • 中国航天科技集团投资5亿元与北航共建研究院
    北京航空航天大学与中国航天科技集团公司10月22日在京签约,将共建“北航航天科技协同创新研究院”。中国航天科技集团将为研究院设立专项经费,连续5年,每年投入1亿元支持资金。  据了解,研究院将以国家科技重大专项和重大工程为牵引开展研究,瞄准国际空天技术发展前沿,联合承担国家科学研究和工程项目。研究院将重点建设5个实验室,包括计算流体力学实验室、空天材料与服役实验室、空天网络信息技术实验室、真空羽流实验室、空天生命保障与生物安全实验室。
  • 国内首个以女科学家名字命名的实验室在北航揭牌
    北京航空航天大学陆士嘉实验室日前揭牌。这是我国首个以女科学家名字命名的实验室。  今年3月18日是陆士嘉诞辰106周年。陆士嘉出生于1911年,是我国流体力学家、教育家,为我国航空事业的发展作出了巨大贡献。  北京航空航天大学党委书记张军表示,在陆士嘉诞辰106周年之际,北航将她长期工作的流体力学实验室命名为陆士嘉实验室。陆士嘉实验室现有风洞10座,待建风洞1座,水洞(水槽)4座。待建的BHAW风洞将作为我国高校首座航空气动声学风洞,承担与型号研制直接相关的应用基础和生产所需要的气动声学风洞试验研究。  流体力学实验室始建于1952年。历经多年建设,形成了从风洞到水洞、从低速到高速、从教学到科研的一系列较为完整的体系。
  • 激光纳米诊断方法可以检测癌症早期病状
    俄罗斯西伯利亚科学分院热物理研究所的科研人员通过研究,找到了一种激光纳米诊断方法,可通过对尿液的检测发现癌症的早期病状。  据研究人员介绍,该方法最早源于通过间接测量相关蛋白质的流体力学尺寸,分析血红细胞沉降速度的实验中。在此实验过程中,研究人员找到了一种借助于激光光谱仪测量蛋白质流体力学尺寸的方法,但不是用在对血浆的检测,而是用于尿液,因为纳米粒子能够适用于各种液体中。   通过采用激光光谱仪检测尿液中相关蛋白质流体力学尺寸的实验,研究人员发现了何种尺寸属于正常范围,何种尺寸预示着癌症病症的规律。这种诊断方法通过医 院的临床测试,准确率超过了85%。目前,研究人员已致力于研制适于民用的小型检测仪,未来该检测仪有望进入普通人家庭,成为一种适于广泛推广的癌症早期 检测技术,届时,人们在家中即可完成早期癌症病状的检测。
  • 权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制
    前 言*图片来源于湖北药检所官网人纤维蛋白原(human fibrinogen, Fg)是一种由肝脏合成的球蛋白,发挥止血和凝血功能。Fg可用于治疗先天性和获得性Fg缺乏症患者的凝血功能障碍。目前Fg制剂是由健康人血浆经分离、提纯并经病毒去除和灭活处理、冻干制成。Fg这类蛋白质药物具有大分子、多电荷、结构复杂等特点,其稳定性往往较差。而稳定性是保证药物发挥其作用的基础。2023年3月,湖北省药品监督检验研究院王文晞博士近期发表“多功能蛋白质稳定性分析仪在人纤维蛋白原制品质量控制中的应用”,借助NanoTemper公司的PR Panta对不同企业生产的Fg产品的质量进行快速分析质控。/ 实验步骤/NanoTemper多功能蛋白质稳定性分析仪PR Panta可用于快速测定蛋白质的热稳定性,通过热变性、粒径分布聚集倾向和粒径大小等参数对产品进行评估。使用毛细管吸取10uL 20mg/ml样品置于PR Panta上,首先在DLS模块上检测Fg的水力学半径(Rh),然后进行1℃/min的升温(25℃-95 ℃)。使用1份样品,同时且实时的检测获得Fg的样品热变性中点温度(Tm)、蛋白质初始去折叠温度(Tonset)、粒径开始变化温度(Tsize)和流体力学半径(Rh)等多种参数。/ 研究结果/nanoDSF检测模块结果显示21批次样品Tm 值为51.20~53.31 ℃(表1)。不同企业产品Tm值存在一定差异,最高相差 2.1 ℃, 表明各企业间产品稳定性存在较大差异。其中企业F产品Tm值最高(53.28℃),企业A产品Tm值最低(51.22℃),差别2.06℃。表1 不同企业Fg蛋白热变性中点温度Tm值测定结果21批次样品的Tonset值为47.29~49.32 ℃(表2),不同企业产品Tonset值存在一定差异。其中企业F的产品Tonset值最高,企业A Tonset值最低,总体与Tm值趋势一致。表2 不同企业Fg蛋白质初始去折叠温度Tonset值测定结果21批次样品Tsize值45.36~46.99 ℃,不同企业产品Tsize值差异较小。表3 不同企业Fg蛋白粒径开始变化温度Tsize值结果 21批次样品Rh值 19.03~30.75 nm,不同企业产品Rh值存在一定差异。表4 不同企业Fg蛋白流体力学半径 Rh 值结果综上可知企业F产品热稳定性最好,企业A产品热稳定最差。除稳定性外,纯度是反映Fg产品中可凝固蛋白与总蛋白的比值是产品有效性的重要指标。作者通过凯氏定氮仪进行样品检测后并依据下方公式计算纯度。结果显示21批次样品纯度80.3%~95.9%(表5),其中企业F产品纯度最高,平均94.6%。企业A产品纯度最低平均83.2%。表5 Fg纯度测定结果作者将纯度与在PR Panta检测得到的Tm值进行相关性分析,结果显示相关系数为0.729,P<0.05 。即产品纯度与Tm值呈显著相关, 热稳定性高的产品纯度较高。为了明确Fg的组分分布,作者采用HPSEC-MALLS测定纯度最高与最低产品的组分分布。企业F产品(稳定性&纯度最佳)由Fg单体和多聚物2个组分组成,企业A产品(稳定性&纯度最佳最差)由 Fg单体、多聚物和蛋白质降解产物3个组分组成。结合以上部分稳定性与纯度呈相关性的结果可以进一步分析得出,Fg热稳定性较差,在生产、存放、复溶后放置的过程中会形成可溶性寡聚体,导致产品纯度降低。因此可根据产品热稳定性测定结果初步分析不同企业产品纯度高低,进而能简单、快速 地对不同企业间产品质量进行初步评估,为企业工艺优化和制剂筛选提供更加快速、准确的依据。多功能蛋白质稳定性分析仪可以测定产品纯度与稳定性,为人纤维蛋白原产品保护剂的筛选和生产工艺优化提供相应数据参考,且能对不同企业产品的质量进行初步分析,仪器操作简便、检测时间短、检测效率高。——摘自本文文献对PR Panta的评价
