当前位置: 仪器信息网 > 行业主题 > >

甲基三氯硅烷

仪器信息网甲基三氯硅烷专题为您整合甲基三氯硅烷相关的最新文章,在甲基三氯硅烷专题,您不仅可以免费浏览甲基三氯硅烷的资讯, 同时您还可以浏览甲基三氯硅烷的相关资料、解决方案,参与社区甲基三氯硅烷话题讨论。

甲基三氯硅烷相关的资讯

  • 中国化工学会关于《工业用2-氯-6-三氯甲基吡啶》等 4项团体标准征求意见的通知
    各有关单位及专家:由中国化工学会组织制定的《工业用2-氯-6-三氯甲基吡啶》等4项团体标准已完成征求意见稿,现公开征求意见。请于2023年4 月21日之前将征求意见表(见附件5)以电子邮件的形式反馈至中国化工学会。联系人:张颖 电话:010-64455951邮箱:zhangy@ciesc.cn附 件1.《工业用2-氯-6-三氯甲基吡啶》征求意见稿2.《电子级丙二醇甲醚》征求意见稿3.《电子级丙二醇甲醚醋酸酯》征求意见稿4.《啶氧菌酯原药》征求意见稿5. 征求意见表 中国化工学会2023年3月21日附件3《电子级丙二醇甲醚醋酸酯》征求意见稿.pdf附件1《工业用2-氯-6-三氯甲基吡啶》征求意见稿.pdf附件2《电子级丙二醇甲醚》征求意见稿.pdf附件5 征求意见表.doc《工业用2-氯-6-三氯甲基吡啶》等4项团体标准征求意见通知.pdf附件4《啶氧菌酯原药》征求意见稿.pdf
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • BSTFA+1%TMCS硅烷化试剂促销 售完为止
    CYCQ-270123 BSTFA:TMCS=99:1, BSTFA+1%TMCS硅烷化试剂(干燥保存)批号 46815 有效期至 09/2013 2瓶批号 47187 有效期至 10/2013 3瓶促销价:180元/瓶上海安谱科学仪器有限公司地址:上海市斜土路2897弄50号海文商务楼5层 [200030]电话:86-21-54890099传真:86-21-54248311网址:www.anpel.com.cn联系方式:shanpel@anpel.com.cn技术支持:techservice@anpel.com.cn
  • Sigma-Aldrich/Supelco提供三聚氰胺检测专用衍生化试剂
    衍生化试剂,特别是硅烷化试剂在GC分析中用途最大。许多被认为是不挥发的或在200~300℃热不稳定的羟基或胺基化合物,经过硅烷化后,可成功地进行气相色谱(GC)分析。硅烷化作用是指将硅烷基引入到分子中,取代活性氢。活性氢被硅烷基取代后,降低了化合物的极性,减少了氢键束缚。因此形成的硅烷化衍生物更容易挥发。同时,活性氢的反应位点数目减少,化合物的稳定性得以加强。硅烷化衍生物极性减弱,被测能力增强,热稳定性提高。Sigma-Aldrich旗下的分析品牌Supelco,有品种齐全的硅烷化试剂和其他衍生化试剂。目前特别热销的硅烷化试剂BSTFA +1%TMCS,用于三聚氰胺检测,有如下几种不同包装规格。货号 包装规格33154-U 144X0.1mL33148 20X1mL33155-U 25mL33149-U 50mL备注:BSTFA [即 Bis(trimethylsilyl)trifluoroacetamide 双(三甲基硅烷)三氟乙酰胺 的简称]TMCS [即 Trimethylchlorosilane 三甲基氯硅烷 的简称]关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com, 或直接联系我们: 地址:上海市淮海中路398号世纪巴士大厦22楼A-B座 邮编:200020 电话:+86-21-61415566 传真:+86-21-61415568 热线电话:800-819-3336 email:ordercn@sial.com
  • 三聚氰胺检测研究各出奇招
    在三聚氰胺事件愈演愈烈最终波及整条食物链的时候,当前的检测手段显然已经难以满足检测需求。另外,政府对于国家食品安全质量的高度重视,进一步催化了更加快捷、准确、成本低廉的检测手段的开发过程。检测手段大PK 目前国家标准规定的高效液相色谱法、气相色谱—质谱联用法、液相色谱—质谱/质谱联用法等检测原料乳与乳制品中三聚氰胺含量的方法优点明显:检测极限低,测量结果准确。但缺点也相当突出:样品的前处理十分复杂,尤其对于难以挥发的三聚氰胺在气相色谱—质谱联用法中需要用衍生化试剂如双三甲基硅基三氟乙酰胺(BSTFA)和三甲基氯硅烷(TM-CS)衍生化处理,使之变成沸点相对较低的物质,更是增加了检测的难度。 开发新的检测手段是在原有检测方法上加以改进还是另辟蹊径,各路高手纷纷出招。 据南开新闻网报道,南开大学科研人员研制出的色谱质谱新技术,可在10分钟内完成液态奶的三聚氰胺检测,灵敏度达到0.5ppm(毫克/公斤),小于国家科技部招标要求的2ppm。该项目负责人吕宪禹教授称本技术的关键在于迅速的预处理过程。与传统的预处理方法相比,这种方法不需要萃取、离心等耗时步骤,因此能大大提高检测效率。 与吕宪禹的方法相比,中国科学院理化所另一科研小组的检测方法显然属于另辟蹊径。该小组从三聚氰胺本身的化学结构出发,利用三聚氰胺中氮原子与其他荧光化合物的配位特性,用该荧光物质作为探针,对比配位前后化合物荧光强度及荧光波长的变化来检测奶制品中的三聚氰胺。 该课题组不愿意透露更多细节,但是其中一位成员告诉本刊记者:“这种方法简单直接,既能定性又能定量,因此可能具有很大潜力。” 兰州大学刘伟生教授领导的研究小组也开发出一种检测三聚氰胺的快捷手段。据刘伟生介绍,这种检测方法的关键是如何使用选择性沉淀剂。检测中,第一种沉淀剂用来沉淀牛奶中非三聚氰胺类的组分,排除蛋白质等干扰,然后加入第二种沉淀剂后三聚氰胺的阳性反应便可观察。经过分离出的上层清液再加入另外一种选择性沉淀剂。这种沉淀剂对三聚氰胺具有高度选择性和专一性,不受溶液中其他组分干扰,检测结果直接:如果清液变浊则含有三聚氰胺,反之则无。 据刘伟生介绍,这种方法的检测限可以达到2ppm,符合科技部要求。这种方法检测时间在25分钟左右,有较大的推广价值。 除此以外,根据三聚氰胺化合物的特征光谱,科学家们也开发出一系列检测手段。这些手段包括拉曼光谱法、紫外—可见分光光度法等。根据抗体—抗原特异性结合开发出抗体特异性识别试纸等 根据三聚氰胺在特异性电极上的吸附及反应引起电流信号的变化,也有可能开发出三聚氰胺传感器等。 检测手段众多,究竟哪种能够适应需求,还需要时间来决定。三聚氰胺推倒多米诺骨牌 摆在人们面前的已经不仅仅是三聚氰胺牛奶、三聚氰胺馒头、三聚氰胺饲料,更可怕的是,人们吃进去的任何东西似乎都沾上了三聚氰胺这个“营养”了整个民族的幽灵。 现实中这个幽灵的邪恶远远超过了实验室用作检测的三聚氰胺,因为实验室里的三聚氰胺是分析纯净的,而现实中它可能还含有其他对人体更有害的物质。 分析检测领域科学家们所要做的,应该比检出三聚氰胺更多。化学家们提醒,那些混在三聚氰胺里假借三聚氰胺来害人的其他物质,不应该成为盲点。此外,不仅仅是对问题食品的“头痛医头”,那些最初混进食物链的三聚氰胺,那些环境中潜在的三聚氰胺污染源都不应该被遗忘。 科学家也在研究三聚氰胺对人体的危害。到记者发稿时已经了解到,中国科学院化学所一个小组研究了在分子水平上三聚氰胺及三聚氰酸的聚集态,或许这对揭示三聚氰胺在体内形成结石的原因有一定的帮助。 一个三聚氰胺,引起科学界对食品安全技术的全面重新考量,或许这也是不幸中的万幸。
  • 吉林7000多只化工厂原料桶被洪水冲入松花江
    7月28日上午10时左右,受洪水影响,吉林省吉林市永吉县新亚强化工厂7000多只装有三甲基乙氯硅烷的原料桶(每桶160公斤-170公斤),顺松花江水流冲往下游。记者下午在吉林市城区内的一处松花江段看到,这里的江面上漂浮着几十个蓝色的原料桶,江边异常的气味不太明显。  接到报告后,吉林省委常委、常务副省长竺延风立刻赶赴现场,带领相关部门随即展开工作部署。吉林市环保、安监、消防、公安、交通、卫生、龙潭区、经开区、舒兰市等相关单位和部门,在具有条件的松花江沿线设置多个打捞点,力争在城区段全部拦截。 有关部门组织化工专家,对打捞工作进行技术指导,科学指挥拦截、打捞,确保救援人员安全,确保不发生泄露。同时环保局对松花江水质随时进行监测,及时向有关部门报告情况。  吉林省省长王儒林要求省安监局、环保厅迅速组织力量,尽快协助处理,与吉林市一道全力打捞,采取科学有效措施,严防出现次生事故。  28日开始,互联网和社会上陆续出现松花江出现污染的传言。在哈尔滨,一些市民从网上获悉松花江吉林段被污染,对当地水质表示担忧。吉林网民称,当地化工厂仓库被洪水冲毁,自来水已经停水,盼望官方公布松花江是否污染及停水原因。  黑龙江省环境监察局局长迟晓德28日下午在接受新华社记者采访时说,2005年松花江水污染事件发生后,黑、吉两省建立了应急互动通报机制。一旦对下游有可能造成危害,将马上启动应急预案进行处置。 据了解,三甲基乙氯硅烷是无色透明液体,有刺激臭味,在空气中暴露,易和潮气反应产生氯化氢。其危险特性是易燃、遇高热、明火或与氧化剂接触,有引起燃烧爆炸的危险,受热或遇水分解放热,放出有毒的腐蚀性烟气。  中国吉林网讯7月28日,吉林省永吉县境内发生特大洪水,永吉县经济开发区新亚强化工厂一批 装有三甲基一氯硅烷的原料桶被冲入松花江中,事件发生后,吉林省迅速采取有 力措施,在松花江沿途设置8道防线进行拦截。吉化公司已派出200多人组成的专 业抢险队伍协助当地政府打捞。  松花江吉林市段疑遭化学品污染 部分区域停水  7月28日上午10点起,位于吉林省吉林市区域内的松花江江面开始漂浮一些装有化工原料的蓝色铁桶。同一天,吉林市区部分区域也出现停水。  在吉林大桥、松花江大厦、温德桥附近,均有群众目击大量漂浮的蓝色铁桶,桶上写有“有机硅”字样。有目击者估计,这些铁桶约几百个,铁桶不断往外冒白色气体,在江边一两百米处可闻到刺鼻异味。
  • 解读《关于蓝莓花色苷等14种“三新食品”的公告》(2023年第3号)
    一、新食品原料解读材料(一)蓝莓花色苷蓝莓花色苷是以杜鹃花科越橘属蓝莓(Vaccinium corymbosum L.)的果实为原料,经酶解、水提取、纯化、浓缩、干燥等工艺制成的粉状物质。加拿大批准蓝莓提取物(花色苷含量≥40%)作为天然健康食品使用;欧盟将蔬菜、水果来源的花色苷作为食品添加剂使用;美国将葡萄及葡萄皮来源的花色苷作为食品添加剂,允许在饮料等食品中使用。本产品推荐食用量为:总花色苷含量40.0%的蓝莓花色苷推荐食用量为800毫克/天,超过该含量的按照实际含量折算。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对蓝莓花色苷的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于蓝莓花色苷在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)黑麦花粉本产品的基源植物为禾本科黑麦属植物黑麦(Secale Cereale L.),原产于中亚及地中海等地区,在欧洲被广泛种植。本产品是采收黑麦的花粉,经过干燥、分离等工艺制成。在日本和韩国,花粉作为一种食物类别,不限定其基源植物,黑麦花粉可作为食品食用;在美国,黑麦花粉可作为食品原料进行销售。本产品推荐食用量为≤1.5克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对黑麦花粉的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于黑麦花粉在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,且花粉过敏者也不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。二、食品添加剂新品种解读材料(一)L-硒-甲基硒代半胱氨酸1.背景资料。L-硒-甲基硒代半胱氨酸作为食品营养强化剂已列入《食品安全国家标准食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(儿童用乳粉除外)和调制乳粉(仅限儿童用乳粉)、大米及其制品、小麦粉及其制品等食品类别。本次申请的L-硒-甲基硒代半胱氨酸为新的生产工艺,其使用范围和用量与GB 14880中已批准硒的规定一致。2.工艺必要性。该物质作为食品营养强化剂用于调制乳粉(儿童用乳粉除外)和调制乳粉(仅限儿童用乳粉)(食品类别01.03.02)、大米及其制品(食品类别06.02)、小麦粉及其制品(食品类别06.03)、杂粮粉及其制品(食品类别06.04)、面包(食品类别07.01)、饼干(食品类别07.03)、含乳饮料(食品类别14.03.01),强化食品中硒的含量。其质量规格按照公告的相关要求执行。