当前位置: 仪器信息网 > 行业主题 > >

监测作物叶面积指数

仪器信息网监测作物叶面积指数专题为您整合监测作物叶面积指数相关的最新文章,在监测作物叶面积指数专题,您不仅可以免费浏览监测作物叶面积指数的资讯, 同时您还可以浏览监测作物叶面积指数的相关资料、解决方案,参与社区监测作物叶面积指数话题讨论。

监测作物叶面积指数相关的资讯

  • 基于智能终端叶面积指数快速测量系统—LAISmart
    table width="626" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="124" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="502" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"基于智能终端叶面积指数快速测量系统—LAISmart/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="124" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="502" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京师范大学/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="124" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="100" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"屈永华/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="146" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="204" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"qyh@bnu.edu.cn/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="124" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="502" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="124" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="502" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 √合作开发 □其他/span/p/td/trtr style=" height:207px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="626" height="207"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/9c3d5c7f-dc46-495c-af6c-efc6463a0779.jpg" title="6.jpg" style="width: 400px height: 121px " width="400" vspace="0" hspace="0" height="121" border="0"//pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/b390b317-9db5-43cd-b361-c32ce364aa0d.jpg" title="7.jpg" style="width: 250px height: 379px " width="250" vspace="0" hspace="0" height="379" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"LAISmart是一款基于智能手机实现植被参数测量与科学数据远程共享的设备。LAISmart集成了GPS、光照度、姿态传感器,同步获取测量现场的图像、位置与定量分析信息,可以实现植被覆盖度、郁密度、叶面积指数的自动测量,具有体积小便携操作的特点。测量结果可以通过云服务器实现数据自动网络存储与远程共享。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family:宋体"主要技术指标:/span/strong/pp/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/a6ce265d-b466-4598-b42f-ab31bd2c4e7b.jpg" title="2018-03-22_143547.jpg"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"便携:适应个人智能终端的快速发展,提供便携的植被参数测量设备/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"适用性广:多角度拍摄,向上可拍郁密或高大冠层;向下可拍稀疏或低矮冠层;对测量环境和光环境无要求。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"云存储:与云存储无缝对接,将野外测量数据实时传输到网络。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"测量连续性:只要设计好样方点便可进行连续测量。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="626" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"智慧农业、农业遥感、生态监测/span/p/td/tr/tbody/tablepbr//p
  • 新品首发|叶面积测定仪采用微电脑技术,LCD大液晶显示技术
    叶面积测定仪是一种用于测量植物叶片面积的仪器,它能够快速、准确地测定叶片的面积,帮助科学家和研究人员了解植物的生长状况和光合作用能力。 叶面积测定仪通常由传感器和显示器等组成,可以测量不同形状和大小的叶片面积。使用时,将叶片放在传感器上,传感器会感应到叶片的形状和大小,并将数据传输到显示器上,从而得到叶片的面积。 产品链接→https://www.instrument.com.cn/netshow/SH104275/C523091.htm叶面积测定仪的作用主要有以下几点: 了解植物生长状况:通过测量叶片面积,可以了解植物的生长状况和发育情况,帮助科学家和研究人员判断植物的健康状况和生长环境。 评估光合作用能力:叶片是植物进行光合作用的主要器官,通过测量叶片面积可以评估植物的光合作用能力,进而了解植物的生长情况和产量。 优化作物管理:通过测量不同品种、不同生长阶段的叶片面积,可以帮助科学家和研究人员优化作物管理,提高作物的产量和品质。 总之,叶面积测定仪是一种重要的植物生理生化分析仪器,广泛应用于植物科学、农学、林学等领域的研究与生产。
  • 万深发布万深LA-S系列手机拍照款叶面积分析仪新品
    万深LA-S系列手机拍照款叶面积仪一、用途:快速便捷地分析测量植物叶面积等二、技术指标:配带移动电源辅助背光源板,可野外背光照明4小时。可拍照与分析一键化操作,可分析多片叶的叶面积、周长、长宽比、长、宽、叶孔洞、形状系数等参数,并标记叶片边缘以便核对正确性。标配的极限测量面积380*265mm(特配的极限测量面积520*225mm),自动标定和自动图像校正。还可自动测定非相碰的稻谷、小麦、瓜子等普通种子的各粒粒长、粒宽、投影粒面积。可分析小至1mm2的叶片,分析误差<0.5%、测量分析时间<5秒,自动独立标记各叶片并可保存图,分析结果可输出。三、供货清单:移动电源辅助背光灯板(硬件质保1年)、手机APP软件下载使用二维码。在万深官网用手机浏览器扫二维码下载软件,可进入试用或使用订购界面。注:需自备能拍照的智能手机应用万深分析仪器 发表的中外学术论文已逾506篇创新点:将叶面积分析计算问题,用智能手机的拍照计算来实现,极大地提高了使用方便性。万深LA-S系列手机拍照款叶面积分析仪
  • 山西农业大学农业基因资源研究中心643.00万元采购叶面积仪,液相色谱仪,纤维测定仪,原子荧光光谱,...
    详细信息 山西农业大学农业基因资源研究中心公开招标山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置的采购公告 山西省-晋中市 状态:公告 更新时间: 2023-10-14 招标文件: 附件1 项目概况 山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置招标项目的潜在投标人应在政采云平台线上获取招标文件,并于2023年11月07日 09:00(北京时间)前递交投标文件。 一、项目基本情况项目编号:JDZB-GZ-HW-2023003/1499002023AGK02632项目名称:山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置预算金额:陆佰肆拾叁万元整(¥6430000.00)最高限价:陆佰肆拾叁万元整(¥6430000.00)采购需求:第1包:预算金额:贰佰叁拾柒万元整(¥2370000.00) 序号 货物名称 数量 单位 备注 1 超高效液相色谱-三重串联四极杆质谱联用仪 1 台 第2包:预算金额:贰佰贰拾叁万元整(¥2230000.00) 序号 货物名称 数量 单位 备注 1 全自动膳食纤维测定仪 1 台 2 粘度分析仪 1 台 3 氨基酸分析仪 1 台 4 全自动原子荧光光度计 1 台 第3包:预算金额:壹佰贰拾壹万元整(¥1210000.00) 序号 货物名称 数量 单位 备注 1 消化炉 1 台 2 重金属消解仪 1 台 3 全自动滴定仪 1 台 4 全自动脂肪酸值测定仪 1 台 5 种子和针叶图像分析系统 1 套 6 便携式玉米果穗穗部考种系统 1 套 7 植物光合生理及环境监测系统 1 台 8 根系分析系统 1 套 9 作物株高测量仪 1 台 10 便携式植物抗倒伏测定仪 1 台 11 作物夹角茎粗测量仪 1 台 12 麦穗形态测量仪 1 台 13 便携式叶面积仪 1 台 14 手持式叶绿素荧光仪 1 台 第4包:预算金额:陆拾贰万元整(¥620000.00) 序号 货物名称 数量 单位 备注 1 物联网数据获取与处理系统 1 套 合同履行期限:自合同签订之日起60日历天内完成运输、安装、调试、培训,达到验收标准。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:无。三、获取招标文件1.时间:2023年10月14日至2023年10月20日,每天00:00至23:59(北京时间,法定节假日除外)2.地点:通过山西省政府采购网-政府采购云平台获取电子招标文件。3.方式:拟参与公开招标的投标人(供应商),在报名期限内,应通过山西省政府采购网上公开信息系统的注册账号(免费注册),登录山西省政府采购网-政府采购云平台免费获取电子招标文件。未报名将导致其不能下载采购文件且投标文件被拒收。凡有意参加投标的投标人(供应商),请按照以下步骤免费获取招标文件:(1)进入“山西政府采购平台-政府采购云平台应用中心”“项目采购”“获取采购文件”,在【待申请】标签页下,找到需要获取采购文件的项目,点击[申请获取采购文件]。(2)填写供应商信息,勾选意向标项,完成后点击[提交]。(3)弹窗提示“提交成功”后,在【获取采购文件-已申请】标签页显示“已获取”状态。(4)请于招标文件获取截止时间前(北京时间、下同)进入山西政府采购平台-政府采购云平台获取招标文件。四、提交投标文件截止时间、开标时间和地点时间:2023年11月7日09点00分(北京时间)地点:电子投标文件上传至政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)备注:1、投标人在招标文件规定的开标时间后使用数字证书(CA)对已递交的电子投标文件进行远程解密。2、纸质投标文件远程解密完成后于当日送达至山西省太原市小店区龙城大街盛锦国际A座13层。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、供应商应在投标文件递交截止时间前按照山西省政府采购平台设定的操作流程将电子投标文件1份上传至山西省政府采购采购平台系统。2、电子投标文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成投标文件上传的,视为无效报价;投标人自行承担责任。 3、针对本项目的质疑需一次性提出,多次提出将不予受理。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息名 称:山西农业大学农业基因资源研究中心地址:山西省太原市龙城北街161号 联系方式:张先生0351-76392332.采购代理机构信息名 称:山西君度宏信项目管理有限公司 地 址:山西省太原市小店区龙城大街盛锦国际A座13层联系方式:杨美花、周洋、韩爱清 0351-7221787、0351-3693369 邮箱:sxjdhxkj@163.com3.项目联系方式项目联系人:张先生电 话:0351-7639233备注:参加本次采购活动的供应商须在山西省政府采购网进行供应商注册并完善信息成为正式供应商。附件信息: 643万--招标文件--山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备项目(定稿).docx472.9K × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:叶面积仪,液相色谱仪,纤维测定仪,原子荧光光谱,分子荧光光谱,氨基酸分析仪 开标时间:2023-11-07 09:00 预算金额:643.00万元 采购单位:山西农业大学农业基因资源研究中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:山西君度宏信项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 山西农业大学农业基因资源研究中心公开招标山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置的采购公告 山西省-晋中市 状态:公告 更新时间: 2023-10-14 招标文件: 附件1 项目概况 山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置招标项目的潜在投标人应在政采云平台线上获取招标文件,并于2023年11月07日 09:00(北京时间)前递交投标文件。 一、项目基本情况项目编号:JDZB-GZ-HW-2023003/1499002023AGK02632项目名称:山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备购置预算金额:陆佰肆拾叁万元整(¥6430000.00)最高限价:陆佰肆拾叁万元整(¥6430000.00)采购需求:第1包:预算金额:贰佰叁拾柒万元整(¥2370000.00) 序号 货物名称 数量 单位 备注 1 超高效液相色谱-三重串联四极杆质谱联用仪 1 台 第2包:预算金额:贰佰贰拾叁万元整(¥2230000.00) 序号 货物名称 数量 单位 备注 1 全自动膳食纤维测定仪 1 台 2 粘度分析仪 1 台 3 氨基酸分析仪 1 台 4 全自动原子荧光光度计 1 台 第3包:预算金额:壹佰贰拾壹万元整(¥1210000.00) 序号 货物名称 数量 单位 备注 1 消化炉 1 台 2 重金属消解仪 1 台 3 全自动滴定仪 1 台 4 全自动脂肪酸值测定仪 1 台 5 种子和针叶图像分析系统 1 套 6 便携式玉米果穗穗部考种系统 1 套 7 植物光合生理及环境监测系统 1 台 8 根系分析系统 1 套 9 作物株高测量仪 1 台 10 便携式植物抗倒伏测定仪 1 台 11 作物夹角茎粗测量仪 1 台 12 麦穗形态测量仪 1 台 13 便携式叶面积仪 1 台 14 手持式叶绿素荧光仪 1 台 第4包:预算金额:陆拾贰万元整(¥620000.00) 序号 货物名称 数量 单位 备注 1 物联网数据获取与处理系统 1 套 合同履行期限:自合同签订之日起60日历天内完成运输、安装、调试、培训,达到验收标准。