当前位置: 仪器信息网 > 行业主题 > >

计算流体力学模型

仪器信息网计算流体力学模型专题为您整合计算流体力学模型相关的最新文章,在计算流体力学模型专题,您不仅可以免费浏览计算流体力学模型的资讯, 同时您还可以浏览计算流体力学模型的相关资料、解决方案,参与社区计算流体力学模型话题讨论。

计算流体力学模型相关的资讯

  • 赛默飞世尔科技与德累斯顿工业大学流体力学学院展开合作
    &mdash &mdash 推出&ldquo 流变学入门课程&rdquo 培训包,内含实践实验指导德国卡尔斯鲁厄(2010年6月7日) &mdash 全球服务科学领域的领导者赛默飞世尔科技有限公司与德累斯顿工业大学流体力学学院展开密切合作,为其学生提供流变学培训课程。此次合作可为公司的所有意向客户提供有关Thermo Scientific HAAKE Viscotester 550 粘度计的各种实践实验资料。 流变学研究对于新产品的开发和质量控制来说正变得日益重要 &mdash 例如,从低粘度的眼药水到固体聚合物。因此,早期培训对于了解流变现象就显得更为重要。赛默飞世尔的&ldquo 流变学入门课程&rdquo 培训包中包括具有特殊配置的HAAKE Viscotester 550粘度计和两个实践实验的说明。该培训可用于普通学校、职业学校、公司和大学。此外,培训包还为授课教师准备了教学指导和实验结果示例。为确保培训包的效果,赛默飞世尔科技将在研讨会活动中对授课教师进行一天的培训。 &ldquo 我们在学生培训课上使用HAAKE Viscotester 550等旋转粘度计进行流变测量教学。该仪器是实践实验的理想之选,通过使用预设的内部程序或软件,操作变得非常简单,可快速培训多个用户。&rdquo 德累斯顿工业大学流体力学学院磁流体动力学系主任Odenbach教授说道:&ldquo 在更复杂的流变测量中,我们使用诸如Thermo Scientific HAAKE MARS之类的仪器。它是一个模块化的流变仪平台,能够针对各种应用进行校准,并提供多种附件。 培训包优点一览: · 坚固可靠的旋转粘度计,带预设的内部程序。 · 适用于介质粘度试验的同心圆筒测量转子,可选用多种测量转子进行扩展(例如、平行板、锥板、旋转式或悬挂式同心圆筒) · 用户友好的Thermo Scientific HAAKE RheoWin测量和评估软件,适用于初学者或熟练用户,可在www.thermoscientific.com/mc 网站上进行免费升级。 · 文件资料中包含流变学基础知识和两个实践实验的说明,还包括授课教师的教学指导。 · 在授课教师的进一步培训中,可有针对性地讲授流变学基础知识或巩固已有知识。 流变学领域的领先者之一赛默飞世尔科技凭借其丰富的Thermo Scientific材料物性表征解决方案为各行各业的客户提供支持。材料物性表征解决方案对塑料、食品、化妆品、药品、涂料、化学品和石化产品,乃至各种液体或固体的粘度、弹性、可加工性和温度相关力学变化进行分析和测量。欲了解更多信息,请访问www.thermoscientific.com/mc。 Thermo Scientific是全球服务科学领域的领导者赛默飞世尔科技旗下品牌。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证券交易所代码:TMO)是全球科学服务领域的领导者,致力于为客户提供全面支持,让世界变得更健康、更清洁、更安全。公司拥有员工35,000名,年收入超过100亿美元,所服务客户包括:医药和生物科技公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与工业过程控制等行业。公司借助Thermo Scientific和Fisher Scientific这两个主要品牌,为客户提供了独特的连续技术开发以及最便捷的采购方案,为公司的主要股东创造利润和其他价值。公司的产品和服务有助于加快科研步伐,帮助客户解决从复杂研发到常规测试再到现场应用中遇到的各类分析挑战。请访问www.thermofisher.com 或中文网站www.thermo.com.cn, www.fishersci.com.cn。
  • 美国TSI公司流体力学网上讲座
    题目:利用互相关峰率量化PIV不确定度演讲人:普渡大学 Pavlos Vlachos教授; TSI 公司Stamatios Pothos 和 Aaron Boomsma 博士;日期:2014年12月18日时间:美 中央时区早上9:00 点(北京时间 晚10:00点)在粒子图像测速系统(PIV)中,误差取决于PIV算法、用户设置、流动特征与实验装置。之前,PIV系统的误差分析是在理想或约束的实验与分析条件下建立的。然而,这些条件与随着时间空间变化的实验和流动实际条件不同。因此,误差及广义的PIV不确定度不能基于现有的误差分析。John Charonko and Pavlos Vlachos博士发现PIV不确定度是与互相关信噪比密切相关。互相关信噪比的一个主要指标是第一峰率(PPR),PPR是互相关分析图上的第一高峰与第二高峰比值。总之,不确定度是与PPR呈负相关。本次研讨会,Pavlos Vlachos教授将介绍量化PIV不确定度的方法及其在TSI Insight4G软件中的实现。请您点击以下链接尽快注册参加此网上讲座:https://www3.gotomeeting.com/register/269024462
  • 联合仪器制造工作正在研制俄罗斯首款工程计算系统
    据报道,2016年7月4日,新型100%国产程序将在“厄尔布鲁士”平台上开发。  联合仪器制造公司与莫斯科SPARC技术中心、TESIS公司联合开发俄罗斯首款工程计算系统。新程序将在“厄尔布鲁士”平台上进行开发。  联合仪器制造公司已经完成“厄尔布鲁士”平台复杂空气动力学和流体力学FlowVision转化的第一阶段,创造了国内工程计算软硬件系统的新型工作样件。  FlowVision可解决水力、气体动力学及燃烧过程中的各种问题。该系统广泛用于军工企业、导弹航天领域、航空及船舶制造业和“俄罗斯原子能公司”。利用该系统可以进行复杂计算,例如,描述各种管线和泵的特性,计算航天器的降落,绘制舰船或飞机外层流线图。  联合仪器制造公司IT部门主管帕韦尔赫里蓬诺夫表示,“各合作企业共同推进全寿命周期的国产工程任务解决方案软硬件系统的研制进程”。  赫里蓬诺夫表示,该项目实施的迫切性取决于工业领域,特别是国防工业领域日益提升的各项需求。  赫里蓬诺夫强调,“该系统可与国外类似产品相媲美,价格具有竞争力,已准备全面应用于企业,以对抗西方制裁”。  目前FlowVision软件可兼容四路服务器“厄尔布鲁士-4.4”开展计算工作,以及 “厄尔布鲁士401” 可视化及数据分析工作站。
  • INNOVATEST轶诺仪器与固体力学会议携手推动力学性能测试
    由中国力学学会固体力学专业委员会主办,中国工程物理研究院总体工程研究所,西南交通大学力学与工程学院,四川大学破坏力学与工程防灾减灾省重点实验室,顶峰多尺度科学研究所,成都大学承办的“2014年全国固体力学学术会议”于金秋十月在四川隆重举办。此次会议共设2个主会场,27个分会场,会议规模宏大,会场组织有序。作为赞助商之一,轶诺仪器(上海)有限公司亦亲自派出市场与技术团队,全心助力此次大会。 现场与会专家多达1200余人,在为期2天的会议中,来自中国科学院力学所的白以龙教授、王自强教授,自然科学基金委的杨卫教授,美国西北大学的黄永刚教授,哈尔滨工业大学的杜善义教授,中国工程物理研究院的孙承伟教授,西南交通大学的翟婉明教授,香港科技大学的余同希教以及美国普渡大学的陈为农教授分别作了特邀报告,会场气氛轻松热烈,不时传来听众的阵阵掌声。 所谓固体力学,就是研究可变形固体在外界因素作用下所产生的应力、应变、位移和破坏等的力学分支。一般包括材料力学、弹性力学、塑性力学等方向。其中,材料力学是固体力学中发展最早的一个分支,它研究材料在外力作用下的力学性能、变形状态和破坏规律,为工程设计中选用材料和选择构件尺寸提供依据。之后发展起来的弹性力学是研究弹性物体在外力作用下的应力场、应变场以及有关的规律;塑性力学则是研究固体受力后处于塑性变形状态时,塑性变形与外力的关系,以及物体中的应力场、应变场以及有关规律。 众所周知,金属材料的主要力学性能包括硬度、弹性、塑性、刚性、冲击韧性、疲劳强度、断裂韧性等;而硬度作为一项综合的力学性能指标,与材料的其他性能之间存在一定的联系,比如,金属的抗拉强度便可由硬度经过换算得到。另外,金属的硬度与冷成型性、切削性、焊接性等工艺性能也有密切关系;硬度实验能敏感地反映出材料的化学成分、金相组织和结构的差异,因此被广泛用来进行原材料的质量检验,以及检验零件的热处理质量。硬度试验具有设备简单、操作方便快捷、压痕小以及便于现场操作等特点,是产品研发和生产中最常用的力学性能试验方法,在测试金属材料机械性能上得到了广泛应用。 INNOVATEST轶诺仪器,全球领先的硬度计制造商,位于欧洲荷兰,集设计,研发,生产于一身,深谙力学,视质量为第一生命,致力于提供高端、精密、可靠、稳定的硬度检测设备。为此,INNOVATEST轶诺仪器不断契合广大用户的需要,为其量身定做最合适的硬度测试解决方案。 INNOVATEST轶诺仪器在其荷兰总部和上海子公司均设有展厅,随时恭候您莅临体验!
  • 过程工程所在液液萃取技术研究中获进展
    p style="text-align: justify text-indent: 2em "液液萃取分离是过程工业中重要的单元操作,传统的箱式混合澄清槽密封性能差,有机相挥发极易带来溶剂损失和严重的火灾隐患。近日,中国科学院过程工程研究所自主设计的5套新型密闭管式萃取器在河北兰润植保科技有限公司除草剂原药生产车间替换原有全部间歇釜式生产装置,并实现稳定连续运行1个月,运行后该车间产能由20吨/月提高至104吨/月,有机相挥发损失大大减少。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "新装置的成功应用,降低了液液溶剂萃取过程中的溶剂损失和火灾风险,同时也突破了化学制药生产过程中部分特殊液液萃取体系无法连续化生产的瓶颈,提高了生产能力,具有进一步推广至湿法冶金、废水处理、精细化工、石油化工等众多液液萃取领域的示范作用,对提升相关企业绿色化、安全化生产有重要意义。/span/pp style="text-align: justify text-indent: 2em "化学制药过程(如农药)中的液液萃取分离涉及的物系性质较为复杂,如有机相溶剂性、挥发性强;水相酸性强且常含氯离子;待萃物浓度高,萃取前后两相物性差变化大;两相乳化随pH敏感等。采用传统箱式混合澄清槽进行连续生产困难,原有生产过程只能采用釜式间歇操作,产量低且产品质量不稳定。间歇操作过程有机相挥发严重,带来溶剂损失的同时,恶化了工人操作环境,存在严重的火灾隐患。/pp style="text-align: justify text-indent: 2em "过程工程所资源与环境研究部湿法冶金与先进材料课题组长期从事液液萃取工艺及装备的研究。研究团队根据化学制药过程中两相物系的特殊物理化学特性,采用先进在线测量手段原位获取了两相混合行为和传质数据,结合CFD(计算流体力学)与PBM(群体平衡)模型计算,揭示了液液萃取装备几何结构对两相间微观传质、宏观流动和液滴“破碎-聚并”的相互作用规律,进一步设计出新型高效管式萃取器。据项目负责人、研究员王勇介绍,该新型萃取器具有较高的单级效率和更低的两相夹带量;密闭性好、不易泄漏,便于VOC(挥发性有机物)的集中收集处理;适用于强有机溶剂和强腐蚀性体系;特殊的轻相、重相界面调节系统,实现了两相界面的稳定控制;界面污物可在线连续采出、分离,提高了系统连续运行能力。/pp style="text-align: justify text-indent: 2em "该项装备技术获得科技部重点研发计划(2019YFC1907700)支持,并已申请国家发明专利。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/3be854e5-41c7-407d-9dcb-01ec9772db32.jpg" title="管式混合萃取器应用现场.png" alt="管式混合萃取器应用现场.png"//pp style="text-align: center text-indent: 0em "管式混合萃取器应用现场/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/a11872b4-35d1-4375-a05c-42a174b3765c.jpg" title="管式萃取器流体力学计算.png" alt="管式萃取器流体力学计算.png"//pp style="text-align: center text-indent: 0em "管式萃取器流体力学计算/pp style="text-indent: 0em text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/ba102d80-70ab-4efa-857a-eced0d6a7e45.jpg" title="管式萃取器模型.png" alt="管式萃取器模型.png"//pp style="text-align: center text-indent: 2em "管式萃取器模型/p
  • 凯尔测控2024年全国固体力学学术会议完美落幕
    会议概况 “2024年全国固体力学学术会议”于 2024年3月29日至4月1日在江苏省南京市南京国际博览会议中心顺利召开。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”。大会组委会热忱邀请全国固体力学领域的专家学者及研究生参会交流,分享最新的研究进展,共同研讨固体力学及相关领域的发展机遇以及面临的挑战。 凯尔测控-作为本次会议国内高端疲劳试验机厂商赞助商,展示了固体材料力学检测设备:微型电磁式动态力学试验机和原位拉压力学试验机。
  • 奥影闪耀亮相全国固体力学学术会议
