当前位置: 仪器信息网 > 行业主题 > >

夹心结构化合物

仪器信息网夹心结构化合物专题为您整合夹心结构化合物相关的最新文章,在夹心结构化合物专题,您不仅可以免费浏览夹心结构化合物的资讯, 同时您还可以浏览夹心结构化合物的相关资料、解决方案,参与社区夹心结构化合物话题讨论。

夹心结构化合物相关的方案

  • 天津兰力科:以Keggin结构多金属氧酸盐为建筑单元的取代和夹心结构化合物的研究
    稀土、过渡金属多钨酸盐由于结构的多样性和在催化、药物、磁学及材料科学等领域潜在的应用而引起人们的关注。近年来,稀土、过渡金属多钨酸盐的合成一直是多酸合成化学的热点研究领域。本论文利用二缺位和三缺位Keggin结构多金属钨酸盐簇为基本建筑单元,通过各种过渡金属离子或稀土离子的修饰或桥连,构筑新型的多金属氧酸盐化合物,研究这类化合物的合成条件及规律,以及新物质结构和性能间的关系。利用常规水溶液合成方法,合成了10种多金属氧酸盐化合物,通过元素分析,IR,TG,Raman和单晶X-射线衍射对晶体结构进行了表征,对化合物的磁学特性,荧光性质和抗肿瘤活性进行了初步研究。
  • 用结构化平面激光照明LIF/MIE成像进行空心喷雾的平面液滴粒径测量
    采用结构化平面激光照明成像SLIPI对空心喷雾的平面液滴粒径采用LIF/MIE比值全局粒径测量方法进行了测量和分析。采用SLIPI方法可以有效消除杂散光的影响,使得这种方法特别适合于致密喷雾的粒径测量和分析。
  • 采用结构化平面激光照明成像技术实现可靠的LIF/MIE方法测量喷雾液滴粒径
    采用Artium公司特色的DPSSL激光器作光源的相位多普勒粒子干涉仪(PDI)对用LIF/MIE比值法测量喷雾液滴粒径以及用结构化平面激光照明成像方法进行有效性分析提供了可靠的标定。
  • 基于结构化光照明模式的3维数字图像相关(DIC)测量
    提出了一种新颖的基于结构化光照明的方法,基于数字图像相关(DIC)原理实现用一台相机进行3维表明形貌,形变以及应变测量。
  • 德国应用化学收录文章:在全PH值范围内的纳米结构化碳膜的超疏水性
    德国应用化学收录文章:在全PH值范围内的纳米结构化碳膜的超疏水性
  • 多酸超分子化合物合成、结构与表征
    设计与合成多酸超分子有机-无机杂化化合物已经引起人们的广泛关注,不仅是由于它们结构的多样性和电子的多功能性,还因为它们在催化、药物、分子磁性和材料科学等领域的潜在应用。当前一个成功的合成策略是以多氧阴离子为无机建筑单元与有机配体构筑新型的杂化材料。本文通过常规方法,采用分子设计原理,调节反应条件和反应原料合成了五个未见文献报道的无机-有机杂化化合物:(C10H18N)4[SiMo12O40]nH2O(1) (C10H18N)4[SiMo12O40]2CH3CN4H2O(2) (C10H18N)6[α-As2W18O62]nH2O(3) (C10H18N)6[α-As2W18O62]6CH3CN6H2O(4)和(C6NO2H6)6[α-P2W18O62]10.5H2O(5)。利用单晶X-射线衍射测定了化合物2,4和5的结构,并初步探讨了它们的IR,NMR,CV等性质。在这些化合物中,质子化的有机配体、多氧阴离子、水分子和溶剂乙腈分子通过静电引力和氢键作用结合在一起,其晶体具有三维超分子结构。有机配体金刚烷胺和异烟酸具有生物活性,将其引入到多金属氧酸盐的骨架中作抗衡阳离子,可望提高多氧阴离子的药物活性。化合物的成功合成提供了Keggin型的[SiMo12O40]4-和Dawson型的[α-As2W18O62]6-与[α-P2W18O62]6-多氧阴离子与有机物质的反应模型,使我们得到杂多阴离子与有机物的反应信息,并且丰富了基于多金属氧酸盐为建筑块的无机-有机杂化物的物种。
  • 结构化平面激光诱导荧光(S-PLIF)用于准确识别多相流中的界面
