当前位置: 仪器信息网 > 行业主题 > >

计算流体力学

仪器信息网计算流体力学专题为您整合计算流体力学相关的最新文章,在计算流体力学专题,您不仅可以免费浏览计算流体力学的资讯, 同时您还可以浏览计算流体力学的相关资料、解决方案,参与社区计算流体力学话题讨论。

计算流体力学相关的论坛

  • 【资料】暑假学习班,普及黏度知识,一起学习流体力学!

    第一讲:流体力学概念及发展历史 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738 年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880 年前后出现了空气动力学这个名词;1935 年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止 (或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程 (反映物质宏观性质的数学模型)和物理学、化学的基础知识。

  • 流体力学专用名词对译

    流体动力学 fluid dynamics连续介质力学 mechanics of continuous media介质 medium流体质点 fluid particle无粘性流体 nonviscous fluid, inviscid fluid连续介质假设 continuous medium hypothesis流体运动学 fluid kinematics水静力学 hydrostatics液体静力学 hydrostatics支配方程 governing equation伯努利方程 Bernoulli equation伯努利定理 Bernonlli theorem毕奥-萨伐尔定律 Biot-Savart law欧拉方程 Euler equation亥姆霍兹定理 Helmholtz theorem开尔文定理 Kelvin theorem涡片 vortex sheet库塔-茹可夫斯基条件 Kutta-Zhoukowski condition布拉休斯解 Blasius solution达朗贝尔佯廖 d'Alembert paradox雷诺数 Reynolds number施特鲁哈尔数 Strouhal number随体导数 material derivative不可压缩流体 incompressible fluid质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation控制体积 control volume液体静压 hydrostatic pressure涡量拟能 enstrophy压差 differential pressure流[动] flow流线 stream line流面 stream surface流管 stream tube迹线 path, path line流场 flow field流态 flow regime流动参量 flow parameter流量 flow rate, flow discharge涡旋 vortex涡量 vorticity涡丝 vortex filament涡线 vortex line涡面 vortex surface涡层 vortex layer涡环 vortex ring涡对 vortex pair涡管 vortex tube涡街 vortex street卡门涡街 Karman vortex street马蹄涡 horseshoe vortex 对流涡胞 convective cell卷筒涡胞 roll cell涡 eddy涡粘性 eddy viscosity环流 circulation环量 circulation速度环量 velocity circulation偶极子 doublet, dipole驻点 stagnation point总压[力] total pressure总压头 total head 静压头 static head总焓 total enthalpy能量输运 energy transport速度剖面 velocity profile库埃特流 Couette flow单相流 single phase flow单组份流 single-component flow均匀流 uniform flow非均匀流 nonuniform flow二维流 two-dimensional flow三维流 three-dimensional flow准定常流 quasi-steady flow非定常流 unsteady flow, non-steady flow暂态流 transient flow周期流 periodic flow振荡流 oscillatory flow分层流 stratified flow无旋流 irrotational flow有旋流 rotational flow轴对称流 axisymmetric flow不可压缩性 incompressibility不可压缩流[动] incompressible flow浮体 floating body定倾中心 metacenter阻力 drag, resistance减阻 drag reduction表面力 surface force表面张力 surface tension毛细[管]作用 capillarity来流 incoming flow自由流 free stream自由流线 free stream line外流 external flow进口 entrance, inlet出口 exit, outlet扰动 disturbance, perturbation分布 distribution传播 propagation色散 dispersion弥散 dispersion附加质量 added mass ,associated mass收缩 contraction镜象法 image method 无量纲参数 dimensionless parameter几何相似 geometric similarity运动相似 kinematic similarity动力相似[性] dynamic similarity平面流 plane flow势 potential势流 potential flow速度势 velocity potential复势 complex potential复速度 complex velocity流函数 stream function源 source汇 sink速度[水]头 velocity head拐角流 corner flow空泡流 cavity flow超空泡 supercavity超空泡流 supercavity flow空气动力学 aerodynamics低速空气动力学 low-speed aerodynamics高速空气动力学 high-speed aerodynamics气动热力学 aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流 conical flow 楔流 wedge flow叶栅流 cascade flow非平衡流[动] non-equilibrium flow细长体 slender body细长度 slenderness钝头体 bluff body钝体 blunt body翼型 airfoil翼弦 chord薄翼理论 thin-airfoil theory构型 configuration后缘 trailing edge迎角 angle of attack失速 stall脱体激波 detached shock wave波阻 wave drag诱导阻力 induced drag诱导速度 induced velocity临界雷诺数 critical Reynolds number前缘涡 leading edge vortex附着涡 bound vortex约束涡 confined vortex气动中心 aerodynamic center气动力 aerodynamic force气动噪声 aerodynamic noise气动加热 aerodynamic heating离解 dissociation地面效应 ground effect气体动力学 gas dynamics稀疏波 rarefaction wave热状态方程 thermal equation of state喷管 Nozzle普朗特-迈耶流 Prandtl-Meyer flow瑞利流 Rayleigh flow可压缩流[动] compressible flow可压缩流体 compressible fluid绝热流 adiabatic flow非绝热流 diabatic flow未扰动流 undisturbed flow等熵流 isentropic flow匀熵流 homoentropic flow兰金-于戈尼奥条件 Rankine-Hugoniot condition状态方程 equation of state