    近日,备受瞩目的“2024年全国固体力学学术会议”在江苏省南京市隆重召开,本次会议吸引了众多国内外知名专家学者和研究生齐聚一堂,共同探讨固体力学的前沿和挑战。在会议现场,奥影设立展位与现场的学者与业界同仁互动交流,展示奥影工业CT系统在固体力学领域的创新应用与实践案例。全国固体力学学术会议是我国固体力学界每四年举办一次的综合性学术盛会,旨在为固体力学领域的专家学者提供展示最新成果、交流学术思想、探讨未来趋势的平台。本次会议主题为“固体力学前沿和挑战”,聚焦新形势下固体力学领域的科技创新和人才培养,研讨主题包括不限于固体力学及其分支学科的主要进展、创新方法、现存挑战及未来方向。借助工业CT的高精度三维成像能力,为固体力学研究者提供了前所未有的观察和分析手段。无论是复杂的材料内部结构,还是微小的形变和裂纹,都能通过工业CT的扫描图像得以清晰展现。这不仅有助于我们深入理解材料的力学行为,更能为优化材料设计、提升产品性能提供有力支持。此外,工业CT还可在原位加载实验中得到应用。在进行原位加载实验时,工业CT可持续监测试件在加载过程中的内部结构变化,如裂缝的产生、扩展以及材料的形变等。这些信息对于理解材料的失效机制、优化材料设计以及提升产品的耐用性具有重要意义。本次会议作为固体力学领域的年度盛会,不仅汇聚了众多专家学者,为他们提供了一个展示前沿成果、深入交流学术思想的平台,更在推动固体力学领域的科技创新和人才培养方面发挥了重要作用。同时,奥影也将继续深耕工业CT技术的研发与应用,不断为固体力学领域的研究和发展贡献新的力量,共同推动该领域的繁荣与进步。
  • 热分析结合机器学习实现烟叶风格评价达国际领先水平 福建中烟两项目获行业科技奖
    近日,中国烟草总公司表彰奖励了一批重大项目和优秀科技工作者,其中福建中烟两个项目和两位同志获得殊荣,分别是:《天然茶香料规模化精准制备关键技术开发及应用》获中国烟草总公司技术发明奖二等奖《基于计算流体力学的细支卷烟燃烧机理研究及应用》获中国烟草总公司科学技术进步奖三等奖技术中心李华杰、邓其馨获中国烟草总公司创新争先奖一起来看看这些创新项目和创新达人吧01《天然茶香料规模化精准制备关键技术开发及应用》主要完成人:范坚强 张峰 伊勇涛 谢金栋 胡军 洪祖灿 茅中一 刘珊该项目针对天然香料存在的特色原料筛选及处理不够精准、开发技术不够高效、规模化生产香料存在质量波动、功能传导精准应用有待提升等行业共性问题,以福建最具特色的茶叶为研究对象——● 形成了以“一种制备香料的方法、香料及其用途”为核心专利的茶原料精准筛选处理、茶香料高效开发、稳定可靠规模化制备及功能作用精准传导等4大专利技术板块;● 建成了行业首条天然茶香料生产线;● 开发生产出一系列茶香料、茶香基模块,并拓展开发出其它多种天然香料、香基模块。目前,茶香料等自主研发生产的香料已成功应用于20个卷烟产品中,并以天然茶香料为核心香料开发出茶香风格突出的高价位“金砖”系列卷烟。项目不仅显著提升了企业香精香料的自主研发和自我保障水平,也为行业天然香料研发应用提供了可复制、可推广的范本和共性生产平台。关键技术已推广至郑州烟草研究院、河南中烟等多家单位,推广应用效果显著。02《基于计算流体力学的细支卷烟燃烧机理研究及应用》主要完成人:李跃锋 李斌 李巧灵 谢卫 刘泽春 李华杰 钟洪祥 邓小华 王乐 张齐该项目通过对卷烟燃烧时物理化学过程的数学表达,搭建设计要素、燃烧状态和设计目标间的构效关系。● 采用计算流体力学(CFD)的方法构建细支卷烟燃烧模型,阐述了卷烟燃烧传递机理及各设计要素的作用机理;● 基于对卷烟燃烧机理的深入研究,首次将热分析技术与机器学习算法结合,实现对烟草质量风格的量化评价;● 最终形成计算流体力学导引下的细支卷烟系统化设计体系,并应用于福建中烟多个牌号的新产品开发和老产品维护。项目填补行业在卷烟燃烧数值模拟研究领域的空白,为行业细支卷烟开发设计提供快速便捷的工具。鉴定委员会一致认为,项目在“细支卷烟燃烧数值模拟”和“基于热分析图谱结合机器学习算法实现烟叶风格评价”两个方面具有显著创新,达到国际领先水平。03李华杰:守护工艺 创想当“燃”人物名片2004年入职,高级工程师,主要负责卷烟工艺技术研究,多次参与行业重大专项项目和福建中烟科技项目,2016年以来获得中烟科技进步奖项4项,获得授权发明专利7项,实用新型专利12项。研究制定行业标准5项,并作为第一副主编编著30万字以上书籍3本。作为一名潜心钻研的科技工作者,多年来,李华杰立足自身技术领域,积极投身企业及行业的科研创新与服务工作,推进行业重大专项工作实施,推动卷烟生产过程品质控制,增强工艺装备技术支撑能力,促进行业质量管控标准化和规范化… … 可以说,他是一个研究型的实践者,亦是一个实践型的探索者。● 推动生产制造工艺技术及装备功能的不断完善优化,为企业产品、原料等各领域的集成协同提供了很好的生产制造与创新平台;● 完成了《再造烟叶涂布率的测定 烘箱法》等行业标准的研究和编制工作,填补了行业关键领域质量管控标准的缺失;● 作为卷烟产品工艺的“守护者”,近几年他和项目团队积极开展库存不适用烟叶加工技术研究,为提前一年半完成了国家局布置的30万担不适用烟叶的消化使用任务作出积极贡献。04邓其馨:埋首耕耘探“气”之路人物名片2009年进入福建中烟技术中心实验室,主要从事卷烟烟叶及烟气化学成分分析与应用、卷烟原辅材料质量安全保障及产品降焦减害的技术研究。2016年破格评为高级工程师,2017年入选中国科协“青年人才托举工程”。五年来,授权发明专利10项,发表SCI论文4篇,在《德国烟草科技》《烟草科技》《中国烟草学报》等核心期刊发表论文5篇,多次获得福建中烟科技进步奖项。从关注实验本身到关注实验与卷烟产品之间的联系,将研发新技术、共性规律应用到产品开发当中,真正让技术研发落地,这是邓其馨从事十多年科研工作最大的收获。入职至今,邓其馨一直在福建中烟技术中心实验室,与烟草化学打交道。● 在基于烟气化学成分的通风卷烟调控技术研究方面,首次采用“卷烟烟气截留释放模型”尝试探究了滤嘴通风影响卷烟烟气化学成分变化差异的根本原因,为通风卷烟产品通风设计开发优化,产品维护等方面提供技术支撑,并应用于福建中烟在产卷烟规格分析及新产品设计,取得显著经济效益。● 此外,他在卷烟原辅材料质量安全保障及产品降焦减害方面努力探索,对福建中烟卷烟品牌发展具有积极的促进作用。
  • 空气动力学研究常用测量技术及应用网上讲座将举办
    空气动力学研究常用测量技术及其应用  演讲人: 许荣川博士 高级应用工程师  张鑫 应用工程师  崔军磊 应用工程师  网上讲座: 2011年6月2日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这是TSI公司第四次推出流体测量技术系列中文网上讲座(可以网上同时收看收听音视频内容),以帮助您了解流体测量技术及提高应用水平。我们将于2011年6月2日上午10点开始此次讲座,重点介绍空气动力学研究中常用的几种测量技术。  具体内容:介绍空气动力学研究特征及测量需要 介绍几种常用测量技术原理,特点及其典型应用:激光多普勒测量技术(LDV/PDPA),粒子图像测量技术(PIV),体三维测量技术(V3V)与热线热膜风速仪测量技术(HWFA)。  讲座将会进行40分钟及预留15分钟答疑环节。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 鲨鱼为什么游得快?岛津CT为您揭开谜题
    曾经在国际游泳比赛中风靡一时的鲨鱼皮泳衣(快皮),是仿照鲨鱼皮的结构制作的高科技材料泳衣,穿上它能让人在水中游得更快。那么它是怎么被研发出来的呢?学者发现,鲨鱼皮的构造能够有效地降低流体阻力,所以鲨鱼的游速非常快。目前,各国学者仍在研究鲨鱼皮的构造,本文简单介绍鲨鱼皮的盾鳞在流体力学方面的研究。 岛津制作所参与了东京工业大学联合日本国立博物馆对《降低流体阻力的课题》的研究。以下为研究内容的简介: 研究目的验证鲨鱼身体各个部位盾鳞的表面小波纹结构是否能有效降低流体阻力。 试验方法★ 对大白鲨盾鳞采集测量数据★ 利用采集的数据建模★ 利用建模数据,通过逆向工程制作实验用真实模型★ 在流动水槽中使用制作的模型测量流体的阻力 工业CT主要应用于第一步。以下就本研究的数据采集和试验结论进行介绍。 数据采集本次研究对象外观图:鲨鱼体表的盾鳞,如图1所示。 图1 鲨鱼盾鳞的SEM图像 本课题的适应性★ 取材的盾鳞在结构上的相异不妨碍身体的变形★ 各种承受外力的可活动盾鳞的结构均可实现降低阻力的功能。 验证前的设问★ 鲨鱼皮上的盾鳞是否真的能够有效降低阻力?★ 盾鳞的形状和小波纹的间隔是否会阻挡局部液体的流动? 制样首先,从大白鲨鱼身的5个不同部位各取1块表皮,使用微焦点CT SMX-100CT 对其进行扫描,采集数据并重建图像。如图2所示。 图2 上排图片:盾鳞的CT图像(VR)下图:取样部位 其中,对所取盾鳞部位的定义,如图3所示。 图3 使用三坐标扫描的鲨鱼全身图(总长3.16m) (中间步骤省略)试验的基本原理如下:小波纹形状的评价方法:点参数S+uτ:摩擦系数 ν:海水动态粘度系数 ρ:海水的密度 图4 图5 小波纹结构:S+=5~25时,有降低阻力的作用S+=15~20时,降低阻力的效果达到最大(Dean,2010) 利用模型测量的试验结果如下★ 设定大白鲨的游泳速度为2【m/S】、6.7【m/S】(Watanabe et al .,2019)对小波纹间隔进行测量的结果,如图6 图6 对小波纹间隔测量的结果 测量可知,身体部分小波纹间隔:80~100μm;胸鳍或尾鳍的小波纹间隔:50~80μm。★ 当大白鲨以2【m/S】的速度在岛屿之间移动时的S+值如图7 图7 2【m/S】的速度时点参数S+的计算结果 ★ 当大白鲨以6.7【m/S】的速度进行捕食时的S+值如图8 图8 6.7【m/S】的速度时点参数S+的计算结果 (中间过程省略) 本试验的结论★ 大白鲨盾鳞的小波纹的间隔显示其有降低阻力的效果与2D小波纹的理论相比,所有部位的小波纹都有降低抵抗的效果★ 当大白鲨以高速游泳进行捕食时,降低阻力的效果可能达到最大★ 局部的流动显示表面存在小波纹间隔的原因像尾鳍等盾鳞间隔较小的部位,表面小波纹也有降低阻力的效果 本试验的后继课题★ 各部位盾鳞的形状是否与身体变形相对应★ 研究各种承受外力的可活动盾鳞的结构对降低阻力的效果 岛津工业CT助力流体阻力研究岛津微焦点CT inspeXio SMX-100CT Plus
  • 大连理工大学突破等离子体工艺腔室仿真软件,助力半导体关键设备研发
    超大规模集成电路(ULSI)产业直接关系到国家的经济发展、信息安全和国防建设,是衡量一个国家综合实力的重要标志之一。在半导体芯片制备过程中,约有三分之一的工序要使用等离子体技术,因此配备等离子体工艺腔室的材料刻蚀和薄膜沉积设备是ULSI制造工艺的核心。目前,半导体工艺中最常用的两种等离子体源是CCP(容性耦合等离子体)和ICP(感应耦合等离子体)。等离子体工艺腔室制造过程极为复杂,不仅涉及精密机械加工技术,还要统筹考虑电源、气体、材料等外部参数的优化,以及与晶圆处理工艺的兼容性。如果采用传统的“实验试错法”,不仅成本巨大,而且延长了设备的研发周期,将严重制约我国ULSI产业的快速发展。因此,采用建模仿真与实验诊断相结合的方式、为等离子体工艺腔室的研发与优化提供方案,成为一种必然趋势。等离子体放电过程是极其复杂的,受到多种外界参数的控制,如电源功率与频率、气体成分与压强、腔室尺寸及材料属性等。此外,等离子体系统还包含了多空间尺度和多时间尺度的变化,以及多物理化学场的耦合过程。例如等离子体、鞘层、表面微槽等空间特征尺度相差10个量级;电磁场、带电粒子、中性气体及化学反应等时间特征尺度相差9个量级。如此复杂的等离子体工艺环境,给物理建模和数值仿真都带来了巨大挑战。物理学院PSEG团队在王友年教授的带领下,自2005年开始,历经近二十年时间,在国内率先研发出具有自主知识产权的等离子体工艺腔室仿真软件——MAPS(Multi-Physics Analysis of Plasma Sources)。通过采用物理建模、数值仿真与实验诊断相结合的方法,解决了制约等离子体工艺腔室设计和制造中的一些关键技术难题,为我国研发具有自主知识产权的等离子体工艺腔室提供了技术支撑。MAPS是一款专门面向等离子体工艺腔室的数值模拟软件平台,可以同时为等离子体工艺腔室的参数设计和表面处理工艺(材料刻蚀和薄膜沉积)的结果预测提供模拟服务。基于不同的等离子体模型,MAPS包含不同的数值模拟方法,如粒子/蒙特卡洛碰撞模拟方法、流体力学模拟方法、流体力学/蒙特卡洛碰撞混合模拟方法、整体模型模拟方法等。软件平台包含输入部分、输出部分以及七大模块,分别是等离子体模块、中性气体模块、电磁模块、鞘层模块、化学反应模块、表面模块及实验验证模块。此外,PSEG团队研制了结构可变的大面积、多功能等离子体实验平台和多套CCP和ICP放电平台,并自主研发了射频磁探针、微波发卡探针、光探针、吸收光谱诊断系统、布拉格光栅测温系统、悬浮双探针等诊断工具和集成了商用的Langmuir探针、质谱仪、离子能量分析仪、光谱仪、ICCD及光致解离负离子诊断系统等。这些诊断手段为等离子体源多参数诊断提供条件。大量研究表明,MAPS的模拟结果与实验测量结果在量级和变化趋势上达到一致,证明了MAPS仿真软件的可靠性。近期,针对工业中常用的CCP源,MAPS仿真软件提供了一种新的快速仿真算法:基于多时间步长、泊松方程的半隐式修正、超松弛迭代等,可以将模拟速度提高几十倍。此外,针对ICP源,PSEG团队也建立了一种新的双极扩散近似模型,可以对带有射频偏压的感性耦合放电过程进行仿真。该方法不仅模拟速度快,还适用于低气压放电。MAPS仿真软件具有外界控制参数多、耦合物理场多、数值求解器多、数值仿真模型多等优势,能够对ICP刻蚀机、CCP刻蚀机、PECVD(等离子体增强化学气相沉积)和PVD(物理气相沉积)工艺腔室进行仿真,支持对优化工艺过程参数的进一步探索,受到了国内的多家半导体设备制造企业的青睐。近十年中,MAPS仿真软件已分别为北方华创、中微半导体设备(上海)、拓荆科技、苏州迈为、武汉长江存储及理想能源设备(上海)等多家企业提供仿真服务。未来,PSEG团队将继续专注于对MAPS仿真软件的完善和升级,希望可以为半导体、光伏及平板显示等产业的创新与发展注入源源不断的强劲动力。
  • 郑哲敏:爆炸力学家的家国情怀