    采用LaVision的结构化平面激光照明成像(SLIPI)技术,应用于多相流的激光诱导荧光测量系统中,有效地消除了背景反射的影响。可以准确有效地辨识多相流对象中的界面。
  • 天津兰力科:过渡金属多钨酸盐的合成、结构及性质研究
    过渡金属多钨酸盐由于结构的多样性和在催化、药物、磁学及材料科学等领域潜在的应用而引起人们的关注。近年来,过渡金属多钨酸盐合成一直是多酸合成化学的热点研究领域。本论文合成了三种类型,共11个过渡金属钨酸盐,通过X-射线衍射确定了化合物的结构,系统研究了化合物的电化学性质,讨论了部分化合物的磁性质,并对反应条件进行了详细探讨,得出一些有意义的结论:1.“开口Wells-Dawson”结构锗钨酸盐K13[(μ-H2O)2K(Ge2W18O66)]29H2O(1)研究发现,阴离子[GeW9O34]10-是合成该结构的理想前驱体,K+的存在是形成该结构的必要条件。在化合物1的电化学研究中可清楚地观察到过渡金属的氧化还原波,这在其它过渡金属杂多化合物中并不多见。2.含低价态杂原子(BiIII)的夹心型铋钨酸盐:Na12[(Na(H2O)2)6(α-BiW9O33)2]?27H2O(2);Na18[(Cu(H2O))3(α-BiW9O33)2]?56H2O(3);Na10[Bi2W20M2O70(H2O)6]?xH2O(M=ZnII4,NiII5,MnII6,CoII7)详细探讨了反应条件对产物结构的影响以及定向合成Hervé型和Krebs型夹心结构铋钨酸盐的有效途径。对该类型多金属氧酸盐的电化学研究发现,化合物中的过渡金属MnII和CoII中心可被分步氧化,这可能在一些催化反应中有潜在的应用。3.以仲钨酸-B型多阴离子[H2W12O42]10-为基本建筑单元,过渡金属为连接点构筑的具有一维、二维、三维扩展结构多金属氧酸盐:Na8[(H2W12O42)]32H2O(9),Na6[(H2W12O42)]29H2O(10)和(H3O+)3[3(H2W12O42)]24.5H2O(11)在这类多金属氧酸盐中,由于过渡金属含有多个配位水,并且晶体结构中存在大量结晶水,化合物11具有对水分子的可逆吸附解附过程,同时伴随着可逆的颜色变化。此外,本文还报道了一个夹心型钴钨酸盐Na8[W2Co2(CoW9O34)2]54H2O(8)的合成和结构。该化合物的显著结构特点是夹层中含有不常见的四方锥配位的WVI原子,且锥顶指向簇离子的内部。
  • 化合物半导体核壳结构纳米金属线的低加速电压SEM/STEM观察/EDX分析
    半导体纳米金属线,因其物理特性可控,所以未来有望应用于光学器件上。尤其是异相聚合机构或者核壳结构的材料,富有多重物理特性,应用范围也会变得更广泛。图1是化合物半导体核壳结构纳米金属线的SE/STEM观察结果。图1(a)是二次电子图像显示了纳米金属线的表面形貌。图1(b)(c)的BF-STEM/DF-STEM图像,可以清楚观察到纳米金属先端的内部构造,可以确认核,内壳层和外壳层的三层结构。图2是化合物半导体核壳结构纳米金属线的EDX面分布。核壳层和外壳层检测到Ga和As,内壳层检测到Al和As,能够清楚地分离出三层的结构的各种成分分布。SU9000与大立体检测角的X-MaxN 100TLE相结合,可实现超高空间分辨率的EDX面分布。
  • 对化合物库进行质谱引导的馏分收集
    化合物库含有需要筛查生物活性的一系列结构类似的化合物。虽然,组合化学和常规合成化学相比,简化了合成过程,但仍然需要从其杂质和反应副产物中对化合物进行纯化。
  • Negishi 偶联实现联苯类化合物的连续化合成
    由于一系列具有生物活性的化合物中均含有 2-氟联苯结构单元,因此通过简单易得的起始原料采用有效的途径实现 2-氟联苯类化合物的合成是十分必要的。麻省理工学院的 Stephen L. Buchwald 教授课题组报道了一种利用连续流技术合成 2-氟联苯化合物的方法。