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无;3.本项目的特定资格要求:无。三、获取招标文件1.时间:2023年10月14日至2023年10月20日,每天00:00至23:59(北京时间,法定节假日除外)2.地点:通过山西省政府采购网-政府采购云平台获取电子招标文件。3.方式:拟参与公开招标的投标人(供应商),在报名期限内,应通过山西省政府采购网上公开信息系统的注册账号(免费注册),登录山西省政府采购网-政府采购云平台免费获取电子招标文件。未报名将导致其不能下载采购文件且投标文件被拒收。凡有意参加投标的投标人(供应商),请按照以下步骤免费获取招标文件:(1)进入“山西政府采购平台-政府采购云平台应用中心”“项目采购”“获取采购文件”,在【待申请】标签页下,找到需要获取采购文件的项目,点击[申请获取采购文件]。(2)填写供应商信息,勾选意向标项,完成后点击[提交]。(3)弹窗提示“提交成功”后,在【获取采购文件-已申请】标签页显示“已获取”状态。(4)请于招标文件获取截止时间前(北京时间、下同)进入山西政府采购平台-政府采购云平台获取招标文件。四、提交投标文件截止时间、开标时间和地点时间:2023年11月7日09点00分(北京时间)地点:电子投标文件上传至政采云平台投标客户端(http://www.ccgp-shanxi.gov.cn/sxCategory15/sxCategory202/sxCategory20201/327.html)备注:1、投标人在招标文件规定的开标时间后使用数字证书(CA)对已递交的电子投标文件进行远程解密。2、纸质投标文件远程解密完成后于当日送达至山西省太原市小店区龙城大街盛锦国际A座13层。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、供应商应在投标文件递交截止时间前按照山西省政府采购平台设定的操作流程将电子投标文件1份上传至山西省政府采购采购平台系统。2、电子投标文件须使用平台提供的投标客户端编制完成,开启时间前完成递交(上传),开启时间前未完成投标文件上传的,视为无效报价;投标人自行承担责任。 3、针对本项目的质疑需一次性提出,多次提出将不予受理。七、对本次招标提出询问,请按以下方式联系。 1.采购人信息名 称:山西农业大学农业基因资源研究中心地址:山西省太原市龙城北街161号 联系方式:张先生0351-76392332.采购代理机构信息名 称:山西君度宏信项目管理有限公司 地 址:山西省太原市小店区龙城大街盛锦国际A座13层联系方式:杨美花、周洋、韩爱清 0351-7221787、0351-3693369 邮箱:sxjdhxkj@163.com3.项目联系方式项目联系人:张先生电 话:0351-7639233备注:参加本次采购活动的供应商须在山西省政府采购网进行供应商注册并完善信息成为正式供应商。附件信息: 643万--招标文件--山西农业大学国家特色杂粮作物种质资源中期库建设项目仪器设备项目(定稿).docx472.9K
  • 全方位植物叶片光学监测和评估系统在黑龙江农垦科学院投入运行
    “万物生长靠太阳”。作物产量的高低归根结底取决于叶片对太阳辐射,特别是光合有效辐射的利用。全面监测和评估高等植物对光的吸收、利用、反射和传播,既能从整体上了解植物对光合有效辐射的吸收情况和光合作用的,又能具体分析叶绿体对光能的转化途径及电子传递状况,并且能够衡量作物冠层的结构变化。 由北京易科泰生态技术有限公司提供的全方位植物叶片光学监测和评估系统目前在黑龙江农垦科学院正式安装并组织了培训学习。该系统由开放式叶绿素荧光成像系统FC800-O、手持式叶绿素荧光仪FP100、全自动便携式光合仪LCPro-SD、植物冠层分析系统SunScan、AM350便携式叶面积仪组成,能够对黑龙江农垦科学院的主要研究作物水稻、玉米、大豆的形态及光合生理特性做全方位、多角度的监测和评估。 设备的安装、演示、培训和上手操作在6月末连阴雨天气下的哈尔滨进行。北京易科泰生态技术有限公司的技术工程师为参加培训的师生进行了详细的讲解和演示。理论铺垫和口头讲解仪器的使用&应用开放式叶绿素荧光成像系统FC800-O演示Rfd叶绿素荧光衰减率成像 PAR吸收率成像手持式叶绿素荧光仪FP100讲解FluorPen应用案例:番茄的臭氧处理在不同时期的OJIP快速荧光动力学曲线变化(Thwe and Kasemsap, 2014)全自动便携式光合仪LCPro-SD操作演示应用案例:调亏灌溉对柑橘叶片光合速率、气孔导度及叶绿素荧光强度的影响(Zarco-Tejada et al., 2016;LCPro-SD &FP100测定)ET:100%满足水分需求;RDI 1 :调亏灌溉,水分供给降低到37%;RDI 2:调亏灌溉,水分供给降低到50%。箭头指向水分胁迫开始施加的日期。AM350便携式叶面积仪操作演示植物冠层分析系统SunScan演示讲解Soilbox-343土壤碳通量观测系统讲解
  • 万深发布万深PhenoGA-F田间作物表型分析测量仪新品
    万深PhenoGA-F田间作物表型分析测量仪Instrument for Measuring plant phenotype — Model PhenoGA-F一、概述:基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。故迫切需要高效、准确的万深PhenoGA-F田间作物表型分析测量仪来做可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标:1、万深PhenoGA-F田间作物表型分析测量仪是顶视版本,在明亮的田间环境下,由顶视的超大变焦镜头自动对焦2410万像素的佳能EOS单反相机直联电脑获取植物顶视的RGB彩色图,并做自动分析。2、可获得植物在不同生长阶段的表型数据有:投影叶面积及其差异值、投影叶片长和卷曲度、叶片数、叶冠层的构型数据、精准的茎叶夹角,叶冠层随时间改变的相对生长速率、叶色平均值及其对表征的贡献评估等。可用其所配的自动测高仪来自动测量和记录作物的植株高。具有分析特性如下:1)常规分析:拍摄分析范围120cm*80cm,可变焦调小视野至30cm*20cm,适合对各类作物在60cm高度内时的表型分析。分析投影外接圆直径及面积,外周长,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株高(由便携式植株自动测高仪实现,测量误差≤±0.25cm)、宽,最小外接矩形长、宽,植株紧实度。2)顶视的表型分析:叶冠直径、叶冠层面积、叶冠层占空比、叶片分布紧密度等(冠层尺寸的测量误差≤±0.2cm),叶片数(自动计数+鼠标个别修正),叶片投影面积及其动态变化,叶片颜色,果实外观品质、花形和花色等,并可编辑。3)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正分析特性(可按英国皇家园林协会RHS比色卡2015版来自动比色)。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。4)生长分析:作物叶冠绝对生长、相对生长曲线,相对生长趋势。5)批量化精准测量茎叶夹角或分支角(真实夹角重复测量误差≤±1.0°)。6)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性,各项分析数据和标记图片可导出。自动分析(约1个样品 /分钟)+鼠标指示测量或修正。三、标配供货清单:1、折叠式可拖带的田间表型拍摄架(重12.8kg) 1套2、夹持式电脑放置平台(重2.2kg) 1套3、自动对焦2410万像素的佳能EOS单反相机 1套4、PhenoGA-F田间作物表型分析测量仪软件U盘 1个5、PhenoGA-F田间作物表型分析测量仪软件锁 1个6、叶色色彩矫正板+尺寸自动标定板 各1块7、标定板升降支撑架 1付8、手持式条形码阅读器 1付9、分枝角测量用掌式便携背光板 1付10、激光测距仪1台/测距仪夹1付/手机固定夹1付/碳纤维2米伸缩杆1付/横向标示杆及螺钉各1个/反射垫1张(送内六角扳手1个/便携黑筒1个/卷尺1把,需手机扫测高仪的二维码下载APP登入使用)11、强光遮挡用塑料布 1张12、品牌笔记本电脑(酷睿i5 九代以上CPU/8G内存/256G硬盘/14”彩显/无线网卡,Windows 完整专业版) 1台 选配:1、可选配真正3D成像的手持式扫描仪,以获得植物真3D模型。2、可选配侧视拍摄组件,以做骨架和株形分析:骨架长度,分叉数(分枝数、分节数),茎秆分节数,分节长、粗等。3、可选配红外热成像相机(分辨率 384*288像素,测温范围-20-150℃,测温精度为最大测温范围绝对值的±2%),以测定叶温和叶温分布。4、可选配近红外成像相机(NIR),以定性分析植物叶片水分分布情况。5、可选配RootGA根系动态生长监测分析仪,以分析植株根系的胁迫响应等。创新点:PhenoGA-F田间作物表型分析测量仪是在田间做顶视分析的版本,由顶视的超大变焦镜头自动对焦2410万像素的佳能EOS单反相机直联电脑来获取作物顶视的彩色图,进行自动分析。可获得植物在不同生长阶段的表型数据有:投影叶面积及其差异值、投影叶片长和卷曲度、叶片数、叶冠层的构型数据、精准的茎叶夹角,叶冠层随时间改变的相对生长速率、叶色平均值及其对表征的贡献评估等。可用其所配的自动测高仪来自动测量和记录作物的植株高。万深PhenoGA-F田间作物表型分析测量仪
  • 泽泉科技应邀参加作物生长模型高级研讨会2016
    2016年10月27日-29日,上海泽泉科技股份有限公司应邀赴南京参加了“作物生长模型高级研讨会2016”。此次研讨会由江苏省农业科学院农业经济与信息研究所/数字农业工程技术研究中心、中国农业大学资源与环境学院/系统模拟与软件技术实验室、西北农林科技大学水利与建筑工程学院共同主办。会议以作物模型与智慧农业为主题,特邀国内外知名作物模型专家作学术报告,旨在交流和讨论国内外模型建立与发展的经验。 来自南京农业大学、中国农业科学院、中国科学院地理科学与资源研究所、扬州大学、西北农林科技大学等40多家高校和科研单位的百余位专家学者参加了此次研讨会。与会专家围绕水稻、棉花、小麦、玉米、油菜等我国主要的粮食作物和经济作物模型构建及应用进行了深入讨论。模型对作物产量和品质的预测一直是建模工作讨论的热点,近几年来,模型在气候变化对作物的影响等方面的应用备受关注。 会议期间,泽泉科技展示的样机吸引了广大参会人员的眼球,技术人员演示了CI-110数字植物冠层图像分析仪、CI-203手持式激光叶面积仪、CI-690 ROOTSNAP根系分析系统等科研仪器设备的使用操作过程,并与我们的老用户和感兴趣的科研工作者交流了最新研究技术及相关设备的使用技巧和心得等。科研人员现场分享了高通量植物表型-基因型-育种平台AgriPheno的建设及科研服务内容和流程,与会人员反响热烈。泽泉科技的样机、海报以及工作人员的专业素养得到与会人员的一致好评,会议期间收到多位客户的详细咨询和留言。 本次参会得到了会议主办方和与会专家的鼎力支持,上海泽泉科技股份有限公司在此表示衷心的感谢。
  • 国家级空基站网遥感真实性检验数据集发布
    从中国科学院空天信息创新研究院(以下简称“空天院”)获悉,国家民用空间基础设施真实性检验场网(以下简称“空基站网”)2023年年会在南京开幕,会上发布了多谱段、跨平台的遥感真实性检验数据集,标志着国家级真实性检验场网运行服务体系整体成型。遥感真实性检验是评价遥感产品质量的重要途径,是从遥感数据到遥感信息转换的关键技术环节,对于提高对地观测技术定量化水平具有重要意义。本次发布的遥感真实性检验数据集包括三部分:空基光学卫星全年时序检验数据集、空基合成孔径雷达(SAR)卫星检验数据集和三江平原碳源汇综合实验场多周期检验数据集。这些数据集将在自然资源、生态环境、农业农村、防灾减灾等国家重大领域中发挥更大的作用。其中,空基光学卫星全年时序检验数据集包括全国叶面积指数网络自动观测数据集、全国典型生态系统土壤水分自动观测数据集、多种气溶胶类型大气自动观测数据集,以及典型地物类型反射率数据集和典型湖泊水体数据集。空基SAR卫星检验数据集包括基于南北场网的SAR卫星辐射几何产品检验数据集和5分钟更新频次的全国重点区域厘米级对流层大气延迟监测数据集,夯实了国产SAR卫星定量应用的基础。三江平原碳源汇综合实验场多周期检验数据集可有效助力黑土地土壤、作物、生态、耕地质量等全方面监测,为黑土区时空精准多要素立体监测技术体系的构建、现代农业分区施策技术与分类发展模式研究等提供强有力的数据支持。
  • Wiris Agro机载作物水分胁迫指数成像仪发布
    Workswell与欧洲领先的生命科学研究机构捷克布拉格生命科学大学作物研究所经过多年合作,开发出了世界首款作物水分胁迫指数成像仪WIRIS Agro,它是第一款可用于农业领域精确绘制大面积水分胁迫指数图(CWSI)的机载成像设备。WIRIS Agro成像仪提供了LWIR波段传感器和10倍光学变焦的全高清相机 (1920x1080像素FHD),结合配套的CWSI分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。水分胁迫(water stress)是植物水分散失超过水分吸收,使含水量下降,植物细胞膨压降低,正常代谢失调的现象。土壤水分亏缺是作物水分胁迫最主要的诱因,重度水分亏缺会严重影响作物生长发育从而最终影响作物产量。因此,诊断作物水分亏缺、寻求适度水分胁迫阈值以谋求最高的水分利用效率一直是农田节水灌溉和精准农业研究中的热点问题。目前,作物水分亏缺指标使用最广泛的是Idso等于1981 年提出的作物水分胁迫指数(Crop Water Stress Index ,CWSI),CWSI是基于冠层温度和空气湿度关系,同时综合考虑了植物、土壤、大气等各种作用因素的一项综合性水分胁迫指标,其中冠层温度是可以通过遥感手段获取的基本信息之一。因此,随着目前低空轻小型无人机的大量使用,通过无人机平台高速获取大面积的植物群体CWSI图像数据终于成为可能。作物水分胁迫指数成像仪WIRIS Agro可搭载于多种类型无人机平台(如安洲科技生产的A660多旋翼无人机、AVF-1000/2000固定翼无人机等)快速精准地获取大面积植被的水分胁迫值、热红外图像数据以及高清RGB图,可用于作物产量制图、优化灌溉或控制水分利用管理补救措施等方面,是现代农田节水灌溉、精准农业、遗传育种和植物表型研究的无人机测量利器。通过CWSI图像优化马铃薯田灌溉条件如上图:基于土壤传感器数据的马铃薯田优化灌溉作业,右侧WIRIS Agro成像仪的图像所示,一些区域灌溉饱和,而其他区域灌溉不足,因此需要根据获取的CWSI图像,重新更好地定位土壤传感器。WIRIS Agro机载作物水分胁迫指数成像仪的主要用途及优点:① 状态监测评估,监控水分胁迫:使用彩色CWSI地图表述作物的水分利用问题,并可结合NDVI植被指数对作物的生长状况和产量进行研究评估;② 管理灌溉管理:灌溉系统优化,优化土壤传感器的位置和分布;③ 植物表型:WIRIS Agro成像仪可获取不同的植物物种对水分状况的不同反应,为作物遗传育种和植物表型研究提供基础数据;④ 丰富的接口:WIRIS Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。安洲科技可为用户提供多种机载设备飞行测试服务,欢迎联络!
  • 智慧农业团队在多尺度稻叶瘟敏感光谱指数构建及遥感监测方面取得重要进展