    八十七岁的郑哲敏最令人难忘和喜欢的是他的笑容,笑容中透着的那份孩童般的天真和机灵很容易让人忘记他是当今中国力学界德高望重的泰斗,郑哲敏是著名的力学家,同时是三院院士:中国科学院院士、中国工程院院士及美国国家工程科学院外籍院士,他曾任中国科学院力学研究所所长、中国力学学会理事长等职。  他身材瘦小,行动灵活,思维敏捷,说起许多往事,总是和蔼地笑着,并带着几分孩子气地手舞足蹈。在他的身上,有许多同时代科学家的共同烙印:聪颖好学,名校出身,师从名师,游学西方,归国报效,成就斐然……但对于这一切,他本人只是淡淡地说,“都是机缘和运气。”直到与他深入地交谈了两个多小时之后,记者才慢慢地了解和读懂了些许老人阳光笑容和“一蓑烟雨任平生”的淡泊背后,是他面对命运时浪漫的天性和对家国始终放不下的情怀。  遵父命,不经商  在郑哲敏的人生中,父亲是第一个对他影响深刻的人。  父亲郑章斐出生在浙江宁波的农村,自幼家贫,念书不多,但聪敏勤奋,16岁时到上海打拼,从学徒做起,最终成为著名钟表品牌“亨得利”的合伙人,分号遍布全国多地,还说得一口流利的英文。  郑哲敏于1924年出生在山东济南,是家中次子。他幼时顽皮,心思不在读书上,喜欢搞恶作剧,甚至仅仅因为对父亲店铺里一个男伙计女性化的打扮不满,就发动弟弟妹妹搞起了“小游行”。郑哲敏终生难忘,8岁那年,父亲对他说,经商让人看不起,以后不要走做生意这条路,要好好读书。在郑哲敏的印象中,父亲没有一般商人的恶习,他正直良善,崇尚文化,决心不在子女中培养一个商业接班人,不娶一个姨太太,朋友也多是医生或大学教授。在家庭的影响下,郑哲敏与家中兄妹也都一生刚正不阿,一心向学。  尽管郑哲敏成长在兵荒马乱的年代,少年时又心脏不好,他的求学经历多次因战乱或生病中断,但因为父亲对子女教育的重视,所以学业却从未荒废。即使在休学期间,父亲也为郑哲敏请来家庭教师,给他补课 此外还带他到全国多地旅游,使他开阔眼界 给他买《曾国藩家书》,教他学会做人做事的道理 带他大声朗读英语,使他后来渐渐能够使用原版英文书,自学数学、物理等课程。郑哲敏说,这些点滴的往事,影响了他一生,养成了他喜欢自学、不喜求问于人的习惯。  1943年,他以优异的成绩同时被西南联合大学(抗战期间国立清华大学、国立北京大学和私立南开大学在昆明合办的大学)和国立中央大学录取,因哥哥郑维敏已在此前一年考入西南联大,郑哲敏也毫不犹豫地选择了西南联大,和他从小敬佩的哥哥同样进入了工学院电机系。     进名校,遇名师  因家境富庶,当年郑哲敏是坐着飞机去昆明上大学的。然而,1943年至1946年在西南联大读书的三年里,学习和生活条件却很艰苦。课堂就设在茅草房里,他有机会见到梅贻琦、沈从文、闻一多等名教授,他们简朴的生活让他印象深刻。  郑哲敏至今印象最深的是教授们教学时的一丝不苟。作为低年级生,他与那些名教授近距离接触的机会并不多,但是,通过听他们的报告,以及整个学校大环境的耳濡目染,他渐渐隐约感到“学术上要有追求,做人要有追求”。  同样使他记忆犹新的还有学校里浓厚的民主气氛。持不同政见的学生们经常辩论,而郑哲敏属于“中间派”。他也开始思考国家前途,并逐渐意识到当时社会的许多问题恐怕根源于体制问题。但他生性淡泊名利,很多事都是想想就放一边, “政治太危险”,还是学习要紧。在大学时代,和很多这个年龄的青年一样,他开始思考“人为什么活着”这样的哲学问题,还特意到图书馆借来哲学书籍寻找“答案”,他最后的结论是:“人终归是要死的,一个人活着的价值,还是要做一些事,为社会做点贡献。”  因为觉得和哥哥学不同专业,能对国家有更大贡献,郑哲敏从电机系转到了机械系。中学时郑哲敏的理想是当飞行员或工程师,前者可以在前线抗战,后者可以建设国家。然而,最终他还是走向“力学”这条理论研究的道路,因为他遇到了第二个对他影响深远的人——著名物理学家钱伟长。  1946年,抗战胜利后,北大、清华、南开三校迁回原址,郑哲敏所在的工学院回到北京的清华园。同年,钱伟长从美国回国到清华大学任教,在他的课上,大四的郑哲敏首次接触到弹性力学、流体力学等近代力学理论,钱伟长严密而生动的理论分析引起了郑哲敏的极大兴趣。钱伟长也很赏识这个聪明的年轻人,常叫他到家里吃饭。郑哲敏毕业后留校为钱伟长当了一年助教,还见到了回国探亲时到清华演讲并在钱伟长家小住的钱学森。  多年后,郑哲敏回忆道,钱伟长对他的重要影响,一是使他从此确定了研究力学的道路,二是钱伟长重视数学和物理等基础学科,对他影响很大 三是钱伟长是当时有名的“进步教授”,积极参与爱国学生运动,还常跟学生讲对美国社会的认识,认为美国“虽有很多科学创造,但都不能为人民所用。”  1948年,经过清华大学、北京市、华北地区及全国等四级选拔,同时在梅贻琦、钱伟长、李辑祥等人的推荐下,郑哲敏在众竞争者中脱颖而出,成为全国唯一的“国际扶轮社国际奖学金”获得者,前往美国加州理工学院留学。  国家需要什么,就做什么  美国加州理工学院是世界最负盛名的理工学院之一,培养了多名诺贝尔奖获得者,中国的多位著名科学家都先后在这里留学深造过。在这里,郑哲敏用一年时间获得硕士学位后,跟随年长他13岁、当时已誉满全球、即使在美国社会也家喻户晓的钱学森攻读博士学位。钱学森也因此成为他人生路上第三位影响深远的导师。  在加州理工学院,郑哲敏有机会聆听许多世界著名学者的课程或报告,尤其受钱学森所代表的近代应用力学学派影响很深:着眼重大的实际问题,强调严格推理、表述清晰、创新理论,进而开辟新的技术和工业,这成为郑哲敏后来一生坚持的研究方向和治学风格。  出国留学,是为了归国报效,郑哲敏“从没想过不回国”。然而,新中国成立后,美国留学生归国集体受阻,郑哲敏毕业后不得已继续留在美国加州理工学院当了两年助教。尽管美国人很友好,但他仍然感到一些微笑面孔背后的歧视,“似乎与你交往是对你的施舍”,他感到自己像一叶浮萍,扎不下根来。  1955年,郑哲敏与钱学森师生俩终于相继回国。郑哲敏回国前夕,钱学森特地跟他谈心,告诉他回国不一定能做高精尖的研究:“一直在美国,也不知道国内科研水平如何,只能是国家需要什么我们就做什么。”在此后的50多年里,郑哲敏的科研人生,始终与钱学森如影随形,也一直在践行着钱学森的这番话。  国内生活条件的确不如美国,但是郑哲敏“从来没觉得苦”。他所看重的是,街上的社会秩序不乱了,物价不再像旧社会那样一天一个价,买东西不再需要用麻袋装钱了 商店的橱窗里居然也有了一些国产的电子和五金产品。他特意到书店里买了一部《宪法》,认真研究这个他眼前的新社会。  回国后,郑哲敏投奔恩师钱伟长。当时中科院还没有力学所,力学研究室设在数学所,钱伟长专门在研究室设立了新专业——弹性力学组,由郑哲敏担任组长,研究水坝抗震,后来又领导大型水轮机的方案论证。钱学森回国后,带领创建中科院力学所,郑哲敏参加了这项工作并成为该所首批科技人员。  因中苏交恶,苏联专家从中国撤走。1960年,郑哲敏受航天部门委托,研究爆炸成形问题。钱学森预见到一门新学科正在诞生,将其命名为爆炸力学,并将开创这门学科的任务交给了郑哲敏。郑哲敏与他所领导的小组不负所托,成功研究出“爆炸成型模型律与成型机制”,并应用此理论基础成功地生产出高精度的导弹零部件,为中国导弹上天做出重要贡献,同时,相关理论和技术还广泛应用于其它国防和民用领域。4年后,在大量实验和计算分析的基础上,郑哲敏独立地与国外同行同时提出了一种新的力学模型——流体弹塑性体模型,为中国首次地下核试验的当量预报做出了重要贡献,并为爆炸力学学科建立奠定了理论基础。  文革期间,郑哲敏的研究被迫中断,他被隔离审查过,也到干校劳动过。如今,提起这段往事,他只是呵呵一笑,说:“很多事,我已经都忘了。”  1971年,从干校返回中科院力学所后,郑哲敏继续致力于爆炸力学的研究。经过10年努力,郑哲敏先后解决了穿甲和破甲相似律、破甲机理、穿甲简化理论和射流稳定性等一系列问题,改变了中国常规武器落后状况。此外,他还通过在爆炸力学和固体力学中的科学实践,为国家解决了瓦斯等生产爆炸的力学分析、港口建设中海淤软基处理等一批重大实际问题。  1984年2月,郑哲敏接替钱学森出任力学所第二任所长。虽然他不再担任爆炸力学实验室主任,而是把精力更多地放在了力学学科及相关科学的规划工作中,但还是会经常对爆炸力学的一些具体工作进行理论指导。    科研需要耐心  至今,87岁的郑哲敏依然每天会到中科院力学所上班。在记者专访的两个多小时里,仍不时有前来拜访或请教的客人。  尽管在旁人看来,郑哲敏已是了不起的享誉海内外的大科学家,但他本人却从不以为然。他说,自己有一些问题,比如“胸无大志”,从未一门心思地想过要成就些什么 还“不够勤奋”,所以没能做更多的事。  有人曾将郑哲敏与比他年长5岁、在加州理工结识且交情甚笃的学长冯元桢相比较,认为论聪明才智,郑哲敏绝不在冯元桢之下,而当年选择了留在美国的后者,如今已经是赫赫有名的“美国生物力学之父”。  对此,郑哲敏说,人到晚年,他也曾和冯元桢在美国会面,谈起过两个人不同的道路,彼此都会觉得羡慕对方——一个是功成名就,一个是尽忠报国,二者很难比较。  问及当前中国力学的发展水平,郑哲敏认为,虽然有进步,但与国际先进水平相比,仍有不小差距,他认为当下学术界浮躁的风气是制约发展的重要原因。他说:“科研需要耐心。现在,一些人都急于求成,沉不下心来坐冷板凳,这样做出的也最多是中等成果,很难有出色的、有重大影响的成果。有的人急于要实效,不重视基础理论研究,最终会极大地制约整体科技的发展。”  他语重心长地说,当科学家并不像大家看上去的那么美。“科研有突破的那一刻很快乐,但是更多的时候很苦、很枯燥,在一遍又一遍的错误中寻求突破,在反反复复的试验中总结创新。”  一口气说完上面两段话,郑哲敏又笑笑说:“人老了,很多事我也只是想想而已,想过就放下了。当前,我想得最多的事还是,如何培养好我现在唯一的研究生。”  他告诉记者,如今,他业余喜欢散步和听音乐,最喜欢听巴赫和贝多芬。  质朴——“就是老老实实做,不知道就再去学”  “没什么神秘的。”当记者问科研方法心得的时候,郑老认真地说,“就是老老实实做,不知道就再去学”。但同时他也承认,科研有时是很枯燥的,必须耐得住寂寞。“要搞科研就要有吃苦的决心。没有牺牲精神、一往直前的勇气,基础研究也是做不成事的。”  郑老的办公室在力学所的三楼,他现在依然坚持每天上午到办公室坐半天班。“今天起晚了,快7点才起来。”郑老笑说,除了上班、做点家务之外,下午天气好的话还会出去走走。  不过这几天,郑老将下午的精力放在了“上网”,浏览一些学科领域的新资讯。他说,考虑到自己研究力学性质这么多年,希望从更宏观的角度回头看看,有没有什么遗漏的地方。“如果哪天有什么想法,就去找老白(白以龙院士)聊聊。”  当后来提到本文开头的那个“奖金”的问题时,记者才明白了郑老为什么热衷于“上网”背后的原因。他说,奖金“肯定不能撒开随便用”。所以,他最近在查文献,“希望能有更多人参与进来。能起点作用就起点。”  期望——年轻人“太苦”,要正确引导  如今,年近90的郑老近年来依然工作在科研一线,除了继续学科领域内的研究外,还关注能源战略安全等重大问题,当国家重大工程遇到挫折时,郑老也会挺身而出。  “郑老是我们所多年的优秀党员,科技界的楷模。”力学所党委书记乔均录自豪地说,八十多岁的郑老有次身体不舒服住院输液,都不耽误他把研究生叫到医院里给他们辅导论文。  郑老生活简朴,一心向学,性格中透露着难能可贵的“纯粹”。在他的观念中,科研人员是不会发财的,能有个“体面的生活”就满足了。  “现在的年轻人确实压力比较大。”不过,他倒不主张用物质奖励去刺激他们,“吊他们的胃口”。“这会把人搞得非常‘烦躁’,一天到晚操心。就像无头苍蝇似的,不能想大事,不能想远的事。”在郑老看来,这种状态实在是“太苦”了。  “当然,这要从政策上来引导。”他寄语青年科研人员“要看得远一点”,不要为一时的得失计较太多。“文革时‘赶时髦’的都吃亏了,所以做点实事,或许当前会吃亏,但心情会平衡一点。”
  • 李政道:1957年诺贝尔物理学奖获得者
    李政道,江苏苏州人,父亲李骏康是金陵大学农化系首届毕业生。曾就读于东吴大学(苏州大学)附中、江西联合中学等校。因抗战,中学未毕业。1943年因以同等学历考入迁至贵州的浙江大学物理系,由此走上物理学之路,师从束星北、王淦昌等教授。  1944年因日军入侵贵州,时在贵州的浙江大学被迫停学。  1945年他转学到时在昆明的西南联合大学就读二年级,毛遂自荐,找到当时的北京大学物理系教授吴大猷。  1946年经吴大猷教授推荐赴美进入芝加哥大学,师从诺贝尔物理学奖获得者、物理学大师费米教授。  1950年获得博士学位之后,从事流体力学的湍流、统计物理的相变以及凝聚态物理的极化子的研究。  1953年,任哥伦比亚大学助理教授,主要从事粒子物理和场论领域的研究。三年后,29岁的李政道成为哥伦比亚大学二百多年历史上最年轻的正教授。他开辟了弱作用中的对称破缺、高能中微子物理以及相对论性重离子对撞物理等科学研究领域。  1984年他获得全校级教授(UniversityProfessor)这一最高职称,至今仍是哥伦比亚大学在科学研究上最活跃的教授之一。现在,他的兴趣转向高温超导波色子特性、中微子映射矩阵以及解薛定谔方程的新途径的研究。  李政道为哥伦比亚大学全校级教授,美籍华裔物理学家,诺贝尔物理学奖获得者,因在宇称不守恒、李模型、相对论性重离子碰撞(RHIC)物理、和非拓朴孤立子场论等领域的贡献闻名。1957年,他31岁时与杨振宁一起,因发现弱作用中宇称不守恒而获得诺贝尔物理学奖。他们的这项发现,由吴健雄的实验证实。20世纪60年代后期提出了场代数理论。70年代初期研究了CP自发破缺的问题,发现和研究了非拓扑性孤立子,并建立了强子结构的孤立子袋模型理论。李政道和杨振宁是最早获诺贝尔奖的华人。  所得奖项  1957 诺贝尔物理奖  1957 爱因斯坦科学奖  1969 法国国家学院G. Bude奖章  1977 法国国家学院G. Bude奖章  1979 伽利略奖章  1986 意大利最高骑士勋章  1994 和平科学奖  1995 中国国际合作奖  1997 命名3443小行星为李政道星  1997 纽约市科学奖  1999 教皇保罗奖章  1999 意大利政府内政部奖章  2000 纽约科学院奖  2007 日本旭日重光章
  • Fluent多相流模拟技术与应用培训班通知