  • 苯甲酸类化合物的分离纯化
    羧酸类化合物尤其是苯甲酸类化合物是许多活性药物成分(Active Pharmaceutical Ingredients, API)的关键中间体,例如解热镇痛药物阿司匹林等,具有广泛的应用价值。使用传统硅胶作为固定相的色谱柱来分离纯化这类化合物是一类难题。常州三泰科技有限公司的SepaFlash C18反相柱结合快速液相制备色谱系统SepaBean machine具有良好的分离性能。本文利用SepaFlash C18反相柱分离并纯化了两种强极性的苯甲酸类化合物(结构式如图 1所示),结果表明混合物样品得到了很好的分离,为此类具有一定极性与亲水能力的化合物的快速分离纯化提供了一种经济实用的解决方案。
  • 应用于糖类化合物的分离纯化
    糖类化合物是由碳、氢、氧三元素组成的有机物。从化学结构上看,糖类是多羟基醛酮以及它们的多聚体,在化学式的表现上类似于“碳”与“水”的聚合,故又称碳水化合物,根据其结构不同,可分为单糖、双糖和多糖。糖类化合物具有众多的用途,涵盖了食品、医药、能源、工业等多个领域。它们不仅在食品工业中用于调味和增加口感,还在医药领域用于药物生产和治疗疾病,同时也是能源和工业生产中的重要原料。糖类化合物的广泛应用为人类的生活带来了便利,也推动了相关产业的发展。近年来糖类化合物的研究有两个方向: ①化学家致力于糖类化合物的人工合成,这主要是为社会发展作长远打算,使人类食物将有可能逐步摆脱对农业的依赖。②研究糖类化合物与生命的关系,因为在生命体内糖与蛋白质、核酸常不可分离。糖类化合物分离纯化检测由于缺乏发色基团,导致其无紫外吸收或紫外吸收很弱,常规快速液相制备色谱系统通常只配备紫外 (UV) 检测器,不能检测缺乏发色基团的目标化合物。而蒸发光散射检测器(Evaporative Light-scattering Detector)是通用型检测器,可以检测挥发性低于流动相的化合物,特别是没有紫外吸收的有机物质。本案例主要探讨使用SepaBean machine快速液相制备色谱系统搭配ELSD检测器(蒸发光散射检测器)对糖类化合物进行制备纯化,为糖类化合物的制备纯化提供了一种可行的方案。
  • 用于筛查和鉴定的农药个人化合物数据库
    农药个人化合物数据库开发用于实现大量化合物的快速筛查。本文介绍了此数据库的内容及其使用方法。该数据库除包含农药筛查和鉴定必需的飞行时间质谱(TOF) 信息外,还可通过更新保留时间对“目标”化合物信息进行快速的半自动定制。除筛查外,还可向农药分析人员提供化合物的其他重要信息,包括结构式、指向NIH PUBCHEM 数据库的链接以及大量有用的网络链接。在上世纪,1000 多种农药被广泛用于农作物保护。一旦超出允许和建议的用量,其中的任何一种化合物就有可能残留在环境中,并因此而进入食品供应。在调查型监控中,目标化合物的检测和识别对于环境保护和人类健康而言非常重要。液相色谱/飞行时间质谱(LC/TOFMS) 凭借其全谱精确质量数测量能力,能够提供高灵敏度和高特异性检测。此外,安捷伦还开发了涵盖1600 多种农药及相关化合物信息的精确质量数保留时间(AMRT) 数据库,对这一功能进行补充。该数据库包括通用名称、分子式、结构式和 CAS 登记号。还可轻松使用用户条件下获得的色谱保留时间对库中的保留时间进行半自动更新。本技术报告将介绍如何使用安捷伦的个人化合物数据库(PCD) 软件从该数据库中检索经处理的LC/TOFMS 数据。还介绍了如何通过安捷伦MassHunter 定性数据处理软件手动和自动检索该数据库。
  • 饮用水里的全氟化合物测定前处理解决方案
    全氟化合物是指:普通有机物中与碳相连的氢元素全都被氟元素所取代所产生的物质。这种特殊结构使其具有很强的化学稳定性,难以被自然降解并容易聚集在各种自然环境中及生物体内,这也是全氟化合物被当作一种新的环境污染物引起了越来越多的科学家注意的原因之一。