  • 【转帖】流体力学相关问题

    带着对科学存有怀疑的态度,我对伯努利方程产生了质疑,于是便自己总结了一些理论与其相对比。流体在未受到外力作用的情况下是相对静止的,压力为常量。称为静压力。当流体要流动时,必须受到外力的作用。这个外力只能是大于常量压力的压力,称为动压力,或小于常量压力的吸力,称为动吸力。流体不论是静止还是流动,静压力保持不变。当静止的流体一面受到大于常压的压力时,流体开始向另一面流动,在不受到任何阻力的情况下,始终向一个方向流动。当前方受到阻力时,流体向四周扩散,扩散的速度受压阻比影响,压力不变,阻力越大扩散越快,阻力越小扩散越慢。阻力不变,压力越大扩散越慢,压力越小扩散越快。流体受到的压力称为总动压力,它的力一部分压缩流体,一部分摩擦损耗,其余的推动流体流动,各部分的力的总和等于总动压力,称为动量守恒。总动压力加上静压力称为流体流动时的总压力。当静止的流体受到小于常压的吸力时,流体开始向吸力方向流动。在无任何阻挡的情况下,吸力向前方的各个角度作用,并逐步扩大吸力范围,使无阻挡的各处流体流向吸力。流体流动的速度与流体的运动横截面积和吸力大小相联系。吸力不变,横截面积越大流速越慢,横截面积越小流速越快。横截面积不变,吸力越大流速越快,吸力越小流速越慢。流体受到的吸力称为总动吸力,它的一部分稀薄流体,一部分摩擦损耗,其余的吸动流体流动,各部分的力的总和等于总动吸力,称为动量守恒。静压力减去总动吸力等于流体流动时的总压力。管道中的流体在受到压力做定常流动时,流体的动压力,流速,单位时间内的流量,管道的横截面积,流体扩散的速度之间的关系。1.流体在受到压力做定常流动时,同一管道内的各横截面流量相同。2.压力一定,流速一定,横截面积越大流量越大,横截面积一定,压力越大流量越大,流速越大。3.压力一定,流量一定,横截面积越大,流速越慢,横截面积越小流速越快。4.流体流经最小横截面以前,各处压力基本相同。流经最小横截面以后,压力减小,减小的比例为此最小横截面与下一最小横截面的比。此最小横截面与下一最小横截面之间的各处压力基本相同。5.压力一定,流速一定,流量越大流体扩散越快,压力一定,流量一定,流速越快扩散越慢。流体受到吸力时,各量的关系。1.流体在受到吸力做定常流动时,各横截面处流量相同。2.吸力一定,流量一定,横截面积越大流速越小。横截面积越小流速越大。3.吸力一定,流速一定,横截面积越大,流量越大。水流自上而下自然流动时,是一种吸力做功,吸力的做功点是随处而在。当水流的方向受到阻挡时,阻挡面以上的吸力便转变为压力。由此看来,流体的流速大小并不能决定压力的大小,更不能起到吸引其它物体的作用。因此,升力的形成并不是流速差引起的,而是另一种力的作用。这种作用是流体流经弧形表面时,做绕弧运动,从而产生了离心力,流体受离心力作用向外运动产生吸力做功,并从而形成了升力。流体做绕弧运动的原因是流体在翼片前端受阻向上压缩,过凸点后向下逐步扩散便顺着弧行面流动。空气的离心力究竟有多大呢,用扇子扇一下就知道了。当扇子直线运动时,没有离心力,感觉气流很小,当扇子弧形扇动时,气流受到离心力作用向外流动,会感觉到气流很强。我只是业余科学爱好者,由于时间关系,有许多细节没有讲清楚,以后有时间在补充。希望能有科学爱好者能对此进行实际验证。

  • 【原创】CFD简介(1)天才里面的天才----我所知道的计算流体力学

    Jameson是当今CFD届的超级大牛。偶的超级偶像哦。Jameson是个英国人,出生在军人世家。从小随老爹驻守印度。于是长大了也抗起枪到海外保卫日不落帝国,军衔是Second Lieutenant。无奈“日不落”已落,皇家陆军已经不需要他了。大概有什么立功表现把,退役后就直接进了剑桥大学。在那里拿到博士学位。辗转间从英国来到了美国,从工厂又到了学校。成了Princeton的教授。在那里提出了著名的中心差分格式和有限体积法。就是在这里,发表了他那篇著名的中心差分离散的有限体积法。中心差分格式,大家都知道,是二阶,但是稳定范围特别小,Pe不能超过2,于是就得加人工粘性(一听这名字,数学家就倔嘴巴,不科学嘛),这是大学生都知道的事,怎么加就是学问了。Jameson用二阶项做背景粘性,用四阶项抑制激波振荡(也亏他想得出来),配合他提出的有限体积法,获得了极大的成功,很快风靡世界,工程界几乎无一例外在使用他的方法,原因很简单,他的方法乐百氏,而且又有相当精度。从此大行于市,座上了P大的航空系系主任,也确立了CFD界第一大牛人的地位。Jameson发文章有个特点,喜欢发在小会议上或者烂杂志上,反正是SCI检索不到地方。包括后来关于非结构网格,多重网格等等经典的开创性文章,都是这样。(如果按照清华的唯SCI论的评判标准,我估计在清华最多只能给他评一个副教授当当。)牛牛的人总是遭人忌妒,哪里都这样。看着Jameson的有限体积方法这么受欢迎,有些人就红眼了。于是说,有限体积方法不错,可惜只适合于定常问题计算,非定常计算就不怎么样嘛。Jameson那里能容忍别人对他的得意之做胡说。于是,灵机一动,想出了一个双时间尺度的方法,引进一个非物理时间,把非定常问题变成了一个定常问题计算,还真好使,又风靡世界,从此天下太平。97年,Jameson年龄到了,就从P大退休了,结果又被聘请到 Standford大学当Thomas V. Jones Professor搞起了湍流来。前不久偶导师见他回来,对欧们边摇头边说,“几年不见,老得快不行了”,言下之意,我们如果想多活几年,不要去搞什么湍流。

