当前位置: 仪器信息网 > 行业主题 > >

加工过程开裂原因

仪器信息网加工过程开裂原因专题为您整合加工过程开裂原因相关的最新文章,在加工过程开裂原因专题,您不仅可以免费浏览加工过程开裂原因的资讯, 同时您还可以浏览加工过程开裂原因的相关资料、解决方案,参与社区加工过程开裂原因话题讨论。

加工过程开裂原因相关的资讯

  • 应用分享 | 波纹管开裂失效分析
    波纹管是一种带横向波纹的圆柱形薄壁弹性壳体,其生产历史已有一百多年。直到第二次世界大战时期才用作仪器、仪表的弹性敏感元件和各类管道的联结元件,现已广泛用于矿山、石油、化工、冶金、电力、热力、航海、航天等工程设备中,起密封、吸振、降噪、储能、热补偿和介质隔离作用。 波纹管有多种形式就波的形状而言,以U型波纹管应用广泛,其次还有C型、Ω型、矩形和S型等 就层数而言,则分为单层和多层波纹管。 本例针对某机型机头与容器间壁厚为0.2mm,运行2000多小时发生泄漏的单层U型波纹管,使用金相显微镜,扫描电子显微镜等专业设备对波纹管失效部位做全面分析。 拿到波纹管泄漏样品(图 1),对于搞机械的来讲,很容易想到用气压测试确定波纹管泄漏大致位置。事实也是如此,采用此种方法可以很方便的确认泄漏位置大致位于接头焊缝附近。紧接着去除波纹管接头部保护环及编织网,裸眼观测,对于大一些的裂纹可以直接看到,但是对于微小裂纹或者说想要知道裂纹萌生——发展——失稳的整个过程,就必须要借助于体式显微镜。体视显微镜放大倍数50倍,以其较经典显微镜更为出色的大景深,广泛应用于各种断口的宏观观察和拍照。 图 1 波纹管宏观形貌 图 2为是焊缝附近裂纹。其拍摄照片可以直观的反映出裂纹位置以及近裂纹表面焊接过程中产生的高温氧化色。仅仅观测到裂纹,确定裂纹位置对于查找其产生的根本原因还是远远不够的。想要了解的是整个波纹管寿命周期,从生产到使用究竟是哪个环节的问题导致了其异常开裂,进而引起泄漏。这就需要搜集各个环节的信息,越详细越好,例如:生产制造工艺、材料技术标准、设计技术条件、安装过程、使用过程… … 。通常想要真正了解原因,这些条件都是必要的。 图 2 焊缝部位裂纹局部宏观形貌 接下来要使用的更为精密设备和复杂的制样来观察分析。众所周知,机械行业大多传动部件其加工过程中都要热处理,其目的就是通过改变材料组织进而优化材料机械性能。对于生产检验,一般测试机械性能就可以了,但是对于失效分析,想要查清问题背后的原因,仅测性能是不够的,需要观察组织去了解影响性能背后的原因。观察组织就要用到材料领域的——金相显微镜。这里使用的是金相显微镜,其可在50-1000倍观察样品。图 3、图4和图 5是使用显微镜拍摄的照片。其中开裂确切位置清晰可见——焊接热影响区,同时可见波纹管管壁痕迹,表明母材与焊料熔合不是很好,管壁裂纹起始位置可见细小的晶间裂纹。 图 3 焊缝部位裂纹周围组织局部形貌 图 4 断裂起始位置表面晶间裂纹局部形貌 图 5 表面晶间裂纹周围组织局部形貌 失效分析当中的重头戏——断口分析,其要使用的设备也是失效分析中重量级的设备——扫描电子显微镜,简称SEM。SEM以其出色的放大倍数和观察景深而闻名。随机配备的能谱仪,更使其如虎添翼,使得其在失效分析领域大放异彩。图6 、图7 为使用SEM拍摄到的波纹管断裂面的照片,其清晰告知断裂模式为晶间腐蚀—疲劳断裂。 图 6 断口开裂源部位表面晶间裂纹局部形貌 图 7 断口裂纹扩展区疲劳纹局部形貌 304不锈钢的敏化温度区间大致为425-815℃[1]。在焊接接头的焊接过程中,热影响区热循环峰值温度在600-1000℃。在随后的冷却过程中,如果在304敏化温度区域停留时间过长将会导致材料晶间腐蚀敏感性增加。焊接时可以通过提高焊接速度的方法来增大电流,维持较低的热输入,从而降低晶间腐蚀的倾向,也可以对焊接后的不锈钢进行固溶处理和稳定化处理来降低焊接件晶间腐蚀敏感性[1,2]。 综上,结合各种背景信息以及各种测试分析手段的相互佐证,可以得出造成连接机头和容器波纹管泄漏的原因为波纹管接头焊接工艺不当,使得304表面使用过程中产生晶间腐蚀,进而萌生晶间裂纹在周期性载荷作用下造成波纹管早期疲劳开裂。 参考文献[1]. 张晶莹. 304奥氏体不锈钢的晶间腐蚀与防护.装备制造技术,2012,2:154-155.[2]. 赵强,肖维宝 等.304不锈钢法兰焊接裂纹分析与返修.焊接,2017,2:54-56. 作者阿特拉斯科普柯(无锡)压缩机有限公司 程晓波
  • 镶嵌的样品开裂,难道是金相镶嵌机惹的祸?
    使用热压金相镶嵌机制备样品,有没有遇到过开裂缺陷?而且还不止一种,比如中心开裂、圆周开裂和胀裂的情形......,遇到这种情形,是不是会生起一个疑问,镶嵌的样品开裂,难道是金相镶嵌机惹的祸?在没有搞清原因之前,先别让金相镶嵌机背锅,一起探讨一下到底怎么回事!可脉检测的应用工程师,对常见的几种镶嵌开裂缺陷产生的原因及解决方法给出了建议,小编归纳整理如下:● 中心开裂产生原因:是由于试样尺寸相对于定型腔太大,并有尖角所致,将其放于定型腔中时,空间过于局促和狭小,导致定型时出现开裂。解决方法:适当缩小试样的尺寸,使之相对定型腔留有更充分的镶嵌料添加空间,有效避免镶嵌胀裂缺陷。如果,试样尺寸的技术要求不能缩小的情况下,条件具备的话,可以考虑增加定型腔的尺寸,比如更换大尺寸镶嵌筒等。● 圆周开裂产生原因:可能是由于镶嵌料中混入了潮气,亦可能是在镶嵌定型过程中混入了空气所致。解决方法:采取预热镶嵌粉或将镶嵌粉预成型处理,然后再进行镶嵌。在镶嵌料呈液态时,瞬间释放压力。这样可有效避免圆周开裂缺陷产生。● 胀裂产生原因:是由于镶嵌时固化时间过短,或压力不足而产生的。解决方法:适当延长固化时间,从镶嵌料的液态到固化成型期间,适当增加压力,这些措施可有效避免胀裂缺陷产生。再遇到镶嵌样品开裂问题,根据小编整理的这几种情形,对照分析原因,采取适当方法来解决试试。镶嵌的样品开裂,真不一定是金相镶嵌机惹的祸!如果以上几种方法还不能解决您的类似问题,可脉检测应用工程师可以帮助您,您随时可以联系咨询,真不收钱,免费的哈!
  • 解决镶嵌样品开裂的事儿,金相镶嵌机配上神操作,就这么干!
    在金相样品镶嵌过程中,样品开裂问题,相信一般人儿都遇到过,如何解决呢?我们的方法是:用METPRESS A型热压金相镶嵌机加上QMAXIS金相镶嵌料,再配上一些神操作,就这么干!一起来了解镶嵌样品出现开裂缺陷的几种情形所产生的原因和具体解决办法。开裂缺陷常见的有中心开裂、圆周开裂和胀裂。下面逐一进行说明。1、中心开裂:当被镶嵌的样品尺寸过大,且边缘有尖角时,易产生中心开裂。因为这样的大尺寸并带有尖角的样品放于定型腔内,定型腔内空间会相对狭小、局促,尖角所在位置接近边缘,不能有足够厚度的镶嵌料填充,结果会导致,定型时出现裂纹,造成中心开裂的情形。针对这种情形,当采取适当缩小试样的尺寸,以利于定型腔有更充分的镶嵌料添充空间;同事要选择硬度与样品材质相匹配的镶嵌料,这样就能避免中心开裂的缺陷了。然而,如果被镶嵌的样品尺寸技术要求无法缩小的条件下,就只好重新配置大尺寸定型腔解决了。2、圆周开裂:这种缺陷产生的大概率是因为镶嵌料中混入了潮湿的空气,或者是在镶嵌定型过程中混入了空气所造成的。针对这种情形,在启动金相镶嵌机后,先将镶嵌粉预热,或将镶嵌粉预成型,然后再对样品进行镶嵌。整个镶嵌过程实时监控,当镶嵌料呈液态时,瞬间释放压力。如此操作,就可有效避免圆周开裂问题了。3、胀裂:这种缺陷的产生是因为镶嵌过程设置的固化时间过短,或者压力不足而导致的。针对这种情形,我们要合理选择热镶嵌树脂,适当延长固化时间,同时从镶嵌料的液态到固化成型期间,要适当增加一点压力,这样操作能有效避免胀裂缺陷。以上这些操作,是可脉检测的工程师经验总结,与大家共享。使用的金相镶嵌机是METPRESS A型单筒全自动热压金相镶嵌机,所配耗材均为QMAXIS热镶嵌粉。有关这款金相镶嵌机和镶嵌料的相关技术参数、性能及应用,这里不赘述。以上介绍的几种方法希望对您的类似问题有所帮助。如您遇到金相制样的有关问题,欢迎您联系可脉检测的应用工程师,愿与您一道探讨解决办法。
  • 冬天屋内空气干燥,水分低使地板开裂,听听专家建议
    据地板专家介绍,一般情况下,大厂家的烘干技术能达到标准,但一些小厂家由于设备和技术不过关,生产出来的地板容易出现变形、扭曲、开裂、生虫等现象。 冬季有时会出现急速升温和急速降温的情况。建议尽量避免室内突然升温,尤其在地热开启和关闭的过程中要循序渐进,温度的骤升和骤降都会影响地板的使用寿命。 实木地板是木材经烘干,加工后形成的地面装饰材料。 木材中所含的水分有三种形式,一种是存在于细胞腔与细胞间隙中的水,也就是存在于毛细管中的水,称为自由水。第二种是被细胞壁所吸收的水,称为吸附水。第三种是构成细胞组织的水,称为化学水。 当潮湿的木材水分蒸发时,首先失去的是自由水,当自由水蒸发完而吸附水尚处于饱和状态时的含水率,称为纤维饱和点含水率。 纤维饱和点是木材性能的转折点,在纤维饱和点之上,木材的强度为恒量,不随含水率的变化而变化。同时木材也没有胀缩这种体积上的变化。当含水率降至纤维饱和点之下,也就是细胞壁中的吸附水开始蒸发时,强度随含水率下降而增加,而湿胀干缩的现象也明显呈现出来。不同的木材纤维饱和点含水率约在22%~33%之间。 自然界中各地区的湿度和温度在不同的季节都有相对的稳定。木材长时间地处在这种相对温湿度环境中,其含水率会达到会达到一个相对的恒定。这时的含水率就称为平衡含水率。木材的平衡含水率随它们所处环境的温度和湿度的变化而变化,当平衡含水率和环境湿度有差值时,会趋向于接近环境。这就产生了木材的湿胀与干缩现象,这是木材特有的物理现象。 木材又是一种各向异性体。实际使用中的木材其含水率都在纤维饱和点以下,所以水分的得失主要是细胞壁的吸附水。木材的细胞绝大多数是纵向生长的,它的胀缩都是和细胞壁方向垂直的。作为一块地板,我们可以发现其纵向一般都没有什么胀缩,而宽度方向的胀缩率一般为3%~6%(系指木材含水率在纤维饱和点含水率以下的变化)。 由此可见,在生产中控制好地板的含水率是十分重要的。上海禾工科学仪器有限公司生产的HM卤素快速水分测定仪,全方位满足您水分检测的需求。与国际烘箱加热法相比其检测结果与国标烘箱法具有良好的一致性,具有可替换性,且检测效率远远高于烘箱法。一般样品快速完成测定。
  • 紫金矿业污染事故系降雨致防渗膜开裂
    14日,福建省环保厅新闻发言人表示,紫金山金铜矿湿法厂73污染事件发生原因已基本查明,主要是受近期强降雨影响,使得污水池底部压力不均衡,导致防渗膜多处开裂。对于泄漏事故发生后,大量鱼群死亡现象,该新闻发言人坦陈,此次污染泄漏是流域网箱鱼类死亡的主要原因,同时称库区网箱外目前未发现鱼中毒现象。  关于事件原因调查及披露,这位新闻发言人说,7月3日下午15点50分左右,紫金矿业集团股份有限公司紫金山金铜矿湿法厂岗位人员发现污水池待中和处理的污水水位异常下降,且有废水自废水池下方的排洪涵洞流入汀江干流。  经组织专家和执法人员深入调查,该事件发生原因已基本查明,主要是:受近期强降雨影响,紫金山铜矿湿法厂存放待中和处理的含铜酸性污水池区域内地下水位迅速抬升,造成污水池底部压力不均衡,形成剪切作用,使防渗膜多处开裂,导致池内污水泄漏到废水池下方的排洪涵洞,流入汀江。  泄漏事故发生后,汀江下游河段网箱鱼类出现异常、死亡现象。据当地政府初步统计,至11日事件所造成的损失已累计达到重大环境事件级别,且事故原因已初步查明。  事件发生后,福建省各级政府和环保部门在第一时间启动应急预案,立即组织专业人员展开调查和应急处置工作,同步实施了汀江沿途水体的加密监测。  关于网箱鱼类处置情况,这位新闻发言人说,泄漏事故发生后,汀江下游河段网箱内鱼类出现异常、死亡现象。经有关专家分析,此次污染泄漏是流域网箱鱼类死亡的主要原因,同时高密度的网箱养殖方式和近期连续异常天气也有一定影响。库区网箱外目前未发现鱼中毒现象。  死鱼现象出现后,为维护群众利益,当地政府决定对死鱼和放生鱼按略高于市场收购价格全部进行收购,所需资金由事故责任单位承担。  此外,关于后续处置工作,这位新闻发言人说,事件发生后,省委、省政府责令紫金矿业集团股份有限公司紫金山金铜矿湿法厂立即停产,对已发现的环境安全问题迅速进行整改,同时全面排查整治环境安全隐患。目前,省政府已正式成立联合调查组,全面调查事故原因,查清事实、分清责任,并将根据调查结果依法依规对政府及职能部门相关责任人进行行政问责,对有关企业也将严肃依法追究责任。
  • Progress in Materials Science | 张哲峰团队孪晶界面疲劳开裂机制研究取得新进展
    晶界在金属晶体材料中分布广泛,对金属材料各项力学性能具有重要影响,其中晶界可以强化材料,但界面处应力集中会导致疲劳损伤开裂。1984年日本东北大学Watanabe教授提出晶界设计(GBD: Grain-boundary Design)和晶界工程(GBE: Grain-boundary Engineering)的概念,希望通过在延性多晶体中引入性能好的界面来提高材料的综合性能,这为通过调控晶界类型和分布来设计高性能材料提供了新的思路。 为了揭示各种不同晶界对金属材料疲劳损伤机制的影响,中国科学院金属研究所张哲峰研究员团队前期借助于铜双晶体对各种大角晶界和小角晶界疲劳开裂机制进行了系统研究(Zhang ZF and Wang ZG, Prog. Mater. Sci. 53 (2008) 1025-1099)。鉴于孪晶界面与位错交互作用的特殊性,孪晶界面是否具有较高的疲劳抗力值得期待。然而,由于含有孪晶界面大块样品制备困难,对孪晶界面疲劳开裂机制的认识十分有限。过去十余年,张哲峰团队设计和制备了含有不同生长孪晶界面大块铜双晶体,同时,开展了大量含有退火孪晶界面铜及铜合金多晶体的疲劳研究。近期,孪晶界面疲劳损伤开裂机制的研究进展受邀发表在材料科学综述刊物Progress in Materials Science上,其中李琳琳为论文第一作者,张振军项目研究员和张哲峰研究员为论文通讯作者。本文对孪晶界面疲劳开裂机制的新认识如下: 双晶共格孪晶界面疲劳开裂机制:共格孪晶界面与加载轴的夹角决定了两侧晶粒内开动的主滑移系,对其界面疲劳损伤机制起决定性作用。当共格孪晶界面与加载轴成20°-70°时,受附加应力及特殊位错滑移的影响,滑移带易于集中在共格孪晶界面附近,因而疲劳裂纹优先沿共格孪晶界面萌生和扩展(如图1(II-IV)所示);而当共格孪晶界面近似平行或垂直于加载轴时,滑移带或完全穿过共格孪晶界面,或因取向较硬受限与界面附近,塑性变形主要集中于晶内滑移带处,使滑移带优先萌生疲劳裂纹(如图1(I)、(V)所示)。 双晶非共格孪晶界面疲劳开裂机制:非共格孪晶界疲劳开裂也表现出一定的取向性,当非共格孪晶界垂直于加载轴时(图2(a,b)),孪晶界面两侧晶粒内位错滑移方向相同但滑移面相交,位错易于在非共格孪晶界处塞积而优先疲劳开裂;当非共格孪晶界平行或倾斜于加载轴一定角度时(图2(c,d)),界面两侧位错滑移可以穿过非共格孪晶界,并且非共格孪晶界面自身可发生迁移,因而非共格孪晶界处应变相容性较好,此时,滑移带优先发生疲劳开裂。 多晶体孪晶界面疲劳开裂机制:多晶体疲劳过程中孪晶界附近应力状态复杂,与双晶中孪晶开裂稍有不同。团队利用原创的晶体滑移形貌定取向方法,对不同成分或层错能的铜合金多晶体中孪晶界疲劳开裂行为进行了系统研究,结果发现:铜合金的层错能越低,孪晶界两侧的取向差越大,位错越容易在孪晶界处产生塞积,因而孪晶界越容易疲劳开裂,反之,则是滑移带更容易疲劳开裂。通过提炼晶体取向Schmid因子差和合金层错能,结合位错塞积理论,建立了层错能和取向为参数的孪晶界面疲劳开裂定量判据(图3)。 结合对大、小角晶界疲劳开裂行为的前期研究结果,可以给出各种不同晶界疲劳开裂阻力从大到小顺序为:小角晶界>孪晶界>大角晶界,其中孪晶界面疲劳开裂阻力取决于两侧晶体取向差和合金层错能大小。当孪晶界面对两侧位错运动阻碍较强时,会对材料产生明显的强化作用,孪晶界面容易发生疲劳开裂,因此接近于大角晶界特征;当孪晶界面对两侧位错运动阻碍较小时,孪晶界面不容易发生疲劳开裂,但对材料也几乎不产生强化作用,因此与小角晶界作用相似(图4)。 上述研究工作得到了国家自然科学基金重大、杰青、重点和面上项目的长期资助(50571104、50625103、50890173、51171194、51471170、51501197)以及中国科学院青年促进会(2021192)项目及教育部科研业务费的资助。 全文链接图1 铜双晶体共格孪晶界与加载轴呈不同倾角时对应的疲劳损伤机制。图2 铜双晶体中非共格孪晶界与加载轴呈不同倾角时疲劳损伤行为。界面垂直于加载轴时(a) 界面疲劳裂纹与(b)主滑移系;界面倾斜一定角度时(c)主滑移系与(d)滑移带裂纹。图3 层错能和晶体取向对铜合金多晶体滑移带与孪晶界疲劳开裂转变机制的协同影响。图4 大角晶界、孪晶界、小角晶界低周疲劳损伤开裂难易程度比较。
  • 岛津EPMA超轻元素分析之六: 氮化处理工件表面缺陷的原因是什么?
