当前位置: 仪器信息网 > 行业主题 > >

甲基孕酮

仪器信息网甲基孕酮专题为您整合甲基孕酮相关的最新文章,在甲基孕酮专题,您不仅可以免费浏览甲基孕酮的资讯, 同时您还可以浏览甲基孕酮的相关资料、解决方案,参与社区甲基孕酮话题讨论。

甲基孕酮相关的资讯

  • 美国FDA更新加米霉素和孕酮残留限量规定
    加米霉素(Gamithromycin)的使用条件:  1.质量规格:每mL溶液中含150 mg加米霉素。  2.在牛体内的使用剂量:通过皮下注射,每次6 mg/kg体重(2 mL/110 pounds)。  3.适用症状:用于治疗肉食牛和非哺乳期牛的由于溶血性曼氏杆菌、巴氏杆菌和睡眠嗜组织菌引起的呼吸道疾病(BRD)以及控制由溶血性曼氏杆菌和巴氏杆菌引起的呼吸道疾病的高风险。  4.限制因素:供人类食用的牛在最后一次注射加米霉素后的35天内不得屠宰。雌性奶牛20个月或以上不得使用该药物。该药物还未建立在反刍牛犊中的休药期。联邦法律根据兽医许可来限制该药物的使用。  加米霉素残留限量要求:  (a)每日容许摄入量(ADI):对于总残留量来说,加米霉素的ADI为10 mg/kg体重日   (b)限量值:残留指标:(1)牛——(i)肝脏(目标组织):500 ppb (ii)肌肉:150 ppb。  孕酮残留限量要求:  b)限量值:在未经该药物处理的动物体内本身含有一定量的孕酮,下面列出的是不包含其天然含量浓度值,孕酮含量不得超过的残留限值:  (1)牛和羊——(i)肌肉:5 ppb (ii)肝脏:15 ppb (iii)肾脏:30 ppb (iv)脂肪:30 ppb。
  • 迪马科技:奶粉中雌激素和孕激素的检测方法
    奶粉激素事件引起了社会各界的高度关注,迪马科技作为助您保障人类食品、环境、药品安全的实验合作伙伴,开发出下列分析方法,能够满足奶粉中雌二醇、雌三醇、炔雌醇、雌酮、己烯雌酚、己二烯雌酚、己烷雌酚等雌激素以及孕酮、乙酸甲地孕酮、乙酸氯地孕酮、甲基炔孕酮、甲羟孕酮等孕激素的检测。希望能对您的检测工作提供帮助。 1反相SPE净化方法 1.1 提取 称取2.0 g奶粉(精确至0.01 g),加入内标液(使用内标法时才需加入内标液),加入16 ml 80%甲醇水溶液,振荡提取2 min或超声提取5 min。6000 rpm下离心5 min,取4 ml上清液,加入12 ml纯水,混匀得到样品稀释液,待净化。 1.2 SPE柱净化 ProElut PLS亲水亲脂平衡柱,150 mg/6 ml 活化、平衡:5 ml甲醇活化,5 ml水平衡; 上样:让样品稀释液通过PLS小柱,流出液弃去; 淋洗:5 ml 5%甲醇水溶液淋洗,淋洗液弃去; 洗脱:5 ml纯甲醇洗脱,收集洗脱液; 样品重组:40 ℃下将洗脱液氮气吹干,用1 ml 50%甲醇水溶液重新溶解残渣,微孔滤膜过滤后供仪器分析。 2 正相SPE净化方法 2.1 提取 称取2 g奶粉(精确至0.01 g),加入内标液(使用内标法时才需加入内标液),加入20 ml 80%甲醇水溶液,振荡提取2 min或超声提取5 min。6000 rpm下离心5 min,取10 ml上清液,与50 ml纯水混合得到样品稀释液,待净化。 2.2 SPE柱净化 ProElut CARB石墨化炭黑柱,500 mg/6 ml ProElut NH2氨基柱,500 mg/6 ml 将样品稀释液通过经活化的ProElut CARB柱*,液体全部通过后将小柱抽干。然后将经活化的ProElut NH2柱*串接在ProElut CARB柱下方。10 ml二氯甲烷-甲醇溶液(7+3)洗脱并收集洗脱液,然后取下ProElut CARB柱,用2 ml二氯甲烷-甲醇溶液(7+3)洗脱ProElut NH2柱,合并洗脱液。然后氮气吹干洗脱液,再用1 ml 50%甲醇水溶液溶解残渣,微孔滤膜过滤后供仪器分析。 *ProElut CARB柱依次用6 ml二氯甲烷-甲醇溶液(7+3)、6 ml甲醇、6 ml水活化平衡;ProElut NH2柱活化平衡 3 仪器分析 3.1 雌激素分析条件 A HPLC条件: 色谱柱:Leapsil C18,100 x 2.1mm,2.7 &mu m 流动相:A,水;B,乙腈 梯度:略 流速:0.3 ml/min 柱温:40 ℃ 进样体积:10 &mu l B 质谱条件 电离源:ESI,负电离模式 电离源温度:100 ℃ 毛细管电压:3 kV 脱溶剂气体温度:450 ℃ 脱溶剂气体流量:0.2 l/min 3.2 孕激素分析条件 A HPLC条件 色谱柱:Leapsil C18,100 x 2.1mm,2.7 &mu m 流动相:A,0.1%甲酸水溶液;B,甲醇 梯度:略 流速:0.3 ml/min 柱温:40 ℃ 进样体积:10 &mu l B 质谱条件 电离源:ESI,正电离模式 毛细管电压:3.5 kV 电离源温度:100 ℃ 脱溶剂气体温度:450 ℃ 脱溶剂气体流量:0.2 l/min 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 百灵威聚焦奶粉中雌激素检测相关产品
    &ldquo 奶粉疑致性早熟&rdquo 事件已经给我们敲响警钟,若从食物中摄入过量激素,将会严重损害人体健康,因此食物中激素检测日益重要。 GB/T 21981-2008 动物源食品中激素多残留检测方法,用液相色谱- 质谱/ 质谱法,对猪肉、猪肝、鸡蛋、牛奶、牛肉、鸡肉和虾等动物源食品中50种激素残留进行检测,确保食物安全。百灵威作为中g分析行业的专业引l者,与权威机构共同开发g家标准中指定标准品(对照品)。在三聚氰胺、RoHs、苏丹红等检测项目中,百灵威提供的标准品被认定为&ldquo 指定产品&rdquo 。为支持《GB/T 21981-2008 动物源食品中激素多残留检测方法》及《农业部1031号公告-1-2008 动物源性食品中11种激素残留检测液相色谱-串联质谱法》需求,百灵威现为专业分析研究者提供该g标涉及的各项标准品、配套产品。★ 标准品 CAS 英文名 中文名 规格 734-32-7 (+)-19-Norandrost-4-ene-3,17-dione 去甲雄烯二酮 10mg 10161-33-8 Trenbolone 孕三烯酮 0.1g 846-48-0 Boldenone 勃地酮 10mg 76-43-7 Fluoxymesterone 氟甲睾酮 1g 434-22-0 19-Nortestosterone 诺龙 0.1g 63-05-8 4-Androstene-3,17-dione 雄烯二酮 0.1g 72-63-9 Methandrostenolone 美雄酮 25mg 58-22-0 Testosterone 睾酮 0.25g 53-43-0 Dehydro epiandrosterone 普拉雄酮 100mg 58-18-4 17-alpha-Methyltestosterone 左炔孕酮 0.1g 481-29-8 Epiandrosterone 表雄甾酮 1g 10418-03-8 Stanozolol 康力龙 0.1g 521-18-6 5alpha-Androstan-17beta-ol-3-one 双氢睾酮 0.1g 1424-00-6 mesterolone 甲氢睾酮 1g 17230-88-5 Danazol 达那唑 500mg 68-22-4 Norethindrone 炔诺酮 2g 64-85-7 21-Hydroxyprogesterone 去氧皮质酮 0.1g 68-96-2 17-alpha-Hydroxyprogesterone 17-&alpha -羟基孕酮 0.1g 797-63-7 D-(-)-Norgestrel 甲基炔酮 10mg 520-85-4 Medroxyprogesterone 甲孕酮 0.1g 595-33-5 Megestrol acetate 乙酸甲地孕酮 1g 302-22-7 Chloromadinon 17-acetate 氯化孕酮-17-乙酸酯 0.1g 57-83-0 Progesterone 孕酮,黄体酮 0.25g 71-58-9 Medroxyprogesterone-17-acetate 安宫黄体酮/醋酸甲羟孕酮 0.1g 124-94-7 Triamcinolone 曲安西龙 1g 52-39-1 Aldosterone 醛固酮 1mg 53-03-2 Prednisone 泼尼松 0.1g 53-06-5 Cortisone 可的松 5g 50-23-7 Hydrocortisone 氢化可的松 0.25g 50-24-8 Prednisolone 泼尼松龙/氢化泼尼松 0.25g 2135-17-3 Flumethasone 双氟美松 250mg 50-02-2 Dexamethasone 地塞米松 0.1g 514-36-3 Fludrocortisone acetate 醋酸氟氢可的松 1g 83-43-2 6-alpha-Methylprednisolone 甲基泼尼松龙 50mg 4419-39-0 Beclomethasone 倍氯米松 25mg 76-25-5 Triamcinolone acetonide 曲安奈德 0.1g 67-73-2 Fluocinolone acetonide 氟轻松 10mg 426-13-1 Fluorometholone 氟甲松龙 1g 51333-22-3 Budesonide 布地奈德 0.1g 25122-46-7 Clobetasol propionate 丙酸氯倍他索 0.1g 50-27-1 Estriol 雌三醇/1,3,5(10)-三烯- 3&beta ,16&alpha ,17&beta 三醇 0.1g 50-28-2 17-beta-Estradiol &beta -雌二醇/&beta -1,3,5(10)-三烯- 3,17&beta -二醇 0.25g 57-63-6 17&alpha -Ethinylestradiol 17&alpha -炔雌醇 0.25g 53-16-7 Estrone 雌酮 0.1g 56-53-1 Diethylstilbestrol 己烯雌酚 0.1g 84-16-2 Hexestrol 己烷雌酚/去氢己烯雌酚/4,4'-(1,2- 二乙基亚乙基)二苯酚 0.1g 84-17-3 Dienestrol 双烯雌酚/己二烯雌酚/2,3-二苯酚丁二烯 0.1g N/A Norgestrel-D6 炔诺孕酮-D6 1mg N/A Progesterone-D9 孕酮-D9 1mg N/A Megestrol acetate-D3 甲地孕酮醋酸盐-D3 0.5mg 162462-69-3 Medroxyprogesterone-D3 甲羟孕酮-D3 1mg N/A Norethindrone-ethynyl-13C2 炔诺酮-13C2 1mg 869287-60-5 Methandrostenolone-D3 甲睾酮-D3 2.5mg N/A Boldenone 17-Sulfate-D3 勃地酮-D3 5mg 73565-87-4 Cortisol-9,11,12,12-D4 可的松-9,11,12,12-D4 0.5mg 53866-34-5 Estrone-D4 雌酮-D4 2.5mg N/A Hexestrol-D4 己烷雌酚-D4 1mg N/A Testosterone-3,4-13C2 睾酮-3,4-13C2 0.01g N/A Estradiol-3,4-13C2 雌二醇-3,4-13C2 1.2mL N/A Diethylstilbestrol--D8 己烯雌酚-D8 1.2mL ★ 配套产品 CAS 英文名 中文名 规格 67-56-1 Methanol ,99.9% [HPLC/ACS] 甲醇 1L/4L 75-05-8 Acetonitrile ,99.9% [HPLC/PREP] 乙腈 1L/4L 75-09-2 Dichloromethane, stabilized with amylene, for HPLC, 99.8% 二氯甲烷 1L/2.5L 7732-18-5 Water, for HPLC gradient grade 水 1L/2.5L 64-19-7 Acetic acid, for analysis, 99.8% 乙酸 1L/2.5L 64-18-6 Formic acid, for analysis, 99+% 甲酸 1L/2.5L 9001-45-0 B-GLUCURONIDASE TYPE IX-A FROM E. COLI BETA-葡萄糖醛酸甙酶 1x25KU 25561-30-2 N,O-Bis(trimethylsilyl)trifluoroacetamide ,98% N,O-双(三甲基硅烷基)三氟甲基乙酰胺 25g/100g 12252201 BOND ELUT CARBON, 500MG, 6ML, 30/PK 石墨化碳黑SPE小柱 1x1EA 12256045 MEGA BE-NH2, 500MG 6ML, 30/PK NH2氨基SPE小柱 1x1EA 1634-04-4 tert-Butyl methyl ether, for HPLC 叔丁基甲基醚MtBE 1L/2.5L 497-19-8 Sodium carbonate, anhydrous, powder, for analysis, 99.8% 无水碳酸钠 1kg 更多配套分析试剂欢迎致电百灵威垂询!
  • 赫施曼助力胶鞋 、运动鞋N-甲基吡咯烷酮含量的测定
    胶鞋和运动鞋是我们日常生活中常见的鞋子类型,在生产过程中需要考虑到其材料成分及安全性。N-甲基吡咯烷酮是一种化学物质,对人体有一定的危害,因此需要进行检测和限制其含量。根据GB/T 38349-2019,测定胶鞋和运动鞋中N-甲基吡咯烷酮的方法是高效液相色谱法。实验涉及标准溶液的配置:N-甲基吡略烷酮标准储备溶液,20mg/L:用Miragen电动移液器移取0.5mL浓度为1000mg/L的N-甲基吡咯烷酮标准溶液至25mL容量瓶中,用甲醇(色谱纯)定容至刻度,得到20mg/L的标准储备溶液。N-甲基吡咯烷酮标准工作溶液:采用10mL规格的Miragen电动移液器,单吸多排模式设置5个体积分别为0.25、0.5、1.0、2.5和5mL,然后按分液键,将5个体积的N-甲基毗咯烷酮标准储备溶液(20mg/L)分别加入到10mL容量瓶中,然后用甲醇(色谱纯)定容至刻度,得到浓度分别为0.5、1、2、5和10mg/L标准工作溶液,与20mg/L的N-甲基吡咯烷酮标准储备液组成六个不同浓度的标准工作溶液。 实验室移取小体积(几微升到10毫升)的液体,一般采用移液器。Miragen电动移液器,数值靠设定或选定,电机控制活塞运动,吸液和排液也更加稳定,还有步骤少、调数快、模式多等诸多优势。Miragen电动移液器可给电机多段信号,从而达到吸液和排液分多次且各体积独立可调。比如上面的标准溶液的移取,就可设置单吸多排,单次吸取9.25mL,分5次排液(0.25、0.5、1.0、2.5和5mL),程序可存储和调用,非常便捷。
  • 食品及相关产品中的激素检测标准汇总
    本汇总主要是食品及饲料等相关产品中的激素检测标准。  1、GB/T 20741-2006 畜禽肉中地塞米松残留量测定 液相色谱-串联质潜法  2、GB/T 20749-2006 牛尿中β-雌二醇残留量的测定 气相色谱-负化学电离质谱法  3、GB/T 20753-2006 牛和猪脂肪中醋酸美仑孕酮、醋酸氯地孕酮和醋酸甲地孕酮残留量的测定 液相色谱-紫外检测法  4、GB/T 20758-2006 牛肝和牛肉中睾酮、表睾酮、孕酮残留量的测定 液相色谱-串联质谱法  5、GB/T 20760-2006 牛肌肉、肝、肾中的α-群勃龙、β-群勃龙残留量的测定 液相色谱-紫外检测法和液相色谱-串联质谱法  6、GB/T 20761-2006 牛尿中α-群勃龙、β-群勃龙、19-乙烯去甲睾酮和epi-19-乙烯去甲睾酮残留量的测定 液相色谱-串联质谱法  7、GB/T 20766-2006 牛猪肝肾和肌肉组织中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法  8、GB/T 20767-2006 牛尿中玉米赤霉醇、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法  9、GB/T 21981-2008 动物源食品中激素多残留检测方法 液相色谱-质谱/质谱法  10、GB/T 22967-2008 牛奶和奶粉中β-雌二醇残留量的测定 气相色谱-负化学电离质谱法  11、GB/T 22973-2008 牛奶和奶粉中醋酸美仑孕酮、醋酸氯地孕酮和醋酸甲地孕酮残留量的测定 液相色谱-串联质谱法  12、GB/T 22976-2008 牛奶和奶粉中α-群勃龙、β-群勃龙、19-乙烯去甲睾酮和epi-19-乙烯去甲睾酮残留量的测定 液相色谱-串联质谱法  13、GB/T 22978-2008 牛奶和奶粉中地塞米松残留量的测定 液相色谱-串联质谱法  14、GB/T 22986-2008 牛奶和奶粉中氢化泼尼松残留量的测定 液相色谱-串联质谱法  15、GB/T 22992-2008 牛奶和奶粉中玉米赤霉醇、玉米赤霉酮、己烯雌酚、己烷雌酚、双烯雌酚残留量的测定 液相色谱-串联质谱法  16、 NY/T 914-2004 饲料中氢化可的松的测定高效液相色谱法  17、NY/T 918-2004 饲料中雌二醇的测定 高效液相色谱法  18、SC/T 3020-2004 水产品中己烯雌酚残留量的测定 酶联免疫法  19、SC/T 3029-2006 水产品中甲基睾酮残留量的测定 液相色谱法  20、 SN 0210-1993 出口肉及肉制品中己烯雌酚残留量检验方法 分光光度法  21、SN 0664-1997 出口肉及肉制品中雌二醇残留量检验方法 放射免疫法  22、SN 0665-1997 出口肉及肉制品中雌三醇残留量检验方法 放射免疫法  23、SN 0672-1997 出口肉及肉制品中己烯雌酚残留量检验方法 放射免疫法  24、SN 0700-1997 出口乳及乳制品中氢化可的松残留量检验方法  25、SN/T 1625-2005 进出口动物源性食品中甲羟孕酮和醋酸甲羟孕酮残留量的检测方法  26、SN/T 1744-2006 进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法 气相色谱串联质谱法  27、SN/T 1752-2006 进出口动物源性食品中二苯乙烯类激素残留量检验方法 液相色谱串联质谱法  28、SN/T 1826-2006 进出口动物源食品中19-去甲睾酮残留量的测定方法 气相色谱-质谱法  29、SN/T 1955-2007 动物源性食品中二苯乙烯类激素残留量检测方法 酶联免疫法  30、SN/T 1956-2007 肉及肉制品中己烯雌酚残留量检测方法 酶联免疫法  31、SN/T 1959-2007 动物源性食品中醋酸甲羟孕酮残留量的检测方法 酶联免疫法  32、SN/T 1970-2007 进出口动物源性食品中地塞米松、倍他米松、氟羟泼尼松龙和双氟美松残留量测定方法 酶联免疫法  33、SN/T 1980-2007 进出口动物源性食品中孕激素类药物残留量的检测方法 高效液相色谱-质谱/质谱法  34、SN/T 2160-2008 动物源食品中氢化泼尼松残留量检测方法 气相色谱-质谱/质谱法  35、SN/T 2222-2008 进出口动物源性食品中糖皮质激素类兽药残留量检测方法 液相色谱-质谱/质谱法  36、 农业部958号公告-10-2007 水产品中雌二醇残留量的测定 气相色谱-质谱法  37、农业部1031号公告-1-2008 动物源性食品中11种激素残留检测 液相色谱-串联质谱法  38、农业部1031号公告-2-2008 动物源性食品中糖皮质激素类药物多残留检测 液相色谱-串联质谱法  39、农业部1031号公告-4-2008 鸡肉和鸡肝中己烯雌酚残留检测气相色谱-质谱法  40、农业部1063号公告-1-2008 动物尿液中9种糖皮质激素的检测 液相色谱-串联质谱法  41、农业部1063号公告-2-2008 动物尿液中10种同化激素的检测 液相色谱-串联质谱法  42、农业部1063号公告-5-2008 饲料中9种糖皮质激素的检测 液相色谱-串联质谱法  43、农业部1068号公告-2-2008 饲料中5种糖皮质激素的测定 高效液相色谱法  44、农业部1068号公告-3-2008 饲料中10种蛋白同化激素的测定 液相色谱-串联质谱法  45、农业部1163号公告-1-2009 动物性食品中己烯雌酚残留检测 酶联免疫吸附测定法  46、农业部1163号公告-9-2009 水产品中己烯雌酚残留检测 气相色谱-质谱法