  • 宁波华仪宁创智能科技有限公司今日正在招聘,研究工程师(流体),坐标宁波市,高薪寻找不一样的你!

    [b]职位名称:[/b]研究工程师(流体)[b]职位描述/要求:[/b]岗位职责:1、负责产品的流体和热相关的计算分析与设计改进;2、负责箱体结构的声学仿真分析和降噪设计;3、负责仿真性能试验测试、分析、跟踪及实验数据与仿真结果的对标分析。 岗位要求:1、硕士及以上,流体力学、水利机械、热能、汽车等相关专业;2、精通FLUENT、CFX等至少一种计算流体力学软件,具备CFD前处理、后处理及结果分析能力;3、有接触过流场分析设计和热管理分析项目开发者优先考虑。[b]公司介绍:[/b] 宁波华仪宁创智能科技有限公司是由宁波大学、宁波高等技术研究院和行业内著名集团公司共同投资成立的高新技术企业。公司以“科技保障生命健康、安全、繁衍”为使命,以“成为国际一流的健康和安全检测智能仪器供应商”为愿景,以“质量优先、创新引领、客户第一、责任在心”为价值观,致力于从事生命健康、医疗诊断、药物研发、食品安全等相关领域的高端检测仪器研制及产业化应用推广,发展成为国际一流的生命健康和安全检测...[url=https://www.instrument.com.cn/job/user/job/position/60154]查看全部[/url]

  • #材料力学期刊#Journal of Theoretical and Applied Mechanics

    #第二轮截稿:2022年2月25日第五届材料强度与应用力学国际会议 (MSAM 2022) 由山东科技大学承办,将于2022年8月19日至22日在山东青岛召开。欢迎您参会分享交流您的最新研究成果。参会形式包含:口头报告、张贴报告、听众。【应用力学类SCI期刊推荐】MSAM2022合作SCI期刊:Journal of Theoretical and Applied Mechanics (IF: 0.927) ISSN:1429-2955.征稿领域:固体力学 流体力学 流体结构相互作用 稳定性和振动系统 机器人和控制系统 材料力学 机器、车辆动力学和飞行结构;智能系统;纳米力学;生物力学;计算力学。【材料力学SCI期刊】合作SCI期刊 Strength of Materials (IF: 0.62) ISSN: 0039-2316征稿领域:材料力学、强度、疲劳、断裂、腐蚀、测试与评估等如果您有相关主题的英文原创文章,欢迎尽早积极投稿至MSAM2022:http://www.msamconf.org/如有问题也可咨询会议秘书:18154309082

  • 【转帖】生物力学biomechanics

    生物 力学是应用 力学 原理和方法对生物体中的力学问题定量研究的 生物物理学 分支。其研究范围从生物整体到系统、 器官 (包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、 鞭毛 和纤毛运动到植物体液的输运等。 生物力学的基础是能量守恒、动量定律、质量守恒三定律并加上描写物性的本构方程。生物力学研究的重点是与 生理学 、 医学 有关的力学问题。依研究对象的不同可分为 生物流体力学 、 生物固体力学 和 运动生物力学 等。 在科学的发展过程工, 生物学 和力学相互促进和发展着。 哈维 在1615年根据 流体力学 中的连续性原理,按逻辑推断了 血液循环 的存在,并由马尔皮基于1661年发现蛙肺微血管而得到证实; 材料力学 中著名的扬氏模量是扬为建立声带发音的弹性力学理论而提出的;流体力学中描述直圆管层流运动的泊松定理,其实验基础是狗主动脉血压的测量;黑尔斯测量了马的动脉血压,为寻求血压和失血的关系,在 血液 流动中引进了外周阻力的概念,同时指出该阻力主要来自组织中的微血管;弗兰克提出了心脏的流体力学理论;施塔林提出了物质透过膜的传输定律;克罗格由于对微循环力学的贡献,希尔由于肌肉力学的贡献而先后(1920,1922)获诺贝尔生理学或医学奖。到了20世纪60年代,生物力学成为一门完整、独立的学科。生物固体力学是利用材料力学、弹塑性理论、 断裂力学 的基本理论和方法,研究 生物组织 和器官中与之相关的力学问题。在近似分析中,人与 动物 骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学以及应力套方法和先测弹力法等检测技术都已应用于骨力学研究。骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物,骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高。体现了骨以最少的结构材料来承受最大外力的功能适应性。木材和 昆虫 表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由 多糖 、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。生物流体力学是研究生物 心血管系统 、消化呼吸系统、 泌尿系统 、 内分泌 以及游泳、飞行等与 水动力学 、 空气动力学 、 边界层理论 和流变学有关的力学问题。人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、端流、渗流和两相流等流动型式相近。在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于 微血管 直径与 红细胞 直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。