    导读 氮化处理工艺应用广泛,但有时由于热处理工艺不正确或操作不当,往往造成产品的各种表面缺陷,影响了产品使用寿命。某氮化处理的工件表面出现了内氧化开裂,使用岛津电子探针EPMA对其进行了分析。 科普小课堂 氮化处理的特点:氮化处理是一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。工件进行氮化热处理可显著提高其表面硬度、耐磨性、抗腐蚀性能、抗疲劳性能以及优秀的耐高温特性,而且氮化处理的温度低、工件变形小、适用材料种类多,在生产中有着大规模应用。 氮化处理的原理:传统的气体渗氮是把工件放入密封容器中,通以流动的氨气并加热,氨气热分解产生活性氮原子,不断吸附到工件表面,并扩散渗入表层内,形成不同含氮量的氮化铁以及各种合金氮化物,如氮化铝、氮化铬等,这些氮化物具有很高的硬度、热稳定性和很高的弥散度,从而改变了表层的化学成分和微观组织,获得了优异的表面性能。 裂纹产生的原因是什么? 电子探针分析氮化后的内氧化裂纹:通过之前的系列,已经了解了超轻元素的测试难点以及岛津电子探针在轻元素和超轻元素分析方面的特点和优势。为了查明氮化工件开裂的问题,使用岛津电子探针EPMA-1720直接对失效件的横截面进行元素的分布表征。 岛津电子探针EPMA-1720 结果显示:裂纹内部主要富集元素C和O,工件表面存在脱碳现象,工件内部存在碳化物沿晶分布,氮化层有梯度地向内扩展趋势。氮化处理前工件是不允许出现脱碳现象的,如前期原材料或前序热处理环节中出现脱碳现象,需要机械加工处理掉。内部的沿晶碳化物会造成晶界结合力的减弱,容易造成沿晶开裂。 表1 表面微裂纹横截面元素C、O、N的分布特征 对另一侧的面分析显示,渗氮处理前,试样表面也存在脱碳层。脱碳层如未全部加工掉,将会致使工件表面脱碳层中含有较高浓度的氮,从而得到较厚的针状或骨状高氮相。具有这种组织形态的渗层,脆性及对裂纹的敏感性都很大。而且在表面也有尖锐的不平整凸起,这些都可能会造成后续工艺中的应力集中导致表面微裂纹。 同时也观察到某些合金元素存在些微的分布不均匀现象,不过这些轻微的成分变化,对性能的影响应该不大。 表2 另一侧面表面微裂纹横截面元素C、Mo、O的分布特征 试样腐蚀后进行金相分析。微观组织显示,近表层存在55~85μm的内部微裂纹,氮化后出现连续的白亮层,白亮氮化层并未在内部裂纹中扩散,所以微裂纹应该出现在表面氮化工艺后的环节。 结论 使用岛津电子探针EPMA-1720对某氮化工件表面微裂纹进行了分析,确认了表面的脱碳现象、基体的碳化物晶界分布、氮化过程中氮的近表面渗透扩展以及微裂纹中氧的扩散现象。工件原材料或工件在氮化前进行调质处理的淬火加热时,都要注意防止产生氧化脱碳;如果工件表面已产生了脱碳,则在调质后氮化前的切削和磨削加工中,须将其去除。同时在氮化工艺前需要加入并做好去应力热处理工艺,否则可能内应力过大造成氮化后的表面缺陷。
  • 焊缝中出现裂纹,原来还可以是这个原因!
    一个生产部件和组件的制造商向一个供应商订购了一批SS304不锈钢管材。制造商要对1800件管材进行切割和机械加工,然后再通过焊接方式将这些管材制造成更大的子装配件。不久,管理人员在无损检测(NDT)过程中发现了焊缝中有裂纹。接下来,立即叫停所有的生产过程,以对生产质量进行控制,直到查出问题的原因。调查的内容包括根据他们的标准操作程序(SOP)核查焊接保护气体、焊丝和焊接机的设置情况。但是,接着对焊缝的检测仍然表明存在着裂纹。质量控制经理建议对原始管材的材料证书进行核查。不出所有人所料,证书上清楚地表明这些管材就是他们所订购的SS304不锈钢管材。他们还在系统内部进行了其它方面的核查,但是一直没有找到问题的原因。 质量控制经理一筹莫展。还有什么情况他们没有核查?结果发现,他们实际上一直没有核实所接收的管材是否是SS304不锈钢管材。如果在接收这批管材时使用手持式X射线荧光(XRF)技术对货物进行核查,他们就会发现所收到的货物实际上是SS303不锈钢,这个牌号的不锈钢与SS304不锈钢的不同之处是多了硫元素,因而更容易进行机械加工处理,但是在焊接过程中却非常容易出现高温裂纹。如果在收到管材时对管材进行核查,以确保管材与材料证书所述的情况相符,则可以避免出现这种问题。而现在,制造商不仅被迫花费了很多宝贵的时间寻找问题的原因,而且还留下了一些已经开始制造,但是却无法使用的产品。不过,最终制造商还是很幸运,因为他们在出货之前发现了这个问题。如果他们所制造的部件在使用中出现了故障,则问题可能会变得更为严重。 如果这个制造商采用了整体验证计划对来料进行核查,则几乎可以消除加工错误材料的风险。那么,我们为什么会在制造过程中发现使用了错误的材料呢?这是因为每次材料运输时,无论是在工厂、库存商的仓库或服务中心,还是在制造商的仓库,或者在任何制造过程中,都会出现混料的风险。不正确的材料证书、不正确的标记,以及较差的追溯性都会导致材料出现混淆。 要想改变这种不良状况,在每个阶段对材料进行验证至关重要。手持式XRF分析仪就是一种广受欢迎的验证工具。我们的Vanta分析仪有助于制造商在制造过程的每个阶段,验证将要使用的材料是否是希望使用的材料。Vanta分析仪具有检测迅速、坚固耐用的特性,不仅可以在几秒钟之内提供准确的合金识别信息,而且可以在工业环境中持续正常地工作。借助选配的无线连通功能,用户还可以将分析仪连接到奥林巴斯科学云系统,从而可以轻松地将分析仪集成到任何智能制造设施中。奥林巴斯手持式X射线荧光分析仪可对包括镁和铀在内的很多元素进行快速无损分析,可检测出的含量从百万分率到100%。分析仪在检测速度、检出限及可检元素的范围方面具有优质性能。这款分析仪的外壳符合工业设计标准,极为坚固耐用,可以在恶劣的环境中正常工作。新型Vanta系列仪器性能改进:坚固耐用,高效多产仪器配备SD存储卡可使用WI-FI,蓝牙(Bluetooth)适配器进行数据传输可使用USB闪存盘进行方便快速的数据传输Axon技术提高分析结果的精准性IP 55/54—防尘防水坠落测试(MIL-STD-810G)探测器快门闸保护及聚酰亚胺网眼保护
  • 干货!食品加工过程中的质量控制
    奥豪斯助力食品行业,关注食品安全及合规。食品行业是一个备受关注的行业,每个生产环节都需要严格审查,尤其是食品的加工过程,政府有严格的监督和规定,以确保消费者和工人的安全。生产商必须依靠质量控制措施来保证其产品和流程符合监管机构制定的严格标准。更重要的是,质量控制准则使食品生产商需要最大限度地降低污染风险,并为客户提供安全、优质的食品。食品生产商实施标准操作程序,并采用高质量的测量仪器,以确保记录结果的可靠性和各批次产品的一致性。由于政府机构对食品行业的密切关注,食品类产品的质量状况必须在生产过程的各个阶段进行仔细披露和记录。最常见的两套监督要求是 GMP(药品生产质量管理规范)体系和HACCP(危害分析和关键控制点)。在为全球食品行业用户开发分析天平、台秤、平台秤等精密称重和水分仪、pH计等测量仪器时,奥豪斯始终牢记这两个标准。质量保证质量控制贯穿于食品加工的每一个环节,包括采购、研发、生产和分销。在经过严格筛选的原材料获得批准后,生产团队将按照配料、建议重量、批量大小和加工时间的标准操作程序来配制成品。不仅需要仔细记录标准操作程序,还需要记录持续的生产过程,以确保一致性和合规性,并在出现问题时确定原因。最后一道工序--贴标签--也受到严格监管,因为从配方、一致性到重量和其他因素,包装外部所标注的内容必须与内部的成品相符。生产应用前端(台秤、水分仪)和后加工区(冲洗秤)都需要有支持食品质量控制的仪器。 为了满足食品生产商的需求,奥豪斯提供各种耐用、可靠的测量仪器,以满足加工、研发、测试、包装、仓储、运输等领域的多种应用。数十年来,我们一直与全球食品加工行业合作,帮助提高企业生产的安全性、效率、产量和盈利能力。我们为提高消费者安全、产品一致性和质量控制提供多种解决方案。奥豪斯商用仪器旨在帮助您满足食品安全、质量和法规要求。我们的秤和水分仪几乎覆盖了食品加工的许多方面,并能针对性地提供有效的解决方案--物料接收、配方、质量控制、灌装、配料、基本称重和检重。我们精密的食品称重和测量仪器性能可靠、易于设置和使用,而且精确可靠,旨在帮助您最大限度地提高产品产量和减少浪费。选择合适的设备及仪器 奥豪斯提供一系列专为食品行业设计的精密分析天平。这些天平结构坚固,使用方便,结果精度高。我们提供的天平经过NSF 认证,支持 HACCP 系统,并被 USDA-AMS 认可。奥豪斯食品业用秤的表面光滑、无障碍,易于清洁,没有可能积聚物质和造成污染的区域。以下是我们支持的几款高性能食品秤和水分仪。对于最高达到150kg的大容量食品称重,奥豪斯提供 Defender&trade 6000 系列台秤。Defender 6000 专为食品加工而设计,秤体平台和框架采用耐用的 316 不锈钢材质,显示器也采用了316 不锈钢和食品级聚碳酸酯,能够应用于潮湿、恶劣的环境下。它有各种秤台尺寸、量程、可读性和特殊功能可供选择,以满足您的需求。Defender 6000 台秤的设计可应对高压冲洗和刺激性的清洁剂,配备激光焊接密封的 IP68 和IP69K 不锈钢称重传感器,符合贸易应用的计量标准。Defender 6000 台秤具有明亮的大显示屏和彩色检重灯,方便查看称重结果,提高工作效率。应用模式包括计数、百分比称重甚至灌装。通过一系列连接选项和带实时时钟的GLP/GMP 数据输出,可实现简单的通信,从而实现加工过程追踪和可追溯性。为了更好地提供便利性和安全性,Defender 6000 装载了多种特殊功能,包括 150% 的过载能力保护、菜单和按键锁、环境可选和自动打印设置、稳定标记、过载/欠载指示灯、自动关机、自动去皮和可调橡胶脚垫。为进一步帮助食品行业提升质量控制和行业合规性,奥豪斯提供一系列具有直观功能的快速水分仪,帮助企业通过水分含量分析监控产品质量和一致性。我们的MB 系列水分仪具有卤素和红外加热器、耐用的结构和易读的显示屏,可提供各种量程、可读性和功能设置,快速且有更高重复性,以满足企业的应用需求。了解更多奥豪斯在食品行业的解决方案,请登录奥豪斯官网或关注奥豪斯官方微信号。
  • OPTON的微观世界|第24期 扫描电镜(SEM)在钢铁材料断口分析中的应用
    前 言钢铁材料断口分析的发展概括起来主要经历了三个阶段:肉眼、放大镜和光学显微镜直接观察阶段;用透射电子显微镜观察断口复型的间接观察阶段;用扫描电子显微镜直接观察阶段。因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的景深、尽可能宽的放大倍数范围和高的分辨率,而扫描电子显微镜可满足上述综合要求,故现在对断口分析均采用扫描电子显微镜。扫描电镜作为现代材料科学应用最广泛的分析检测仪器在多个领域有着重要应用,其中在钢铁材料分析研究中的应用主要包括:材料的微观形貌、组织、成分分析;材料断口分析;材料失效分析;材料实时微区成分分析,元素定量、定性成分分析,快速多元素面扫描和线扫描分析;材料的晶体、晶粒的相鉴定,晶粒尺寸、形状分析,晶体、晶粒取向测量等等。钢铁冶炼铸造过程中会产生一些冶金缺陷,造成产品后续加工或使用过程中产生开裂或断裂,采用扫描电镜对产品断口进行微观观察分析,寻找原因,提出改进和预防措施,其作用和意义重大。下面列举几个钢坯和钢材典型断口的微观形貌及形成原因进行扼要介绍。一、 连铸坯沿晶开裂断口在连铸坯断口中,时常会观察到裂纹沿粗大的柱状晶晶界开裂的情况,且晶界上呈现出自由凝固高温开裂光滑特征(见图1)。其产生原因主要是因连铸浇注温度偏高、拉速不稳或拉速偏快所致。图1 连铸坯沿粗大柱状晶晶界开裂,晶界上呈现自由凝固光滑高温开裂微观特征二、 连铸坯粗大柱状晶、气孔、疏松及缩孔缺陷断口当钢中气体含量较高时,在连铸坯横截面中部粗大柱状晶沿晶断口上可见较多的小气孔缺陷(见图2上图);当连铸工艺控制不佳时由于补缩不足,在横截面的心部部位断口上可观察到较多的疏松缺陷、较大尺寸的缩孔缺陷(见图2下图)。气孔、严重疏松、缩孔等缺陷对成品质量均会产生不利影响。图2 连铸坯中柱状晶晶界上的小气孔缺陷、心部疏松及缩孔缺陷微观特征三、 连铸坯晶界上存在两种形态的硫化物断口钢中非金属夹杂物是不可能完全消除的,在尽可能降低其含量的同时,科学有效地控制夹杂物的类型、尺寸、分布和形态,可降低其对钢材的危害。硫化物夹杂种类较少,最主要的是MnS。MnS在钢液中不能生成,在钢凝固时由于硫的偏析,硫化物夹杂才析出于树枝晶间。冷却速度越快,析出的硫化物颗粒越小,但数目增多。随着钢中氧含量的不同,连铸坯中硫化物夹杂有3类形态, I类硫化物为无规则分布的尺寸较大的球状,在含氧量高的沸腾钢和半镇静钢中可见到,它是在凝固初期与铁晶体同时析出的。Ⅱ类硫化物为网状或枝晶状沿晶分布,是凝固后期生成的。Ⅲ类硫化物是边、角、面都较清晰显现的无规律分布的小颗粒或小块状,出现于过量铝脱氧的钢中,是由于凝固过程中硫化物自发形成的结果。硫化物夹杂塑性较好,在轧钢时沿轧制方向延伸成细条状。Ⅱ类硫化物在轧钢后可形成条带,所以无论在铸态或在轧态钢中,Ⅱ类硫化物对钢的性能影响及危害最大。图3显示了连铸坯晶界上存在的两种不同形态的MnS夹杂物断口形貌特征。图3 连铸坯断口晶界上存在的枝晶状MnS(上)与颗粒状MnS(下)夹杂微观特征四、 钢的解理与准解理断口解理是钢铁材料受力后沿晶体内部一定的结晶学平面(低指数面)发生开裂的现象,宏观上呈结晶状,微观形貌包括解理河流、解理羽毛、解理扇、人字纹花样、舌状花样等,是材料脆性较大的体现。准解理是介于脆性断裂和韧性断裂之间的一种过渡断裂模式,准解理断裂是低合金高强度钢中(如组织为回火马氏体、贝氏体等)较为常见的一种断裂形式,常发生在脆性转折温度附近。准解理断裂的断口是由平坦的“类解理”小平面、微孔及撕裂棱组成的混合断裂,主要断口形貌特征是河流由小平面的中心向四周发散,形状短而弯曲,支流少,形成撕裂岭。图4为合金钢断口解理与准解理的微观形貌特征。图4 合金钢断口脆性解理(上)与准解理(下)的微观特征解理与准解理断口的主要区别如下表特征准解理解理生核的位置夹杂、空洞、硬质点,晶内晶界或其它界面扩展面不连续、局部扩展、碳化物及质点影响路径、非标准解理面标准解理面连接连接撕裂棱、韧窝、韧窝带次解理面解理、撕裂棱断口形态尺寸原奥氏体晶粒大小、呈凹盆状以晶粒为大小,解理平面五、钢的氢脆断口氢脆(又称氢损伤)是因金属中存在一定量的氢、且在张应力作用下造成的损伤,钢中氢的来源主要有:冶炼、锻造、焊接、酸洗或电镀等工艺过程中钢所吸收的氢;也可能是在含氢环境中吸收进入的(如在氢气或硫化氢等含氢气氛中工作或在水溶液中阴极所释放的氢);而张应力可能是内部残余应力或外加工作应力,也可能是二者的叠加。氢损伤导致金属材料韧性和塑性降低,易使材料开裂或脆断,常会带来灾难性后果,故需引起高度重视。氢脆是金属凝固过程中,溶入钢液中的氢未及时上浮溢出,向金属缺陷处不断扩散聚集,到室温时原子氢在缺陷处化合成分子氢、体积增大十几倍,从而产生巨大的氢压,造成其周围应力集中,当超过钢的强度极限时,在钢内部形成细小的裂纹,宏观上因在纵向断口上呈白色圆斑状,故称其为白点。白点的微观形态随钢种和热处理状态而异,也有两种形貌,即氢脆解理和氢脆准解理。例如调质处理的低碳高强度钢白点部位断口形貌为穿晶氢脆解理(如氢脆解理羽毛、浮云状等),非白点区基体部位为穿晶韧性断口;而热轧状态非白点区基体部位断口为正常解理形貌,白点部位断口形貌为氢脆准解理(如碎条状、准解理羽毛等)。图5是合金钢的氢脆解理(上)和氢脆准解理(下)断口形貌特征。图5 钢断口氢脆解理(上)与氢脆准解理(下)的微观形貌特征六、 沿晶断口沿晶断口是指金属材料中的裂纹沿晶界扩展而产生的一种断裂形态。当沿晶断口微观形貌呈“冰糖”状时又称结晶状晶间断裂。多数情况下沿晶断裂属于脆性断裂,但特殊情况下也可能出现“延性”晶间断裂,如高温蠕变断裂、高温热脆断裂等。当金属或合金沿晶界析出连续或不连续的网状脆性相时,在外力的作用下,这些网状脆性相将直接承受载荷,很易于破碎形成裂纹并使裂纹沿晶界扩展,造成试样沿晶断裂,它是完全脆性的正断。图6中上图是合金钢经淬火及中温回火后,由于晶界存在有害元素(P、五害等)偏聚,形成沿晶脆性断裂的断口形貌特征。图6中下图是过热钢晶界上产生MnS小颗粒偏聚、或晶界上有低熔点元素(如Cu等)偏聚,形成沿晶延性断口形貌特征,在晶界上可见到密集的小韧窝中有大量小颗粒状MnS聚集,或者晶界上有一层低熔点(如Cu)元素富集。 图6 沿晶脆性断口(上)与沿晶延性断口(下)的微观形貌特征七、后 记对于断口微观形貌的观察与分析,同断裂力学指标联系起来,系统地建立断裂机制图,这对解决一些工程断裂问题十分有用。在工程应用上,断裂机制图对工程设计、材料的选择、使用条件的限制、以及失效分析等都能提供十分重要的指导性意见和数据资料。下期有什么精彩内容呢?敬请期待吧!