  • 对硅胶填充剂敏感的化合物的分离
    利用硅胶柱在实验室进行样品的纯化和分离是目前各大高校研究所等常用的分离方法。但是很遗憾,对应某些特定结构的化合物,由于其对于硅胶比较敏感或者极性差别非常小,不太适于利用常规的填充的柱子或者爬板进行分离。因此导入其他机理的分离手段就成了必然。
  • 高分辨率是自信地进行化合物检测的可靠保证
    分析实验室始终面对着这样的挑战,就是既要保证最高水准准确度,也要在数据充分可靠的基础上不断提高检测效率。此类实验室大多采用气相色谱、液相色谱和三重四极杆质谱仪(MS)联用来实现目标化合物检测。以上分析技术可在一定的灵敏度水平和选择性要求范围内检测性质差异较大的多种化合物,但是,其局限性在于需要确定的目标化合物列表并要求对每个化合物进行针对性的质谱实验参数的优化。而使用静电场轨道阱(Orbitrap)技术分析样本,得到高分辨全扫描数据可轻松解决以下挑战:• 针对数量迅速增长的化合物同时定性和定量分析的需求• 针对过去采集的数据进行有目的的回顾性分析• 针对化学元素组成及结构未知化合物进行定性鉴定分析的需求
  • 高分辨率是自信地进行化合物检测的可靠保证
    • 具备无可比拟的常规高质量分辨能力和稳定的亚 ppm 级质量精确度的Thermo Scientific Q Exactive GC 质谱仪是实现化合物检测、筛查、定量以及未知化合物鉴定、结构解析的独一无二的强大工具。• 将氯苯胺灵与背景干扰离子有效区别,要求质谱分辨率不低于 60,000 FWHM(m/z200)。这个分辨率要求对于检测其他化合物同样必要。• Q Exactive GC 质谱系统可为复杂基质样本中目标化合物检测提供高灵敏度分析结果,更重要的是,在不同质谱分辨率(在 m/z 200,标准质量分辨率为 15–120K FWHM)模式下,仪器始终保持高灵敏度。• 卓越的亚 ppm 级质量准确度可通过缩小质量偏差范围有效加快未知物的鉴定进程。
  • 聚焦化合物结构鉴定:UHPLC联用QExactiveFocus分析霉酚酸酯的降解产物
    强制降解实验能揭示各种环境因素对原料药和制剂的影响。它能提供药品安全信息、确定推荐储存条件、保质期和分析方法的特异性。而降解产物的信息能帮助改进化合物或配方的发展。霉酚酸酯(MMF)的商标名称为骁悉(CellCept),是一种免疫抑制剂和霉酚酸(MPA)的前体药物。MMF 广泛的应用在治疗器官移植排异反应和自体免疫疾病的移植药物中,为本研究选择的模型化合物。
  • 使用Biotage系列产品进行氮杂吲哚及吲哚酮化合物的微波合成以及快速纯化
    作者快速合成了含有优势结构的类药分子结构骨架,构建了包含优势结构吡啶并咪唑的衍生三环结构,合成了18种具有新结构的化合物。这些化合物在结构上都具有潜在的药物活性。耐士科技作为Biotage中国区总代理,以最质的服务提供Biotage全系产品以及相关技术服务。Biotage Initiator微波合成仪利用微波辅助加热来提高化学合成速度。微波加热均匀,可以比传统加热方式更快达到反应温度和压力。用户可以深切体会到Initiator仪器的优点。 我们始终为用户制造一流的仪器,提供一流的服务。
  • 天津兰力科:光化学合成缺位型α - 9 - 硅钨杂多化合物及其性质研究
    利用光化学方法合成了一种硅钨杂多化合物. 元素分析得到该杂多化合物的分子式为H10 SiW9O34 4H2O. 通过UV - Vis, IR, XRD, TG - DTA和电化学等方法对化合物进行了表征,并与H4 SiW12O40杂多酸(记为SiW12 )和标准样品α - H10 SiW9O34 4H2O (记为α - HSiW9 )的性质进行比较研究,结果表明标题化合物为α - H10 SiW9O34 4H2O,是一种三缺位的、具有Keggin基本结构骨架的杂多化合物.