(二)D-阿洛酮糖-3-差向异构酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的D-阿洛酮糖-3-差向异构酶申请作为食品工业用酶制剂新品种。美国食品药品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化D-果糖制得D-阿洛酮糖。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB 1886.174)。(三)抗坏血酸棕榈酸酯(酶法)1.背景资料。抗坏血酸棕榈酸酯(酶法)于2016年第9号公告批准作为抗氧化剂用于脂肪,油和乳化脂肪制品等食品类别。本次申请扩大使用范围:作为抗氧化剂用于方便米面制品(食品类别06.07);作为食品营养强化剂,是维生素C的一种化合物来源,其使用范围和用量与GB 14880中已批准维生素C的规定一致。日本厚生劳动省、韩国食品药品安全部等允许其作为抗氧化剂用于方便米面制品,欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于调制乳粉、饮料等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.25mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于方便米面制品(食品类别06.07),延缓方便米面制品氧化。该物质作为食品营养强化剂,是维生素C的化合物来源,强化食品中维生素C的含量。其质量规格执行国家卫生健康委(原国家卫生和计划生育委员会)2016年第9号公告。(四)维生素B11.背景资料。维生素B1作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(仅限儿童和孕产妇用乳粉)、豆粉、豆浆粉、豆浆、胶基糖果、大米及其制品、小麦粉及其制品等食品类别,本次申请扩大使用范围用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)。美国食品药品管理局、欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于食品。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中维生素B1的含量。其质量规格执行《食品安全国家标准 食品添加剂 维生素B1(盐酸硫胺)》(GB 14751)。(五)维生素B21.背景资料。维生素B2作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于调制乳粉(仅限儿童和孕产妇用乳粉)、豆粉、豆浆粉、豆浆、胶基糖果、大米及其制品、小麦粉及其制品等食品类别,本次申请扩大使用范围用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)。美国食品药品管理局、欧盟委员会、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于食品。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中维生素B2的含量。其质量规格执行《食品安全国家标准 食品添加剂 维生素B2(核黄素)》(GB 14752)。(六)牛磺酸1.背景资料。牛磺酸作为食品营养强化剂已列入《食品安全国家标准 食品营养强化剂使用标准》(GB 14880),允许用于特殊用途饮料等食品类别,本次申请在特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01)中最大使用量由0.5g/kg扩大到0.6g/kg。美国食品药品管理局、日本厚生劳动省、澳大利亚和新西兰食品标准局等允许其用于调味饮料等食品类别。2.工艺必要性。该物质作为食品营养强化剂用于特殊用途饮料(包括运动饮料、营养素饮料等)(食品类别14.04.02.01),强化食品中牛磺酸的含量。其质量规格执行《食品安全国家标准 食品添加剂 牛磺酸》(GB 14759)。三、食品相关产品新品种解读材料(一)己二酸与2-乙基-2-(羟甲基)-1,3-丙二醇和对叔丁基苯甲酸的聚合物1.背景资料。该物质为无色透明液体,不溶于水。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质作为添加剂用在涂料中,可提高涂料的粘结性,增强涂层与金属基材之间的附着力。(二)4,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和1,6-己二醇的聚合物1.背景资料。该物质为透明液体,不溶于水。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,形成的涂层用于金属罐内壁时具有较好的附着力、抗锈性和抗腐蚀性。(三)氢化二聚C18不饱和脂肪酸与1,4-丁二醇、乙二醇、对苯二甲酸和2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物1.背景资料。该物质在常温下为淡黄色透明颗粒。欧盟委员会、日本厚生劳动省和瑞士联邦食品药品监督管理局均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于金属罐内壁PET覆膜材料的中间层,添加了该物质的PET膜具有较好的加工性能和阻隔性。(四)1,6-己二酸与(E)-2-丁烯二酸和4,8-三环[5.2.1.02,7]癸烷二甲醇的聚合物1.背景资料。该物质常温下为无色液体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。以该物质为原料生产的涂料对于金属和塑料材料具有较好的附着力,用于底涂层中可改善涂层与基材间的附着力,同时可增加产品的柔韧性和抗腐蚀性。(五)1,4-丁二醇与2,2-二甲基-1,3-丙二醇、1,4-环己二酸和间苯二甲酸的聚合物1.背景资料。该物质常温下为淡黄色固体,不溶于水。美国食品药品管理局和欧洲委员会均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种聚酯类树脂,主要用于金属罐内壁,具有较强的附着力。添加了该物质的金属罐内壁涂层具有较好的拉伸性和抗腐蚀性。(六)对苯二甲酸二甲酯与1,4-丁二醇和4,8-三环[5.2.1.02,7]癸烷二甲醇的聚合物1.背景资料。该物质常温下为无色至黄色的无定形固体,不溶于水,可溶于酮类等有机溶剂。美国食品药品管理局允许该物质用于食品接触用涂料及涂层,不得用于接触婴幼儿配方奶粉和母乳;欧洲委员会允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质是涂料的主要成膜物质,主要用于金属罐内壁。成膜后的涂层具有较好的柔韧性,利于对罐体进行弯折冲压等加工工艺。
  • 2023年“三新食品”公示名单汇总!
    “三新食品”是指新食品原料、食品添加剂新品种和食品相关产品新品种。2023年5月,根据《食品安全法》及其实施条例有关规定,国家卫生健康委组织专业技术机构梳理了 “三新食品”目录及适用的食品安全标准(点击下载),范围涵盖自原卫生部2009年第3号公告至国家卫生健康委2021年第9号公告的新食品原料(菌种除外)、自原卫生部2009年第11号公告至国家卫生健康委2021年第9号公告的食品添加剂新品种、自原卫生部2012年第11号公告至国家卫生健康委2021年第9号公告的食品相关产品新品种,共计98个新食品原料品种、215个食品添加剂新品种和235个食品相关产品新品种。2023年国家食品安全风险评估中心共发布16条征求意见,共涉及53种化合物。小编汇总了2023年以来公开征求意见的“三新食品”名录。新品种序号名称公示时间使用范围111-氨基十一(烷)酸的均聚物2023年11月03日聚酰胺(PA)2瑞鲍迪苷 M2023年10月26日调制乳、风味发酵乳、冰淇淋、雪糕类、胶基糖果、饮料类3环糊精葡萄糖苷转移酶2023年10月26日食品工业用酶制剂4纤维素酶2023年10月26日食品工业用酶制剂52’-岩藻糖基乳糖2023年10月26日食品营养强化剂6(3R,3'S)-二羟基-β-胡萝卜素2023年8月28日乳及乳制品、饮料类、焙烤食品、糖果、即食谷物、冷冻饮品,使用范围不包括婴幼儿食品。7克鲁维毕赤酵母2023年8月28日批准列入《可用于食品的菌种名单》,使用范围包括发酵酒、果蔬汁、茶饮料的发酵加工,不包括婴幼儿食品。8枯草芽孢杆菌 DE1112023年8月28日批准列入《可用于食品的菌种名单》92'-岩藻糖基乳糖2023年8月23日:食品营养强化剂10甲基丙烯酸丁酯与甲基丙烯酸甲酯、丙烯酸正丁酯和1,4-丁二醇二甲基丙烯酸酯的聚合物2023年6月28日涂料及涂层11混合生育三烯酚浓缩物2023年6月26日植物油脂12巴拉圭冬青叶2023年6月21日马黛茶叶新原料131,4-苯二甲酸与癸二酸和 1,2-乙二醇的聚合物2023年4月25日涂料及涂层14.甲基丙烯酸与甲基丙烯酸丁酯、丙烯酸乙酯和甲基丙 烯酸甲酯的聚合物和对苯二酚与 4,4-亚甲基双(2,6-二甲基 酚)和氯甲基环氧乙烷的聚合物与 N,N-二甲基乙醇胺的反应 产物2023年4月25日涂料及涂层15丝氨酸蛋白酶2023年4月24日食品工业用酶制剂新品种16桃胶2023年4月23日婴幼儿、孕妇、哺乳期妇女及经期妇女不宜食用,标签、说明书应当标注不适宜人群和食用限量。17油莎豆2023年4月23日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。18肠膜明串珠菌乳脂亚种2023年4月23日批准列入《可用于食品的菌种名单》,使用范围包括乳及乳制品、果蔬制品、谷物制品的发酵加工,不包括婴幼儿食品。19吡咯并喹啉醌二钠盐2023年4月23日使用范围和最大使用量:饮料(40mg/kg,固体饮料按照冲调后液体质量折算)。20N-(2-氨基乙基)-β-丙氨酸单钠盐与1,4-丁二醇、1,6-二异氰酸根合己烷、1,3-二异氰酸根合甲苯和己二酸的聚合物2023年3月15日黏合剂(直接接触食品用)21文冠果种仁2023年3月10日食品安全指标按照我国现行食品安全国家标准中坚果与籽类食品的规定执行。22文冠果叶2023年3月10日食用方式:泡饮。23酵母蛋白2023年3月10日婴幼儿、孕妇和哺乳期妇女不宜食用,标签及说明书应当标注不适宜人群。24β-淀粉酶2023年2月10日食品工业用酶制剂新品种25溶血磷脂酶2023年2月10日食品工业用酶制剂新品种262’-岩藻糖基乳糖2023年2月10日食品营养强化剂新品种27己二酸与 2-乙基-2-(羟甲基)-1,3-丙二醇和 4-(1,1-二 甲基乙基)苯甲酸酯的聚合物2023年1月16日涂料及涂层284,8-三环[5.2.1.02,7]癸烷二甲醇与对苯二甲酸和 1,6-己 二醇的聚合物2023年1月16日涂料及涂层29氢化二聚 C18 不饱和脂肪酸与 1,4-丁二醇、乙二醇、 对苯二甲酸和 2-乙基-2-(羟甲基)-1,3-丙二醇的嵌段共聚物2023年1月16日塑料30蓝莓花色苷2023年1月12日乳及乳制品、饮料类、果冻、可可制品、巧克力和巧克力制品、糖果、冷冻饮品、焙烤食品、酒类。31绿茶儿茶素2023年1月12日饮料、糖果32蛋壳膜提取物2023年1月12日婴幼儿、孕妇、哺乳期妇女、对鸡蛋过敏者不宜食用。33黑麦花粉2023年1月12日婴幼儿、孕妇、哺乳期妇女,以及花粉过敏者不宜食用。扩大使用范围序号名称公示时间扩大使用范围1番茄红2023年10月26日肉脯类、肉灌肠类、腌腊肉制品类2聚氧乙烯(20)山梨醇酐单油酸酯(又名吐温 80)2023年10月26日胶原蛋白肠衣3迷迭香提取物2023年10月26日加工坚果与籽类4维生素 E(dl-α- 生育酚,d-α-生育酚,混合生育酚浓缩物)2023年10月26日其他(仅限叶黄素酯)5L-丙氨酸2023年8月23日果蔬汁(浆)类饮料6海藻酸丙二醇酯2023年8月23日粉丝、粉条、粉圆7N,N'-己基-1,6-二[3-(3,5-二叔丁基-4-羟苯基)丙酰胺]2023年6月28日塑料:聚氨酯(PUR)传送带82,2-双[[3[3,5-双(1,1-二甲基乙基)-4-羟苯基]-1-氧代丙氧基]甲基]-1,3-丙二基-3,5-双(1,1-二甲基乙基)-4-羟基苯丙酸酯;四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯2023年6月28日塑料:聚氨酯(PUR)传送带9咖啡渣2023年6月28日塑料:聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)10食用单宁2023年6月26日制糖工艺11乙酸乙酯2023年6月26日茶叶提取物的加工工艺12C.I.颜料黑 72023年4月25日塑料:聚醚醚酮(PEEK)13丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸 和 N,N'-亚甲基双丙烯酰胺的共聚物2023年4月25日纸和纸板142-(乙烯氧基)-1,2,3-丙三羧酸三丁基酯2023年4月25日间接接触食品用油墨15乳酸钙2023年4月24日腌渍的蔬菜、蔬菜罐头16三赞胶2023年4月24日调制乳、复合蛋白饮料17玻璃纤维;玻璃棉2023年3月15日塑料:聚醚醚酮(PEEK)18C.I.颜料黑 282023年3月15日涂料及涂层19三赞胶2023年2月10日调制乳、冰激凌、雪糕类、复合蛋白饮料、风味饮料20硫酸2023年2月10日油脂加工工艺三新食品2023年公示.rar