  • 近红外在鱼粉加工过程中的解决方案
    近红外在鱼粉加工过程中的解决方案近年来我国畜牧水产养殖业进入快速发展阶段,2021 年全国饲料总产量为 2.93 亿吨,已连续十年位居世界第一。但是,近几年饲料原料供需矛盾突出,价格高启,蛋白原料严重依赖进口。鱼粉作为有代表性的重要动物蛋白原料,我国消费量几乎占全球鱼粉产量的 40%,而自给率却不足三分之一。《鱼粉》(GB/T 19164-2021)标准是规范国内生产与贸易的国家标准,对有效维护我国饲料和养殖行业利益,指导国际鱼粉贸易将产生重要影响。▲ 鱼粉加工企业使用近红外监控的点传统的分析方法由于需要多种分析技术来测定这些指标,过程漫长,误差较大,质量得不到保证。而近红外光谱分析技术是利用物质含氢基团(如 C-H、O-H、N-H、S-H等)的伸缩振动的各级倍频及伸缩振动与弯曲振动合频吸收信息进行物质的定性和定量分析的一种快速有效的无损检测技术,能够在很短的时间内分析出样品的水分、蛋白、脂肪、灰分和其它营养成分等化学分析,因而被很多企业所接受,南美最大的秘鲁 TASA 鱼粉生产企业选择步琦的近红外仪器多年已经作为重要的质控检测工具。主要应用点如下: 1原料鱼肉检测指标脂肪,水分,蛋白,灰分,脂肪酸和挥发性盐基氮▲ 鱼肉的近红外检测现场和指标模型参数 2鱼粉的检测指标水分,粗蛋白,粗脂肪,粗纤维,灰分,总磷,盐分和钙▲ 鱼粉的近红外检测现场和指标模型参数 3鱼饲料的检测指标水分,蛋白,脂肪,纤维,灰分▲ 鱼饲料的指标模型参数步琦近红光谱仪器可以提供各种型号的仪器供客户选择,有高达 IP69 防护等级旁线近红外 ProxiMate,测量附件丰富的实验室近红外 N-500/NIRMaster 和在线的近红外 NIR-online 来满足你的应用过程。
  • 在线近红外光谱技术在乳品加工过程中的质量控制应用
    NIR光谱的多功能性和效率使其特别适用于各种乳制品应用的在线分析,包括黄油、奶酪、奶酪牛奶标准化、液态奶、酸奶、马苏里拉奶酪、乳清蛋白分离物 (WPI)、乳清蛋白浓缩物 (WPC) 和牛奶蛋白浓缩物(MPC)。MOCON的在线乳品分析仪ProSpect系列使用近红外 (NIR) 光谱仪来测量光能,它对在生产过程中流经工艺系统的乳品成分进行传输和反射。近红外在线分析,实时监控自动化控制整个乳品生产过程高质量的在线NIR光谱仪和内置软件告别了离线采样造成的延迟和浪费,对乳制品工厂的生产来说,实时的在线分析有助于产品的质量保证,确保食品符合安全标准。在线取样大约每5-30秒将实时数据发送到工厂PLC,自动控制系统以此进行连续的配方调整,数据可在触摸屏显示器上轻松查看。实验级的分析结果实时的输出,有助于帮助乳制品生产商始终如一地保持产品质量,最终赢得消费者信赖。专为恶劣的生产环境条件而设计无缝集成,可兼容任何系统ProSpect系列可与您现有的PLC/控制平台配合使用,并无缝集成到任何生产现场的过程系统中。紧凑的设计可以根据您的空间和生产要求安装。外壳和流通池均采用不锈钢结构,能够承受潮湿、振动和极端温度。流通池完全可以在线清洗(CIP),空调、防水、防震、卫生的不锈钢外壳符合NEMA 4X标准。预置校准数据,快速本地化校准使用NIR光谱分析成分浓度,首先需要使用样品成分参数进行校准仪器。ProSpect系列凭借30多年设计和构建过程系统的经验技术,可提供灰分、酪蛋白、脂肪、乳糖、水分、蛋白质、盐、总固体 (TS) 和黄油固体非脂肪 (SnF) 的校准数据,针对特定的工艺系统和产品快速本地化校准。 PROSPECT的优势 在线实时成分分析完全集成,完整的系统实验室级结果兼容任何工艺系统流通池完全可在线清洗(CIP)IP 66工业级MOCON在线乳品分析仪ProSpect系列根据产品需求提供2种配置,可选择单个或两个在线应用同时对乳品成分进行过程分析和质量控制。它对乳制品的蛋白质、水分、脂肪、固体和其他有机成分的浓度提供合适的自动化生产方案,是乳制品加工过程中质量控制的理想选择。
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性作为 65 种不同类型麦芽的生产商,Viking Malt 密切监控其原料和生产过程,以确保水分、颜色、风味、蛋白质和酶含量等特性的一致性,使其符合规格要求。经常从生产中抽取样品,在就地实验室中检测。“需要 6 个小时左右才能得到结果,”Tony 解释说,“对于某些参数,这是可以接受的,但为了优化过程控制,我们需要实时数据,因此我进行了研究以便发现可能的解决方案,并且了解到芬兰的同事正在测试维萨拉 Indigo520 变送器且获得了成功。”“连续湿度数据使我们能够确定麦芽加工完成的准确时刻。这不仅可以确保我们没有干燥不足或过度干燥,从而有助于保证产品质量;而且有助于我们节约资金,因为过度干燥不仅浪费能源,还增加了最终产品的成本。”2019 年 Viking Malt CSR 报告表明:“能源效率是我们工厂设计、投资、生产、物流和能源产品和服务规划的指导原则。”因此,Indigo520 变送器的实施有助于实现这一目标,也有助于实现另一个目标,该目标旨在“提高创新速度,特别是信息和通信技术的创新速度”。Indigo520 变送器的连续、可靠测量还提供完整的生产记录,不会因校准和维护活动而中断。 监测技术Indigo520 变送器从维萨拉 HMP7 湿度探头收集数据,该探头采用加热技术,为高湿度应用而设计。结合使用 TMP1 温度探头,该系统在最终窑内提供稳定可靠的相对湿度测量。 Indigo520 与维萨拉全套的 Indigo 兼容智能探头均兼容,可测量湿度、温度、露点、二氧化碳、汽化过氧化氢和油中水分。它可以同时容纳两个可拆卸的测量探头,同时测量相同或不同的参数。该变送器有一个 IP66 和 NEMA 4 防护等级的坚固金属外壳,以及一个由钢化玻璃制成的触屏显示器。这种本地显示屏使现场工作人员能够快速方便地访问实时数据,通过将变送器连接到控制系统,Tony 和他的团队能够按照自己所需查看读数。 ❖ Indigo500 系列变送器适用于维萨拉智能探头维萨拉 Indigo500 系列信号转换单元是适用于维萨拉 Indigo 兼容独立智能探头的主机设备。该信号转换单元为 Indigo 探头提供了许多其他功能。Indigo520 信号转换单元最多可搭载两个探头,可同时测量相同的或两个不同的参数。而 Indigo510 仅支持一个探头。当需要进行校准时,只需卸下探头,更换为新探头,然后将卸下的探头进行校准,这不会中断工艺流程,同时可缩短停机时间。Indigo520 与 HMP1、HMP3、HMP9、HMP7 或 TMP1 探头配合使用,可用于测量气压、湿度和温度。要选择合适的 Indigo 系列信号转换单元,请查看此对照表,了解 Indigo520 和 Indigo510 之间的详细区别。两款变送器都配备了由化学强化 (IK08) 玻璃制成的触摸显示屏,可提供本地数据可视化。与仅使用 Indigo 兼容探头相比,这些信号转换单元还增加了针对连接性、电源电压和接线的选项。坚固的 IP66 和 NEMA4 等级的金属外壳确保在苛刻环境下也能具有可靠的性能。Indigo 兼容智能探头包括湿度探头(HMP1, HMP3、HMP4、HMP5、HMP7、HMP8 和 HMP9)、露点探头(DMP5、DMP6、DMP7 和 DMP8)、二氧化碳探头(GMP251 和 GMP252)、油中水分探头 (MMP8)、温度探头 (TMP1) 和汽化过氧化氢探头(HPP271 和 HPP272)。Indigo500 系列还与用于电力变压器在线监测的 MHT410 水分、氢气和温度变送器兼容如需专业级室外气象数据,请了解 Indigo500MIK 气象安装套件。特点:适用于维萨拉 Indigo 兼容探头的通用变送器触摸显示屏,也提供不带显示屏的款式IP66 和 NEMA4 等级的金属外壳具有用于远程访问的网页界面的以太网连接Modbus TCP/IP 协议包括以太网供电 (PoE) 和交流(市电)电源的多个供电选项Indigo520 同时支持两个探头Indigo520 具有 2 个继电器和 4 个可配置的模拟输出Indigo510 具有 2 个模拟输出
  • 探索微观 明察秋毫——浅谈扫描电镜在金属材料失效分析领域的应用
    失效分析是近些年由军工企业向科研学者及企业所普及的一门新学科[1],金属零部件失效轻则会导致工件性能退化,重则会导致人生安全事故,通过失效分析定位失效原因,提出有效改进措施是保证工程安全运行必不可少的一步,因此,充分利用扫描电镜的优势将为金属材料行业的进步做出巨大贡献。 金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。其中最基本也最为常人所熟知的钢铁,作为基本的结构材料,对国家和人民的意义重大。自工业革命爆发后,不论是小到日常生活用品材料,还是大到军事设备,轨道交通,都离不开钢铁的参与。众多钢铁企业及科研院所利用扫描电镜得天独厚的优势来解决生产时遇到的问题,并协助科研开发新产品。扫描电镜搭载相应的附件已成为钢铁冶金行业进行研究和生产过程中发现问题的有利手段。随着扫描电镜分辨率及自动化程度的提高,扫描电镜在材料分析表征方面的应用愈发广泛[2]。01 电镜观察金属件拉伸断口断口总是发生在金属组织中最薄弱的地方,记录着有关断裂全过程的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。通过断口的形态分析研究一些导致材料发生断裂的基本问题,如断裂起因、断裂性质、断裂方式等。如果要深入研究材料的断裂机理,通常要对断口表面的微区成分进行分析,断口分析现已成为对金属构件进行失效分析的重要手段。图1 国仪量子扫描电镜SEM3100拉伸断口形貌图 根据断裂的性质,断口大致可分为脆性断口和塑性断口。脆性断口的断裂面通常与拉伸应力垂直,脆性断口从宏观来看,由光泽的结晶亮面组成;塑性断口从宏观来看,通常断口上有细小凹凸,呈纤维状。断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径,但如果要对断裂源附近进行细致研究,分析断裂原因和断裂机制,必须进行微观观察,且因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的景深,尽可能宽的放大倍数范围和高的分辨率。综合这些需求,扫描电镜在断口分析领域得到广泛的应用。图1三个拉伸断口样品,通过低倍宏观观察及高倍显微组织观察,样品A断口呈河流花样(如图A)为典型脆性断口特征;样品B宏观无纤维状形貌(如图B),微观组织无韧窝出现,为脆性断口;样品C宏观断口由光泽的刻面构成,故以上拉伸断口均为脆性断口。02 电镜观察钢铁夹杂物 钢的性能主要取决于钢的化学成分和组织。钢中夹杂物主要以非金属化合物形态存在,如氧化物、硫化物、氮化物等,造成钢的组织不均匀,而且它们的几何形状、化学成分、物理因素等不仅使钢的冷热加工性能降低,还会影响材料的力学性能[3]。非金属夹杂物的成分、数量、形状和分布等对钢的强度、塑性、韧性、抗疲劳、耐腐蚀等性能有极大的影响,因此,非金属夹杂物是钢铁材料金相检验中不可缺少的项目。通过研究钢中夹杂物的行为,采用相应技术防止钢中夹杂物进一步形成和减少钢液中已存在的夹杂物,对生产高纯净钢以及提高钢的性能具有十分重要的意义。图2 国仪量子扫描电镜SEM3100夹杂物形貌图图3 TiNAl2O3复合类夹杂能谱面分析图图2、图3所示夹杂物分析案例中,通过使用扫描电镜观察夹杂物,配合能谱分析电工纯铁所含夹杂物成分,可知纯铁内部所含夹杂物种类为氧化物类、氮化物类以及复合类夹杂。扫描电镜自带的分析软件具有强大的功能,可以直接对样品测量或直接在图片上进行任何距离、长度的测量,例如通过测量上图所示案例中电工纯铁夹杂物的长度,可知Al2O3夹杂物平均尺寸约为3μm,TiN及AlN尺寸均在5μm以内,复合类夹杂尺寸不超过8μm;这些细小的夹杂在电工纯铁内对磁畴起到钉扎的作用,会影响最终的磁性能。氧化物类夹杂Al2O3来源可能为炼钢的脱氧产物和连铸过程的二次氧化物,在钢铁材料中的形态多为球形,少部分为不规则形状。AlN在钢铁材料中的形态通常呈细长条状;TiN在钢铁中的形态通常呈四边形,夹杂物的形态与其组分以及在钢液内所发生一系列的物理化学反应有关,观察夹杂物时不仅要观察夹杂物的形态及成分,还要关注夹杂物的尺寸大小及分布,需要多方面统计,从而综合评判夹杂物水平。在对单个夹杂物进行观察分析时扫描电镜具有一定的优势,例如夹杂物导致工件开裂进行失效分析,通常在开裂源头处会发现大颗粒夹杂,此时对夹杂物进行尺寸、成分、数量以及形状等研究具有重要意义,通过分析可以定位工件的失效原因。03 扫描电镜对钢铁材料中有害析出相的检测方法析出相是指饱和固溶体温度降低时析出的相,或固溶处理后得到的过饱和固溶体在时效时析出的相,相对的时效过程是一个固态相变的过程,是第二相粒子从过饱和固溶体中沉淀脱溶并且形核长大的过程。析出相在钢中具有十分重要的作用,其对钢的强度、韧性、塑性、疲劳性能等许多重要的物理化学性能均具有重要影响。合理控制钢铁析出相能够强化钢铁性能,如果热处理温度及时间控制不当,会引起金属性能急剧下降,如脆断、易腐蚀等。图4 国仪量子扫描电镜SEM3100电工纯铁析出相背散图在一定的加速电压下,由于背散射电子的产额基本随试样原子序数的增高而增加,所以可以利用背散射电子作为成像信号,显示原子序数衬度像,在一定范围内可以观察试样表面的化学组分分布情况。铅原子序数为82,在背散模式下Pb的背散射电子产额很高,所以图像中Pb呈亮白色。Pb在钢铁材料中的危害有以下几种,因为Pb和Fe不生成固溶体,在冶炼过程中难以去除,且易在晶界处发生偏聚,形成低熔点的共晶体削弱晶界结合力,使材料的热加工性能下降。电工纯铁中的铅析出可能来源是炼铁原料中含有的Pb,以及冶炼时添加合金元素所含有的微量Pb;如果特殊用途使用,不排除在冶炼过程中加入的可能,目的是改善切削加工性能。04 结语扫描电镜作为一种显微分析工具,可以对金属材料进行多种形式的观察,可以对各类缺陷进行详细的分析、金属材料失效的原因进行综合定位分析,随着扫描电镜功能的不断完善和提升,扫描电镜能够完成的工作也越来越多,不仅为改善材料性能的研究提供了可靠依据,同时也在生产工艺控制、新产品设计和研究等方面发挥了重要作用。参考文献:[1] 陈南平,顾守仁,沈万慈等.机械零件失效分析[M].北京:清华大学出版社,2008,15-17.[2] 张鋆川. 金属材料检测常见问题及解决措施[J]. 数字化用户, 2018, 24(052):67.[3] 郭立波,李朋,武强,等. 扫描电镜及能谱分析在钢铁冶金中的应用[J]. 物理测试,2018,36(1):30-36. 本文作者:于文霞 国仪量子应用工程师