  • 天津兰力科:三乙醇胺-多酸分子基化合物的合成表征及性质研究
    本论文以三乙醇胺-多酸分子基化合物为体系,研究该类有机-无机杂化化合物的合成条件及规律,探索三乙醇胺与不同的多阴离子的作用方式。在水溶液中合成了6种有机-无机杂化的多酸分子基化合物,通过X射线单晶衍射确定了化合物的结构,利用XRD、IR、NMR、TG-DTA等测试手段对其进行了表征,对化合物光致变色性质、热稳定性和电化学进行了初步研究。1.在强酸性条件下合成并表征了以质子化的三乙醇胺为反荷离子的同多和杂多金属氧酸盐:Na2(NH(CH2CH2OH)3)5[HMo36O112(H2O)16]?67H2O(1)[(CH2CH2OH)3NH]2HPMo12O40?16H2O(2)[(CH2CH2OH)3NH]6P2Mo18O62?30H2O(3)通过调控化合物(2)的水溶液的pH值,在弱酸性条件下使三乙醇胺去质子化,合成了化合物[(CH2CH2OH)3N]4Na2HPMo12O40?22H2O(4)。2.通过水溶液中的自组装过程,以三乙醇胺为有机成分对高核同多钼酸盐进行功能化,合成并表征了一种有机-无机杂化化合物:Na2[NH(CH2CH2OH)3]4≈72H2O(5)该化合物是已报道的第二例关于的有机-无机杂化化合物,也是首次将有机配体和高核同多酸以共价键连接起来。3.以三乙醇胺为“包裹试剂”合成新型的Dawson结构多钼钒酸盐:[NH(CH2CH2OH)3]6V2Mo18O62ca.3H2O(6)利用质子化的三乙醇胺将多阴离子建筑块包裹起来,达到既限制其快速聚集又能稳定得到的多酸阴离子的目的。化合物6具有未预测到的2:18的V/Mo比,这是首次将非主族元素引入到钼系Dawson结构的杂原子位置。该化合物的合成不仅加深了对Dawson结构的认识,也为未来更多的理论和实验工作奠定了一定的基础。
  • GC-ECD 法分析水中 9 种卤代乙酸化合物
    本文评价了 Thermo Scientific Q Exactive GC Orbitrap 质谱仪针对用于药物活性成分生产的起始和中间原料中所含有的杂质进行定性和定量的测试能力。应用 TraceFinder 软件进行自动峰检测、谱图解卷积和推测杂质化学结构分析。最重要的是,本次实验中化合物的化学结构鉴定在参考 NIST 谱图库的碎片离子合理。
  • 固相萃取法用于土壤硝基苯类化合物的测定
    硝基苯是一种广泛应用的化学原料,常见的硝基苯类化合物有硝基苯、二硝基苯、二硝基甲苯、三硝基甲苯及二硝基氯苯等。该类化合物均难溶于水,易溶于乙醇、乙醚等其他有机试剂,应用于印染、国防、塑料、医药及农药行业。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。由于硝基苯结构稳定,较难降解,特别是进入水体会以黄绿色油状物沉入水底,并随地下水渗入土壤,长时间保持不变,因此造成的水体和土壤污染会持续相当长的时间,并对生态系统产生一系列的生态影响和环境效应同时通过植物的富集也会对人体产生危害。土壤中的硝基苯通常采用提取、净化、浓缩、进样的模式进行分析,其中净化方法常用的有凝胶渗透色谱法和固相萃取法。本文用SPE400全自动机械臂固相萃取仪对土壤中硝基苯类化合物的整个检测过程中的净化环节进行了实验。
  • SepaFlash® Phenyl 色谱柱在苯二氮卓类药物化合物的分离纯化
    苯二氮卓类药物是一种常用的处方药,结构式如图1所示。最常用于治疗焦虑症和恐慌症。有时它也用于治疗癫痫发作,甚至可以用于酒精和药品戒断。然而在苯二氮卓类化合物的合成过程中,副产物的去除对于获得高纯度的该化合物的成功至关重要。自动化快速色谱是研究规模最有效的纯化技术之一,该方法同样也可以应用于规模化生产。