  • 微涡轮的结构原理

    主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。 流体力学是力学的一个分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 除水和空气以外,流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。 气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。1950年后,电子计算机的发展又给予流体力学以极大的推动。流体力学的发展简史 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。 对流体力学学科的形成作出第一个贡献的是古希腊的阿基米德,他建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 直到15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 17世纪,力学奠基人牛顿研究了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,法国皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维建立了粘性流体的基本运动方程;1845年,斯托克斯又以更合理的基础导出了这个方程,并将其所涉及的宏观力学基本概念论证得令人信服。这组方程就是沿用至今的纳维-斯托克斯方程(简称N-S方程),它是流体动力学的理论基础。上面说到的欧拉方程正是N-S方程在粘度为零时的特例。 普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。 20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以儒科夫斯基、恰普雷金、普朗克等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。 机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。 以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。 这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。 20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。经过十多年的发展,有限元分析这项新的计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。近年来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。 从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。

  • 【转帖】力学的定义介绍

    力学又称经典力学,是研究通常尺寸的物体在受力下的形变,以及速度远低于光速的运动过程的一门自然科学。力学是物理学、天文学和许多工程学的基础,机械、建筑、航天器和船舰等的合理设计都必须以经典力学为基本依据。机械运动是物质运动的最基本的形式。机械运动亦即力学运动,是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等。而平衡或静止,则是其中的特殊情况。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,则意味着各作用力在某种意义上的平衡。因此,力学可以说是力和(机械)运动的科学。力学的起源力学知识最早起源于对自然现象的观察和在生产劳动中的经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水等器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古代人还从对日、月运行的观察和弓箭、车轮等的使用中,了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。牛顿继承和发展前人的研究成果(特别是开普勒的行星运动三定律),提出物体运动三定律。伽利略、牛顿奠定了动力学的基础。牛顿运动定律的建立标志着力学开始成为一门科学。此后,力学的研究对象由单个的自由质点,转向受约束的质点和受约束的质点系。这方面的标志是达朗贝尔提出的达朗贝尔原理,和拉格朗日建立的分析力学。其后,欧拉又进一步把牛顿运动定律用于刚体和理想流体的运动方程,这看作是连续介质力学的开端。运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是纳维、柯西、泊松、斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。从牛顿到汉密尔顿的理论体系组成了物理学中的经典力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶,在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。20世纪初,随着新的数学理论和方法的出现,力学研究又蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题等。这时的先导者是普朗特和卡门,他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从20世纪60年代起,计算机的应用日益广泛,力学无论在应用上或理论上都有了新的进展。