    近日,农学院智慧农业团队在国际顶级遥感期刊《Remote Sensing of Environment》发表了题为“A disease-specific spectral index tracks Magnaporthe oryzaeinfection in paddy rice from ground to space”的研究论文,报道了他们在多尺度稻叶瘟敏感光谱指数构建,以及小农户田块稻叶瘟发生时空动态遥感监测方面的重要进展。稻瘟病(Magnaporthe oryzae)是威胁全球水稻生产的最具破坏性的真菌病害。现有的稻叶瘟发病信息主要通过田间调查来获取,这种方法不仅费时费力,而且存在代表性差等弊端,难以满足大范围稻瘟病高时效高精度监测的需求。构建适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,对于遏制病害蔓延、病害定损评估、早期病害预测预警至关重要。现有研究多集中在基于机器学习或统计模型的单一尺度稻叶瘟识别和病情指数估算,缺乏对稻叶瘟高度敏感、可适用于叶片(个体)和冠层尺度(群体)的光谱指数。该研究综合分析了从单叶到冠层尺度稻叶瘟侵染引起的光谱响应(图1),基于单波段可分性和特异性光谱响应规律创建了一对稻叶瘟敏感植被指数(RIce Blast Indices, RIBIs),进一步通过光谱指数波段优化方法确定了三波段具体位置(R665, R753和R1102)。利用叶片、近地面冠层和卫星平台获取的多年多试验点实测数据,系统评价了RIBIs在不同尺度对稻叶瘟病害严重程度的估算能力。结果表明,在叶片尺度RIBIred对感染和健康样本的识别表现出最高的分类精度(图2),而在冠层尺度RIBInir则表现出与病情指数最高的相关性(图3)。图1. 稻叶瘟侵染下不同病害严重程度的水稻光谱反射率。A. 单叶尺度不同接种后天数(Days after inoculation, DAI);B. 近地面冠层尺度不同病情指数(Disease index, DI)。图2. RIBIs与传统光谱植被指数在温室(2018和2019)和自然条件下(2020)对健康与感病叶片分类精度的比较。RBVI:前人研究中对稻叶瘟较敏感的植被指数,SVI:类似RIBI的植被指数,TBVI:传统三波段植被指数,OD:其他类型病害指数,CW:叶绿素及水分敏感植被指数。图3. RIBInir和传统指数NDVI在近地面(A和C)及卫星尺度(B和D)与稻叶瘟病情指数DI的相关性。不同颜色散点代表在不同时期和试验点获取的样本。该研究进一步对Sentinel-2卫星影像提取的RIBInir进行时间序列分析和热点分析发现,在时间维度上,基于RIBInir的时间序列能准确追踪小农户田块中稻叶瘟的爆发与恢复态势,而传统植被指数NDVI对自然条件下稻瘟病发生过程的敏感性更差(图4)。空间维度上,RIBInir对稻叶瘟发生区域的刻画更加准确,稻叶瘟时空动态传播规律的与实地调查一致性更好(图5),卫星影像分析结果中表征病害恢复的绿色像素与呈现恢复趋势的黑色调查点吻合度更高。该研究构建了适用于叶片和冠层尺度的稻叶瘟敏感光谱指数,显著提高了对多尺度稻叶瘟发生的识别精度和对病情指数的估算能力;首次提出了基于光谱指数图的小农户田块稻叶瘟爆发热点识别思路,为基于卫星遥感的稻叶瘟传播概率等级划分和病害流行风险评估奠定基础。图4.试验区(以江苏省淮安市唐曹村为例)Sentinel-2影像植被指数的时间序列结果比较(A. RIBInir B. NDVI)。红色星号表示不同水平下的显著性差异。图5.两个典型研究区卫星影像RIBInir和NDVI的热点分析结果(左:江苏省淮安市唐曹村;右:江苏省淮安市太平村)。黑色点代表实地调查点。该研究由南京农业大学国家信息农业工程技术中心完成,农学院博士研究生田龙为论文第一作者,程涛教授为通讯作者。据了解,智慧农业团队在国家自然科学基金等项目,以及现代作物生产省部共建协同创新中心等平台的资助下,瞄准作物病虫害高时效高精度监测预警难题,持续开展了多年温室与田间试验,近两年连续在Remote Sensing of Environment上发表稻叶瘟光谱监测机理与方法方面的创新成果,对于作物病虫害天空地一体化监测预警和作物绿色智慧生产具有重要价值。
  • “100家实验室”专题:访北京农产品质量检测与农田环境监测技术研究中心
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十二站:北京农产品质量检测与农田环境监测技术研究中心。  北京农产品质量检测与农田环境监测技术研究中心(以下简称中心)成立于2007年4月,是北京市科委和北京市农林科学院公益型院所科研体制改革的试点单位。中心整合了北京市农林科学院六个研究所专业检测技术资源,形成了拥有“中国实验室国家认可(CNAS)”、“农业部果品及苗木质量监督检验测试(CMA)”、“农业部蔬菜种子质量监督检验测试(CMA)”、“北京市肥料质量监督检验(CMA)”、“农业部农药登记试验单位”、“北京市实验室计量认证资质(CMA)”等6项认证资质的综合性科研机构。近日仪器信息网工作人员拜访参观了北京农产品质量检测与农田环境监测技术研究中心(以下简称中心),中心潘立刚博士热情接待了到访人员,并介绍了中心的基本情况。  中心由北京市农林科学院李云伏院长亲自兼任主任。中心采取学术委员会领导下的首席专家负责制,聘请院内外12名本领域知名专家组成学术委员会,委任在检测技术信息化方面具有突出贡献的王纪华研究员任首席专家,带领一支高效、精干、勇于创新的科研队伍。目前直接从事农产品质量与农田环境相关研究工作的在职科研人员40多人,客座研究及科研辅助人员近百人。此外,中心还和高校合作招收研究生,目前已有1名博士后在站,3名博士在读,4名硕士在读。  北京农产品质量检测与农田环境监测技术研究中心  承担新标准制定  潘立刚博士介绍说:“目前中心承担了农业部的两项方法标准制定:一是快速检测采样方法规则:当下快速检测的应用非常多,快速检测具有精度低、速度快、覆盖范围大的特点。快速检测大多数采用了表面采样的方法,这种方法虽然简单方便但没有统一的标准。因此需要深入研究确定采样方法、采样数量、采样步骤等具体的标准。”  “二是农业科学仪器分类与代码标准:这是和中国农科院合作的一个项目,希望能有利于对国内的农业科学仪器进行管理。这项工作重点在于确定分类的标准,分类标准要得到行业内的普遍认可才行,现在该标准的初稿已经完成,农业部准备正式发布公告征求意见。”  联合发起成立北京农产品质量安全学会    2009年11月,中心与中国农科院农业质量标准与检测技术研究所、北京市植物保护站、北京市农业环境监测站、农业部农产品质量安全中心、中国农业大学食品学院等多家单位于联合发起成立了北京农产品质量安全学会(以下简称学会),中心为学会办事机构挂靠单位。学会主要开展检测技术服务、科研需求调研、知识普及、学术交流、成果展示、基地建设等六个方面的工作。  潘立刚博士介绍说:“学会目前已经开展了房山污染农田治理、怀柔西洋参重茬现象、大兴区西瓜产地土壤中碘分布以及西瓜果实中能否富碘等科研项目,为首都农业的健康发展提供实际的技术支持。此外,学会还组织参加一些展览培训活动,向市民宣传农产品质量安全方面的知识。今后学会还会继续深入的开展农业科研、检测技术服务、公益性的宣传培训等方面的活动。”    农田环境监测——对北京的农田进行全面评价  潘立刚博士介绍说“农田环境监测是我们的一个特色,其包括两大部分,一是对农田的土壤质量和灌溉水质进行分析监测 二是对田间作物生理的监控,即农田的植物生理指标测定,如光合作用、呼吸效率、叶片大小以及最后的产量估测等。”  “目前,中心与地勘局,农业环境监测站合作对北京地区的农田土壤质量进行全面评价。由于北京农田面积比较小,都市型现代农业要求高,所以有望在全国率先‘摸清家底’。中心已在大兴区、顺义区以及京承路沿线获得大量有关土壤中重金属、养分数据。获取数据只是第一步,之后还需要分析大量数据,寻找规律,如风、河流、工矿企业、道路等对农田环境的影响。最理想的是能建立农田环境监测系统,输入历史数据,对污染物的分布和迁移规律建立数学模型,甚至建立专家系统,这样就可以进行预警或指导农业种植布局。”    检测信息化技术——自主开发新仪器,构建近红外谷物品质分析网络  “由于中心的前身依托国家农业信息化工程技术研究中心组建,因此在检测信息化技术研究方面独具优势”,潘立刚博士表示:“这也是中心的一个特色,一些信息化技术如远程数据传送可以实现在田间采样分析的同时将检测结果传送回监控中心,进行实时监控 数据可视化表达让分析检测结果表达的更加清楚,这样不仅是专业人员,每个人都能看懂 数据锁定技术可以确保样品检测结果更加可靠,分析人员不去田间就没法获得当地的GPS。并且在检测的同时能够获得采样点的检测结果和坐标定位,并且能同时对数据加密,数据不能随意篡改。”  潘立刚博士介绍说,结合检测信息化技术,研究中心自主研发了两款仪器:便携式X射线重金属分析仪、果蔬污染物三合一便携式检测仪,并与普析通用仪器有限公司和韩国美卡西斯(北京)科技公司共同开展分析仪器研发平台建设。  便携式X射线重金属分析仪中引入GPS定位和上位机软件空间分析功能,不仅可以在田间快速同步检测20多种重金属,而且使重金属定量信息与取样点的位置信息在米级精度上实时匹配,还可以对土壤中重金属含量进行空间插值、分布特征分析、污染原因查找、污染等级评价和专题图可视化表达,当数据累积到一定程度甚至可以实现预警。该仪器先后获得国家发明专利和实用新型专利授权。目前该仪器已在北京、天津、河北、吉林、辽宁、云南、山东、江苏、湖北、重庆等10个示范区进行示范应用。  自主研发的XRF7便携式X射线重金属检测仪  果蔬污染物三合一便携式检测仪采用了酶抑制法和化学法,通过自主研发的多通道专利技术,集成了果蔬类农产品中有机磷和氨基甲酸酯农药残留、亚硝酸盐和重金属铅含量三合一检测功能,实现了仪器小型化、多功能、高效率(可同时检测多个样品)、产地现场活体采样的特点 仪器自带GPS模块,使测试信息与取样点的位置信息在米级精度上实时匹配 具有数据实时远程传输和测定数据安全锁定功能 与仪器配套的上位机软件可以对检测数据进行插值、空间分布特征分析评价和专题图可视化表达。  自主研发的HISFM-FW果蔬污染物三合一便携式检测仪  中心信息化技术方面的另一项工作重点是构建农业部公益性行业科技专项“主要农作物调优栽培信息化技术”中的近红外谷物品质分析网络。目前在北京、河北、河南、山东、江苏、浙江、湖南、黑龙江、吉林等地30多家科研院所、农业推广站、食品企业、农业科技园等建立了网络节点,每个网络节点都配备了福斯InfratecTM 1241近红外谷物品质分析仪,共同开展样本获取、联网检测和数据传输工作,现在已经积累了近万份谷物样品和近十万条数据,首次在全国粮食主产区构建起近红外谷物品质分析网络。中心负责近红外谷物品质分析网络中心的建设、运维、数据传输、标准下达和分析评价,具有制定定标规范和检测标准的能力。潘立刚博士介绍说“十二五期间我们打算进一步扩大这一项目,积累更多数据,对谷物品质进行准确评价。为了让近红外谷物品质分析网络中心能健康发展,以后中心也会考虑商业运作。”  福斯InfratecTM 1241近红外谷物品质分析仪    工欲善其事必先利其器  中心承担了多项国家科研项目,同时还开展公益性的检测服务工作。这些工作的开展和相应的仪器配置是分不开的。研究中心目前拥有常规分析仪器、无机分析仪器、有机分析仪器和植物生理生化分析仪器等。  常规分析仪器  装备电子天平、旋转蒸发仪、微波消解仪、加速溶剂萃取仪、分光光度计、人工气候箱等常规仪器和设施,主要开展样品前处理、比色、滴定、过滤、干燥、燃烧等基于物理和化学方法的常规分析检测工作。  戴安ASE 300快速溶剂萃取仪  图注:主要用于快速提取固体或半固体样品,大大缩短萃取时间,提高萃取效率,减少萃取溶剂用量,显著降低了单个样品的提取费用,具有节省溶剂、快速、健康环保、自动化程度高等优点。  无机分析仪器  装备电感耦合等离子体原子发射光谱仪(ICP-AES)、原子吸收光谱分析仪、原子荧光光谱分析仪、元素分析仪、流动注射分析仪、荧光分光光度计、凯氏定氮仪、纤维素测定仪等,开展土壤养分、重金属污染物检测与监测,农产品品质、水质与水环境评价,以及测土配方施肥等科研和分析检测工作。  英国SEAL AutoAnalyzer3 流动注射分析仪  图注:流动注射分析仪基于双光束分光比色原理,采用空气片段连续流动分析(CFA)技术进行的自动样品分析,适用于水、土壤提取液、饮料或混合物中硝酸盐、氮、氨、硫化物、硼化物和磷酸盐等多种物质检测。仪器优点在于全自动操作、低的检测限、高精度和重复性、低试剂消耗,检测效率达每小时40~100样品。  德国Elementar VARIO Macro元素分析仪  有机分析仪器  装备凝胶渗透色谱气相色谱质谱联用仪(GPC-GC-MS)、超高压液相色谱质谱联用仪(UPLC-MS/MS)、气相色谱仪、液相色谱仪、红外显微成像仪、半自动快速微生物鉴定仪等,开展有机污染物、农兽药残留、农产品品质和生物技术在检测中应用等科研和分析检测工作。  瑞士步琪NIRLab N-200近红外光谱仪  珀金埃尔默Spectrum 400傅立叶变换红外显微成像仪  图注:红外显微镜技术是在红外光谱仪的基础上,将红外光路引出到外接的显微镜上,通过显微镜就可得到待测物的直观图像。在此基础上直接选择待测物的特定区域进行红外光谱扫描,得到特定区域的高质量红外光谱图。具有灵敏度高、吸光度准确、制样方便等特点。  岛津 GPC-GC-MS-QP2010凝胶渗透色谱/气相色谱/质谱联用仪  图注:与气相色谱相比,气质联用可以通过特征离子更准确地对待测物进行定性。与凝胶色谱的联用,大幅度的提高了样品前处理的效率。  沃特世UPLC-MS/MS超高压液相色谱质谱联用仪  图注:液相色谱质谱联用仪在农产品质量检测方面有着广泛的应用,主要用于不易挥发性化合物分析测定、极性化合物的分析测定、热不稳定化合物的分析测定、大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定。    植物生理生化分析仪器  装备小型自动气象站、地物光谱仪、冠层分析仪、激光叶面积仪、叶绿素荧光分析仪、凝胶成像系统,以及多种温光电传感器等,开展农业生态环境监测、室内和田间植物生理生化指标测定方法研究和服务。  美国Davis 气象测量站  图注:Davis 气象测量站,是一台全自动化气象数据收集的测量记录仪,能测量并记录气压、气温、湿度、风向、风速、雨量等气象变化数值,还能计算寒风指数、露点温度、体感温度,及做简易的气象预报、暴雨警报。  美国LI-COR LI-6400便携式光合作用测定系统  图注:原位获取植物叶片的光合参数及小环境参数,可用于研究植物光合作用的动态变化、植物光合作用的比较、植物光合作用与环境因子的关系、逆境条件下植物光合作用的变化、抗逆植物的筛选。  美国CID CI-203便携式激光叶面积仪  图注:利用激光技术方便、快速地测量植物离体和活体叶片的面积、长度、宽度、周长、长宽比和形状因子。  后记  在参观交流过程中,中心承担的多项科研任务以及机构管理运行机制给笔者留下了深刻的印象。  在科学研究方面,虽然中心在农产品质量监督领域,属于成立时间较短的研究机构,但它充分发挥了自己的固有优势独辟蹊径,在信息化技术与农田环境监测方面走出一条与众不同的发展之路,并取得了不错的成绩,在短时间内得到了许多同行的认可。去年中心又申请到了一项经费达400万元的科研项目,目前根据科研需要中心正在不断购进仪器设备。  在科研管理上,中心整合了北京市农林科学院六个研究所的专业检测技术人员,共同开展课题研究,改变了检测技术人员在科研机构的弱势地位,充分调动了大家工作的积极性,让每个人都各尽其能,促进了中心的科研工作进展。  此外,中心在自我发展的同时,也利用自己的技术优势,深入到田间,为农业生产遇到的问题提供解决方案,并且能联系一线工作者,让普通老百姓有机会更好的了解农产品质量安全。采访编辑:秦丽娟
  • 新一代传感技术撬动智慧农业