  • 一汽/陕汽/比亚迪/中车技术专家齐聚,共探汽车失效分析技术
    汽车零部件失效分析是研究汽车零部件丧失其规定功能的原因、特征和规律;研究其失效分析技术和预防技术,目的在于分析零部件失效的原因,提出改进和预防措施,从而提高汽车可靠性和使用寿命。目前,失效分析已成为汽车材料及零部件检测的一个重要环节。汽车零部件的失效分析技术是一项涉及众多学科和工程技术的综合性工程技术。对于金属材料零部件而言,失效的主要类型包括断裂(开裂)、变形、磨损和腐蚀,而失效分析技术则涉及物理及化学学科、金属材料及金属工艺学、材料和工程力学,以及各种汽车工程技术等各门类学科何技术,同时也包括实践认知和逻辑推理等思维形式。为进一步加强汽车零部件失效分析技术和方法的交流,助力汽车产业持续提升安全性、可靠性、耐久性及高质量制造,仪器信息网将于2023年3月15-17日举办第五届“汽车检测技术”网络会议,联合中国汽车工程学会汽车材料分会特设“汽车零部件失效分析”专场。点击图片直达会议页面会议特邀一汽、陕汽、比亚迪、中车四大主机厂失效分析工程师,结合相关理论、大量工作实践与具体案例,从不同角度分享汽车零部件失效分析经验。部分报告预告如下( 点击报名 ) 。汽车工程学会材料分会理化及失效专业委员会研究员高工 刘柯军《汽车零部件失效分析的技术逻辑》(点击报名) 刘柯军高工自1982年进入一汽,一直从事汽车金属零部件的金相检验和失效分析工作,退休前任一汽技术中心材料部技术总监;长期从事失效分析工作,积累了大量的实际经验,现为汽车行业失效分析工作的技术带头人。汽车零部件失效分析是一项专门的工程技术,需要长期的技术时间积累,在此过程中失效分析工程师需要形成切实有效的认知技术和逻辑思维模式。本次会议中,刘柯军高工将分享汽车零部件失效分析的技术逻辑。中车戚墅堰机车车辆工艺研究所有限公司高级工程师 潘安霞《兔年读图——图解汽车零部件失效分析》(点击报名) 潘安霞高工为中车戚墅堰所失效分析高级工程师,现任全国机械工程学会失效分析分会委员、中国中车技术专家,中车计量理化培训讲师,主要从事轨道交通行业齿轮、紧固件、弹簧等关键零部件失效分析研究工作,著有《紧固件失效分析与案例》。本次报告中潘安霞高工将图解汽车零部件失效分析,通过齿轮、电池包、紧固件、轴承等零部件的典型失效案例讲解,说明损伤形貌的宏微观图片正确表征和解读是失效分析的重要环节。陕汽控股集团公司失效分析总监 白培谦《重型汽车零部件失效分析及改进》(点击报名) 白培谦总监自1987年参加工作以来,一直在陕汽从事检验、检测、失效分析和质量管理等技术工作,主要特长为失效分析和质量改进工作,对重型汽车的失效分析和质量改进有30多年的经验积累,发表论文40多篇,从事的失效分析及质量改进项目达1000多项,创造了很大的经济效益和社会效益。 本次报告中白培谦总监将重点分享重型汽车失效的特点分析、重型汽车常见的失效形式,以及如何做好失效分析工作,探讨质量改进方法,分析典型案例等。中国第一汽车集团有限公司高级工程师 陈成奎《汽车零件热疲劳典型案例分析》(点击报名) 陈成奎高工自1997年参加工作以来,一直从事与金属材料相关的零部件失效分析、检测分析及金属材料开发方面工作,解决各种零部件及总成失效问题200多项,为解决设计、生产和使用中存在的问题提供有力的支持。本次报告中陈成奎高工将分享汽车零件热疲劳典型案例分析,主要介绍热疲劳零件失效特征和热疲劳分析要点,分享典型的热疲劳案例,包括汽缸盖、制动鼓、排气歧管、散热器和活塞等热应力开裂案例;并介绍不同零件热疲劳开裂特点及失效原因。比亚迪汽车工业有限公司实验室主任 唐刚《汽车半轴失效模式的分析与探讨》(点击报名) 唐刚为比亚迪汽车工业有限公司材料实验室主任,现任中国汽车工程学会材料分会委员、机械工程学会失效分析分会专家、机械工程学会无损检测分会理事。主要从事金属零部件理化检验、失效分析、焊接工艺研究与检测,长期参与主持重大质量事故和失效分析工作,通过长期工作的实践和技术总结,在汽车相关领域金属零部件失效分析、轻量化焊接方面积累了一定的实际经验。半轴是汽车传动系统中一个重要的零部件,由于其自身特殊结构功能和使用状况等因素的影响,半轴的各种失效发生的频次非常高,而且是汽车重要结构件中失效频次最高的零件之一。本次会议中唐刚主任将分享汽车半轴失效模式的分析与探讨,主要从半轴结构特点、载荷性质、失效模式等方面来阐述汽车半轴失效的多样性和分析思路。中国第一汽车集团有限公司技术主任 李润哲《X射线残余应力检测在汽车上的应用》(点击报名) 李润哲为中国第一汽车集团有限公司研发总院材料与轻量化研究院金属材料开发主任。自1991年参加工作后,主要从事无损检测、X射线衍射分析、工业CT结构分析、喷丸工艺及金属材料开发工作。现任中国机械工程学会无损检测学会理事、中国机械工程学会吉林省无损检测分会负责人,吉林省分析测试协会常务理事,中国机械工程学会残余应力委员会委员,中国机械工程学会喷丸委员会委员。本次会议李润哲主任将分享X射线残余应力检测在汽车上的应用,内容包括:(1)残余应力基础知识;(2)X射线残余应力检测原理及标准; (3)X射线残余应力检测在汽车上应用示例; (4)X射线残余应力检测实践中注意事项。汽车零部件失效分析离不开各类分析检测仪器的助力。除了精彩的专家报告之外,北京欧波同光学技术有限公司业务发展(BD)工程师苏瑞雪、岛津企业管理(中国)有限公司应用工程师崔会杰、日立科学仪器(北京)有限公司电镜市场部副部长周海鑫也将在本会场分享其产品在汽车行业的应用案例。北京欧波同光学技术有限公司业务发展(BD)工程师 苏瑞雪《欧波同汽车材料检测显微分析解决方案》(点击报名) 岛津企业管理(中国)有限公司应用工程师 崔会杰《岛津电子探针在汽车材料分析中典型应用》(点击报名)日立科学仪器(北京)有限公司电镜市场部副部长 周海鑫《日立电镜在汽车行业的应用》(点击报名)以上仅是部分报告嘉宾的分享预告,更多精彩内容请查看会议页面:https://www.instrument.com.cn/webinar/meetings/automobile2023/
  • FCE SID(罐头食品工厂注册 加工过程呈报)认证
    多年以来,耐储藏类餐饮产品的认证过程一直受到严格监管,曾经只能完全交由政府机关执行。从1990年代中期开始,私营机构开始进入这一领域,但也仅限于少数国家,而且在测量、记录保存和流程管理方面有很高的标准和门槛。对于加工和销售耐储藏产品的加工工厂来说,验证程序和工艺认证是必不可少的一环,而且高度依赖于热力杀菌权威 (TPA) 和认证服务提供商,因为他们拥有进行温度验证测试的专业仪器以及汇编认证数据并向政府当局申请认证的专业知识。而在这些已经意识到私营机构价值的国家中,国际上广泛同意将美国 FDA(食品和药物监督管理局)作为监管机构的“黄金标准”。赛莱默非常自豪地介绍这个案例研究,结合 ebro EBI 11 和 EBI 12 无线温度压力数据记录仪的技术以及赛莱默新加坡作为过程认证者的专业知识和经验,成功为我们的客户 Able Dairies Sdn Bhd 申请并获得了 FDA 认证。这一成就使得赛莱默一跃成为此领域的技术拓荒者,通过EBI 11 和 EBI 12的无线技术,实现了对测试过程数据的实时监控。将实时作为过程的一个组成部分,能够确保在过程开始时而不是在完成后,及时进行更正或解决设置问题,从而节省潜在的时间和成本;与此同时,ebro 仪器尤为出色的灵活性和实用性在很大程度上方便了测试设置,灵活多样的可选范围包括:内部传感器、刚性和可弯曲金属探头、完全柔性电缆探头、鲁尔锁或管连接。此外,Winlog.PRO 软件包与记录仪的结合使用同样可圈可点,得益于该软件在许多仪器和测量行业的广泛应用而形成了一个高度稳健可靠的软件平台。业务范畴Able Dairies Sdn Bhd 是一家行业领先的高品质必需乳制品的制造商和加工商。要将其乳制品出口到美国食品杂货店的前提条件是,Able Dairies 必须按照要求向美国 FDA(食品和药物监督管理局)提交所需的强制性 FDA 表格(例如,FDA Form 2541d),以及附带的热过程文件和验证文件。赛莱默新加坡被选中代表 Able Dairies 验证其过程并提交 FDA 认证申请。赛莱默使用无线 ebro EBI 11 和 EBI 12 在 Able Dairies 工厂内进行了测试。解决方案赛莱默指导了 Able Dairies Sdn Bhd 降低通常在私营机构收取的费用的过程。Able Dairies Sdn Bhd 的产品归类为 LACF(低酸罐装食品),其中存在在大量耐热微生物。将罐头放置在通常称为“杀菌釜”的大型压力蒸汽灭菌器中以破坏微生物,产生耐贮存的食品。FDA 要求必须提供这2份文件并随附所有关键信息,以证明乳制品的生产过程合规。数据采集完全依照获批指南进行,并根据FDA推荐的协议编制。FDA 认可了赛莱默新加坡的报告,并授予了 Able Dairies Sdn Bhd 相应的“FCE SID 证书”。通过美国 FDA 认证是对ebro仪器和赛莱默认证系统二者的明确认可结果赛莱默新加坡的认证团队被美国FDA和英国BRC(英国零售商协会)认定为 TPA(热力杀菌权威)。结合 ebro EBI 11 和 EBI 12 无线温度压力数据记录仪的成功商业应用以及赛莱默新加坡作为过程认证者的专业知识和经验,成功为我们的客户 Able Dairies Sdn Bhd 申请并获得了 FDA 认证,以引人侧目的优异表现毫无非议地打入了严格监管下的 ebro 解决方案细分市场。“我们希望助力区域产业成长!”---Allan Javier - Ebro 产品经理
  • 热烈庆祝2022(第七届)氟材料高端应用及相关加工技术研讨会胜利召开
    热烈庆祝2022(第七届)氟材料高端应用及相关加工技术研讨会胜利召开 氟材料高端应用及相关加工技术研讨会开幕式在热烈的掌声中我们迎来了2022(第七届)氟材料高端应用及相关加工技术研讨会的盛大开幕,烈日炎炎也阻挡不了参会人员的热情,本次研讨会的三个主题分别为:新能源用氟材料分论坛、氟电子化学品和新型氟碳化学品分论坛,三个分论坛紧张有序地进行。 上海交通大学张永明教授演讲 中科院上海有机化学研究所张新刚研究员演讲 浙江大学张庆华教授演讲资深专家学者们莅临现场为与会人员带来了氟材料领域的精彩报告:上海交通大学、东岳集团首席科学家张永明教授做了“关于氢燃料电池全氟质子膜结构演变探讨和工业化实践”的精彩报告;中科院上海有机化学研究所张新刚研究员分享了“廉价含氟资源小分子的高效催化转化研究成果”;浙江大学、联合化学反应工程研究所副所长张庆华教授现场分析了“含氟新材料及其在锂电池中的应用”......会议现场掌声不断,专家与参会人员频频互动,共同探讨和交流未来氟材料行业发展的方向和前景,学习氛围浓烈。 北京海菲尔格科技有限公司展台 北京海菲尔格科技有限公司技术工程师与专家学者们沟通交流中北京海菲尔格科技有限公司有幸能参与到此次盛会中,在研讨会现场展出了芬兰Pixact公司的PCM结晶监测系统和德国TEWS ELEKTRONIK公司的MW4492微波水分仪,专家学者纷纷驻足观看,咨询结晶监测系统和微波水分仪的测试方法和测试原理,对简单快捷的设备操作和高效准确的测试结果赞叹不已。 应用到研发领域的PCM结晶监测系统结晶和粒度监测与控制是进行氟材料研究和生产不可或缺的监测手段。芬兰Pixact公司的PCM结晶监测系统采用透射光原理设计,由仪器探头末端发出的激光透过测试样品,由探头另一端的高分辨率CCD相机接收透射光并对晶体成像,对于微小晶体也可以清晰成像,并保证图像质量。PCM结晶监测系统利用功能强大的图像算法,可以实时给出高准确度的晶体颗粒度数据:晶体尺寸D10、D50、D90等、晶体尺寸分布、晶体尺寸变化趋势、晶体形态、晶体径长比、晶体生长速率等数据。 应用到工业现场的PCM结晶监测系统PCM结晶监测系统广泛应用于研发和工业生产中,可以实现:原料杂质监控,补料时间确定,晶体颗粒度监控,二次成核控制,晶体颗粒度分布宽度监控,出料时刻判定,加晶种方案优化,晶体颗粒形状调整,生产质量稳定性监控,等等。 应用到实验室领域的德国TEWS ELEKTRONIK公司的微波水分仪 应用到工业现场的德国TEWS ELEKTRONIK公司的微波水分仪德国TEWS ELEKTRONIK公司作为卓越的水分和密度测试解决方案的市场领导者,已有近50年的历史,其MW4492微波水分仪可以很好地表征PTFE粉末的水分含量和堆密度,专为苛刻条件、极低水分含量客户提供解决方案。微波水分仪测试方便、快捷高效、灵敏度高、重复性好。微波水分仪的测试速度为毫秒级,可以在生产线上安装,在线实时监测生产过程中各个环节物料的水分含量,不需要人工取样及样品制备,完全自动化。2022(第七届)氟材料高端应用及相关加工技术研讨会的顺利举办为氟材料领域搭建了一个很好的沟通交流平台,北京海菲尔格科技有限公司得以展示目前最先进的PCM结晶监测系统和MW4492微波水分仪,先进的分析仪器和监测设备可以促进六氟磷酸锂和锂电级PVDF等氟相关新能源材料的工艺优化和产品升级,必能为中国氟材料行业的发展增光添彩。