  • 【资料】-对物理学历史的透视

    [b]对物理学历史的透视[/b]对学科的发展进行历史透视有助于了解其现状,展望其未来。物理学的历史很长,不能样样都讲到,仅从牛顿开始,牛顿以前的很多先驱性的工作只好从略了。20世纪前物理学的三大综合   17世纪至19世纪,物理学经历了三次大的综合。牛顿力学体系的建立标志着物理学的首次综合,第二次综合是麦克斯韦的电磁理论的建立,第三次则是以热力学两大定律确立并发展出相应的统计理论为标志。   第一次综合——牛顿力学   17世纪,牛顿力学构成了完整的体系。可以说,这是物理学第一次伟大的综合。牛顿将天上行星的运动与地球上苹果下坠等现象概括到一个规律里面去了,建立了所谓的经典力学。至于苹果下坠启发了牛顿的故事究竟有无历史根据,那是另一回事,但它说明了人们对于形象思维的偏爱。   牛顿力学的建立   牛顿实际上建立了两个定律,一个是运动定律,一个是万有引力定律。运动定律描述在力作用下物体是怎么运动的;万有引力定理则描述物体之间的基本相互作用力。牛顿将两个定律结合起来运用,因为行星的运动或者地球上的抛物体运动都受到万有引力的影响。牛顿从物理上把这两个重要的力学规律总结出来的同时,也发展了数学,成为微积分的发明人。他用微积分、微分方程来解决力学问题。   由运动定律建立的运动方程,可以用数学方法把它具体解出来,这体现了牛顿力学的威力——能够解决实际问题。比如,如果要计算行星运行的轨道,可以按照牛顿所给出的物理思想和数学方法,求解运动方程就行了。   根据现在轨道上行星的位置,可以倒推千百年前或预计千百年后它们的位置。海王星的发现就充分体现了这一点。当时,人们发现天王星的轨道偏离了牛顿定律的预期,问题出在哪里呢?后来发现,在天王星轨道外面还有一颗行星,它对天王星产生影响,导致天王星的轨道偏离了预期的轨道。进而人们用牛顿力学估计出这个行星的位置,并在预计的位置附近发现了这颗行星——海王星。这表明,牛顿定律是很成功的。   按照牛顿定律写出运动方程,若已知初始条件——物体的位置和速度,就可以求出以后任何时刻物体的位置和速度。这一想法经拉普拉斯推广,表述为一种普适的确定论:既然组成世界的全部粒子在某一瞬间各自具有特定的位置与速度,而且都遵从确定的定律,因而随后世界上任何情况都将毫无例外地完全确定。这就是拉普拉斯确定论。它和宿命论的思想不谋而合,但与我们日常生活的感受不同(日常生活中经常碰到不确定、不可预知的情况)。这个内涵丰富的问题到20世纪才解决。   牛顿力学的新表述   19世纪,经典力学的发展表现为科学家用新的、更简洁的形式重新表述牛顿定律,如拉格朗日方程组、哈密顿方程组等。这些表述形式不一,实质并没有改变。这是19世纪牛顿力学发展的一个方面。另一方面,就是将牛顿定律推广到连续介质的力学问题中去,出现了弹性力学、流体力学等。在这一方面,20世纪有更大的发展,特别是流体力学,最终导致航空甚至航天的出现。因此,牛顿定律到现在还是非常重要的,牛顿定律还是大学课程中不可缺少的一个组成部分。当然,其表达方法应随时代发展而有所不同。   牛顿关于力学研究的成果,写在一本叫《自然哲学的数学原理》(简称《原理》)的巨著中。只要稍微翻一下这本书,就会发现它非常难懂。牛顿的一个重要贡献是从万有引力定律和运动定律把行星运动的轨道推导了出来。现在在学习理论力学时,行星运动的椭圆轨道问题是不太难的,解微分方程就可以求出来。但牛顿在《原理》里没有用微积分,更没有用解微分方程的方法,而纯粹是用几何方法把椭圆轨道推出来的。[color=red]全文在最后的附件中[/color]

  • 【求助】求助:异构体在GPC中会表现出差别吗?

    我做的合成实验由于容易生成二聚体、多聚体,一般用GPC来大概地看下合成产物中的单体含量,但是合成单体为三种同分异构体的混合物,我想请教:1、同分异构体在GPC中会表现出差别吗?(分子量虽然相同,但是结构不同的话流体力学体积应该不同吧,有影响吗?)2、有差别的话,表现在什么地方呢?请高手赐教,多谢!

  • 【分享】猫咪喝奶的秘密!

    【分享】猫咪喝奶的秘密!

    http://ng1.17img.cn/bbsfiles/images/2011/04/201104080842_287702_2185349_3.jpg高速摄像机揭示出猫咪啜饮奶时是如此“精通”流体力学,能精妙地平衡重力和惯性,其中的力学运用可不一般。借助高速摄像机,美国麻省理工的流体力学家Roman Stocker及其研究小组揭示出,当狗狗用舌头舀水喝时,小猫却能在啜饮牛奶时展现精妙的力平衡:舌头以最简洁的方式接触液体表面,之后缩回舌头时带出一条细小的液柱送入口中。整个过程如此完美以至于重力还未来得及克服液体的惯性。研究论文发布在11月11日的 《科学》 杂志上。

  • 陶瓷墨水用粘度计

    本人对流体力学不是很了解,现在想采购一台粘度计,主要用来测试陶瓷墨水的粘度,请问使用何种粘度计,有哪些国内、国外的厂家,产品的优缺点各是什么?有没有相关的用户和案列?

  • 大气科学之大气概说==等压面的高度单位

    等压面的高度单位--位势米等高线的数值是高度单位,但不是几何高度,而是位势高度。所谓位势高度,就是把单位质量的物体从海平面上升到某高度时克服重力所作的功来表示的高度,其单位是位势米。我国从1950年1月1日开始使用位势米这个高度单位。现在广播电台所说的500mb(毫巴)等压面的位势高度是指500mb等压面距海平面的位势。500mb高度为什么不用几何高度,而用位势高度表示?这是因为天气学理论主要是建立在流体力学和热力学基础上的,用位势高度表示在计算上有很多方便。其实,几何高度Z和位势高度h在数值上相差不大但概念上完全不同,一个是长度单位,一个是能量单位。

  • 求助书一本

    工程流体力学-第二版-孔珑.pdf: http://ishare.iask.sina.com.cn/f/8304951.html

  • 【讨论】刚性链高分子溶液的光散射

    请教一个问题:最近做光散射,样品是半刚性链的高分子,在溶液中其单分子以及聚集体都可能不是圆球,而是棒状的,那么测试出来的流体力学直径有何意义?需要特定的公式进行拟合吗?