  • 北京工商大学孙宝国院士团队:综合多种方法探究芝麻香型白酒中二甲基三硫与香气活性化合物间的相互作用
    2023年1月,北京工商大学孙宝国院士团队在国际食品Top期刊Food Chemistry(Q1,IF: 8.8)发表题为“Investigation on the interaction between 1,3-dimethyltrisulfide and aroma-active compounds in sesame-flavor baijiu by Feller Additive Model, Odor Activity Value and Partition Coefficient”的研究性论文。北京工商大学硕士研究生杨世琪为第一作者,通讯作者为北京工商大学中国轻工业酿酒分子工程重点实验室副研究员李贺贺。芝麻香型白酒作为十二大香型之一,以其独特风味受到消费者的喜爱。但迄今为止芝麻香型白酒特征风味物质尚不明确,越来越多的研究推测芝麻香型白酒特征风味的形成源自于香气活性化合物间的相互作用。本研究以芝麻香型白酒中关键风味物质为研究对象,综合利用S型曲线法、OAV法、分配系数法等探究了芝麻香型白酒中二甲基三硫与酯类、醇类、酸类、醛类间的相互作用类型及规律。结果表明,物质的结构和特征香气是影响相互作用结果的重要原因之一,并且在52%乙醇-水溶液中,二甲基三硫与己酸乙酯、癸酸乙酯、糠醇香气的释放呈促进作用。分配系数法证明了二甲基三硫的添加会导致酯类化合物的峰面积和分配系数的变化,而化合物挥发性的变化是相互作用影响香气感知的原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。此外,初步提出了相互作用预测模型为 y = 2.0112 ln(x) + 0.1461,预测模型表明当酯类化合物的嗅觉阈低于33.80 μg/L时更易于二甲基三硫发生正向作用。本研究为风味物质间相互作用规律和影响因素的探究提供了新思路,有助于相互作用机制的揭秘,同时也为芝麻香型白酒特征风味物质的揭示以及国标的建立奠定了基础。研究亮点首次探究了芝麻香型白酒中关键风味物质间的相互作用。证明了结构和相比会影响二甲基三硫添加后酯类化合物挥发性的变化。首次建立了相互作用预测模型,实现了二元混合物间相互作用的快速判定。研究结论通过S型曲线法和OAV法明确了二甲基三硫与18种关键香气活性化合物间的相互作用类型,证明了二甲基三硫可以促进某些呈水果香气和烤香物质的挥发,如己酸乙酯、糠醇等。分配系数法结合OAV法和S型曲线法进一步证明了物质挥发性的变化是相互作用影响人体嗅觉感知的重要原因之一,并且在较高相比下,碳链较长的乙酯类化合物的挥发性更易受到促进。如分配系数法证明二甲基三硫添加后己酸乙酯的峰面积与分配系数增大,同时S型曲线法与OAV法表明两者为加成作用;且随着体系相比的增加,己酸乙酯峰面积的增大程度逐渐加强。根据相互作用结果建立了二甲基三硫与酯类化合物间相互作用预测模型,实现了二元混合物间相互作用类型的快速判断。预测模型表明33.80 μg/L的酯类化合物嗅觉阈值浓度是二甲基三硫与酯类化合物之间相互作用类型变化的临界值。原文链接https://doi.org/10.1016/j.foodchem.2023.135451
  • 中国氟硅有机材料工业协会《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准公示
    经项目征集、审核、发布审议等程序,氟硅协会拟于2023年3月发布《含氢硅油中含氢量的测定 顶空气相色谱法》等25项待发布团体标准,为保障项目立项的公正性,现对13项氟硅团体标准进行公示,公示时间2023年3月16日至3月25日,共计10日。如任何单位、个人对拟发布标准持有异议,请以正式发函方式向协会提出意见和建议。氟硅协会标委会邮箱:fsibwh@163.com。1、FGJ2021001《含氢硅油中含氢量的测定 顶空气相色谱法》报批稿.pdf2、FGJ2021002《乙烯基硅油、甲基乙烯基硅橡胶中乙烯基含量的测定 顶空气相色谱法》报批稿.pdf3、FGJ2021033《“领跑者”标准评价要求 硅酮建筑密封胶》报批稿.pdf4、FGJ2021034 《硅橡胶组合物 分类与命名》 报批稿.pdf5、FGJ2021034《六甲基二硅烷》报批稿.pdf6、FGJ2021040《乙烯基三甲基硅烷》报批稿.pdf7、FGJ2021041《低挥发性环甲基硅氧烷端乙烯基硅油》报批稿.pdf8、FGJ2021042《低挥发性甲基环硅氧烷的二甲基硅油》(报批稿).pdf9、FGJ2021057 《缩合型甲基苯基硅树脂》 报批稿.pdf10、FGJ2021052《纸张用无溶剂型有机硅离型剂》报批稿.pdf11、FGJ2021046 《乙烯基三甲氧基硅烷》 报批稿.pdf12、FGJ2021048《274#高真空扩散泵油》报批稿.pdf13、FGJ2021049 《275#高真空扩散泵油》报批稿.pdf14、FGJ2021050《通讯基站冷缩套管用硅橡胶》报批稿.pdf15、FGJ2021051《新能源汽车线缆用硅橡胶》报批稿.pdf16、FGJ2021056《加成型硅凝胶》报批稿.pdf17、FGJ2021013《保护膜用加成型有机硅压敏胶》报批稿.pdf18、FGJ2021016《按键用液体硅橡胶》(报批稿).pdf19、FGJ2021017《冷缩电缆附件用液体硅橡胶》(报批稿).pdf20、FGJ2021036《绝缘栅双极型晶体管用有机硅凝胶》(报批稿).pdf21、FGJ2021009《全氟-2-(2-硫酰氟乙氧基)丙基乙烯基醚》 报批稿.pdf22、FGJ2021010《全氟乙基乙烯基醚》报批稿.pdf23、FGJ2021011《全氟甲基乙烯基醚》报批稿.pdf24、FGJ2021012《全氟正丙基乙烯乙基醚》报批稿.pdf25、FGJ2021059《乙烯-三氟氯乙烯共聚物(ECTFE)树脂》(报批稿).pdf
  • 军工的传承 国家的栋梁——第三届“阿达玛斯”学术论文奖优秀课题组专题报道
    引言:阿达玛斯学术论文奖——中国科学精英励志计划,从第一届到第三届,越来越多的科研精英们加入到这个计划中来,鼓励创新,给科研精英科研团队更多的展示机会,促进跨学科交流互助,这是我们坚持活动的初衷。 第三届“阿达玛斯学术论文奖”落下帷幕,优秀课题组专题报道正式开篇。今天我们要介绍的是本届论文奖新设奖项“人气团队奖”得主——中国科学技术大学化学系傅尧教授课题组。在正式介绍之前,我们先来回顾下,在网络评选时,网友是怎么发声的: ......看来已经是一方名人,并且群众感情基础着实深厚呢!团队介绍 生物质洁净能源重点实验室依托中国科学技术大学。中国科技大学自九十年代开始进行生物质能源研究,2001年在校内跨学科成立了生物质洁净能源实验室,由朱清时院士任实验室主任。 安徽省生物质洁净能源重点实验室自成立以来,本着围绕国家和地方“加强生物质能源开发”的战略目标、瞄准生物质能源的科学前沿的建所宗旨,以中国科技大学为依托,整合了校内化学、化工、生物、能源和材料等相关学科的科研力量,联合了省内外其它高校、科研院所和相关企业的研发资源,形成了以生物能源基础理论与应用技术研究为主的完整的科研体系,开展了一系列关于生物质的结构、生物质的热化学气化、生物质的微生物转化、生物质的产品化、生物质催化转化为甲醇等液体燃料、和生物质固态燃料电池等的基础理论与应用技术研究。研究成果 傅尧教授及其团队在生物质基平台分子例如烯烃的转化方面开展了较为系统和深入的研究工作。 烯烃是有机合成化学中极为重要的一类合成分子,也是重要的生物质基平台分子。烯烃的来源非常广泛,价格低廉,容易获得,并且品类丰富。简单烯烃既是石油化工行业的原料也是产品。例如,最为简单的却也最为大宗的乙烯气体,来源于蒸汽裂解。乙烯气体在石化行业,转化成为更高级的烯烃、聚乙烯材料以及多种多样的化学品。从另一个角度考量,烯基官能团也广泛存在于天然产物中,往往这些天然产物也富含大量的其他官能团以及复杂的结构。烯烃能够吸引有机化学家的,不光是他丰富广泛的来源。烯烃的化学性质也着实让有机化学工作者着迷,烯烃有着大量的合成转化途径或方式。一些特殊的过渡金属催化剂或催化体系可以活化烯烃的双键,从而发展了诸多优秀且实用的反应。著名的例子包括wacker氧化反应,烯烃复分解反应,烯烃的氢甲酰化反应,以及heck反应等,这些反应为实验室或工业中合成复杂的有机分子提供了有效的手段和途径。一. 镍催化烯烃与烷基或芳基亲电试剂的还原偶联反应 傅尧教授及其团队实现了镍催化烯烃与烷基或芳基碳亲电试剂的还原偶联反应。该工作展示了烯烃氢碳化反应及其在复杂分子修饰方面的应用,所提出的“以烯烃替代传统有机金属试剂”的概念为金属催化交叉偶联反应开拓了新的思路,为烯烃的直接利用提供了新的途径。在硅烷的参与下,烯烃扮演了烷基金属试剂等价物的角色,参与碳碳键成键反应。以廉价、易得、相对稳定的烯烃,替代传统有机金属试剂,不仅是新颖的概念,更是实用的方法:克服了金属试剂来源、储存以及操作方面的困难。同时,该反应具有出色的官能团兼容性,能够用于复杂天然产物的修饰:诸如,维生素d2的高化学选择性修饰和奎宁的果糖侧链修饰等。这一研究成果发表在《nature communications》上。 原文链接:http://www.nature.com/ncomms/2016/160401/ncomms11129/full/ncomms11129.html二. 配体调控的铜催化区域选择性可控的烯烃硼化烷基化反应 傅尧教授及其团队发展了一例铜催化配体调节的区域选择性可控的烯烃硼化烷基化反应,研究成果发表在德国应用化学杂志(angew .chem. int. ed., 2015, doi: 10.1002/anie.201506713),并在同行评审中被评为vip(very important paper)论文。 从简单易得的原料出发快速高效地构建复杂分子和对多组分反应体系中复杂的选择性进行有效调控一直以来都是有机合成化学中的重要挑战。该方法在铜催化的条件下,实现了从商业可得的烯烃、频哪醇联硼酯和烷基卤素出发一步合成具有复杂结构的烷基硼酯的反应(图1)。在该反应中,通过对配体结构的微调,可以实现对反应区域选择性的高度控制(两种选择性可分别高达23:1和1:13)。此外,该工作还通过设计利用烯烃分子的螯合作用促进烯烃硼化加成的策略,有效地解决了三组分反应中复杂的化学选择性问题。 图1 配体调节的区域选择性可控的烯烃硼化烷基化反应 碳碳键作为生物界最基本的结构单元,其构建方法始终是有机化学家的重要研究方向。该工作提出的通过烯烃的加成-偶联反应构建c(sp3)-c(sp3)键的策略相对于传统的交叉偶联反应(如kumada反应),既避免了大量敏感的烷基金属试剂的使用,又在构建碳碳键的同时引入烷基硼。而烷基硼作为有机合成中重要的合成中间体,可以高效地转化为醇、胺、氟、芳杂环等重要官能团。由此可见,该工作为构建c(sp3)-c(sp3)键提供了一种新的绿色高效的方法。此外,作者证明了其使用的区域选择性可控的“配体对”(xantphos & cy-xantphos)对烯烃的硼氘化反应和硼胺化反应同样适用,这为区域选择性可控的烯烃硼化双官能化反应提供了一对通用的配体。 该论文的共同第一作者为中国科学技术大学化学与材料科学学院博士生苏伟和博士后龚天军。这项研究得到国家973计划(2012cb215306)和国家自然科学基金 (21325208, 21172209, 21361140372)等项目资助。原文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201506713/abstract团队/实验室风采团队黄山行 中试生产线双相固体酸连续催化脱水装置制备5-羟甲基糠醛空气氧化装置制备呋喃二甲酸酯化装置制备呋喃二甲酸二甲酯二酯精华装置制备高纯制备呋喃二甲酸二甲酯期望合作领域生物质平台分子转化利用:1)羧酸脱羧及相应偶联反应研究2)烯烃的转化利用3)多元醇的转化利用如有深度交流或合作意向,敬请联系我们:marketing@titansci.com不忘初心,只因感动!