  • 陈十一、谢晓亮获2017年度“求是奖杰出科学家”
    p  9月16日晚,杨振宁、孙家栋、韩启德、施一公等知名科学家云集在复旦大学举办的“2017年度求是奖颁奖典礼”。研究湍流的流体力学家陈十一和应用单细胞基因组测序技术使几百名新生儿免除遗传疾病困扰的生物物理化学家谢晓亮,获得“求是杰出科学家奖”。/pp  “2017年度求是奖颁奖典礼”由香港求是科技基金会主办、复旦大学承办。求是基金会主席查懋声先生以及顾问杨振宁、孙家栋、韩启德、施一公,复旦大学校领导、求是奖评委、往届求是奖获得者以及复旦大学师生代表等约400人参加了典礼。颁奖典礼由复旦大学校长许宁生教授和查懋声主席致辞开始,至基金会顾问杨振宁先生演讲落幕,揭晓2017年度“求是杰出科学家奖”、“求是科技成就集体奖”和“求是杰出青年学者奖”花落谁家。/pp  2017年度“求是杰出科学家奖”授予南方科技大学陈十一教授和哈佛大学及北京大学谢晓亮教授,分别由孙家栋教授、施一公教授上台颁奖,并介绍两位获奖人在其研究领域中取得的杰出贡献。/pp  南方科技大学陈十一教授作为流体力学家,在湍流研究上做出了一系列贡献。90年代初打破了直接数值模拟中雷诺数的世界记录,相关研究成果被国际湍流界广泛引用 首次精确计算出湍流的标度指数和对流扩散过程的标度指数 提出了湍流中的映射封闭理论,成为燃烧和湍流扩散的重要理论与数值计算基础 提出了自然界中大尺度旋涡形成机理,解释了能量反积蓄 提出了湍流中的约束大涡模拟模型,得到了阻力和分离流的精准计算结果。陈十一教授亦是国际格子Boltzmann数值方法的创始人之一,他和其合作者在1992发表的文章奠定了本领域的基础,此方法已被广泛应用于各类工程问题中,包括能源与环境工程,传热传质,燃烧与多相流动,地下渗流与电磁场模拟等。陈十一教授和他的团队利用多尺度混合算法精确计算了有奇异性的流动现象,此项研究在微纳米流体流动、燃料电池、生物流动系统等方面得到了广泛应用。/pp  另一位获奖人谢晓亮教授作为生物物理化学家,单分子生物物理化学、相干拉曼散射显微成像技术、单细胞基因组学的开拓者,在相关新兴交叉学科做出了创造性贡献。他不仅是生物物理化学基础科学研究的国际领军人物,近年来亦大力推动了无标记光学成像技术和新兴单细胞基因组测序技术在医学中的应用。特别是在中国,谢晓亮团队的工作已使得几百个新生儿成功地避免了他们父母的单基因遗传疾病,其课题组目前在研究方向包含理论科学研究领域、技术研究领域、医学研究领域三个领域。/pp  2017年度“求是科技成就集体奖”则授予水稻分子遗传学团队,由韩启德教授为其颁奖。水稻分子遗传学团队由中国科学院遗传与发育生物学研究所李家洋课题组、中国科学院上海生命科学研究院韩斌课题组和中国农业科学院中国水稻研究所钱前课题组在上世纪九十年代组建,面向国家粮食安全重大需求,其团队始终瞄准水稻生物学最前沿的重大科学问题,经过近二十年的密切合作,综合运用遗传学、基因组学、分子生物学、生物化学、细胞生物学、作物育种学等方法对水稻产量与品质相关的重要农艺性状的调控机理进行了系统深入的研究,在水稻资源发掘利用、重要农艺性状的全基因组关联分析以及作物分子育种等方面形成了比较完善的理论体系,引领我国水稻功能基因研究实现了对世界先进水平从跟踪到赶超的跨越式发展,完成了多项世界领先的开创性研究成果。该研究集体还十分注重基础理论研究与实际应用相结合,率先提出并实践“作物分子设计育种”理念,切实将理论研究成果应用于水稻育种实践中,开拓性地建立了水稻分子设计育种技术体系,示范性育成一系列高产优质的水稻新品种。/pp  2017年度“求是杰出青年学者奖”分别授予北京大学刘毅、林一瀚、杨玉超,清华大学单芃,复旦大学王熠华、包文中,中国科学技术大学孙林峰、赵纯,华中科技大学甘泉,中国医学科学院李平平等十位青年学者。/pp  1995至2001年间,基金会设立了“求是杰出青年学者奖”,为一批优秀青年学者安心科研、迅速成长发挥了雪中送炭的作用。为支持国内高校与海外机构竞争吸引最顶尖的人才,以及扶持刚开展独立科研事业之优秀青年学者,求是科技基金会于2013年启动新的“求是杰出青年学者奖”项目,致力为中国未来20年的科技事业发展培养领袖之才。新的“求是杰出青年学者奖”聚焦于自然科学或工程技术领域展现巨大潜力的青年学者,结合学校为引进人才提供的配套支持条件。在评奖机制上,新的“求是杰出青年学者奖”也引进了与国际水平一致的做法。/pp  自2013年开始,一年一度的求是颁奖典礼不仅是一场科学的盛会,同时也是求是之家成员聚会的重要时刻。基金会希望一是通过对杰出科学家的颁奖,向社会特别是青年学生倡导科学精神 二是通过颁奖活动加强学者之间的思想交流,并有效地将这种思想交流传播到社会。/pp  香港求是科技基金会1994年由著名实业家査济民先生创立,秉持“雪中送炭”的宗旨,积极坚持和倡导“科学精神,人文情怀”的核心理念。1994至2017年,共有310位在数学、物理、化学、生物医学及工程信息等科技领域中有杰出成就的中国科学家获得基金会奖励。其中“求是终身成就奖”1位,“杰出科学家奖”28位、“杰出青年学者奖”169位、以及 “杰出科技成就集体奖” 112位(涉及13个重大科研项目,如青蒿素、人工合成牛胰岛素、塔里木盆地沙漠治理、铁基超导等)。/p