  • 固体力学常用名词

    弹性力学 elasticity 弹性理论 theory of elasticity 均匀应力状态 homogeneous state of stress 应力不变量 stress invariant 应变椭球 strain ellipsoid 弹性力学 elasticity 弹性理论 theory of elasticity 均匀应力状态 homogeneous state of stress 应力不变量 stress invariant 应变不变量 strain invariant 应变椭球 strain ellipsoid 均匀应变状态 homogeneous state of strain 应变协调方程 equation of strain compatibility 拉梅常量 Lame constants 各向同性弹性 isotropic elasticity 旋转圆盘 rotating circular disk 楔 wedge 开尔文问题 Kelvin problem 布西内斯克问题 Boussinesq problem 艾里应力函数 Airy stress function 克罗索夫--穆斯赫利什维利法 Kolosoff-Muskhelishvili method 基尔霍夫假设 Kirchhoff hypothesis 板 Plate 矩形板 Rectangular plate 圆板 Circular plate 环板 Annular plate 波纹板 Corrugated plate 加劲板 Stiffened plate,reinforced Plate 中厚板 Plate of moderate thickness 弯[曲]应力函数 Stress function of bending 壳 Shell 扁壳 Shallow shell 旋转壳 Revolutionary shell 球壳 Spherical shell [圆]柱壳 Cylindrical shell 锥壳 Conical shell 环壳 Toroidal shell 封闭壳 Closed shell 波纹壳 Corrugated shell 扭[转]应力函数 Stress function of torsion 翘曲函数 Warping function 半逆解法 semi-inverse method 瑞利--里茨法 Rayleigh-Ritz method 松弛法 Relaxation method 莱维法 Levy method 松弛 Relaxation 量纲分析 Dimensional analysis 自相似[性] self-similarity 影响面 Influence surface 接触应力 Contact stress 赫兹理论 Hertz theory 协调接触 Conforming contact 滑动接触 Sliding contact 滚动接触 Rolling contact 压入 Indentation 各向异性弹性 Anisotropic elasticity 颗粒材料 Granular material 散体力学 Mechanics of granular media 热弹性 Thermoelasticity 超弹性 Hyperelasticity 粘弹性 Viscoelasticity 对应原理 Correspondence principle 褶皱 Wrinkle 塑性全量理论 Total theory of plasticity 滑动 Sliding 微滑 Microslip 粗糙度 Roughness 非线性弹性 Nonlinear elasticity 大挠度 Large deflection 突弹跳变 snap-through 有限变形 Finite deformation 格林应变 Green strain 阿尔曼西应变 Almansi strain 弹性动力学 Dynamic elasticity 运动方程 Equation of motion 准静态的 Quasi-static 气动弹性 Aeroelasticity 水弹性 Hydroelasticity 颤振 Flutter 弹性波 Elastic wave 简单波 Simple wave 柱面波 Cylindrical wave 水平剪切波 Horizontal shear wave 竖直剪切波 Vertical shear wave 体波 body wave 无旋波 Irrotational wave 畸变波 Distortion wave 膨胀波 Dilatation wave 瑞利波 Rayleigh wave 等容波 Equivoluminal wave 勒夫波 Love wave 界面波 Interfacial wave 边缘效应 edge effect 塑性力学 Plasticity 可成形性 Formability 金属成形 Metal forming 耐撞性 Crashworthiness 结构抗撞毁性 Structural crashworthiness 拉拔 Drawing 破坏机构 Collapse mechanism 回弹 Springback 挤压 Extrusion 冲压 Stamping 穿透 Perforation 层裂 Spalling 塑性理论 Theory of plasticity 安定[性]理论 Shake-down theory 运动安定定理 kinematic shake-down theorem 静力安定定理 Static shake-down theorem 率相关理论 rate dependent theorem 载荷因子 load factor 加载准则 Loading criterion 加载函数 Loading function 加载面 Loading surface 塑性加载 Plastic loading 塑性加载波 Plastic loading wave 简单加载 Simple loading 比例加载 Proportional loading 卸载 Unloading 卸载波 Unloading wave冲击载荷 Impulsive load 阶跃载荷 step load 脉冲载荷 pulse load 极限载荷 limit load

  • 气相色谱气体流动问题请教

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中,载气也好空气也好,在管路中流动,有紊流层流的说法吗?样本在载气中流动是层流还是紊流,助燃气怎么流动,是用大阻值高压力达到所需流量,还是阻值小低压力达到流量。我想着从原理出发能不能提高仪器性能。还有检测器喷嘴,圆柱内径和逐渐变窄的内径气体流经时有何不同,有熟知流体力学的大佬研究过吗,或者有设备大佬往这方面考虑过吗?

  • 求助 请再帮忙剩余两章,非常谢谢!