  • 农业部修订国家兽药残留基准实验室药物残留检测范围
    为加强兽药残留监控工作,保障动物产品安全,根据《兽药管理条例》规定,我部对国家兽药残留基准实验室药物残留检测范围进行了修订完善,现予公告。  一、按照《中华人民共和国动物及动物源食品中残留物质监控计划》,国家兽药残留基准实验室主要承担相关药物残留检测方法(筛选法、定量法、确证法)研究和标准的制定、检测技术仲裁、比对试验及技术培训等工作。  二、各兽药残留基准实验室药物检测范围  (一)国家兽药残留基准实验室(中国兽医药品监察所)  1.一般兽药品种  (1)抗微生物药  四环素类:四环素、土霉素、金霉素、多西环素   氟喹诺酮类:诺氟沙星、环丙沙星、恩诺沙星、达氟沙  星、二氟沙星、沙拉沙星、氟甲喹、噁喹酸。  (2)抗寄生虫药  二硝基类:二硝托胺、尼卡巴嗪   其他:乙氧酰胺苯甲酯。  2.禁用药物清单品种  β-受体兴奋剂类:西马特罗、克仑特罗、沙丁胺醇。  (二)国家兽药残留基准实验室(中国农业大学)  酰胺醇类:甲砜霉素、氟苯尼考   磺胺类:磺胺二甲嘧啶、磺胺甲噁唑、磺胺对甲氧嘧啶、  一般兽药品种抗微生物药  磺胺类:磺胺二甲嘧啶、磺胺甲  磺胺间甲氧嘧啶、甲氧苄啶。  抗寄生虫药  阿维菌素类:伊维菌素、阿维菌素、多拉菌素   磺胺类:磺胺喹噁啉、磺胺氯吡嗪钠   离子载体抗球虫药:莫能菌素钠、盐霉素钠、拉沙洛西  磺胺类:磺胺喹  钠、马度米星铵、赛杜霉素   其他:氯羟吡啶、盐酸氯苯胍、盐酸氨丙啉、氮哌酮、  癸氧喹酯、氢氢溴酸常山酮。  具有雌激素样作用的物质:玉米赤霉醇   禁用药物清单品种  氯霉素(包括琥珀氯霉素)   硝基咪唑类:替硝唑、地美硝唑、甲硝唑   镇静药:安眠酮、氯丙嗪、地西泮(安定)。  3.禁用药物品种  洛硝达唑  (三)国家兽药残留基准实验室(华南农业大学)  β-内酰胺类(青霉素类和头孢菌素类):青霉素、氨苄  一般兽药品种抗微生物药一般兽药品种抗微生物药  西林、阿莫西林、苯唑西林、氯唑西林、头孢氨苄、头孢噻呋、头孢喹肟、克拉维酸   多肽类:杆菌肽、黏菌素、维吉尼霉素   其他:泰妙菌素、洛克沙胂、氨苯胂酸。  咪唑并噻唑类:左旋咪唑、噻咪唑、哌嗪、氮胺菲啶   抗血吸虫药:吡喹酮   抗血吸虫药:吡喹酮   抗锥虫药:三氮脒   三嗪类:地克珠利、托曲珠利   有机磷类:二嗪农、巴胺磷、倍硫磷、敌敌畏、甲基吡  啶磷、马拉硫磷、蝇毒磷、敌百虫、辛硫磷   有机氯类:氯芬新   拟除虫菊酯类:氰戊菊酯、溴氰菊酯、氟氯苯氰菊酯、  氟胺氰菊酯。  性激素类:苯甲酸雌二醇、甲基睾丸酮、苯丙酸诺龙、丙酸睾酮、己烯雌酚   具有雌激素样作用的物质:醋酸甲孕酮、去甲雄三烯醇酮、。  杀虫剂:锥虫胂胺、呋喃丹(克百威)、杀虫脒(克死螨)、林丹(丙体六六六)、毒杀芬(氯化烯)、氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞、酒石酸锑钾。  群勃龙、醋酸氟孕酮。  (四)国家兽药残留基准实验室(华中农业大学)  氨基糖苷类:链霉素、庆大霉素、卡那霉素、新霉素、大观霉素、安普霉素、越霉素A、潮霉素B   大环内酯类:红霉素、泰乐菌素、替米考星、吉他霉素、泰万菌素   林可胺类:林可霉素   喹噁啉类:乙酰甲喹、喹乙醇。  苯并咪唑类:阿苯达唑、芬苯达唑、非班太尔、奥芬达唑、甲苯咪唑、氟苯达唑、苯氧丙咪唑   抗吸虫药:三氯苯达唑、硝碘酚腈、碘醚柳胺、氯氰碘柳胺   其他:双甲脒。  糖皮质激素类:地塞米松、倍他米松   解热镇痛类:安乃近。  喹噁啉类:卡巴氧  硝基呋喃类:呋喃它酮、呋喃唑酮、呋喃苯烯酸钠、呋  喃妥因、呋喃西林。  硝基化合物:硝基酚钠、硝呋烯腙。  杀虫剂:孔雀石绿、五氯酚酸钠、双甲脒(水生食品动  物)。  砜类抑菌剂:氨苯砜。  三、本公告自发布之日起执行,2007年3月发布的农业部公告第824号同时废止。  二0一一年七月二十九日
  • Sigma-Aldrich为奶粉中雌激素检测护航
    “奶粉疑致婴儿性早熟”引起了各界的高度关注,让人们如此揪心。对于奶粉雌激素检测,国家规定了不得检出的限量,但相关的具体检测方法目前还没有公布。作为全球数以万计的科学家和技术人员的实验伙伴的Sigma-Aldrich 公司,急大家之所急,想大家之所想。根据以往农业部及国家公布的相关标准,特别为奶粉中雌激素检测专题推荐以下全套解决方案,并迅速组织备货。希望对相关部门尽快准确检测雌激素,有所帮助。  Sigma-Aldrich /Supelco、Fluka 的分析产品以品质性能高而著称,尤其是Supelco著名的Envi-Carb SPE小柱已经多次出现在国内或国外各种食品检测标准中,受到了广大分析检测工作者的认可和喜爱。Sigma-Aldrich高品质、品种全的分析产品,是奶粉中雌激素检测的信赖保证!如有任何问题,请随时联系我们。货号 中文品名 英文品名 规格 CAS 价格 孕激素标准品 D6875-500MG 21-羟孕酮,≥97% (HPLC) 21-Hydroxyprogesterone 500mg 64-85-7 ¥1,777.23 46337-250MG 17α-羟孕酮 17α-Hydroxyprogesterone 250mg 68-96-2 ¥424.71 N2260-100MG 甲基炔酮,≥99% D(− )-Norgestrel,≥99% 100mg 797-63-7 ¥561.60 46411-100MG 甲羟孕酮 Medroxyprogesterone 100mg 520-85-4 ¥1,296.36 46420-100MG 乙酸甲地孕酮 Megestrol acetate 100mg 595-33-5 ¥588.51 C5145-1G 乙酸氯地孕酮,≥98% (Sigma) Chlormadinone acetate 1g 302-22-7 ¥1,867.32 46665-250MG 孕酮 Progesterone 250mg 57-83-0 ¥4,345.38 46412-250MG 甲羟孕酮 17-乙酸酯 Medroxyprogesterone 17-acetate 250mg 71-58-9 ¥562.77 雌激素标准品 46565-100MG 雌三醇 Estriol 100mg 50-27-1 ¥819.00 46542-100MG α-雌二醇 α-Estradiol 100mg 50-28-2 ¥1,159.47 46263-250MG 炔雌醇 17α-Ethynylestradiol 250mg 57-63-6 ¥442.26 46573-250MG 雌酮 Estrone 250mg 53-16-7 ¥442.26 46207-250MG 己烯雌酚 DIETHYLSTILBESTEROL, 250 MG 250mg 6898-97-1 ¥424.71 46320-100MG-R 己烷雌酚 HEXESTROL 100mg 84-16-2 ¥499.59 46190-100MG 己二烯雌酚 DIENESTROL 100mg 84-17-3 ¥504.27 现货 489204-100MG 雌酮-d4 Estrone-2,4,16,16-d4 100mg ¥14,323.14 样品前处理试剂及SPE小柱 G0876-2ML β-葡萄糖醛酸酶,≥85,000 units/mL(含芳基硫酸酯酶, 7,500 units/ml)" β-Glucuronidase from Helix pomatia 2mL ¥910.26 现货 S9626-5KU 芳基硫酸酯酶,≥10,000 units/g Sulfatase from Helix pomatia 5KU ¥475.02 现货 33148 衍生化试剂BSTFA+TMCS=99:1 BSTFA+TMCS=99:1 20×1 mL ¥1,917.63 现货 SPE小柱及装置57094 Supelclean Envi-Carb SPE 小柱 500mg/6mL 30支/盒 ¥1,129.05 现货 54059-U Supelclean LC-NH2 SPE 小柱 500mg/6mL 30支/盒 ¥1,317.42 现货 52579-U Supelclean PSA SPE 小柱 500mg/6mL 30支/盒 ¥1,411.02 现货 57063 Supelclean C18 SPE 小柱 500mg/3mL 54支/盒 ¥680.94 现货 54035-U Supelclean Envi-Carb/LC-NH2 SPE 双层小柱 500mg/500mg/6mL 30支/盒 ¥2,251.08 现货 54067-U Supelclean Envi-Carb-II/PSA SPE 双层小柱 500mg/500mg/6mL 30支/盒 ¥2,021.76 现货 57044 SUPELCO Visiprep DL 12位防交叉污染固相萃取装置 ¥5717.79 现货LC-MS色谱柱 53823-U Ascentis Express C18 HPLC色谱柱 2.1mm x 10cm, 2.7um 1ea ¥6,781.32 现货 GC-MS色谱柱28471-U SLB-5MS GC色谱柱 30m x 0.25mm, 0.25um ¥4699.89 现货关于Sigma-Aldrich: 美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌 Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。 Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的得奖网站:http://www.sigma-aldrich.com,或直接联系我们:电话:021-6141 5566 -8105email:ruihua.ma@sial.com
  • 著名有机化学家周维善院士逝世
    中国科学院院士、中国科学院上海有机化学研究所研究员周维善因病医治无效,于8月10日17时50分在上海中山医院逝世,享年90岁。  周维善是我国著名有机化学家,几十年来主要从事甾体化学、萜类化学和不对称合成研究,为我国甾体激素工业的创建和发展作出了贡献。他参与 7步可的松和甾体口服避孕药甲地孕酮(即已广为应用的二号甾体口服避孕药)等的合成 主持并参与光学活性高效口服避孕药 18-甲基炔诺酮的不对称全合成,已投入工业生产并出口。在国际上首次利用我国丰产的猪去氧胆酸为原料发展了新甾体植物生长调节剂油菜甾醇内酯类化合物的合成方法,合成的油菜甾醇内酯类化合物已在田间试用并取得了显著的效果。  他主持并参与首次测定了抗疟新药青蒿素的结构并又主持和参与它的全合成。改良了 harpless 烯丙醇的不对称环氧化试剂,使其更具有使用价值和扩大了应用范围。并首次将Sharpless 烯丙醇不对称环氧化反应扩展到烯丙胺--a-糠胺的动力学拆分,并将其应用于天然产物的合成。他还组织领导在我国先期开展昆虫性信息素合成,合成的棉红铃虫性信息素曾用于害虫测报和防治,效果显著。
  • 水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化
    1.文章信息标题:Sunlight-drivenphotocatalyticoxidationof5-hydroxymethylfurfuraloveracuprousoxide-anataseheterostructureinaqueousphase中文标题:水相中氧化亚铜-锐钛矿异质结上太阳光驱动的5-羟甲基糠醛催化选择氧化页码:AppliedCatalysisB:Environmental320(2023)122006DOI:https://doi.org/10.1016/j.apcatb.2022.1220062.文章链接https://doi.org/10.1016/j.apcatb.2022.1220063.期刊信息期刊名:AppliedCatalysisB:EnvironmentalISSN:0926-33732021年影响因子:24.319分区信息:中科院一区Top涉及研究方向:化学4.作者信息第一作者是:云南大学张奇钊;通讯作者:云南大学方文浩。5.光源型号:CEL-HXF300-T3文章简介将5-羟甲基糠醛(HMF)选择氧化为2,5-二甲酰基呋喃(DFF)是糠醛类生物质平台分子转化利用的重要途径之一。DFF是合成糠基生物聚合物、药物中间体、杀菌剂以及荧光剂等的重要单体。传统的热催化氧化技术通常依赖于苛刻的温度和氧压,容易诱发安全和环境隐患。因此,迫切需要开发在温和条件下高效转化HMF为DFF的环境友好型催化体系。于是,光催化氧化技术,因为具有光生空穴和氧气存在下产生的活性氧物种可以在温和条件下驱动该反应的进行而成为科学家们研究的热点。然而现有的金属氧化物光催化剂的制备大部分较为复杂或者以有机试剂(即乙腈、三氟化苯等)作为反应溶剂导致较高的制备成本和环境污染。因此,非常需要低成本、易于制备和易于调节的氧化物催化剂。此外,使用水代替有机溶剂作为反应介质更环保,但对于金属氧化物催化剂来说可能具有很大的挑战性。因为作为副产物的水往往会阻碍正向反应,并且水也可能加剧金属浸出。基于上述研究背景,云南大学化学科学与工程学院方文浩教授课题组通过化学还原沉淀法制备了具有p-n异质结的(Cu2O)x‖TiO2光催化剂,实现了以H2O为反应溶剂,O2作为氧化剂,在无任何添加剂条件下高效利用太阳光催化氧化HMF制DFF。通过调变两种金属的比例和二氧化钛的晶相,深入研究了催化剂能带结构对反应机理的影响。研究发现Cu2O的含量决定HMF的转化率,而TiO2的晶相(即锐钛矿和金红石)影响DFF的选择性。通过清除剂实验研究揭示了空穴(h+)会将HMF深度氧化为CO2,而单线态氧(1O2)能够将HMF选择氧化为DFF。结合莫特肖特基曲线和价带谱数据可以推出半导体的能带结构,由此可得Cu2O的价带位置显然比HMF氧化为DFF的氧化电位更正,但比DFF的氧化电位更负。这表明Cu2O的价带上的光生空穴可以将HMF氧化成DFF,但不能进一步氧化DFF。相反,TiO2的价带位置比DFF的氧化电位更负,因此TiO2价带上的光生空穴能够进一步氧化DFF。p-n异质结的形成不仅抑制了TiO2上羟基自由基(•OH)的产生,而且还促进了O2在Cu2O上活化产生1O2。因此p-n异质结的形成增强了Cu2O的氧化还原能力同时增强了TiO2光利用效率。此外,通过光致发光谱,光电流响应以及电化学阻抗谱表征发现(Cu2O)0.16‖TiO2(A)具有最佳的光生电子和空穴的分离效率以及最佳的电荷迁移效率。与此相对应的,(Cu2O)0.16‖TiO2(A)催化剂在水相、35℃、10mLmin-1O2和模拟太阳光下的温和条件下(如图1所示),产生64.5mggcatal.-1h-1的DFF生成速率。这是目前文献报道的以水为反应介质金属氧化物光催化剂上取得的最佳结果。此外,该催化剂可直接在太阳光和空气下工作,且多次循环使用未见失活。该工作通过一系列的光电性质与形貌表征,深入揭示了异质结催化剂中两种半导体间的强相互作用。研究了在光催化反应过程中光生空穴与各个活性氧物种的作用。并通过能带结构解释了晶相与催化活性的构效关联问题。期望本研究建立的反应选择性和能带结构之间的关系可以应用于其他异质结光催化体系。
  • 农业农村部办公厅关于印发2021年国家屠宰环节质量安全风险监测计划的通知
    各省、自治区、直辖市农业农村(农牧、畜牧兽医)厅(局、委),新疆生产建设兵团农业农村局,中国动物疫病预防控制中心(农业农村部屠宰技术中心),中国动物卫生与流行病学中心,中国农业科学院农产品加工研究所:字体:[大 中 小]  为保证畜产品质量安全,强化屠宰环节风险物质监测,我部组织制定了2021年国家屠宰环节质量安全风险监测计划。现印发你们,请认真组织开展工作。   农业农村部办公厅   2021年3月15日2021年国家屠宰环节质量安全风险监测计划  一、监测目的  动态了解我国屠宰环节中主要污染物及有害因素的污染情况和趋势,确定影响动物产品质量安全的潜在风险隐患和危害来源,掌握我国屠宰企业动物产品质量安全状况,为开展有针对性的监督检查和监管决策提供科学依据。  二、职责分工  2021年国家屠宰环节质量安全风险监测计划包括部级监测和省级监测两部分。  (一)部级监测  针对跨省流通的生猪屠宰企业开展微生物风险监测,重点监测菌落总数、大肠菌群、沙门氏菌、金黄色葡萄球菌和单核增生李斯特氏菌。针对跨省流通的牛、羊屠宰企业开展违法添加风险监测,重点监测9种β-受体激动剂(克伦特罗、莱克多巴胺、沙丁胺醇、特布他林、西马特罗、非诺特罗、氯丙那林、妥布特罗和喷布特罗)、2种糖皮质激素(地塞米松、倍他米松)、6种类固醇激素(醋酸美仑孕酮、甲基睾丸酮、17α-群勃龙、17β-群勃龙、α-玉米赤霉醇、β-玉米赤霉醇)。监测任务由农业农村部屠宰技术中心、中国动物卫生与流行病学中心、中国农业科学院农产品加工研究所共同承担。监测样品采取监测任务承担单位现场采集和各省(自治区、直辖市)农业农村部门采集邮递相结合的方式采集。具体任务分工见附件1。  (二)省级监测  主要对猪肉(2号或4号肉)、牛肉(黄瓜条或外脊)、羊肉(后腿或里脊)中水分开展品质监测。对猪肝中9种β-受体激动剂(克伦特罗、莱克多巴胺、沙丁胺醇、特布他林、西马特罗、非诺特罗、氯丙那林、妥布特罗和喷布特罗)、2种糖皮质激素(地塞米松、倍他米松)、6种类固醇激素(醋酸美仑孕酮、甲基睾丸酮、17α-群勃龙、17β-群勃龙、α-玉米赤霉醇、β-玉米赤霉醇)等药物开展违法添加实验室检测。重点对省内流通屠宰企业的产品进行监测,样品采集按照《屠宰企业畜禽及其产品抽样操作规范》(NY/T3227-2018)执行,确保监测的科学性和代表性。每个省份监测2个以上地市,猪、牛、羊屠宰企业监测数量原则上每种不少于8家,各省具体监测样品数量见附件2,其中水分监测猪牛羊肉样品合计400份。  (三)数据汇总与分析  农业农村部屠宰技术中心负责部级和省级屠宰环节质量安全风险监测数据的汇总与分析工作。  三、检测方法及判定依据  猪肉、牛肉、羊肉水分含量检测及判定参照《畜禽肉水分限量》(GB 18394-2020);肝脏中9种β-受体激动剂、2种糖皮质激素、6种类固醇激素检测方法及判定依据由农业农村部屠宰技术中心统一提供。  四、时间安排及相关要求  (一)屠宰环节质量安全风险监测在上、下半年各开展一次,可结合飞行检查等工作任务一并开展。各省级农业农村部门要按照本计划要求,结合实际情况,制定本辖区屠宰环节质量安全风险监测方案并报我部备案,自行保障经费并组织实施。  (二)请各省级农业农村部门于3月30日前将监测方案、抽样单位、承检单位及汇总分析单位、联系人及联系方式(附件3)报农业农村部屠宰技术中心备案。承担省级监测工作的机构,由省级农业农村部门确定;各承担检测任务机构原则上需通过国家检验检测机构中国计量认证(CMA),具备按照规范进行检验的能力。  (三)请各风险监测承担单位分别于6月25日、11月25日前将风险监测汇总数据表(附件4)和监测总结分析报告,以电子邮件形式报农业农村部屠宰技术中心。  请农业农村部屠宰技术中心分别于7月底和12月底前将部级和省级屠宰环节质量安全风险监测分析报告报我部畜牧兽医局。  (四)未经我部同意,任何单位和个人不得以任何形式发布风险监测结果、报告和相关信息。  联系人及联系方式:  1.农业农村部畜牧兽医局:徐亭,电话:010-59191530  2.农业农村部屠宰技术中心:雷春娟,电话:010-59198970,监测汇总上报邮箱:xqjiance@aliyun.com  3.中国动物卫生与流行病学中心:王淑婷,电话:0532-85632052  4.中国农业科学院农产品加工研究所:单吉浩,电话:010-62815881  附件: 1.2021年部级屠宰环节质量安全风险监测任务表  2.2021年省级屠宰环节质量安全风险监测任务表   3.省(自治区/直辖市)2021年屠宰环节风险监测承担单位备案表   4.屠宰环节质量安全风险监测结果汇总表及填报说明
  • 全国饲料工业标准化技术委员会发布国家标准《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿
    国家标准计划《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》由 TC76(全国饲料工业标准化技术委员会)归口 ,主管部门为国家标准化管理委员会。主要起草单位 山东省畜产品质量安全中心 、山东奔月生物科技股份有限公司 。附件:《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》征求意见稿.pdf《饲料中新甲基橙皮苷二氢查耳酮的测定 高效液相色谱法》编制说明.pdf
  • 农业部公告禁用兽药目录汇总
    p style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "食品动物禁用的兽药/span/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "1、禁用于所有食品动物的兽药(11类)/span/pp style="line-height: 1.75em "  (1)兴奋剂类:克仑特罗、沙丁胺醇、西马特罗及其盐、酯及制剂;/pp style="line-height: 1.75em "  (2)性激素类:己烯雌酚及其盐、酯及制剂;/pp style="line-height: 1.75em "  (3)具有雌激素样作用的物质:玉米赤霉醇、去甲雄三烯醇酮、醋酸甲孕酮及制剂;/pp style="line-height: 1.75em "  (4)氯霉素及其盐、酯(包括:琥珀氯霉素)及制剂;/pp style="line-height: 1.75em "  (5)氨苯砜及制剂;/pp style="line-height: 1.75em "  (6)硝基呋喃类:呋喃西林和呋喃妥因及其盐、酯及制剂;呋喃唑酮、呋喃它酮、呋喃苯烯酸钠及制剂;/pp style="line-height: 1.75em "  (7)硝基化合物:硝基酚钠、硝呋烯腙及制剂;/pp style="line-height: 1.75em "  (8)催眠、镇静类:安眠酮及制剂;/pp style="line-height: 1.75em "  (9)硝基咪唑类:替硝唑及其盐、酯及制剂;/pp style="line-height: 1.75em "  (10)喹噁啉类:卡巴氧及其盐、酯及制剂;/pp style="line-height: 1.75em "  (11)抗生素类:万古霉素及其盐、酯及制剂。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "2、禁用于所有食品动物、用作杀虫剂、清塘剂、抗菌或杀螺剂的兽药(9类)/span/pp style="line-height: 1.75em "  (1)林丹(丙体六六六);/pp style="line-height: 1.75em "  (2)毒杀芬(氯化烯);/pp style="line-height: 1.75em "  (3)呋喃丹(克百威);/pp style="line-height: 1.75em "  (4)杀虫脒(克死螨);/pp style="line-height: 1.75em "  (5)酒石酸锑钾;/pp style="line-height: 1.75em "  (6)锥虫胂胺;/pp style="line-height: 1.75em "  (7)孔雀石绿;/pp style="line-height: 1.75em "  (8)五氯酚酸钠;/pp style="line-height: 1.75em "  (9)各种汞制剂包括:氯化亚汞(甘汞)、硝酸亚汞、醋酸汞、吡啶基醋酸汞。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "3、禁用于所有食品动物用作促生长的兽药(3类)/span/pp style="line-height: 1.75em "  (1)性激素类:甲基睾丸酮、丙酸睾酮、苯丙酸诺龙、苯甲酸雌二醇及其盐、酯及制剂;/pp style="line-height: 1.75em "  (2)催眠、镇静类:氯丙嗪、地西泮(安定)及其盐、酯及其制剂;/pp style="line-height: 1.75em "  (3)硝基咪唑类:甲硝唑、地美硝唑及其盐、酯及制剂。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "4、禁用于水生食品动物用作杀虫剂的兽药(1类)/span/pp style="line-height: 1.75em "  双甲脒。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "其它违禁药物和非法添加物/span/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "禁止在饲料和动物饮用水中使用的药物品种(5类40种)/span/pp style="line-height: 1.75em "  1、肾上腺素受体激动剂/pp style="line-height: 1.75em "  盐酸克仑特罗、沙丁胺醇、硫酸沙丁胺醇、莱克多巴胺、盐酴多巴胺、西巴特罗、硫酸特布他林。/pp style="line-height: 1.75em "  2、性激素/pp style="line-height: 1.75em "  己烯雌酚、雌二醇、戊酸雌二醇、苯甲酸雌二醇、氯烯雌醚(Chlorotriansene)、炔诺醇、炔诺醚(Quinestml)、醋酸氯地孕酮、左炔诺孕酮、炔诺酮、绒毛膜促性腺激素(绒促性素)、促卵泡生长激素(尿促性素主要含卵泡刺激FSHT和黄体生成素LH)/pp style="line-height: 1.75em "  3、蛋白同化激素/pp style="line-height: 1.75em "  碘化酷蛋白、苯丙酸诺龙及苯丙酸诺龙注射液。/pp style="line-height: 1.75em "  4、精神药品/pp style="line-height: 1.75em "  (盐酸)氯丙嗪、盐酸异丙嗪、安定(地西泮)、苯巴比妥、苯巴比妥钠、巴比妥、异戊巴比妥、异戊巴比妥钠、利血平、艾司唑仑、甲丙氨脂、咪达唑仑、硝西泮、奥沙西泮、匹莫林、三唑仑、唑吡旦、其他国家管制的精神药品。/pp style="line-height: 1.75em "  5、各种抗生素滤渣/pp style="line-height: 1.75em "  该类物质是抗生素类产品生产过程中产生的工业三废,因含有微量抗生素成分,在饲料和饲养过程中使用后对动物有一定的促生长作用。但对养殖业的危害很大,一是容易引起耐药性,二是由于未做安全性试验,存在各种安全隐患。/pp style="line-height: 1.75em "  span style="color: rgb(0, 112, 192) "最新增添/span/pp style="line-height: 1.75em "  禁止在食品动物中使用洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "公告如下/span/pp style="line-height: 1.75em "  一、自本公告发布之日起,除已有产品批准文号有效期届满申请换发外,停止受理洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂的兽药产品批准文号的首次申请;已受理尚未核发的,不予核发。/pp style="line-height: 1.75em "  二、自2015年9月1日起,停止生产洛美沙星、培氟沙星、氧氟沙星、诺氟沙星等4种原料药的各种盐、脂及其各种制剂,涉及的相关企业的兽药产品批准文号同时注销。之前生产的产品,在2015年12月31日前可以流通使用。/pp style="line-height: 1.75em "span style="background-color: rgb(255, 255, 0) "相关公告/span/pp style="line-height: 1.75em "  1. 禁止在饲料和动物饮用水中使用的药物品种目录,农业部公告176号。/pp style="line-height: 1.75em "  2. 食品动物禁用的兽药及其它化合物清单,农业部公告193号。/pp style="line-height: 1.75em "  3. 禁止在饲料和动物饮水中使用的物质,农业部公告1519号。/pp style="line-height: 1.75em "  4. 农业部关于决定禁止在食品动物中使用洛美沙星等4种原料药的各种盐、脂及其各种制剂的公告(征求意见稿)/ppbr//p
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 从“大头娃娃”事件浅谈化妆品激素检测
    近日,某网络博主发布的一段婴儿使用抑菌霜后出现“大头娃娃”现象的视频引发热议。视频称,给5个月大的孩子使用“嗳婴树”牌的“益芙灵多效特护抑菌霜”后出现了脸部肿大的现象,并伴有发育迟缓、多毛等症状。将样品送至专业机构检测,结果显示,该抑菌霜激素超标。其氯倍他索丙酸脂的含量在30mg/kg左右。据悉,激素有消炎的作用,但使用激素有严格的标准,检测结果表明这款面霜的激素含量大大超出添加标准。氯倍他索丙酸酯又称丙酸氯倍他索,为糖皮质激素类药物。长期、大面积使用糖皮质激素类药物,使用者会出现库欣综合征,表现为多毛、痤疮、满月脸、高血压、骨质疏松、精神抑郁、伤口愈合不良等。另外,儿童长期使用可抑制生长发育。激素使用症状与上述患病儿童表现症状相似,进一步的结论和最终结果,则有待相关部门的调查。公开资料显示,检测机构主要对化妆品中的糖皮质激素、性激素等进行检测。1.糖皮质激素糖皮质激素对皮肤具有一定的嫩白作用,短期内使用含有糖皮质激素的化妆品可使皮肤光滑细腻、红润白嫩,有较好的美容效果。但长期使用,通过皮肤的吸收则可能引起全身的副作用,导致面部皮肤损害、骨质疏松、肌肉萎缩、生长发育迟缓、诱发或加重感染和消化性溃疡、情绪异常、代谢紊乱等各种不良反应。化妆品中禁用的糖皮质激素有41种。基本分子结构如下:液相色谱-质谱鉴定法膏霜类化妆品用饱和氯化钠溶液分散,精油类化妆品用正己烷分散,用乙腈从分散液中提取糖皮质类激素,用亚铁氰化钾和醋酸锌从提取液中沉淀大分子基质,经固相萃取小柱净化,用反相高效液相色谱-质谱测定,外标法定量。部分糖皮质激素的提取离子流图如下: 检测方案:化妆品中41 种糖皮质激素类药物检测方案(液相色谱仪)2.性激素主要对化妆品中的7种性激素进行检测,分别为睾酮(T)、孕酮(P)、甲基睾酮(MT)、雌二醇(E2)、雌三醇(E3)、雌酮(E1)、己烯雌酚(DES)。化学结构见下图:(1)高效液相色谱法以有机溶剂提取化妆品中的性激素,用高效液相色谱仪进行分析,以保留时间和紫外吸收光谱图或荧光光谱图定性,以峰面积进行定量。性激素在色谱中的保留时间如下:检测方案:化妆品中雌三醇等7种性激素检测方案(液相色谱柱)点击查看更多方案(2)气相色谱-质谱鉴定法采用气相色谱/质谱(GC-MS)联用技术同时分析水性化妆品中的 7 种激素。样品经提取、去脂、使用 C18 固相提取小柱净化,目标物用七氟丁酸酐衍生化,用 GC-MS-SIM 分析。性激素在气质中的保留时间如下:在日常生活中,化妆品必不可缺。那么,自己长期使用的化妆品中是否含有激素这个问题足以引起我们的重视。为了自身和家人安全使用化妆品,企业对其进行激素检测是十分必要的。
  • 探访奥运计量标准“基地”
    8月18日,中国计量科学研究院的一名工作人员演示如何做长度测量标准。当日,记者探访奥运计量标准“基地”——中国计量科学研究院。中国计量科学研究院为北京奥运会的食品安全检测和兴奋剂检查提供标准物质 为奥运场馆各种通信系统和电视转播设备不受电磁干扰,奥运通讯和转播的高质高效,提供电磁环境监测计量标准等各种测量标准。 新华社记者 李文摄  8月18日,中国计量科学研究院的一名工作人员,正在做奥运食品检测兴奋剂标准物质。当日,记者探访奥运计量标准“基地”——中国计量科学研究院。中国计量科学研究院为北京奥运会的食品安全检测和兴奋剂检查提供标准物质 为奥运场馆各种通信系统和电视转播设备不受电磁干扰,奥运通讯和转播的高质高效,提供电磁环境监测计量标准等各种测量标准。 新华社记者 李文摄
  • Alpha助力DNA甲基化表型调控新发现
    DNA甲基化(DNA methylation)是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5' 碳位共价键结合一个甲基基团。为DNA化学修饰的一种形式,能够在不改变DNA序列的前提下,改变遗传表现。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。Nature上一项新的研究揭示了一种跨染色质调节途径,即NSD1(一种组蛋白甲基转移酶)介导的H3K36me2是在基因间区域招募DNMT3A和维持DNA甲基化所必需的,并将异常的基因间CpG甲基化与人类肿瘤生长和过度发育相关联在一起。作者发现了一个有趣的现象:塔顿布朗拉赫曼综合征(Tatton–Brown–Rahman syndrome, TBRS)是一种儿童过度生长障碍,是由生殖系统DNMT3A(DNA甲基转移酶3A)突变导致的。儿童期巨脑畸形综合征(Sotos syndrome)是由NSD1(组蛋白甲基转移酶)的单倍剂量不足引起的。这两种疾病具有相同的临床特征,这就非常有意思了:这预示着组蛋白修饰和DNA甲基化修饰可能存在机制上的关联性。首先,研究人员通过全基因组分析和ChIP-seq分析方法发现,组蛋白甲基化修饰H3K36me2和H3K36me3的富集区域非常类似,且明显区别于其他组蛋白甲基化修饰如H3K9me3和H3K27me3所划分的区域。而且H3K36me2和H3K36me3水平与CpG甲基化呈正相关,这与之前报道的H3K36me3介导靶向DNMT3B的活性一致。然而,由于这种相互作用仅限于基因小体,染色质水平上的调控机制并不清楚。在进一步的检测和比较全基因组分析,发现H3K36me3在基因体中表现出特征性的富集,而H3K36me2则表现出更为弥散的分布,包括基因区和基因间区。与H3K36me3相比,DNMT3A选择性富集在H3K36me2高水平区域。接下来,就是我们的独家法宝Alpha技术大显身手的时候了。研究人员采用体外高灵敏度、匀相免疫AlphaLISA技术来阐明H3K36me2介导的DNMT3A募集特异性背后的机制。首先GST标记DNMT3A,纯化后将GST-DNMT3A与生物素化的核小体(不同甲基化的H3K36)置于384孔板。依次加入谷胱甘肽受体微珠,链霉亲和素供体微珠。避光反应60min后置于Envision多模式读板仪中对信号进行检测。通过亲和曲线分析可得知,DNMT3A与H3K36me2修饰的核小体的亲和力最高,其次是H3K36me3,但不与其他价态结合。这些结果表明DNMT3A可以识别H3K36两种甲基化状态,但对H3K36me2的亲和力更强。同时,作者也在体外NSD1突变细胞和临床Sotos综合症病人的血样本中验证组蛋白H3K36甲基化与DNA甲基化修饰的相关性,揭示DNMT3A优先选择H3K36二甲基化区域,促进基因间区的DNA甲基化。这一机制在疾病发生过程中有潜在的生物学意义。珀金埃尔默公司一如既往的为用户提供客制化Alpha Assay检测试剂和高品质的检测设备:EnVision多标记微孔板读板仪EnSight多标记微孔板读板仪Victor Nivo多标记微孔板读板仪参考文献Weinberg D N, Papillon-Cavanagh S, Chen H, et al. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape[J]. Nature, 2019, 573(7773): 281-286.Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine[J]. Lancet. 2018
  • 沃特世为分析饮料中的2-甲基咪唑和4-甲基咪唑含量提供解决方案
    沃特世ACQUITY UPLC H-CLASS-PDA系统和ACQUITY UPLC/Xevo TQ MS系统分析饮料中的2-甲基咪唑和4-甲基咪唑含量赵嘉胤.蔡麒.孙庆龙引言焦糖色素是一种允许使用的着色剂,我国对焦糖色使用量的规定除个别产品外均为按生产需要适量使用,其中规定仅有亚硫酸铵法生产地焦糖色允许使用在碳酸饮料中。而以加氨或其铵盐制成的焦糖(Ⅲ类氨法焦糖和Ⅳ类亚硫酸铵法焦糖)会产生4-甲基咪唑,并且4-甲基咪唑是一种能够诱发肿瘤的高水平的化学物质。焦糖色素被广泛用于食品以及饮料中,所以4-甲基咪唑的含量监控也是必须被重视的,由于4-甲基咪唑分子极性很大,含量很低,所以如何快速、准确地检测出其含量,就成为人们现阶段研究的重点。目前我国国家标准中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。沃特世(Waters)公司所提供的整体解决方案,同时来监控饮料中的4-甲基咪唑以及2-甲基咪唑。使用沃特世SPE的固相萃取策略来对于复杂的样品基质进行净化,完成对于4-甲基咪唑以及2-甲基咪唑的提取浓缩,而沃特世HILIC模式的色谱保留,对于极性分子的色谱分离提供完美的效果,最后通过UPLC H-CLASS PDA以及UPLC/Xevo TQ MS的分析,完成出色的定性定量工作。 实验条件样品前处理方案固相萃取SPE解决方案&mdash &mdash Oasis MCX (3cc/60mg) 小柱净化取3g饮料样品,超声5分钟,后待净化。ACQUITY UPLC H-CLASS PDA超高效液相色谱分离条件:色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m流动相 A: 乙腈流动相 B: 5mM甲酸铵柱温: 35˚ C检测波长: 215nm进样量: 5&mu L运行时间: 3min梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6ACQUITY UPLC Xevo TQ MS超高效液相色谱-串联质谱分析条件:色谱柱: ACQUITY UPLC BEH HILIC Column 2.1x100 mm,1.7&mu m流动相 A: 乙腈流动相 B: 5mM 甲酸铵柱温: 35˚ C进样量: 2&mu L运行时间: 3min梯度表: Time (min) Flow (mL/min) %A Curve 0.00 0.5 80 6 3.00 0.5 80 6实验结果及讨论1、ACQUITY UPLC H-CLASS PDA分析混合标准品色谱图饮料空白样品图基质添加回收色谱图2、ACQUITY UPLC/Xevo TQ MS分析混合标准品TIC3.2.3 茶饮料样品加标与空白对比分析3.2.4 可乐样品加标与空白对比分析 通过分析结果可以看出,4-甲基咪唑和2-甲基咪唑分子极性很大,一般反相很难保留,多用离子对试剂来增加保留,但由于离子对色谱方式平衡时间很长,增加整体分析周期,同时对于色谱柱以及仪器的损耗很大,最关键是无法进行有效的质谱方法分析。而沃特世公司HILIC模式的极性分析方案可以非常好的进行极性分子的保留,流动相简单,优异兼容质谱条件,使4-甲基咪唑和2-甲基咪唑有非常好的分离效果以及灵敏度。同时由于目标化合物极性很大,对于前处理的要求非常高,分离提取是个难点,而沃特世公司的固相萃取方案能使样品达到非常好的净化效果,通过Oasis MCX进行保留分离,同时能够减少样品杂质对于色谱柱以及整个仪器系统的损害。由沃特世ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS所提供的超高效性能以及灵敏度,使得4-甲基咪唑和2-甲基咪唑的分析达到理想效果。结论1.采用ACQUITY UPLC H-CLASS-PDA和ACQUITY UPLC / Xevo TQ MS可以快速高效地对4-甲基咪唑和2-甲基咪唑的含量进行测定,ACQUITY UPLC H-CLASS-PDA灵敏度可以达到1mg/kg,ACQUITY UPLC / Xevo TQ MS灵敏度可以达到1&mu g/kg。2.应用沃特世固相萃取SPE解决方案配合HILIC模式色谱保留,对于大极性的小分子有很好的保留以及分离提取的作用,达到理想净化效果以及色谱分离效果。3.从样品前处理到样品色谱质谱分析的整体解决方案,给客户提供一体化的服务解决样品分析过程中可能遇到的所有问题,帮助客户成功! 关于沃特世公司 (www.waters.com)50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。联系方式:叶晓晨沃特世科技(上海)有限公司 市场服务部xiao_chen_ye@waters.com周瑞琳(GraceChow)泰信策略(PMC)020-8356928813602845427grace.chow@pmc.com.cn