  • 李政道:1957年诺贝尔物理学奖获得者
    李政道,江苏苏州人,父亲李骏康是金陵大学农化系首届毕业生。曾就读于东吴大学(苏州大学)附中、江西联合中学等校。因抗战,中学未毕业。1943年因以同等学历考入迁至贵州的浙江大学物理系,由此走上物理学之路,师从束星北、王淦昌等教授。  1944年因日军入侵贵州,时在贵州的浙江大学被迫停学。  1945年他转学到时在昆明的西南联合大学就读二年级,毛遂自荐,找到当时的北京大学物理系教授吴大猷。  1946年经吴大猷教授推荐赴美进入芝加哥大学,师从诺贝尔物理学奖获得者、物理学大师费米教授。  1950年获得博士学位之后,从事流体力学的湍流、统计物理的相变以及凝聚态物理的极化子的研究。  1953年,任哥伦比亚大学助理教授,主要从事粒子物理和场论领域的研究。三年后,29岁的李政道成为哥伦比亚大学二百多年历史上最年轻的正教授。他开辟了弱作用中的对称破缺、高能中微子物理以及相对论性重离子对撞物理等科学研究领域。  1984年他获得全校级教授(UniversityProfessor)这一最高职称,至今仍是哥伦比亚大学在科学研究上最活跃的教授之一。现在,他的兴趣转向高温超导波色子特性、中微子映射矩阵以及解薛定谔方程的新途径的研究。  李政道为哥伦比亚大学全校级教授,美籍华裔物理学家,诺贝尔物理学奖获得者,因在宇称不守恒、李模型、相对论性重离子碰撞(RHIC)物理、和非拓朴孤立子场论等领域的贡献闻名。1957年,他31岁时与杨振宁一起,因发现弱作用中宇称不守恒而获得诺贝尔物理学奖。他们的这项发现,由吴健雄的实验证实。20世纪60年代后期提出了场代数理论。70年代初期研究了CP自发破缺的问题,发现和研究了非拓扑性孤立子,并建立了强子结构的孤立子袋模型理论。李政道和杨振宁是最早获诺贝尔奖的华人。  所得奖项  1957 诺贝尔物理奖  1957 爱因斯坦科学奖  1969 法国国家学院G. Bude奖章  1977 法国国家学院G. Bude奖章  1979 伽利略奖章  1986 意大利最高骑士勋章  1994 和平科学奖  1995 中国国际合作奖  1997 命名3443小行星为李政道星  1997 纽约市科学奖  1999 教皇保罗奖章  1999 意大利政府内政部奖章  2000 纽约科学院奖  2007 日本旭日重光章
  • 前沿、专业、高端|第十届中国微流控高端学术论坛暨第三届国际微流控产业论坛会议第一轮通知
    大会详情一、会议名称第十届中国微流控高端学术论坛暨第三届国际微流控产业论坛二、会议时间2023年9月22-24日(9月22日全天报到)三、会议地点江苏省苏州市,昆山市,昆山皇冠国际会展酒店四、组织机构主办单位:中国科学院大连化学物理研究所、苏州大学协办单位:中国生物物理学会、浙江清华长三角研究院、清华大学智慧医疗研究院承办单位:浙江扬清芯片技术有限公司支持单位:仪器信息网、动脉网、体外诊断网、麦姆斯咨询、桔园平台、中国生物检测监测产业技术创新战略联盟、清华校友总会生命科学与医疗健康专委会、西湖大学工学院先进神经芯片中心、热心肠研究院、零壹人工智能研究院、国科宁波生命与健康产业研究院、中国科学院苏州生物医学工程技术研究所、探针资本、磐霖资本大会主席:林炳承大会执行主席:叶嘉明、张秀莉五、大会专题(一)微纳加工技术:微纳米制造技术在微流控芯片中的应用(新材料、新设计、新工艺);(二)微流体驱动及控制技术:光、电、力、磁场流体驱动新技术;光流控技术、电化学技术、纳米机器人;(三)微流体力学:微纳尺度流动、计算流体力学、流动物理;(四)微流控与生物传感器:化学传感器、纳米生物传感器技术与微流控芯片的集成;识别传感新原理、新元件;光、电、磁信号转化新方法,信号放大新技术等;(五)液滴微流控:微液滴的生成、融合、分裂、筛选、定位与迁移技术新方法新技术及相关应用;液滴PCR技术及应用;(六)器官芯片:器官芯片的发展现状及挑战、流体运动及组织-组织界面动态模型、不同器官微流控芯片面临的问题、3D 打印技术在器官芯片方面的应用;(七)单细胞分析:单细胞分离、培养、分析新方法;单细胞组学分析;(八)微流控在医疗体外诊断中的应用:体外诊断(生化分析、免疫检测、分子诊断等)POCT即时检测、液体活检、药物开发等;(九)微流控新方法、新应用:微流控创新方法在化工合成、药物筛选、环境监测、食品安全的应用;(十)微流控产业化:工程化与产业化经验交流、微流控芯片产品开发中的关键及共性问题、微流控产品展示及推介;本届论坛还将增设“微流控投融资项目路演”专场。六、注册报名(一)报名方式请扫描上方二维码完成线上报名,或填写附件1报名表发送至大会指定邮箱:(二)缴费方式线上转账或现场缴费(三)注册费用说明:食宿统一安排,住宿费和交通费自理。如需进一步了解报名参会、参展与赞助事宜,请咨询会务组。(四)汇款账户信息单位名称:浙江扬清芯片技术有限公司税号:91330109MA2GKD9A9E地址电话:杭州市萧山区萧山经济技术开发区明星路371号2幢17楼1707室,057183697712开户行:中国银行浙江自贸区杭州萧山桥南支行,372775980132注意:汇款时请务必在备注栏注明“姓名+单位+FLOCA2023”,并将汇款凭证发送至floca2023@163.com,邮件主题为“注册缴费确认+姓名+单位”,会议结束后会务组将统一把电子发票发到填报的邮箱。七、会议征稿(一)论文摘要诚挚邀请各位代表投稿会议论文中文摘要(500-1000字左右),摘要集将在大会报到时发放,供大会交流。投稿请用word格式(模板参见附件),请于8月15日前发送至floca2023@163.com,邮件主题、文件名命名为:“论文摘要+投稿人姓名+篇名”;申请口头报告的代表投稿论文的同时请附个人照片及简历(400字以内)。