    【序号】:1【作者】:(日)小峰龙男 【题名】:流动中的力量:图解流体力学【期刊】:科学出版社【年、卷、期、起止页码】:出版时间:2012-7-1【全文链接】:http://txt0908.com/news/book/20150330/136702.html

  • 【转帖】力学史 history of mechanics

    古代的力学(公元6世纪以前)    静力学的发端    有关运动的观念    生产技术和力学   中世纪的力学(6~16世纪)    阿拉伯    欧洲    中国  经典力学的建立(17世纪初~18世纪末)   动力学    静力学和运动学   固体和流体的物性  应用力学   力学主要分支的建立(19世纪)    结构力学和弹性力学 水力学和水动力学 分析力学及其他   近代力学(约1900~1960)    固体力学    流体力学    一般力学   现代力学(约1960以后)    计算机的冲击    渗透和综合    宏观和微观相结合   力学的一个分支,也是科学史的一个分支,它记述和研究人类从自然现象和生产活动中认识和应用物体机械运动规律的历史。   力学本身的发展有悠久的历史,但是关于力学历史的著作是在经典力学臻于完善以后才出现的,其中著名的是E.马赫的《力学的一般批判发展史》(1883)。当代力学史专著有R.杜加斯的《力学史》(1950),其中把力学作为物理学的一部分。运用历史唯物主义观点阐明力学史的有以Н.Д.莫伊谢耶夫为代表的莫斯科大学学派的著述,如A.T.格里戈良所写《力学,从古到今》(1974)。力学的专科史有I.托德亨特和K.皮尔孙的《弹性理论和材料强度学史》两卷(1886、1893),S.P.铁木辛柯的《材料力学史》(1953)。中国从50年代起开始把力学史作为物理学史的一个组成部分,对力学史单独的、系统的研究则刚刚开始。   力学发展在历史年代顺序上和学科逻辑顺序上大体相同,这种发展反映出人类认识由简单到复杂逐步深化的过程。牛顿运动定律的建立是力学发展过程中的重要里程碑。经典力学从此奠定基础并根据学科自身的逻辑规律发展着。在近代和现代,力学随着研究内容的深入和研究领域的扩大逐渐形成各个分支,近年来又出现了跨分支、跨学科综合研究的趋势。   力学的发展是分析和综合相结合的过程。从总的发展趋势来看,牛顿运动定律建立以前力学研究的历史大致可分为两个时期:①古代,从远古到公元5世纪,对平衡和运动有初步的了解 ②中世纪,从6世纪到16世纪,这个时期对力、运动以及它们之间的关系的认识已有进展,为牛顿运动定律的建立作了准备。牛顿运动定律的建立和从此以后力学研究的历史大致可分为四个时期:①从17世纪初到18世纪末,经典力学的建立和完善化;②19世纪,力学各主要分支的建立;③从1900年到1960年,近代力学,它和工程技术特别是航空、航天技术密切联系;④1960年以后,现代力学,力学同计算技术和自然科学其他学科广泛结合。当然,各个时期的分界年代并不是绝对的。  古代的力学(公元6世纪以前)   人类最早的力学知识是从对自然现象的观察和生产劳动中获得的。中国西安半坡村遗址(新石器时代仰韶文化,公元前3000多年)出土的汲水壶采取尖底的形式,且壶空时在水面上会倾倒而壶满时又能自动恢复竖直位置。埃及第四王朝建立的胡夫陵墓即金字塔(约公元前2600)每边长232米,高146米,斜面倾角约为5°,用230余万块巨石垒成,平均每块重2.5吨,建造运用滑轮组。有关运动学的很多知识是同对天体运行观测有联系的,中国河南安阳出土的甲骨文(约公元前1400)已有日食和月食的常规记录。巴比伦人发现(约公元前700)日食、月食的沙罗周期。生产力水平接近的不同地区,在劳动中运用力学知识也往往相似。古希腊罗马有一种提水壶(amphora),它的外形和力学特点同中国半坡村的汲水壶类似。又如有一种灌溉设备,用短柱或树杈支承一根横木,横木一端挂水桶,另一端系重物,提水时可以省力。中国称这种器械为桔槔(最早记载见《庄子天地》,约公元前300);在埃及也使用它,称为shadoof。(见彩图)   静力学的发端  人类在生产劳动和对自然现象观测基础上积累了力学知识,逐渐形成一些概念,然后对一些现象的规律进行描述。这种描述,先是定性的,而后是定量的。中国春秋时期墨翟及其弟子的著作《墨经》(公元前4~前3世纪)中,有涉及力的概念、杠杆平衡、重心、浮力、强度和刚度的叙述。古希腊阿尔库塔斯的著作中也有关于静力学的记录。在亚里士多德的著作中有关于杠杆平衡的见解:距离支点较远的力容易移动重物,因为它画出一个较大的圆。为静力学奠定科学基础的是阿基米德,他在研究杠杆平衡、平面图形重心位置时,先建立一些公设,而后用数学论证的方法导出一些定理,成果之一是用类似求和数再取极限的方法,求出一个抛物线和它们两平行弦线(与抛物线斜交)所围成平面图形面积的重心位置。阿基米德关于杠杆公设之一是:不等距的等重不能平衡,杠杆将向距离较大一侧倾斜。亚里士多德关于画圆大小的见解和阿基米德这个公设略有不同,它们分别是静力平衡条件的运动学方法和几何学方法的开端。约公元1世纪,亚历山大的希罗把亚里士多德的提法明确为平衡时“运动着的力和所经历的时间成反比”。经过一千多年的发展,运动方法演化为虚位移原理,几何方法演化为用力矩表达的平衡条件。阿基米德还用推理方法证明了关于浮体或潜体的浮力定律和抛物线回转浮体平衡稳定性条件。古罗马的帕普斯在古希腊成果的基础上论证了平面图形重心位置和由这图形回转而得体积之间的关系,这个结果在一千多年后为P.古尔丁重新获得(见重心)。   有关运动的观念  古代对机械运动的描述只限于匀速直线和匀速圆周运动,亚里士多德认为行星轨道应是最完美的曲线──圆。托勒密在《天文学大成》(公元140年左右)的地心说中,认为太阳绕地球作匀速圆周运动,行星又绕太阳作匀速圆周运动;至于运动和力的关系,古代尚无正确的认识。亚里士多德在《论天》中认为,体积相同的两物体,重者下落比轻者快。由于亚里士多德的权威地位,他的这个错误观点长期被奉为信条,直到16世纪末才被S.斯蒂文和德格罗特(1586)、伽利略(1589~1591)用实验所推翻。亚里士多德还认为运动物体必须有最初原因或一定有不断的推动者,直到1277年才受到教皇约翰21世的批判。古代对运动的记录大多停留于定性的描述,许多和哲学观点相联系。上述亚里士多德所说运动并不限于机械(力学)运动。就运动的哲理而言,有些古代的论点颇有独到之处。赫拉克利特认为“一切皆流”,芝诺认为运动的东西既不在它所在的地方运动,又不在它所不在的地方运动,提出“飞矢不动”。中国惠施提出相同的理论:“镞矢之疾而有不行不止之时”。《庄子逍遥游》把风的举力和水的浮力作了类比。王充在《论衡变虚》中描述了水波振荡随距离的衰减。   生产技术和力学  古代的建筑工程和器物制造反映出当时的力学水平。阿基米德制造过能牵动船只的机械、车水用的螺旋、表示日月运行的机构,但他认为这不能和纯科学相提并论。这种把以数学为根据的力学理论和在工程技术中应用的力学分离开来的观点在后世时隐时现。在中国对力学的理解只能在技术应用中看到,而理论上的说明始终未能越出定性描述的范围 (见中国古代力学知识)。《墨经》有专讲守城工事的篇幅,其中给出工事的尺寸,但未涉及力学理论。春秋末期成书的《考工记》中有不少与力学有关的技术问题的记述,如嵌入车轮辐条的轮毂尺寸的选择,调整磬、钟等乐器的音律等,都符合力学原理。都江堰工程约兴建于公元前3世纪,当时领导这项工程的李冰对于水量变化、开渠引水灌溉都很了解。都江堰由分洪工程、开凿工程和闸坝工程组成一个整体,它经历代整修至今仍在发挥作用。《管子地员篇》和《史记律书》记述了中国音律所采用的三分损益律:各音程比(即振动频率比)交错地为三比二、三比四,这反映了中国早期乐器制造方面的理论水平。中国音律还可用战国时期 (公元前433)铸成的曾侯乙编钟(1978年湖北省随县出土)来说明,每一只钟最低两个频率之比符合三度(比值约1.2),反映了工艺的精巧和对频率比(音律)的深刻理解(说明在确定性系统中也可出现类似随机的过程,这是有序向无序的一种演化过程,是非线性动力学中一个令人惊异的现象。混沌和有关的奇怪吸引子理论的一些结果冲击了数学、物理学的许多分支。例如湍流问题是流体力学中长斯存在的难题,分岔和混沌模型结合在实验中发现的拟序结构,使这个难题的解决似乎有了新的希望。