  • 迪马科技推出HILIC等新款色谱柱
    迪马科技作为全球领先的色谱消耗品制造商,多年来其色谱产品一直是高品质的典范,Inspire、Platisil系列色谱柱更是其中的佼佼者。 迪马科技全新推出InspireTM HILIC、InspireTM Diol系列,PlatisilTM NH2、Platisil&trade CN、 PlatisilTM Silica、PlatisilTM PH系列色谱柱。此次推出的新产品极大地丰富了迪马自有品牌的产品线,为广大用户提供更多种键合相的液相色谱柱产品选择,满足更多强极性、亲水性化合物等的检测需求。新品一:InspireTM HILIC InspireTM HILIC柱采用了极性改性的固定相,能够在其表面形成一层富水层,从而增强了对一些强极性化合物的保留能力,有效地克服了反相色谱柱对该类化合物保留能力差的缺点。与传统的反相色谱柱不同,InspireTM HILIC柱只需要流动相中含少量的水,即可实现对强极性化合物的保留,而有机相的增加有利于提高对化合物的检测灵敏度,特别是对于小内径色谱柱而言。&bull 独特的选择性,适用于强极性化合物的分离分析&bull 提高对亲水性、极性化合物的检测灵敏度&bull 增强了对强极性化合物的保留能力&bull 快速高通量分析,提高工作效率&bull 优异的批次重现性&bull 适合于分离亲水性和极性化合物、氨基酸、多肽、水溶性维生素、药代谢物咖啡因代谢物色谱柱 如图所示规格 150 × 4.6 mm, 5 &mu m流动相 乙腈:10 mM 甲酸铵(pH 3.0) = 95:5流速 1.0 mL/min温度 室温检测器 UV 254 nm样品 1. 茶碱2. 3-甲基黄嘌呤3. 7-甲基黄嘌呤4. 1,3-二甲基尿酸了解更多新品二:InspireTM Diol InspireTM Diol柱以高纯硅胶为基质,采用了Dikma独有的键合技术,使其在水相介质中更为稳定和耐用。InspireTM Diol柱可同时适合正相、反相和亲水作用色谱(HILIC)。Diol固定相与未经键合的硅胶相比,极性稍弱一些,可以提供适度的正相保留能力,具有优异的选择性;同时其表面很容易被水润湿,形成富水层,可用于HILIC模式下强极性化合物的分析分离。&bull 二醇基基团键合在高纯硅胶基质上&bull 高性能硅胶以及特殊的键合技术,使二醇键合相在水相介质中稳定不流失,从而延长柱寿命&bull 适用于正相、反相和HILIC三种分离模式&bull 二醇基极性弱于未修饰硅胶表面的硅醇基,提供适度的正相保留能力&bull 独特的选择性,适用于亲水性极性化合物分析分离&bull 制备色谱中溶剂易于挥干类固醇色谱柱 如图所示规格 150 × 4.6 mm, 5 µ m流动相 A相:HexaneB相:CH2Cl2:MeOH = 80:20A:B = 80:20流速 2.0 mL/min温度 室温检测器 UV 254 nm样品 1. 11-酮孕甾酮2. 孕酮3. 醋酸可的松4. 皮质酮5. 醋酸泼尼松龙6. 可的松7. 波尼松8. 氢化可的松9. 地塞米松10. 泼尼松龙了解更多新品三:PlatisilTM NH2 PlatisilTM NH2柱采用了独特的氨基键合技术,有效地减少了氨基键合相的水解,具有增强的稳定性和柱寿命。其表面的氨基基团会与其他含氢键化合物(如糖类化合物)发生氢键作用力,无论是在正相、反相或离子交换条件下,均可实现对该类化合物出色的保留和选择性。&bull 独特的氨丙基硅烷键合技术,增强的稳定性和柱寿命&bull 多重保留机理,同时适用于正相、反相和离子交换分离模式&bull 适用于反相模式下分离亲水性和极性化合物,如碳水化合物和单糖、寡糖、糖醇等糖类化合物;正相模式下分离烃类化合物和维生素A和D水溶性维生素色谱柱 如图所示规格 150 × 4.6 mm, 5 &mu m流动相 乙腈:25 mM 磷酸二氢钾(pH 2.5) = 70:30流速 1.0 mL/min温度 室温检测器 UV 254 nm样品 1. 维生素B22. 维生素B33. 维生素B64. 维生素B1了解更多 新品四:Platisil&trade CN 相较于传统的反相色谱柱(如C18、C8)而言,PlatisilTM CN柱的疏水性更弱一些,对于一些在C18和C8柱上强保留的化合物,无需调整有机相比例,即可实现快速分离。PlatisilTM CN柱具有多重保留机理:其表面的氰基基团会与极性化合物产生较强的偶极-偶极作用,而丙基链会提供疏水性作用,使其具有独特的选择性,能够拓宽色谱应用的范围。此外,PlatisilTM CN柱可同时应用于正相色谱和反相色谱,方便色谱工作者方法的选择和开发。&bull 氰丙基二甲基硅烷高密度键合在高纯硅胶基质上&bull 具有独特的选择性&bull 快速分离疏水化合物、不饱和化合物和极性化合物&bull 适用于正相、反相和HILIC三种分离模式&bull 优异的批次重现性和稳定性&bull 比硅胶柱平衡快,不易污染,对水不敏感PlatisilTM CN柱与常规C18柱选择性和保留对比色谱柱 如图所示规格 150 × 4.6 mm, 5 &mu m流动相 甲醇:水 = 65:35流速 1.0 mL/min温度 室温检测器 UV 254 nm样品 1. 尿嘧啶 5. 丁基苯2. 咖啡因 6. 戊基苯3. 苯酚 7. 邻三联苯4. 甲苯 8. 苯并菲了解更多 新品五:PlatisilTM Silica PlatisilTM Silica柱是以纯度为99.999%的高纯多孔球形硅胶为基质,金属杂质总含量小于5 ppm,颗粒表面光滑、粒径孔径分布均匀、球形对称度好,加上迪马科技独有的填装工艺,使得该色谱柱具有高柱效、高稳定性、低柱压等特点。&bull 由99.999%的高纯度多孔球形硅胶填装而成&bull 极低的金属含量和酸性&bull 高机械强度和稳定性&bull 适合于异构体和弱酸性化合物的分离&bull 优异的批次重现性邻苯二甲酸酯类色谱柱 如图所示规格 150 × 4.6 mm, 5 &mu m流动相 A相:Hexane B相:CH2Cl2:MeOH = 80:20A:B = 95:5流速 1.0 mL/min温度 室温检测器 UV 254 nm样品 1. 邻苯二甲酸二辛酯2. 邻苯二甲酸二丁酯3. 邻苯二甲酸二丙酯4. 邻苯二甲酸二乙酯5. 邻苯二甲酸二甲酯了解更多 新品六:PlatisilTM PH PlatisilTM PH柱适用于反相色谱模式下芳环类化合物和极性化合物的分离,其保留特性类似于反相C8柱,但疏水性更弱一些。由于表面苯基基团的双键作用(&pi -&pi 键相互作用),使其具有独特的选择性,能够拓宽色谱应用的范围,方便色谱工作者方法的选择和开发。此外,PlatisilTM PH柱采用了高密度键合和独有的封端技术,使得柱子的稳定性和寿命大大增加。&bull 苯基基团键合在高纯硅胶基质上&bull 表面的&pi -&pi 键相互作用,使其具有独特的选择性&bull 高密度键合和独有的封端技术增强了柱子的稳定性&bull 疏水性弱于C8柱,可对一些疏水性化合物提供更快速分离&bull 优异的分离度和批次重现性&bull 适用于极性化合物、芳环类化合物和异构体的分离苯胺类色谱柱 如图所示规格 150 × 4.6 mm, 5 &mu m流动相 甲醇:水 = 60:40流速 1.0 mL/min温度 室温检测器 UV 254 nm样品 1. 苯胺2. 邻甲苯胺3. -甲基苯胺4. 2-乙基苯胺5. -乙基苯胺6. , -二甲基苯胺7. , -二乙基苯胺了解更多
  • 27种激素分析|岛津临床质谱8分钟轻松搞定!
    导读 类固醇激素又称甾体激素,是内分泌细胞分泌的高效能生物化学物质,在维持生命、调节机体物质代谢、促进性器官发育和维持生育等方面起着重要作用。Wang et al.:Steroid paneling by LC-MS/MS. Clin Chem Lab Med 2020 临床上将类固醇激素水平作为较多疾病的诊断指标,包括先天性类固醇代谢紊乱和获得性类固醇代谢紊乱等,其中主要涉及到8个Panel,包括肥胖组合、肾上腺皮质功能减退组合、原发性醛固酮增多症组合、库欣综合征组合、肾上腺增生组合、男性性功能减退组合、多囊卵巢综合征组合及地塞米松抑制实验组合。除此之外,外源性激素,如曲安西龙、泼尼松、地塞米松、氟米龙、甲基泼尼松龙等,作为抗炎和激素药物应用广泛。但这些药物的长期和过度使用,有时会导致内分泌代谢混乱,患者可能呈现库欣综合征的临床特征。因此,建立一种同时测定内源性及外源性激素的方法可解临床所需。 岛津临床质谱LCMS-8050 CL 依赖于LCMS-8050 CL出色的性能,岛津公司开发出27种激素同时测定的方案。该方案使用岛津临床质谱LCMS-8050 CL,在8 min内即可完成对27种激素(20种内源性激素及7种外源性激素)的同时定量分析,该方法分析速度快、稳定性好、检出限低、检测品种多,涵盖多种类固醇代谢紊乱Panel,可以满足更广泛的临床需求。 快速、全面,涵盖多种疾病Panel 该方案8min内即可完成27种激素测定,其中包括20种内源性激素及7种外源性激素;涵盖8种类固醇代谢紊乱Panel,可满足临床更广泛的检测需求。 27种激素色谱图(1-Melatonin, 2-DHEAS,3-Triamcinolone,4-E3, 5-ALD,6-Prednisolone, 7-COR,8-Fludrocortisone, 9-F,10-Prednisolone,11-21DOC,12-Dexamethasone,13-Methylprednisolone,14-CORT, 15-Fluorometholone,16-S,17-E2, 18-E1, 19-A4, 20-DOC,21-17-OH-PR, 22-DHEA,23-17α-OH-P,24-T, 25-DHT,26-P, 27-Pregnenolone) 极宽的动态线性范围,可准确测定不同群体的样本 正常人体内激素含量较低,个别激素人体内含量仅pg/mL级别,而当人体出现激素代谢紊乱时,体内激素含量甚至可达正常值的几十倍到几百倍。这就需要一种能够同时兼顾正常人及患病人群体内含量同时测定的宽动态线性范围含量测定方法。岛津开发的同时测定27种激素的方案,动态线性范围横跨四个数量级,可轻松准确测定不同群体的样本。 11-脱氧皮质酮标准曲线 孕酮标准曲线 极低的检出限及卓越的稳定性 LCMS-8050 CL以优异的扫描速度及正负极切换时间兼具了数据灵敏度及稳定性,在正常人体内激素含量低至pg级别时,仍可准确稳定的定量,保证了正常人检测需求,为疾病诊断提供更有力数据支持。 性能优异的色谱柱保证同分异构体的完美分离 Shim-pack Velox实心核表面多孔颗粒系列色谱柱,表面多孔颗粒具有更高的通量和更快的速度。在保证8 min快速分析27种激素的前提下可以可轻松分离同分异构体。 紧跟热点,难点不难,岛津临床质谱以其优异的性能轻松胜任临床检测热点中的难点--类固醇激素测定。岛津研发人员紧贴临床需求,开发出众多临床解决方案供您选择参考。在守护人类健康的道路上,岛津将伴您同行! 撰稿人:孙亮
  • 【科普】多相催化氢化反应在药物合成中的应用
    催化氢化反应是指还原剂或氢分子等在催化剂的作用下对不饱和化合物的加成反应。它是有机化合物还原方法中最方便、最常用、最重要的方法之一。多相催化氢化反应主要包括碳碳、碳氧、碳氮键等不饱和重键的加氢反应和某些单键发生的裂解反应。被还原的底物和氢一般吸附在催化剂表面,活化后进行反应。多相催化氢化主要有如下优点。①还原范围广、反应活性高、选择性好、速度快:有些反应(如碳碳不饱和键的加氢)应用其他方法比较复杂和困难,而应用催化氢化比较方便;②经济适用:氢气本身价格低廉,成本低,操作方便,对醛酮、硝基及亚硝基化合物都能起还原作用,不需其他任何还原剂和特殊溶剂;③后处理方便、反应条件温和、操作方便:反应完毕后,只需滤去催化剂,蒸发掉溶剂即可得到所需产物,产品纯度、收率都比较高,且干净无污染。因此,多相催化氢化在药物合成中有广泛的应用。01碳碳不饱和键的多相催化氢化1) 烯、炔的多相催化氢化:烯键和炔键均为易于氢化还原的官能团。通常用钯、铂和Raney镍作催化剂,在温和条件下即可反应。除酰胺卤和芳硝基外,分子中存在其他可还原官能团时,均可用氢化法选择性还原炔键和烯键。例如:抗精神病药物匹莫齐特(pimozide)中间体的合成。心血管系统药物艾司洛尔(Esmolol)中间体的合成。肺心病治疗药物樟磺咪芬(Trimetaphan)中间体的合成。一般规律:炔键活性大于烯键,位阻较小的不饱和键活性大于位阻较大的不饱和键,三取代或四取代烯需在较高的温度和压力下方能顺利进行反应。p-2型硼化镍能选择性地还原炔键和末端烯键,而不影响分子中存在的非末端双键,效果较Lindlar催化剂好。p-2型硼化镍在还原多烯类化合物时,不导致烯键异构化,也不导致苄基或烯丙基的氢解。在多相氢化反应中,炔烃、烯烃和芳烃的加氢常得到不同比例的几何异构体。一般认为,吸附在催化剂表面的是作用物分子不饱和结构空间位阻较小的一面,已吸附在催化剂表面的氢分步转移到作用物分子上进行同向加成(syn-addition)。因此,氢化产物的空间构型主要由作用物的空间因素和催化剂的性质两个方面决定。在炔类和环烯烃的加氢产物中,由于同向加成,产物以顺式体为主,但由于向反式体转化更稳定等因素,所以仍有一定量的反式体。雌性激素药雌酮(Estrone)中间体的合成。2)芳香环的多相催化氢化:苯为难于氢化的芳烃,芳稠环(如萘、蒽、菲)的氢化活性大于苯环。取代苯(如苯酚、苯胺)的活性也大于苯,在乙酸中用铂作催化剂时,取代基的活性为ArOhArNh2ArCOOhArCh3。不同的催化剂有不同的活性顺序,用铂、钌催化剂可在较低的温度和压力下氢化,而钯则需较高的温度和压力。如苯甲酸可用铂催化剂在较温和的条件下还原为环己基甲酸。激素药炔诺孕酮(Norgestrel)中间体的合成。某些取代苯选用铑作催化剂,可在较温和的条件下氢化,得到较好的收率。02醛酮的多相催化氢化目前,催化氢化还原是应用最广泛的将羰基还原为羟基的两种还原方法之一。醛和酮的氢化活性通常大于芳环而小于不饱和键,醛比酮更容易氢化。脂肪族醛、酮的氢化活性较芳香醛酮低,通常以Raney镍和铂为催化剂,而钯催化剂的效果较差,且一般需要在较高的温度和压力下还原。例如,由葡萄糖氢化的山梨醇(Sorbiol)。治疗帕金森病的药物左旋多巴(Levodopa)中间体的合成。与脂肪族醛、酮氢化不同,钯是芳香族醛、酮氢化十分有效的催化剂。在加压或酸性条件下,芳香族醛、酮氢化所生成的醇羟基能进一步被氢解,最终得到甲基或亚甲基。氢化法是还原芳酮为烃的有效方法之一。在温和条件下,选用适当活性的Raney镍作为还原剂,可得到醇。03羧酸衍生物的多相催化氢化1)酰卤的多相催化氢化:酰卤与加有活性抑制剂(如硫脲)的钯催化剂或以硫酸钡为载体的钯催化剂,于甲苯或二甲苯中,控制通入氢量略高于理论量,即可使反应停止在醛的阶段,得到收率良好的醛。在此条件下,分子中存在的双键、硝基、卤素、酯基等不受影响,如重要制药中间体三甲氧基苯甲醛的合成。2,6-二甲基吡啶的四氢呋喃可作为钯催化剂的抑制剂。在钯催化下,将氢 通入等当量的酰氯及2,6-二甲基吡啶的四氢呋喃溶液中,在室温下反应,即可以良好的产率得到醛。本法条件温和,特别适用于对热敏感的酰氯的还原。如8-壬酮酰氯用本法还原时,羰基不受影响。2)腈的多相催化氢化:催化氢化法是腈类化合物还原的主要方法。催化氢化还原可在常温下以钯或铂为催化剂,或在加压下以活性镍为还原剂,通常其还原产物中除伯胺外,还有较大量的仲胺,这是所生成的伯胺与反应中间物(亚胺)发生副反应的结果。为了避免生成仲胺的副反应,可以钯、铂或铑为催化剂,并在酸性溶剂中还原,使产物伯胺成为铵盐,从而阻止加成副反应的进行;或以镍为催化剂,在溶剂中加入过量的氨,使不易发生进一步脱氨,从而减少副产物的产生。例如,在抗皮炎药物维生素B6(Vitamin B6)中间体的合成中,一步催化氢化实现了硝基成氨基、氰基成氨甲基、氯被氢解掉等三个基团的转化。04含氮化合物的多相催化氢化1)硝基化合物的多相催化氢化:催化氢化法也是还原硝基化合物的常用方法,其具有价廉、后处理手续简便且无"三废"污染等优点。活性镍、钯、铂等均是最常用的催化剂。通常,使用活性镍时,氢压和温度要求较高,而钯和铂可在较温和的条件下进行。例如抗生素奥沙拉秦(Olsalazine)中间体的合成。由于催化氢化还原活性与催化剂及反应条件有关,因而可根据不同的需要,调节或控制反应活性。例如硝基苯还原,可选择合适的氢化条件,使反应停留在生成苯胲阶段,然后在酸性条件转位得对氨基酚。这是生产制药中间体对氨基酚的最简捷路线。硝基化合物尚可采用转移氢化法还原,常用的供氢体为肼、环己烯、异丙醇等。其中,应用最普遍的是肼。其反应设备及操作均十分简便,只需将硝基化合物与过量的水合肼溶于醇中,然后加入镍、钯等氢化催化剂,在十分温和的条件下,即可完成反应。分子中存在的羧基、氰基、非活化的烯键均可不受影响。2)肟和亚甲胺的多相催化氢化:催化氢化法亦是将肟和亚甲胺还原成伯胺或仲胺的有效方法,在制药工业中已广泛采用,常用的催化剂是镍和钯。抗心律失常药美西律(Mexiletine)中间体的合成。3)叠氮化合物的多相催化氢化:叠氮化合物可被多种还原剂还原生成伯胺。其最常用的方法是催化氢化和用金属氢化物。而在催化氢化法中常用的催化剂是活性镍和钯。例如降压药贝那普利(5)芳杂环类的多相催化氢化某些芳杂环类化合物也可发生多相催化氢化反应。其催化还原活性较苯类芳环大,但比醛酮类化合物小。参考:药物合成反应总结氢化反应在医药、精细化工和其他有机合成中具有非常重要的地位。氢化反应原子利用率很高,同时可以减少后续的分离和纯化过程。但氢气参与的反应在实验室和工业化生产中危险系数极大,难于控制,易造成安全事故,国家安监局把氢化反应纳入18类重点监管危险反应中。现阶段随着连续氢化技术的发展,使用连续氢化反应仪或设备将间歇式氢化反应转化成连续氢化反应,可极大的降低反应风险提高设备及操作的安全性。目前欧世盛连续氢化设备能成功实现双键还原,硝基还原,脱苄基,芳香环还原,氰基还原,氢化脱卤等反应。欧世盛研发出全自动加氢反应仪1:可配高压氢气发生器2:压力温度范围宽,满足绝大多数反应需求0-10Mpa,室温-200oC3:智能化程度高 可视智能控制界面,全自动气液分离4:工艺条件可放大至千吨级
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 迪马科技提供奶粉中雌激素检测全套解决方案