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • “移情别恋” 这5种粉体已投向激光粒度仪怀抱
    p style="text-indent: 2em "随着科学技术的发展和工业工艺精细化程度的不断提升,产品呼唤的质量及性能要求日益提升,粉体材料的热度不断上升,同时对粉体粒度检测的要求也越来越高。在众多粒度检测方法中,激光粒度仪在各行各业的粒度检测中都有着广泛的应用,适用的粉体多如繁星,能力也在不断升级,成为了当下最受宠的粒度检测方法之一。在化工和矿业等领域,很多粉体的粒度检测本来是常用筛分法、沉降法等方法,但良禽择木而栖,现在也都渐渐走向了激光粒度仪的怀抱。仪器信息网选取了上述行业中5种常用的粉体进行探讨,它们移情别恋的故事这就为您奉上。/pp style="text-indent: 2em "(1)铝粉/pp style="text-indent: 2em "氧化铝是一种应用最广泛的催化剂载体,价格便宜,能够通过改变条件来制备各种催化反应所要求的不同的晶相、比表面积和孔分布的载体。铝粉作为生产氧化铝载体的重要原料,其规格对氧化铝载体的最终性能有重要影响。/pp style="text-indent: 2em "铝粉的粒径正是衡量铝粉质量的一项重要指标:粒径过小,合成溶胶反应较剧烈,反应温度不易控制且存在安全隐患;粒径过大,反应不易完全,会造成溶胶铝含量偏低而影响产品性能,而且使粒子间的空隙变大,接触点变小,填充密度随之减少,强度也随之降低。检测铝粉粒度的传统方法是筛分法,但速度慢,精度差,重复性低。相比之下,激光光散射法突破了筛层数的限制,测量范围大幅扩大,且为连续分布。具有较好的测量重复性,结果准确,可满足铝粉粒度的测定要求。/pp style="text-indent: 2em "不过需要注意的是,用激光粒度仪,通过测定散射光能的分布计算出被测样品的粒径大小,其中散射光的强度和空间分布与被测颗粒的大小和含量有关。因此,确保粉体能均匀分散在分散介质中,粒子不团聚,不与分散介质发生化学反应是准确测定样品粒度的前提。/pp style="text-indent: 2em "对于铝粉的粒度检测方法,筛分法和激光极度以检测方法都有相应的行业标准出台,分别是YS/T 617.6-2007《铝、镁及其合金粉理化性能测定方法 第6部分:粒度分布的测定 筛分法》和YS/T 617.7-2007《铝、镁及其合金粉理化性能测定方法 第7部分:粒度分布的测定 激光散射/衍射法》。/pp style="text-indent: 2em "(2)钛白粉/pp style="text-indent: 2em "钛白粉是塑料中是重要的添加剂,粒度大小和粒度分布对钛白粉的白度、光泽度、耐候性等性能有重要影响。6、70年代,国内外一些钛白粉厂多采用沉降法和电子显微镜法测定钛白粉粒度分布 。沉降法影响因素较多, 测定结果有很大差别 电子显微镜法测定粒度分布, 必须借助大量统计工具, 才能得到较为接近实际情况的粒度分布, 否则有局限性。相比之下,激光粒度仪法简捷 、快速 、准确度高、重现性好,对钛白粉粒度分布的测定适用性极好 ,有利于指导钛白生产和成品质量评定。使用激光粒度仪测量钛白粉最好的方法是先确定分散剂 、分散剂浓度及分散时间等影响因素,并建立稳定的测量体系。目前钛白粉的粒度检测尚无相关的标准出台。/pp style="text-indent: 2em "(3)硅粉/pp style="text-indent: 2em "硅粉是合成甲基氯硅烷的主要原料之一,硅粉粒径的大小直接影响到甲基氯硅烷的选择性及收率,故在甲基氯硅烷生产过程中必须对硅粉的粒度及分布情况进行测定。目前,常用的硅粉检测方法为筛分法,但该法噪声大,粉尘污染严重,且会在检测过程中造成样品损失,回收率低,在潮湿环境下硅粉易受潮,也会使测试结果产生偏差。/pp style="text-indent: 2em "激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。其测试速度快、重复性好、操作简单,已被应用于硅粉的粒度测试上。激光粒度仪测定硅粉的较佳仪器条件为: 遮光率 15%,超声时间 3 min,当搅拌速度为 1 500 r/min 时,获得的检测结果准确可靠。与钛白粉一样,化工用硅粉的粒度检测也尚无相关的标准出台。/pp style="text-indent: 2em "(4)碳酸钙粉/pp style="text-indent: 2em "碳酸钙( CaCO3 )粉主要存在于天然矿石中,目前是一种应用较广泛的环保型钻井液加重材料。在钻井钻进储层段时,钻完井液会侵入油层中,而小于孔喉直径的钻井液材料则会进入油层造成伤害,颗粒愈小,侵入深度愈大。固相颗粒的伤害对裂缝油藏更为突出。因此,对固相颗粒的控制,减少钻井液中固相含量,特别是超细钻井液材料的颗粒含量,使/pp style="text-indent: 2em "它们保持一个合理的级配,是减少钻井液固相对油层伤害的重要措施。/pp style="text-indent: 2em "过去通常采用沉降法测定碳酸钙粉末粒度,但沉降法的实验步骤繁琐,且重复性较低。当前随着激光衍射技术的不断更新,使用激光粒度分析仪已经完全可以代替传统的筛析和沉降方法,激光粒度分析仪具有较好的数据采集和处理系统,测试过程结束后,直接计算分析出实验数据所需结果并可以分类保存、一键打印实验结果,样品测试时间仅为数分钟 ,远远低于沉降法测量,大大缩短了测量周期。/pp style="text-indent: 2em "针对碳酸钙粉,目前已有国标GB/T 15057.11-1994《化工用石灰石粒度的测定》出台。但所规定的方法也仅为筛分法。/pp style="text-indent: 2em "(5)细精粉/pp style="text-indent: 2em "粒度是衡量铁矿石质量的一项重要指标 , 在铁矿石贸易合同中 ,贸易双方对粒度指标的要求都比较严格 ,粒度分布直接关系到铁矿石价格 。而细精粉是铁矿石中价格最贵的品种之一 , 而最能表现其质量除了铁品位就是它的目级粒度。通常目级粒度的测试是用筛分仪进行测试。筛分作为一种古老的方法, 它最大的优点在于廉价, 所以适用于矿业中较大颗粒粒度测试 。目前进口铁矿中粒度测试都采用网筛进行筛分,但是也有许多的缺点 :①干式条件下测量小于 1mm的矿石比较困难 ②干式条件下测量粘性较大或成团的矿石比较困难 ③筛分时间长短受人为因素控制 ,可比性、可靠性下降。/pp style="text-indent: 2em "随着科学技术的发展,激光光衍射 (或称小角激光光散射)等 ,已成为粒度测试的首选方法,不需要对照标准来校准仪器 很宽的动态范围 灵活性高 可以直接测量干粉 具有高度的再现性 可以测量整个样品 测量方法是非破坏性和非侵入性的 速度较快 分辨率高。不过细精粉的粒度分布均匀, 都在 1mm以下 ,而激光粒度仪的测试范围在 0.02 ~ 2mm, 因此,激光粒度仪在细精粉粒度检测中的应用有一定的范围条件:当测试时间 20s、泵速2 500r/min时,激光粒度仪可适用于铁矿石目级粒度的测定,而且结果比机筛的结果更加真实。/pp style="text-indent: 2em "在细精粉等铁矿石粉体的粒度检测标准中,目前针对筛分法已有国标GB/T 10322.7-2016,《铁矿石和直接还原铁 粒度分布的筛分测定》出台。另有商业检测标准,SN/T 4844-2017《铁矿石安全卫生检验技术规范 第7部分:质量评价 粒度分布》现行,但尚无相关的激光散射/衍射法粒度检测标准出台。/pp style="text-indent: 2em "上述5大粉体的粒度检测都已经或正在展现出对激光粒度仪的青睐,但铝粉外,似乎并无相应的激光散射/衍射法粒度检测标准出台,这对于各激光粒度仪厂商也不失为一种参与行业建设的机遇。/p
  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 专家解读|功能化三聚氰胺海绵用于液质联用检测农兽药多残留净化研究
    1. 简介随着全球动物源性食品消费需求的增长,动物养殖业对产量和生产效率的追求不断提高,养殖过程中不可避免地会使用到兽药。研究表明,饮食摄入是普通人群暴露于低浓度兽药和农药的主要途径,农兽药滥用导致的药物残留严重影响了食品安全。为保护消费者,各国和地区制定了相关法规以控制和减少食品中此类残留的发生。然而,食品中农兽药残留水平低,种类多,待筛查样本量大,因此发展快速、高灵敏度、高准确度、高通量的农兽药多残留分析方法对于保障食品安全非常重要。药物多残留检测技术可提高农兽药残留检测方法的分析性能和分析效率,降低成本,在食品质量安全监测中越来越受到检测人员的青睐。这种方法允许通过单次检测多种化合物,极大地提高了检测效率。然而不同类别农兽药的理化性质差异大,且动物源性食品的基质复杂,通常需要同时提取和富集不同类别的化合物,多组分分析是一项极具挑战性的技术。相较于电化学方法、酶联免疫分析、荧光分析法等,液相色谱-质谱(Liquid Chromatography-Mass Spectrometry, LC-MS)联用技术具有分析速度快、灵敏度高、准确性好、筛查通量大等优点,已被广泛应用于食品中农兽药多残留的监测与安全控制工作。但食品种类多样、基质组成较复杂,易对LC-MS联用电喷雾离子化过程中形成的待测分子信号造成干扰,影响检测结果的准确性和灵敏度。因此,需要采用基质净化技术对待测样品进行适宜的基质净化前处理,减弱和消除基质效应。已报道的食品基质净化技术应用比较多的主要有液-液萃取技术、固相萃取技术及QuEChERS技术等。LLE会消耗大量的有毒溶剂,不仅危害实验人员的健康,而且容易对环境造成污染。自SPE技术问世以来,不同类型的 SPE柱已成功应用于各类兽药多残留量分析。但商业SPE小柱不仅价格昂贵外,其净化过程也很繁琐且耗时(净化过程主要包括活化、平衡、加载、洗涤和洗脱)。与之相比,QuEChERS技术更为简单快捷,采用不同的基质吸附剂进行净化,并通过简单的涡流、离心等步骤,可以有效地去除干扰基质。QuEChERS能满足高效、简洁、精准、安全、可靠以及大批量前处理等检测方法的发展需求。QuEChERS法的净化流程基本上可以归纳为提取-盐析-净化这三步,用于净化的材料基本可以分为2类:第一类是硅基材料:以C18、PSA等最为常用。第二类是碳基材料:以CNT、Graphene等最为常用。虽然相比其他前处理过程已经大大简化,但是在整个过程仍需反复的涡流、离心,成为整个前处理过程的耗时限速步骤。此外,微纳米颗粒通过提高比表面积增加吸附效率,然而颗粒尺寸进一步的缩小将带来离心分离回收困难的问题。因此,磁性材料开始用于食品基质的净化过程。2. M-SPE技术M-SPE技术是以磁性或可磁化材料作为吸附基底的一种萃取技术。磁性吸附剂被直接分散到样品溶液中用于萃取目标物质,随后在外部磁场的作用下实现目标物与干扰基质的分离。M-SPE技术操作简便、重现性好,不需要繁琐的活化、上样、除杂、洗脱等流程,且无萃取柱堵塞之虞,具有良好的应用前景。图1是将合成的磁性多壁碳纳米管用于鸡蛋中兽药多残留分析的具体分析流程,仅采用外部磁场的作用即可实现净化材料与提取液的分离,通过对盐析条件和提取液PH值的优化选择了合适的提取条件,然后又与其他几种常用净化材料进行对比,并优化磁性碳纳米管的用量,证明了磁性碳纳米管的优势,方法不仅大大缩短了样品前处理时间而且解决了多壁碳纳米管回收困难、回收率低的问题。图1 磁性多壁碳纳米管用于鸡蛋中兽药多残留分析流程然后又将磁性多壁碳纳米管用于羊肉中兽药多残留分析,同样通过提取条件、净化条件得到了适用于羊肉基质的磁性固相萃取净化方法。与其他净化材料相比同样取得了相对满意的结果。然而,在实验过程中发现,磁性纳米材料的尺寸均一性、颗粒间团聚以及利用率不完全等对微纳米材料的基质净化效果以及兽药回收率均具有重要影响,依然是需要妥善解决的问题。因此,开发新型的、吸附效率高的、易于回收的固相吸附基质材料十分必要,具有着较高的应用价值和广阔的应用前景。3. 弹性多孔净化材料及其应用理想的净化材料应该具有高效的基质除杂能力、便捷的基质分离能力以及高选择的基质净化能力。而弹性多孔海绵材料因其低成本、高孔隙率、高比表面积、强机械稳定性等优点在油水分离和吸附/分离领域得到了广泛的应用研究。商业三维聚合海绵材料主要包括聚氨酯海绵(PUS)、三聚氰胺海绵(MeS)和聚丙烯海绵(PPS)。其中,三维多孔结构的三聚氰胺海绵(MeS),具有超过 99%的孔隙率、约×102μm的孔径和相互交联的高分子骨架,且其表面广布纳米级毛细管开孔结构,以及丰富的氨基、羟基、醛基和醚键等化学功能基团,独特的结构性质使得其可以作为一种优异的吸附基底材料,同时丰富的功能位点也为功能涂层的修饰提供了骨架支撑。未经修饰的海绵可依据海绵自身进行基底吸附;硅烷化改性或碳材料加载的功能化海绵可引入功能基团,从而实现硅基或碳基的特异性吸附。3.1 三聚氰胺海绵用于牛奶中兽药多残留分析图2是将未经修饰的三聚氰胺海绵用于牛奶中兽药多残留分析。由于三聚氰胺海绵表面的亲疏水性基团以及较大的比表面积,提取液可自发渗透到其众多海绵微孔中,并且拥有极高的基质吸附效率。