  • AI助力新能源分析: 锂离子电池材料显微智能分析方案
    随着我国新能源汽车产业的规模越来越大,对动力锂电池的需求,也逐步增加。电动汽车的主要能量源是动力电池,其发展和应用在很大程度上受动力电池性能影响。锂离子电池发展至今,凭借其高电压、高能量密度、良好的循环性能和绿色环保等优势成为在新能源应用中广泛的化学储能器件之一。图1:锂离子电池的组成示意图 锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。随着对锂离子电池的研究不断深入,电池工业界正在迅速向更高能量密度和更低成本的电池技术努力,以达成零碳排放的目标。 但是目前在锂电池使用或储存过程中仍会出现一定概率的失效,一类是锂离子电池的材料自身缺陷引起的失效,例如正负极的结构衰退,电解液分解,隔膜的老化等;另一类是锂离子电池使用及存储环境引起的失效,例如环境温度过高,充放电过快,过度充放等,都严重降低了锂电池的使用性能、一致性、可靠性和安全性。图2:锂离子电池失效模式 虽然产品的诞生伴随着失效,但只要充分了解失效原因,掌握分析失效的方法和利器,就能从根本上找到并解决失效问题。对于锂电池来说,其失效归根结底是材料的失效。例如,正极材料因局部Li+脱嵌速率不一致导致材料所受应力不均而产生的颗粒破碎;硅负极材料因充放电过程中发生体积膨胀收缩而出现的破碎粉化;隔膜孔隙阻塞等。电池性能和电池材料性质有着息息相关的关系,准确把握材料的特性,是解决电池问题并提升电池性能的重要途径之一。 软件特点简介 汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”LIBMAS—锂离子电池材料显微智能分析系统”(以下简称LIBMAS),将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。 针对传统软件自动化程度不足,操作复杂的弊端,汇鸿智能科技可为客户量身定制专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、二次颗粒分布均匀性、开裂球识别、截面孔隙统计、隔膜材料孔隙分析等锂电池材料分析。 应用案例0101开裂球、截面孔隙识别 通常在制备三元正极材料时,采用共沉淀法使亚微米一次粒子致密堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图1:软件智能区分开裂球和普通球 通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图1。 在锂电池中,锂离子在正极晶格中反复脱嵌,随着电流密度和颗粒尺寸的增加,仅仅几个循环就出现晶间裂纹。而产生的裂纹对电池性能、SOC、以及锂离子传输路径都会有一定影响。图2:二次球截面孔隙识别 正极颗粒内部通常为二次球颗粒形成的多晶结构,导致正极晶格在循环中容易发生各向异性体积变化,而产生孔隙。我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图2。使用LIBMAS对截面孔隙进行识别,以轮廓中心点为圆心画出同心圆,以各同心圆圆环内的孔隙率计算同心圆孔隙率RSD,见图3。 图3:二次球截面孔隙率统计及RSD计算 0202团聚颗粒识别 正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的粒径在几个到十几个微米之间的二次颗粒。图4:一次颗粒团聚形成的二次球颗粒识别 通常团聚体颗粒内部较为密实,一次粒子之间连接处存在晶界。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图4、图5。图5:软件自动区分团聚颗粒及团聚颗粒截面 相对于单独的纳米粒子,这种形貌的团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。 然而在团聚体反复的充放电过程中,团聚体内部也反复经受一次颗粒体积变化产生的应力冲击,容易在一次颗粒之间的晶界处发生破碎。破碎后的颗粒不仅增大了活性物质的比表面积,进而加剧了活性物质和电解液之间的副反应。而且破碎后的一次粒子之间失去了有效的电接触,也进一步增加了电极材料的阻抗,不利于循环性能的保持。 03单晶颗粒识别图6:单晶颗粒的识别 团聚体的破碎受多种因素影响。减小体积变化程度可以减小应力应变对团聚体的损伤;另外,从前驱体和烧结工艺入手以尽可能增强烧成的团聚体颗粒内部密实度,增强一次粒子之间的结合力,从而提高团聚体颗粒抗破碎的能力。 另外,相比易产生颗粒粉碎的多晶正极材料,许多研究已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图6、7。 图7:单晶颗粒尺寸统计及分布图 04大小二次球识别 除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图8、9。图9:大小二次球颗粒分布均匀性统计05隔膜孔隙率统计 锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实,隔膜的微孔孔径分布越均匀,电池的电性能越优异。 孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图10:隔膜孔隙识别及孔隙率统计 汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图10、11。 图11:隔膜孔隙率统计结果及孔隙面积分布图 针对锂电行业的特殊需求,汇鸿智能科技开发了一整套智能化锂离子电池材料分析系统。汇鸿智能科技公司是一家国际前沿微观AI图像分析生态平台开发公司,以“AI 即专家”为使命, 驱动AI技术,加速实验室智能化升级,构建实验室全场景智慧,为工业分析和质量控制赋能。
  • “超级显微镜”带你探微格物——探访中国散裂中子源
    广东东莞大朗镇,松山湖科这里曾是一片荔枝林,如今坐落着一座“中子工厂”。中国散裂中子源(CSNS),我国迄今为止已建成的单项投资规模最大的大科学工程。它的建成,使我国成为继英国、美国、日本之后,世界上第四个拥有脉冲式散裂中子源的国家。前不久,中国散裂中子源二期工程组织了可行性研究报告评审。明年上半年,二期工程有望动工建设。散裂中子源是什么,为什么被称为“国之重器”?中国科学院高能物理研究所(以下简称中科院高能所)副所长、东莞研究部主任陈延伟打了个比方:“简单来说,散裂中子源就是一台‘超级显微镜’,其产生的中子如同‘探针’,可以清晰检测物质的内部结构。”陈延伟介绍,作为当今人类深度探索微观世界的有力工具,散裂中子源广泛应用于新材料研发、关键零部件的性能检测等热门领域,为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供先进的科研平台,对满足国家重大战略需求和解决前沿科学诸多领域的瓶颈问题具有重要意义。1 设备研制达到国际先进水平,核心设备国产化率达90%以上中子,组成原子核的基本粒子之一。中子有很多特质。它不带电,但有磁矩,能很好地帮助我们对磁性结构做研究;它穿透力强,具有非破坏性,能够原位地研究大的工程部件的残余应力和金属疲劳,为高端制造保驾护航;它对生命科学和能源领域极为重要的元素,如碳、氢、氧、氮等,都比较敏感;它跟原子核相互作用,能够区分同位素……“这些特质,决定了中子在微观研究领域的不可替代性。”中科院高能所东莞研究部副主任、散裂中子源科学中心副主任金大鹏对记者说。研究物质微观结构需要大量中子,这就要用到能安全、高效地产生中子的散裂中子源。中国散裂中子源主要由三大部分构成:2台加速器,包括1台负氢离子直线加速器、1台快循环质子同步加速器;1个靶站;多台中子谱仪。此外,还有相应配套设施。陈延伟介绍了其工作原理:将质子加速到16亿电子伏特,把速度相当于0.92倍光速的质子束当成“子弹”,去轰击原子序数很高的重金属靶。靶的原子核被撞击出质子和中子,科学家通过特殊的装置“收集”中子,开展各种实验。建设中国散裂中子源的建议,始于上世纪九十年代末期关于中国高能物理发展战略的研究。此后,中国散裂中子源被列入国家“十一五”大科学装置建设计划。2006年,中国散裂中子源选址广东东莞。2011年,中国散裂中子源开始正式建设。2017年8月,首次质子打靶,成功获得中子束流;2018年3月,正式建成;2018年8月,正式通过国家验收,投入运行。散裂中子源装置庞大,设备部件繁多,工艺复杂。“建设散裂中子源,很多技术都需要从头探索。6年半时间就能建成,离不开关键核心技术的突破。”金大鹏介绍。快循环质子同步加速器所用的25赫兹交流磁铁,在我国属首次研制。研制期间,遇到了超乎想象的技术难题。铁芯和线圈振动开裂、涡流发热……如何解决这些经验之外的新问题?科研人员与合作单位联合攻关,最终依靠自己的力量研制出合格的磁铁。科研人员还创新提出了谐振电源的谐波补偿方法,解决了多台磁铁之间的磁场同步问题。挑战接踵而至——高功率靶要用到钨材,而钨材不耐冲刷,需要在其外包覆一层钽金属。怎样把钽做到足够薄,并提高钽和钨的结合力?在零下253摄氏度左右低温下工作的液氢慢化器,其焊接都是难度极大的薄壁焊接,如何保证可靠性?中国散裂中子源的建设过程,也是自主攻关掌握核心关键技术的过程。金大鹏介绍,25赫兹交流磁铁、高功率靶、液氢慢化器、中子探测器等多项关键核心技术突破以后,对其他领域的发展也产生了一定影响。中国散裂中子源各项设备的批量生产在全国近百家合作单位完成。通过自主创新和集成创新,许多设备的研制达到国际先进水平,核心设备国产化率达90%以上,这不仅大大降低了装置成本,还有力提升了国内相关产业的技术水平和制造能力。金大鹏举了个例子:由于工艺水平高、产品质量好,中国散裂中子源靶体部件的制造单位,成功中标了世界上第五台脉冲式散裂中子源——欧洲散裂中子源的靶体部件。2 研发过程中的技术突破有望为肿瘤治疗带来重要技术革新位于地下17米的加速器隧道里,排列着各种颜色、连接各种管线的复杂设备。科研人员使用氢气产生负氢离子,并将它们在直线加速器里加速。当它们的能量达到8千万电子伏特时,将“飞奔”进入环形的快循环质子同步加速器。一秒钟之内,就有25波负氢离子奔来。在这里,负氢离子将转变为质子,并通过不断“狂奔”、反复加速,将能量提高到16亿电子伏特,速度提升到0.92倍光速。接近光速的质子束被引出,去轰击钨靶,由此产生中子。在加速器关键技术研发过程中,也产生了一些新技术成果,并已衍生出具体应用,开花结果。利用中国散裂中子源的射频四极加速器技术突破,2020年8月,研究人员成功研制出我国首台具有完全自主知识产权的加速器硼中子俘获治疗(BNCT)实验装置,可用于癌症治疗研究。这为我国医用BNCT装置整机国产化和产业化奠定了技术基础,有望为肿瘤治疗带来重要技术革新。首台临床设备已在医院安装,预计2023年5月完成安装调试。中国散裂中子源正式运行并向国内外科学家、工程技术人员、工业企业开放后,大科学装置的综合效应日益显现。“中国散裂中子源在多个领域开展重大创新研究,包括对深海潜水器等大型工程部件进行残余应力和服役性能检测等,为国家急需的许多高性能结构材料攻关提供了关键技术平台。在磁性材料、纳米功能材料、高效催化剂、自旋电子学、有机太阳能薄膜电池、金属玻璃、高分子聚合物、生物大分子等国际前沿科技研究中,也取得一大批成果。”陈延伟说。什么是残余应力?它是指在材料、部件加工、服役等过程中,保留在其内部的应力,可能导致工程部件的变形乃至失效。深海潜水器的壳体是钛合金焊接的。下潜海底万米,要扛住巨大的海水压强,焊接的可靠性至关重要。“我们对它的焊接模拟件进行检测,了解不同焊接工艺的残余应力参数,为壳体寿命预测、焊接工艺选择提供了关键数据支撑。”金大鹏说,高铁的车轮等大型高速运动工程部件将来也需要散裂中子源来验证其残余应力参数。作为粤港澳大湾区首个重大科技基础设施,中国散裂中子源的建成,为国内科技工作者带来了研究物质的“利器”,特别是为港澳科学家提供了前所未有的便利。香港大学黄明欣教授团队研发的超强超韧的“超级钢”,就是通过中国散裂中子源,来分析其成分、结构,验证了相关研究结果。3 为前沿科学研究和国家重大需求提供先进研究平台橙色、紫色、蓝色、浅蓝、浅绿……走进靶站谱仪实验大厅,一台台颜色各异的谱仪,以靶站为中心,宛如七色花的花瓣一般向外伸展排列。中子产生后,经过慢化,通过中子通道被引入谱仪。“中子在谱仪中和样品材料的原子核相互作用,产生散射、衍射、透射。”金大鹏解释说,中子就像派进去探查信息的侦察兵,我们可以根据它进去时的角度、能量,出来时的角度、能量等,经过测量,反推回去,研究样品的结构及动力学。探微格物,中国散裂中子源为材料科学技术、物理学、化学化工、生命科学、新能源等基础研究和应用研究提供有力支撑。目前,中国散裂中子源已完成8轮开放运行,全球注册用户超过3900人,完成课题800余项。伴随着国家重大战略部署的推进、新兴产业的发展以及国际前沿研究的需要,中国散裂中子源用户数量快速增长,申请使用装置的课题数快速增长。中国散裂中子源面临“升级”。其实,一期工程设计已经预留了升级改造空间。根据国家“十四五”规划,中国散裂中子源的二期工程即将启动。“中国散裂中子源一共规划有20条中子通道,能够建设22台中子谱仪。”金大鹏向记者介绍,目前共有5台谱仪已投入运行使用,其中包括一期工程国家投资建设的3台谱仪,还有与高校、研究机构合作建设的2台用户谱仪。另有6台不同类型的合作谱仪正在建设、调试中,其中4台预计今年年底将投入使用,满足更多用户的不同需求。不同的谱仪,有不同的用途。浅绿色的通用粉末衍射仪,主要用于研究物体的晶体结构和磁结构,现在也用于开展小部件的残余应力测试。刚投入使用不久的大气中子辐照谱仪,已吸引国内不少高科技企业将自家产品送来测试。研究人员使用高通量的中子加速电子元器件出现问题的进程,从而推动工艺迭代,确保电子元器件与系统性能高度可靠。即将在今年年底投入使用的工程材料应力衍射仪,可以在不破坏样品的情况下,对高铁的车轮、航空航天发动机叶片等设备的残余应力、金属疲劳数据进行研究,一方面为改进工艺提供参考,另一方面也可以评估出部件既能保证安全又能保证经济性的使用里程和时间。金大鹏介绍,目前投入使用的谱仪多为通用型谱仪。围绕国家重大战略部署、新兴产业需求等,专门规划了一批新的谱仪。正在建设中的谱仪,还有专门用来研究新能源电池的。二期工程建成后,中国散裂中子源的谱仪数量将增加到20台,覆盖广大用户各方面研究领域。同时,加速器打靶束流功率将从现在的140千瓦提高到500千瓦。这意味着,同等时间能产生更多中子,不仅能有效缩短实验时间,还能使实验分辨率更高。“新的谱仪和实验终端建成后,中国散裂中子源的设备研究能力将大幅提升,实验精度和速度将大大提高,能够测量更小的样品、研究更快的动态过程,为前沿科学研究、国家重大需求和国民经济发展提供更先进的研究平台。”陈延伟说。工作人员在调试直线加速器有关设备。靶站核心。在这里,接近光速的质子束轰击重金属靶,产生中子。谱仪实验大厅局部。中子产生后,经过慢化,通过中子通道被引入谱仪。不同颜色的谱仪,有不同的用途。中国散裂中子源的环设备楼,快循环质子同步加速器位于此。(中科院高能所供图)装置简介:中国散裂中子源(CSNS)是我国首台、世界第四台脉冲式散裂中子源,是国际前沿基础研究和国家发展战略领域多学科交叉研究的大型平台。中国散裂中子源的成功建设,填补了国内脉冲中子源及应用领域的空白,技术和综合性能进入国际同类装置先进行列,显著提升了我国在相关领域的技术水平和自主创新能力,实现了强流质子加速器和中子散射领域的重大跨越,为物质科学、生命科学、资源环境、新能源等方面的基础研究和高新技术研发提供了强有力的支撑。