    三聚氰胺的阴影尚未散去,奶粉行业又掀起轩然大波,一则“某品牌奶粉疑致女婴性早熟”的新闻报道引起了社会各界的高度关注。我国对于奶粉中雌激素含量的检测规定了不得检出的限量,但相关具体的检测方案尚没有公布。 迪马科技作为助您保障人类食品、环境、药品安全的实验合作伙伴,根据国家及农业部公布的相关标准《GB/T 21981-2008 动物源食品中激素多残留检测方法液相色谱-质谱质谱法》和《农业部1031号公告-1-2008 动物源性食品中11种激素残留检测液相色谱-串联质谱法》,推出以下关于奶粉中雌激素检测的全面解决方案,希望对您准确检测雌激素含量有所帮助,具体如下:标准品:英文名中文名货号规格CASEstriol雌三醇C132132000.1g50-27-117-beta-Estradiol17β-雌二醇C132131000.25g50-28-2β-Estradiol 17-acetate17β-雌二醇乙酸酯C132131100.1g1743-60-8ESTRADIOL-3,4-13C2雌二醇-3.4-13C2CLM-803-1.21.2ml 17α-Ethinylestradiol17α-炔雌醇C132451000.25g57-63-6Estrone雌酮C132132300.1g53-16-7Estrone-2,4-d2雌酮-2.4-d2D-5005/0.050.05g Diethylstilbestrol己烯雌酚C126070000.1g56-53-1Diethyl-1,1,1’,1-d4-stilbestrol-3,3’,5,5’-d4己烯雌酚-d4D-2849/0.050.05g Hexestrol己烷雌酚C142028000.1g84-16-2Hexestrol-d4己烷雌酚-d4H295303-1MG1mg Dienestrol双烯雌酚C125980000.1g84-17-3Altrenogest四烯雌酮C101440000.1g850-52-2Desogestrel去氧孕烯,地索高诺酮32809-25MG25MG Estrone-D4雌酮-D4489204-100MG2.5mg53866-34-5β-Estradiol 3-benzoate β-雌二醇安息香酸酯C132131200.1g50-50-0β-Estradiol 3-methyl ether solutionβ-雌二醇3-甲醚32749-2ML2ML1035-77-4Equilin马烯雌酮C1319305050mg474-86-2Melengestrol acetate美仑孕酮乙酸酯C148617000.1g2919-66-6Mestranol美雌醇C149150000.1g72-33-3Dienestrol己二烯雌酚C125980000.1g84-17-3 其他相关产品: 英文名称中文名称货号规格β-Glucuronidase/aryl sulfatase 2mlβ-葡萄糖醛酸苷酶1.04114.00022MLSulfatase from Helix pomatia芳基硫酸酯酶,≥10,000 units/gS9626-5KU5KUBSTFA+TMCS, 99:1衍生化试剂 BSTFA+TMCS, 99:133148-20X1ML20X1MLN-Methyl-N-trimethylsilyltrifluoroacetamide activated I衍生化试剂, N-甲基-N-(三甲基硅烷基)三氟乙酰胺50992-5ML-F5MLAcetonitrile HPLC, 4L乙腈,HPLC501014LMethanol HPLC, 4L甲醇,HPLC50102 4Ln-Hexane HPLC, 4L正己烷,HPLC501154LDichloromethane HPLC, 4L二氯甲烷,HPLC501174LMethyl tert-butyl ether HPLC, 4L甲基叔丁基醚,HPLC50123 4LAcetic acid HPLC, 50ml乙酸,HPLC5013250MLProElut CARB 500mg/6mL 30/pkg石墨化碳黑固相萃取柱6540530/PKGProElut NH2 500mg/6mL 30/pkg氨基固相萃取柱6330530/PKGProElut C18 500mg/3mL 50/pkgC18固相萃取柱6310430/PKGProElut PLS 500mg/6mL 30/pkgPLS固相萃取柱6800530/PKGProElut CARB/PSA 500mg/500mg/6mL 30/pkgCARB/PSA 复合柱6420530/PKGProElut CARB/NH2 500mg/500mg/6mL 30/pkgCARB/NH2 复合柱6410530/PKGDiamonsil C18(2) 5u 150 x 4.6mm钻石C18液相柱996011EALeapsil C18 2.7u 100 x 2.1mm飞跃UPLC/HPLC柱860051EADM-5MS 30m x 0.25mm x 0.25um DM-5MS毛细柱8221 1EA 关于迪马 迪马科技是一家致力于研发制造科学、高效的化学分析产品,提供完善服务和全面解决方案的知名色谱消耗品制造商,在色谱填料研发,色谱柱制造和相关分离产品等多个技术领域始终保持世界先进水平。核心技术产品包括:液相色谱柱、气相色谱柱、固相萃取柱、色谱溶剂和化学标准品。
  • 基于质谱成像的大鼠肾上腺组织中衍生化皮质酮的分析
    p style="text-align: justify text-indent: 2em line-height: 1.75em "摘 要:/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)需要应用到特殊的样品前处理方法,从而使目标化合物的可视化分析具有高灵敏度和高分辨率。在分析类固醇激素时,基质辅助激光解吸离子化的效率往往较低。此外,类固醇激素也不能用现有的IMS 前处理方法进行分析。本报告描述了一种组织衍生化方法,借助iMScope iTRIO/i 质谱显微镜实现皮质酮的可视化和高灵敏度、高分辨率的IMS 分析。另外,我们还介绍了一种通过离子阱三级质谱鉴定皮质酮结构异构体的技术。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.研究背景/pp style="text-align: justify text-indent: 2em line-height: 1.75em "质谱成像(IMS)包括直接对组织表面进行质谱分析以检测被成像的目标物质。IMS 是一种分子成像方法,可以显示成像目标物的位置、类型和数量,且无需进行靶向标记。现有的IMS 样品前处理方法主要是将基质溶液喷涂于组织表面,形成直接诱导电离的基质-晶体层。然而,尽管我们已经知道这种方法有助于并在组织表面大量存在的极性的磷脂的可视化分析,但是对于非磷脂分子的可视化却没什么效果。因此,一些研究者认为IMS 技术只能对磷脂进行可视化分析。然而,IMS 其实同样可用于检测与现有的高灵敏度质谱方法相同的那些目标分子,前提是采用适当的样品前处理方法。实现这种可视化的技术包括两步法基质涂敷和组织衍生化方法。我们描述了一种IMS 分析方法,使用这两种技术成功实现大鼠肾上腺组织上的皮质酮的可视化分析。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.1 两步法基质涂敷/pp style="text-align: justify text-indent: 2em line-height: 1.75em "非常精细的基质晶体可以提高基质辅助激光解吸电离(MALDI)得到的谱图的信噪比(S/N)。因此,在组织表面形成非常精细的基质晶体不仅有助于提高IMS 的S/N,同时也有助于提高成像结果的空间分辨率。然而,IMS 分析的组织样品在测试前通常不清洗,其表面包含大量的盐和污染物。在这种类型的表面上涂敷基质会导致形成的基质晶体聚集,从而在某些区域形成非常薄的基质层。晶体层的这种不均匀性影响了图像的成像质量,使所获得的成像数据十分难以解释,因为目标分子浓度的变化可能仅仅是由于晶体层的不均匀性造成的。为了改善这种情况,我们开发了两步法基质涂敷技术(以下称为两步法)(图1)。两步法的第一步是使用iMLayer 系/pp style="text-align: justify text-indent: 2em line-height: 1.75em "统对基质晶体进行升华,第二步是用基质溶液进行喷涂。使用iMLayer 进行升华会在组织表面产生非常精细的基质晶体。而第二步在基质溶液的喷涂过程中,组织表面的这些细小晶体可以作为基质晶体生长的核心进行外源生长。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/854041eb-dace-41db-92d1-f351db385434.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图 1. 两步法基质涂敷的操作流程/pp style="text-align: justify text-indent: 2em line-height: 1.75em "用扫描电子显微镜捕获图像如图2 所示,我们比较了两步法和传统的直接喷涂法得到的基质晶体的形态。这两幅图像都以相同的放大倍数显示,两步成像法(图2a)得到的晶体比喷雾法(图2b)得到的晶体要精细得多,间距也更密。众所周知,这种非常精细和间距致密的晶体层的形成会使目标分子(包括药物和生物代谢物等化合物)的质谱峰强度增加数十倍sup[1,2]/sup。进行高分辨IMS 分析也需要这样精细的晶体层。当我们想实现高分辨分析(间距≤20μm)时,通过喷涂法会在组织表面形成非常大的基质晶体,这将导致成像结果会直接受这些基质晶体形状的影响和改变sup[3]/sup。基于上述情况,两步法被认为是获得高灵敏度、高分辨率结果的一种必不可少的前处理方法。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/e2775274-1fb4-47bd-b926-b5f288e97d45.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图2 基质晶体的扫描电镜图/pp style="text-align: center text-indent: 2em line-height: 1.75em "(a) 两步升华法 (b) 喷雾法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "1.2 组织衍生化处理/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化是一种进一步提高灵敏度的前处理方法,近年来备受关注。在进行液相色谱测试时,在溶液中衍生化可提高其检测灵敏度sup[4]/sup。在组织切片制备后,将相同的衍生化试剂喷洒在样品上,也可提高IMS 的灵敏度。这种处理方法甚至可以使以前无法检测的分子被检测出来。在本报告中,我们选择一种有效的类固醇检测衍生化试剂吉拉德试剂T 作为衍生化试剂[5],皮质酮([M+H]+: 347.22)与吉拉德试剂T 在室温下快速反应,然后形成衍生化皮质酮([M]+: 460.31)作为检测目标物(图3)。由于三甲胺基团的加入,衍生化的皮质酮表现出更高的离子化效率。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/39921082-faaa-4eae-9f8b-42a3a181427a.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图3. 使用吉拉德试剂T 对皮质酮进行衍生/pp style="text-align: justify text-indent: 2em line-height: 1.75em "2.实验方法/pp style="text-align: justify text-indent: 2em line-height: 1.75em "衍生化试剂:吉拉德试剂T (购于Sigma-Aldrich),浓度10mg /mL,以20%醋酸水溶液制备。样本组织:将冷冻的大鼠肾上腺切片置于ITO 载玻片上(Matsunami Glass 100Ω,span style="text-indent: 2em "无镁铝硅酸盐涂层)。基质溶液:α-氰基-4-羟基肉桂酸(α-CHCA,纯度≥98%,购于Sigma-Aldrich),浓度10mg /mL,以30%的乙腈、10%的异丙醇和0.1%的甲酸混合物作为溶剂进行配制。显微镜图像采集:在样品预处理前,用iMScope iTRIO/i 显微镜采集样品的光学图像。衍生化试剂喷涂:使用喷笔(GSICreos Procon BOY)将衍生化试剂喷涂于组织表面。喷涂量大约为60μL /组织切片。在喷涂过程中,在确认表面略有湿润的情况下,我们需要对组织表面反复干燥,当衍生化试剂喷涂完成后,样品在室温下放置90 分钟。基质涂敷:衍生化反应完成后,使用α-CHCA 在250℃条件下升华3分钟,以在组织表面形成一层基质薄膜,然后用喷笔将基质溶液喷到组织表面,喷涂量为100μL /组织切片,喷涂方法与衍生化试剂相同,但是衍生化试剂和基质需要采用独立喷笔。IMS 分析:使用iMScope iTRIO /i质谱显微镜。IMS 激光光斑直径选择d = 2 即像素大小约为25μm,d = 1 即像素大小10μm。所有IMS 采用二级质谱进行分析。对每个激光光斑直径对应的激光强度和碰撞能量进行优化,以保证产物离子质谱峰强度最大化。通过对溶液中衍生化的皮质酮标准品的分析,确定最佳实验条件。/span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f53f3658-d8f1-4846-8eb4-c69f65645f43.jpg" title="4.png" alt="4.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//pp style="text-align: center text-indent: 2em line-height: 1.75em "图4 MS/MS 质谱图的比较。(a) 非衍生皮质酮(前体离子: m/z347.22) (b) 衍生后皮质酮(前体离子: m/z 460.31) 上图:标准物质 下图: 肾上腺组织上的皮质酮/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3 实验结果/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.1 标准品与组织样品的皮质酮产物离子谱图/pp style="text-align: justify text-indent: 2em line-height: 1.75em "比较皮质酮标准品和组织样品的产物离子质谱图如图4 所示。图4a 显示了未衍生化皮质酮的产物离子谱图。标准品谱图通过测试在ITO 玻璃上滴加10 mg/mL 皮质酮标准品获得。质谱图显示了皮质酮的分子离子峰m/z 347.22,以m/z 347.22 为前体离子,其主要产物离子为m/z329.21。该产物离子是皮质酮脱水产生的。对肾上腺组织进行同样的分析,得到的谱图皮质酮信号。这一结果表明,在未进行衍生化的情况下,无法对皮质酮进行有效成像。图4b 展示了使用衍生化皮质酮进行相同分析的结果。衍生化皮质酮的质谱信号为m/z 460.31,可以将之理解为[M]+。选择m/z 460.31 作为前体离子进行二级质谱分析,得到碎片离子m/z 401.24,如图4b 所示,由三甲胺基团发生中性丢失产生。对组织样品进行分析获得高信噪比的产物离子质谱图,与标准品的谱图完全一致。这些结果表明,组织衍生化是检测皮质酮的有效方法。除了在衍生化皮质酮分析中检测到的m/z 401.24 处的质谱峰外,另一个主要峰值出现在m/z 373.25 处,为丢失-CO 基团的皮质酮。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.2 肾上腺组织中皮质酮的成像/pp style="text-align: justify text-indent: 2em line-height: 1.75em "根据上述实验条件,我们对大鼠肾上腺组织进行衍生化,获得其质谱成像数据。大鼠肾上腺组织的二级质谱成像结果(前体离子m/z 460.31,产物离子m/z 401.24)如图5 所示。肾上腺为分层结构,包括(由内而外)髓质、网状带、束状带、肾小球带和被膜。使用专为iMScope 设计的成像质谱分析软件,将二级质谱成像结果与光学图像相叠加,显示皮质酮在束状带内积累。对包含髓质、网状带和束状带的区域进行高空间分辨率检测,发现髓质中含有少量皮质酮,皮质酮主要在位于分析区域的最外层的束状带中积累。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/84c3d869-d851-4978-b790-2bed2cd4f5f3.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 2em line-height: 1.75em "图5 肾上腺组织的MS/MS 成像结果(m/z 460.31,m/z 401.24)/pp style="text-align: center text-indent: 2em line-height: 1.75em "上图, 标尺: 400μm, 像素大小: 25μm/pp style="text-align: center text-indent: 2em line-height: 1.75em "下图: 标尺: 100μm, 像素大小: 10μm/pp style="text-align: justify text-indent: 2em line-height: 1.75em "3.4 在生物组织中应用多级质谱分析/pp style="text-align: justify text-indent: 2em line-height: 1.75em "除使用大气压MALDI 源实现高分辨IMS 分析外,iMScope iTRIO/i 还可以被用于多级质谱分析。 双羟孕酮(图6b)是类固醇激素皮质酮的结构异构体。能否对结构异构体进行有效区分对于实现皮质酮分布的精确成像十分重要。使用目前的衍生化法,双羟孕酮的二级质谱也为丢失三甲胺产生的碎片,因此现有的方法无法区分皮质酮的不同结构异构体。但是,iMScope iTRIO/i 可以利用离子阱进行三级质谱分析,从而可以间接确定出成像结果中是否存在结构异构体产生,这也是通过对标准品和组织样品的三级质谱分析比较,所获得的结果。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "然而,常规前处理可能无法产生足够强度的质谱峰来进行组织上的三级质谱分析。在本实验中,我们将两步法基质涂敷和组织衍生化方法相结合,成功地进行了组织上的三级质谱分析,获得了足够强度的三级质谱信号。图7 是由二级碎片离子m/z 401.24 得到的三级质谱结果。虽然质谱图中相对噪音较高,但组织样品上的三级质谱图依然具有较高的信噪比,与标准品获得的主要三级碎片一致(图7 底部)。基于这些发现,图5 所示的IMS结果能够比较准确地展示皮质酮的分布。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "4 结论/pp style="text-align: justify text-indent: 2em line-height: 1.75em "本报告介绍了利用两步法基质涂敷和组织衍生化技术的IMS 靶向物质可视化分析技术。我们通过样品前处理方法的发展以及应用仪器的技术创新,实现了IMS 分析灵敏度的提高。我们相信,随着IMS 应用范围的扩大,对更加适合的样品前处理方法的需求也会增加,未来我们将开发多种如此文中所介绍的方法,从而更加深入地挖掘IMS 技术的巨大应用潜力。/pp style="text-align: justify text-indent: 2em line-height: 1.75em "【参考文献】/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[1] Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix/pp style="text-align: justify text-indent: 2em line-height: 1.75em "application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization ef.ciency.span style="text-indent: 2em "J Mass Spectrom. 