(二)会议墙报为了提高交流效果,鼓励大家进行墙报交流,请自行制作墙报电子版PDF,并于8月15日前发送至floca2023@163.com,邮件主题、文件名命名为:“会议墙报+投稿人姓名+墙报主题”,由组委会统一印刷张贴。八、联系方式报告及参会联系人:蒋悦,15071287112(微信同号)企业参展联系人:陈敏,15925674062(微信同号)会务联系人:张丽丽,15988118609(微信同号)投融资项目联系人:邱波,15011578036(微信同号)赞助及媒体合作联系人:叶嘉明,13738180906(微信同号)大会邮箱:floca2023@163.com大会官网:www.lab-on-chip.com附件1:FLOCA2023报名回执.doc 附件2:FLOCA2023报告摘要模板.docx 会议简介“中国微流控高端学术论坛”由我国微流控芯片领域的著名科学家、微流控芯片领域的推动者、中国科学院大连化学物理研究所林炳承教授发起,至今已连续举办九届,是中国微流控领域顶级的年度学术盛会。2020年11月,首届“国际微流控产业论坛”与“第八届中国微流控高端学术论坛”同期召开,由林炳承教授与浙江清华长三角研究院叶嘉明博士联合发起,旨在进一步凸显微流控芯片产业化在微流控科技创新发展的重要性。2023年9月22-24日,本届“双论坛”将由中国科学院大连化学物理研究所、苏州大学联合主办。“双论坛”立足微流控芯片这一当代极为重要的新兴科学技术平台和国家层面产业转型的潜在战略领域,面向经济主战场、面向人民生命健康、面向世界科技前沿、面向国家重大需求,将促进理、工、医、产业界、投资界等领域的学术交流和产业互动,也将助推微流控技术在医学、生命科学等相关领域的持续深入发展。往届回顾第八届中国微流控高端学术论坛会场(2020年,嘉兴)第九届中国微流控高端学术论坛会场(2022年,杭州)
  • 走进同济大学,寻觅亚洲最古老试验机百年身世——访同济大学航空航天与力学学院院长李岩、原副院长韦林、Tinius Olsen全球销售总监 Martin Wheeler
    p  百年名校同济大学的力学实验中心是国家级实验教学中心,每当兄弟院校的力学同仁与领导到该实验中心学习交流时,一定少不了参观安置在实验中心的那台百年试验机——悬挂着“同济440001”设备标牌的10万磅杠杆式拉伸试验机(以下简称“440001”),也常常会引起参观者的极大兴趣与万分惊讶:这台百年试验机在同济大学实验中心教师长期精心管理和维修下,不但完好无损,而且还能正常的开展拉伸试验,特别是进行徐变静载试验时具有较高的精度。但这台据称亚洲范围内尚能运作的最古老的试验机的真正“身世”却鲜为人知。/pp style="text-align: center"img style="width: 450px height: 262px " src="http://img1.17img.cn/17img/images/201806/insimg/ecb81099-a297-4553-a6ff-b935ca3ea14e.jpg" title="试验机截图.jpg" height="262" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "悬挂“同济440001”设备标牌的10万磅杠杆式拉伸试验机/span/pp  据介绍,这台“440001”正是由美国Tinius Olsen公司(天氏欧森)的创始人Tinius Olsen先生设计并制造的。近日,“440001”迎来一次特殊的身世揭秘。Tinius Olsen全球销售总监 Martin Wheeler走进同济大学力学实验中心,并邀请同济大学航空航天与力学学院院长李岩教授,以及同济大学对这台“440001”最为了解的原副院长韦林教授共同回顾了这台“440001”的故事和渊源。仪器信息网编辑有幸对三位进行采访,并聆听了整个故事的回顾,现将实录整理成文,一起走进这台“440001”的百年故事。(i故事稍长,快速了解请点击以下13min视频,视频由Tinius Olsen公司制作/i)/pscript src="https://p.bokecc.com/player?vid=55A1C063F4E18EEC9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptp  span style="color: rgb(255, 0, 0) "strong走进同济大学航空航天与力学学院——力学学科历史悠久/strong/span/pp  同济大学力学实验中心设立在同济大学航空航天与力学学院,据学院院长李岩教授介绍,航空航天与力学学院的力学学科有着悠久的历史。2004年1月,航空航天与力学学院在原同济大学工程力学与技术系和上海市航空工业学校的基础上成立,而工程力学与技术系在1956年就设立了,在力学方面有着非常悠久的历史。目前,学院教职员工共约90人,教授26位,副教授30位。学科设置方面,本科两个专业,一个就是非常有历史的工程力学专业 另一个则是飞行器制造工程专业,为国家航空航天事业培养人才。研究生培养,有两个一级学科硕士点,一个是力学,一个是航空与航科学与技术,还有一个力学的一级学科博士点。同时还有五个二级学科方向,包括固体力学、流体力学、动力学与控制、工程力学、航空航天材料与结构。近几年,学院逐渐在力学、航空与航、复合材料与结构方面,逐渐形成了三个特色鲜明的研究方向。这三个方向也是相互支撑、三足鼎立的,基础是力学,在此之上开展复合材料与结构,以及航空航天的相关研究工作。