    当无人机在三亚的晴空缓缓升起,中国农业科学院棉花研究所南繁育种基地中控室的大屏上,基地的概貌和株高、叶面积指数、冠层温度、叶绿素含量等育种专家关心的表型数据逐渐清晰起来。  这是中国农业科学院棉花研究所南繁育种基地无人机遥感田间育种表型观测系统工作时的场景。为解决南繁农业信息基础设施不足、基础数据缺失、信息管理系统不完善等问题,海南省投建了南繁硅谷综合服务平台,有了新一代农业传感技术“加持”,南繁育种基地立刻“耳聪目明”起来。  传感技术显身手  “传感器技术是信息社会的重要技术基础。”国家农业信息化工程技术研究中心副研究员张云鹤对《中国科学报》说,“传感器的品种、数量、质量和技术水平,直接决定了信息技术系统的功能和质量。”  提起目前农业生产中应用的各类传感技术,张云鹤从环境、气体传感,土壤、水质传感,植物生理传感,无人机遥感四大类,一口气列举了20多种。  在作物环境信息监测系统中,可以实时监测育种小区视频图像、空气温湿度、光照、风速、风向、雨量、土壤温湿度、电导率、pH值、土壤墒情等参数。也可以进行作物穗层温湿度监测。利用这些信息,系统能对不同监测点信息同步获取、存储、动态直观呈现及管理,为及时灌溉和适量灌溉、作物最佳生长条件改善等提供参考。  例如,借助其远程作物生长状况监测系统,计算机可实时收集作物长势、病虫害、作物营养状况等信息。同时,人们可以在电脑端、手机端实时接受相关数据,查看现场信息,便于专家远程指导。  凭借强大的农业传感技术,人们足不出户即可对作物叶片及病斑测量,并基于智能手机,进行作物叶片图像信息获取及识别,然后对图像实时处理。这种技术适用于田间环境不同作物叶面积、叶长、叶宽、病斑面积、病斑比例等信息的快速检测,其测量误差小于3%。  此外,利用先进的传感技术,还可进行作物叶片及病斑测量仪、多功能水肥一体化管理设备、电物理水消毒设备等,为田间育种决策提供高通量信息服务支持。  “基于物联网技术构建的育种环境信息监测系统,可以实现作物生长气象信息、土壤情况、长势情况、病虫害以及光、温、水、气等相关信息的实时采集和监测,为育种家提供育种环节全过程的精准数据支撑。”张云鹤说,“结合融合分析系统,能实现地块级的精准气象及病虫害预警,提高作物育种生产管控精准化和智能化程度,有效提升育种作业效率和信息化水平。”  此外,通过三维实景建模及物联网系统,管理人员可实时查看大田、温室、办公场所以及气象、灌溉等相关设备状况,极大程度提高管理和生产效率。  智慧农业的基础  “目前我们都说智慧农业、智能农机,其核心制约因素还是传感器。”南京农业大学工学院院长汪小旵对《中国科学报》说,“对于一个智能系统来说,没有传感器,就相当于人成了‘瞎子’和‘聋子’,后面的智能决策就无从谈起。”  汪小旵长期从事作物信息智能化检测和农业装备智能化控制研究,在日常研究中,他和团队不仅大量使用传感器,而且也从事一些传感器的开发研究工作。比如,该团队正在研制基于土壤原位根系检测的传感器;营养液栽培中的氮、磷、钾传感器;水产养殖中的硝酸盐、磷酸盐检测的传感器;基于高光谱和荧光图像的作物病虫害监测传感技术等。  “智能控制系统如果没有传感器的输入信号,就无法比对和形成闭环控制,农业大数据系统如果没有传感器就没有数据来源,人工智能系统就无法获取足够的知识。”汪小旵说,“从这个角度来说,传感器完全是现代智能农业的核心技术,同时也是容易被‘卡脖子’的技术。”  2019初,美国国家科学院、美国医学与生物工程院(AIMBE)联合发布一份研究报告,描述了美国科学家眼中农业领域亟待突破的五大研究方向。其中第二项即“新一代传感器技术将成为推动农业领域进步的底层驱动技术”,将高精度、精准可现场部署的传感器以及生物传感的开发、应用作为未来技术突破的关键之一,而其余几大研究方向或与之相关,或以此为基础。  目前,我国的传感器技术已经广泛应用在农业领域,但主要还集中在对单个特征,如温、湿度的测量上,而新一代传感器技术不仅仅包括对物理环境、生物性状的监测和整合,更包括运用材料科学及微电子、纳米技术创造的新型纳米和生物传感器,对诸如水分子、病原体、微生物在跨越土壤、动植物、环境时的循环运动过程进行监控。  “新一代传感器具备快速检测、连续监测、实时反馈、智能处理的能力。”张云鹤说,“如果能在资源要素的利用环节即精准发现和定量识别可能出现的问题,并能实时进行优化调整,将彻底改变我国农业生产利用方式。”  须多学科联合攻关  今年以来,全球小麦、玉米、水稻三大主粮产区均受到极端天气影响。传统的小麦出口国澳大利亚因遭遇严重干旱,时隔12年后首次计划进口小麦;玉米出口大国美国因受阴雨天气影响,播种创历史同期最低水平;同受干旱影响,水稻出口国菲律宾也出现大规模歉收。  众所周知,我国以全球7%的耕地养活了全球20%的人口,但也用了全球约1/3的化肥和1/2的农药。提高粮食产量、减少化肥农药用量亟须新一代传感技术,建设高标准农田,发展精准农业、智慧农业,新一代传感技术已然成为“刚需”。  汪小旵认为,虽然对比国际先进水平,我国智慧农业发展还处于成长期,但这也意味着价值空间大。益于中国政策和土地政策的助推,中国智慧农业起步晚,但发展速度特别快。  传感器的性能影响着农业生产力的提高,当前我国智慧农业尚处于监测环境因素的初级阶段,而且市场上的传感器质量参差不齐。同时,智慧农业所使用的传感器大部分面临比较恶劣的环境,低功耗、耐腐蚀、抗低温性能良好成为农业传感器的基本要求。此外,部分农业生产者操作仪器的水平所限,农业传感器件应尽量选择安装方式简单、方便携带、稳定性好和校正周期短的产品。  “新一代传感器技术涉及的内容非常多,不是哪一个学科和专业可以单独完成的,需要多学科联合攻关。”汪小旵说。  汪小旵举例说,监测动植物性状,有可能用到高光谱图像、荧光图像、纳米技术、3D打印等等;要对NPK、病原体、微生物在土壤、水体等等中的循环运动过程进行监控,就会用到光电子学、材料学、微电子、纳米技术等。  “同时,制约新一代传感器从实验室走入产业的一个最关键因素,还在于新一代传感器所具备的快速稳定检测、连续可靠监测、以及和物联网有效集成的能力。”汪小旵说。
  • 童庆禧院士:我国高光谱技术正处“爬坡”关键期,但距顶峰已近
    地球上的不同元素及其化合物都有自己独特的光谱特征,光谱被看作是辨别物质的“指纹”,而高光谱则是协助人类看清这些“指纹”的“有色眼镜”。中国科学院院士、中科院空天信息创新研究院研究员童庆禧在高光谱技术创新应用联合实验室揭牌仪式上说道:“我国高光谱技术目前处于以下阶段:技术先进,或并跑,或领跑;正处爬坡关键期,但距顶峰已近。”高光谱技术创新应用联合实验室是由浪潮云信息技术有限公司与中科谱光科技(天津)有限公司共同建立,定位为高光谱技术研发中心、创新应用中心、高端智库三重角色,致力于推动高光谱技术在工业互联网、数字农业、“双碳”业务等领域的落地,如在工业互联网领域,提供煤炭热值检测和工业设备润滑油检测服务;在智慧农业方面,提供农作物氮磷钾等含量检测、病虫害识别、作物长势监测等服务;同时,聚焦“双碳”业务领域,提供碳计量设备及双碳双控等服务。以下为童庆禧院士列举的高光谱技术典型应用场景:1.文物保护领域专家可以通过高光谱扫描成像、色彩融合等处理技术,进行文物印鉴提取、真假识别、墨迹提取、颜料识别等工作,为记录历史、保留历史提供有效技术支撑。2.数字农业领域基于庞大的地物光谱数据库对收集到的高光谱数据(如生物量、叶面积指数、叶绿素等关键生理参数),研究者们可以进行波段运算、分析、处理、保存,实现对农作物的精细分类、估产及长势监测、病虫病监测、活性监测等实时、高效、精准监测和管理。3.环境监测领域高光谱技术还可用于材料鉴别、目标探测识别、矿物识别及水质、土壤污染等环境监测领域。
  • ASD | 基于叶片光谱的玉米冠层叶绿素和叶片叶绿素的时空变化分析
    冠层叶绿素含量(CCC)可以反映一个种群的总光合生产力,是判断植物个体生长和营养状况的重要依据。通过遥感准确监测冠层和叶片尺度的叶绿素含量是确定作物生长状态和预测产量的关键。玉米是一种高秆作物,叶面积大,冠层深。它具有不均匀的叶片叶绿素含量(LCC)垂直分布,这限制了遥感的叶绿素含量评估。因此,了解LCC和叶片反射光谱的垂直异质性对提高CCC监测的准确性至关重要。 基于此,在本研究中,来自中国农业科学院作物科学研究所和宁夏大学农学院的研究团队以玉米为研究对象,于2019年和2020年在位于中国东部河南省黄淮海玉米生态区的中国农业科学院新乡实验站通过5个氮处理梯度(0、100、200、300和400 kg/hm2(记为N0–N400))建立各种冠层结构,采集不同生长季节作物冠层叶片,并测量了其LCC和叶片光谱反射率(ASD FieldSpec 4光谱仪+植物探头+叶片夹,光谱范围为350-2500 nm)。主要目标为:(1)理解施氮量对玉米冠层叶绿素垂直分布的影响以及生长季节叶绿素分布的动态变化;(2)在不同时空条件下探索冠层叶片光谱反射率特征差异以及验证基于叶片光谱反射率的VI模型是否可以准确反演LCC;(3)确定敏感叶位(可用于表征LCC和CCC之间的关系)以及评估基于叶片光谱的VI模型的鲁棒性和准确性,以评估冠层叶绿素状态。2020年9月2日研究区俯视图 (a)。高光谱反射率测量系统(b)。台式叶绿素分光光度计 (c) 。2020年8月8日五次氮处理(N)下的冠层状况(d)。【结果】2020年生长季节玉米冠层LCC的垂直剖面。(a、c、e)不同位置叶片的光谱反射曲线。(b、d、f)不同叶片位置波段与LCC的相关系数曲线。6种LCC-VI模型的rRMSE(%):(a)mRER、(b)VOG2、(c)CIred-edge、(d)NDRE、(e)MTCI 和(f) DD。rRMSE用于评估模型反演精度。rRMSE的值较低对应于预测值和观察值更接近。中期模型(a)、后期模型(b)和生殖模型(c)CCC预测值和2019年实测值对比。【结论】 5个施氮水平用于构建不同的玉米冠层结构,揭示玉米冠层叶片叶绿素含量(LCC)的垂直异质性以及叶片光谱反射率特征。基于冠层LCC的垂直分布,建立多元逐步回归(MSR)模型以准确监测冠层叶绿素含量(CCC);LCC表现出不对称的垂直分布,呈现出底层较低,中层上升,上层下降的趋势。氮处理显著改变了LCC,且不同处理之间LCC的垂直剖面分布基本一致。分析了不同时空条件下叶片光谱反射率特征。绿色波段(531-567 nm)和红边波段(712-731 nm)是监测LCC的敏感波段。6个经典的VIs用于构建VI-叶绿素模型,其中修正的红边比值植被指数(mRER,R2=0.87)构建的模型最优。VI模型可以准确预测生长中期的LCC(rRMSE=10.9%),但是,上、下叶层VI和LCC的相关性在营养生长早期和成熟阶段发生变化(rRMSE=36%-87%)。通过结合反演精度和多元逐步回归,结果发现在CCC估算中,营养阶段叶位L6以及生殖阶段L11+L14(L12是穗叶)最敏感。这样,基于叶片光谱反射率构建了VI-LCC-CCC模型以估算冠层叶绿素状态。利用2019年和2020年田间试验数据评估了模型性能,结果表明该模型具有良好的鲁棒性和准确性(rRMSE=8.97%)。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650312959&idx=1&sn=579c2cd2862e8037f3fe0a32dda8e2ee&chksm=bee1bc00899635161ff79ab90bcff29bc9a96537973b3be2cb439a88caa8d8e36c29108f32eb&token=1852366781&lang=zh_CN#rd
  • SPECIM IQ | 开创性小型手持智能型高光谱相机如何精准进行植物表型鉴定和病害检测?
    导读 高光谱成像传感器是近几年研究用于监测不同环境中农作物和植被的有效工具。植物的生理学,形态学或生物化学信息可以通过非接触的方式以及不同尺度下评估。例如,利用高光谱传感器用于植物表型分析或农业中的生理胁迫研究。截至目前,市面上有各种非成像和成像高光谱传感器可供选择,这些仪器进行测量的过程相当复杂。因此,现代化检测及研究中对易于用户操作的高光谱传感器的需求日益增加。芬兰新发布的一款新型小型手持式智能型高光谱相机——SPECIM IQ,就是基于用户的现代化便携操作而设计的。SPECIM IQ的机身小巧轻便,只有1.3kg,实现轻松手持操作;同时在相机中直接集成了操作控制系统,通过相机自带的触摸屏就可实时实现基本数据的采集和分析过程(如预处理和分类例程),实现智能化操作。便携手持、现场实时快速检测、全自动智能分析、高质量数据,相信 SPECIM IQ 如此多的现代化特征会让您的高光谱研究更加得心应手!以下我们将SPECIM IQ采集的高光谱数据与已经十分成熟高光谱成像仪技术SPECIM V10E 进行定性对比,发现SPECIM IQ便携手持的设计并未影响到相机的数据准确性,一致地获得了高质量高光谱数据。同时,手持智能型SPECIM IQ还可以实现对植物表型的鉴定以及病害研究检测等,在植物科学研究及其他领域具有无限可能。1、手持智能型高光谱相机SPECIM IQ与SPECIM V10E的定性对比 通过与性能的SPECIM V10E相机对比,我们评估了新型SPECIM IQ的成像质量。SPECIM V10E在推扫式高光谱相机领域是一款具有代表性且广受好评的产品,与SPECIM IQ具有相同的光谱范围(400-1000nm)。在实验过程中,通过采用4倍的光谱合并,达到与SPECIM IQ相似的光谱采集,共有211个波段,每行数据具有1600个像素。研究人员利用两款设备分别在室内(卤素灯光源)和室外(自然光光源)对具有不同颜色的样本:纸片和聚乙烯胶片,进行了高光谱数据采集和对比。 图1 智能型高光谱相机SPECIM IQ(207mm*91mm*74mm) 经过对比,得到如图2所示结果。对相同样本,两款设备采集的光谱形状高度重合:实验室的平均值是0.009,室外平均值为0.043。SPECIM IQ和SPECIM V10E的平均标准偏差分别为室内(0.017和0.021)和室外相同(0.029和0.029),但SPECIM IQ更为均,SPECIM V10E在光谱边界处具有更高的噪声水平(400 -450nm和400-450nm)900-1000nm,见图2)。研究表明,除了925-970nm范围内的大气水汽吸收带之外,周围光谱的原始信号较弱,导致反射信号的快速增加。 图2 平均光谱包含绿色纸片(A)和紫色聚乙烯片(B)的标准差,C表示室内测试的不同颜色的样本 图3 室外数据的光谱对比(A-D):绿色纸片、暗黄色纸片、紫色聚乙烯胶片以及蓝色聚乙烯胶片 2、手持智能型高光谱相机SPECIM IQ对拟南芥的生理胁迫研究 通过植被指数可评估不同状态下植被的生理结构和功能特性,包括生物量、冠层结构、叶面积指数、叶绿素含量以及植物冠层的光利用效率等。研究人员利用SPECIM IQ对拟南芥的两个变种在胁迫状态下的生理状态分别进行了研究。由于缺乏PsbS蛋白质和紫黄质脱环氧化酶,拟南芥的变种样本对光能量利用能力减弱(非光化学淬灭),但在室温条件下可正常发育,在高光照条件下,突变体可能受光损伤,这些都是肉眼无法察觉的。利用SPECIM IQ对18个样本进行数据采集,并对所采集的数据进行植被指数计算,在此基础上,对样本的叶绿素含量和类胡萝卜素转化的敏感程度进行了评估(图4)。 图4 在非胁迫适应(NSA)和胁迫适应(SA)拟南芥野生型(Col-0)和PQ缺陷突变体(npq1和npq4)之间观察到的差异。 左侧面板显示选定感兴趣区域的假彩色图像(A) NDVI(C) REIP(E) 和由SPECIM IQ采集数据计算的PRI(G)。 右侧面板显示计算出的平均值和标准差(B) NDVI(D) REIP(F) 和PRI(H)从三个单的植物随机分布在成像框架,不同的字母表示基于LSD的显着差异(a = 0.05)。 研究表明,SPECIM IQ可用于拟南芥中叶绿素(NDVI)和叶黄素(PRI)的含量的检测,并能评估植株样本的状态。通过验证具有代表性的植被指数,可为其它植被指数的评估计算提供样例,并为在植被研究领域获得更多生理信息奠定了基础。 3、手持智能型高光谱相机SPECIM IQ对大麦白粉病的研究 高光谱成像作为非接触式的测量传感器,在植物疾病严重程度与宿主植物对特定植物病原体的易感性的评估方面有很大的应用。本研究利用SPECIM IQ评估了不同大麦品种在冠层尺度上的白粉病严重程度,并对品种Milford和Tocada进行了4个和7个不同的白粉病易感性等的比较。研究准确地检测了两个品种的白粉病症状,并通过高光谱成像结合数据分析方法评估品种的不同疾病严重程度。研究人员利用SPECIM IQ对在温室中培养的360个大麦植物样本(稳定的漫射光条件下培养)进行检测,并使用的白色参考板(见图5)和SPECIM IQ的内置功能对高光谱数据进行归一化。研究人员利用SPECIM IQ Studio的光谱角匹配方法(SAM)进行感染检测并与支持向量机分类(SVM)方法进行对比,检测到上部叶中具有类似病状的区域。 图5 使用光谱角匹配(SAM)和支持向量机(SVM)对白粉病进行分类,图像左侧包含白色参考面板研究表明,大麦白粉病的样本检测到的疾病症状分别为所有植物像素的25.8%和4.4%,而健康部分只有2.0%和2.2%。现有的错误分类主要是白色参考边界处(看起来像叶面上的白色菌丝体)混合像素的影响。为了消除这种系统偏差,通过减去错误分类像素量来确定疾病严重程度,预测分析的品种的2.2%至23.7%的强烈差异。因此,SPECIM IQ可用来测量评估复杂冠层的疾病严重性,控制光源照明条件保证高信号质量,此项研究也证明SPECIM IQ空间分辨率足以确定大麦叶片上的单一症状。4、总结 手持智能型SPECIM IQ相机在植物生理和病害检测中具有巨大潜力。通过SPECIM IQ与SPECIM V10E室内和室外环境中对不同材质色卡辐射测量评估,得到两者的光谱特性高度一致性。根据植被指数分析得到的结果表明手持智能型SPECIM IQ在植物研究和表型分型策略的背景下的应用潜力:对于白粉病的评估,表明SPECIM IQ具有足够的测量能力,并且与SVM相结合,在量化中对视觉评估的高度一致性。作为新智能型的高光谱相机设备,手持式SPECIM IQ除具有高精度的数据质量外,其设备本身具有高紧凑性、可移动性强和快速集成处理能力,为科技新领域的应用创造了有利条件。手持智能型SPECIM IQ的发布让高光谱传感器技术以实验室设备的质量水平传输到温室和现场,而无需任何载体平台或控制和存储设备,因此,该款设备的诞生无疑可以支持各个场景下的不同应用,并推动现代高光谱技术在更多领域的发展和影响。 相关产品及其链接1、手持智能型高光谱相机SPECIM IQ:http://www.instrument.com.cn/netshow/C282348.htm 2、芬兰SPECIM高光谱航空遥感成像系统:http://www.instrument.com.cn/netshow/C160539.htm 3、芬兰SPECIM 工业高光谱相机FX系列:http://www.instrument.com.cn/netshow/C265811.htm