  • 力扬:磷脂类化合物的HPTLC含量测定
    磷脂类化合物的分析在生命科学及食品科学中非常普遍。磷脂是细胞膜结构的主要组成部分,也是靶向制剂的重要辅料。在食品工业作为乳化剂用以稳定天然或合成的混合物制品,如软饮料和肉类制品等等。通过鉴别乳化剂的组成成分,就可以根据该指纹图谱来确定产品的厂家品牌。磷脂和脂类的区别在于前者的分子中同时包含了疏水基团和亲水基团。与脂类一样,该类化合物的UV吸收很弱。采用薄层色谱法检测磷脂的优势在于可通过色谱后衍生化来对磷脂类成分进行显色观察。不同磷脂化合物的极性差异较大,且通常与复杂的基质杂质共存。而通过AMD全自动梯度展开系统并结合色谱后衍生化,可在500 nm吸收波长处或以荧光方式对该类成分进行专属性的基于薄层色谱扫描的含量测定。本文所采用方法的优点: 简便的样品前处理方法 AMD色谱可获得高分离度 待测成分的极性分布范围宽 可同板比较许多样品的图谱 灵敏的ng级定性/定量检测限 可用于任何来源的磷脂样品分析
  • 使用精确质量LC-MS和集成的科学信息系统筛查环境样品中的多种化合物
    1)使用高分辨质谱(HRMS)筛查不同种类 和结构的多种目标化合物。2)使用ACQUITY UPLC® HSS C18色谱柱进行 更快速的UPLC® 分析。3)将母离子和碎片离子的精确质量数 信息集成到鉴定和审查过程中。
  • 采用双离子漏斗技术的安捷伦 6490 三重四极杆液-质联用仪直接检测水用 ppt 浓度水平的药物化合物
    对于科学界和公众来说,包括药物及其代谢物在内的药物活性化合物是影响水质的一个重要问题,尽管其数量不占主要的比例。水中的药物残留对人、野生动物和鱼类可能 会产生不利的影响。因此,需要一个灵敏而可靠的分析方法来检测这些痕量化合物。 本研究利用安捷伦 1290 Infinity 液相色谱和带双离子漏斗技术的安捷伦 6490 三重四极 杆液质联用仪直接分析地表水中 ng/L 浓度水平的药物和个人护理品 (PPCP) 类化合物 。无需样品制备便可以在 1-500 mg/L 的检测限范围内检测 20 个药物和个人护理品 (PPCP) 类化合物,这是化合物之间的化学结构和离子化效率的差异所致。样品预浓缩 阶段的去除可大大降低样品的制备时间、简化分析、降低分析成本,从而抵消了固相 萃取方法常见的基质效应 。
  • 水产品中大环内脂类化合物的测定解决方案
    环内酯类(Macrolides)(图1)是由链霉菌产生的一类弱碱性抗生素、因分子中含有一个内酯结构的十四员或十六员大环而得名。属十四员大环的抗生素有红霉素、罗红霉素和竹桃霉素;属十六员大环的有吉他霉素、替米考星、泰乐霉素、螺旋霉素和交沙霉素等。过多地使用大环内脂类药物会对人体消化道产生极强的副作用,使人恶心,干呕,腹胀腹泻等,严重的可致人不可逆的耳聋。大环内脂类药物在养殖业中的应用较为普遍,然而近年来多起抗生素药物残留超标事件使得水产品的安全性也遭到了质疑。各国制定的食品药物残留标准要求对我国水产品进出口造成了一定的影响,也对我国的水产养殖提出了更高的要求。本方法参考GB/T 20762-2006方法中对大环内脂的检测,采用乙腈对目标化合物进行提取,以HLB柱对样品进行净化,最终采用液质联用实现对大环内脂的检测。
  • 使用 GC/MSD 系统分析透皮贴剂中的可提取化合物/可浸出化合物棕榈酸
    运用两台 Agilent 5977A 系列气质联用系统,通过对利卡多因和离型膜的分析研究透皮给药系统中的可提取化合物和可浸出化合物。使用大体积液体进样技术确定了丙酮、二氯甲烷和己烷提取液中含有塑料和粘合添加剂。使用高温顶空和液体采样技术也鉴定出了药物成分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制