/pp style="text-align: center"img style="width: 450px height: 276px " src="http://img1.17img.cn/17img/images/201806/insimg/feef8807-13eb-410f-95ba-f0334c28e3b7.jpg" title="李院长1.jpg" height="276" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "同济大学航空航天与力学学院院长李岩/span/pp  同济大学是一个以工科为主的大学,学生也以工科为主,多数学生都要学习力学相关课程,同时也要参加力学的相关实验研究。在力学学科人才培养方面,航空航天与力学学院承担了全校广范围的基础力学课,包括材料力学、理论力学、流体力学等等。同时包括独立设课的课程实验,学院每年力学相关实验课程达到5000个学时,30000个课时。/pp  在悠久力学学科发展的基础上,学院先后获批了国家级的力学教学示范中心、力学虚拟的国家力学教学示范中心等,即承担了两个国家级力学教学示范中心。力学学科的发展离不开先进的力学测试仪器设备,学院具有比较齐全的力学测试仪器设备,并兼具很高的整体测试水平。从小尺度力学的测试(如学院复合材料方向,从纳米、纤维尺度的测试),到常规材料尺度力学的测试,再到大型结构力学测试(如土木结构、航空航天结构的测试)等,学院都可以完成。从载荷形式来看,从静载到载荷,高频动态力学性能测试等都能完成。除了一次性测试、疲劳测试外,学院还可以实现各种环境下测试、振动方测试等。/pp  span style="color: rgb(255, 0, 0) "strong忆历史——寻觅亚洲最古老试验机百年身世/strong/span/pp  踏进同济大学力学中心的陈列室,几台“古董”试验机赫然眼前,让人仿佛穿越到了上世纪工业革命时期,陈列室尽头,一间独立的陈列室内,单独陈列着那台“440001”。韦林教授对这台跨世纪百年试验机背后的传奇故事进行了详细描述:/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201806/insimg/4174c83b-f61b-47da-a6ce-30003e7963c6.jpg" title="韦林截图.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "同济大学航空航天与力学学院原副院长韦林教授/span/pp  “2004年,我曾接待美国Tinius Olsen Testing Machine Co.的亚洲地区负责人,当他看到我们那台扛杆式拉伸万能试验机时,就告诉许多关于Tinius Olsen 先生与这台试验机的故事。/pp  他说:Tinius Olsen 先生早期时是一位机械工程师,年轻时从家乡挪威来到美国费城,他的才华被当地的量具厂老板里勒兄弟所赏识,并邀请其加入了其公司。有一次他与里勒先生在船码头喝咖啡时,突然有一条船的蒸汽锅炉发生了爆炸,他们就想是否可制造一架机械来预测钢材料的强度条件,避免结构的强度破坏?通过多次试验与改进后,Tinius Olsen 先生发明了这台扛杆式拉伸万能试验机。到了1880年前后Tinius Olsen 先生申请了这台试验机专利,并因此正式成立了Tinius Olsen Testing Machine Co.公司,现在这家公司已是第五代后裔经营的家族企业。按照公司运行的推算,我们实验中心的那台扛杆式拉伸万能试验机应该是生产于1880年前的跨世纪百年试验机。亚洲地区负责人又说:这是他所看到亚洲地区目前仍可使用最老的拉伸万能试验机。/pp  在2010年期间我又发了一封信件给了在美国费城的Testing Machine Co.,希望他们能对我们这台扛杆式拉伸万能试验机提供更详细的消息。不久我收到了对方市场销售主管的回复,他在回信中附上一本杂志上刊登Tinius Olsen 公司早期创业的文章,文章中内容证实了那位亚洲地区负责人的介绍。这样看来我们这台试验机还真是一台见证同济实验历史的试验机,难怪在试险机上悬挂着“同济440001”设备标牌。/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201806/insimg/51786817-caa0-41d2-b214-85649184a1c9.jpg" title="110.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "“同济440001”设备标牌/span/pp  同济大学是1907年建校的百年老校,但抗战时上海的旧校址曾被日本侵略者炸为平地,那么这台试验机是如何留存下来的?据我的老师:李宗瑢教授告诉我,这台试验机是在一九五二年全国教育院系调整时,从上海交通大学搬移到同济大学来的,关于这次的搬移还有一个特别不平凡的故事。/pp  我的另一位老师:原同济大学副校长黄鼎业教授,在上世纪八十年代初到美国学术访问时,相交了美国水力水文学报主编周有德教授,随后周先生回国时参观了我们实验中心,当他看见这台扛杆式拉伸万能试验机时,突然情不自禁的叫了起来。/pp  周先生激动的告诉我们,上世纪三十年代,他大学毕业后被留在上海交通大学实验室做王达时先生的助教时,这台扛杆式拉伸万能试验机就是由他保养,这是实验室的宝贝疙瘩,当抗战期间日本侵略上海时,上海交通大学师生撤离到大西南,但这位周先生仍挂念着这台宝贝试验机。/pp  抗战胜利后,他急忙赶回学校原址,可是试险机已不见踪影,经多方寻找才在炼钢炉前找到大部分零件,原来日本军国主义在二次大战临近结束前,将这台试验机拆走,准备冶炼制造枪炮,由于抗日战争胜利结束,日本军国主义者未来得及熔化,这真是万幸啊!通过修复后这台拉伸万能试验机又接着为上海交通大学的实验教学服务。