此外,其良好的机械性能和弹性使其可以通过物理挤压的方式快速方便地去除粗提溶液中干扰基质。只需使用三聚氰胺海绵直接汲取提取液,然后通过物理挤出即可轻松获得净化液,用于后续的LC-MS/MS分析。图2 三聚氰胺海绵用于牛奶中兽药多残留分析流程考虑到所检测的兽药之间较大的理化差异,以及复杂基质的影响。设计了4种不同提取条件用以研究脱水剂和Na2EDTA添加对药物提取效率的影响,同时也研究酸度对药物回收的潜在影响,得到了满意的提取条件。然后又对净化模式进行了比较。三聚氰胺海绵具有良好的弹性和机械性能,能够通过动态净化和静态净化两种方式实现基质的净化过程。在动态模式下,通过快速拉动和推动注射器的柱塞杆,将粗提液反复吸进和挤出海绵。在静态模式下,提取溶液自发地渗入海绵微孔并被保留,直到吸附过程结束。鉴于动态和静态模式海绵表面和提取溶液中干扰基质的吸附和迁移存在差异,考察了不同动态净化模式和静态净化模式对三聚氰胺海绵净化性能的影响,见图3。图3 净化模式对牛奶中兽药多残留回收率的影响接下来又与商业d-SPE吸附剂C18和PSA以及多功能针式过滤器MFF进行对比,比较回收率以及基质效应结果发现三聚氰胺海绵拥有相同或更好的净化性能。同时,净化前后海绵的红外光谱图有明显变化,透射电镜图也观察到了净化后海绵表面明显吸附了一些基质。为了证明该方法的适用性和准确性,考察该方法的选择性、线性、基质效应、精密度、LODs和LOQs,结果均能够满足检测需求。本研究通过简单的浸泡和挤压,可以在几秒钟内方便地通过三聚氰胺海绵去除基质,并且不需要额外的操作。3.2 Silanized MeS用于农兽药多残留分析接下来我们又制备了一系列硅烷化三聚氰胺海绵并用于不同食品中农兽药多残留分析。硅烷化三聚氰胺海绵采用两步溶胶-凝胶法制备而成。下边这3张图分别三聚氰胺海绵经不同硅烷修饰后的傅里叶变换红外光谱图、X射线光电子能谱图和透射电镜图,均能表明不同硅烷在海绵骨架表面的功能化成功。其中,从透射电镜图可以看出不同硅烷对海绵进行改性后,其微观形貌发生明显变化。例如,三聚氰胺海绵分别经 OTS、 PTS和 ATS硅烷化处理后,其表面形成大量或蓬松、或立方体、或泥浆状共聚物。图4 三聚氰胺海绵及硅烷化三聚氰胺海绵的FTIR图(a),XPS图(b)和SEM图(c)将7种不同的改性海绵用于粗提液的净化。大部分药物回收率处于可接受的60%-120%范围内,表明它们适合于去除鸡蛋中的基质干扰。通过对净化后基质去除率研究上述改性海绵的净化效率发现不同改性海绵在去除基质效率方面存在显著差异,如图5所示。 图5 使用不同类硅烷化三聚氰胺海绵对检测兽药的回收率分布 (a),使用不同类型硅烷化三聚氰胺海绵净化后的样品基质去除率 (b)为了考察吸附剂用量对净化效率的影响,将不同数量的硅烷化三聚氰胺海绵小柱分装至到注射器中。当使用一个或两个海绵小柱时,不足一半的乙腈提取液(1 mL)可以被吸入海绵中,这不利于快速高效的基质净化。当填装过多海绵小柱时(n≥7),顶部的海绵几乎不会被粗提取液浸湿。因此,通过加标回收实验研究了料液比对基质净化效果的影响。加下来又研究了硅烷浓度、料液比及净化模式,得到了相对满意的净化条件。同时与原始海绵的比较实验中发现,必要的硅烷化过程显著增加了检测兽药的总回收率。基于上述实验结果,功能化三聚氰胺海绵可视为一种操作方便、快速高效的基质净化材料。之后我们又将硅烷化三聚氰胺海绵分别用于猪肉、豇豆和蜂蜜中农兽药多残留分析。研究考察了不同硅烷化海绵的配比对回收率及基质净化效果的影响,也都取得了相对满意的结果。3.3 r-GO@MeS用于兽药多残留分析以氧化石墨烯作为功能单体用于三聚氰胺海绵的改性。氧化石墨烯是一种高效的污染物吸附材料,其含氧官能团以及大量的芳环基团使其对极性化合物和非极性化合物拥均有较强的吸附性能。还原氧化石墨烯改性三聚氰胺海绵 (rGO@MeS) 采用水热法一步制备。图6是将rGO@MeS用于羊肉中兽药多残留分析的具体流程。为了考察三聚氰胺海绵作为基质净化材料在肉类制品中的适用性,首先选择脂肪和蛋白质含量较高的羊肉作为实验对象用于方法开发,并以氧化石墨烯作为功能单体用于三聚氰胺海绵的改性。与原始海绵相比,rGO@MeS的直接变化就是海绵本身的颜色变化。通过透射电镜也观察到明显的表面微观形貌变化。这些都表明石墨烯成功键合到海绵骨架表面。图6 rGO@MeS用于羊肉中兽药多残留分析流程接下来,使用三种不同浓度氧化石墨烯(0.5,1.0,1.5 mgmL-1)改性海绵用于粗提液的净化。又比较不同净化材料获得的药物回收率和基质吸附性能和净化除色效果。通过比较原始海绵与改性海绵净化后萃取液的颜色,发现使用rGO@MeS净化后的提取液澄清且透亮。为了进一步验证和比较上述材料的基质净化效果,考察了不同改性海绵对兽药回收率及其分布的影响。图7 石墨烯浓度与料液比影响图8 净化液颜色对比然后我们又将还原氧化石墨烯三聚氰胺海绵分别用于牛奶和牛肉中兽药多残留的分析,均取得了满意的结果。4. 弹性多孔净化材料理论研究与应用前景(1)研究表明以功能化三聚氰胺海绵为代表的弹性多孔净化材料具有良好的基质净化效果,在复杂食品基质净化中具有良好的应用前景;(2)研究表明功能化三聚氰胺海绵净化选择性可通过功能团种类、丰度以及净化模式加以调控,但深入的基质净化机制与规律尚需要进一步研究;(3)研究表明功能化三聚氰胺海绵基质净化覆盖性适中,总体基质移除率仍然有上升空间,未来复合型功能化三聚氰胺海绵材料开发具有良好的开发潜力。作者简介许旭,女,博士,讲师,毕业于中科院成都有机化学研究所,就职于郑州轻工业大学食品与生物工程学院,主要从事农兽药、植物生长调节剂等食品化学危害物多残留分析研究。近年来,主持国家自然科学基金青年基金1项和河南省教育厅高等学校重点研究项目1项,参与省部级科研项目2项,发表论文二十余篇,其中以第一作者或通讯作者发表SCI论文7篇,高被引论文2篇,申报授权发明专利1项。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 喜讯|盛奥华三款产品获得国家计算机软件证书
    近日,公司申报的三款仪器软件操作系统已获得国家计算机软件著作权登记证书,可喜可贺。其中包含:多参数水质检测仪(6B-3000A型 V10)检测系统、智能消解仪(6B-12型 V9)消解系统和新款触屏式消解仪(6B-30A型 V10)消解系统。盛奥华从创立开始,所研发生产的水质检测仪器屡有突破性地创新,先后获得各项国家专利、软件证书等,得到相关部门的肯定和用户的认可,实实在在、兢兢业业地做好产品、树好品牌、铸好厂商,不断努力,更好地回馈广大用户,为祖国的环保事业贡献绵薄之力。
  • 浅谈岛津气相质谱进样口常见维护
    那么请收好下面这份岛津GCMS系列进样口常见维护指南,助力解决仪器日常故障。 答案就在↓↓↓ 岛津GCMS系列中最常见的进样口为SPL与PTV,二者结构类似。对于进样口,需要我们关注最多的是隔垫,衬管,惰性石英棉,以及O形圈的维护。图示:分流不分流进样口 进样隔垫的类型 隔垫作用:进样针把样品从样品瓶导入进样口的同时保证进样口的气密性。但是每次进样,进样针都会扎穿隔垫,一次次的往复,必将影响进样口气密性。同时,虽然隔垫吹扫可以将因针尖效应残余在隔垫上的污染残留吹扫出进样口,但随着复杂样品进样次数上升,将造成重现性变差和鬼峰的产生。所以工厂建议100次进样后需更换隔垫。图示:常见隔垫类型 玻璃衬管的维护 衬管的作用:样品气化室。衬管污染将对样品产生吸附或降解,严重影响痕量分析的结果。因此,工厂建议进样500次后或严重污染时及时更换。 图示:分流衬管和不分流衬管 为保证良好的重现性及更高效的工作,可直接按需购买以下惰性化处理过的玻璃衬管。如需考虑成本,可重复使用衬管。但需正确的清洗和去活化处理。 常规项目玻璃衬管清洗:衬管浸没在丙酮中放置数小时,或加超声清洗。如该法不能彻底清洗干净,可用1N的硝酸溶液浸泡7-8小时后再分别用水和丙酮清洗干净。 图示:玻璃衬管的清洗 针对需要进行农残或RoHs痕量样品分析的用户,玻璃衬管和石英棉表面存在的硅羟基(Si-OH)等活性基团,会使待测物发生吸附或降解等反应,所以玻璃衬管和石英棉需进行去活化处理。一般使用5%DMCS(二甲基氯硅烷)溶液(使用正己烷溶剂稀释)浸泡过夜,用甲醇淋洗干净150℃烘干后放于干燥皿中保存。 注意:二甲基氯硅烷有一定毒性,全程需在通风橱中进行操作,并做好防护措施。 石英棉及O形圈 选择惰性处理的石英棉,可提高分析的灵敏度和准确性。石英棉填充要求:断面少,注意松紧,高度5mm到1cm。装填时不能过于厚实或者过稀,太实了会影响分析准确性;太少了则起不到过滤阻隔的效果。 当O形圈发生明显形变或硬化时,需进行更换,可随衬管一起更换。 Easy stop 隔垫、衬管、O型圈该如何更换呢?岛津GCMS solution质谱工作站推出的“Easy sTop”功能,有效的提高了更换的便利性。智能控制维护前进样口降温 —— 关闭流量 —— 维护后的排空气 —— 漏气检查。一键启动进样口维护“so easy” 最后,完成进样口的基本维护后,记得重置消耗品使用次数哦。并且将进样口温度升至高于日常使用温度20度左右,进行老化。
  • 中科院在SERS光纤探针研究方面取得进展
    近期,中国科学院合肥物质科学研究院固体物理研究所四室研究员孟国文课题组与安徽光学精密机械研究所研究员毛庆和课题组合作,在具有表面增强拉曼散射(SERS)活性的光纤探针研究方面取得新进展。基于静电吸附原理,研究团队发展了一种普适的组装方法,将多种具有等离激元特性的带电金属纳米结构组装到锥形光纤探针表面。该结构可用作SERS光纤探针,对污染物的远程、便携式在线检测具有重要意义。相关结果发表在ACS Appl. Mater. Interfaces 2015, 7, 17247?17254上。  光纤通信技术的发展,为污染物的高通量、远程实时SERS检测开辟了新途径,其核心思想是将高SERS活性纳米结构耦合到光纤探针表面,并集成到便携式光纤拉曼光谱仪上,通过采集并检测污染物的SERS信号,实现污染物便携快速检测。为了实现此目的,研究人员发展了涂拉法、光化学沉积或物理气相沉积等方法,将贵金属纳米结构沉积到光纤探针上。然而,这些研究方法制备的SERS光纤探针在功能上具有一定的局限性。例如,对于涂拉法,SERS活性纳米结构在光纤表面的附着力较弱,在液体样品中容易扩散,进而影响到检测信号的稳定性 对于物理气相沉积和激光诱导的光化学沉积法,由于受限于制备过程,难以精确调控纳米结构的形貌和尺寸,无法优化其局域电磁场增强及表面等离子体共振特性,不能保证SERS检测污染物的灵敏度。  针对上述问题,孟国文课题组和毛庆和课题组合作,采用静电组装法(如下图),将带有正/负电性的贵金属纳米结构组装到硅烷偶联剂修饰的锥形光纤表面,构筑了一种高效的SERS光纤探针。首先,在基于液相法构筑形貌可控的纳米结构的过程中,使用的表面活性剂可以使纳米结构呈现出可控的表面物理化学特性,如带有正/负电、亲/疏水性等。其次,光纤主要成分是氧化硅、表面有大量羟基,易于与硅烷偶联剂通过形成Si-O-Si键耦合 同时硅烷偶联剂末端具有一个官能团,使光纤整体富有特定的功能性。因此,对于带负电的纳米结构(如柠檬酸根保护的金纳米球),选取带氨基的硅烷偶联剂修饰光纤 反之,对于带正电的纳米结构(如CTAB保护的金纳米棒),采用带羧基的硅烷偶联剂修饰光纤,可实现贵金属纳米结构在光纤表面的有效组装。比如,可将多种不同形貌及光学特性的SERS活性纳米结构(金纳米球、金纳米棒、金@银核壳纳米棒和立方银)可控组装到光纤表面。这种SERS光纤探针具有稳定性高(相对信号偏差低于3%)、面向光纤种类多(适用于单模、多模、D型和微纳光纤等)及灵敏度高等优势,对农残甲基对硫磷的敏感度达到10纳摩尔。相关成果已申请国家发明专利并发表在ACS Appl. Mater. Interfaces杂志上。  上述研究得到国家科技部“973”计划和国家自然科学基金等项目的资助。  左:带电纳米结构组装到锥形光纤探针上的示意图。中:纳米立方银组装到光纤前后的光学照片及扫描电镜照片。右:SERS光纤探针在分析物溶液中及空气中的SERS信号。
  • 科研赋能:珀金埃尔默助力半导体材料研发