  • 输欧茶叶面临严检 检测成本将大增
    根据欧盟发布的指令,从10月1日起对从中国进口的茶叶采取特别控制措施。这个新规让不少浙江茶业企业感到压力。今天下午,杭州嘉盛茶业有限公司总经理吴建明对笔者说,欧盟新规主要是加强了农药残留项目检测,受此影响,茶叶出口检测成本将会大幅增加,一些出口企业可能无利可图。  笔者从宁波检验检疫局了解到,欧盟新规措施主要包括以下内容:中国进口的茶叶必须通过欧盟指定口岸进入,所有货物必须有常规入境文件才会被允许进入指定口岸 另外,欧盟将对10%的货物进行农药检测,如果该批货物被抽中检测,就要进行100%检测。  据悉,我省茶叶出口企业已经积极行动应对欧盟新规,对仓库所有存货进行农残检测同时,通知基地和定点单位对农残进行检测,并从运输、仓库、生产加工各个批次分开分批管理,确保符合要求。  我省农业部门和商检部门早在上半年就已经向全省发出预警,要求茶场按照规程使用农药,生产企业做好加工全过程质量控制。省农业厅茶叶科科长罗列万表示,在出口方面,为了减少茶叶用药交叉影响,我省已经加大了茶园统防统治工作,目前覆盖了30%左右,农业部门还启动了替代农药产品的相关试验研究。"目前,我省茶叶用药已经相对规范,有机茶种植面积也不断增加,因此,企业出口欧盟的茶叶质量标准已经相当高了,受欧盟新规影响并不大。"浙江茶叶产业协会相关负责人刁学刚说。  农药残留项目检测达到欧盟新规并不难,难的是茶叶企业为此将新增大笔检测费用。"与其说欧盟新规又设了一道严格的门槛,还不如说是大大增加了出口检测费用。"吴建明说,根据欧盟新规,一旦茶叶被抽到,必须进行新增的溴丙磷、氟乐灵、三唑酮等项目的检测。按目前行情,这三项检测费用需要1500元左右,加上原有的检测费用,如果每次出口以10吨计,分摊到每公斤茶叶农残检测成本就需要3角,这还没有算上异地口岸商检检查费用。  此外,绍兴一家茶业公司负责人说,该项指令要求所有从中国进口的茶叶必须通过欧盟指定口岸进入,这也会给进口商增加一些运输成本,进而转嫁到出口方。  我省今年茶叶出口欧盟快速减少,形势严峻。据宁波检验检疫局统计,截止9月26日,今年宁波口岸共输往欧盟绿茶和红茶,同比分别减少30.5%和14.9%。此次欧盟针对我国进口茶叶加大管控力度,无疑在重重农残规定下又设了一道严格的门槛,势必会给出口企业带来巨大影响。一些出口企业呼吁,政府部门在加强农残监管同时,降低相关农残检测费用,减少出口成本。
  • 智慧农业技术集成与应用创新实验室仪器采购结果公布,赛默飞、谱育科技等仪器品牌在列
    智慧农业技术集成与应用创新农业农村部重点实验室建设项目中标结果近日于某政府招中标网站公布。中标总价格1533.98万元,标的产品涉及赛默飞傅里叶型近红外光谱仪、双利合谱近红外高光谱分析仪,爱万提斯高灵敏度光谱仪,谱育科技手持式近红外光谱仪,理加联合无人机机载多光谱成像系统等。涉及范围涵盖农产品供应链,作物环境监测系统,畜禽水产检测系统,智慧大田检测系统等多领域。智慧农业技术集成与应用创新农业农村部重点实验室建设项目(第一批)分包一:农产品供应链供应商名称:南京柏炜科学仪器有限公司中标金额:人民币4158500元整序号产品、服务名称品牌、型号、产地数量单价(元)1农用X光机品牌:圣启型号:SQ-1090产地:中国河北1台4890002傅里叶型近红外光谱仪品牌:赛默飞型号: Antaris II产地:美国1台4960003近红外高光谱分析仪品牌:双利合谱型号: Image-λ-N17E-HR产地:中国江苏1台5958004高清成像视觉相机及光源系统品牌:视觉龙型号: PL4KGV -30KC产地:中国广东2套966005凯式定氮仪品牌:圣启型号: SKY6120产地:中国河北1台9870063D视觉采集系统品牌:梅卡曼德型号: pros产地:中国北京1套4863007农产品紧实度检测系统品牌:保曼型号:TA. PORTABLE产地:中国江苏1套2780008农产品外观检测及分级系统品牌:万深检测型号:SC-M产地:中国浙江1套1950009农产品物流过程监测系统品牌:圣启型号: SQ-NWL -200产地:中国河北1套58350010农产品供应链检测系统品牌:圣启型号:SQ-XCH600产地:中国河北1套743000分包二:作物环境监测系统供应商名称:江苏微讯达网络科技有限公司中标金额:人民币3180000元整序号产品、服务名称内容描述(品牌、型号、产地等)数量单价(元)1虫情监测系统瑞华电子RH-YD软件定制、中国2套3840002大田作物天空地一体化监测系统作物生长微环境监测瑞华电子RHD-02、中国1套215000作物灌溉水质监测瑞华电子RH-TS2M、中国1套270000单株作物长势监测慧诺瑞德CropSense、中国1套120000农情低空监测大疆M300RTK、中国1套295000分析软件软件定制、中国1套3500003设施环境智能控制系统二氧化碳激光检测仪逸云天PTM600-CO2-H、中国1台116000微环境监测系统耘农RYQ-4型,软件定制、中国1套260000设施水肥一体化装备普荟PH-CT-SFJ、中国1套860004设施农业环境检测控制系统设施智能控制系统隆浩鼎LHD-1200型软件定制、中国1套300000小型土壤元素分析仪浪声TrueX 200S、中国1台400000智慧农业技术集成与应用创新农业农村部重点实验室建设项目(第二批)分包一:畜禽水产检测系统供应商名称:江苏汉唐国际贸易集团有限公司中标金额:人民币1468000.00元整序号产品或服务名称品牌型号产地数量单价1智能化水产养殖系统仿生机器鱼博雅工道ROBOLAB-EDU中国1628000.00移动智能投喂机佛山中渔ZY-150中国高灵敏多参数水质检测系统蓝居UWA-100中国移动式水质分析平台吉大GDYS-201M中国2高灵敏度光谱仪爱万提斯AvaSpec-HSC1024*58-EVO荷兰1149000.003养殖环境有害气体分析系统蓝居U-SKY200中国1495000.004畜禽养殖监测系统大立DL-H3中国1196000.00分包二:实验室通用设备供应商名称:江苏斯托利仪器仪表有限公司中标金额:人民币2748000.00元整序号产品或服务名称品牌型号产地数量单价1光学开发系统SITUOLISTL-GXKF100中国江苏1448000.002硬件开发支撑系统SITUOLISTL-YJKF200中国江苏11275000.003产品测试系统SITUOLISTL-CPCS300中国江苏1607000.0043D扫描仪天远三维UE11中国北京1219000.0053D打印机StratasysF170以色列1199000.00分包三:智慧大田检测系统供应商名称:南京诺泰施格科学仪器有限公司中标金额:人民币3785300.00元整序号产品或服务名称品牌型号产地数量单价1智慧大田检测系统圣启SD-GT1中国河北1套1580000.002农田甲烷排放通量检测系统力科惠泽LK-2100中国北京1套419000.003手持式近红外光谱仪谱育科技EXPEC1350中国浙江1套135900.004叶面积指数测定仪圣启SOP-1300中国河北1套59800.005作物病虫害检测机器人博众机器人B30504W中国江苏1套95000.006多通道光合有效辐射记录仪圣启SPF-8N中国河北2套52900.007无人机机载高光谱遥感成像系统理加联合300TC中国北京1套380000.008无人机机载多光谱成像系统理加联合RedEdgeMX中国北京1套275000.009田间高通量植物表型成像系统易科泰PhenoTron-YZ中国北京1套295000.0010除草机器人山杰农业M50P中国河北1台245000.0011植物光合/呼吸/蒸腾测量系统圣启3051D中国河北1套194800.00
  • 3D面积测试系统 | 满足不规则物体面积的自动检测需求
    3D面积测试系统 3D面积测试系统为实验室提供了一个先进的测量平台,用于快速、准确地计算不规则物体的面积,包括任意面积、外表面积、内表面积、液体面积、体积等,开拓了自动化计算面积的新模式。复杂样品轻松测量,任意面积一扫即得01产 品 展示02知识产权针对3D面积测定仪,上海汇像信息技术有限公司已取得多项具有业界标杆意义的权威证书,其中包括但不限于《发明专利证书》、《计算机软件著作权登记证书》、《上海市计量测试技术研究院华东国家计量测试中心校准证书》等多项荣誉证书。专利证书软件著作校准证书03参 与 标 准GB/T 材料表面积的测量高光谱成像三维面积测量法QC/T 紧固件镀层表面积计算方法T/SLIA 001-2019食品接触材料及制品、饰品表面积的测定三维模型重建法GBT 38009-2019眼镜架镍析出量的技术要求和测量方法计量技术规范两项发表论文多篇数据对比活动多次全国多家计量机构提供CNAS校准支持04合 作 机 构、持续更新中......• 国内外著名第三方权威检测机构:SGS通标标准技术服务有限公司、Intertek天祥集团、德国莱茵TÜV集团、TÜV南德意志集团、必维国际检验集团、华测检测认证集团、东莞市中鼎检测技术有限公司等。 • 国家质检机构:上海质检院、深圳计量院、山东质检院、浙江方圆检测集团、广州质检院等、南京质检院、新疆质检院、宁夏质检院; • 国家海关机构:广东海关、常州海关、宁波海关、上海海关、北京海关等; • 国际知名企业:宜家家居IKEA、周大福珠宝、浙江小商品城集团等; 05产 品 特 点• 批量测量根据样品大小,可一次同时检测30-50个样品批量选取样品测量• 自带软件处理完全针对检测检验行业需求定制开发,系统自带软件直接检测,无需切换自带软件进行处理• 任意面积计算根据标准的不同要求,鼠标轻松选取标准所需的接触面积鼠标轻松选取接触面积• 多种输出模式实现对检测结果的多种输出方式,例如:Excel、PDF报告导出报告导出06应 用 领 域目前3D面积测定仪已广泛应用于食品接触材料、药品包装材料、工艺品、日用品、纺织品、工业零部件、玩具、婴儿用品、医疗用品、首饰饰品等。 07配 套 产 品智能显像仪——采用光学原理的仪器,对于透明材料、反光材料、黑色材料会产生吸光效应,检测前须进行前处理。智能显像仪• 使用方法1.置入样品→2.自动处理→3.处理完成• 产品特点干净卫生、不粘手改变传统手摇罐式显像剂喷雾方式,更卫生、高效、方便触摸屏智能控制自动调节速度、处理时间、操作过程全程监控• 配合3D面积测定仪使用上海汇像信息技术有限公司领先的实验室自动化智能化系统供应商上海汇像始终坚持将人工智能技术与检验检测技术相融合,致力于为生物化学,医疗医药及安全检验检测提供领先的实验室自动动化智能化综合解决方案,产品范围涵盖从食品安全、药品安全、到生命科学领域的智能机器人工作站系统、全流程检验检测实验室自动化、智能化整合系统以及配套自动化、智能化仪器设备及相关耗材等。我们立志成为全球最为领先的生命健康自动化、智能化解决方案提供商、立志让世界每一个人都享受健康安全品质的生活,立志为业界提供最好的技术、产品与服务。
  • 杭州万深检测高通量植物表型获取技术演示直播会邀请
    高通量植物表型获取技术演示直播会——万深检测1857年,现代遗传学之父孟德尔进行的豌豆杂交实验,经过长达8年的超大强度体力劳动,手工获得包括2.8万株植物、4万朵鲜花及近40万颗种子的性状数据:种子形状、颜色,豌豆花颜色、位置,株高等。时间过去了一百多年̷�年起,万深公司运用顶尖的视觉检测技术,持续推出产品,针对植物种粒、叶片、根系、年轮、瓜果等,通过自动化检测获得植物表型高通量数据,如:数量、形状、颜色、长度、株高、面积、角度等,一再填补了行业空白。如今,万深检测技术已经进入农业、生命科学、环境监测、制药等领域。为上千家用户单位提供产品和服务。未来几十年中,由于人口暴增、气候变化、耕地限制、环境资源短缺等因素的影响,人类面临巨大的粮食挑战,需要从改良育种和栽培管理两方面考虑来提高作物生产力,高精准、高通量获得作物表型数据是这一工作基础,因此植物表型领域的研究正受到国际广泛关注。为了让广大农业科研人员深入了解万深的产品,我们在钉钉上举办两场产品推介会。一、第一场产品推介会:时间:2020年7月21日(周二)晚上19:30分-20:30。推介产品:1、植物根系分析仪、植物根系动态生长监测仪2、植物叶面积分析仪(含叶病斑、虫损面积、叶色分档分析等)3、植物冠层图像分析仪4、植物年轮分析仪5、植物瓜果剖切面分析仪6、植物表型分析测量仪7、植株自动测高仪8、原位活体植物分枝角自动测量仪二、第二场产品推介会:时间:2020年7月31日(周五)晚上19:30分-20:30。推介产品:1、种子自动考种分析及千粒重仪2、大米外观品质检测仪3、大米加工精度检测仪4、面粉粉色麸星检测仪5、农产品籽粒颜色分类检测仪6、水稻麦穗穗长-茎粗-茎叶角测量仪 三、会议形式:钉钉群在线直播。 四、钉钉直播培训群二维码参会人员须在会议当天晚上19:30点前通过钉钉扫描群二维码加群。
  • 万深检测科技发布HiCC-D 型2平皿全自动菌落计数分析仪新款
    万深检测科技发布HiCC-D 型2平皿全自动菌落计数分析仪新款 有效实现2960万像素光学分辨率自动聚焦的均匀背光、暗视野2平皿彩色自动成像和自动菌落计数。配有500万像素拍照平板电脑,便于随手拍实现全自动计数菌落,使用更便捷。适合50~180mm倾注、3M纸片、膜滤、涂布、螺旋平皿及相应矩形平板。 万深检测科技为考验创新的自动菌落计数技术有效性,在日常开放式光照环境下,仅用手机拍摄的菌落照片来做全自动计数性能评测。评测对象包括:倾注法、涂布法、螺旋接种法、滤膜、3M测试片培养的各种菌落,包括花形的霉菌菌落,且对纸培养基或滤膜还允许有不同颜色、大小的网格线。 新发布的HiCC-D 型2平皿全自动菌落计数分析仪新款沿用了万深智能化的菌落自动增强技术。自动区分菌落目标与非菌落的背景,是有效进行自动菌落计数的核心点。图1、2、3显示了万深该创新技术对用手机拍摄的菌落照片自动矫正增强效果和自动计数标记结果。 无痕剔除网格及文字技术在HiCC-D 型2平皿全自动菌落计数分析仪也体现得非常完美。3M纸培养基或滤膜上存在的网格线,没影响对菌落的自动计数,其自动计数标记详见下图: 相对于6平皿自动计数分析菌落的万深HiCC-G型而言,HiCC-D 型2平皿扫描成像时间更短、价格也更低,其特别适合乳品行业中自动分类计数带网纹3M纸片培养的极微小菌落。 更多信息,请访问http://www.wseen.com/ProductDetail.aspx?id=25&classid=27 关于万深 万深检测科技www.wseen.com是一家智能化的视觉检测解决方案提供厂家。其HiCC系列全自动菌落计数及抑菌圈测量仪(抗生素药敏效价分析)、AlgaeC藻类浮游动物计数智能鉴定系统、MIA-V显微细胞计数系统、LA-S系列植物图像分析仪(叶面积、叶色、作物冠层、根系、年轮、瓜果分析)、SC系列自动考种分析系统、大米外观品质检测系统、小麦外观品质面粉麸星检测系统、农产品霉变粒检测分析系统,以及高精度LED芯片计数系统等均有明显的可PK优势。网址:www.wseen.com邮箱:hzwseen@163.com电话:0086-0571-81387570,89714590传真:0086-0571-89714590
  • 为你而“莱”,“阔”步向前——LI-COR中国子公司「北京莱阔生物科技有限公司」来啦!