/pp  后来周先生回母校多次寻访这台牵挂的试验机,但一直没有看到,这次在同济大学遇到“故友”,真是今生有缘。听了这个故事我们也是感悟万千。/pp  我们已经知道这台标有RLEHLE BRC× PHILA商标的试验机是Tinius Olsen先生与里勒先生在美国费城的量具公司生产,现在我们已无法寻找到里勒先生的后裔,但在Tinius Olsen的公司还留存着早期的一些资料,我们很希望通过Tinius Olsen的公司能帮助我们找到这台试验机上所刻RLEHLE BRC× PHILA的商标和 16494产品编号的详细信息,/pp  在我们实验中心内除了珍藏这台跨世纪的试验机,还保留着另一台挂着同济440002设备标牌的早期油压式万能试验机(瑞士),我们认为这些跨世纪的力学试验设备不但沉淀着百年同济大学的文化底蕴和发展历史,也见证了中国教育发展史和教育工作者无私奉献的精神。现在我也将这些事情告诉我们实验中心的青年教师,希望他们能与前辈一样为中国的教育事业做出卓越的奉献,让这些与我们朝夕相处的跨世纪试验机继续陪伴着我们的教育里程。”/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201806/insimg/bc37c5fa-1e05-42ba-8f53-d2266d52feeb.jpg" title="matin.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "Tinius Olsen全球销售总监 Martin Wheeler/span/pp  韦林教授的描述也激起Tinius Olsen全球销售总监Martin Wheeler先生的很大兴趣。Martin Wheeler先生补充道,“1869年,一位名为Tinius Olsen挪威年轻工程师,为了梦想来到美国费城,一次偶然的机会,他的才华被当地一家名为Riehle的量具厂老板所赏识,并邀请其加入了他们的公司,随后,便有了Tinius Olsen先生在一百三十多年前设计‘440001’的故事,Tinius Olsen先生也即现在Tinius Olsen公司的创始人。/pp  在那个时候,这台设备被用来测试金属、合金以及建筑材料(当下,我们依然还有这方面的需求)。如今,试验机的应用范围已大大扩展,应用包括测试高强度金属、合金、轻量级高强度的合金、复合材料、纺织品、土工布、智能纺织品、元器件以及整机设备等。我认为同济大学在维护保养这台机器上,做得非常出色,它也是独一无二的。当然,当下市场上还存在很多Tinius Olsen的老设备,比如使用了五、六十年,仍在使用和校准,但像同济大学这台年岁这么大的试验机,确实不多。我认为保护工程、文化遗产十分重要,同时,对于学生也很有好处,因为透过这些‘遗产’,他们可以看到世界工业的发展历程。/pp  Tinius Olsen公司可能是最早把试验机应用到教育,研发和生产的试验机制造商之一。早期的试验机,比如这台130多年前的‘440001’,都是手工操作的,以图形的形式输出结果,测试曲线的每个点需要由操作者用针在纸张上刺点来记录,因此数据采样频率通常是每2秒一个点(或者称为2Hz),然后操作者用铅笔将针孔连接来得到测试曲线,从而描述材料强度与性能之间的函数关系。/pp style="text-align: center"img style="width: 450px height: 300px " src="http://img1.17img.cn/17img/images/201806/insimg/8621a81e-fa3c-433c-9b4c-fb8a52392053.jpg" title="12.jpg" height="300" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "‘440001’用来衡量力值的砝码/span/pp  到了20世纪50年代,技术上开始引入电子驱动系统,通过马达驱动来加载力值。力值显示在刻度盘上,测试图表以笔式图表记录仪来实现。这时的采样频率在3到4Hz。/pp  20世纪70年代,数字显示器取代了刻度盘,试验机演变成为闭环系统,传感器被用来测量力值和位移。/pp  20世纪80年代,开始用微处理器进行数据的捕获和处理,真正意义上的模拟类型系统成为现实。从此,数据采样频率开始明显上升。现在我们回头看看那些老的处理器,他们看起来很简单,但是在那个时候,是一场巨大的革命。这意味着在那个时候测试结果由手动计算发展成为试验机闭环工作,完全不需要人工干预。/pp  20世纪90年代,电脑就成为了测试系统的一部分。随着计算机的引入,测试曲线可以在测试过程中实时在屏幕上显示,测试结果可保存下来并在测试后进行重新计算,当然也可以将测试报告以PDF等格式打印出来。/pp  再发展到当下,我们不会单独去讲设备或者机架,而是一个真正意义上完整的测试系统,或者说是一站式工作台,机架只是这个工作台的一部分。我们可以将各种附件和装置连接到设备上来进行材料性能和强度的测试,采样频率也提高到1000Hz。当然,如今我们关注的是半自动化、全自动化在材料测试中的应用,以及如何利用光学系统将测试报告和测试数据关联起来,这些都是近些年来的发展趋势。”/pp  span style="color: rgb(255, 0, 0) "strong看今朝——自动化技术全面发展,2016再回中国市场/strong/span/pp  当下,Tinius Olsen基于其优越的历史技术积累,在欧美占据很高的市场份额,相比其他几个早已将中国市场视为重中之重的跨国品牌,Tinius Olsen似乎进入中国市场更晚一些。