  • 海洋材料防腐检测利器弯曲预裂纹应力腐蚀试验机研发成功
    一种能够适应大尺寸试样、甚至是原型试样的高温弯曲应力腐蚀试验机成功交付用户,这台弯曲应力腐蚀试验机可以进行大尺寸试样甚至原型试样的弯曲试验,同时,设备配套悬臂梁弯曲夏比试样的弯曲应力试验,悬臂梁弯曲夏比试样的弯曲加载采用砝码加载形式。大尺寸弯曲应力腐蚀试验机采用电子加载形式。配置合适的溶液池即可进行弯曲应力腐蚀试验。受客户要求,百若仪器开发出大尺寸弯曲应力腐蚀试验机,不仅可以进行轴向慢应变应力腐蚀试验,也可进行弯曲腐蚀试验,同时,可以进行悬臂梁夏比试样悬挂弯曲试验。弯曲应力腐蚀试验机也可根据客户的要求进行弯曲应力腐蚀疲劳的试验。YYF-100弯曲加载预裂纹应力腐蚀试验机主要研究在海洋腐蚀环境下的应力敏感性材料特性。专用慢应变速率应力腐蚀试验机,适用环境为微高温常压盐溶液。该设备特点在于除轴向拉伸功能外,增设一套机构用于实现对悬臂试样的弯曲加载,以及一套专用单元用于对夏比试样进行悬挂弯曲试验。该产品完全满足客户要求,得到客户的好评。背景资料:金属材料在拉应力及特定的腐蚀介质的作用下,经过一定的时期,将会产生裂纹及断裂的现象称为应力腐蚀开裂,并且,这种开裂经常以不可预测的低应力脆断出现在材料服役现场,造成事故的发生及材料的损耗,因此,一些科研机构及材料专家一直在致力于研究应力腐蚀开裂的课题,目前,主要以GB/T 15970.7-1995 金属和合金的腐蚀 应力腐蚀试验,GB/T 17898-1999不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法,YB/T 5362-2006 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法等试验方法进行试验,这些试验方法中的试样以小试样作为研究对象,而大尺寸的往往以有限元分析进行模拟。在实际工作中,材料往往以大尺寸的面貌出现在服役现场,这样,试验所得的数据可能会出现一定的偏差,这些偏差可能会受到腐蚀温度、介质浓度等因素的影响,也可能受到晶粒组织的影响,这样,采用大尺寸试样弯曲应力腐蚀试验的必要性就显得尤为重要。
  • 中科院力学所在航空发动机用钛合金高温疲劳研究中取得进展
    航空发动机被誉为现代工业“皇冠上的明珠”。叶片是航空发动机的关键零部件,其在服役寿命内承受高温高周甚至超高周次(107)循环载荷作用。同时,实际零部件在材料的制备、加工以及使用过程中通常不可避免地存在各种类型缺陷。因此,揭示钛合金高温高周和超高周疲劳特性以及其缺陷敏感性具有重要科学意义和工程应用价值。力学所非线性力学国家重点实验室微结构计算力学课题组,研究揭示航空发动机叶片用TC17钛合金高温(200℃和400℃)高周疲劳裂纹起源于试样表面或内部(图1),表面裂纹萌生是由于富氧层开裂或氧化物脱落导致的(图1a-1g),内部裂纹萌生是位错相互作用导致晶粒细化进而诱导的(图2)。在实验结果基础上,提出400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型(图3)。进一步研究表明,含表面缺陷TC17钛合金应力-寿命数据在高周和超高周(107)阶段具有平台区特征。表面缺陷显著降低TC17钛合金室温和高温疲劳强度,但高温并未降低含缺陷试样的疲劳强度(图4a),一个重要原因是高温下形成较硬的氧化层抑制了表面裂纹萌生,提升了疲劳性能。研究还发现,高温和缺陷对TC17钛合金高周和超高周疲劳强度的影响可以近似表示成(图4b):其中σfs疲劳强度(单位:MPa),t是温度(单位:℃),是缺陷垂直于主应力轴的投影面积(单位:μm),。研究成果对于理解钛合金高温高周和超高周疲劳失效机制以及含缺陷钛合金的疲劳强度预测具有重要价值。图1光滑试样疲劳断口SEM图像。a-c:氧化物入侵诱导的表面裂纹萌生(200℃,σa=650 MPa,R=-1,Nf=2.7×104 cyc),b和c分别是a中上面和右侧裂纹萌生区域的放大图。d-g:氧化物脱落诱导的表面裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=7.6×105 cyc),e是d中裂纹萌生区域的放大图,f和g分别是e中相应区域的放大图。h-j:内部裂纹萌生(400℃,σa=520 MPa,R=-1,Nf=1.0×106 cyc),i和j分别是h和i中裂纹萌生区域的放大图。图2 400℃光滑试样(σa=520 MPa,R=-1,Nf=1.0×106)疲劳断口粗糙区域微结构观测结果。a:SEM图像,短线为提取位置。b:a中位置b沿主应力方向剖面SEM观测结果。c-e:a中位置c沿主应力方向剖面的反极图、相图和TEM图片。f和g:分别为e中区域1的暗场像和区域2的放大图。图3 400℃时TC17钛合金表面裂纹萌生和内部裂纹萌生竞争模型。a和b:富氧部位脆性断裂引发表面裂纹萌生的横截面图和侧面图。c和d:氧化物脱落引发表面裂纹萌生的横截面图和侧面图。e和f:内部裂纹萌生的横截面图和侧面图。图4 a: 光滑试样和缺陷试样疲劳强度(2×107 cyc)与温度之间关系. b: 高温和缺陷对TC17钛合金超高周(2×107 cyc)疲劳强度的影响模型与实验数据比较,空心符号表示光滑试样的疲劳强度. 这里应力均为名义应力, 计算截面为试样最小截面相关研究成果发表在J Mater Sci Technol 2022, 122: 128–140. 力学所特别研究助理李根为论文第一作者,孙成奇研究员为通讯作者。研究得到基金委重大研究计划“航空发动机高温材料/先进制造及故障诊断科学基础”培育项目(91860112)支持。
  • 汽车制造巨头引进飞纳台式扫描电镜
    广州汽车集团股份有限公司(Guangzhou Automobile Group Co., Ltd.,简称广汽集团)是中国汽车行业首家在集团层面引入多家合资伙伴,进行改制设立股份公司的企业。2018 年 8 月,广汽集团引进飞纳台式扫描电镜大样品室卓越版 Phenom XL。目前,广汽集团测样量最大的样品就是零部件的断裂/开裂的失效分析(金属断口)。金属断口通常是一个凹凸不平的粗糙面,而且是块状样品,取样容易,在扫描电镜的样品仓中可进行倾斜旋转多角度观察,因此扫描电镜非常适合断口分析。下面,对于典型的金属断口形貌作一些简单的介绍:对于不同断裂机制形成的断口,其微观结构各有独特的形貌特征,一般将其分为两大类: 一类伴随着明显塑性变形的延性断口 另一类是几乎不伴随塑性变形而断裂的脆性断口金属多晶材料的断裂,通过空洞核的形成、长大和相互连接的过程进行,这种断裂称为韧窝断裂(dimple fracture)。韧窝断裂是属于一种高能吸收过程的断裂,是延性断裂中的一种。如图1所示,其断口特征为:宏观形貌呈纤维状,微观形态呈蜂窝状。断裂面是由一些细小的窝坑构成,窝坑实际上是长大了的空洞核,通常称为韧窝,它是韧窝断裂的最基本形貌特征和识别韧窝断裂机制的最基本依据。韧窝的尺寸和深度与材料的延展性有关,而韧窝的形状也同受到的破坏应力有关。因此,对于断口面上吻合部位的韧窝几何形状、尺寸和深度进行分析,就可以确定断裂时所在部位的应力状态和裂纹扩展的方向,并可对材料的延展性进行评价。 图 1 金属韧窝状断裂沿晶脆性断裂是指断裂路径沿着不同位向的晶界(晶粒间界)所发生的一种属于低能吸收过程的断裂。根据断裂能量消耗最小原理,裂纹的扩展路径总是沿着原子键合力最薄弱的表面进行。晶界强度不一定最低,但如果金属存在着某些冶金因素使晶界弱化(例如杂质原子 P、S、Si、Sn 等在晶界上偏聚或脱溶,或脆性相在晶界析出等等),则金属将会发生沿晶脆性断裂。沿晶脆性断裂的断口特征是:在宏观断口表面上有许多亮面,每个亮面都是一个晶粒的界面。如果进行高倍观察,就会清晰地看到每个晶粒的多面体形貌(如图 2 所示),类似于冰糖块的堆集,故有冰糖状断口之称。 图 2 金属材料脆性断裂飞纳台式扫描电镜大样品室卓越版 Phenom XL 拥有 100 mm × 100 mm × 40 mm 的样品仓,30 秒抽真空成像、全自动化操作、防震设计等优点,可以满足广汽集团以下需求:1. 满足生产工艺过程品质控制的需求---主要为涂装工艺(碳化结晶、表条液活性、电泳等品质抽查)、动力总成机加工、板材冲压成型、技术中心新板材导入等过程中的品质监控和验证;2. 满足零公里和市场零部件异常分析改进的需求---主要为涂面异常分析、发动机/变速箱内异物分析、油品类异物分析、以及内外作零部件的断裂/开裂失效分析等;3. 扩展试验能力,提升日常监控,异常解析的时效性。飞纳台式扫描电镜大样品室卓越版 Phenom XL 标准样品杯
  • 成核控制技术在冻干过程中的应用
    当冻干工艺放大过程中遭遇过冷度难题,该如何解决?1、预冻及成核冻干过程分为三个主要阶段: ● 预冻 ● 主干燥(一次干燥) ● 次级干燥(二次干燥) 预冻阶段主要是样品中的溶剂(多数情况下是水)凝固,形成冰,从溶质中分离出来;主干燥阶段主要是将预冻阶段形成的冰通过升华的方式去除,也是整个冻干过程中最长的一个阶段;次级干燥是利用扩散和解吸附的原理进一步去除未冻结的水分。 第一步的预冻尽管时间相对来说不是很长,但是很关键,因为:1. 它决定了样品的形态,进而决定一次干燥和二次干燥产品的性能;2. 极大地影响产品的物理化学性质(如成分的结晶);3. 对API施加了不稳定的应力(如冷冻浓缩影响)。预冻过程中产品温度随时间的变化,如图1:图1:预冻过程产品温度随时间变化图1--层板进口温度(降温速率0.5℃/min)2--成核之前样品温度(降温速率约0.3℃/min)3--成核温度Tn: 初次形成冰核的温度4-平衡凝固点Tf* Tn和Tf之间样品处于过冷状态 Q:液体的水是如何变为固体的冰? 1. 一次成核:最初的晶核出现在超过临界尺寸的分子团簇中; 2. 二次成核:冰核向冰晶的生长(“结晶”);结晶的放热事件停止了二次成核; 3. 最终固化:通过层板冷却的小瓶底部向顶部行进,是一个缓慢的过程,热量必须通过已经固化的基质和小瓶的底部传递到层板,当继续冷冻浓缩,直到达到Tg’,玻璃态的高粘度基质阻止了水的进一步结晶。在这个过程中我们通常会面临一个问题,一次成核是一个随机和自发的过程,整个批次样品的成核会发生在一定的温度和时间范围内(样品成核温度相差约9.1℃,全部成核经历的时间大约47min)(见图2),这种不同跟样品所处的环境条件以及降温速率有关。图2:同一批次样品成核温度和时间关系图50 mg/mL Sucrose 10 mL Vial 3 mL Fill Volume这种随机的不受控制的自发过程会导致:1. 同一批次中不同小瓶的成核温度不同,最 终干燥产品性能的异质性;2. 实验室(非GMP)和无菌中试或生产规模之间成核温度的批次可变性;3. 两种可变性都会影响产品和工艺性能;4. 过程控制问题(一次干燥终点指示);5. 产品质量面临风险(一批产品中不同的初次干燥时间!)6. 放大:成核温度降低1°C(较低的过冷度),初级干燥时间缩短约3%。这种预冻行为的可变性是工艺放大化转移面临的一个严重的问题,通常我们可以通过退火来改善同一批次样品的孔径大小分布,来减少批次内和批次之间冰晶形态的差异,提高样品的均一性。退火是一种比较成熟并且已被普遍接受和认可的用于冻干过程中改产产品均一性的一种方法,最佳的退火温度(在样品的Tg’和Te之间)和时间(几小时到6h不等)也需要根据不同的配方产品进行摸索来决定,然而,退火也并不是适用于所有的样品,有些时候,退火可能反而会起到不好的作用,如加剧产品的降解,因此需要对具体的工艺及储存稳定性进行详细的研究,退火也需要谨慎使用。Q:那么是否有新的技术或方法能够直接控制成核温度来改善这种差异性呢?什么是控制? A:控制就是要有使产品能够在指 定的温度和时间下完成成核的能力。2、成核控制技术种类针对目前存在的以上问题,科学家门研究出了各种不同的成核控制技术:添加成核种子或小瓶预处理诱导成核使用添加剂(例如碘化银/丁香假单胞菌)或小瓶预处理(刻划、刮擦或表面粗糙化)以产生额外的成核位点,从而促进晶核的形成。● 不适用于生产冻干肠外产品(无菌/颗粒物!)● 没有Tn的“控制”● 只是提高了平均的成核温度电诱导成核 通过强电脉冲(U=3 kV)诱导成核;需要一个与产品直接接触的电极;不能直接用于含有大量盐(如NaCl)的溶液。超声波诱导成核在过冷(亚稳)系统中使用振动诱导成核(声脉冲:10 ms,10–40 kHz);没有大规模应用的报告。真空诱导表面冻结成核通过将腔室压力降低至稍低于大气压(约1mbar),并在约-10℃下预先平衡液体产品来诱导表面冻结;过度沸腾的风险(产品外观损害、产品损失)。冰雾诱导成核将产品冷却至低于Tf(例如-5℃)的所需成核温度并平衡一定时间,然后降低腔室压力至中等负压(约50Torr),将冷氮气注入腔室,冰雾(微小冰晶)迁移到小瓶中诱导成核。冰雾成核的方法可用在实验室及生产规模的冻干设备上,但是需要考虑无菌的问题,冰雾分布的均一性以及是否能够实现瞬时成核。加压卸压法诱导成核采用加压瞬间卸压的方法,当加压到一定压力,降低层板温度至期望的成核温度,维持一定时间,瞬间降压的同时成核,压力调节采用无菌的惰性气体,无任何污染源引入到腔体中,在中试以及生产型冻干机上均可实现。具体的机理,目前有几种假说:1. 产品腔体中的气体在卸压的过程中经历了膨胀会冷却,冷却的气体接触到亚稳态的液体样品表面,诱导成核;2. 