    北京莱阔生物科技有限公司成立于2023年6月1日,是美国LI-COR公司在中国独资设立的直销及售后服务子公司。作为全球领先的生态环境测量仪器制造商,自1971年创立以来,LI-COR公司秉承着“Impact Lives through Science”的使命,持续致力于研发满足科研需求的先进技术,并推出了一系列高附加值的产品。我们的产品涵盖植物光合作用测量、土壤温室气体通量测量、生态系统涡度相关通量测量以及大气温室气体本底浓度测量四大核心领域。这些仪器能够全面满足用户的系统测量需求,为生态学、农学、环境科学、大气科学等多个学科的研究和发展做出了重要贡献。北京莱阔生物科技有限公司将秉承LI-COR公司五十二年的创业理念,竭诚服务中国用户,积极响应国家的“双碳”目标,为国内广大用户提供更高效、更及时的优质服务。从创业之初到现在,LI-COR一直追求卓越创新。LI-COR研发的仪器和相关软件,服务于全球100多个国家,无论是在全球气候变化、温室气体排放、生物地球化学循环,还是在植物环境适应性机制、作物遗传育种等研究领域,都得到了广泛应用。LI-COR的创业之初1967年,比尔从内布拉斯加大学林肯分校(UNL)获得工程学学士学位,随后攻读硕士。当时,洛克菲勒基金会正在资助一些项目,其中有一项是有关研发高产高粱的。这一项目为内布拉斯加大学林肯分校UNL提供了研发经费,支持了包括比尔在内的多位科学家的研究计划。比尔在高产高粱项目中的角色是与其他科学家合作,开发与植物光合作用相关的仪器。比尔设计了一款仪器,用于测量光合有效辐射PAR,相关成果在Journal of Ecology上得到了报道。项目结束后,很多科学家对这款仪器非常感兴趣。于是Bill在1971年正式成立了Lambda仪器公司,专门生产制造这款产品。7年后,公司更名为LI-COR。1973年Lambda 仪器公司办公厂房Lambda 仪器公司早期成员随着业务的展开,LI-COR的环境产品线日益丰富。相关仪器包括光量子传感器、植物气孔仪、光谱辐射计和光合作用测量系统等。另外,随着现代生物研究的迅速发展,LI-COR开始涉足DNA和基因测序技术领域,这最终发展为LI-COR的另一条产品线——生物技术产品线。尽管环境和生物技术产品线各自保持独立,但它们具有共同的测量技术出发点,都是利用电磁辐射与物质之间的相互作用和关系来测量相关参数。LI-COR 环境线产品发展史LI-COR研发的生态环境类仪器在全球范围内被广泛应用于各种研究,包括农学、生态学、植物生理学、植物病理学、全球碳循环和气候变化等。光环境测量比尔的硕士论文专注于开发光环境测量仪器,论文中的很多想法,后来都被应用于1971年推出的LI-185光合有效辐射/太阳总辐射/光照度测量仪上。在当时,光强主要是用尺烛光计(Foot Candle Meters)来测量,这种仪器常被摄影师青睐,测量的是人眼所能感知的光照强度。LI-185光环境测量仪(1971)然而,这种光照度测量对于衡量植物生长所处的光环境并不是特别有用。威斯康星大学的一组研究人员提出,应该使用光量子通量密度来衡量光强大小,即单位时间单位面积上通过的光量子数。使用玻璃滤光片,限定传感器对特定波长的响应:400至700nm。这一波长范围处于植物能吸收利用的光谱范围内。LI-COR公司基于这个全新概念,在1972年推出LI-190光量子传感器。经过不断改进升级,该光量子传感器升级为更方便维护校准的LI-190R型号。LI-190R、LI-200R和LI-210R传感器目前,LI-COR生产的光环境传感器不仅可以在陆地上应用,也可以提供水下光强的测量。整套测量系统包括光合有效辐射传感器(LI-190R、LI-191R、LI-192、LI-193)、太阳总辐射传感器(LI-200R)、可见光照度传感器(LI-210R)和一起联用的读表LI-250A光照计、LI-1500辐射照度测量仪。叶面积测量在20世纪70年代初,LI-COR就开始着手研发叶面积测量仪。第一款LI-3000便携式叶面积仪于1974年问世。LI-3000将一个读数控制台和一个扫描器结合在一起,用于野外便携式非破坏性测量。扫描器在叶片上移动时,读数控制台会记录叶片的面积、长度、平均和最大宽度。LI-3000的独特之处在于它使用脉冲LED作为光源,光电二极管阵列实现了1平方毫米的分辨率。此外,LI-3050透明传送带可以与LI-3000连用,从而可以在实验室内对离体叶片面积进行测量。这两款产品的升级款是LI-3000C和LI-3050C。LI-3000 便携式叶面积仪(1974)为了让叶面积测量更有效率,LI-COR考虑开发一款实验室级别的叶面积仪。研发人员使用了相机镜头和一系列镜片来感知样品宽度。当叶片在荧光光源下移动时,它的图像被三面镜片系统反射到扫描相机上,相机镜头捕获叶片的宽度。长度则由传送带行进速率确定。1976年,这一设计思路首次应用于LI-3100台式面积仪。1987年,另一种非破坏性冠层尺度叶面积测量系统——LAI-2000植被冠层分析仪问世。通过使用“鱼眼”光学传感器进行辐射测量,LAI-2000能获取叶面积指数LAI和其他冠层结构参数。在冠层上方和下方进行的测量,用于确定冠层在5个天顶角上对光的截取情况,根据这些数据,结合冠层辐射传输模型来计算LAI。LAI-2000冠层分析仪(1987)LAI-2200C冠层分析仪(2013)广受好评的LAI-2000在2010年进行了更新,新型号是LAI-2200。三年后,再次升级为LAI-2200C。LAI-2200C集成了GPS模块,能确定太阳位置并进行光散射修正,从而将仪器的使用天气条件扩展到了晴天。LAI-2200C还能将叶面积指数直观呈现在Google Earth地图上,从而可对叶面积指数LAI的空间异质性进行评估。光合作用测量20世纪80年代初,LI-COR开发了一款便携式光合作用测量系统LI-6000。这款仪器的原型类似于乐器风笛,也是当时最早的便携式光合作用测量系统之一。LI-6000便携式光合作用测量系统在开发这款产品时所面临的技术上的挑战,LI-COR的科学家和工程师们,都找到了创新的解决方法,但唯独有一个问题无法解决:在当时,没有公司能生产出高品质光合作用测量系统所需的红外CO2和H2O气体分析仪。这种红外气体分析仪需要性能稳定,并且体积要小。于是,LI-COR开始着手开发红外气体分析仪。最终,研发出的红外气体分析仪被用于第二代LI-6200光合作用测量系统中。在LI-6200的成功基础上,LI-COR着手开发它的升级款——LI-6400便携式光合作用测量系统。LI-6400的问世,标志着现代光合作用测量系统的设计理念付诸实践:CO2和H2O分析仪从主机内转移到叶室头部,减小了由于分析仪和叶室分离造成的H2O测量误差,从而使叶片蒸腾速率以及与之相关的气孔导度、胞间二氧化碳浓度数据更为准确可靠。LI-6400XT便携式光合作用测量系统LI-6400的配件丰富,能够满足各种测量场景,并使科学家们能够获得全新的植物生理学参数。LI-6400后来升级为LI-6400XT,这也是目前在学术期刊上引用最多的光合作用测量系统。2016年,LI-COR发布了LI-6800高级光合荧光测量系统,该系统具备测量光合气体交换、脉冲调制式叶绿素荧光以及快速荧光诱导动力学曲线OJIP的能力。LI-6800的红外气体分析仪测量精准度更高、光源均匀性更好。此外,全新的气路设计、强大的环境控制能力,结合触摸屏界面,该系统能为用户提供实时的智能反馈与操作指导。LI-6800高级光合荧光测量系统(2016)其具备的全量程预先匹配功能Range Matching,显著节省了测量时间;动态同化测量技术Dynamic AssimilationTM,让二氧化碳响应曲线的测量时间缩短至5min;基于Python语言开发的Background Program预编程功能,帮用户实现了完全自定义的测量程序。所有这些创新,构建了LI-6800友好、实用的用户体验,为光合气体交换和叶绿素荧光测量仪器树立了全新的行业标准。LI-600N针叶/小叶气孔导度-荧光测量仪(2023)为丰富当前的植物生理测量产品线,LI-COR于2020年推出LI-600荧光-气孔测量仪。LI-600是一款紧凑便携的手持设备,可在5-15秒内进行叶片气孔导度和叶绿素a荧光的准确测量。2023年,为解决针叶/小叶气孔导度测量困难的问题,LI-COR推出LI-600N针叶/小叶气孔导度-荧光测量仪,这也是一款开路式准确测量针叶、小型叶片(包括草类叶片)气孔导度和叶绿素荧光的仪器。LI-600/LI-600N与LI-6800的不同之处在于,LI-600/LI-600N在测量过程中不改变任何环境条件,如光照强度、叶片周围CO2浓度等,能够真实反映叶片在当前环境下的气孔导度状态。LI-COR经典的红外气体分析仪在20世纪80年代末,LI-COR推出了LI-6251。这是一款单独的CO2分析仪,也是LI-COR设定红外气体分析仪测量标准后推出的第一代产品。LI-6251 CO2分析仪, LI-6252 CO2 分析仪,LI-6262 CO2/H2O 分析仪之后,在大气科学、生态学、海洋科学等领域,LI-COR红外气体分析仪被广泛使用。1999年推出LI-7500开路式CO2/H2O分析仪。一年后推出LI-7000高精度闭路式CO2/H2O分析仪。2010年将LI-7500升级为LI-7500A,开始支持冬季(5℃)和夏季(30℃)两种温度模式。在寒冷季节,5℃工作模式不仅降低了功耗,而且极大减小了仪器加热对观测的影响。LI-7500开路式CO2/H2O分析仪(1999)同年,LI-COR发布了LI-7200,这是一款紧凑型闭路式CO2/H2O分析仪,能耗较低,特别适合在恶劣的气象条件下(如多雨)使用。LI-7200进气管路短,减少了频率衰减;另外高频测量进气温度和压强,直接计算气体摩尔混合比。2016年,LI-7500A和LI-7200分别升级为LI-7500RS和LI-7200RS,适合雾霾严重的测量环境;随后LI-7500RS再次升级为LI-7500DS。LI-7200闭路式CO2/H2O分析仪(2010)LI-7500和LI-7200系列CO2/H2O分析仪有别于其他仪器的特点在于:对红外线发射源与检测器端都进行有效的温控,从而确保测量不受环境温度波动的影响。涡度相关通量测量系统LI-7500和LI-7200系列气体分析仪的成功研发,让LI-COR步入了涡度相关通量测量领域。涡度相关通量测量技术是一种在生态系统尺度广泛使用的直接测量方法,用于量化地表和大气之间的气体(如CO2、H2O和CH4)以及能量交换。LI-COR提供了一整套完整的解决方案来测量通量:从原始数据采集,到通量数据初步运算,再到通量数据可视化,包括数据插补、能量闭合分析、FootPrint成图显示等。LI-COR开路涡度相关通量测量系统2009年,LI-COR推出了LI-7700开路式CH4分析仪,这是一款用于涡度相关研究的开路式CH4分析仪。2010年,研发成果以“ A new low-power, open-path instrument for measuring methane flux by eddy covariance.”为标题,发表在Applied Physics B: Lasers and Optics期刊上。2013年,LI-COR公司发布了EddyPro软件,用于处理涡度协方差通量原始数据。截至目前,该软件下载量超过5000次,涉及国家176个,文献引用超400次。EddyPro软件已经成为欧洲综合碳观测系统ICOS、美洲通量网AmeriFlux以及中国生态系统研究网络CERN处理通量原始数据的标准软件(Standard Software)。享誉全球的EddyPro软件(2013)2015年,LI-COR开发出FluxSuite智慧云平台,它为研究者提供了一种在线访问涡度相关通量站点的方式,研究人员可以实时查看涡度相关通量站点的数据结果和系统状态。FluxSuite智慧云平台(2015)2018年,EddyPro研发团队与世界众多科学家一道,带来了深入处理通量数据软件——Tovi。该软件内置了已被学术界广泛认可的相关算法,通过简单的点击按钮,轻松实现通量贡献区FootPrint成图,气象和通量缺失数据插补,u *阈值检测和QC筛选等。Tovi提供了一个直观、可视化的操作界面来指导用户完成数据分析,无需编程,用户就能更有效率的处理通量数据,数据结果精美,可直接用于发表论文。通量数据深入处理软件Tovi(2018)土壤温室气体通量测量土壤温室气体通量一直是全球变化研究的热点。为此,LI-COR研发出经典的LI-8100土壤CO2/H2O通量自动测量系统。该系统在最大程度上减少对自然土壤微气候环境扰动的同时,实现了高精准度土壤CO2/H2O通量测量。该系统不但可以进行短期调查式测量,还可以进行长期无人值守式测量。2010年,LI-COR将此系统升级为LI-8100A,开始支持以太网的连接。在这套系统使用的观测方法以及科学理论,成为了如今土壤温室气体通量观测领域的「教科书」。LI-8100A土壤CO2/H2O通量自动测量系统(2010)为满足长期测量的需求,LI-COR研发出LI-8150多通道土壤温室气体通量测量系统,该系统能连接16个长期测量室。根据实验需要,这些测量室可以是不透明的,如8100-104;也可以是透明的,如8100-104C。这些测量室的严谨设计,最大限度地减少了测量仪器自身对自然状态下温室气体通量的扰动。2020年,这三款仪器升级发布为LI-8250、8200-104和8200-104C。LI-8250土壤CO2/CH4/N2O/H2O通量测量系统(2020)为了满足科研对多参数温室气体通量的测量需求,LI-COR发展出一条全新的基于激光测量技术的产品线。这条产品线上的产品包括:LI-7810便携式高精度 CH4/CO2/H2O气体分析仪(2018)、LI-7815 便携式高精度CO2/H2O气体分析仪(2018)、LI-7820便携式高精度 N2O/H2O气体分析仪(2020)、LI-7825便携式高精度CO2同位素/NH3分析仪(2023)。这些基于光反馈-腔增强激光吸收光谱技术研发出的新型气体分析仪,测量精度高、功耗低、轻量便携,非常适合部署在野外,用于土壤温室气体通量的测量。LI-7825高精度CO2同位素/NH3分析仪(2023)与此同时,专业的SoilFluxProTM软件,能够在土壤温室气体通量数据采集后,实现通量数据的重计算和成图显示等功能。大气温室气体浓度测量近年来,全球温室气体排放备受关注,研究者们急需能在野外和室内进行高精准度温室气体测量的仪器。LI-COR也继续在成熟的红外气体分析技术的基础上,使用了全新的激光测量技术:光反馈-腔增强激光吸收光谱测量技术。以上文提到的LI-7810便携式高精度 CH4/CO2/H2O气体分析仪、LI-7815 便携式高精度CO2/H2O气体分析仪、LI-7820便携式高精度 N2O/H2O气体分析仪为代表,真正实现了温室气体测量从室内走向野外的转变。LI-7810便携式高精度CH4/CO2/H2O分析仪(2018)大气温室气体的测量方向主要有两个,一个是面向大气本底浓度的测量,一个是对近地表不同环境的测量。对大气温室气体浓度的本底监测,需要仪器符合世界气象组织/全球大气观测计划(WMO/GAW)规定的测量精准度。LI-COR研发的新型温室气体分析仪,采用先进的光反馈-腔增强激光吸收光谱技术(OF-CEAS),高精准度测量大气中的CO2、CH4和N2O浓度。光反馈-腔增强激光吸收光谱技术(OF-CEAS)2020年,LI-7810和LI-7815分析仪通过了欧洲综合碳观测系统(ICOS)标准评估。该测试由第三方专业学术机构法国国家科学研究中心气候与环境科学实验室(LSCE)承担。另外,加利福尼亚大学斯克里普斯海洋研究所的大气研究人员,参照世界气象组织/全球大气观测计划WMO/GAW 实验室间测量兼容性目标,通过一系列实验,评估了这两款仪器的性能。数据结果显示,LI-7810和LI-7815适用于大气CH4和CO2的本底浓度监测。同年,研究者们把LI-7810和LI-7815部署在了爱尔兰的梅斯黑德大气研究站,并定期向欧洲综合碳观测系统(ICOS)和世界气象组织/全球大气观测计划(WMO/GAW)网络报告数据。A 梅斯黑德大气研究站;B LI-7810和LI-7815气体分析仪;C是气体样品测量气路和校准装置。A图由Gavin Kelly拍摄,版权所有 Colin O'Dowd,LI-COR有转载授权(2020)机载高精度CH4/CO2温室气体测量平台(2022,天津飞眼拍摄)对近地表不同环境温室气体浓度的测量,是目前一个新的发展趋势。LI-COR研发的系列激光气体分析仪,整机轻至10.5kg;功耗仅为22W(锂电续航8小时以上);测量响应时间2s;能够在零下25℃至零上45℃温度内正常工作。这些卓越的性能特点,摆脱了传统激光气体分析仪体积庞大、沉重、高功耗、响应时间慢及无法在零下环境中使用的束缚,极大拓展了其应用场景。回顾与展望LI-COR Biosciences成立于1971年,从创业之初就一直秉承“Impacting Lives through Science”的理念。从美国内布拉斯加州林肯,到德国巴德洪堡、英国剑桥、中国北京,LI-COR员工已经超过330人。LI-COR在发展过程中,曾获得多个奖项。包括林肯商会年度制造商奖、R&D 100奖、Quantum Workplace杰出员工参与度奖、内布拉斯加州年度出口商奖、Frost and Sullivan新产品奖、国际扶轮社致敬企业奖、内布拉斯加州商务发展委员会创新年度企业奖以及州长生物科学奖等。在2021年,联合创始人比尔和伊莲比格斯被列入内布拉斯加州商业名人堂。2021年,格雷格比格斯(Greg Biggs)退休,汤姆雷斯勒维克(Tom Reslewic)接掌成为新任首席执行官。2023年6月,LI-COR海外分公司——北京莱阔生物科技有限公司正式成立,这是LI-COR在全球化发展过程中的重要里程碑。展望未来,LI-COR将深入扎根中国市场。我们将与众多合作伙伴携手,共同推动技术创新和测量解决方案本土化发展,助力国家的“双碳”目标,为越来越多的国内用户提供更优质、便捷的产品与服务!