    近年来中国在半导体领域的发展已经取得了一定的成就,想进一步的突破,仍面临着很大的挑战,限制中国半导体发展的关键因素集中在半导体设备和先进材料等方面。在材料方面,包括光刻胶、前驱体、硅材料、电子化学品等,是技术壁垒高的半导体关键材料,亟待广大科研单位及相关企业进行攻关。对这些关键材料的研发过程中,包括材料的优化开发、作用机理探究、定性定量分析、材料性能评估以及质量控制等,都需要使用各类分析手段。珀金埃尔默(PerkinElmer)作为分析仪器领先的全球供应商,广泛和深入的服务于全球研究机构和企业,助力半导体材料的研发。 珀金埃尔默分析技术在半导体材料研发中的应用 △点击查看大图 1 光刻胶 光刻胶是半导体制造和微电子制造中的关键材料之一,其研发和生产是半导体产业链中的关键环节,对于提升半导体制造工艺的精细度和效率具有重要意义。 光刻胶中金属元素杂质的存在会对其感光性能和成品质量产生影响,如降低分辨率、增加胶层的不均匀性等。光刻胶主要成分是树脂、光引发剂,单体等,主要成分都是有机物。在使用ICP-MS分析光刻胶中的金属杂质时,遇到的主要挑战是仪器对有机试剂的耐受能力以及反应池消除质谱干扰的能力。为了避免前处理可能带来的污染,通常采用有机溶剂稀释后直接进样的方式测试。珀金埃尔默NexION系列ICP-MS采用独有的34 MHz频率,使等离子体具有更强的趋附效应,中心通道更宽,有机类样品在经过等离子体时解离更完全,仪器测试有机样品时具有更好的稳定性。 NexION ICP-MS点炬状态直接进空气不熄炬, 体现出强大的基体耐受能力 △点击查看大图 同时,在进行ICP-MS分析时,光刻胶中大量的碳、作为等离子体的氩等会带来严重的质谱干扰,如12C12C+对24Mg+的干扰、12C15N+对27Al+的干扰,40Ar12C+对52Cr+的干扰、40Ar16O+对56Fe+的干扰等,NexION系列ICP-MS具有化学分辨能力,其核心就是采用具有专利技术的配备轴向加速电压的四极杆作为反应池,配合使用反应活性强的纯氨气作为反应气,在反应模式下能够彻底消除干扰,保证测试结果的准确度,达到精确评估光刻胶质量的目的。 光刻胶中受干扰元素典型检出能力 元素 检出限(DL/ppt) 背景等效浓度(BEC/ppt) Mg 0.05 0.20 Al 0.07 0.35 Cr 0.32 0.78 Fe 0.26 0.65 轴向加速四极杆通用池技术, 确保质谱干扰的去除 △点击查看大图 曝光动力学研究对于光刻胶的研发异常关键,因为其效能直接决定了制程良品率和生产效率。利用紫外光谱能够监测光刻胶在曝光过程中发生的光化学反应,通过跟踪特定化学键或官能团的变化,研究人员可以评估光刻胶的反应动力学和光化学稳定性。 高性能紫外-可见-近红外分光光度计 (辅助建立DILL透光模型) △点击查看大图 为了更加准确原位模拟光刻胶在不同紫外-可见波段下的曝光历程,可采用差示扫描量热分析仪(DSC)和紫外光源联用进行分析,两者的联用,适合用于研究光刻胶的固化动力学过程,为研发更加稳定可靠的新一代无机金属氧化物复合光刻胶提供准确热力学数据支撑。 紫外光-差示扫描量热分析仪 △点击查看大图 在光刻胶配方开发过程中,出色的分析手段将极大帮助研究人员获取反馈信息。单独的手段往往具有局限性,比如热重(TG)没有结构定性能力,因此研究人员往往只能依靠个人的主观经验推测每个分解温度区间所产生组分的化学结构归属,这对于光刻胶配方逆向开发和性能优化等领域的应用存在较大的不确定性。而单独的红外(FTIR)或者气质(GC/MS)均存在单一温度维度测试的局限性,无法有效的还原温度维度或实现原位检测的要求。而采用分析技术的联用,就可以实现设备间的“协同效应,扬长避短”,比如热重引入的温度维度可以结合红外或气质的定性能力,赋予实时分析光刻胶组分随温度的动态逸出过程,做到原位监测、还原真实的反应/分解过程,应用于光刻胶配方开发和环境颗粒物的相互作用研究。 热重/红外/气质(TGA/IR/GC/MS) 联用逸出气体测试平台 △点击查看大图 2 前驱体 前驱体是半导体薄膜沉积工艺的主要原材料,在薄膜、光刻、互连、掺杂等半导体制造过程中,前驱体主要应用于气相沉积(包括物理沉积PVD、化学气相沉积CVD和原子气相沉积ALD),以形成符合半导体制造要求的各类薄膜层。此外,前驱体也可用于半导体外延生长、刻蚀、离子注入掺杂和清洗等,是半导体制造的核心材料之一。 前驱体介绍 分类 示例 用途 硅前 驱体 TEOS(正硅酸乙酯)、DIPAS(二异丙胺硅烷)、4MS(四甲基硅烷)等 用于多晶硅/氧化硅/氮化硅薄膜沉积 金属 前驱体 TFMAT(四(二甲基胺基)钛)、TiCl4(四氯化钛)等 用于各类金属化合物薄膜沉积 用ICP-MS对前驱体样品中金属杂质分析时,由于样品中的金属元素杂质含量低,稀释倍数受到限制,导致前处理后的溶液样品中总固体溶解含量(TDS)较高,对ICP-MS耐盐能力提出了很高的要求。珀金埃尔默NexION系列ICP-MS采用独特的大锥孔三锥设计(TCI)和90度四极杆离子偏转技术(QID),配合全基体进样系统(AMS),具有更加优异的基体耐受能力,以及更加优异的长期稳定性。 (a)大锥孔三锥设计(TCI) 和90度四极杆离子偏转技术(QID) (b)NexION ICP-MS优异稳定性 (2000 ppm 硅中35元素100ppt) △点击查看大图 前驱体中高基体的硅(Si)或金属(如Ti)也会产生严重的质谱干扰,比如高硅会对磷(P)、钛(Ti)、镍(Ni)等。利用NexION 系列ICP-MS的化学分辨能力,可以很好的实现前驱体中痕量杂质分析。 (a)高硅基体中对相关元素的质谱干扰 (b)NexION ICP-MS 典型受硅基体干扰元素分析 △点击查看大图 3 硅基材料 半导体硅基材料的研发是半导体集成电路发展的核心,集成电路制造技术已进入了后摩尔时代,传统硅基材料在尺寸微缩极限下遇到的关键挑战,是造成集成电路工艺复杂性和系统设计难度显著提升的重要因素。发展新材料(如三代半导体SiC等),探索与硅基技术兼容的新材料、新结构器件集成制造技术,是未来集成电路的重要发展趋势,也是后摩尔时代集成电路发展的主要技术路线之一。 利用晶圆表面分解技术(VPD)与NexION 系列ICP-MS结合,不仅可以对晶圆表面金属杂质分析,也可以对晶圆进行剖面分析。得益于NexION系列ICP-MS出色的性能,每平方原子数检出能力可达105。 (a)硅片经VPD处理后照片 (b)硅片表面金属杂质 分析 (c)掺硼硅片剖面分析 △点击查看大图 配备 MappIR 晶圆分析系统的珀金埃尔默Spectrum 3,不仅可以快速和简易的实现硅基材料中的碳和氧的杂质分析,还可以对涂层、电介质以及外延膜进行测量。 (a)Spectrum 3 FT-IR 和 MappIR 系统 (b)不同工艺硅片 光谱差异比较 (c)硅片中碳和氧分析 △点击查看大图 4 电子化学品 电子化学品是半导体生产过程一类重要的辅原料,品种很多,包括氢氟酸、硝酸、硫酸、盐酸、氨水、双氧水等超纯无机试剂和异丙醇(IPA)、丙酮、四甲基氢氧化铵(TMAH)、N-甲基丙络烷酮(NMP)、丙二醇甲基醚乙酯(PGMEA)等超纯有机试剂。电子化学品生产工艺和应用研发是科研工作者的重要目标,其内容包括高纯度原料的选择与预处理、提纯技术、复配技术以及各类功能性电子化学品的开发与应用等方面。 ICP-MS作为电子化学品无机杂质分析的最重要手段,已经广泛应用于电子化学品开发与生产质量控制中。珀金埃尔默拥有全套的电子化学品ICP-MS分析标准操作方法,将极大的减少分析方法的开发,提升工作效率,加速研发过程。 NexION 系列ICP-MS 电子化学品标准操作方法 △点击查看大图 ——更多方案细节,欢迎联系我们,让我们共同为中国半导体材料突破贡献力量。 扫描左侧二维码 咨询产品详情 关注我们
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U / mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 东西分析高效液相色谱法应对可乐中4-甲基咪唑测定
    美国消费者倡导组织公共利益科学中心(Center for Science in the Public Interest)发布报告称在碳酸饮料可乐中发现了致癌化学物质4-甲基咪唑,一时间舆论哗然。4-甲基咪唑是一种存在于焦糖剂中的化学物质,它是在生产焦糖色素时产生的,主要用于合成大宗胃药西咪替丁,也可用作环氧树脂固化剂和金属表面防护剂等。 国外曾经有几项研究关于4-甲基咪唑,主要都是集中在啮齿类动物身上。TOX-67试验中,2-甲基咪唑、4-甲基咪唑会对老鼠的骨髓、血液微核产生负面影响;2011年,美国加州公布4-甲基咪唑会对老鼠致癌,而且加州据此计算了4-甲基咪唑对人体的&ldquo 无显著风险水平&rdquo 值为16 &mu g/天。而且目前并无任何研究显示这种物质能导致人类患上癌症。 为应对该事件,东西分析应用实验室迅速反应,利用东西分析LC-5510色谱产品,在短时间内研究建立了三氯甲烷-无水乙醇液液萃取提取,旋转蒸发浓缩,C18柱分离,紫外检测器检测的高效液相色谱测定可乐中4-甲基咪唑的方法,得到良好的结果。
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物Oxalic acid dihydrate6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物Bis[3-(triethoxysilyl)propyl] tetrasulfide40372-72-3D-薄荷醇D-Menthol15356-60-2L-薄荷醇L-Menthol2216-51-51-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-十二烷醇1-Dodecanol112-53-81-辛醇1-Octanol111-87-55-甲基呋喃醛5-Methylfurfural620-02-0N-环己基甲酰胺N-Cyclohexylformamide766-93-84-甲基-2-戊醇4-Methyl-2-pentanol108-11-2N,N-二甲基-对苯二胺N,N-Dimethyl-p-phenylenediamine99-98-95,6,7,8-四氢-1-萘胺5,6,7,8-Tetrahydro-1-naphthylamine2217-41-6肼二盐酸盐Hydrazine dihydrochloride5341-61-7硫氰酸钾Potassium thiocyanate333-20-0二甲基硫醚Dimethyl sulfide75-18-3聚苯醚Polyphenyl ether31533-76-3叔丁基甲基醚 气相色谱级Tert-Butyl methyl ether1634-04-4七氟丁酸Heptafluorobutyric acid375-22-4甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-53,4-二羟基苄胺氢溴酸盐3,4-Dihydroxybenzylamine hydrobromide16290-26-9N,N-二(羟基乙基)椰油酰胺Coconut diethanolamide(CDEA)68603-42-9/61791-31-9甲苯二异氰酸酯Tolylene Diisocyanate(TDI)26471-62-5异冰片基丙烯酸酯Isobornyl acrylate5888-33-5N,N' -二苯基硫脲1,3-Diphenyl-2-thiourea102-08-9聚合氯化铝Aluminum chlorohydrate1327-41-9四丁基氢氧化铵10%溶液Tetrabutylammonium hydroxide solution2052-49-5四丁基氢氧化铵25%溶液Tetrabutylammonium hydroxide solution2052-49-5L-苯基丙氨酸L-Phenylalanine63-91-2无水硫酸铈Cerium(IV) sulfate13590-82-4硫酸铈铵四水合物Ammonium cerium(Ⅳ) sulfate tetrahydrate18923-36-9脂蛋白脂肪酶Lipoprotein Lipase9004/2/8乙二胺≥99.5%标准品Ethylenediamine107-15-3壬二酸Azelaic acid (Nonanedioic acid)123-99-9N,N-二甲基-1-萘胺N,N-Dimethyl-1-naphthylamine86-56-6双(三氟甲烷)磺酰亚胺锂盐Bis(trifluoromethane)sulfonimide lithium salt90076-65-6
  • 华大基因多家医学实验室满分通过全国SDC2基因甲基化检测室间质评
    近日,国家卫生健康委临床检验中心 (NCCL) 公布了《2023年全国SDC2基因甲基化检测室间质量评价预研活动结果报告》,华大基因旗下深圳、武汉、天津3地医学检验所均以满分成绩通过。这是5月华大基因深圳、天津医学检验所满分通过全国肿瘤游离DNAEGFR基因突变检测室间质评以来的再次满分认证通过,多次获得国家权威机构组织的充分肯定,证明了华大基因在肿瘤防控领域的专业检测能力。华大基因多家医学检验所满分通过室间质评华大基因十分注重医学检验所的质量管理。从2020年参与室间质评以来,多次以满分高分通过国家级室间质评。此次室间质评是国家卫健委临床检验中心首次针对SDC2基因甲基化检测面向全国医疗机构/临床实验室开展的室间质量评价,通过SDC2基因甲基化检测的定性检测,对临床实验室进行质量评价。华大基因三家医学实验室采用华大基因自主研发的粪便DNA甲基化检测试剂参加本次室间质评,阳性符合率和阴性符合率均为100%,满分通过该项能力验证,这也充分证明了华大基因粪便DNA甲基化检测技术的稳定性与高质量水平。在加速技术创新及完善实验室质量管理体系的同时,华大基因基于粪便DNA甲基化检测技术推出多款基因检测方案,其中,采用荧光定量PCR技术的华常康[gf]ae[/gf]粪便DNA甲基化检测,能够通过检测粪便携带的肠道脱落细胞中的3个肠癌相关基因 (SDC2、ADHFE1、PPP2R5C) 的甲基化水平,从而评估受检者罹患肠癌的风险。此外,华大基因为检测试剂提供配套处理系统,实现低中高通量的结直肠癌防控一站式自动化整体解决方案,为合作伙伴打造疾病检测和肿瘤防控“平急两用”通用型平台。近年来,华大基因始终坚持“防大于治、人人可及”的公共卫生普惠精准防控理念,不断创新技术,推动普惠民生项目。未来,华大基因仍将积极探索新模式、新思路、新技术与新场景,将基因科技赋能精准医学, 为加快实现‘健康中国2030’贡献科技力量。