    p style="text-align: justify text-indent: 2em "多相流反应器广泛存在于能源、资源、环境、冶金、环保等领域,其流体力学以及反应等行为对描绘反应器特征、指导反应器设计及优化、工程放大和运行都具有至关重要的作用。然而,多相流体系是非线性非平衡的复杂系统,对所研究体系进行合理建模与应用一直是众多行业的难点和热点。为了提高对多相流体系的系统认识和计算流体力学软件Fluent在各行业的应用水平,颗粒在线联合中科阜阳战略新材料产业技术研究院分别将于2019年11月14-15日及2019年12月7-8日举办两期“Fluent多相流模拟技术与应用”培训班。/pp style="text-align: justify text-indent: 2em "本次培训旨在通过对前沿的多相流模型、Fluent方法及应用进行全面的讲解,对实战案例深度解析并结合上机实践,帮助学员提高Fluent多相流数值模拟计算技术应用水平、学会利用Fluent软件进行项目应用模拟,有效地解决工作中遇到的实际问题。欢迎广大相关企事业单位科技工作者踊跃报名参加!/pp style="text-align: justify text-indent: 2em "strong一、 主办单位/strongspan style="text-indent: 2em " /span/pp style="text-align: justify text-indent: 2em "颗粒在线/pp style="text-align: justify text-indent: 2em "strong二、 支持单位/strong/pp style="text-align: justify text-indent: 2em "中科阜阳战略新材料产业技术研究院/pp style="text-align: justify text-indent: 2em "strong三、 培训时间地点/strong/pp style="text-align: justify text-indent: 2em "2019年11月14-15日(第一期)· 北京/pp style="text-align: justify text-indent: 2em "2019年12月07-08日(第二期)· 北京/pp style="text-align: justify text-indent: 2em "本培训班分别举办两期,内容相同,学员可自主选择培训时间进行学习。/pp style="text-align: justify text-indent: 2em "strong四、 培训目标/strong/pp style="text-align: justify text-indent: 2em "1. 从多相流概念概述到模型分类和求解的全方位夯实模拟水平,系统梳理基础知识要点;/pp style="text-align: justify text-indent: 2em "2. 充分提高Fluent多相流模拟计算技术应用水平,解决实际模拟问题,加强对多相流模型和算法的理解;/pp style="text-align: justify text-indent: 2em "3. 能够利用Fluent软件进行具体的项目应用,有效地解决科研工作中遇到的实际问题。/pp style="text-align: justify text-indent: 2em "strong五、 培训内容/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/80973849-29e1-4eb6-a3cb-16653e5950a4.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: justify text-indent: 2em "strong六、 培训专家/strong/pp style="text-align: justify text-indent: 2em "培训专家为中科院多相流领域一线专家,拥有多年相关科研及项目经历,授课经验丰富,长期从事多相复杂系统的建模与应用相关工作。精通ICEM、Gambit、 Fluent、IcePak等系列产品。主持多项国家级科研项目和企业合作研发工程项目,拥有丰富的科研及工程技术经验、资深的技术底蕴和专业背景。/pp style="text-align: justify text-indent: 2em "strong七、 培训对象span style="text-indent: 2em " /span/strong/pp style="text-align: justify text-indent: 2em "从事煤燃烧、煤化工、石油化工、污水处理、燃烧与化学反应流、航空航天、石油天然气、化工、环境、生物流体、水利、冶金、建筑及相关学科的数值模拟研发人员,国内各省市大学相关专业的本科生、研究生、老师以及从事相关领域工作的企业单位技术人员和工程师等。/pp style="text-align: justify text-indent: 2em "strong八、 培训费用/strong/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/5d19857e-3b94-42c1-bcad-ecd202305979.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: justify text-indent: 2em "备注:以上费用包含两日午餐,不包含晚餐及住宿费。/pp style="text-align: justify text-indent: 2em "现金、转账、支付宝或支票支付均可,不支持刷卡支付。/pp style="text-align: justify text-indent: 2em "现金或支票支付可在第一天报到时交费,转账或支付宝交费,请联系会务组索取账号信息;如需发票,请提前告知,并登录官网下载报名回执表填写后发送至邮箱service@kelionline.com。/pp style="text-align: justify text-indent: 2em "strong九、 报名方式/strong/pp style="text-align: justify text-indent: 2em "登录培训官网a href="http://www.kelionline.com/topic/fluent" _src="http://www.kelionline.com/topic/fluent"www.kelionline.com/topic/fluent/a,span style="text-indent: 2em "或扫描以下二维码直接在线报名/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201910/uepic/97b5717c-5c36-4b4e-9abb-fd025a32b23b.jpg" title="3.jpg" alt="3.jpg"//span/pp style="text-align: justify text-indent: 2em "strong十、特别提醒/strong/pp style="text-align: justify text-indent: 2em "1、学员需自带电脑进行实际案例操作;/pp style="text-align: justify text-indent: 2em "2、为保证学习质量,采用小班制模式授课,每期培训班名额控制在20名以内,报满截止;/pp style="text-align: justify text-indent: 2em "3、报名确认函将于培训前发至您的邮箱,请注意查收。/pp style="text-align: justify text-indent: 2em "strong十一、 会务组联系方式/strong/pp style="text-align: justify text-indent: 2em "联系人: 符老师、 张老师/pp style="text-align: justify text-indent: 2em "电话: 18501191885(微信同号)、 15801214828(微信同号)/pp style="text-align: justify text-indent: 2em "E-mail:service@kelionline.com/p
  • 中科院过程所杨超/张庆华:乳液聚合过程中乳胶粒度分布的测定方法
    在乳液聚合过程中,聚合产物粒度分布的演变过程反映了乳液聚合反应的进行程度,对实验的关键现象、聚合机理以及最终产物的性能均有很大影响。本文综述了乳液聚合过程中粒度分布的测量方法,包括现有的离线(off-line)、半在线(on-line)和在线测量(in-line)方法。对比分析了各种测量方法的原理、分辨率、性能、优缺点等。此外,还探讨了在线测量技术的困难和挑战,并给出了几种原理上可行的发展方向或解决方案。乳液聚合颗粒粒径一般小于500 nm,并且为了满足产品性能需求粒径分布可能会出现多峰,因此对测量方法的分辨率有较高要求;同时为满足生产过程中的实时调控,对粒径分布的测量时间提出更严格要求。为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。离线测量方法需要手动采样等准备工作,它们主要包括(但不限于)光散射技术(例如,动态光散射,DLS)、显微镜技术(例如,扫描电子显微镜,SEM)和分离技术(例如,毛细管流体动力学分级,CHDF)。在所有的粒径分布测量方法中,尽管离线测量技术需要诸如采样等耗时的分析准备工作,其仍是使用最广泛的技术,但它不能实时反映乳胶的粒径分布。电子显微镜测量作为一种典型的离线测量方法,其测量结果是绝对且准确的,因此可以用作参考标准。目前,成熟的工业光学显微镜(例如共聚焦光学显微镜)的分辨率可以达到亚微米级(100 nm),其可以在一定的测量范围内代替电子显微镜进行离线粒径分布测量。以DLS为代表的光散射技术是一种相对方便的技术,在离线测量方法中测量时间最短,但不适用于测量多分散性体系。分离技术操作相对简单,适用于几乎所有的多分散体系,但是某些分离测量技术必须使用校准曲线。对于多分散体系,可以先使用分离技术将它们分为几个单分散组,然后再使用DLS技术进行精确测量。由于离线测量方法需要进行手动取样等准备工作,所以其非常耗时;为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。与仅需要一个分析仪器的离线测量方法不同,半在线和在线测量方法通常需要一组设备来构成分析系统。半在线测量是将离线测量仪器连接到反应器以完成自动采样,稀释和其他准备工作。“自动连续在线监测聚合反应(ACOMP)”是一个具有代表性的半在线测量粒径分布系统。半在线测量在一定程度上缩短了测量时间,但仍然无法避免采样和其他准备步骤。在线测量技术不进行采样,其直接使用光学原理等技术来实时监测反应器中的乳液聚合过程以获取粒度分布。由于在线测量技术避免采样等耗时的准备工作,其测量时间进一步缩短;然而,乳液聚合过程中粒度分布的在线测量并不是一种“完善的”测量技术。目前,仅有少数报道尝试探索这种方法用于特定的乳液聚合体系,并且现在还没有成熟的商业应用工具。主要原因是现有仪器缺乏测量精度,无法在高浓度的多相系统中处理来自不同粒子相的重叠信号,或无法捕获运动粒子的清晰图像。论文给出了乳液聚合颗粒粒径分布在线测量的几种可行的发展方向和解决方案,如:(1)直接使用光学原理进行实时测量粒度分布,例如光散射技术。光源发出的激光直接与反应器中的聚合物颗粒相互作用,然后检测器接收光信号并完成光电转换,最后使用特定的算法对光电信号进行分析,以获得粒度分布。该方法的困难在于光散射技术的原理是基于单散射理论,因此对粒子浓度有特殊要求。如果使用此技术实时监控聚合物颗粒的粒度分布,则需修改反应配方以降低聚合物颗粒的浓度,以便消除来自不同颗粒的重叠信号。(2)使用光学显微镜对反应器中的胶乳直接成像并用高速相机拍摄,然后使用图像分析技术进行实时分析,从而实现在线监测粒度分布的演变。电子显微镜分析过程中样品不能含水,因此使用电子显微镜基本上不可能进行在线测量。高分辨率光学显微镜(例如共聚焦显微镜)对样品的要求比电子显微镜要少,因此有可能实现在线测量粒度分布。该测量方案的难点在于高速相机是否可以快速捕获高速移动的纳米级聚合物颗粒。同时,该方案的局限性在于它只能实时监测焦平面中的聚合物颗粒,并且对反应器有很高的要求(例如高透光率)。(3)尽管一些学者认为在线测量应该避免经验模型,但是软传感器技术是一种很有前景的在线测量技术。然而,这种方法的困难在于缺乏精确的在线测量设备去验证模型。一种可行的方法是全面且多方位研究特定乳液聚合反应体系以获得足够的粒度分布数据,然后与大数据或人工智能技术相结合,以预测或计算在新的工作条件下的粒度分布。作者及团队介绍张庆华,男,1980年12月生,中国科学院过程工程研究所副研究员、硕士生导师,中国科学院大学授课教师,中国化工学会过程强化委员会青年委员,中国化工学会混合与搅拌专业委员会委员。2005-2009年中国科学院过程工程研究所攻读博士学位,2019.2—2020.2美国Iowa State University访问学者(美国李氏基金资助),合作导师为国际著名多相流专家Rodney O Fox教授。主持或参加多项国家自然科学基金、863项目、国家重点研发计划等项目。发表论文30多篇,申请专利10余项,撰写专著一章(多相反应器模拟、放大和过程强化,第三章)。长期从事聚合反应工程、多相流的在线测量和数值模拟等研究工作。 杨超,男,1971年8月生,江苏睢宁人。研究员、博士生导师。2010年获国家杰出青年科学基金。科技部“中青年科技创新领军人才”。中国科学院绿色过程与工程重点实验室常务副主任、绿色化学工程研究部主任。1993年南京化工学院化工系毕业后硕博连读,1998年获博士学位(导师为时钧院士和徐南平院士)。1998—2000年中国科学院化工冶金研究所博士后,在陈家镛院士和毛在砂研究员指导下,从事多相过程数值模拟和反应工程研究。2005—2006年美国康奈尔大学高访(美国李氏基金资助)。2019年获国家科技进步二等奖,2016年获何梁何利基金科学与技术创新奖,2015年获国家技术发明二等奖,2014年获中国工程院光华工程科技奖-青年奖,2013年获中国化学会-巴斯夫公司青年知识创新奖,2012年获日本化学工学会亚洲研究奖(SCEJ Asia Research Award),2011年获中国青年科技奖、中国科学院青年科学家奖,2010年获茅以升科学技术奖——北京青年科技奖,2009年获国家自然科学二等奖。2012年被评为全国优秀科技工作者,2015年获评中国科学院先进工作者。已发表SCI论文150余篇,出版英文专著1本,申请专利60余件,计算软件著作权29项。 研究团队多年以来一直应用多相流体力学、传递原理、反应工程等多学科方法,依据机理及验证实验、理论分析、数学模型和数值计算方法,开展多相搅拌反应器、聚合反应器和结晶反应器等的流动、传递、反应和传热的实验和数值模拟相关研究,在计算流体力学和计算传递学新方法、多相传递和反应耦合数学模型和数值模拟、多相体系的测量方法以及搅拌釜反应器内新型桨和内构件设计等方面有丰富的工作积累。获得2009 年的国家自然科学二等奖、2015年的国家技术发明二等奖和2019年国家科技进步二等奖。