  • 11月份有154个与检测相关的国家标准将实施
    11月份有154个与检测相关的国家标准将实施金秋桂飘香,11月份将要实施的仪器及检测行业相关的标准又有哪些呢?让我们一起随着小编来梳理一番吧。本期我们梳理出有154个标准将在11月份实施,涉及多个行业领域,其中机械、石油化工塑料、金属矿产、电力、食品农业新实施的标准比较多。11月份即将实施的标准如下,需要的可以收藏。点击链接即可下载收藏↓化妆品标准GB/T 39999-2021 化妆品中恩诺沙星等15种禁用喹诺酮类抗生素的测定 液相色谱-串联质谱法 GB/T 39993-2021 化妆品中限用防腐剂二甲基噁唑烷、7-乙基双环噁唑烷和5-溴-5-硝基-1,3-二噁烷的测定 食品农业标准GB/T 39991-2021 感官分析 橄榄油品评杯使用要求 GB/T 3883.209-2021 手持式、可移式电动工具和园林工具的安全 第209部分:手持式攻丝机和套丝机的专用要求 GB/T 40003-2021 感官分析 葡萄酒品评杯使用要求 GB/T 40076-2021 农业灌溉设备 过滤器 过滤等级验证 GB/T 6232-2021 农林拖拉机和机械 车轮在轮毂上安装尺寸 GB/T 40039-2021 土壤水分遥感产品真实性检验 GB/T 40038-2021 植被指数遥感产品真实性检验 GB/T 40034-2021 叶面积指数遥感产品真实性检验GB/T 39992-2021 感官分析 方法学 平衡不完全区组设计 GB/T 39914-2021 主要农作物品种真实性和纯度SSR分子标记检测 玉米 GB/T 39917-2021 主要农作物品种真实性和纯度SSR分子标记检测 稻 GB/T 40001-2021 食品包装评价技术通则 GB/T 27021.9-2021 合格评定 管理体系审核认证机构要求 第9部分:反贿赂管理体系审核与认证能力要求 环境标准GB/T 24674-2021 污水污物潜水电泵 GB/T 39986-2021 泵 试验 污水和类似应用的潜水搅拌器 GB/T 6165-2021 高效空气过滤器性能试验方法 效率和阻力 冶金标准GB/T 40084-2021 钢铁行业能源管理绩效评价指南 机械标准GB/T 40072-2021 潜水器金属框架强度试验方法 GB/T 25217.8-2021 冲击地压测定、监测与防治方法 第8部分:电磁辐射监测方法 GB/T 39982-2021 水润滑径向滑动轴承 承载能力测试方法 GB/T 12243-2021 弹簧直接载荷式安全阀 GB/T 40011-2021 低温先导式安全阀 GB/T 39983-2021 滚珠圆弧导轨副 验收技术条件 GB/T 19924-2021 流动式起重机 稳定性的确定 GB/T 2877.2-2021 液压二通盖板式插装阀 第2部分:安装连接尺寸 GB/T 3480.3-2021 直齿轮和斜齿轮承载能力计算 第3部分:轮齿弯曲强度计算 GB/T 40077-2021 往复式容积泵和泵装置 技术要求 GB/T 40078-2021 轮式拖拉机燃油经济性 评价指标 GB/T 40079-2021 阀门逸散性试验分类和鉴定程序 GB/T 40024-2021 实验室仪器及设备 分类方法 GB/T 40048-2021 木质结构材螺栓连接力学性能测试方法 GB/T 26077-2021 金属材料 疲劳试验 轴向应变控制方法 GB/T 24596-2021 球墨铸铁管和管件 聚氨酯涂层 GB/T 40080-2021 钢管无损检测 用于确认无缝和焊接钢管(埋弧焊除外)水压密实性的自动电磁检测方法 GB/T 11640-2021 铝合金无缝气瓶 GB/T 26667-2021 电磁屏蔽材料术语 GB/T 3093-2021 柴油机用高压无缝钢管GB/T 8361-2021 冷拉圆钢表面超声检测方法 GB/T 40013-2021 服务机器人 电气安全要求及测试方法GB/T 40073-2021 潜水器金属耐压壳外压强度试验方法 GB/T 39980-2021 机械式停车设备 设计规范 GB/T 39994-2021 聚烯烃管道中六种金属元素(铁、钙、镁、锌、钛、铜)的测定 GB/T 39704-2020 真空绝热板有效导热系数的测定 GB/T 39709-2020 动车组玻璃、车窗耐静压及车窗密封性能试验方法 GB/T 39710-2020 电动汽车充电桩壳体用聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)专用料 GB/T 39705-2020 轨道交通用道床隔振垫 GB/T 29042-2020 汽车轮胎滚动阻力限值和等级 GB/T 39548-2020 真空绝热板湿热条件下热阻保留率的测定 GB/T 39702-2020 汽车轮胎力和力矩试验方法 石油、化工塑料标准GB/T 40169-2021 超高分子量聚乙烯(PE-UHMW)和高密度聚乙烯(PE-HD)模塑板材 GB/T 40009-2021 废轮胎、废橡胶热裂解技术规范 GB/T 39995-2021 甾醇类物质的测定 GB/T 40029-2021 液化天然气储罐用预应力钢绞线 GB/T 40062-2021 变性燃料乙醇和燃料乙醇中总无机氯的测定方法 离子色谱法 GB/T 6809.12-2021 往复式内燃机 零部件和系统术语 第12部分:排放控制系统 GB/T 40089-2021 石油和天然气工业用钢丝绳 最低要求和验收条件 GB/T 39998-2021 纸、纸板和纸制品 烷基苯酚聚氧乙烯醚类的测定 高效液相色谱质谱法 GB/T 17744-2020 石油天然气工业 钻井和修井设备 GB/T 39691-2020 塑料 折光率的测定 GB/T 39694-2020 氢化丙烯腈-丁二烯橡胶(HNBR) 通用规范和评价方法 GB/T 39692-2020 硫化橡胶或热塑性橡胶 低温试验 概述与指南 GB/T 39697.2-2020 橡胶或塑料包覆辊 规范 第2部分:表面特性GB/T 39693.6-2020 硫化橡胶或热塑性橡胶 硬度的测定 第6部分:IRHD法测定胶辊的表观硬度GB/T 39695-2020 橡胶烟气中挥发性成分的鉴定 热脱附-气相色谱-质谱法GB/T 39697.1-2020 橡胶或塑料包覆辊 规范 第1部分:硬度要求GB/T 39530-2020 热喷涂 纳米氧化锆粉末及涂层制备工艺技术条件 GB/T 39699-2020 橡胶 聚合物的鉴定 裂解气相色谱-质谱法GB/T 39544-2020 浓缩天然胶乳 总磷酸盐含量的测定 分光光度法矿业标准GB/T 13449-2021 金块矿取样和制样方法 GB/T 9966.15-2021 天然石材试验方法 第15部分:耐盐雾老化强度测定 GB/T 9966.14-2021 天然石材试验方法 第14部分:耐断裂能量的测定 GB/T 8151.24-2021 锌精矿化学分析方法 第24部分:可溶性锌含量的测定 火焰原子吸收光谱法 GB/T 9966.17-2021 天然石材试验方法 第17部分:盐结晶强度的测定 GB/T 9966.12-2021 天然石材试验方法 第12部分:静态弹性模数的测定 GB/T 9966.10-2021 天然石材试验方法 第10部分:挂件组合单元抗震性能的测定 GB/T 19346.3-2021 非晶纳米晶合金测试方法 第3部分:铁基非晶单片试样交流磁性能 GB/T 9790-2021 金属材料 金属及其他无机覆盖层的维氏和努氏显微硬度试验 GB/T 39952-2021 二氧化钛基光催化分散液GB/T 11066.11-2021 金化学分析方法 第11部分:镁、铬、锰、铁、镍、铜、钯、银、锡、锑、铅和铋含量的测定 电感耦合等离子体质谱法 GB/T 9966.16-2021 天然石材试验方法 第16部分:线性热膨胀系数的测定 GB/T 9966.18-2021 天然石材试验方法 第18部分:岩相分析 GB/T 39996-2021 烟花爆竹 烟火药发热量的测定 GB/T 39701-2020 粉煤灰中铵离子含量的限量及检验方法 GB/T 39708-2020 三氟化硼 GB/T 39706-2020 石膏中SO42-溶出速率、溶出量的测定方法 GB/T 39527-2020 实体面材产品中钙、铝、硅元素含量的测定 化学分析法 GB/T 39700-2020 硼泥处理处置方法 GB/T 39696-2020 精细陶瓷粉末流动性测定 标准漏斗法GB/T 39703-2020 波纹板式脱硝催化剂检测技术规范 纺织标准GB/T 39973-2021 纺织行业能源管理体系实施指南 医疗生物标准GB/T 40002-2021 牙膏对口腔硬组织的安全评价 GB/T 40049-2021 鸡肠炎沙门氏菌PCR检测方法 GB/T 39920-2021 蛙病毒感染检疫技术规范 GB/T 18642-2021 旋毛虫诊断技术 GB/T 18643-2021 鸡马立克氏病诊断技术 GB/T 37036.4-2021 信息技术 移动设备生物特征识别 第4部分:虹膜 电力标准GB/T 8897.1-2021 原电池 第1部分:总则GB/T 8897.2-2021 原电池 第2部分:外形尺寸和电性能GB/T 8897.3-2021 原电池 第3部分:手表电池 GB/T 40025-2021 24GHz车辆无线电设备射频技术要求及测试方法 GB/T 17215.321-2021 电测量设备(交流) 特殊要求 第21部分:静止式有功电能表 (A级、B级、C级、D级和E级) GB/T 17651.1-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第1部分:试验装置 GB/T 40032-2021 电动汽车换电安全要求 GB/T 2900.36-2021 电工术语 电力牵引GB/T 17215.211-2021 电测量设备(交流) 通用要求、试验和试验条件 第11部分:测量设备 GB/T 33351.2-2021 电子电气产品中砷、铍、锑的测定 第2部分:电感耦合等离子体发射光谱法 GB/T 40031-2021 电子电气产品中多氯化萘的测定 气相色谱-质谱法 GB/T 40030-2021 电子电气产品中中链氯化石蜡的检测方法 GB/T 24202-2021 光缆增强用碳素钢丝 GB/T 40082-2021 风力发电机组 传动链地面测试技术规范 GB/T 7424.22-2021 光缆总规范 第22部分:光缆基本试验方法 环境性能试验方法 GB/T 15972.20-2021 光纤试验方法规范 第20部分:尺寸参数的测量方法和试验程序 光纤几何参数 GB/T 15972.43-2021 光纤试验方法规范 第43部分:传输特性的测量方法和试验程序 数值孔径 GB 24427-2021 锌负极原电池汞镉铅含量的限制要求 GB/T 15972.30-2021 光纤试验方法规范 第30部分:机械性能的测量方法和试验程序 光纤筛选试验 GB/T 15972.41-2021 光纤试验方法规范 第41部分:传输特性的测量方法和试验程序 带宽 GB/T 15972.34-2021 光纤试验方法规范 第34部分:机械性能的测量方法和试验程序 光纤翘曲 GB/T 15972.45-2021 光纤试验方法规范 第45部分:传输特性的测量方法和试验程序 模场直径 GB/T 17651.2-2021 电缆或光缆在特定条件下燃烧的烟密度测定 第2部分:试验程序和要求 GB/T 15972.54-2021 光纤试验方法规范 第54部分:环境性能的测量方法和试验程序 伽玛辐照 GB/T 15972.10-2021 光纤试验方法规范 第10部分:测量方法和试验程序 总则 GB/T 16895.32-2021 低压电气装置 第7-712部分:特殊装置或场所的要求 太阳能光伏(PV)电源系统 GB/T 17650.1-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第1部分:卤酸气体总量的测定 GB/T 17650.2-2021 取自电缆或光缆的材料燃烧时释出气体的试验方法 第2部分:酸度(用pH测量)和电导率的测定 GB/T 39950-2021 LED灯用氧化铝陶瓷散热元件GB/T 7424.20-2021 光缆总规范 第20部分:光缆基本试验方法 总则和定义 建材标准GB/T 40083-2021 建筑材料行业能耗在线监测技术要求 GB/T 39712-2020 快速施工用海工硫铝酸盐水泥GB/T 39711-2020 海洋工程用硫铝酸盐水泥修补胶结料 GB/T 39526-2020 建筑幕墙空气声隔声性能分级及检测方法 GB/T 39528-2020 建筑幕墙面板抗地震脱落检测方法 GB/T 39525-2020 玻璃幕墙面板牢固度检测方法 其他标准GB/T 40151-2021 安全与韧性 应急管理 能力评估指南 GB/T 40063-2021 工业企业能源管控中心建设指南 GB/T 14909-2021 能量系统 分析技术导则 GB/T 40008.1-2021 热水制备系统绩效评价与计算方法 第1部分:户用及类似用途热水制备系统 GB/T 40046-2021 设施管理 质量评价指南 GB/T 40045-2021 氢能汽车用燃料 液氢 GB/T 31016-2021 样品采集与处理移动实验室通用技术规范 GB/T 40060-2021 液氢贮存和运输技术要求 GB/T 40061-2021 液氢生产系统技术规范 GB/T 13297-2021 精密合金包装、标志和质量证明书的一般规定 GB/T 40033-2021 地表蒸散发遥感产品真实性检验 GB/T 39755.2-2021 电子文件管理能力体系 第2部分:评估规范 GB/T 39663-2021 检验检测机构诚信报告编制规范 GB/T 39652.4-2021 危险货物运输应急救援指南 第4部分:遇水反应产生毒性气体的物质目录 GB/T 40012-2021 个性化定制 分类指南 GB/T 39919-2021 出境集装箱植物检疫规程 GB/T 39652.3-2021 危险货物运输应急救援指南 第3部分:救援距离 GB/T 39652.1-2021 危险货物运输应急救援指南 第1部分:一般规定 GB/T 39916-2021 进出境集装箱场站植物检疫防疫体系建立指南 GB/T 27021.10-2021 合格评定 管理体系审核认证机构要求 第10部分:职业健康安全管理体系审核与认证能力要求 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓扫码到APP免费下载目前仪器信息网资料库 有近70万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有近20万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 芬兰SPECIM机载全光谱遥感系统AisaFENIX1K为林火监测做出重要贡献