  • 仪真分析独家代理美国EPA推荐的BRL全自动甲基汞/总汞测定仪
    仪真分析仪器有限公司(以下简称仪真)于2011年10月份正式成为美国布鲁克兰实验室(Brooks Rand Lab)的全自动总汞,全自动甲基汞及二位一体形态汞分析仪器MERX的全国独家代理商,并且全面负责该产品的市场推广,销售以及培训和售后服务等工作。从此,中国的众多客户可以得到近距离的贴切服务。MERX 系统功能齐全,可用于总汞和甲基汞和其他汞形态的分析,一个系统全部搞定。MERX还可以与市场上所有ICP/MS 联用,实现GC-ICP/MS 形态汞测定。模块式的设计让系统具备无与伦比的灵活性,为客户节省费用及开支。MERX系统还是全球运用最多,市场占有率最大的甲基汞分析仪器,为美国EPA 1630方法所推荐。MERX所拥有的优越性能,将有助于推广总汞及甲基汞的检测范围和应用领域。特别有助于在环境,农林牧渔的样品中总汞及形态汞的研究及检测。 关于美国布鲁克兰实验室(Brooks Rand Lab)-http://www.brooksrand.com 美国的布鲁克兰试验室是世界上最大的甲基汞分析仪器生产商及商业分析实验室,具有三十多年重金属分析经验,在原有的知名总汞分析仪器基础上,三年前推出了世界上第一台商品化的,完全符合美国EPA 1630 甲基汞分析方法的,应用气相色谱-高温裂解-冷原子荧光检测的最新全自动甲基汞分析仪器MERX,能够分析从常量到痕量的甲基汞,结束了甲基汞测试步骤繁琐且重复性差的历史。布鲁克兰实验室的研发人员来自在美国从事汞分析的多年的专家,对从总汞到形态汞的检测具备独到的经验,为客户分析提供完整的解决方案。 仪真分析拥有强大的技术支持团队,为布鲁克兰实验室钦定的大中国的独家代理.相关产品垂询,敬请与我们联系将为您的实验室提供最优质的服务和解决方案。更多产品请登陆仪真官网:www.esensing.net仪真分析仪器有限公司 电话:(021) 62087664 传真:(021) 62191934 E-Mail:yu@esensing.net
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期
  • 岛津推出猪肉中瘦肉精GCMS法检测方案
    早在2002年,国家已明令禁止在饲料和动物饮用水中添加盐酸克仑特罗和莱克多巴胺等7种 &ldquo 瘦肉精&rdquo 。然而时至今日,瘦肉精依然阴魂不散,据CCTV《每周质量报告》,在河南省孟州市、沁阳市、温县和获嘉县十几家养猪场,几乎家家都在使用&ldquo 瘦肉精&rdquo 。 瘦肉精是动物用药,包括盐酸克仑特罗、莱克多巴胺、沙丁胺醇和硫酸特布他林等,属于肾上腺类神经兴奋剂。把&ldquo 瘦肉精&rdquo 添加到饲料中,的确可以增加动物的瘦肉量。但国内外的相关科学研究表明,食用含有 &ldquo 瘦肉精&rdquo 的肉会对人体产生危害,常见有恶心、头晕、四肢无力、手颤等中毒症状,特别是对心脏病、高血压患者危害更大。长期食用则有可能导致染色体畸变,会诱发恶性肿瘤,至于究竟摄入多大量,如何导致恶性肿瘤,有关病例研究国内外尚无定论。但是,近几年,各地&ldquo 瘦肉精&rdquo 致人中毒甚至死亡的案例时有发生。 长期关注食品安全的岛津公司,很早之前就已推出了多种检测克伦特罗(clenbuterol)的方案。最近,岛津上海分析中心又推出了基于GC -MS法的克伦特罗检测方案。GC-MS法具有灵敏度高、假阳性率低的特点,常用作筛选后阳性样品的确证。本方案针对盐酸克伦特罗的化学性质,建立了C18小柱和聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)整体柱二维萃取的方法。样品提取后,用C18小柱和聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)整体柱进一步富集净化,经N ,O-双三甲基硅烷三氟乙酰胺 (BSTFA) 衍生,选择离子监测方式进行气相色谱质谱测定。该方法以克伦特罗同位素(Clenbuterol-D9) 为内标,内标法定量。猪肉中克伦特罗的检出限为0.13 &mu g/kg,在0.5~50 &mu g/kg的浓度范围内具有良好的线性关系,r大于0.999。日内、日间相对标准偏差不高于20%,加标回收率大于75%。结果表明,该方法简单、快速、灵敏度高、重现性好,适用于猪肉中克伦特罗的测定。 有关&ldquo 气相色谱质谱联用测定猪肉中的瘦肉精的含量&rdquo 的详细内容,请参见http://www.instrument.com.cn/netshow/SH100277/down_163373.htm。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 解读《关于假肠膜明串珠菌等28种“三新食品”的公告》
    一、新食品原料假肠膜明串珠菌(Leuconostoc pseudomesenteroides)属于明串珠菌属,从传统发酵乳制品中分离得到。该菌种已被列入欧洲食品安全局资格认定(QPS)名单的推荐生物制剂列表以及国际乳品联合会公报(BulletinoftheIDF514/2022)的“在发酵食品中证明安全的微生物品种目录”,并在丹麦、加拿大、韩国等国家已被批准使用。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对假肠膜明串珠菌的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌种的使用范围包括发酵乳、风味发酵乳、干酪、发酵型含乳饮料和乳酸菌饮料(非固体饮料),不包括婴幼儿食品。该原料的食品安全指标须符合以下规定:铅(以Pb计,干基计)≤1.0 mg/kg,总砷(以As计,干基计)≤1.5 mg/kg,微生物限量为沙门氏菌0/25 g(mL),金黄色葡萄球菌0/25 g(mL),单核细胞增生李斯特氏菌0/25 g(mL)。待食品加工用菌种制剂的食品安全国家标准发布后,按照食品加工用菌种制剂的标准执行。二、食品添加剂新品种(一)聚天冬氨酸钾1.背景资料。聚天冬氨酸钾申请作为食品添加剂新品种。本次申请用于葡萄酒(食品类别15.03.01)。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局允许其作为食品添加剂用于葡萄酒。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为稳定剂和凝固剂用于葡萄酒(食品类别15.03.01),改善产品稳定性。其质量规格按照公告的相关要求执行。(二)氨基肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的氨基肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质氨基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(三)蛋白酶1.背景资料。李氏木霉(Trichoderma reesei)来源的蛋白酶申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、法国食品安全局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(四)磷脂酶A21.背景资料。李氏木霉(Trichoderma reesei)来源的磷脂酶A2申请作为食品工业用酶制剂新品种。美国食品药品管理局允许其用于食品。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化磷脂的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(五)麦芽糖淀粉酶1.背景资料。酿酒酵母(Saccharomyces cerevisiae)来源的麦芽糖淀粉酶申请作为食品工业用酶制剂新品种。澳大利亚和新西兰食品标准局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化淀粉的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(六)木聚糖酶1.背景资料。地衣芽孢杆菌(Bacillus licheniformis)来源的木聚糖酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化木聚糖水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(七)乳糖酶(β-半乳糖苷酶)1.背景资料。Papiliotrema terrestris来源的乳糖酶(β-半乳糖苷酶)申请作为食品工业用酶制剂新品种。丹麦兽医和食品局、澳大利亚和新西兰食品标准局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化乳糖水解和转糖基反应。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(八)羧肽酶1.背景资料。米曲霉(Aspergillus oryzae)来源的羧肽酶申请作为食品工业用酶制剂新品种。法国食品安全局、丹麦兽医和食品局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化蛋白质羧基端氨基酸的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(九)脱氨酶1.背景资料。米曲霉(Aspergillus oryzae)来源的脱氨酶申请作为食品工业用酶制剂新品种。美国食品药品管理局、日本厚生劳动省允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,主要用于催化5’-腺嘌呤核苷酸(5’-AMP)的水解。其质量规格执行《食品安全国家标准 食品添加剂 食品工业用酶制剂》(GB 1886.174)。(十)2-己基吡啶1.背景资料。2-己基吡啶申请作为食品用香料新品种。美国食用香料和提取物制造者协会、国际食品用香料香精工业组织、欧盟委员会等允许其作为食品用香料在各类食品中按生产需要适量使用。2.工艺必要性。该物质配制成食品用香精后用于各类食品(《食品安全国家标准食品添加剂使用标准》表B.1食品类别除外),改善食品的味道。该物质的质量规格按照公告的相关内容执行。(十一)富马酸1.背景资料。富马酸作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于胶基糖果、面包、糕点、果蔬汁(浆)类饮料等食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 富马酸》(GB 25546)。(十二)乙酸钠(又名醋酸钠)1.背景资料。乙酸钠作为酸度调节剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于复合调味料和膨化食品的食品类别,本次申请扩大使用范围用于腌腊肉制品类(如咸肉、腊肉、板鸭、中式火腿、腊肠)(食品类别08.02.02),熏、烧、烤肉类(食品类别08.03.02),油炸肉类(食品类别08.03.03),肉灌肠类(食品类别08.03.05),冷冻挂浆制品(食品类别09.02.02),经烹调或油炸的水产品(食品类别09.04.02),熏、烤水产品(食品类别09.04.03)。美国食品药品管理局、日本厚生劳动省、加拿大卫生部等允许其作为酸度调节剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为酸度调节剂用于上述食品类别,调节食品的酸碱度。其质量规格执行《食品安全国家标准 食品添加剂 乙酸钠》(GB 30603)。(十三)环己基氨基磺酸钠(又名甜蜜素)1.背景资料。环己基氨基磺酸钠(又名甜蜜素)作为甜味剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于冷冻饮品、果酱、面包、糕点、饮料类、果冻等食品类别。本次申请扩大使用范围用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06)。国际食品法典委员会允许其作为甜味剂用于焙烤制品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-11 mg/kg bw。