  • 陈十一、谢晓亮获2017年度“求是奖杰出科学家”
    p  9月16日晚,杨振宁、孙家栋、韩启德、施一公等知名科学家云集在复旦大学举办的“2017年度求是奖颁奖典礼”。研究湍流的流体力学家陈十一和应用单细胞基因组测序技术使几百名新生儿免除遗传疾病困扰的生物物理化学家谢晓亮,获得“求是杰出科学家奖”。/pp  “2017年度求是奖颁奖典礼”由香港求是科技基金会主办、复旦大学承办。求是基金会主席查懋声先生以及顾问杨振宁、孙家栋、韩启德、施一公,复旦大学校领导、求是奖评委、往届求是奖获得者以及复旦大学师生代表等约400人参加了典礼。颁奖典礼由复旦大学校长许宁生教授和查懋声主席致辞开始,至基金会顾问杨振宁先生演讲落幕,揭晓2017年度“求是杰出科学家奖”、“求是科技成就集体奖”和“求是杰出青年学者奖”花落谁家。/pp  2017年度“求是杰出科学家奖”授予南方科技大学陈十一教授和哈佛大学及北京大学谢晓亮教授,分别由孙家栋教授、施一公教授上台颁奖,并介绍两位获奖人在其研究领域中取得的杰出贡献。/pp  南方科技大学陈十一教授作为流体力学家,在湍流研究上做出了一系列贡献。90年代初打破了直接数值模拟中雷诺数的世界记录,相关研究成果被国际湍流界广泛引用 首次精确计算出湍流的标度指数和对流扩散过程的标度指数 提出了湍流中的映射封闭理论,成为燃烧和湍流扩散的重要理论与数值计算基础 提出了自然界中大尺度旋涡形成机理,解释了能量反积蓄 提出了湍流中的约束大涡模拟模型,得到了阻力和分离流的精准计算结果。陈十一教授亦是国际格子Boltzmann数值方法的创始人之一,他和其合作者在1992发表的文章奠定了本领域的基础,此方法已被广泛应用于各类工程问题中,包括能源与环境工程,传热传质,燃烧与多相流动,地下渗流与电磁场模拟等。陈十一教授和他的团队利用多尺度混合算法精确计算了有奇异性的流动现象,此项研究在微纳米流体流动、燃料电池、生物流动系统等方面得到了广泛应用。/pp  另一位获奖人谢晓亮教授作为生物物理化学家,单分子生物物理化学、相干拉曼散射显微成像技术、单细胞基因组学的开拓者,在相关新兴交叉学科做出了创造性贡献。他不仅是生物物理化学基础科学研究的国际领军人物,近年来亦大力推动了无标记光学成像技术和新兴单细胞基因组测序技术在医学中的应用。特别是在中国,谢晓亮团队的工作已使得几百个新生儿成功地避免了他们父母的单基因遗传疾病,其课题组目前在研究方向包含理论科学研究领域、技术研究领域、医学研究领域三个领域。/pp  2017年度“求是科技成就集体奖”则授予水稻分子遗传学团队,由韩启德教授为其颁奖。水稻分子遗传学团队由中国科学院遗传与发育生物学研究所李家洋课题组、中国科学院上海生命科学研究院韩斌课题组和中国农业科学院中国水稻研究所钱前课题组在上世纪九十年代组建,面向国家粮食安全重大需求,其团队始终瞄准水稻生物学最前沿的重大科学问题,经过近二十年的密切合作,综合运用遗传学、基因组学、分子生物学、生物化学、细胞生物学、作物育种学等方法对水稻产量与品质相关的重要农艺性状的调控机理进行了系统深入的研究,在水稻资源发掘利用、重要农艺性状的全基因组关联分析以及作物分子育种等方面形成了比较完善的理论体系,引领我国水稻功能基因研究实现了对世界先进水平从跟踪到赶超的跨越式发展,完成了多项世界领先的开创性研究成果。该研究集体还十分注重基础理论研究与实际应用相结合,率先提出并实践“作物分子设计育种”理念,切实将理论研究成果应用于水稻育种实践中,开拓性地建立了水稻分子设计育种技术体系,示范性育成一系列高产优质的水稻新品种。/pp  2017年度“求是杰出青年学者奖”分别授予北京大学刘毅、林一瀚、杨玉超,清华大学单芃,复旦大学王熠华、包文中,中国科学技术大学孙林峰、赵纯,华中科技大学甘泉,中国医学科学院李平平等十位青年学者。/pp  1995至2001年间,基金会设立了“求是杰出青年学者奖”,为一批优秀青年学者安心科研、迅速成长发挥了雪中送炭的作用。为支持国内高校与海外机构竞争吸引最顶尖的人才,以及扶持刚开展独立科研事业之优秀青年学者,求是科技基金会于2013年启动新的“求是杰出青年学者奖”项目,致力为中国未来20年的科技事业发展培养领袖之才。新的“求是杰出青年学者奖”聚焦于自然科学或工程技术领域展现巨大潜力的青年学者,结合学校为引进人才提供的配套支持条件。在评奖机制上,新的“求是杰出青年学者奖”也引进了与国际水平一致的做法。/pp  自2013年开始,一年一度的求是颁奖典礼不仅是一场科学的盛会,同时也是求是之家成员聚会的重要时刻。基金会希望一是通过对杰出科学家的颁奖,向社会特别是青年学生倡导科学精神 二是通过颁奖活动加强学者之间的思想交流,并有效地将这种思想交流传播到社会。/pp  香港求是科技基金会1994年由著名实业家査济民先生创立,秉持“雪中送炭”的宗旨,积极坚持和倡导“科学精神,人文情怀”的核心理念。1994至2017年,共有310位在数学、物理、化学、生物医学及工程信息等科技领域中有杰出成就的中国科学家获得基金会奖励。其中“求是终身成就奖”1位,“杰出科学家奖”28位、“杰出青年学者奖”169位、以及 “杰出科技成就集体奖” 112位(涉及13个重大科研项目,如青蒿素、人工合成牛胰岛素、塔里木盆地沙漠治理、铁基超导等)。/p
  • 新疆理化所在空气过滤材料的设计及优化研究中获进展
    燃气轮机是高效清洁的能源转换装置,被誉为工业装备制造业“皇冠上的明珠”。燃气轮机通过将干燥洁净的空气与燃油混合以产生能量,其进气过滤系统的主要功能是保护燃气轮机免受空气中颗粒物的污染,以保证燃气轮机发电机组安全可靠运行。纤维类材料具有比表面积大、孔径分布可控、体积蓬松、价格低廉等特点,是空气过滤领域的主流产品。针对复杂环境下的空气过滤需求,玄武岩纤维因优异稳定性,成为新型高效空气过滤材料。然而,由于纤维材料内部微观结构的复杂性以及过滤参数(颗粒直径分布、气流速度等)耦合作用,过滤效率和压降存在“trade-off”权衡关系,对过滤材料的设计和优化带来了挑战。   近期,中国科学院新疆理化技术研究所提出了一种基于计算流体力学(CFD)模拟与响应曲面法(RSM)相结合的纤维过滤过程预测与优化方法,对纤维过滤过程进行了可视化研究。该工作通过数字重构纤维过滤材料的三维微尺度模型,以CFD-DPM模型预测纤维介质的过滤性能,追踪粒子在滤材中的运动轨迹和特征流场,分析拦截、碰撞和布朗运动耦合过滤机理对粒子捕获的影响规律。进一步,该研究通过建立过滤性能与过滤参数之间的映射关系,结合RSM实现对过滤参数的多目标优化。RSM分析发现,过滤参数对过滤效率的影响存在耦合效应,利用过滤原理与Stk数和Pe数变化详细解释了其耦合效应。而压降随固体体积分数和气流速度的增大而增大,但不受颗粒直径的影响。综上,本研究通过CFD模拟与RSM优化相结合,阐明过滤参数之间的相互作用关系,这为高效筛选过滤材料和滤材设计与优化开辟了新途径。   近日,相关研究成果近日发表在《化学工程科学》(Chemical Engineering Science)上。新疆理化所为该工作的第一完成单位。研究工作得到新疆维吾尔自治区自然科学基金和新疆天山英才-科技创新领军人才项目等的支持。基于CFD-RSM方法的纤维过滤介质设计及优化流程
  • 招聘|中国科学院大学环境材料与污染控制技术研究中心特别研究助理岗位人才招聘
    一、中心简介 中国科学院大学前身是中国科学院研究生院,成立于1978年,是经党中央国务院批准创办的第一所研究生院,培养了新中国第一个理学博士、第一个工学博士、第一个女博士、第一个双学位博士。 环境材料与污染控制技术研究中心为学校下属独立二级科研单位,同时承担“挥发性有机物污染控制材料与技术国家工程实验室”的建设任务和科研工作。中心现有1000多平米的独立实验室,装备顺磁、XRD、LC-MS、GC-MS、拉曼光谱、扫描电镜、离轴积分腔光谱、高灵敏飞行时间质谱等先进的分析检测设备。中心在工业污染物(如挥发性有机物、酸性气体和温室气体等)排放、转化反应机理、污染控制材料、减排控制技术、分析监测技术等方面取得一系列重要研究成果,并开展实际应用。在JACS, AFM, EST, CC., JPC, APC, JMC, JHM, AC等主流学术期刊上发表SCI论文300多篇,授权专利40多件。二、招聘方向与专业根据中心2022年特别研究助理招聘工作安排,中心现面向海内外诚聘基础扎实、创新能力强的优秀青年,从事膜分离技术研发、面向碳交易的碳监测与碳核算相关工作(详见岗位需求)。涉及专业包括:环境、化学、材料、分析检测、能源、仪器、大气科学、数学等相关专业。三、任职要求、薪资待遇及职业发展(一) 任职要求1. 恪守科研道德和学术规范,学风正派,诚实守信;2. 具有优秀的创新研究成果,以第一作者或通讯作者在本学科一流学术期刊发表过高水平学术论文,科技创新潜质突出;3. 新进站从事博士后研究人员,申请时年龄一般不超过33周岁,须将人事关系转入博士后设站单位,并保证全脱产从事博士后研究工作。4. 已在站优秀博士后人员也可以提交申请。(二) 薪酬待遇及职业发展1. 特别研究助理税前基本年薪不低于25万元,另有住房补贴7.2万元/年。博士后合作导师根据申请人综合情况可给予额外配套资助。2. 符合条件人员可申请“中国科学院特别研究助理项目”,入选后税前基本年薪不低于40万元,另有住房补贴7.2万元/年。博士后合作导师根据申请人综合情况可给予额外配套资助。3.在站期间可解决本人的北京市流动户口(人事关系在国科大的集体户口),出站留校工作后可协调解决本人及配偶、子女的北京市户口。4.特别研究助理合同按博士后人员按在站时间确定,一般为2~3年,进出站管理按照国家有关规定执行。5. 符合学校长聘教职申请条件的特别研究助理,可按学校长聘教职文件要求,申报相应长聘教轨岗位。四、岗位需求岗位编号岗位名称需求数量岗位职责岗位要求Postdoc-1-1膜分离技术研发1通过膜分离材料技术开展基础与应用研究,针对碳捕集、高纯化学品制造、分离提纯等需求,以开发高端膜材料为目标,利用搭建先进的仪器设备,理性设计亚纳米尺度、分子选择性传递通道,以实现气体分子的高效筛分和分离过程强化。1.博士,不限应届生;2.有以下相关工作经验者优先(共价有机框架(COFs), 金属有机框架(MOFs), 多孔芳香骨架(PAFs), 共轭微孔聚合物(CMPs)等多孔有机聚合物膜以及新型混合基质膜材料的设计与制备;膜材料的规模化制备与工业应用)Postdoc-2-1固定污染源碳排放监测技术研发和应用示范1面向碳交易开展固定污染源碳排放持续监测系统搭建和应用示范、设备标定、方法建立、烟道流体力学模拟,以及碳排放量核算等相关工作1.博士,不限应届生;2. 环境、能源动力、工程热物理、分析检测、仪器仪表、计量、机械等相关研究专业;3.有CEMS研发应用,仪器计量标定,流体力学等相关工作经验者优先Postdoc-2-2碳排放综合监测和环境效应研究2开展温室气体等污染物时空分布、演变综合监测、源汇模型分析及排放量反演等研究工作1.博士,不限应届生;2.环境、大气、计算机、数学等相关研究专业;3.有编程(如Fortran、Matlab、Phthon等)和模型(如Flexpart、Name、Wrf-Chem、GEOS-Chem等)功底者优先. 五、申请程序(一)申请材料1. 申请人填写《申请人简况表》(word版1份文件)。2. 身份证明材料。已获得博士学位的申请人须提供有效身份证明、博士学位证书和毕业证书复印件;尚未获得博士学位的应届博士毕业生须提供学生证复印件、博士学位论文答辩决议书复印件或博士论文预答辩通知书等证明材料;留学人员需提交教育部学历学位认证书复印件;(电子版1份,整合至一个PDF文件)3. 学术及科研成果材料。代表申请人最高学术水平和科研成果的论文、专著、专利或奖励等。其中:论文提供全文,专著提供目录和摘要,专利或奖励提供证书复印件(电子版1份,整合至一个PDF文件);4. 提供博士导师和本领域专家的推荐信(不少于两封);(二) 申请程序1、请将相关材料在规定的截止日期前发送zhangsy@ucas.ac.cn ,以“姓名+应聘特别研究助理+一级学科”命名。不完整的申请材料不予受理。 2、中心审核材料。3、申请人与拟申请的合作导师确认招收意向。4、申请人使用谷歌浏览器登录中国科学院大学招聘网(https://recruit.ucas.ac.cn/#/app/zgkxydx/ucas-recruit/zpwz)填报申请材料并提交。(三) 联系方式联系人:张老师联系电话:010-69672977附件:《申请人简况表》点击下载:申请人简况表.docx 中国科学院大学 环境材料与污染控制技术研究中心 2022年11月15日
  • 前沿、专业、高端|第十届中国微流控高端学术论坛暨第三届国际微流控产业论坛会议第一轮通知