对此,Martin Wheeler先生表示:“90年代初我来过中国,那是个令人振奋的年代,工业开始真正的发展,中国开始大量出口,制造业也在迅速发展。但遗憾的是,最初我们很难找到合适的合作伙伴。之后,我们在纺织行业找到了一个很好的合作伙伴,并在这个行业中迅速崛起。Tinius Olsen品牌也逐渐在纺织行业被广泛使用,并为行业客户所熟知。/pp  2016年,试验机相关技术,尤其是半自动化、全自动化方面的发展加快了步伐,并向前迈进了一大步。同时,视频系统开始用来协助测试材料的性能。此时,我们觉得这是Tinius Olsen再次进入中国市场的最好时机,因为我们认为Tinius Olsen具备了相关的产品及这些新技术的能力。另外,我们认为中国市场是有需求的,尤其是制造业。整个制造业正在进入一个先进数字化制造的阶段,而这正是我们能够真正发挥作用的地方。中国的工业领域、相关制造商、科研人员,也确实可以用到我们的产品和技术,我们也相信Tinius Olsen可以帮助他们。因此,2016年Tinius Olsen在上海建立了一个产品和培训中心,并建立了一个充满活力和能力的团队来帮助我们的客户,来满足他们的需求。这就是为什么Tinius Olsen再次来到中国的原因,我们确信在这个领域,Tinius Olsen将有很多机遇。/pp  交流中,Martin Wheeler还谈到了与科研用户的合作,他认为,作为一个试验机制造商,Tinius Olsen需要与像李院长、韦教授等这样的研究人员密切合作,因为他们站在材料科学和材料工程的最前端,设备商需要了解这个行业的发展方向,这样才能提供技术和产品来满足他们的发展需求。他们按照自己的方式逐步发展,设备商则需要沿着同样的道路,跟着他们的步伐走下去,为他们的需求提供产品、技术支持,从而最终走向制造业实现落地。所以,Tinius Olsen必将与科研用户携手合作。/pp  同时Martin Wheeler也对Tinius Olsen自己的工程师感到非常自豪,他们大量参与了标准制定的过程,比如美国的ASTM标准,和全球的ISO标准。Tinius Olsen许多工程师都是这些标准委员会的成员,他们始终在做出着很大的贡献,从科研人员那里得到反馈,并应用在产品研发中,让产品可以与时俱进,并满足客户的需求。/pp  对于合作,李岩教授也表示,首先,科研成果与设备仪器是紧密联系的。一方面,科研工作中需要有非常可信赖的仪器设备,来保证研究中测试的数据是可靠的 另一方面,高水平成果的取得,与高水平测试设备也是紧密相关的。其次,科研工作者还要与科研设备商多多交流沟通,沟通不畅往往造成信息割裂,如设商做出了非常好的设备,但科研工作者不知道,或科研工作者有需求,设备生产厂家却不知道等,加强交流对于双方都会有很大帮助。/pp  另外,李岩教授还反应,大多数科研工作者还面临着经费紧张的问题,越先进的设备其成本也一定是越高的,每个科研工作者都去自己购买设备并不现实,这就造成许多先进的设备大多科研工作者都用不到。同时,建议搭建一个科研平台,比如高校和设备商共同建立,让一些设备实现共享。如此,在共享过程中,设备商也可以获得很多的信息与收益。/pp  strongspan style="color: rgb(255, 0, 0) "展未来——极端环境、多尺度、原位、自动化、光学测量/span/strong/pp  关于力学测试的研究热点及未来发展,李岩教授认为,以下几方面是当下的研究热点:一是极端环境下的力学性能测试,从国家和科研需求来看,极端环境要求越来越多,这方面还没有更好的设备能满足需求 二是从尺度来讲,一方面是往极小尺度方向,在微纳尺度上的性能测试需求也逐渐增加 另一方面是往大尺度方向,大型结构复杂加载状态下的力学性能测试,比如航空航天结构,其应力是非常复杂的,需要多种加载,而且是要多点响应的设备,将来这方面的需求也是非常大的 三是原位加载的设备,虽然已经有部分相关设备,但技术还不完善,比如说在观察扫描电镜的时候,能够在加载的同时观察微观形貌变化的设备,如果这方面设备能再普及一些,会对力学方面的研究起到很大的促进作用。/pp  Martin Wheeler先生也补充道,材料力学和测试应用中,有两大方向在飞机和汽车等领域得到广泛发展:一是高强度材料,一是轻型材料。这也是材料科学的发展方向,就试验机而言,也将是两个需要长期突破的重要方向。而单就试验机技术来讲,近期,主要有以下两方面发展趋势:/pp  第一个趋势是半自动和全自动化。自动化是为了追求更完美的可重复性、优异的可追溯性,在如今变得越来越重要。如果你是向航天工业提供紧固件的供应商,或是提供用于手术的医疗设备的供应商,那么你的产品的可追溯性和材料的可靠性就十分重要,你必须确保每件产品都是100%的零差错。因此,试验机的可追溯性就变得至关重要。所以,当你在做测试的时候,良好的可重复性和可追溯性可以改善测试的不确定性。同时,对于制造商来说,生产力也很关键,试验机只是一个系统、一个工具,而这个工具应该帮助制造商提高生产力,这便是系统的自动化。/pp  第二个领域是光学测量。今天看到的这台130多年前的“440001”试验机的输出是一组结果,以及一个2D格式的图形数据,来呈现材料的强度和性能。且在接下来的一百年里,并没有发生太大的变化,当然采样频率有所提高,变得更自动化,更快地得到结果,更精确,更高的分辨率,但还依然是2D形式的图形数据。Tinius Olsen投入了大量的精力和资金来研发满足需求的摄像系统。这个摄像系统当然不仅仅是一个网络摄像机、一些图片或一系列的视频帧,而是能够嵌入实时应变数据的视频文件。这意味着在测试后,它可以在虚拟测试环境中重新播放,重新分析,重新计算结果,并且有符合要求的可追溯性。Tinius Olsen目前可以做到,试验机工作站的输出结果,是2D图形数据与嵌入应变数据的实际测试视频。这也将是材料科学与材料测试的一个发展方向。/p