48, 1285–90, 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[2] Shimma S. Characterizations of Two-step Matrix Application Procedures for Imaging Mass Spectrometry.span style="text-indent: 2em "Mass Spectrum. Lett. 6: 21–25, 2015./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[3] Taira S, Sugiura Y , Moritake S, Shimma S, Ichiyanagi Y , Setou M. Nanoparticle-assisted laser/pp style="text-align: justify text-indent: 2em line-height: 1.75em "desorption/ionization based mass imaging with cellular resolution. Anal. Chem. 88: 4761–6, 2008./pp style="text-align: justify text-indent: 2em line-height: 1.75em "[4] Higashi T, Yamauchi A, Shimada K. 2-Hydrazino-1-methylpyridine: a highly sensitive derivatization r/pp style="text-align: justify text-indent: 2em line-height: 1.75em "eagent for oxoster oids in liquid chromatography–electrospray ionization-mass spectr ometry. J. Chromatogr. Bspan style="text-indent: 2em "2: 214–222, 2005./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "[5] Cobice DF, Mackay CL, Goodwin RA, McBride A, Langridge-Smith PR, Webster SP, Walker BR, Andr ew/pp style="text-align: justify text-indent: 2em line-height: 1.75em "R. Mass Spectr ometry Imaging for Dissecting Steroid Intracrinology within Target Tissues. Anal. Chem., 85,span style="text-indent: 2em "11576–11584. 2013./span/pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bc3e121f-5fd4-4c49-a17c-c362290f17d2.jpg" title="6.png" alt="6.png"//pp style="text-align: justify text-indent: 2em line-height: 1.75em "span style="text-indent: 2em "/spanbr//ppbr//p
  • 英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿
    在全球亿万双眼睛的热切期盼中,第33届夏季奥林匹克运动会,即万众瞩目的2024年巴黎奥运会,即将在法国的璀璨明珠——巴黎拉开帷幕。这座城市,以其独特的魅力融合了历史的深邃与现代的活力,正以最热烈的姿态迎接这场全球体育的顶级盛宴。这不仅仅是一场运动员们展现技艺与毅力的竞技场,更是全球人民共襄盛举、传递友谊与和平的璀璨庆典。英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿巴黎,这座充满艺术气息与深厚历史底蕴的城市,每一处都散发着迷人的魅力。从雄伟壮观的埃菲尔铁塔到蜿蜒流淌的塞纳河,从古典优雅的卢浮宫到现代化的奥林匹克体育场,它们共同构成了巴黎奥运会的独特风景线。在这里,历史与现代交织成一首动人的交响乐章,为全球的体育爱好者呈现一场前所未有的视觉与心灵的双重盛宴。中国体育代表团,作为国际体坛的佼佼者,始终以其良好的竞技水平和坚韧不拔的精神风貌赢得世界的尊敬。从昔日的默默无闻到如今的体育强国,中国运动员们用汗水和泪水铺就了一条通往荣耀的道路。对于即将到来的2024年巴黎奥运会,中国体育代表团已经做好了充分的准备,他们将以更加坚定的信念、更加昂扬的斗志,向着更高的目标发起冲击。在田径场上,中国飞人将再次挑战速度的极限;在碧波荡漾的泳池中,中国泳将们将用矫健的身姿书写水上的传奇;在乒乓球桌前,国球健儿们将捍卫荣耀,续写不败的辉煌;而在羽毛球场上,中国羽毛球队将再次刮起强劲的“中国风”。此外,在篮球、足球、排球等集体项目中,中国代表团也将全力以赴,展现中国体育的团结与力量。在这个充满激情与梦想的时刻,英肖仪器作为长期陪伴并坚定支持中国体育事业发展的坚实后盾,满怀自豪与期待地向即将踏上巴黎奥运会征程的中国体育代表团致以最热烈的祝贺与最深沉的祝福。我们深知,每一次奥运舞台的闪耀,都是运动员们无数汗水与泪水交织的结晶,是“更高、更快、更强、更团结”奥林匹克精神最生动的诠释。中国体育健儿们,你们不仅是赛场上的勇士,更是国家荣誉的捍卫者,民族精神的传承者。在即将到来的巴黎奥运会上,无论面对何种挑战与困难,我们相信你们都将以无畏的勇气、坚韧的毅力,以及超凡的技艺,向世界展示中国体育的风采与力量,为国家赢得更多的辉煌与荣耀。你们的每一次冲刺、每一次跳跃、每一次挥拍,都将是激励亿万国人前行的力量源泉。在此之际,英肖仪器也自豪地向大家推介我们的明星产品——英国肖氏(SHAW)手持式露点仪SDHmini。这款集高科技、较高精度、便捷性于一身的仪器,凭借其良好的氧化铝原理与阻容法技术,能够准确地捕捉气体中的微量水分,为电力、石油、化工、制药等多个关键领域提供至关重要的湿度监测解决方案。其小巧紧凑的设计、强大的数据处理能力(支持最多300,000个数据点的记录与传输)、以及通过ATEX、IECEx和UL等国际安全标准认证的坚实品质,确保了无论是在严苛的工业现场还是复杂的实验环境中,都能稳定可靠地运行,为科技进步与产业发展贡献力量。英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿我们坚信,正如中国体育代表团在奥运赛场上不断追求良好、勇于突破一样,英肖仪器也将持续创新,以更加优质的产品和服务,助力各行各业迈向新的高度。未来,我们期待与更多志同道合的伙伴携手并进,共同书写科技改变世界的壮丽篇章。让我们再次为中国体育代表团加油鼓劲!愿你们在巴黎奥运会的赛场上,以梦为马,不负韶华,用实际行动诠释中国力量,用辉煌战绩续写奥运传奇。预祝2024年巴黎奥运会圆满成功,中国体育代表团凯旋而归!加油,中国!更多英肖仪器预祝2024年巴黎奥运会中国体育代表团取得佳绩 —— 盛况前瞻与美好祝愿、请致电英肖仪器仪表(上海)有限公司1⃣ ️ 7⃣ ️ 3⃣ ️ 1⃣ ️ 7⃣ ️ 6⃣ ️ 0⃣ ️ 8⃣ ️ 3⃣ ️ 7⃣ ️ 6⃣ ️ ,英肖仪器仪表(上海)有限公司是进口露点仪品牌英国肖氏SHAW总代理、露点仪代表处、肖氏SHAW露点仪售后服务保障。露点仪、SADP露点仪、SDHmini露点仪、SDT-Ex露点仪变送器、防爆露点仪
  • 博纳艾杰尔成功开发出奶粉中激素样品前处理方法
    奶粉激素事件牵动着大家的关注! 凭借材料研发的优势,博纳艾杰尔研发中心的技术人员们已经成功地开发了两种从奶粉中提取激素的样品前处理固相萃取柱,Cleanert PEP和Cleanert CM Silica,并成功地用于雌酮、雌二醇、醋酸甲地孕酮、醋酸氯地孕酮等四种激素的检测。数据表明:改方法具有快速、准确、简单等特点,而且回收率高、成本低。藉此我们希望抛砖引玉,让从事方法开发的同行们共同探讨,完善方法。奶粉中雌酮、雌二醇、醋酸甲地孕酮、醋酸氯地孕酮 SPE-LC/MS/MS检测方法1.实验部分: 1.1材料、试剂 Cleanert PEP吡咯烷酮化聚苯乙烯/二乙烯基苯固相萃取柱(100mg/6mL, P/N: PE1006,博纳艾杰尔科技);Cleanert Silica CM改性硅胶固相萃取柱 ( 1000mg/6mL , P/N : CM0006,博纳艾杰尔科技) 液相色谱柱 (Halo C18 , 2.1×100mm, 2.7μm, P/N: 92812-602,博纳艾杰尔科技) 标准品:雌酮(CAS.No. 53-16-7)、雌二醇(CAS.No. 50-28-2)、醋酸甲地孕酮(CAS.No. 595-33-5)、醋酸氯地孕酮 (CAS.No. 302-22-7 ),购自中国药品生物制品检定所。 1.2样品前处理方法 1.2.1 Cleanert PEP样品提取净化法 提取:取2g奶粉,加标,然后加12mL 80% 乙腈,涡旋混匀两分钟后,离心(90000r/min, 6min)取3mL上清液,加入9mL超纯水稀释,涡旋混匀后,待过Cleanert PEP柱净化。 净化步骤: 1) 活化:以5mL乙腈,5mL水活化Cleanrt PEP; 2) 上样:把上述稀释后的样品溶液过柱,流速控制以1mL/min为宜; 3) 淋洗:待样品溶液完全通过小柱后,用5mL 5%乙腈淋洗小柱,然后真空抽干3min; 4) 洗脱:以3-5mL乙腈洗脱目标,收集流出液; 5) 浓缩:收集液以氮气浓度吹干(40℃水浴),后以50% 甲醇水定容至1mL,混匀后过0.22μm微孔滤膜过,进LC-MS/MS分析。 1.2.2 Cleanert Silica样品提取净化法 提取:取2g奶粉,加标,然后加12mL 乙腈,涡旋混匀两分钟后,离心(90000r/min, 6min)取3mL上清液,待过Cleanert Silica柱净化。 净化步骤: 1) 活化:以5mL乙腈活化Cleanrt Silica小柱; 2) 上样:把上述提取液过柱,收集流出液; 3) 淋洗:以5mL乙腈洗涤小柱,收集流出液; 4) 浓缩:合并以上流出液液,以氮气浓度吹干(40℃水浴),后以50% 甲醇水定容至1mL混匀后过0.22μm微孔滤膜,进LC-MS/MS分析。 1.3 LC-MS/MS检测条件 1.3.1 孕激素(醋酸甲地孕酮、醋酸氯地孕酮)测定 液相色谱条件:色谱柱 (Halo C18, 2.1×100mm, 2.7μm);流动相:A:0.1%甲酸水,B: 甲醇,梯度条件(略);流速:0.3mL/min,柱温:40℃,进样量:10μL 参考质谱条件:电离源:电喷雾正离子模式;其他(略) 1.3.2 雌激素(雌二醇、雌酮)测定 液相色谱条件:色谱柱(Halo C18 2.1×100mm,2.7μm);流动相:A:水,B: 乙腈,梯度条件(略);流速:0.3mL/min,柱温:40℃, 进样量:10μL 参考质谱条件:电离源:电喷雾负离子模式;其他(略) 2.结果与讨论: 结果见图1、图2。用Cleanert PEP (反相)或Cleanert Silica CM(正相) 两种净化手段均可到达满意的回收率和净化效果,添加浓度在25ppb时回收率可达到80% 。 用Halo色谱柱可以实现样品的快速分离,大大提高工作效率。 雌二醇和雌酮两种激素,质谱相应偏低,质谱条件需要进一步优化。 本实验结果采用单点定量判定,结果可能有失偏颇,详细数据需做基质添加标准曲线确证,方法的精密度,稳定性等亦需要进一步确证。 图1 两种孕激素总离子流图和选择离子流图(标品) 图2 两种雌激素总离子流图和选择离子流图(奶粉样品)
  • 科学家开发出精氨酸二甲基化蛋白质组分析新方法
    近日,中国科学院大连化学物理研究所生物分离分析新材料与新技术研究组研究员叶明亮团队和上海有机化学研究所生物与化学交叉研究中心研究员刘聪团队合作,将硼酸化学引入到甲基化蛋白质组分析方法中,并巧妙利用精氨酸残基上不同修饰基团的位阻差异,实现高效的精氨酸二甲基化肽段富集,显著提高了蛋白质甲基化的分析能力;利用此新方法,系统分析了蛋白质分相过程中精氨酸二甲基化的变化,揭示了此类修饰的发生会降低蛋白质的分相能力。  蛋白质精氨酸甲基化是一种调控蛋白质功能的重要翻译后修饰,与较多疾病的发生发展相关。研究表明,精氨酸二甲基化会影响一些神经退行性疾病相关蛋白的液-液相分离,以及相分离所驱动的无膜细胞器的产生。然而,受限于目前精氨酸二甲基化蛋白质组分析技术覆盖率不足,这类研究仅聚焦于少数几个蛋白,尚未系统性探究精氨酸甲基化对蛋白质相分离的影响。  本研究发现,不同甲基化修饰的精氨酸残基在与邻二酮类化合物反应时,由于位阻不同,反应活性差异巨大。合作团队据此设计了一种精氨酸二甲基化肽段的富集方法:先利用环己二酮选择性的封闭无修饰精氨酸残基,随后利用丙酮醛选择性的在二甲基化精氨酸残基上修饰顺式邻二羟基,从而使得硼酸材料可以选择性的富集精氨酸二甲基化肽段。相比传统的免疫亲和富集方法,该方法拥有较强的精氨酸二甲基化肽段富集能力,特别是在鉴定RG/RGG序列上的精氨酸二甲基化位点方面有更高的灵敏度。合作团队将该方法应用于分析蛋白质相分离过程中精氨酸甲基化的变化,发现包括G3BP1,FUS,hnRNPA1、KHDRBS1在内的一些与无膜细胞器或神经退行性疾病相关的蛋白质上的精氨酸二甲基化程度发生了显著变化;系列实验验证发现,精氨酸甲基化会显著降低这些蛋白质的分相能力,且上述蛋白质组分析中鉴定到变化的甲基化位点是调控蛋白质相分离的关键因素。本工作开发了基于化学反应的精氨酸二甲基化蛋白质组分析方法,并利用这一方法揭示了精氨酸二甲基化对蛋白质液-液相分离具有重要的调控作用。  叶明亮团队致力于蛋白质磷酸化、糖基化、甲基化等翻译后修饰分析新方法的研究,发展了基于可逆酶促化学标记的O-GlcNAc糖肽无痕富集方法,克服了标记基团对糖肽质谱检测的干扰,实现了O-GlcNAc糖基化的高灵敏分析(Angew. Chem. Int. Edit.);利用不同糖肽的同一肽段骨架具有相似碎裂规律的特点,发展出基于“模式识别”的肽段序列鉴定新方法,实现了谱图拓展,显著提高了N-链接位点特异性糖型的鉴定灵敏度,并可发现未知的糖链及糖链修饰(Nat. Commun.)。  相关研究成果以Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、大连化物所创新基金等的支持。
  • “匠心独用,一心仪意”——进军仪器仪表行业千亿后服务市场!平云仪安揭牌成立
    3月29日,由广州平云小匠科技有限公司(下称“平云小匠”)、广电计量检测集团股份有限公司(下称“广电计量”)、广州华馨科学仪器有限公司(下称“华馨仪器”)合资的广州平云仪安科技有限公司(下称“平云仪安”)在广州揭牌成立。平云小匠正式进军仪器仪表行业千亿后服务市场。平云仪安定位为仪器仪表行业一站式售后服务解决方案提供商,致力于为仪器仪表行业厂商及实验室终端用户等提供涵盖原厂授权售后服务、设备延保、实验室搬迁/生产运维、运维信息化管理、工程师技术培训、二手设备/备件耗材流通等在内的设备全生命周期服务。仪器仪表行业加速发展,后服务市场机会涌现作为国家重点鼓励和扶持的高科技行业,仪器仪表设备应用领域广泛,在国民经济建设各行各业的运行过程中承担着把关者和指导者的任务。根据国家市场监督管理总局发布的《2021年度全国检验检测服务业统计简报》,截至2021年底,我国获得资质认定的各类检验检测机构共有51949家,仪器设备资产原值达4525.92亿元。2021年,我国仪器仪表行业实现收入9101.37亿元,同比增长18.82%,进入加速发展期,相对应的后服务市场需求逐渐旺盛。随着中国仪器市场发展蓬勃,仪器用户数量激增,其需求已从仪器软硬件产品延伸至售前、售中、售后等全方位的服务。在仪器性能满足需求的前提下,维保服务作为维持仪器运行状态、延长其生命周期的重要手段,得到越来越多的仪器用户重视,同时也成为仪器仪表厂商重要的新利润增长点。三方资源优势互补,以“互联网+服务”探索行业新模式平云小匠是广电运通(002152.SZ)的控股子公司,以广电运通积累超过20年金融级售后服务网络及售后服务体系为基础,通过“互联网+服务”模式整合自由技术服务工程师、中小服务商及仓储物流、备件、客服等社会面售后服务供应链资源,为客户提供一站式售后服务全流程解决方案和售后服务数字化管理工具。目前,平台汇聚加盟工程师超过10万人,服务商超过4000家,已累计为2000家知名企业提供服务。广电计量(002967.SZ)是国内计量检测行业头部上市机构,专注于为客户提供计量、检测、科研、咨询等“一站式”技术服务,在计量校准、可靠性与环境试验、电磁兼容检测等多个领域的技术能力及业务规模处于国内领先水平。在全国主要经济圈设有20多个计量检测基地在装备制造、汽车、航空、轨道交通、船舶、通信、电力、电子电器、食品、环保、农业、医疗、石化等领域积累了数万家客户。华馨仪器是以服务为导向的仪器仪表售后服务及二手仪器销售高新技术企业,专注于进口仪器设备、配件、化学消耗品、化学试剂、标准品以及实验室分析仪器的销售及实验室技术服务,是多个国内外著名分析仪器生产商和耗材生产商的代理商。公司在仪器使用、维护、维修和认证方面拥有丰富经验。作为平云仪安的发起单位,平云小匠在其他行业具备经过验证的一站式售后服务管理体系和全国服务供应链资源,广电计量具备深厚的计量检测行业基因和客户资源,华馨仪器具备过硬的技术体系和人才。平云仪安成立后,将汇聚三方资源优势,探索建立仪器仪表行业“互联网+服务”的产业互联网新模式。后续,还计划投建面向仪器仪表及设备的综合性技术服务平台,助力国内高端科学仪器专业维保人员的培养。平云小匠副总经理、平云仪安董事长杜高峰主持活动平云小匠总经理、平云仪安董事张业青致辞广电计量副总经理、平云仪安董事黄沃文致辞华馨仪器总经理、平云仪安董事廖华勇致辞平云仪安正式揭牌成立平云仪安董事、总经理蔡龙浩演讲平云仪安与凯镭斯、能标检测、明通集团签署战略合作协议与会嘉宾研讨交流
  • 月旭科技推出饮料中4-甲基咪唑的整体解决方案
    近日,一份源自美国监督机构环境健康中心的报告,再次将百事可乐推至焦糖色素风波中。该报告指出,在百事可乐的焦糖色素中再次检测出了含有可能致癌的4-甲基咪唑(简称4-MEI)。焦糖色素是一种允许使用的着色剂,但是,我国现行的食品质量标准中,可乐中焦糖色素没有限量标准,只规定&ldquo 按生产需要适量使用&rdquo 。 可乐中的4-甲基咪唑是在以亚硫酸铵为原料生产焦糖色素时产生的,焦糖色素能使可乐饮料变成棕褐色。4-甲基咪唑能导致动物长肿瘤,有可能给人体带来致癌风险。目前,我国国标中只有《焦糖色中的4-甲基咪唑的测定-高效液相色谱法》,而对于饮料中的4-甲基咪唑则没有相关检测方法。 针对此次事件,月旭科技迅速建立了饮料中4-甲基咪唑的前处理和检测方法。本方法使用月旭Welchrom P-SCX (60mg/3mL)富集饮料中4-甲基咪唑,所建立的固相萃取方法能够极大程度排除饮料中杂质的干扰,保证检测结果的准确性。1. 仪器及材料材料:饮料;超纯水;4-甲基咪唑标准品;月旭Welchrom SCX 固相萃取小柱(60mg/3mL);玻璃移液管;洗耳球;烧杯,固相萃取装置等。2. 实验步骤2.1 SPE净化SPE柱:Welchrom SCX(60mg/3mL)1)活化:3mL甲醇,3mL水;2)上样:3mL 饮料样品溶液,弃去上样液3)淋洗:3mL 100%甲醇,弃去淋洗液;4)洗脱:3mL 10%氨化甲醇;收集洗脱液。挥干定容至0.5mL,进液相分析。2.2 液相色谱测定色谱柱:月旭Ultimate XB-C18(4.6× 250mm, 5µ m)流动相:缓冲液/甲醇=80/20缓冲液的配置方法:将6.8g KH2PO4和1g庚烷磺酸钠至900mL,用H3PO4调pH为3.5,再定容至1000mL,即得。检测波长:210nm流速:1.0mL/min进样量:20µ L 图1:4-甲基咪唑标准色谱图 3. 添加回收率试验结果表1: 10µ g/mL添加回收实验结果(n=5)次数12345回收率98.2%92.2%95.1%96.4%93.6%
  • 血清(浆)类固醇激素液相色谱-串联质谱检测质量保证专家共识发布