    大会详情一、会议名称第十届中国微流控高端学术论坛暨第三届国际微流控产业论坛二、会议时间2023年9月22-24日(9月22日全天报到)三、会议地点江苏省苏州市,昆山市,昆山皇冠国际会展酒店四、组织机构主办单位:中国科学院大连化学物理研究所、苏州大学协办单位:中国生物物理学会、浙江清华长三角研究院、清华大学智慧医疗研究院承办单位:浙江扬清芯片技术有限公司支持单位:仪器信息网、动脉网、体外诊断网、麦姆斯咨询、桔园平台、中国生物检测监测产业技术创新战略联盟、清华校友总会生命科学与医疗健康专委会、西湖大学工学院先进神经芯片中心、热心肠研究院、零壹人工智能研究院、国科宁波生命与健康产业研究院、中国科学院苏州生物医学工程技术研究所、探针资本、磐霖资本大会主席:林炳承大会执行主席:叶嘉明、张秀莉五、大会专题(一)微纳加工技术:微纳米制造技术在微流控芯片中的应用(新材料、新设计、新工艺);(二)微流体驱动及控制技术:光、电、力、磁场流体驱动新技术;光流控技术、电化学技术、纳米机器人;(三)微流体力学:微纳尺度流动、计算流体力学、流动物理;(四)微流控与生物传感器:化学传感器、纳米生物传感器技术与微流控芯片的集成;识别传感新原理、新元件;光、电、磁信号转化新方法,信号放大新技术等;(五)液滴微流控:微液滴的生成、融合、分裂、筛选、定位与迁移技术新方法新技术及相关应用;液滴PCR技术及应用;(六)器官芯片:器官芯片的发展现状及挑战、流体运动及组织-组织界面动态模型、不同器官微流控芯片面临的问题、3D 打印技术在器官芯片方面的应用;(七)单细胞分析:单细胞分离、培养、分析新方法;单细胞组学分析;(八)微流控在医疗体外诊断中的应用:体外诊断(生化分析、免疫检测、分子诊断等)POCT即时检测、液体活检、药物开发等;(九)微流控新方法、新应用:微流控创新方法在化工合成、药物筛选、环境监测、食品安全的应用;(十)微流控产业化:工程化与产业化经验交流、微流控芯片产品开发中的关键及共性问题、微流控产品展示及推介;本届论坛还将增设“微流控投融资项目路演”专场。六、注册报名(一)报名方式请扫描上方二维码完成线上报名,或填写附件1报名表发送至大会指定邮箱:(二)缴费方式线上转账或现场缴费(三)注册费用说明:食宿统一安排,住宿费和交通费自理。如需进一步了解报名参会、参展与赞助事宜,请咨询会务组。(四)汇款账户信息单位名称:浙江扬清芯片技术有限公司税号:91330109MA2GKD9A9E地址电话:杭州市萧山区萧山经济技术开发区明星路371号2幢17楼1707室,057183697712开户行:中国银行浙江自贸区杭州萧山桥南支行,372775980132注意:汇款时请务必在备注栏注明“姓名+单位+FLOCA2023”,并将汇款凭证发送至floca2023@163.com,邮件主题为“注册缴费确认+姓名+单位”,会议结束后会务组将统一把电子发票发到填报的邮箱。七、会议征稿(一)论文摘要诚挚邀请各位代表投稿会议论文中文摘要(500-1000字左右),摘要集将在大会报到时发放,供大会交流。投稿请用word格式(模板参见附件),请于8月15日前发送至floca2023@163.com,邮件主题、文件名命名为:“论文摘要+投稿人姓名+篇名”;申请口头报告的代表投稿论文的同时请附个人照片及简历(400字以内)。(二)会议墙报为了提高交流效果,鼓励大家进行墙报交流,请自行制作墙报电子版PDF,并于8月15日前发送至floca2023@163.com,邮件主题、文件名命名为:“会议墙报+投稿人姓名+墙报主题”,由组委会统一印刷张贴。八、联系方式报告及参会联系人:蒋悦,15071287112(微信同号)企业参展联系人:陈敏,15925674062(微信同号)会务联系人:张丽丽,15988118609(微信同号)投融资项目联系人:邱波,15011578036(微信同号)赞助及媒体合作联系人:叶嘉明,13738180906(微信同号)大会邮箱:floca2023@163.com大会官网:www.lab-on-chip.com附件1:FLOCA2023报名回执.doc 附件2:FLOCA2023报告摘要模板.docx 会议简介“中国微流控高端学术论坛”由我国微流控芯片领域的著名科学家、微流控芯片领域的推动者、中国科学院大连化学物理研究所林炳承教授发起,至今已连续举办九届,是中国微流控领域顶级的年度学术盛会。2020年11月,首届“国际微流控产业论坛”与“第八届中国微流控高端学术论坛”同期召开,由林炳承教授与浙江清华长三角研究院叶嘉明博士联合发起,旨在进一步凸显微流控芯片产业化在微流控科技创新发展的重要性。2023年9月22-24日,本届“双论坛”将由中国科学院大连化学物理研究所、苏州大学联合主办。“双论坛”立足微流控芯片这一当代极为重要的新兴科学技术平台和国家层面产业转型的潜在战略领域,面向经济主战场、面向人民生命健康、面向世界科技前沿、面向国家重大需求,将促进理、工、医、产业界、投资界等领域的学术交流和产业互动,也将助推微流控技术在医学、生命科学等相关领域的持续深入发展。往届回顾第八届中国微流控高端学术论坛会场(2020年,嘉兴)第九届中国微流控高端学术论坛会场(2022年,杭州)
  • 我国科学家建立力学拉曼光谱技术的理论模型和实验方法
    近日,南京大学化学化工学院徐伟高、谢代前团队与依托中国科学技术大学组建的中科院量子信息与量子科技创新研究院罗毅、复旦大学段赛等展开合作,从样品振子和局域等离激元光腔的光力学耦合作用出发,提出了力学拉曼光谱技术(mechano-Raman spectroscopy, MRS),建立了力学拉曼散射技术的理论模型和实验方法,相关成果以“Direct characterization of shear phonons in layered materials by mechano-Raman spectroscopy”为题于3月31日在线发表在《自然光子学》杂志上[Nature Photonics (2023)]。纳米尺度界面的力学相互作用携带了原子级界面结构、热传导和光电特性等关键信息,但因其电子-声子耦合效应非常有限,人们无法通过经典振动光谱学方法对其进行直接测量。以层状石墨晶体中的超低频剪切声子为例,具有原子层集体性同向运动的声子振动模式蕴含了晶体全局结构和隐藏界面的独特信息,但由于相邻层间的极化率改变量相互抵消而无法产生可探测的电偶极子辐射。如何有效地获取这一类信息,并将其应用于晶体全局结构表征、表界面相互作用和微观机械振子的测量,当前光谱学领域尚未有很好的解决办法。针对以上挑战,研究团队提出力学拉曼散射技术(图1),在入射光(hν0)激发下,等离激元光腔的极化张量受到频率为νmech机械振子的动态调制,分别产生能量等于hν0-νmech的Stokes信号和hν0+νmech的anti-Stokes信号。在层状晶体的MRS实验中,研究团队发现晶格中原子层的集体性运动可以驱动等离激元金属的周期性运动并产生非弹性散射信号。图1: MRS技术的原理与实验方法图2为3-12层石墨晶格振子的MRS信号和定量的力学耦合效应分析结果,晶格振子和等离激元金属的能量传递决定了等离激元金属的有效位移和MRS信号强度。根据MRS理论,MRS信号强度正比于等离激元金属有效位移的平方,这在16层石墨晶格振子的精确定量分析中得到了印证。图2: 不同层数晶格振子的MRS测量与力学耦合效应的定量分析在光学拉曼光谱中,粒子振动态布居数决定了anti-Stokes和Stokes信号的强度比(IaS/IS),并遵从玻色-爱因斯坦分布。相比于光学拉曼过程,MRS具有显著的无热噪声特征,这表现在:(1)IaS/IS值在整个实验温度区间(77-477 K)始终接近常数1;(2)半峰宽不随温度升高而展宽。这一特点使MRS在振动测量具有独特优势(图3)。研究团队还通过一系列复合振子实验验证了MRS的长程传播行为和隐藏界面探测能力。图3: MRS技术的无热噪声特征两位审稿人对该工作给予了高度评价:“milestone achievement in the Raman spectroscopy field(拉曼光谱领域里程碑式的成就)”;“it is a rare piece of work that represents a landmark in the field of Raman spectroscopy(拉曼光谱领域少有的标志性工作)”。全新的力学拉曼光谱技术将有望应用于晶体全局结构表征、机械振动传感和光的机械调制,并为实现从晶格振子到纳米材料的量子化能量传递等量子光学领域研究提供了新的思路。该工作得到了国家自然科学基金,江苏省自然科学基金,国家重点研发计划等项目的资助。
  • 兰光发布塑料包材水蒸气透过率测试仪新品
    塑料包装水蒸气透过率测试仪 C360H水蒸气透过率测试系统——本产品基于重量法水蒸气透过的测试原理,参照ASTME96,GB 1037标准设计制造,为低、中、高水蒸气阻隔性材料提供宽范围、高效率的水蒸气透过率检测试验。适用于食品、药品、医疗器械、日用化学等领域的薄膜、片材、纸张、织物、无纺布及相关材料的水蒸气透过性能测试。塑料包装水蒸气透过率测试仪产品优势:只为精准——先进流体力学和热力学设计的专利测试舱和透湿杯;立体空间恒温技术;精密科学的测试条件调节计算;高效合规——12个测试工位;支持增重法和减重法测试模式;节省人力——风速自动调节;湿度自动调节;无需更换内芯的气体干燥装置和高效水蒸气发生装置;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。4、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接入第三方软件。5、先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。塑料包装水蒸气透过率测试仪测试原理:在预先处理好的测试杯中放置水或者干燥剂,然后将预先处理好的试样夹紧在测试杯上,测试杯放置于测试舱当中。测试舱根据指定测试条件生成稳定的温度、湿度和气流吹扫环境。水蒸气通过试样进入干燥一侧,通过测定测试杯整体重量随时间的变化量,计算试样水蒸气透过量等结果。参照标准:ASTM E96、GB 1037、GB/T 16928、ASTM D1653、ISO 2528、TAPPIT464、DIN 53122-1、YBB00092003-2015塑料包装水蒸气透过率测试仪技术参数:最大量程:减重法:10000/n(1-12件)g/(m2day);645/n(1-12件)g/(100in2day)增重法:每件1200 g/(m2day);每件77g/(100in2day)测试工位:12个测试温度:20℃~55℃±0.2测试湿度:10%RH~90%RH±1%扩展功能:DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:样品尺寸:Φ74mm样品厚度:≤3mm测试方法:增重法,减重法标准测试面积:33cm2载气规格:压缩空气载气干燥:长寿命干燥装置,不需要更换内芯载气加湿:内置高效无水雾加湿气源压力:≥0.6MPa接口尺寸:Φ6mm聚氨酯管创新点:1、新一代先进测试舱与透湿杯——先进流体力学和热力学结构分析设计的专利测试舱和透湿杯,温度和湿度更加均匀稳定,测试周期更短,结果更精准。2、出色的高低阻隔性材料的测试能力——实时测量测试环境条件进行精密调节计算,使高阻隔材料的测试更精准,低阻隔材料测试重复性更优。3、温度、湿度、风速自动精密控制——舱体空间立体恒温;风速实时测定和自动调节;配备高效率无水雾湿度自动调节装置,满足长时间连续测试需要;气体干燥装置无需更换内芯,连续工作寿命可达两万小时。塑料包材水蒸气透过率测试仪
  • 【年末大促】TSI 简约型风量罩 8380-B 限时特惠活动开始啦!
    【年末大促】TSI 简约型风量罩 8380-B 限时特惠活动开始啦!TSI 8380-B 是一款简约型数字式风量罩,具有高性能和高精度的风量测试性能,能够直接快速和准确测量高效过滤器的出风量以及散流器、格栅等出风和回风装置的风量,减少调节风量平衡以及洁净室换气次数验证的时间,更快地获得可靠的测试数据报告。8380-B简约型数字风量罩在设计上坚固耐用,在各种测量应用中都可以保证测量数据精确和可靠;特别适用于洁净室、医院和实验室的重点区域的通风测试,从而保证其洁净度。对于只关心风量测试同时对风量测试有精度要求的客户,以及需要考虑投资回报率的工业客户, 8380-B简约型风量罩是非常合适的选择。该型号的推广活动截止日期为2017 年12月31日 ! 8380-B 型技术参数风量范围 42~4250m3/hr精度 读数的±3%或±12m3/hr(风量85 m3/hr)分辨率 1m3/hr温度范围 4.4~60℃分辨率 0.1 ℃精度 ±0.3℃操作温度 0~60℃供电 4AA电池接口 USB输出重量 3.4kg (使用610x610mm风量罩)8380-B 型风量罩包括底座和可分离式微压计610 mm X 610 mm风量罩套件支撑杆(x4)Swirl-X防旋风套件拉杆箱LogDat-CH数据下载软件和数据线AA碱性电池(x4)电池盒(x2)校准证书和用户手册* 中文界面可选关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
  • 兰光发布高精度C230H氧气透过率测试仪新品
    C230H氧气透过率测试系统——本产品基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。适用于食品、药品、医疗器械、日用化学、光伏电子等领域的薄膜、片材、包装件及相关材料的氧气透过性能测试。产品优势:只为精准——先进流体力学和热力学设计的专利测试集成块;空间立体恒温技术;独立监测各腔测试情况的温湿度传感器;高效合规——同时测试3个相同试样,符合平行试验的标准要求;支持同一条件下3个不同试样测试;节省人力——自动温度、湿度控制;简便易用——搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;产品特点:1、新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。2、自动温度、湿度控制——设备内部温度、湿度自动调节。测试腔各自安装温湿度传感器监测温湿度情况,控制测试过程更加精准。3、易用高效的系统功能——搭载高性能处理器和Windows10操作系统,通用各种软件和设备;自动测试模式,不需人工调整快速获得精确结果;专业测试模式,提供了灵活丰富的仪器控制功能,满足个性化科研需要;独有DataShieldTM数据盾系统,对接用户数据集中管理要求,支持多种数据格式导出;采用可靠安全算法,防止数据泄露;支持通用有线和无线局域网,选配专用无线网,支持接4、入第三方软件。先进的用户服务意识——坚持以用户为中心的服务理念使Labthink造就了成熟的产品定制系统流程,可以提供灵活周到的个性化定制服务。测试原理:将预先处理好的试样夹紧于测试腔之间,氧气或空气在薄膜的一侧流动,高纯氮气在薄膜的另一侧流动,氧分子穿过薄膜扩散到另一侧中的高纯氮气中,被流动的氮气携带至传感器,通过对传感器测量到的氧气浓度进行分析,计算出氧气透过率等结果;对于包装件而言,高纯氮气则在包装件内流动,空气或氧气包围在包装件外侧。参照标准:ASTM D3985、ASTM F1307、ASTM F1927、GB/T 19789、GB/T 31354、DIN 53-3、JIS K7126-2-B、YBB 00082003-2015技术参数:测试范围:0.01~200cm3/(m2day) (标准);0.0007~12.9cc/(100in2day);0.00005~1cm3/(pkgday)(包)分辨率:0.001cm3/(m2day)重复性:0.01cm3/(m2day)或2%,取大者测试温度:10~55℃±0.2℃测试湿度:0%RH,5%RH~90%RH±1%RH,100%RH附加功能:包装件测试(最大3L):可选DataShieldTM数据盾:可选GMP计算机系统要求:可选CFR21 Part11:可选技术规格:测试腔:3样品尺寸:108mm×108mm样品厚度:≤3mm标准测试面积:50cm2载气规格:99.999%高纯氮气(气源用户自备)气源压力:≥0.28MPa/40.6psi接口尺寸:1/8 英寸金属管创新点:C230H氧气透过率测试系统基于库仑氧气分析传感器和等压法测试原理,参照ASTM D3985标准设计制造,为高、中气体阻隔性材料提供高精度和高效率的氧气透过率检测试验。创新技术特点:(1)新一代先进测试集成块——先进热力学和流体力学分析设计的专利三腔一体测试集成块结构,大幅缩小三腔之间温度、湿度和流量差异。支持三个相同或不同试样的同步测试。(2)搭载Windows10系统的12寸触控平板操作;快速自动测试;自动数据管理的DataShieldTM数据盾系统;高精度C230H氧气透过率测试仪