  • 使用插入式电极检测有机体系下样品的Zeta电位
    关键词:Zeta电位、插入式电极、有机溶剂分散体系图1. 插入式电极分散在有机溶剂中的颗粒往往在表面也会带有一定量电荷。这些电荷产生的电势会增加颗粒之间的相互作用力,起到增加系统稳定性的作用。由于有机体系的极性普遍较低,颗粒上携带的电荷量极少,在Zeta电位测试过程中需要施加较强电场才能够引发足够明显的电泳运用,而且测试电极及其配套的样品池需要考虑到对于有机溶剂的耐受性。在这篇应用报告中,我们利用插入式电极,利用BeNano 90 Zeta纳米粒度电位仪检测了分散在甲醇和乙醇环境中的硅颗粒的粒径和Zeta电位。原理和设备 动态光散射技术DLS,也称作光子相关光谱PCS或者准弹性光散射QELS,是利用激光照射在样品溶液或者悬浮液上,通过光电检测器检测样品颗粒布朗运动产生的散射光波动随时间的变化。利用相关器的时间相关性统计学计算可以得到相关曲线,进而得到颗粒的布朗运动速度,即扩散系数D。通过斯托克斯-爱因斯坦方程,我们把颗粒的布朗运动速度和其粒径DH联系起来:其中kB为玻尔兹曼常数,T为环境温度,𝜂为溶剂粘度,DH为颗粒的流体力学直径。电泳光散射技术ELS是利用激光照射在样品溶液或者悬浮液上,检测向前角度的散射光信号。在样品两端施加一个电场,样品中的带点颗粒在电场力的驱动下进行电泳运动。由于颗粒的电泳运动,样品的散射光的频率会产生一个频移,即多普勒频移。利用数学方法处理散射光信号,得到散射光的频率移动,进而得到颗粒的电泳运动速度,即电泳迁移率μ。通过Herry方程,我们把颗粒的电泳迁移率和其Zeta电位ζ联系起来:其中ε为介电常数,𝜂为溶剂粘度,f(κα)为Henry函数,κ为德拜半径倒数,α代表粒径,κα代表了双电层厚度和颗粒半径的比值。丹东百特公司的BeNano 90 Zeta纳米粒度电位仪,使用波长671 nm,功率50 mW激光器作为光源,在90度角进行粒径检测,在12度角进行Zeta电位检测。采用PALS相位分析光散射技术。样品制备和测试条件1#纳米硅粉末样品分散在甲醇分散液中,2#纳米硅样品分散在乙醇分散液中,施加超声波进行分散。通过BeNano 90 Zeta内置的温度控制系统开机默认测试温度控制为25℃±0.1℃,样品注入玻璃粒径池采用动态光散射进行粒径池进行粒径测试。使用插入式电极进行Zeta电位测试。每一个样品在放入样品池后进行至少三次测试,以检测结果的重复性和得到结果的标准偏差。测试结果和讨论粒径测试图2. 动态光散射检测1#纳米硅样品的粒径分布曲线(上)和2#纳米硅样品的粒径分布曲线(下)通过使用动态光散射技术,得到当前分散条件下同样品的粒径和粒径分布。其中1#样品Z-均直径为365.2±0.8 nm,PDI为0.58;2#样品Z-均直径为41.0±0.3 nm,PDI为0.50。可以看出粒径测试结果具有很好的重复性,两个样品的PDI较大,分布都比较宽,这也可以从样品的粒径分布曲线中看出。图3. 使用插入式电极检测1#(上)样品和2#(下)样品的三次测试的相图通过电泳光散射,得到了样品的Zeta电位信息。图3中展示了三次重复性测试的相图,相图斜率代表了散射光由于电泳运动造成的频率的偏移。可以通过图中曲线看出,分散在甲醇中的1#样品斜率清晰,信噪比良好,而分散在乙醇中的2#样品相图相对嘈杂。对于样品的3次重复性结果列于表1中,可以看到纳米硅样品在甲醇和乙醇溶液环境中Zeta电位为负值,说明样品颗粒携带负电,三次测试结果的重复性较好。颗粒在甲醇环境中的Zeta电位幅值明显高于乙醇环境。
  • 惠泽行业,让利客户,三方联合通告——三生万物,豪迈向前
    惠泽行业,让利客户,三方联合通告——三生万物,豪迈向前 为加快连续流微反应技术在行业的应用,推动化工行业绿色、安全、高质量发展,豪迈集团联合战略合作伙伴无锡冠亚恒温制冷技术有限公司、上海三为科学仪器有限公司,推出“惠泽行业,让利客户”活动,针对研发用连续流微反应设备大幅让利,为行业、为客户创造更大的价值。 连续流工艺是提升危化品生产本质安全,实现化工行业转型升级的重要技术手段。 微通道反应技术 ,涉及化学、化工、 流体力学、机械制造、电气控制等多种专业技术。一般的化工企业、化工研究机构,很难凭一己之力,完成工程如此浩繁的整合。 在国家倡导“新旧动能转换”的今天,“绿色化工”的概念逐渐深入人心,连续流微反应器设备市场前景广阔。 豪迈始创于1995年,20多年来,公司以年均复合增长率近50%的速度快速稳健发展,现拥有30多家子分公司,含1家上市公司(证券代码002595)、4家国家高新技术企业、4家海外公司,占地3000亩,员工1万多人,总资产76亿元。豪迈奉行“努力把豪迈建设成员工实现自我价值奉献社会的理想平台”的企业宗旨,秉持“合伙、合作”的理念。 山东豪迈化工技术有限公司坐落于美丽的海滨城市-青岛,隶属于豪迈集团,是以石油化工、精细化工领域专家为骨干,集实验室研究、工艺计算、现场技术服务于一体的服务及研发型公司,致力于为客户提供一体化技术解决方案。 无锡冠亚致力于制冷加热控温系统、超低温冷冻机、新能源电池/电机控温系统、VOCs气体冷凝回收装置、加热循环系统、防爆电气设备、试验设备、工业冷冻室的研发、生产和销售的科技实体。 上海三为科学一直致力于化工流体精确输送解决方案的研究,作为微通道反应器专用平流泵的专业供应商,供应各种材料的(柱塞泵)平流泵,按泵头的材质区分有:316L不锈钢、PEEK材料、PTFE聚四氟乙烯,钛金属材料,哈氏合金等。我们不生产连续流微反应器,只是化工流体精确输送的搬运工。 惠泽行业,让利客户 勇于创新,持续超越
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制