    液相色谱-串联质谱(LC-MS/MS)在人体血清(浆)类固醇激素检测中展现出优于传统免疫学方法的特异性高、分析测量范围宽、多标志物同时检测等特点,已成为国际内分泌学领域相关疾病实验室诊断的首选方法。目前,国内医学实验室开展血清(浆)类固醇激素LC-MS/MS检测多参考已发表学术论文和仪器厂家说明书提供的通用操作和检测程序。然而,血清(浆)类固醇激素LC-MS/MS检测的技术难度大,临床实验室检验人员大多数缺少质谱领域专业培训和实践经验,而通用程序缺乏针对性和实操性,尤其我国尚无针对该检测程序和质量保证的系统性文件,导致实验室间检测结果存在较大差异,阻碍了该技术的临床应用。为规范我国血清(浆)类固醇激素LC-MS/MS检测,共识从检验前、中、后程序及其质量保证进行详细说明,并提出针对性建议,为实验室开展该检测项目提供参考,以推动我国血清(浆)类固醇激素LC-MS/MS检测的临床应用和结果一致性。  类固醇激素是一类具有环戊烷多氢菲母核的脂肪烃化合物,根据化学结构及生理功能可分为肾上腺皮质激素(糖皮质激素、盐皮质激素)、性激素(雌激素、雄激素、孕激素)及维生素D [ 1 ] ,在人体生长发育、能量代谢、免疫调节、生育功能调节等方面发挥重要作用。血清(浆)类固醇激素异常与先天性肾上腺皮质增生(congenital adrenal hyperplasia,CAH)、原发性醛固酮增多症、库欣综合征、多囊卵巢综合征(polycystic ovary syndrome,PCOS)、儿童发育延迟或性早熟等多种内分泌疾病密切相关 [ 2 ] ,因此其检测广泛应用于多种内分泌疾病的临床研究、诊断以及健康评估。传统免疫学方法尽管自动化程度高,但特异性相对不足,且线性范围窄,难以实现精准检测。液相色谱-串联质谱(liquid chromatography-tandem mass spectrometry,LC-MS/MS)具备特异性高、分析测量范围宽等性能优势,且能在短时间内同时准确测定多种类固醇激素及中间代谢产物,是目前精准、全面定量分析血清(浆)类固醇激素的首选方法 [ 3 , 4 ] 。  尽管已有众多研究报道多种类固醇激素的LC-MS/MS检测,包括方法开发和优化 [ 5 , 6 ] 、生物参考区间建立 [ 7 ] 等,国外已有针对血清(浆)雄激素、雌激素LC-MS/MS检测程序的指南 [ 8 ] ,国内有LC-MS/MS临床应用通用建议共识及25羟-维生素D和雄激素LC-MS/MS检测的共识 [ 9 , 10 , 11 ] ,但依然缺乏涵盖检验前、中、后阶段的LC-MS/MS检测操作程序和质量保证的指南和共识。基于此,为规范我国血清(浆)类固醇激素LC-MS/MS检测,中国质谱学会临床质谱专家委员会组织专家参阅国内外相关文献并结合临床应用经验,面向医学实验室临床质谱检验人员,针对肾上腺皮质激素和性激素LC-MS/MS分析全流程的质量保证进行详细说明并提出建议,为实验室开展血清(浆)类固醇激素检测项目提供参考,以推动我国血清(浆)类固醇激素检测的临床应用和结果一致性,提升我国类固醇激素异常相关疾病的精准诊断能力。  01血清(浆)类固醇激素LC-MS/MS检验前质量保证  (一)标本采集  人体类固醇激素浓度受多种因素影响,包括昼夜节律、生理周期、采血体位和药物等,应根据临床具体需求和激素水平影响因素,制定合理采样流程,并推荐给标本采集人员和患者。例如:皮质醇分泌通常在清晨6:00—8:00达到峰值浓度,因此峰值监测推荐清晨采集患者血液标本 连续监测则采样时间点应相对固定 [ 12 ] 醛固酮仰卧位采血比直立位采血检测结果低50% [ 13 ] 女性患者进行血清(浆)雌激素检测时需明确卵泡期、黄体期等信息,对于无规律月经周期女性,需明确绝经(特别是早绝经)原因,如自然绝经、外科手术、辐射、药物作用等 [ 14 , 15 ] 。  含有分离胶的促凝管中存在睾酮干扰峰,且分离胶可吸收类固醇激素,标本体积和储存时间也可不同程度影响检测结果 [ 16 ] 。新生儿CAH二级筛查中,EDTA采血管可导致17α-羟孕酮、雄烯二酮及11-脱氧皮质醇的LC-MS/MS检测结果偏高,造成假阳性 [ 17 ] 。另外,更换采血管品牌或批号也可能影响待测物色谱峰分离度,应制定包括峰分离度、保留时间漂移范围等色谱参数的可接受标准,以监测潜在干扰峰的影响强弱及变化。  建议1 针对有昼夜和/或周期节律的类固醇激素,实验室应根据其临床预期用途,指导患者和采血人员选择合适的采血时机,例如清晨采血检测皮质醇、睾酮水平,卵泡期采血检测雌激素水平。推荐采用不含分离胶的血清(浆)采血管采集标本,新生儿二级CAH筛查推荐采用肝素抗凝剂采血管。  (二)标本保存和运输  实验室应根据类固醇激素质谱检测的标本保存条件及检测频率进行标本的稳定性验证 [ 18 ] 。标本稳定性验证实验应至少包括环境温度、冷藏和/或冷冻条件下的稳定性,如果标本存在冻存后复查的可能,还需考察反复冻融对标本稳定性的影响。另外,标本采集、运输及前处理阶段的稳定性也需进行评估。标本稳定性实验均需使用新鲜血清(浆),通过比较新鲜采集和保存后的血清(浆)标本检测结果评估其稳定性。  如果实验室根据参考文献报道或试剂说明书设置标本保存条件,需包含明确的稳定性、标本类型、类固醇激素浓度、保存温度范围、保存时间以及保存后标本浓度较新鲜标本的变化百分比。为确保标本保存后类固醇激素检测结果“稳定”或“无明显变化”,需明确测量程序、含量计算程序及含量变化的可接受范围。如果这些信息缺失,实验室应自行建立标本稳定性的可接受条件。  建议2 实验室应根据标本保存的实际需求,使用新鲜标本对来自文献报道或试剂说明书的标本稳定性进行验证,或自建稳定性可接受的标本保存条件。建议血清(浆)标本中类固醇激素稳定保存的条件及时间见 表1 。  02 血清(浆)类固醇激素LC-MS/MS检验质量保证  (一)标本前处理  标本前处理方法取决于待测物的理化性质、灵敏度要求和分析方法。其目的是将待测物从血清(浆)及其他潜在干扰物质中分离、提取、纯化,并实现对待测物的浓缩。大多数糖皮质激素(如17α-羟孕烯醇酮、17α-羟孕酮、11-脱氧皮质醇、皮质醇、可的松)和盐皮质激素(如孕烯醇酮、孕酮、脱氧皮质酮、皮质酮)为疏水结构,均可与相应转运蛋白结合存在于血液中,游离形式约占1%。但血液中,约50%醛固酮以游离形式存在。睾酮和雌二醇与白蛋白结合力弱,与性激素结合球蛋白(sex hormone binding globulin,SHBG)结合力强,2%~4%睾酮呈游离形式,60%~75%睾酮与SHBG结合,20%~40%睾酮与白蛋白结合 [ 1 ] 。平衡透析可去除血中结合型类固醇激素进而检测游离型激素水平,但测量程序要求更高的灵敏度。如果结合型类固醇在水解前无法被直接检测,则需水解后进行检测,并明确结合型类固醇是否完全水解,且水解步骤不会导致类固醇降解,如硫酸雌酮在提取之前需通过水解酶获得游离型雌酮。亲脂性性激素(雄烯二酮、睾酮、双氢睾酮、雌酮、雌二醇、雌三醇)较亲水性性激素(硫酸脱氢表雄酮、硫酸雌酮)在血液中浓度低,因此亲脂性性激素的LC-MS/MS测量程序通常需要更复杂的标本前处理以消除基质干扰并浓缩待测物以达到理想的定量限(limit of quantification,LOQ)。  血清(浆)类固醇激素LC-MS/MS检测的标本前处理流程通常包括:(1)取等量临床标本、标准品、质控品和基质空白 (2)加入内标物 (3)提取 (4)纯化 [ 19 ] 。对易氧化的类固醇激素,前处理时需尽可能避免发生氧化以防待测物降解及产生干扰物。例如,在样品浓缩时使用惰性气体(如氮气),而非加热真空离心浓缩。去除可能干扰检测或影响前处理的物质后,宜将分析物转移到液相色谱流动相洗脱溶剂中,保持初始浓度比例,以备后续分析。推荐使用与待测物具有相似结构和离子化性质的同位素标记物(或结构类似物)作为类固醇激素LC-MS/MS检测内标物,例如氘代或 13C标记的类固醇。通过比较已知浓度内标物与待测物的信号,校正样本前处理、色谱分离、离子化过程及基质效应所产生的误差。类固醇激素的同位素内标物大多为商品化试剂,如无商品化试剂,应优先选择使用非内源性但与待测物结构类似的合成类固醇作为内标物,并确保内标物与待测物具有相同或相近保留时间。内标物的相对分子质量应至少比相应待测物大3,氘代或 13C标记数量控制在7,化学纯度应≥98%,同位素内标物纯度≥97%。  内标物需加入到所有校准品、质控品和待测标本中,且应在提取或纯化步骤之前或同时加入。加入内标物后需静置足够长的时间(通常15~30 min)以平衡内标物与结合蛋白的相互作用,抵消因蛋白结合导致的检测浓度偏低,如睾酮和睾酮-d 3需30 min完成平衡(22 ℃)。内标物的质谱信号强度应在不同分析批次中保持稳定,平衡时间不足可能会导致内标物信号强度不稳定。  建议3 使用与待测物有相同理化性质的商品化同位素标记物作为类固醇激素LC-MS/MS检测内标物( 表2 ),浓度设置在校准曲线的中浓度或医学决定水平附近,实验室应制定内标物信号强度波动的批间可接受范围。  血液中存在的大量蛋白质、多肽、小分子化合物等可引起LC-MS/MS的离子源和检测器饱和,导致离子抑制或分辨率不足,干扰检测结果。因此,LC-MS/MS分析前应提取待检测物,去除无机化合物(如盐)、蛋白质、脂质(如甘油三酯)和磷脂等物质的干扰,提高检测灵敏度、重复性和稳定性。  LC-MS/MS分析标本的提取方法包括蛋白沉淀(protein precipitation,PPT)、液液萃取(liquid-liquid extraction,LLE)、固相萃取(solid-phase extraction,SPE)等。PPT利用蛋白沉淀剂使蛋白变性沉淀,离心后直接取上清液进行检测,不适用于含量较低或有蛋白结合特性的类固醇激素。LLE利用溶剂的相似相溶原理,将目标化合物从液体混合物中分离出来,因操作繁琐且需要消耗大量有机溶剂,故临床常用固相支撑液液萃取(supported liquid extraction,SLE)替代传统LLE,降低有机溶剂消耗。而SPE采用固体颗粒色谱填料(通常填充于小柱型装置中)对样品不同组分进行化学分离,较SLE具有更优的去磷脂干扰能力,是类固醇激素标本提取的首选方法,但也具有操作步骤多、成本高等缺点。针对类固醇激素的不同极性,脂溶性激素通常选择亲脂基团填料的SPE方法萃取待测物,非脂溶性激素选择亲水基团或阴阳离子交换填料的SPE方法萃取待测物。为进一步去除与待测物共同洗脱的干扰物,可联合LLE和SPE,或吹干提取物后用不同溶剂重新提取。其中,通过高效液相色谱(high performance liquid chromatography,HPLC)可在线进行SPE,以减少手工操作,节省时间和人力成本,但目前尚无多种类固醇激素在线SPE提取解决方案。也有通过使用单个或多个提取柱串联色谱柱,如提取/上样柱、一次性SPE柱、二维色谱,提高色谱分离效率和检测灵敏度,使血清(浆)标本无需或只需经简单蛋白沉淀处理即可进行分析。  建议4 根据待测类固醇激素理化性质及测量灵敏度要求推荐使用SLE或SPE标本提取方法。  (二)类固醇激素LC-MS/MS定量分析  LC-MS/MS通过结合HPLC的高效分离浓缩能力与三重四极杆质谱的高特异性和高灵敏度定量性能,准确测量标本中浓度极低、理化性质相似的类固醇激素,其特异性较免疫学分析明显提高。  1. HPLC分离:HPLC是一种基于待测物在固定相和流动相中具有不同分配系数的分离技术。通常使用对非极性分子具有高亲和力的非极性固定相(如 18C、五氟苯基等)色谱柱分离类固醇激素 [ 20 ] ,通过流动相极性变化将吸附于色谱柱上的类固醇激素重新溶于流动相,从而实现逐步洗脱分离。通过开发精密的流动相梯度洗脱程序和使用适合的色谱柱可以分离结构非常相似的类固醇激素及其代谢物,包括一些同分异构体(如21-脱氧皮质醇、11-脱氧皮质醇)。通过依次洗脱标本中所有待测物,降低检测信号的复杂度,分离组分信号随时间出现一组近似高斯分布的色谱峰群,生成检测信号强度随时间变化的色谱图。另外,流动相中通常加入挥发性添加剂(如0.01 mol/L甲酸铵、0.1%甲酸),其浓度不应超过0.5%,以增强化合物离子化,而不应含非挥发性流动相添加剂。色谱柱可选择粒径较小的分离柱,实现短时间内更好的分离效果,也可根据文献综合选择。色谱柱应在寿命期限内使用,并根据检测量、峰型、保留时间、分离度、柱压等参数判断是否需要更换。实验室应做好色谱柱的日常维护,在每日检测结束后进行日常冲洗程序,并最终将色谱柱保持在95%及以上的甲醇或乙腈中,尽可能地延长色谱柱的使用寿命及使用质量。  建议5 为有效分离结构相似的类固醇激素及其代谢产物,推荐实验室使用 18C或五氟苯基填料,色谱柱粒径≤3 μm,有机相梯度洗脱程序:0.5~4.0 min,40%~55% 4.0~6.5 min,55%~75% 6.5~7.5 min,75%~99%。  2. 串联质谱检测:类固醇激素LC-MS/MS测量程序使用的离子源主要包括电喷雾电离(electrospray ionization,ESI)和大气压化学电离(atmospheric pressure chemical ionization,APCI)。在常规临床检测中,醛固酮、皮质醇、11-脱氧皮质醇、21-脱氧皮质醇、可的松、睾酮、孕酮、17α-羟孕酮、皮质酮、雄烯二酮、脱氢表雄酮可采用ESI或APCI离子源。与ESI相比,APCI离子源温度更高,脱溶剂更充分,因此基质效应更小。然而,APCI更适用极性较小的类固醇激素,如3β-羟基-5-烯类固醇 [ 21 ] ,在需同时检测多个类固醇激素的临床应用中具有局限性。  类固醇激素分子经离子源电离后进入三重四极杆质量分析器,根据质荷比进行分离,并采用多反应监测(multiple reaction monitoring,MRM)或选择反应监测(selected reaction monitoring,SRM)模式采集数据。最终借助质量分析器选择特定母离子和子离子,通过母离子/子离子对和各分析物及内标物的色谱图及峰面积对目标化合物进行定量。不同仪器,其离子对信息及检测参数并不完全相同,每个化合物通常选择2个离子通道分别作为定性离子和定量离子通道( 表3 )。基于定性离子、化合物极性及内标物分离峰综合判断目标化合物的分离峰。  建议6 类固醇激素LC-MS/MS检测选择ESI或APCI离子源,采用MRM或SRM模式,应在性能验证时优化质谱参数。  3. LC-MS/MS测量程序性能验证和/或确认:测量程序的性能要求取决于其预期临床用途、待测类固醇激素生物学变异及仪器灵敏度水平。如检测女性、儿童血清睾酮,测量程序的灵敏度需要达到0.02 ng/ml 同时检测浓度差异大的多个分析物,如雌二醇、雌酮、雄烯二酮,需验证测量程序对每个分析物的分析性能是否满足临床需求。值得注意的是,由于血清(浆)类固醇激素LC-MS/MS测量程序包含的人工操作步骤多,各实验室环境条件、仪器设备配置、人员水平相差大,因此即使实验室使用商品化试剂盒(Ⅰ、Ⅱ类),也应进行性能确认或验证。LC-MS/MS测量程序性能验证和/或确认程序可参考共识 [ 22 ] 或美国临床和实验室标准协会(Clinical and Laboratory Standards Institute,CLSI)C62-A [ 23 ] ,并根据生物变异、临床指南、政策法规等设定性能验证中每项参数的可接受标准。  (三)类固醇激素LC-MS/MS测量程序的分析性能指标  类固醇激素相关疾病的临床诊断对检测指标及灵敏度有不同需求,实验室应综合临床需求及仪器灵敏度确定LC-MS/MS测量程序分析性能。  1.肾上腺皮质激素:皮质醇是最主要的肾上腺皮质激素(约占75%~95%),血液中总皮质醇、游离皮质醇水平及昼夜节律变化常用于辅助诊断原发性和继发性肾上腺功能不全、库欣综合征、艾迪生病。正常成人清晨血清总皮质醇浓度通常在20~50 ng/ml,经平衡透析后的游离皮质醇浓度约占总皮质醇5%,可更准确反应皮质醇水平及节律,推荐检测血清(浆)游离皮质醇(LOQ≤1 ng/ml)。皮质醇联合17α-羟孕酮、雄烯二酮常用于筛查11-羟化酶或21-羟化酶缺乏型CAH。大多数(约90%)CAH由21-羟化酶基因变异导致,患者血清雄烯二酮水平通常升高5~10倍,17α-羟孕酮水平升高幅度更大,而皮质醇水平较低或无法检测。不同年龄、性别人群17α-羟孕酮及雄烯二酮水平差异较大,推荐实验室检测17α-羟孕酮(LOQ≤0.1 ng/ml),检测区间上限设定在参考区间上限10倍以上 [ 24 ] 。  硫酸脱氢表雄酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮常用于已排除11-羟化酶、21-羟化酶缺乏型CAH,及确认3β-羟基类固醇脱氢酶缺乏和17α-羟化酶缺乏型CAH。在非常罕见的17α-羟化酶缺乏症中,雄烯二酮、所有雄激素前体(17α-羟孕烯醇酮、17α-羟孕酮、硫酸脱氢表雄酮)、睾酮、雌酮、雌二醇和皮质醇水平降低,而盐皮质激素(孕酮、11-脱氧皮质酮和18-羟皮质酮)水平明显升高。醛固酮是典型的盐皮质激素,常用于辅助诊断原发性醛固酮增多症(如肾上腺肿瘤、肾上腺皮质增生)和继发性醛固酮增多症(如肾血管疾病、盐耗竭、钾负荷、肝硬化腹水、心力衰竭、妊娠、Bartter综合征),以上情况醛固酮水平通常可升高10~100倍。因此,建议醛固酮LOQ≤0.02 ng/ml,检测区间上限设定在参考区间上限100倍( 表4 )。  2.雄激素:LC-MS/MS较易检测正常成年男性雄激素水平,但对低雄激素水平人群,如女性、儿童以及性腺功能减退的男性,则要求测量程序具有更高的灵敏度。对成年女性,睾酮水平通常用于评估由肾上腺合成异常和PCOS导致的高雄激素血症及相关的女性多毛症、月经紊乱、不孕等疾病。对儿童,睾酮水平通常用于评估外生殖器性别模糊、性早熟或发育延迟,以及用于CAH的诊断。建议女性或儿童的睾酮测量程序LOQ≤0.02 ng/ml,并需配置高灵敏度LC-MS/MS系统,并对样品进行离线或在线前处理,如LLE、SPE或多个提取步骤结合(如PPT结合SPE) [ 8 ] 。  双氢睾酮以及双氢睾酮/睾酮比值可用于诊断雄激素缺乏症、监测雄激素替代治疗或5α-还原酶抑制剂疗效,建议采用双氢睾酮非衍生化法LC-MS/MS检测(LOQ≤0.05 ng/ml)。雄烯二酮还可用于诊断和评估女性高雄激素血症、多毛症、不孕症,儿童性早熟、发育延迟、CAH,以及肾上腺、性腺肿瘤。在CAH、女性高雄激素血症等疾病中,雄烯二酮水平明显升高,但在3β-羟基类固醇脱氢酶缺乏症、17α-羟化酶缺乏症及类固醇合成急性调节蛋白缺乏症等罕见病及2岁以下儿童中,其水平较正常成人明显降低,建议其LOQ≤0.02 ng/ml。雄烯二酮检测的子离子与睾酮子离子具有相同的质荷比,因此实验室需验证睾酮和雄烯二酮的色谱分离度。  脱氢表雄酮和硫酸脱氢表雄酮除联合肾上腺皮质激素用于CAH辅助诊断以外,还可用于鉴别诊断肾上腺功能不全或亢进。与性激素联合可用于区分肾上腺功能初现与性早熟,诊断儿童CAH和女性PCOS。儿童脱氢表雄酮水平较低(通常1~8岁儿童2 ng/ml),为了准确诊断儿童肾上腺功能初现、性早熟,建议脱氢表雄酮LOQ≤0.02 ng/ml,硫酸脱氢表雄酮LOQ≤30 ng/ml。  3.雌激素:对低浓度雌激素的准确检测可用于儿童性发育延迟或性早熟的评估,以及绝经后女性乳腺癌发病风险或芳香酶抑制剂治疗效果评估。非衍生化前处理,ESI负离子模式下检测雌二醇、雌酮及雌三醇建议LOQ≤0.01 ng/ml [ 25 ] 。硫酸雌酮在体内的浓度是雌二醇和雌酮的10~50倍,且半衰期较长,因此可用于雌激素水平状况评估。  建议7 实验室应根据临床需求、待测类固醇激素生物学变异及仪器灵敏度水平,建立分析性能满足要求的类固醇激素LC-MS/MS测量程序( 表4 )。  (四)类固醇激素LC-MS/MS测量程序的质量保证  1. 量值溯源:量值溯源是通过一条具有明确不确定度的不间断传递链,使测量结果的量值能够与规定的参考标准(国家或国际计量标准)联系起来 [ 28 ] 。类固醇激素量值的可溯源性是实现实验室间测量结果一致的基础,即同一标本在不同时间和地点采用不同测量程序得到准确测量结果。实验室应参考国际标准化组织(International Organization for Standardization,ISO)17511文件及中国合格评定国家认可委员会关于测量结果的计量溯源性文件要求建立计量溯源链,核心要素包括被测物、参考物质、校准及赋值程序、测量结果验证 [ 28 ] 。  实验室应参考国际临床化学和检验医学联合会/国际纯粹与应用化学联合会文件明确被测物属性,包括分析物特性(如化学形式)、测量基质、单位等 可通过检验医学溯源联合委员会网站或国家标准物质资源共享平台查询参考物质信息,并优先选择具有明确溯源信息的参考物质(如有证参考物质)作为校准品。对无有证参考物质的类固醇激素,实验室应参考CLSI EP30评估校准品的特性、纯度、均一性、稳定性及互通性并制定相关评估程序 [ 29 ] 。  