  • 求助中文文献

    【序号】:【作者】: 严导淦 【题名】:流体力学中的总流伯努利方程 【期刊】:《物理与工程》 2014年04期【全文链接】:http://www.cnki.com.cn/Article/CJFDTOTAL-GKWL201404012.htm

  • 管子的流速是这样规定的

    管子的流速是任意设定的吗?不是。从流体力学可知当管内介质流速越大则阻力越大。当流速越小时,虽然流动阻力小了,对于同样的流量所需要的管径却大了,造成设备成本的升高。于是人们考虑到这两条因素取了一个合理的流速称为经济流速,人们根据流量选择管径就是依靠经济流速计算得出的。 为了方便您的选型,请参照以下小常识: 用于一般给水: 主压力管道 流速: 2至3m/S 低压管道 0.1至1m/SJ2b 工业用水: 离心泵压力管 3至4m/S 离心泵吸水管 1至2m/S(管径小于250) 1.5至2.5m/S(管径大于250) 给水总管 1.5至3m/S 排水管 0.5至1m/S 冷却:

  • 求中文书一本

    :1::非粘性流体力学.pdf:http://ishare.iask.sina.com.cn/f/15751579.html上面的书可能不是董曾南、章梓雄(清华大学出版社)和第二版,希望能人帮忙最好能给出第二版。多谢!!

  • 【资料】航空、航天类期刊==学报及综合类

    序号http://61.164.36.250:8001/CSTJ/IMAGES/kanwu.gif 刊名ISSNCN核心期刊1北京航空航天大学学报1001-596511-2625/V★2南京航空学院学报1000-195632-1293/V★3南京航空航天大学学报1005-261532-1429/V★4实验流体力学1672-989711-5266/V★

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制