卸压会引起样品液体表面的局部蒸发,蒸发导致的冷却诱导成核;3. 突然的卸压可能会产生压力波或震动干扰,从而诱导成核;这种方法可以使整批样品在瞬间成核(几秒的时间),形成高度均匀的冰晶尺寸,但是需要耐压的产品腔才可以实现,并且价格昂贵。各种成核技术各有优缺点,不管是哪种成核技术,应用在制药行业,首先需要维持产品的无菌性,系统的完整性,另外需要考虑其适用性、有效性,针对具体产品的价值性等。3、成核控制技术案例分享材料和方法实验目的采用成核控制、传统退火程序和随机成核三种方法用于产品性能和关键指标以及冻干工艺优化潜力的比较。实验设计对于工艺1-4,二次干燥程序均为0.1℃/min升温至40℃, 维持360 min;一次干燥真空度均为57mTorr 一次干燥终点判断压力灵敏度 1mTorr(Pice和Pc差值)。实验结果图图3:不同工艺产品内部结构图 图4:不同工艺产品一次升华干燥阻力数据图图5 不同工艺一次干燥产品升华界面温度数据图图6:不同工艺一次干燥产品底部温度数据图图7 :不同工艺产品一次干燥时间图图8 :不同工艺产品最 终水分含量数据根据实验数据结果得出如下结论● 在较高的温度下成核,能够获得更大尺寸的内部孔径结构(图3);● 经过成核控制或退火处理,在一次升华过程中具有较小的升华阻力(图4);● 成核控制或退火处理检测到的产品升华界面的温度较低,这是由于升华阻力较小导致的,这样可以设置更高的层板温度,进而提高升华速率,缩短干燥时间(图5);● 在主干燥过程中,使用热电偶产品温度探头检测到的产品温度中,成核控制或退火处理获得的产品温度较低(图6);● 成核控制可以缩短一次干燥的时间(图7);● 成核控制能够获得较大的冰晶结构,有利于一次干燥,但是反过来产品具有较小的比表面积,不利于二次干燥水分的去除,因此具有相对高的残留水分,需要调整二次干燥的条件来优化(图8)。4、总结成核控制除了能够提高冻干效率,改善产品均一性外,经过研究发现,它还在改善某些产品的性能及外观方面具有良好的效果,如解决产品表面结壳,产品开裂或萎缩,裂瓶,缩短复水时间,提高产品稳定性等,成核控制技术对于冻干工艺及产品的潜在优势也在不断地探索和进一步研究中,最终的效果可以根据不同的样品通过具体的实验来验证。5、成核控制冻干设备德祥科技旗下莱奥德创提供高品质的冻干设备,具备成核控制技术功能,如果感兴趣的客户也欢迎到我们实验室来进行具体的实验实践和结果的验证。ATS SP Scientific提供的Lyostar冻干机仅需运行一个遁环即可自动摸索和开发冻干工艺。结合冻干PAT技术使漫长复杂的工艺摸索变得简单快捷有效。PAT技术——Smart 全自动工艺开发技术,Controlyo控制成核技术,TDLAS实时水蒸汽测量技术。Controlyo控制成核技术在相同的温度下,以瞬间减压的方式在同一时间让所有小瓶瞬间成核,在较高的温度下成核,产生更大、更均匀的晶体尺寸,使干燥更加一致。● 提高批次均匀性;● 无引入污染或外来物质的风险;● 增加冻干产品的蒸汽通道尺寸,进而减少干燥层的阻力;● 加快主干燥过程;● 减少产品复水时间;● 改善冻干产品的外观。莱奥德创冻干工场上海莱奥德创生物科技有限公司由德祥科技有限公司创办,专注于提供高品质的冻干设备应用和制剂开发相关服务。德祥科技有限公司服务冻干行业十余年,在涉及冷冻干燥领域的工艺开发/工艺优化/商业化等各方面拥有丰富的经验,迄今为止已为500+客户提供冻干设备及相关服务。客户产品类型涵盖:蛋白、抗体、ADC、疫苗、核酸、多脑、脂质体、IVD、食品等领域。依托于合作伙伴美国ATS SP Scientific和英国Biopharma Group的紧密合作,掌握前沿的冻干理念与技术,使用高品质的冻干设备和软件致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Mission 莱奥德创冻干工场专注于提供高品质的冻干设备应用和制剂开发相关服务,致力于促进中国生物医药技术创新升级,助力中国大健康行业的持续发展。Our Vision做冻干工艺的创新者,为生物医药开发提供优质制剂产品解决方案。
  • 使用富瑞曼科技的FT4粉体流变仪优化粉体加工过程
    16th January 2017, Tewkesbury, UKFT4粉体流变仪作为富瑞曼科技公司的多功能粉体测试仪器,提供全球领先的粉体解决方案,有助于理解研发、配方、放大、加工、质控以及其他应用领域中的粉体行为。FT4致力于帮助使用者应对各自的挑战,关注与其应用最相关的信息。粉体流变仪具有专利保护的动态测试技术,全自动的剪切盒(符合ASTM D7891)和松装属性测试,可量化粉体的流动和加工属性。仪器所提供的数据提升了产品工艺,帮助使用者最大程度地理解产品,加速了研发和配方的成功转化,并为产品工艺提供长期的优化方案。FT4目前在制药、增材制造(3D打印)、化工、墨粉、食品、包衣、金属、陶瓷、化妆品等多个领域内获得认可并广泛应用。如需了解客户在技术方面的受益,请访问富瑞曼官方网站,网站包括了现有客户使用FT4粉体流变仪的经验以及客户在与富瑞曼科技合作时的反馈。FT4粉体流变仪TM, 来自英国富瑞曼科技的多功能粉体测试仪 关于富瑞曼科技富瑞曼科技专注于粉体流动性测量系统并具有超过15年的粉体及粉体流动性表征经验。其专家团队为公司的所有产品提供广泛而有效的支持。富瑞曼仪器系统已在众多行业应用。仪器所提供的数据提升了产品工艺,帮助使用者最大程度地理解产品,加速了研发和配方的成功转化,并为产品工艺提供长期的优化方案。富瑞曼科技的总部位于英国的格洛斯特郡,在美国和中国设有代表处,并在全球范围内与众多代理商合作。2007年富瑞曼科技获得英国女王颁发的企业创新奖,并与2012年再次获得企业国际贸易奖。
  • 新诺仪器热烈祝贺第三届半导体行业用陶瓷材料技术研讨会取得圆满成功
    新诺仪器热烈祝贺第三届半导体行业用陶瓷材料技术研讨会取得圆满成功 新诺仪器参加了4月25日第三届半导体行业用陶瓷材料技术研讨会,旨在为半导体和先进陶瓷行业搭建沟通平台,交流先进技术,互通行业信息,促进产业链合作,推动国产替代进程。本届会议主要议题涉及电子陶瓷材料、半导体封装用陶瓷材料、碳化硅、氮化硅及氮化铝陶瓷在半导体行业的应用、先进陶瓷的制备与应用等议题。参加本次会议的有来自半导体、陶瓷行业的专家、学者、企业界代表、技术人员等共计300多人。4月25日大会日程上午8:30-9:00潘 伟 清华大学教授静电卡盘-半导体设备关键陶瓷零部件原理、结构与性能9:00-9:30肖汉宁湖南大学教授半导体封装用陶瓷材料研究进展9:30-10:00孔令兵深圳技术大学特聘教授氮化铝陶瓷粉体制备、烧结及性能研究进展10:15-10:45张伟儒中材高新股份有限公司教授氮化硅陶瓷在半导体行业应用及发展重点10:45-11:15刘培新淄博科浩热能工程有限公司总经理科浩热能原位排胶烧结一体化大气烧结炉在泛半导体陶瓷制品烧成中的应用11:15-11:45马冲潮州三环(集团)股份有限公司精密陶瓷事业部副总经理先进陶瓷的制备与应用下午13:30-14:00李江中国科学院上海硅酸盐研究所研究员陶瓷无孔化制备与性能提升研究14:00-14:30余文俊南京欣坤公司 &南京悠乐经理论异质嵌套粘接共烧复合基板不同陶瓷无缝嵌套工艺及应用14:30-15:00韦国文江苏瑞邦高热制品有限公司总经理兼技术总监电炉与电热式气炉对小原晶粉体陶瓷大件的烧成出现开裂的原因分析和应对措施15:00-15:30吕辰培上海微电子装备(集团)股份有限公司国产化项目经理上海微电子陶瓷零部件需求汇报15:45-16:15姚斌皓越科技总经理卓越新品,开启新篇章:皓越科技真空炉设备新品发布16:15-16:45胡元云 嘉兴佳利电子有限公司院长电子陶瓷材料及元器件在5G通讯领域的应用16:45-17:15马康夫山西烁科晶体有限公司总经理助理8 英寸 SiC 单晶衬底发展浅析 本次会议,新诺仪器携医诺凯箱体带来了新升级的自动压片机、热压机及干燥箱、培养箱等仪器设备,新诺展位吸引了众多参会嘉宾驻足咨询。新诺仪器作为仪器行业的供应商,专注于粉未成型解决方案,是集实验室通用仪器的研发、生产、定制代理、销售和服务为一体的综合型科技公司。 公司主营:压片机、热压机、等静压机、红外压片机、荧光压样机、纽扣电池封口机、以及冷热压模具等红外荧光光谱仪配套设备。 新诺在小众领域做到专而精,精而强,勇于创新,信守承诺,做一个积极向上靠谱的仪器公司。助力科研,支持国产,替代进口,新诺在路上。源头工厂,可提供OEM,期待您更多合作!
  • 合金焊接质量保证,合金表面油脂污染度焊接清洁度检测方案
    翁开尔是析塔清洁度仪独家代理商,欢迎致电咨询析塔清洁度仪在合金焊接上的技术应用。汽车轻量化成为使命,汽车制造商越发对轻质材料情有独钟,以寻求降低能耗和最小化腐蚀风险。汽车设施从钢转向铝材,这些铝材组件是需要焊接冲压或机加工的。然而,将钢焊接技术应用于铝焊接时,事情就不是那么简单了。虽然铝焊接本身是最主要的任务,但必须满足一个前提条件——保证焊接铝材表面的清洁度。对于从钢焊接工艺过渡到铝焊接工艺的设施,焊接前的表面处理是必须考虑的因素。不单单对于汽车制造而言,对精密工具制造、造船、轨道交通、航天航空、大型机械制造等行业的焊接准备中都会清洁钢和铝表面。这也意味着过去从不需要零件清洗机的工厂将不得不将零件清洗系统集成到他们的制造过程中,在焊接前确保零件表面足够干净,以此确保焊接良品率。┃ 铝与钢焊接焊接钢和铝之间的根本区别在于铝具有更高的电阻和熔化温度。熔池中较高的温度会产生足够的热能来增加氢的溶解度和扩散率。如果零件表面存在污染物,容易导致焊缝出现气孔或开裂。┃ 铝污染物的主要类型从大规模零售制造铝到达焊接工作室,铝会暴露在几种主要类型的污染物中。这些污染物如下: 油或者油脂 墨水 润滑脂 颗粒污垢许多东西在焊接前都会弄脏和污染铝,这种污染物的存在会对焊接质量产生严重的持久影响。这就是为什么在焊接前对铝件进行清洗的原因。如果铝件表面不够干净,在焊接的过程中,则容易出现烟灰,焊缝未熔合,不确定的电弧和附加电阻等现象。┃ 清洁表面对焊接的重要性在精细化制造要求下,清洁度一定意义上决定了焊接的质量。清洁的表面助于实现成功焊接:00001. 一致性:清洁焊接材料在制造实验室中提供了一定程度的一致性,并允许您将铝用作焊接性能的控制变量。00002. 无孔隙率:孔隙率是由碳氢化合物或氧化等污染物焊接到金属中引起的金属表面质量缺陷。如果金属变得有多孔,它会形成结构较差的接头,如果金属在焊接部位有足够的多孔,则该接头甚至可能因此而失效。但如果铝是干净的,焊缝就不会有隐藏的缺陷,接头应该能按预期工作。00003. 高强度:因为没有污染物,所以用纯铝进行的焊接比用受污染的铝或含有氧化铝的铝进行的焊接具有更高的抗拉强度。由于金属焊缝在建造后承担着建造项目的整体安全性和耐久性的责任,因此所使用的焊缝必须尽可能坚固,以防止意外的结构损坏。┃析塔清洁度仪是检测铝件表面清洁情况的重要仪器在焊接铝件前,往往需要对铝件进行脱脂去除水分和残留污染物,以及采用激光清洗或机械清洗氧化层。那么怎样的清洗程度铝件才算干净呢?德国析塔清洁度检测仪可以有效量化金属件表面清洁情况,更好的保证激光焊接质量,减少激光焊接缺陷。焊接气孔会降低坚固性和密封性,下图显示在激光焊接前使用析塔清洁度仪对工件表面进行清洁度检测,当工件表面清洁度高于65%,焊接气孔数量明显降低,当工件表面清洁度低于65%时,焊接气孔数量明显增加。 德国析塔SITA表面清洁度仪采用共焦法原理,通过光源发射出最佳波长的UV光检测金属表面的污染物,内置的传感器精准探测污染物引起的荧光强度,该荧光强度的大小取决于基材表面有机物残留情况,从而能精准量化检测金属表面清洁度。德国析塔SITA清洁度测试仪可以广泛运用在焊接接头质量、安全气囊点火装置的焊接组件等方面,工件表面污染物会影响焊接质量,焊接气孔会导致泄露,因此在焊接工艺前检测工件表面清洁度非常有必要,可以有效降低焊接次品率。
  • 菌落总数超标的原因及对策分析
    菌落总数测定是用来判定食品被细菌污染的程度及卫生质量,它反映食品在生产过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价。菌落总数的多少在一定程度上标志着食品卫生质量的优劣。食用菌落总数超标的食品,可能会引起急性中毒、呕吐、腹泻等症状,危害人体健康安全。那么,菌落总数超标的原因及其解决方案有哪些呢?下面我们就从六个方面角度来逐个分析。人员食品生产运输销售的各个环节员工的不正确行为都有可能导致菌落总数超标,而其中较为普遍的可能为:1、负责清洗消毒工作的人员对清洗消毒的频率及要求执行不到位或不了解,可能出现生产环境卫生状况不良,生产设备连续使用未进行清洗消毒,对生产设备清洗不干净或消毒不严,产生微生物滞留和滋生等情况造成食品污染,进而导致菌落总数超标。2、生产操作人员不按生产要求进行操作。如负责杀菌工序的人员对杀菌的参数及要求执行不到位或不了解,可能导致杀菌不彻底。3、员工培训不到位,缺乏卫生意识。如加工过程中生熟不分发生交叉污染,进而导致菌落总数超标。设备设备设施的能力和状态也可能与菌落总数超标有关。此处我们以杀菌设备和包装机为例。包装后需进行杀菌的产品,若杀菌设备性能不足、温度计未校准导致杀菌不彻底都有可能引起菌落总数超标。针对杀菌设备,我们可以通过做热力分布和热穿透测试,验证杀菌釜的性能以及定期使用温度记录仪,跟踪杀菌过程产品温度的变化、做好温度计的校准等工作来避免菌落总数超标。同样的,包装机若密封性能不足,可能导致产品在杀菌和后期的贮存过程中出现被污染的情况。针对包装机,我们可以通过建立包装机性能验证,确保密封性良好,同时做好内包车间和包装机的清洁卫生来减少菌落总数超标的可能。物料物料主要包括各种原辅料、内包材、生产用水和冰等,若各种料原始微生物含量较高,还是有增加后期产品菌落总数超标的风险;因此我们应有针对性的对原辅料包材进行评估,制定一定的验收要求并对原辅料包材进行对应的检测,并在贮存和加工过程中做好温湿度控制和环境管理。另外,内包材在使用前还可考虑采取紫外灯或臭氧进行消毒。对于生产用水和冰,可以采取每周一次的频率对其微生物状况进行验证。方法方法主要指的各种有关微生物措施制定的合理性。如,设备设施、环境、人员清洗消毒的频率及方法是否合理?杀菌公式的设定是否合理?生产过程中环境温湿度的控制是否合理?食品储存和运输中设定的条件(如冷链)是否合理等。这种情况,可以采取的措施就是验证。通过对事前事后进行微生物实验,将得出的数据进行比对,确认方法是否可行。除此之外,我们还可以通过调整一定的参数并采集实验数据来对方法进行优化,进而确定最合适的方法。环境从原辅料的运输、贮存、加工成成品以及销售等各个环节场所的不当,都有可能导致产品菌落总数超标。如包装车间卫生不当、生产环境温湿度控制不当、废料间卫生间位置设施不当等等。针对环境,我们可以采取的措施是合理考虑各个场所的布局、严格控制各个环节的温湿度以及持续保持各个场所的卫生等。流通若在流通环节检出多种食品存在菌落总数超标的情况,则问题极有可能是销售方未按照规定要求存储、摆放食品,比如个别超市不具备低温冷藏设施却销售需冷藏的食品,有的食品标签标注储存条件为避光,销售者却将食品置于阳光直射条件下等。