需明确的是,计量溯源链本身并不直接保证测量结果的准确性和一致性,溯源链中每次量值传递都会新增测量不确定度,测量的准确度和不确定度也可能在使用新校准品或仪器大修后改变,实验室应通过检测校准品、参加能力验证计划或实验室间比对,明确测量程序的正确度和精密度。  建议8 实验室应优先选择具有明确溯源信息的类固醇激素参考物质作为校准品,建立计量溯源链。  2. 校准:校准是确定或校正质谱仪检测信号强度与待测物浓度之间的相关性。通常将校准物质加入到经活性炭处理、不含待测类固醇激素的单一来源或混合血清(浆)基质中以制备一系列稀释校准品。类固醇激素LC-MS/MS测量程序性能验证、更换试剂或校准物批号后,需确定每个分析批校准曲线的斜率、截距和相关系数的可接受标准。每个分析批都需进行校准,如果一个分析批包含的样品很多,校准品可在分析批不同位置进样,并监测每个校准品检测值与理论值的偏倚,以明确在大样本量分析中的校准漂移情况。  校准确认是采用与检测临床标本相同的测量程序,分析在报告范围内已知待测物浓度的标本或商品化室间质量评价(external quality assessment,EQA)质控物以确认仪器或检测系统的校准,验证正在使用的校准曲线在检测患者标本时依然有效。建议在变更标准品批次后、确认不同分析批之间的校准有效性时,开展校准确认。校准确认品应与实际患者标本相同或具有相似的性质,并与患者标本进行相同的前处理。与患者标本基质不同的质控品和校准品不可作为校准确认品。  建议9 实验室应对每个分析批进行校准,并监测每个校准品浓度检测值与理论值的偏倚。  3. 室内质量控制:血清(浆)类固醇激素LC-MS/MS测量程序室内质控的难点是获取与患者标本基质相近且稳定性好的质控品。对于多组分分析的血清(浆)类固醇激素LC-MS/MS测量程序,应优先选择生产质控严格、稳定性明确,并同时包含多个待测组分的商品化质控品。使用经处理的血清(浆)、冻干或合成基质质控品的一个明显缺点是,因与患者标本基质不完全相同而产生不同的质谱响应。而未添加分析物的患者血清(浆)质控品可能在评估测量程序性能时比经过处理的质控品更可靠。如通过将类固醇纯溶液标准品添加入基质制备质控品,用于制备质控品的类固醇标准品批号及基质应有别于制备校准品的类固醇标准品及基质。另外,实验室可使用低、中、高浓度的单个或混合患者样本作为质控品。为了保证质控结果解读的一致性,质控样品应大批量制备,分装储存,并明确质控品的储存稳定性及与患者标本基质的一致性。  实验室应自行确定质控物靶值及最大允许不精密度( 表4 ),将质控物放置在每一分析批内和分析批间的不同位置检测,以监测测量程序的批内、批间漂移情况。可参考《临床检验定量测定室内质量控制 WS/T641-2018》 [ 30 ] 建立测量程序的质控方案和失控规则(如1 3 s 、3 2 s 等),以及失控后处理措施,如分析批内质控不合格,应复测标本。  建议10 实验室应优先选择质量可靠、与患者标本基质一致的质控物,确定质控物靶值及最大允许不精密度,建立质控方案、失控规则和处理措施。  4. 分析批设置:血清(浆)类固醇激素LC-MS/MS测量一般分批进行,分析批的长度取决于系统校准稳定性和成本效益。一个典型的分析批应包含校准品、质控品、患者样本、空白样品、校准确认品(用于验证校准曲线的有效性,非必需)。实验室通过校准曲线、质控和校准确认监测每个分析批的有效性。当检测量大于2×96个时,建议每检测批次(96个/批次)都包含校准品、质控品和空白样本。实验室应确定并文件化血清(浆)类固醇激素LC-MS/MS测量程序的分析批长度 [ 31 ] 。  建议11 实验室应根据血清(浆)类固醇激素LC-MS/MS测量系统的稳定性和成本效益确定分析批的长度,并通过校准曲线、质控和校准确认监测每个分析批的有效性。  5. 能力验证/室间质量评价:由于血清(浆)类固醇激素LC-MS/MS检测程序标准化不足,基于分组数据进行测量结果一致性评估的EQA计划价值有限。正确度验证计划可同时监测测量程序的正确度和一致性,实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心正确度验证计划,如卫生健康委临床检验中心组织的类固醇激素正确度验证。正确度验证计划使用经最少程序处理的临床样本,通过参考方法对类固醇激素定值后,用于评估参评实验室LC-MS/MS测量程序的正确度和量值溯源性。对无正确度验证和室间质量评价计划的类固醇激素LC-MS/MS检测项目,实验室需定期(如2次/年)进行实验室间比对,并应优先选择通过ISO15189认可的实验室,以保证实验室间结果的一致性。  建议12 实验室应定期(1~2次/年)参加国家卫生健康委和/或省级临床检验中心组织的类固醇激素检测能力验证计划,无能力验证计划的项目需定期(2次/年)进行实验室间比对。  (五)数据收集及分析  实验室应建立患者样品、空白样品、校准品和质控品的数据处理、峰积分的标准操作程序,并在每一次临床检测中保持一致。数据处理软件应带有审核追踪功能可查询每个样品的数据处理方法。  1. 校准曲线接受原则:以校准品/内标物浓度比值为 X轴、分析物/内标物响应比值为 Y轴,构建校准曲线,将每个患者样品、质控品和空白样品的分析物/内标物响应比值代入校准曲线方程计算被测物浓度。分析患者标本时使用的校准曲线回归方法应与进行测量程序性能验证时使用的方法保持一致,大多数情况采用线性回归。如果校准曲线数据方差不同质(不同浓度点差异不同),推荐使用1/ x或1/ x 2权重回归分析以使低浓度校准点的偏倚在可接受范围。实验室应通过观察每个校准浓度点的相对偏差或总相对偏差选择合适的权重分析方法。  血清(浆)类固醇激素LC-MS/MS测量程序性能验证应明确校准曲线可接受标准:使用校准曲线计算出的校准品浓度与理论浓度之间偏倚可接受范围为85%~115%(LOQ浓度点:80%~120%)。确定校准曲线斜率和截距的可接受标准,计算相关系数、确定其接受范围(通常需0.99),并应用于常规分析的评估。校准曲线的可接受标准应与测量程序性能(如准确度)匹配。  建议13 血清(浆)类固醇激素LC-MS/MS测量校准曲线计算的校准品浓度与理论浓度之间偏倚的可接受范围推荐设置为85%~115%(LOQ浓度点:80%~120%)。  2. 色谱峰积分:应在类固醇激素LC-MS/MS常规检测中通过优化积分参数完成色谱峰的自动积分,以尽量避免操作人员手动积分导致的不一致性。通常使用3倍LOQ浓度类固醇激素样品的色谱峰优化自动积分参数。对色谱峰进行平滑处理可提升积分准确性,仪器背景杂质信号过高或色谱峰采集数据点不足可导致色谱峰不够平滑。但色谱峰过度平滑会导致峰形变宽和丢失细节,如将肩峰平滑进待测物的色谱峰,将影响待测物定量结果准确性。对于采样率较慢的系统,可使用成组平滑方法减小背景杂质信号的影响。经验性色谱峰平滑参数应在所有样品分析中保持一致。  建议14 应尽量通过优化积分参数完成每个待测类固醇激素的色谱峰自动积分,避免手动积分,实际标本检测需统一峰积分、平滑参数。  3. 色谱峰核查:在类固醇激素LC-MS/MS测量程序性能验证时,应建立色谱峰保留时间、背景杂质信号强度、峰形和峰分辨率的核查规则。理想的色谱峰是对称的且基线分离完整。如果一个分析批内有样品色谱峰基线分离不完整、峰形变宽或裂分,排除管路连接不正确的原因,应考虑更换色谱柱。实验室必须核查色谱峰的保留时间以确保待测物分析峰的正确积分,并在标准操作流程中明确保留时间的最大允许漂移范围,分析批间的变化应不超过±2.5%。样品中分析物色谱峰的保留时间应与校准品的保留时间一致。实验室可采用人工核查色谱峰,也可通过在仪器控制软件中设置色谱峰核查参数自动完成。如果使用自动色谱峰核查,实验室需验证自动核查参数及流程的有效性,同时明确需人工介入核查的情况。  建议15 实验室应建立每个待测类固醇激素的色谱峰保留时间、背景杂质信号强度、峰形、峰分辨率的核查规则和允许范围。  4. 内标峰面积核查:通过计算每个类固醇激素LC-MS/MS检测样品内标峰面积与校准品平均峰面积的比值确定每个样品的内标峰面积回收率。内标回收率用于校正分析物提取回收率,每个样品内标峰面积不同是可接受的,但在性能验证时应建立样品之间内标峰面积变动的最大可接受范围。样品内标峰面积回收率出现明显降低提示前处理效率低或存在其他可导致离子抑制的干扰物或存在干扰内标定量离子对的杂质峰。对于内标峰面积比前后样品少2/3或50%的样品,应复检。明显升高的回收率提示内标峰包含干扰峰,也需复检。可通过内标峰面积随进样量变化作图,识别过低或过高的回收率。  建议16 实验室应日常监测每个待测类固醇激素的内标峰面积在标准品、质控物及标本间的波动,建立内标峰面积波动的最大可接受范围。  5. 定性离子对监测:类固醇激素LC-MS/MS常规检测中,一个离子对用于定量分析(定量离子对),另一个离子对用于定性分析(定性离子对)。定性离子对用于分析物定性,在识别样品干扰物中发挥重要作用。定量离子对峰面积与定性离子对峰面积的比值在不同样品间应保持一致,如果发生变化则提示存在干扰物质。如果无法检出定量或定性离子对则提示样品中不存在该分析物或存在干扰物,应进一步分析原因。应同时评估分析物和内标物的定量离子对/定性离子对比值。定性离子对应在整个测量区间有稳定的响应,避免使用脱水分子、脱乙酰基、脱甲基或加合物的子离子设置定性离子对。测量程序性能验证时应建立定量/定性离子对比值差异的可接受范围(如±30%),并在每一个样品检测中予以监测。  建议17 实验室应日常监测每个待测类固醇激素的定量/定性离子对峰面积比值在标准品、质控物及标本间的波动,并设置最大可接受范围。  03 血清(浆)类固醇激素LC-MS/MS检验后质量保证  1.数据存储:实验室应保存血清(浆)类固醇激素LC-MS/MS分析产生的完整原始数据和处理数据,包括测量程序使用的色谱和质谱参数设置、每个离子对的色谱和质谱数据等,必要时使用独立系统备份数据。  2.参考范围:由于抗原抗体非特异性反应及与LC-MS/MS测量结果的偏差,采用免疫法建立的类固醇激素参考范围一般不适用于LC-MS/MS测量程序,然而我国目前尚未建立公认统一的类固醇激素LC-MS/MS检测参考范围,实验室可参考CLSI EP28针对目标检测人群验证国外权威机构建立的参考范围 [ 32 ] ,不同类固醇激素需按性别、年龄和/或月经周期分组,例如绝经前妇女的雌二醇、雌酮和雌三醇的浓度因月经周期或妊娠阶段的不同而有较大差异。  建议18 实验室可针对目标检测人群验证国外权威机构建立的类固醇激素LC-MS/MS参考范围,推荐建立中国人群的参考范围。  3.结果解读及报告:肾上腺皮质激素代谢终产物醛固酮和皮质醇浓度增高分别和醛固酮增多症和皮质醇增多症(库欣综合征)密切相关 17α-羟孕烯醇酮、17α-羟孕酮及其雄激素代谢产物(如脱氢表雄酮、雄烯二酮)水平的异常往往与女性PCOS、高雄激素血症及性发育异常等内分泌疾病相关 绝经后女性雌二醇检测是乳腺癌发病风险评估的关键 对女性和青春期前儿童体内睾酮的检测是鉴别儿童性早熟、女性高雄激素血症和PCOS的关键 对峰谷游离皮质醇的准确检测可有效辅助诊断库欣综合征 对17α-羟孕酮、雄烯二酮、孕烯醇酮、孕酮、17α-羟孕烯醇酮、11-脱氧皮质酮和18-羟皮质酮的准确检测是确定CAH亚型的重要依据。此外,血清(浆)类固醇激素检测结果的解读应基于目标患者或人群的基本信息,如性别、年龄、生理期、昼夜节律及立卧位等,对结果解读具有重要参考意义。因此,实验室应为类固醇激素质谱检测的目标人群建立个性化的结果解读规则。为了报告的准确性,类固醇激素结果的解读还应结合类固醇代谢通路和临床初步诊断。  建议19 实验室应结合患者临床信息、方法性能、临床预期用途、类固醇代谢通路解读和报告血清(浆)类固醇激素LC-MS/MS检测结果。  血清(浆)类固醇激素LC-MS/MS检测在精确评估类固醇激素水平、诊断类固醇激素失衡相关疾病(如CAH、肾上腺功能不全、高雄激素血症等)、监测治疗效果中发挥着越来越重要的作用。本共识对血清(浆)类固醇激素LC-MS/MS检测全流程进行了详细说明,包括标本采集、保存、运输及前处理的检验前过程,LC-MS/MS定量分析方法、分析性能指标、质量保证、数据收集及分析的检验中过程,以及数据存储、参考范围、结果解读及报告的检验后过程,并提出19项针对性建议供实验室参考。本共识旨在规范我国血清(浆)类固醇激素LC-MS/MS检测程序,提升其检测质量和结果一致性,推动其临床应用。  执笔人:李霖(四川省医学科学院 四川省人民医院临床医学检验中心),蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),郭玮(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科)  专家组成员(以姓氏拼音排序):曹正(首都医科大学附属北京妇产医院检验科),戴锦娜(中国医科大学附属第一医院检验科),俸家富(绵阳市中心医院检验科),郭启雷(山东英盛生物技术有限公司),郭玮(复旦大学附属中山医院检验科),郭晓兰(川北医学院附属医院检验科),黄庆[陆军军医大学附属大坪医院(陆军特色医学中心)检验科],蒋黎(四川省医学科学院 四川省人民医院临床医学检验中心),蒋廷旺(常熟市第二人民医院转化医学科),柯江维(江西省儿童医院医学检验科),李霖(四川省医学科学院 四川省人民医院临床医学检验中心),李卿(上海市临床检验中心参考测量实验室),李水军(上海市徐汇区中心医院中心实验室),李艳妍(吉林大学第一医院检验科),廖璞(重庆市人民医院检验科),刘华芬(杭州凯莱谱精准医疗检测技术有限公司),刘靳波(西南医科大学附属医院医学检验科),卢丽萍(中国医科大学附属盛京医院检验科),闵迅(遵义医科大学附属医院医学检验科),倪君君(和合诊断集团研究院),聂滨(宜宾市第二人民医院检验科),潘柏申(复旦大学附属中山医院检验科),邱玲(中国医学科学院 北京协和医院检验科),王成彬(解放军总医院检验科),王书奎(南京医科大学附属南京医院医学检验科),夏勇(广州医科大学附属第三医院检验科),徐元宏(安徽医科大学第一附属医院检验科),张传宝(国家卫生健康委临床检验中心生化室),张华(贵州省人民医院检验科),赵蓓蓓(金域医学临床质谱检测中心)
  • 生态环境部《土壤和沉积物中甲基汞和乙基汞测定》 (征求意见稿) 标准解读
    生态环境部办公厅2020年12月31日发布《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》 (环办标征函〔2020〕62号) ,我国国内第一个土壤和沉积物中甲基汞和乙基汞的测定方法标准公开征求意见。 该标准的主要起草单位是由中国环境监测总站和江苏省环境监测中心,验证单位包括:山东省生态环境监测中心、广西壮族自治区生态环境监测中心、四川省生态环境监测总站、湖南省长沙生态环境监测中心、贵阳市环境监测中心站和合肥市环境监测中心站等七家单位。为什么需要对土壤和沉积物中的甲基汞和乙基汞进行测定呢?土壤中的汞主要包括金属汞、无机化合态汞和有机化合态汞。有机化合态汞以有机汞(烷基汞)和有机络合汞普遍存在。其中烷基汞主要包括甲基汞和乙基汞;甲基汞是有机汞中毒性最大的一种形态,甲基汞很容易穿过血脑屏障,对人神经系统进行侵害,尤其对妇女和儿童有很大的影响;土壤中的甲基汞易被植物吸收,通过食物链在生物体内富集,从而暴露给人体;而土壤中的腐殖质与汞结合形成的络合物不易被植物吸收。另外,乙基汞也属于亲脂性化合物,中毒后可引起急性肠胃炎以及造成严重的肾脏损伤等。土壤和沉积物中的甲基汞和乙基汞国内是否有相关限值控制标准? 2018年6月,生态环境部与国家市场监督管理总局联合发布了《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)国家环境质量标准,该标准于2018年8月1日正式实施,标准中明确了不同类型建设用地中甲基汞的筛选值和管制值,其中甲基汞在第一类用地的筛选值为5mg/kg。 目前国内暂无涉及土壤和沉积物中乙基汞的限值控制标准。《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》内容简介原理:土壤或沉积物样品经碱液提取后,提取液中的甲基汞和乙基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,经吹扫捕集、热脱附和气相色谱分离后,再高温裂解为汞蒸气,用冷原子荧光光谱仪检测。根据保留时间定性,外标法定量。 方法检出限和定量下限:当取样量为0.5 g 时,甲基汞和乙基汞的方法检出限均为0.2 μg/kg,测定下限均为0.8 μg/kg 前处理过程:分析过程:标准曲线:8 个40 ml 棕色进样瓶,分别加入实验用水约35 ml,再分别加入0 pg,2.00 pg,5.00 pg,10 pg,50 pg,100 pg,500 pg,1500 pg的甲基汞和乙基汞混合标准溶液,,然后加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),迅速加入实验用水至瓶满,不留空隙,盖紧盖子静置10 min ~15 min。实际样品:40 ml 进样瓶中加入实验用水约35 ml 至瓶颈处,取试样150 μl 至进样瓶中,依次加入300 μl 乙酸-乙酸钠缓冲溶液及50 μl 四丙基硼化钠溶液(如果只进行甲基汞的分析,可加入四乙基硼酸钠溶液进行衍生化反应),最后迅速加入实验用水至瓶满,盖紧盖子静置10 min ~15 min 上机分析:标准内部验证和外部验证均采用美国知名仪器厂家Brooks Rand公司生产的MERX全自动烷基汞分析系统:MERX全自动烷基汞分析系统异位吹扫捕集,样品满瓶式进样,衍生化效率和烷基汞分析结果不受环境空气的影响三通道Tenax 捕集阱交替捕集,效率高液体传感器,水汽进入捕集阱会报警精密流量控制,气流波动小,避免因吹扫气流量过大造成大量水汽进入吸附阱或因流量过小造成的吸附不完全甲基汞检出限可达0.002ng/L;乙基汞检出限可达0.005ng/L宽线性范围:甲基汞0.0125-50ng/L,乙基汞0.025-50ng/L残留低:高浓度样品运行后仪器残留低于2‰重复性好,数据结果可靠国内销售数量超过300家,用户的普遍选择MERX全自动烷基汞分析系统同时还是《水质烷基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》(HJ 977-2018)的验证仪器。该仪器数据质量稳定可靠,在国内饱受好评。谱图:质量控制:空白试验:每20 个样品或每批次样品(<20 个/批)应至少做一个空白试样,空白试样的测定值应低于方法检出限(甲基汞和乙基汞的方法检出限均为0.2 μg/kg)校准:建议每次分析前均应建立工作曲线,若采用线性回归法,相关系数≥0.995;若采用响应因子法,校准系数RSD≤15%(工作曲线绘制后,每批样品测定时需要测定工作曲线中间浓度点的标准溶液,其相对误差值应该控制在±20%以内。否则,需重新绘制工作曲线)平行样:每20 个或每批次样品(<20 个/批)应至少测定一个平行双样,测定结果的相对偏差应≤30%基体加标:每20 个样品或每批次样品(<20 个/批)应至少测定一个基体加标样品或一个土壤或沉积物的有证标准物质。甲基汞加标回收率控制在75%~130%之间;乙基汞加标回收率控制在70%~120%之间标准物质测定:测定甲基汞有证标准物质的允许相对误差在﹣40%~+10%之间展望:本标准的检出限、精密度等性能指标能满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)的相应要求,相信该标准正式出台后,会使涉及土壤和沉积物中甲基汞和乙基汞分析检测的单位有据可依,并为相关分析检测人员提供新的思路和手段。 参考文献:1. 关于征求《土壤和沉积物 甲基汞和乙基汞的测定吹扫捕集/气相色谱-冷原子荧光光谱法》国家环境保护标准意见的通知 (链接:http://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202012/t20201231_815730.html);2. 《土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法(征求意见稿)》及编制说明;3. 《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600—2018)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制