  • 东华大学朱美芳院士、张耀鹏教授 Adv. Sci.:3D打印仿生高强度、多尺度、高精度的生物活性牙冠
    牙釉质是一种高度钙化的硬组织,具有紧密有序的羟基磷灰石(HAp)纳米晶体排列结构,以满足其所需的力学强度和韧性等性能。目前可通过生物矿化、无机模板合成等方法仿生天然牙釉质的独特结构。然而,上述方法只能在纳米尺度、微米尺度或以粗糙的宏观形状实现单个水平面HAp的有序排列。且天然牙釉质不仅有平行排列的外层结构,还有一定偏转角度的内层结构。更重要的是,其清晰的宏观结构(厚度大于1 cm,尺寸大于1 cm)也进一步增加了制备仿生牙釉质的难度。目前3D打印牙齿从最初的简单材料打印牙齿模型的阶段,到性能优化打印阶段,到进一步混合活性细胞、抗菌材料、生长因子等功能打印阶段,其打印精度和效果在不断地提高,但也并未复刻天然牙齿的各项性能,离临床应用还有较远的距离。 图1. 多尺度、高精度牙冠的3D打印 东华大学纤维材料改性国家重点实验室朱美芳院士、张耀鹏教授受到天然牙齿中牙釉质多阶段生长的启发,基于单分散的“超重力+”HAp基齿科修复树脂材料,采用挤出成型3D打印技术,开发了一种自下而上的逐步组装策略,利用剪切诱导构建了多尺度高度有序HAp结构的高精度仿生牙冠(图1),实现了天然牙的成分(HAp)、结构(紧密有序)以及性能(力学及再矿化)仿生。相关成果以题为3D Printed Strong Dental Crown with Multi-Scale Ordered Architecture, High-Precision, and Bioactivity发表在Advanced Science上,博士生赵梦露为第一作者,北京化工大学博士生杨丹蕾、范苏娜博士、姚响副教授和北京化工大学王洁欣教授为共同作者,张耀鹏教授和朱美芳院士为共同通讯作者。部分实验完成于上海光源BL19U2线站,北京化工大学合作制备“超重力+”羟基磷灰石。 图2. 基于高度有序HAp基复合树脂牙冠的3D打印流程示意图图3. 3D打印牙冠的个性化修复 本工作制备了单分散的“超重力+”HAp基齿科修复树脂材料,使HAp纳米棒均匀且稳定地分散在树脂基体中。根据不同配方浆料的流变学行为,通过理论计算选择了最适合剪切诱导有序的打印墨水配方。并基于此浆料的流变特性,通过计算流体力学设计了具有逐渐收缩通道的定制喷嘴,从而有利于浆料顺利的挤出和稳定的剪切(图1)。以HAp的纳米晶体结构作为基础(原子尺度),到单分散的纳米棒在打印过程中受到剪切诱导而沿着打印方向进行有序的排列(纳米尺度),进一步控制打印路径使其平行排列(微米尺度),在宏观上制备三维高度有序的树脂样品,最后根据牙冠的三维模型,打印出个性化修复的牙冠(图2)。其打印精度可达95%(图3)。由于中断了裂纹扩展,当使用最小直径260 µm的喷嘴进行打印时,取向程度最高,其弯曲强度最高可达138 MPa,压缩强度可达370 MPa,优于传统模具法制备的样品(图4)。其优异的再矿化活性减少了细菌聚集和继发龋齿的机会(图5)。此工作为制备具有独特结构和功能的仿生材料提供了新的思路。图4. HAp基复合树脂的力学性能及断面形貌图 图5. HAp基复合树脂的体外生物活性 此工作得到了国家重点研发计划(2016YFA0201702)及上海市优秀学术带头人项目(20XD1400100)等项目的资助。特别感谢岛津公司宁棉波工程师在Micro-CT测试中提供的帮助。 近年来,张耀鹏教授团队在3D打印仿生生物材料研究方向取得了一系列研究成果(Compos. Sci. Technol., 2021, 213, 108902 Cellulose, 2021, 28, 241-257 Carbohyd. Polym., 2019, 221, 146)。 原文链接:http://doi.org/10.1002/advs.202104001 高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn 本文转发自高分子科技公众号本文内容非商业广告,仅供专业人士参考。
  • 中科大新成果:用于核酸药物递送的LNP规模化制备放大的微流控新策略、新芯片、新技术
    脂质纳米粒(LNP)是一种具有均匀脂质核心的脂质囊泡,广泛用于核酸药物的递送,近年来由于作为新冠病毒mRNA疫苗递送平台的巨大成功而备受关注。近期,围绕LNP从实验室筛选到工业化制备参数不一致和质量控制困难这一行业难题,中科大微纳米工程团队和化学生物学团队提出了LNP规模化制备放大的微流控新策略,发展了新芯片和新技术,并在siRNA递送和动物实验中实现了功能验证。相关研究工作近期已经被Nano Research接收并online发布。LNP制备方法很多,包括脂质体挤出法、薄膜水化法、纳米沉淀法以及微流控法等。近年来,通过微流控技术合成的mRNA 脂质纳米颗粒比传统的合成工艺更具优势,具有批次一致性良好、粒径可控、超低的PDI值、并且包封效果可达90%以上等优点。但是,基于微流控技术合成的LNPs在临床应用上面临着一个严峻的挑战:如何实现从早期开发到临床应用的稳健的制备规模放大。目前,制备放大的合成LNPs方法主要分为并行化策略和通道尺寸扩大策略。并行化策略需要复杂系统搭建,并在大规模生产时难以保持LNPs稳定性;通道尺寸扩大策略尽管能够实现稳定的大规模生产,但很难在不同流速下保持一致的粒径和尺寸分布。中科大工程学院褚家如教授团队的李保庆副教授与生命科学与医学部田长麟教授团队经过深入研究,提出了一种“等比例缩放通道尺寸”的可扩展化脂质纳米粒子合成策略。该策略通过在三个维度上等比例缩放惯性微流体混合器,实现了LNPs的可扩展合成。合作团队设计并构建了高效的惯性流体微混合器,通过结合三种惯性流体效应,实现了溶液的在更低流速下的快速混合。接着,将该惯性流体微混合器等比例缩放,通过高精度3D打印以及激光加工制备出不同通道尺寸的芯片,以实现不同通量条件下的LNP筛选与规模化制备的一致性。合作团队基于流体力学的相似性理论并利用无量纲分析开发了一种理论预测方法,通过控制混合时间在不同芯片上保持一致,确保合成的LNPs具有一致的粒径和尺寸分布。实验结果表明,利用等比缩放的芯片在相同的混合时间下合成的LNPs,具有一致的物理特性,平均粒径偏差不超过5%。合作团队成功合成了包载siRNA的LNPs,并在小鼠模型中验证了这些LNPs的相同的基因沉默能力。这一创新性方法为LNPs的大规模生产提供了实际可行的途径,将极大加速核酸药物研发向临床应用的转化。该工作7月23日被Nano Research杂志接收,中科大生医部、安徽省多肽药物工程实验室主任田长麟教授和中科大工程学院精密仪器系李保庆副教授为该文章的共同通讯作者,中科大工程学院博士研究生马泽森与中科院强磁场科学中心博士研究生童海洋为共同第一作者。相关芯片制备及算法均已申请专利保护。笔者了解到,mRNA在给药过程中非常依赖载体,也不可以通过交联和深层修饰来解决给药问题。确保mRNA本身的稳定性具有挑战性,而且由于其化学修饰的空间有限,所以通常必须使用脂质纳米粒 (LNP)作为载体给药系统。一直以来多数LNP产品研发生产仍以国际大药企为主,目前国内众多科研单位也在纷纷开展相关研究。微流控设备在LNP制备方面具有一定的优势,期待看到此次新芯片、新技术的带来LNPs产能的提高。相关阅读:回放视频合集|核酸药物研发与质控的技术盛宴
  • 美国TSI公司“体三维速度场仪系统(V3V)”网上讲座4月26日举办
    体三维速度场仪系统(V3V)网上讲座  演讲人: 张鑫 应用工程师  崔军磊 应用工程师  网上讲座: 2011年4月26日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案;寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司第三次推出流体测量仪器的系列中文网上讲座,以帮助您提高利用V3V系统测量流体速度的技术水平。 我们将于2011年4月26日上午10点开始此次讲座,介绍V3V三维成像原理,系统校准及数据处理。  具体内容:V3V原理,系统布置,三维成像介绍,相机校准;数据处理流程及算法介绍;应用。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写姓名邮箱地址及联系电话于表格中,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。
  • 新型 3D 模型助力科学家揭开癌细胞真面目
    p style="text-indent: 2em "科学家开发了一个面向患者的模型,使用这个模型可以更好地理解并最终终止癌细胞的迁移。/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201802/insimg/10c81cf2-c4cb-4530-b9f8-6feaeccd63bf.jpg"//pp style="text-indent: 2em "以前,传统的癌细胞研究只能在皮氏培养皿和显微镜载玻片中进行。而现在,研究人员开发了一个新的三维模型,这个模型可模拟更为接近于人体的环境,从而分析癌细胞的复杂性。每天,人体内会产生约1000亿个新细胞。这些新细胞与数以万亿计之前产生的细胞一起形成了我们赖以生存的组织和器官。有时,在细胞产生的过程中,其DNA发生突变,使得细胞存在缺陷并可能会对人体内部环境产生潜在危险。通常情况下,细胞会识别自身的缺陷并很快自行终止。/pp  但有时候,突变的细胞非但没有自行消除,反而不断复制,从而形成可以分裂、转移(即迁移)并侵入身体其他部分的肿瘤,这种侵入通常是通过血流完成。幸运的是,卡内基梅隆大学机械工程菲利普· 勒迪克(Philip LeDuc)教授和博士生詹姆斯· 李· 万(James Li Wan)及匹兹堡大学乳腺癌研究员卡罗拉· 诺伊曼博士(Dr. Carola Neumann)合作,开发了一个面向患者的模型。科学家可以使用这个模型更好地理解并最终终止癌细胞的迁移。该研究组的研究论文发表在《Scientific Reports》,题为“通过微铣技术在芯片方法中模拟三维癌症的嵌入式脉管系统结构(Mimicking Embedded Vasculature Structure for 3-D Cancer on a Chip Approaches through Micromilling)”。据勒迪克介绍,这个项目的起因是研究人员对物理科学与癌症之间的关系越来越感兴趣。肿瘤实际上就是体内肿块,生化和物理手段都可以对其和癌细胞产生影响。而考虑到这两种手段之间的关系,勒迪克、诺伊曼和万开始关注癌细胞的转移和分析。通过合作,他们能够开发出一种更精确、更相关的研究癌细胞的方法。/pp  不同于传统上在塑料培养皿中进行的癌细胞分析,研究小组建立了一个能更精确地反映生物体生理条件的三维模型。借助这个模型,科学家们可以在与人体更加相似的环境中发现并分析癌细胞的复杂性。“几十年来,生物学研究都在皮氏培养皿中进行,”勒迪克说,“但问题是,能制造出更有生理学意义的系统吗?我们使用微流体和微制造方法来创建三维系统,这是因为细胞存在于三维组织中,在自然条件下,它们是不会驻留在二维培养皿中的。”/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201802/insimg/06269c72-ca19-4797-bad9-ea2bc94888c7.jpg"/  /pp  一般来说,所谓微流体系统就是在微观水平上传输液体的系统,通常由塑料制成。但是勒迪克、诺伊曼和万想要建立一个更具生理学意义的系统,他们使用了人体内最主要的蛋白质——胶原蛋白来构建他们的微流体系统。“正如菲利普所说,过去我们用塑料培养细胞,用皮氏培养皿研究。”匹兹堡大学药理学和化学生物学副教授诺伊曼说。“但是,人体内是没有任何塑料的。拥有一个模仿生理条件的三维系统更好,能获得更快、更相关的结果。”每个该团队构建的微流体装置包含两个关键组件:模拟传统血管的平行通道和嵌入胶原中的癌细胞浓度集合。/pp  一旦装置设立成功,通道就会被注入能扩散到周围胶原蛋白的化学刺激剂。随着兴奋剂分子远离通道,产生生物分子梯度。这种梯度能促使嵌入的癌细胞移动,而这种移动往往是向着模拟血管通道的。就病人来说,如果癌细胞进入血液,它们就会转移,并可能形成继发性癌肿瘤。据勒迪克和诺伊曼称,大多数实体瘤患者通常死于肿瘤转移,而非原发性肿瘤本身。这就是为什么科学家首先要弄清楚如何阻止癌细胞发生转移。癌细胞的转移具有从原发肿瘤转移到血液或淋巴系统的能力—— 这一过程需要癌细胞迁移并重塑肿瘤组织以侵入身体的其他部位。所以,为了阻止其转移,科学家需要了解哪些因素能够支持癌细胞的移动和组织重塑。这也就解释了为何勒迪克、诺伊曼和万开发的这个三维系统如此重要。/pp  “癌症是一种极其异质性的疾病。这就意味着不仅每个患者的癌细胞各不相同,甚至在一个肿瘤内,癌细胞也有所不同。”诺伊曼说。“转移也是如此。根据它们在身体中的位置,每个继发性肿瘤也不相同。”勒迪克、诺伊曼和万相信,研究人员最终会使用他们的系统来检查每个患者的肿瘤以确定每位患者的最佳治疗方法。这个过程最终将有助于使癌症治疗更加个性化和有效。“我们的模型可以作为某个特定患者的模型,”万说。他组织完成了实验室实验并分析了研究结果。“这非常重要,正是由于每个病人的癌症各不相同,才使得它很难治愈。”理想的话,这个由勒迪克,诺伊曼和万开发的三维系统将为研究人员和科学家提供所需工具,以阻止患者癌细胞的转移。/pp  “如果至始至终,肿瘤只能呆在原位,什么都不能做。这样对病人来说还好。”勒迪克说,“但是一旦它发生转移,一切失控了。我们希望我们的系统能对终止癌细胞转移有所帮助,并且从长远来看,希望它能改善病人的治疗效果。/p