2.工艺必要性。该物质作为甜味剂用于焙烤食品馅料及表面用挂浆(仅限焙烤食品馅料)(食品类别07.04)和膨化食品(食品类别16.06),赋予食品甜味。其质量规格执行《食品安全国家标准 食品添加剂 环己基氨基磺酸钠(又名甜蜜素)》(GB 1886.37)。(十四)维生素E1.背景资料。维生素E作为抗氧化剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于油炸面制品、方便米面制品、复合调味料、膨化食品等食品类别。本次申请扩大使用范围用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04)。美国食品药品管理局、日本厚生劳动省等允许其作为抗氧化剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0.15-2 mg/kg bw。2.工艺必要性。该物质作为抗氧化剂用于面糊(如用于鱼和禽肉的拖面糊)、裹粉、煎炸粉(食品类别06.03.02.04),减缓食品氧化褪色。其质量规格执行《食品安全国家标准 食品添加剂 维生素E》(GB 1886.233)。(十五)聚二甲基硅氧烷及其乳液1.背景资料。聚二甲基硅氧烷及其乳液作为食品工业用加工助剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于肉制品、啤酒、焙烤食品、饮料、薯片等加工工艺。本次申请扩大使用范围用于胶原蛋白肠衣加工工艺。澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-1.5 mg/kg bw。2.工艺必要性。该物质作为食品工业用加工助剂用于胶原蛋白肠衣加工工艺,消除胶原蛋白肠衣加工过程中产生的泡沫。其质量规格执行《食品安全国家标准 食品添加剂 聚二甲基硅氧烷及其乳液》(GB 30612)。(十六)硬脂酸镁1.背景资料。硬脂酸镁作为乳化剂、抗结剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于蜜饯凉果类、可可制品、巧克力和巧克力制品以及糖果的食品类别。本次申请作为食品工业用加工助剂用于泡腾片压片工艺。美国食品药品管理局、澳大利亚和新西兰食品标准局等允许其作为食品工业用加工助剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量“不作具体规定”。2.工艺必要性。该物质作为食品工业用加工助剂用于泡腾片压片工艺,可减少压制泡腾片过程中物料与模具表面的摩擦力,使片面光滑,避免出现裂片。其质量规格执行《食品安全国家标准 食品添加剂 硬脂酸镁》(GB 1886.91)。三、食品相关产品新品种(一)环己胺封端的1,1'-亚甲基二(4-异氰酸基环己烷)均聚物1.背景资料。该物质常温下为淡黄绿色粉末,不溶于水、乙醇和丙酮,可溶于氯仿。欧盟委员会和日本厚生劳动省均允许该物质用于食品接触用PCN塑料材料及制品。2.工艺必要性。该物质用作PCN材料的添加剂,可以提高其抗冲击性。(二)2-[2-(2,4-二氨基-6-羟基-5-嘧啶)二氮烯基]-5-甲基苯磺酸1.背景资料。该物质在常温下为黄色粉末,微溶于水。美国食品药品管理局和日本化学研究检验所均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质是一种黄色着色剂,在各类塑料中具有较高的着色力。(三)丙烯酰胺与甲基丙烯酰氧乙基三甲基氯化铵、衣康酸和N,N'-亚甲基双丙烯酰胺的共聚物1.背景资料。该物质常温下为浅黄色液体,可溶于水。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用纸和纸板材料及制品。2.工艺必要性。该物质作为干强剂用于食品接触用纸和纸板材料及制品,可增强纸张的拉伸强度、内结合强度和耐破强度。(四)β-(3,5-二叔丁基-4-羟基苯基)丙酸十八醇酯1.背景资料。该物质常温下为白色结晶性粉末,不溶于水。《食品安全国家标准 食品接触材料及制品用添加剂使用标准》(GB 9685-2016)已批准该物质作为添加剂用于食品接触用橡胶、油墨、黏合剂以及聚乙烯(PE)、聚丙烯(PP)和聚苯乙烯(PS)等多种塑料材料及制品。本次申请将其使用范围扩大至涂料及涂层。欧洲委员会、日本厚生劳动省和南方共同市场均允许其用于食品接触用涂料及涂层。2.工艺必要性。该物质是一种抗氧化剂,用于涂料时,可避免环境中的氧气和其他化学物质导致的降解;也可用于涂布过程,避免涂膜收缩起皱。(五)萘磺酸与甲醛聚合物的钠盐1.背景资料。该物质常温下为淡黄棕色粉末,可溶于水。GB 9685-2016已批准该物质作为添加剂用于食品接触用涂料及涂层、黏合剂以及纸和纸板。本次申请将其使用范围扩大至丙烯腈-丁二烯-苯乙烯共聚物(ABS)塑料材料及制品。美国食品药品管理局和德国联邦风险评估研究所均允许该物质用于食品接触用ABS塑料材料及制品。2.工艺必要性。该物质作为乳化剂用于ABS塑料材料及制品,可减少凝结物的形成。(六)C1~C18单、多元脂肪醇的脂肪酸酯1.背景资料。该物质在常温下为白色固体。GB 9685-2016已批准该物质作为添加剂用于食品接触用纸和纸板材料及制品。本次申请将其使用范围扩大至食品接触用塑料材料及制品。美国食品药品管理局、欧盟委员会、日本厚生劳动省和南方共同市场均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质能够改善加工过程中塑料材料的流动性,提高整体加工速度或改善表面性能。(七)二氯二甲基硅烷与二氧化硅的反应产物1.背景资料。该物质为白色粉末,不溶于水。GB 9685-2016、原国家卫生计生委2017年第9号公告和国家卫生健康委2018年第11号公告中已批准该物质作为添加剂用于食品接触用聚对苯二甲酸乙二酯(PET)、PP和聚偏氟乙烯(PVDF)等多种塑料材料及制品和涂料及涂层。本次申请将其使用范围扩大至食品接触材料及制品用黏合剂和油墨。欧盟委员会和日本厚生劳动省允许该物质用于食品接触材料及制品用黏合剂;瑞士联邦食品安全和兽医办公室和欧洲油墨协会均允许该物质用于食品接触材料及制品用油墨。2.工艺必要性。该物质用作黏合剂的消泡剂,利于黏合剂的生产及使用;用作油墨的分散剂,达到提高粘度的效果。(八)一氧化碳-乙烯-丙烯三元聚合物1.背景资料。该物质在常温下为白色固态颗粒,不溶于水。美国食品药品管理局和欧盟委员会均允许该物质用于食品接触用塑料材料及制品。2.工艺必要性。该物质主要用于复合包装,具有较高的阻隔性能,可有效阻隔氧气渗透,防止内容物氧化。(九)4-乙基苯酚与间甲酚、对甲酚、对叔丁基苯酚和甲醛的聚合物1.背景资料。该物质常温下为深琥珀色固体,不溶于水,溶解于醇类、酮类溶剂。欧洲委员会和美国食品药品管理局均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料的主要成膜物质,可增加涂层的柔韧性和延展性。(十)乙二醇与2,2-二甲基-1,3-丙二醇、对苯二甲酸、间苯二甲酸、己二酸和衣康酸的聚合物1.背景资料。该物质常温下为透明固体,不溶于水,可溶于酯类溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层;南方共同市场和日本黏合剂行业协会均允许该物质用于食品接触材料及制品用黏合剂。2.工艺必要性。以该物质为原料生产的涂料具有较高的表面张力,可提升涂层的防污性能;以该物质为原料生产的黏合剂则具有较高密封强度和易揭等性能。(十一)间苯二甲酸与间苯二甲胺和己二酸的聚合物1.背景资料。该物质常温下为无色透明颗粒,不溶于水。国家卫生健康委2022年第2号公告已批准该物质用于食品接触用塑料材料及制品,使用温度不得超过100℃,本次申请将其使用温度限值提高至121℃。欧盟委员会和日本厚生劳动省均允许该物质在使用温度不超过121℃时用于食品接触用塑料材料及制品。2.工艺必要性。以该物质为原料生产的塑料薄膜,具有良好的氧气阻隔性能、热稳定性能和热成型性能。
  • 千呼万唤始出来,测定N-二甲基亚硝胺的新标准终于上线啦!
    测定N-二甲基亚硝胺的新标准!本次标准更新,新增了QuEChERS法测定,Detelogy带你一起解读!亚硝酸盐广泛存在于食品之中,很容易与胺化合,生成亚硝胺。亚硝胺与苯并(α)芘、黄曲霉素是世界公认的三大强致癌物质。N-二甲基亚硝胺是N-亚硝胺类化合物的一种,食品中天然存在的N-亚硝胺类化合物含量极微,但其前体物质亚硝酸盐和胺类广泛存在于自然界中,在适宜的条件下可以形成N-亚硝胺类化合物。N-二甲基亚硝胺是国际公认的毒性较大的污染物,具有肝毒性和致癌性。N-二甲基亚硝胺在啤酒、肉制品及鱼类腌制品等食品和环境中广泛存在。肉制品加工过程中会使用亚硝酸盐添加剂,使其产生理想的粉红色,增加风味,且还具有抗氧化的效果。但是,亚硝酸盐在腌肉中可以转化为亚硝酸,极易反应生成致癌性物质:N-亚硝胺类化合物;水产品腌制过程中使用的粗盐通常含有硝酸盐、亚硝酸盐,加上微生物能将硝酸盐还原成亚硝酸盐,从而蓄积亚硝酸盐。在适宜的条件下,亚硝酸盐与胺类发生亚硝基化作用,最终生成N-二甲基亚硝胺。2023年9月25日,国家卫生健康委员会发布了85项食品安全国家标准和3项修改单(卫健委2023年第6号公告),其中就有GB 5009.26-2023《食品中N-亚硝胺类化合物的测定》。此次更新,大家的目光都聚焦在新增的第二法:QuEChERS-气相色谱-质谱/质谱法上,相比起其他实验方法,不仅精简了实验设备,在一定程度上也加快了实验的效率。下面一起来看看!实 验 步 骤 提 取 干制品称取5g于50mL离心管,加入5mL水,振荡混匀(鲜样品称取10g置于50 mL离心管中),加入N-二甲基亚硝胺内标中间液(1μg/mL)50μL,向其准确加入10mL乙腈,MultiVortex多样品涡旋混合器调节3000rpm,涡旋振荡2min后置于-20℃冰箱冷冻20min,取出后加入陶瓷研磨珠1粒以及4g硫酸镁和1g氯化钠,放入MGS-24高通量智能动植物研磨均质仪振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min,上清液待净化。 净 化 称取150mgPLS-A粉末(或1g增强型脂质去除EMR-Lipid萃取粉剂或同级品)于15mL离心管中,加入5mL水于MultiVortex多样品涡旋混合器涡旋振荡,立即加入5mL待净化上清液涡旋振荡1min,置于冷冻离心机,9000r/min,10℃离心5min,待除水。 除 水 称取1.6g硫酸镁和0.4g氯化钠于另一15mL离心管,加入上述待除水净化液于MultiVortex多样品涡旋混合器涡旋振荡2min,置于冷冻离心机中,转速9000r/min,10℃离心5min。取上层有机相经0.22μm微孔滤膜过滤后。上机测定。“PreferenceDetelogy优选仪器
  • AMAT宣布三种材料技术,用于 DRAM 小型化
    应用材料 (AMAT) 于美国时间 5 月 5 日推出三种材料工程解决方案,以进一步扩展 DRAM 并加快芯片 PPACt(性能、功耗、每个面积成本和上市时间)的改进。解决方案集中在三个领域:DRAM 存储电容器、互连布线和逻辑晶体管,目前处于大规模生产阶段。第一种存储电容器材料,在缩小电容器孔直径的同时,"Draco"是一种硬掩膜材料,用于解决用于通过延长孔长度实现表面积最大化的硬掩膜问题。与Sym3Y蚀刻设备一起使用时,经过协调优化,使用 AMAT 的电子束测量和检测设备 PROVision 监控此过程,每小时可进行近 50 万次测量。此外,由于使用Draco的硬掩膜可以增加30%以上的蚀刻选择性,因此可以进一步降低掩膜的厚度,从而允许形成更直、更均匀的正圆柱形图案孔。第二种是互连布线材料,针对迄今为止用作与存储器阵列交换信号的布线的绝缘材料的硅烷或四乙氧基硅烷(TEOS)这样的硅氧化物,布线层间膜变得过薄而无法防止金属线的电容性耦合的问题,新的Low-k绝缘膜"Black Diamond"。该材料一直用作高级逻辑器件的Low-k绝缘材料,通过将其用于公司的高生产率平台"Producer GT",为DRAM市场提供更精细、更紧凑的互连布线,因此,即使信号在芯片内以几GHz传输,也不会发生干扰, 将能够降低功耗。第三种是逻辑晶体管材料,即高k/金属栅极(HKMG)晶体管,该晶体管已经用于高级逻辑器件。 虽然传统的晶体管是多晶硅膜基片制造的,但随着工艺的小型化,栅极绝缘膜变薄,因此存在电子泄漏容易发生的问题。 针对这一问题,在逻辑器件中,已经实现了金属栅极代替多晶硅,并且通过使用绝缘膜中的氧化氢来提高性能和功耗,并降低了每面积的成本,通过同样应用于DRAM,公司已经解释,将能够获得相同的优势。该公司表示,Draco硬掩模和Low-k绝缘膜Black Diamond已被主要DRAM制造商采用,随着HKMG DRAM的引入,预计在未来几年内,这种DRAM技术将进一步改变。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制