  • CCATM'2014之材料微观解析与失效分析会场
    仪器信息网讯 2014年10月20日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 材料微观解析与失效分析&rdquo 会议在北京国际会议中心举行。  失效分析是指产品失效后,通过对产品及其结构、使用和技术文件的系统研究,从而鉴别失效模式、确定失效机理和失效演变的过程。失效分析对于提高产品质量和防止事故重演特别重要。失效分析工作是一个极其复杂的过程,它需要多学科相互交叉。主要分析内容包括断口分析、化学分析、金相显微分析、力学性能检查和无损探测等方面。  其中微观解析主要指断口分析中的微观分析和金相显微分析。在断口微观分析中,使用扫描电镜或透射电镜可观察微观断口的形貌,从而判断断裂失效机制。另外配合能谱分析仪还可以对断口的微区成分进行分析,以判断是否存在夹杂物、成分偏析等缺陷。  金相显微分析是指利用金相显微镜来观察和研究金属材料显微组织结构及分布的试验方法。是检查金属材料质量的好坏、热处理工艺质量评定的最直观、最准确的方法。  在本次会议中,武钢研究院孙宜强介绍了SPHC热轧板表面疤块缺陷分析 钢铁研究总院谢金鹏介绍了转向弯臂断裂失效原因分析 宝山钢铁股份有限公司王军艺介绍了火花塞膨胀槽脆性开裂失效分析 首钢通化钢铁集团韩德青介绍了隔热管断裂原因分析 钢铁研究总院郑凯介绍了某石化设备用 P201泵出口管道裂纹原因分析 马钢技术中心王德宝介绍了35CrMo高强度连接螺栓杯锥状断口失效分析 武汉钢铁集团公司研究院王志奋介绍了冷轧双相钢性能不合格原因分析 国家钢铁材料测试中心李云玲PSB1080 螺纹钢氢脆断裂分析 西安航空动力控制科技有限公司郭秀乔介绍了活门和衬套卡滞原因分析 江苏省宏晟重工集团有限公司乙海峰介绍了1Cr17Ni2钢热油泵泵轴断裂分析。会议现场
  • 食品业存监管空白 代表提议做食品过程应公开
    从“苏丹红”到劣质奶粉,从瘦肉精到地沟油,从注水肉到针眼苹果,随着各种危害食品安全的行为逐渐曝光在媒体和网络上,食品安全越来越受到人们的重视。2月27日记者采访获悉,“如何为老百姓的嘴巴把关”已然成为众多代表关注的热点,虽然岛城食品安全的总体状况不断改善,但是仍存在不少食品安全隐患,人民群众对食品缺乏安全感。对此,部分代表从监管等角度分别提出建议,如超市制作过程应公开、岛城应出台本土食品安全条例等。  ■疑问 能否公开食品制作过程  2月28日,市人大代表房利的一份《关于食品卫生安全监管的建议》在两会上引起众多代表的共鸣。“近年来,有关食品安全卫生问题频频出现,消费者深受其害,社会反响极大。”房代表忧心忡忡地提出,通过媒体及有关部门的曝光,不难发现,部分食品生产单位及不法分子为了谋取私利,生产加工有毒有害食品,这林林总总的现状直接引起一个问题,就是诱发食物中毒等食品安全卫生隐患。  “据报道,我国每年有20万~40万人食品中毒,足以给食品安全管理工作敲响警钟。”房代表告诉记者。和房代表一样,针对食品安全这一大问题,马鸿冰代表从一个“小切口”发出了质疑声:“目前,许多大型超市食品制作都是不透明的,顾客买回家许多东西心中没有底,超市咋就不能公开食品制作过程?”  ■根源 食品安全监管空白多  针对目前岛城存在的食品安全问题,房利尖锐地提出了三大欠缺,其中最主要的一条就是监管体制还不完善。“食品安全卫生工作至今存在踢皮球的现象。因为这分属工商、卫生、质监等多个部门监管,谁也牵不了头,谁也不愿牵头。”房代表说,一个部门对食品抽样检测的信息不能多部门共享,造成多部门重复抽样检测,既增加了执法成本,也加重了生产经营者的负担,给监管工作带来难度。  此外,执法力度不是很强也是一大原因。房代表认为,如没有做到持之以恒,出现时紧时松、时强时弱、把关不严等现象。除此之外,还存在第三大欠缺,即监管水平有待提高,“职能部门对食品安全工作中出现的新情况、新问题,缺乏专业知识和科学技术,监管设备、技术落后,缺少对食品进行综合检查、检测的设施设备,影响了执法水平和监管力度”。  ■建议 1 超市食品加工间应当开放  马鸿冰代表提出,超市可以将食品加工间改成开放式,这样顾客就可以隔着玻璃来观看制作过程和食材的状况。此外,针对有条件的超市,马代表建议可在卖场直播制作过程。  2 加强食品安全监管的建议  房利代表则从全市角度出发,提出三点改进建议:政府要加大对各职能部门的监督检查力度,建立一套能相互衔接的食品安全管理制度,避免管理的“真空地带”。其次,加大对因食品安全卫生不合格而触犯法律、法规的制造销售单位和个人的惩罚力度,以整治市场为重点。  此外,建议配置用于流动检测的专用检测设备及专用车辆,提供必要的抽检经费,强化对技术和执法人员的培训。 3 尽早出台食品安全条例  “说一千道一万,我认为解决问题的最好方法还在制度的完善上。”采访中,葛方明代表告诉记者,食品安全的管理一定要从源头上“拴好阀门”。对此,他提出岛城应尽早出台《青岛市食品安全条例》。  “目前青岛法规在这一方面尚属空白,建议市有关部门根据《中华人民共和国食品安全法》,抓紧研究出台《青岛市食品安全条例》,用地方法规的形式具体明确青岛市各类食品的安全标准,生产、销售等过程的管理要求,以及相关部门的职能职责和考核处罚要求等。”葛代表说。
  • 约稿|锂离子电池显微智能分析解决方案全解析
    为帮助广大材料领域科研工作者了解前沿表征与检测技术,解决材料表征与检测技术难题,开展相关表征与检测工作,仪器信息网广泛向业内技术专家、仪器厂商约稿,并整理相关学术文章和讲座视频,以期对材料表征技术进行全面的介绍和综述。相关内容将收录至【材料表征与检测技术盘点】专题,并在仪器信息网平台全渠道推送,后续还将把干货整理成册,以供更多人士阅读。征稿活动进行中,欢迎来稿,征稿活动详情点击:【材料表征与检测技术盘点】专题:https://www.instrument.com.cn/zt/CLBZ以下为欧波同集团供稿,以飨读者:欧波同锂离子电池显微智能分析解决方案锂离子电池因其清洁、能量密度高、循环性能好等优点广泛应用于我们的日常生活中。尤其是近年来, 新能源汽车、储能电站的快速发展, 锂离子电池的用量超乎想象,一台新能源汽车集成了几千个电池,达几百公斤,巨量的电池集中在一起,安全问题就尤为重要。近年来锂电池电动车、汽车和储能电站均发生过燃爆事故,因此,锂电池质量、安全等方面的研究越来越被人们重视,对锂电池的质检技术也提出了更高的要求,这涵盖了正负极材料、隔膜、铜箔、铝箔,甚至外包装材料。欧波同集团长期从事光镜、电镜领域的微观分析工作,通过和广大客户的交流,我们发现现在客户的微分析存在效率低、人的主观因素影响大、非标准化等问题,为此我们成立了汇鸿科技公司,利用智能化软件实现显微分析的自动化、标准化。1、 锂离子电池材料显微智能分析系统(LIBMAS)锂离子电池是指以锂离子嵌入化合物为电极材料电池的总称,它主要依靠锂离子在正极和负极之间移动来工作。由于材料加工过程中的缺陷,锂电池在使用或储存过程中仍会出现一定概率的失效[1],例如,多孔电极在充放电过程中发生体积膨胀和收缩,导致颗粒逐渐出现裂纹,这些裂纹沿着原有缺陷萌生和扩展,最终导致材料出现机械断裂和电极结构解体,造成电极材料粉化。这些材料的失效严重降低了锂电池的使用性能,影响其使用的可靠性和安全性。图一:汇鸿锂离子电池显微智能分析系统针对锂电池使用过程中产生的各种失效问题,汇鸿智能科技为客户量身定制了专属软件,满足客户所有需求,采用先进AI技术及图像处理技术,可快速准确进行单晶团聚识别、开裂球识别、二次球颗粒分布均匀性判断、截面孔隙统计、隔膜孔隙统计等锂电池材料分析。1) 开裂球识别:通常在制备三元正极材料时,采用共沉淀法[2]使纳米级一次粒子团聚堆积成球形二次粒子,但这种堆积结构容易形成裂纹,导致电池性能衰减。图二:软件智能区分开裂球和普通球通过汇鸿LIBMAS,可快速统计并计算开裂球占比,获得开裂球裂缝信息,从而改善工艺条件,如图二。正极颗粒内部通常是二次球颗粒形成的多晶结构,我们将二次球颗粒抛开,发现循环充放电后的颗粒截面出现大量裂痕,如图三。使用LIBMAS对截面孔隙进行识别,快速获得截面孔隙结果。图三:二次球截面孔隙识别2)团聚体颗粒识别:正极三元颗粒通常需要在高温纯氧下进行烧结,烧结而成的三元产品一般具有典型的团聚体形貌,即由粒径约几百纳米的一次粒子组成的,在几个到十几个微米之间的二次球颗粒。以往采用人工统计分析,需要在SEM成像后,手动逐个测量,工作量大,而且存在人为测量的误差;采用汇鸿智能分析软件,则可以一键操作,简化流程,在最短的时间内快速获得标准化的统计结果,如图四。图四:一次颗粒团聚形成的二次球颗粒识别电极材料的颗粒尺寸影响电池的容量、倍率性能和循环性能[3]。小尺寸颗粒可以缩短锂离子固相扩散路径,内部多孔颗粒可以提供更多的锂离子迁移通道。但是粒径过小会导致库仑效率和充填密度低下,影响整体电池的容量。通过汇鸿LIBMAS可高效识别一次颗粒大小(长、宽、周长、面积等)以及分布情况,如图五。图五:软件自动区分团聚颗粒及团聚颗粒截面3)单晶颗粒识别:相对于单独的纳米粒子,团聚体颗粒具有比表面积小,颗粒流动性好,压实密度高和电极浆料可加工性好等优点。然而在团聚体反复充放电过程中,电极不断膨胀和收缩,内部颗粒十分容易破碎。相比易产生颗粒粉碎的多晶正极材料,许多研究[4,5]已经开始从晶体结构本身出发,探究单晶三元正极材料的性能,结果表明单晶三元具有更好的机械强度,从而抑制颗粒破碎,在高温循环方面也具有更好的热稳定性。诸如此类的研究都需要准确识别出单晶颗粒及其内部分布情况,汇鸿科技LIBMAS可以自动识别团聚颗粒中轮廓清晰的单晶颗粒,并测量、统计其直径,如图六。图六:单晶颗粒的识别4)大小二次球识别:除此之外,汇鸿LIBMAS还可以精准识别图像上所有大二次球颗粒与小颗粒,根据面积判断计算大颗粒与小颗粒分布的均匀性。如图八。图八:大小二次球颗粒分布均匀性识别和统计5)隔膜孔隙率统计:锂电池隔膜作为锂电池的重要组成部分,是具有纳米级微孔结构的高分子功能材料,其主要功能是防止两极接触而发生短路,同时使电解质离子通过。相关研究证实[6],隔膜的微孔孔径分布越均匀,电池的电性能越优异。孔径的分布主要采用扫描电子显微镜( SEM) 进行观测,但仅靠肉眼观测图片,对孔隙率的表征存在一定误差且效率低下。因此,若要更准确形象地获得材料的孔隙率,需要将图像处理软件与SEM 结合,以实现隔膜孔隙分布及其定量分析的需求。图九:隔膜孔隙识别及孔隙率统计汇鸿LIBMAS可以快速获取隔膜的孔隙率信息,检测隔膜孔隙率、孔隙直径及纤维直径并统计分析,从而形象地描述隔膜表面的结构细节,提高锂电池隔膜孔隙率评定的准确性,如图九。二、锂离子电池异物分析系统(LIBIAS)目前行业对锂电正极材料中金属及磁性异物的分类主要有以下三个方面:金属及非金属大颗粒、磁性异物、Cu/Zn单质[7]。异物引入的方式有原材料带入和制造过程中产生。为了有效控制锂离子电池正负极材料中非金属/金属/磁性异物的含量,一般会使用专业的设备与软件对初筛后的原材料中异物颗粒进行形貌与成分统计。行业内以往使用光镜或手动测量的方法,然而这些传统检测方式往往在数据结果的准确性、全面性、一致性上有或多或少的不足,给精确检测带来比较大的挑战。目前,锂电池材料中异物颗粒的检测主要面临的问题有:1)异物来源广、溯源难,2)数据量大、费时费力,3)颗粒易团聚、识别难度高。图一:同一颗粒分别在光学显微镜(左)、电子显微镜(右)下的图像及EDS能谱识别颗粒主要成分为Fe图二:电镜图像下滤膜上所有颗粒分布情况图三:滤膜上的颗粒团聚现象针对传统软件的不足,欧波同集团旗下的汇鸿科技公司开发了“锂离子电池异物分析系统”(LIBIAS)。这是集准确、高效和易操作功能为一体的全自动清洁度分析系统,可以实现高清BSE图像采集拍摄和图像处理、元素定量测试等功能。包括:1)简易上手的测试程序,2)开放的标准库编辑系统,3)一键生成对应报告图表。图四:颗粒类型占比饼状图(左),三元统计相图(右)汇鸿智能科技是一家专注于工业领域微观智能图像分析应用解决方案服务商。以“坚持原创,用信息技术引领工业分析”为愿景,可以为用户提供全场景的锂电池智能化显微分析解决方案。汇鸿智能科技研发的”锂离子电池材料显微智能分析系统(LIBMAS)”和“锂离子电池异物分析系统(LIBIAS)”,将高分辨性能的扫描电镜与智能化的分析软件相结合,解决从锂电原材料,到正负极极片、隔膜,锂电清洁度全系列的锂离子电池相关分析,助力研究人员开发出性能更优越的锂电产品。参考文献:[1] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Phys. Sin., 2018, 67(12): 128501. DOI: 10.7498/aps.67.20180757.[2] Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method.DOI:10.1016/j.powtec.2009.12.002[3] 杨绍斌,梁正. 锂离子电池制造工艺原理与应用[M].[4] Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode.DOI:10.1126/science.abc3167[5] 肖建伟, 刘良彬, 符泽卫, 等. 单晶LiNixCoyMn1-x-yO2 三元正极材料研究进展[J]. 电池工业, 2017, 21(2): 51-54.[6] 毛继勇,许汉良.锂离子电池用隔膜孔隙率对电池性能的影响[J].广州化工,2018,46(14) : 78-80.[7] 惠升,詹永丽,黎江.锂电正极材料金属及磁性异物过程控制的研究[J].世界有色金属,2021(17):166-168.作者:沈宁单位:欧波同个人简介:沈宁,OPTON创新研究中心BD工程师 ,硕士毕业于上海大学纳米化学与生物学研究所,主要研究方向为石墨烯量子点及其修饰物的应用,期间负责研究所内透射电镜/扫描电镜的使用,培训和维护,硕士期间参与发表四篇专利,两篇SCI学术论文。现负责欧波同集团锂电行业应用市场的开发,对设备选型、技术应用、市场需求有着丰富的经验。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制