  • 综述:细胞外泌体颗粒表征测量技术新进展
    外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。  细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,总结了外泌体的纯化方法,比较了现存各种外泌体测量技术,重点介绍了一种新的测量技术,纳米微粒追踪分析术,在外泌体尺寸和表征研究中的应用。  1. 外泌体提取及方法学评价  到目前为止,仍没有一种方法能同时保证外泌体的含量、纯度、生物活性。  1.1 离心法  这是目前外泌体提取最常用的方法。简单来说,收集细胞培养液以后依次在300 g、2 000 g、10 000 g离心去除细胞碎片和大分子蛋白质,最后100 000 g离心得到外泌体。此种方法得到的外泌体量多,但是纯度不足,电镜鉴定时发现外泌体聚集成块,由于微泡和外泌体没有非常统一的鉴定标准,也有一些研究认为此种方法得到的是微泡不是外泌体。  1.2 过滤离心  过滤离心是利用不同截留相对分子质量(MWCO)的超滤膜离心分离外泌体。截留相对分子质量是指能自由通过某种有孔材料的分子中最大分子的相对分子质量。外泌体是一个囊状小体,相对分子质量大于一般蛋白质,因此选择不同大小的MWCO膜可使外泌体与其他大分子物质分离。这种操作简单、省时,不影响外泌体的生物活性,但同样存在纯度不足的问题。  1.3 密度梯度离心法  密度梯度离心是将样本和梯度材料一起超速离心,样品中的不同组分沉降到各自的等密度区,分为连续和不连续梯度离心法。用于密度梯度离心法的介质要求对细胞无毒,在高浓度时粘度不高且易将pH调至中性。实验中常用蔗糖密度梯度离心法,在离心法的基础上,预先将两种浓度蔗糖溶液(如2.5 M 和0.25 M)配成连续梯度体系置于超速离心管中,样本铺在蔗糖溶液上,100 000 g离心16 h,外泌体会沉降到等密度区(1.10~1.18 g/ml)。用此种方法分离到的外泌体纯度高,但是前期准备工作繁杂,耗时,量少。  1.4 免疫磁珠法  免疫磁珠是包被有单克隆抗体的球型磁性微粒,可特异性地与靶物质结合。同样,在离心法的基础上,预先使磁珠包被针对外泌体相关抗原的抗体(如CD9、CD63、Alix)与外泌体共同孵育,蒸馏水冲洗后,重悬于PBS缓冲液中。这种方法可以保证外泌体形态的完整,特异性高、操作简单、不需要昂贵的仪器设备, 但是非中性pH和非生理性盐浓度会影响外泌体生物活性,不便进行下一步的实验。  1.5 色谱法  色谱法是利用根据凝胶孔隙的孔径大小与样品分子尺寸的相对关系而对溶质进行分离的分析方法。样品中大分子不能进入凝胶孔,只能沿多孔凝胶粒子之间的空隙通过色谱柱,首先被流动相洗脱出来 小分子可进入凝胶中绝大部分孔洞,在柱中受到更强地滞留,更慢地被洗脱出。分离到的外泌体在电镜下大小均一,但是需要特殊的设备,应用不广泛。  2. 外泌体测量各种方法的比较  2.1 电子显微镜  扫描电子显微镜(SEM)的工作原理是以能量为1-30KV间的电子束,以光栅状扫描方式照射到被分析试样的表面上,利用入射电子和试样表面物质相互作用所产生的二次电子和背散射电子成象,获得试样表面微观组织结构和形貌信息。高的分辨率。由于超高真空技术的发展,场发射电子枪的应用得到普及,现代先进的扫描电镜的分辨率已经达到1纳米左右,足够用来进行外泌体尺寸的测量。鉴于SEM的工作特点,在外泌体研究中,能够直接观察到样品中外泌体的形态。并且SEM具有很高的分辨率,能够鉴别不同大小不一的外泌体。但SEM对样品的预处理和制备上面要求较高,样品的准备阶段比较复杂,不适合对外泌体进行大量快速的测量。而且由于外泌体经过了预处理和制备过程,无法准确的进行外泌体浓度的测量。  2.2 动态光散射技术  动态光散射是收集溶液中做布朗运动的颗粒散射光强度起伏的变化,通过相关器将光强的波动转化为相关曲线,从而得到光强波动的速度,计算出粒子的扩散速度信息和粒子的粒径。小颗粒样品的布朗运动速度快,光强波动较快,相关曲线衰减较快,大颗粒反之(图1)。  图1 大颗粒和小颗粒光强波动及相关曲线  在外泌体研究中,动态光散射测量敏感度较高,测量下限为10纳米。相对于SEM技术来说,样品制备简单,只需要简单的过滤,测量速度较快。但是动态光散射技术由于是测量光强的波动数据,所以大颗粒的光强波动信号会掩盖较小颗粒的光强波动信号,所以动态光散射不适合大小不一的复杂外泌体样本的测量,只适合通过色谱法制备的大小均一的外泌体的尺寸测量,并且无法测量样品中外泌体的浓度。  2.3 纳米微粒追踪分析术  纳米微粒追踪分析术(以下简称NTA)是一种比较新颖的研究纳米颗粒的方法,它可以直接和实时的观测纳米颗粒。NTA通过光学显微镜收集纳米颗粒的散射光信号,拍摄一段纳米颗粒在溶液中做布朗运动的影像,对每个颗粒的布朗运动进行追踪和分析,从而计算出纳米颗粒的流体力学半径和浓度。  NTA系统的工作原理是将一束能量集中的激光穿过玻璃棱镜对样品(悬浮颗粒的溶液)进行照射(光路图见图2)。图2 NTA激光光路图    激光光束从较小角度入射进入样品溶液,照亮溶液中的颗粒。配备相机的光学显微镜,被放置在特定的位置上,收集视野中被照亮的纳米颗粒发射出的光散射信号。 样品池有大约500微米的深度,采样点激光照亮宽度为20微米,这个数值和光学显微镜的聚焦的视野深度相匹配。相机会进行60秒的影像拍摄,每秒30个采样画面。颗粒的运动过程被NTA软件进行分析。NTA软件在每幅被记录的画面中鉴别和追踪做布朗运动的纳米颗粒。  根据颗粒的运动速度,通过二维 Stokes-Einstein方程计算颗粒流体力学半径  在方程中2是均方位移,KB是Boltzmann常数 T是溶液的温度,单位是Kelvin;ts是采样时间,例如,1/30 fpsec = 33 msec;&eta 是溶液粘度;dh是流体力学直径。 NTA检测颗粒大小的范围和颗粒本身的折光指数相关。测量的下限取决于被研究颗粒和背景之间信噪比,也就是颗粒的散射光强度和背景的光强差距。颗粒的散射光强度根据Rayleigh散射方程,受到以下因素的影响   其中,d是颗粒的直径,&lambda 是入射光的波长,n是颗粒和溶液的折光系数比。通常来说,生物样品,如外泌体等,折光系数较低,所以测量下限为30-40纳米。  由于NTA技术是直接追踪样品中每一个纳米颗粒,决定了NTA对复杂的样品具有极高的分辨率,为了证明NTA对于复杂样品的分辨能力,我们将100纳米和300纳米两种不同大小的聚苯乙烯颗粒按照5:1的数量混合,使用NTA进行测量(图3A)。尽管其分布图形有一定的重叠,但两种不同大小的纳米颗粒的峰清楚的区分开来。这种对复杂样品的分辨能力对于外泌体这样的研究对象来说是非常重要的。  NTA也能对样品浓度进行直接测量。对一系列浓度为1× 108-8× 108的100纳米单分散样品进行测量,可以看到NTA测量浓度结果和实际浓度存在着很好的线性相关(图3B)。对于多分散体系,测量结果的准确取决于仪器参数的设定(照相机快门速度和光圈),恰当的参数设定可以保证不同大小颗粒都被NTA软件追踪和计算。图3 A. 100纳米和300纳米混合样品NTA测量 B. NTA测量浓度和样品实际浓度线性相关  NTA还具有分析荧光样品的能力,NTA有四种不同波长405纳米, 488纳米, 532纳米和635纳米的激光器可以选择,在搭配相应的滤光片,从而实现对荧光样品的测量。将100纳米的荧光标记的颗粒和200纳米的非荧光颗粒用同一溶剂做成混合样品,使用NTA进行测量(图4),图4中,蓝色的线显示为NTA的光散射模式,可以看到尽管100纳米和200nm纳米颗粒的分布图有重叠,但还是清楚的区分了100纳米和200纳米的峰值。然后使用荧光滤光片进行分析,只观测到100纳米的荧光标记的纳米颗粒(红线) 图4 NTA荧光样品测量  由于外泌体表面有标志物CD9,CD63等跨膜分子的存在,在复杂的背景环境下(如血清中),可以用荧光抗体标记外泌体,在用NTA的荧光测量功能实现在复杂背景下对外泌体的测量。NTA相比较于流式细胞仪的荧光功能,分辨率较高,测量荧光颗粒的下限可以达到30-40纳米,而流式细胞仪的测量下限为400纳米,即使对于最新一代的数码流式细胞仪,其测量下限已经达到100纳米,但由于它仍然建立在监测光信号的基础上,所以测量和准确性和分辨率仍然不可靠。所以在外泌体荧光功能测量上,NTA具有独特的优势。  3. 总结  外泌体作为生物标志物的研究目前处于起步阶段,但临床应用已显示出良好的前景。 在临床诊断中,简单快速的在复杂的生物背景下(如血浆,尿液)测量外泌体浓度,大小和表征数据是必备的要求。目前存在的方法都无法完美的解决这一问题。NTA作为一个相对新的测量技术,具有实时观测,较高的分辨率,准确的浓度测量和荧光测量功能,提供了对外泌体大小和浓度研究的新的思路。  (作者:张帅,英国马尔文仪器公司生物科学专家,负责生命科学相关产品的推广与技术支持。)  注:文中观点不代表本网立场,仅供读者参考。
  • 泰林生物推出全新一代CST系列无菌隔离器
    无菌隔离器能为无菌操作提供GMP A级环境,最大程度减少微生物污染风险。随着隔离器技术发展迭代升级,以及在不同应用领域的拓展,无菌隔离器经历从软舱体到硬舱体,紊流结构到层流结构的演变,满足企业不同产品的生产工艺需求。泰林生物自2002年研制出我国首台无菌隔离器以来,在过去20年对产品持续研发迭代,于2022年,推出了全新一代隔离器产品—TECHLEADCST系列无菌隔离器。CST系列无菌隔离器主要用于无菌检测、无菌产品分装等关键工艺过程的保护,通过物理阻隔与VHPS汽化过氧化氢高效灭菌创造持续的GMPA级洁净环境,降低外源性污染和交叉污染风险,符合中国GMP和中国药典以及EUGMP/FDAcGMP/USP-NF要求。CST-LG4可进行“连续化”或“批量化”操作,允许人员在实验舱进行操作的同时,对传递舱内样品、物料进行灭菌。泰林研发团队针对用户痛点和市场需求,在CST-LG4无菌隔离器上做出了八大技术创新,提高工作效率,降低运行成本。01全新集成式VHP灭菌系统全新研发设计的集成式VHP灭菌系统,采用全新汽化结构与控制逻辑,提升汽化能力与饱和度控制能力,实现快速高效灭菌的同时精确控制过氧化氢饱和度,严格控制冷凝。在理想情况下,实验舱灭菌时间缩短40%,传递舱灭菌时间缩短至原先的1/3;对嗜热脂肪芽孢杆菌可达log6杀灭。02优化的气流模型经过计算机流体力学模拟分析(CFD)设计,改进了舱体气流输送结构,使气流模型更加合理,舱体内采用无死角垂直层流,对关键无菌操作进行保护。03模块化结构隔离器采用模块化设计,各个模块组装独立便于拆分,可轻松包装和运输至使用现场并快速组合。04智能化控制系统隔离器搭载最新工控管理系统,具有简便、易用的人机交互界面,操作方便;具有多级权限管理、电子签名和审计追踪功能,数据备份与还原功能,完全符合GMP、EMEA和FDA计算机系统验证(CSV)与数据完整性(DI)要求。05人机工程学设计隔离器调整了人机工程学设计,优化了操作面板的倾角、光源与高度设计,使操作人员在工作时无论站姿或是坐姿都能感觉更加舒适。根据客户需求,支持进行Mock-up定制化设计,为客户量身定制隔离器高度、手套操作口、台面设计等。06集成功能模块隔离器标准集成配置各个功能模块,如环境监测系统、手套完整性检测等。同时,隔离器可针对客户工艺需求,选择性模块化集成快速灭菌传递舱、快速无菌传递系统(RTP)、集菌仪、液体无菌快速传输系统、袋进袋出(BIBO)高效过滤器单元等多种功能模块。07灭菌工艺开发与验证服务隔离器配套提供汽化过氧化氢(VHP)灭菌工艺开发与验证服务,包括生物指示剂D值研究、隔离器温湿度分布研究、最差点/最差条件研究、通风效果研究,提供可靠全面的灭菌参数设置与灭菌效果验证。研制国内首创的汽化过氧化氢(VHP)专用生物指示剂抗力仪,可模拟隔离器的灭菌环境,并在此工况下测试生物指示剂的D值,为隔离器灭菌工艺开发提供参考。08节能降耗,减少运行成本全新设计优化的空气处理单元,降低了房间新风量需求和房间空调系统要求,降低运行能耗,减少运行成本。对于新风量不满足隔离器使用要求的房间,可选配内循环催化分解模块,在隔离器内部对过氧化氢进行循环分解,实现背景房间取风房间内排放,无需连接外排管路。
  • 美国TSI公司空气动力学粒径谱仪获评“2014科学仪器行业最受关注仪器”
    2015年4月22日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2015 (第九届)中国科学仪器发展年会(ACCSI 2015)在北京京仪大酒店召开,会议主题为&ldquo 创新创造价值&rdquo , 出席会议人数达800余位。作为ACCSI 2015的&ldquo 重头戏&rdquo ,年会主办方颁布了多项产品奖项。其中,TSI公司的空气动力学粒径谱仪(APS-3321)获得&ldquo 2014科学仪器行业最受关注仪器&rdquo 大奖。 TSI3321型空气动力学粒径谱仪 (APS) 提供 0.5 至 20 微米粒径范围粒子的高分辨率、实时空气动力学检测。这些独特的粒径分析仪还检测 0.37 至 20 微米粒径范围粒子的光散射强度。APS 粒径谱仪通过向同一粒子提供成对数据向有兴趣研究气溶胶组成的人士开辟了令人振奋的新途径。 APS 粒径谱仪使用取得专利(美国专利号5561515)的双峰光学系统,具有无与伦比的粒径检测精度。它还包括新设计的喷嘴结构和改进的信号处理。因此,它具有更大的小粒径检测效率、提高的质量分布精确度并有效消除错误背景计数。 TSI公司的空气动力学粒径谱仪(APS-3321)可广泛用于各类相关科学研究和实际应用,如究吸入毒理学,给药研究,大气研究,环境空气监测,室内空气质量监测,滤料和空气清洁器测试,气溶胶特性测试和粉尘粒径检测等。 关于TSI公司TSI公司研究、确定和解决各种测量问题,为全球市场服务。作为精密仪器设计和生产的行业领导者,TSI与世界各地的科研机构和客户合作,确立与气溶胶科学、气流、健康和安全、室内空气质量、流体力学及生物危害检测有关的测量标准。TSI总部位于美国,在欧洲和亚洲设有代表处,在其服务的全球各个市场建立了机构。每天,我们专业的员工都在把科研成果转化成现实。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制