    森林火灾是一种危害大的自然灾害,是森林扰动的主要类型之一,直接影响森林生态系统结构、碳循环甚至全球气候的变化。近年来,航空平台和传感器的技术进步有效地提升了机载遥感系统探测和监测森林火灾的能力,推动了机载遥感在森林可燃物调查及载量评估、火险测报预测、火场态势及火情监测、灾害损失评估以及火烧迹地生态修复治理等方面的应用。本文将主要介绍中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy (即芬兰SPECIM AisaFENIX1K机载光学全谱段遥感系统)和如何利用系统所采集的多源遥感数据即正射影像、冠层高度模型、高光谱影像、热红外影像,分析其在森林火灾监测评价中的潜力,并以四川省西昌市“3.30 森林火灾”作为该系统火后灾情遥感调查和灾情评估应用示例,表明该系统可有效分析森林火灾的灾情信息、火场及火环境参数,可为预防、预报预警、扑救指挥、灾害评估和生态修复提供支持。中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy (即芬兰SPECIM AisaFENIX1K机载光学全谱段遥感系统),是由芬兰SPECIM公司针对中国林业科学院光学全谱段地空综合森林观测系统及动态数据驱动森林火场全息模拟科研平台定制产品,共包含5个传感器:AisaFENIX1K全光谱高光谱相机、激光雷达、中波热像仪、长波热像仪以及高精度惯导系统,如图1所示。这套系统也是上套可同时采集380-2500 nm高光谱以及中长波热红外数据的航空机载系统,将获取用于林火监测预警、森林参数估测的温度场影像和高光谱影像以及相匹配的数字地面模型,为我国森林防火预警做出重要贡献。图1 CAF-LiTCHy即芬兰SPECIM AisaFENIX1K机载遥感观测系统此次研究的数据采集主要是针对2020-03-30发生森林火灾的泸山风景区,在明火全部扑灭后,完成航飞采集任务。该地区的乔林木主要以云南松为主,零星分布少量赤桉、杨树和栎树,林下有马桑、杜鹃、坡柳等灌木,以及黄茅、草、 莎草、 紫 茎 泽 兰等地被物。在春末干燥高温环境下,易于发生森林火灾,数据如图2所示。(a)CCD 影像(b)高光谱假彩色图像图2 西昌森林过火区机载高光谱数据结合高空间分辨率的机载 CCD 影像以及相关研究 (Lentile 等,2006; Veraverbeke 等, 2012;Meng 等,2017),将本次西昌森林火灾的林火烈度分为未过火、轻度过火、中度过火以及重度过火等4个等。对于单株林木的林火烈度判读标准如下:(1) 未过火:冠层为绿色且保持原本形状,枝叶结构未见火烧痕迹;(2) 轻度过火:树冠未全部被烧,绿色冠层占比 70% 及以上;(3) 中度过火:树冠的枝叶多数被烧黄或烧毁,绿色冠层占比 25%—70%;(4) 重度过火:树冠全部被烧,裸露出烧焦的黑色树干,绿色冠层占比 25% 及以下。图3(a)、(b)分别展示了不同林火烈度的高分辨率机载CCD影像和高光谱影像,不同林火烈度的区域在真彩色和假彩色显示影像中均可明显区分,尤其在中度和重度过火区。(a) 不同烈火程度的CCD影像(b) 不同林火烈度的高光谱影像(R = 887.07 nm,G = 668.89 nm,B = 580.26 nm)图3 不同烈火程度的CCD影像和高光谱影像图4展示了机载高光谱影像中火烧迹地、正常冠层、中度过火冠层、水体、裸土、柏油路的光谱曲线特征的光谱特征的变化,以此作为高光谱数据用于过火区森林冠层评估的理论依据,从该图中可以明显地观察到,相较于未过火的正常冠层,中度过火冠层由于叶片由绿变焦黄、叶绿素丧失,导致蓝、红光的吸收作用减弱,同时由于火烧导致叶片细胞结构发生变化,其叶片在800 nm—1100 nm 的反射峰明显削弱,另外叶片含水量的降低导致其在 1450 nm、1950 nm 的吸收率降低,反射率升高。此外,重度过火区的树木已成碳灰状,使得该火烧灰烬区域在 400 nm—2500 nm区间内的反射率在 0.1 附近。由此可见,过火区不同典型地物的光谱曲线反映了本次采集和处理后的机载高光谱数据具备有效刻画地物光谱特性的能力,对确定过火区的林木冠层受害程度以及估测森林火灾受害面积具有重要的理论依据。图4机载高光谱数据典型地物光谱曲线其次高光谱影像以及其波段衍生的指数可以在空间上更有效地反映林火烈度,结合Haboudane 等(2008)和Huesca 等(2013)的研究结果,利用高光谱数据的优窄波段信息分别计算了修正型土壤调节植被指数 (MSAVI)]和归一化燃烧率指数 (NBR),本文选取机载高光谱影像的673.34 nm(红 光 波 段)、804.22 nm(近红外波段)以及2132.65 nm (短波红外波段)的反射率来计算MSAVI与NBR,如图5所示。在未过火区,MSAVI和NBR 均较高;在重度过火区,MSAVI 和 NBR 均较低。同时,结合CCD影像的林火烈度标准的目视判读结果,利用阈值划分法对 NBR 进行林火烈度划分。图 5(d)展示了该区域林火烈度的空间分布,其中房屋、道路和裸地等非植被区也被归类为重度过火区域,在进一步的分析中可以结合分类结果或光谱特征进行剔除。由上述结果可见,利用高光谱数据及其衍生产品能在一定程度上反映此次森林火灾的受害程度,生成的林火烈度图在空间上与林内实际过火状况表现出很好的一致性。(a)机载高光谱影像 (b)修正型土壤调节植被指数 (c)归一化燃烧率指数 (d)林火烈度中国林业科学研究院机载光学全谱段遥感系统 CAF-LiTCHy集成了激光雷达扫描仪、热红外相机、CCD 相机、高光谱传感器等 4 种对地观测传感器,可同时获取观测区域内地物的垂直和水平结构、光谱以及温度等信息,其中,CCD 相机和高光谱相机具备对地物类型、植被状态 (树木冠幅、植被长势、水分含量、叶面积指数等)、火灾损失程度等灾情信息观测能力,其影像可用于地物类型识别、植被参数提取、火烧迹地识别、以及灾情评估等,从而为火行为预报模型提供的可燃物及环境参数。 参考文献:[1]. 庞勇,荚文,覃先林,斯林,梁晓军,林鑫,李增元 .2020. 机载光学全谱段遥感林火监测 . 遥感学报,24(10):1280-1292[2]. Pang Y,Jia W,Qin X L,Si L,Liang X J,Lin X and Li Z Y. 2020. Forest fire monitoring using airborne optical fullspectrum remote sensing data. Journal of Remote Sensing(Chinese),24(10):1280-1292[DOI:10.11834/jrs.20200290] 公司背景:芬兰SPECIM公司是上早制作商用高光谱相机的厂商,从1995年至今已有二十余年的生产历史,累计有5000余套设备应用于全球各个领域,其产品拥有优异的数据质量。AISA 航空高光谱相机系列是针对航空和国防应用开发的专业解决方案,涵盖VNIR (380-1000 nm), SWIR (1000-2500 nm) 和用于热成像的LWIR (7.6-12.4um) 光谱范围。产品包括:AisaKESTREL系列—高端无人机载高光谱相机、AisaIBIS—超光谱植物荧光探测高光谱相机、AisaFENIX系列—全光谱(400-2500nm)采集高光谱相机、AisaOWL—热红外(7.5-12.5um)高光谱相机。其高光谱传感器无与伦比的性能,使ASIA系统成为在航空高光谱领域的佼佼者,已有近100套系统在全球范围内使用。Quantum量子科学仪器贸易(北京)有限公司作为芬兰SPECIM公司的中国区的官方代理,将竭诚为新老客户服务。
  • 我国构建全新全球大宗作物遥感定量监测体系
    由中国科学院遥感与数字地球研究所承担的地球观测与导航技术领域&ldquo 星机地综合定量遥感系统与应用示范&rdquo 重大项目&ldquo 全球大宗作物遥感定量监测关键技术&rdquo 课题已完成95%的专用信息产品反演方法及产品生产,构建了全新的全球大宗作物遥感定量监测体系,并首次面向全球发布中英文双语《全球农情遥感速报》,为国际社会提供了粮食生产形势信息获取途径。该课题2013年12月25日顺利通过科技部国家遥感中心组织的中期检查。  据介绍,在充分利用国产气象卫星(FY-2/3)与环境卫星(HJ-1)遥感数据的基础上,该课题组自主研发了一系列作物遥感监测指标与评估方法,其中部分指标首次用于全球农情评估,构建了全新的多层次、多指标的全球大宗作物遥感监测技术体系,相关成果已纳入科技部推动的全球生态环境遥感监测年度报告体系,并于2013年11月20日面向全球发布了中英文版本的《全球农情遥感速报》。英文版《全球农情遥感速报》是中国首次面向全球发布的全球农情监测信息。  该课题是863计划重大项目&ldquo 星机地综合定量遥感系统与应用示范&rdquo 课题之一,在项目整体攻克星地协同观测与卫星组网、多尺度时空遥感数据快速定量流程化处理以及综合定量遥感产品生成等关键技术的基础上,开展大宗作物遥感定量监测专用信息产品研发和面向全球尺度的作物种植面积、产量遥感监测技术研究,形成独立、快速的全球大宗作物(小麦、玉米、水稻、大豆)种植面积和产量定量遥感监测技术体系,满足面向粮食等战略资源的全球监测和粮食安全战略需求。
  • 农业生产情况的遥感监测:机遇与挑战
    利用遥感方法,可以对地面上的农作物生长情况进行及时、准确的监测和分析。所获得的作物信息有助于粮食安全早期预警,为作物种植管理和贸易决策提供有效支撑。然而在技术层面上,如何用定量和客观的方法来提升农情监测信息的可靠性,仍然极富挑战。在近期发表于《国家科学评论》(National Science Review, NSR)的综述文章中,中国科学院空天信息创新研究院、对地观测组织全球农业监测旗舰计划(GEOGLAM)联合主席吴炳方研究员团队(以下简称CropWatch团队),联合澳大利亚昆士兰大学、比利时法兰德斯技术研究院、美国内布拉斯加大学和俄罗斯科学院空间研究所的相关研究人员系统总结了遥感农情监测中作物长势、面积、产量等信息的监测方法,分析其中存在的问题和挑战,提出了提升农情信息定量化的实现途径和解决地面数据制约农情监测的众源数据方案,并主张发布农情信息需要避免利益冲突。监测作物长势在现有的农情监测系统中,常使用植被指数来评价大区域尺度下作物的综合生长活力,并通过对植被指数当前值与历史值的差异比较,来评价作物长势的好坏。然而,年际间的物候变化、作物轮作休耕现象,以及植被指数饱和等问题,均会导致作物长势监测信息的偏差。因此,作者指出,在作物长势监测时,需要结合物候差异、轮作和休耕等信息对作物长势信息进行订正,以降低作物长势监测的不确定性。另一方面,如何将遥感监测得到的长势信息转化为作物的苗情等级,还缺乏统一的标准,作物长势评估的定量化方法也尚待建立。监测胁迫信息干旱、病虫害等胁迫因素会影响作物的生长,对其进行监测有利于及时发出预警和指导农业生产管理。在旱情监测领域,目前用于气象干旱和农业干旱监测的指标不胜枚举,但是部分旱情指数混淆了气象干旱和农业干旱的表征意义——事实上,通过适当的农田管理措施,如灌溉等,可有效缓解气象干旱对农作物的影响,将二者混淆不利于对真实旱情的把握。因此,对于气象干旱和农业干旱,需要研制不同的监测指标。另一方面,干旱指标划分的旱情严重程度与作物实际受旱程度存在偏差,如何将干旱指数反映的旱情转化为作物的实际受旱程度还缺乏统一的标准。在病虫害监测方面,虽然已有众多遥感指标用于对病虫害的胁迫程度进行表征,但是这些指标都依赖先验知识来确定病虫害的类型。高光谱数据可以反映叶片生化成分及其变化,是养分胁迫和病虫害胁迫监测的有效数据源。然而当前高光谱卫星时间分辨率低、幅宽窄,在大区域业务化监测中还有很长的路要走。未来,需要发展高时间分频率、专注于养分胁迫和病虫害敏感谱段的传感器,以提升养分胁迫和病虫害遥感监测的能力。监测作物产量作物产量预测是农情遥感监测的核心内容,也是用户最关注的农情信息。要完成这一预测,需要通过遥感监测掌握两类信息:特定作物的种植面积,以及该种作物的单产。要了解某种作物的种植面积,首先需要在遥感数据中实现作物分类。随着遥感技术的不断发展,以及机器学习和深度学习等自动分类方法的逐渐应用,作物分类方法也日臻完善,为全球尺度的作物分类制图提供了可能。然而当前方法都高度依赖地面调查样本,当样本量不足时,往往难以取得理想的效果。未来,还需要发展不依赖样本的结构化作物精准识别方法,如CropWatch团队研制的水稻“淹水期-移栽期”光学植被指数和微波后向散射系数显著变化相耦合的方法,实现了南亚和东南亚10m水田的精准提取。此外,还应当发展完善分类模型中的时间和空间迁移学习方法,以减少作物分类模型对地面数据的依赖性。融合水稻关键物候期光学植被指数和雷达后向散射系数强度变化的东南亚和南亚的10m分辨率水稻分布图在种植结构复杂的区域,作物精准识别仍面临挑战,不可能一味通过提高卫星遥感数据的分辨率来实现大范围作物分布的提取。而将遥感监测获得的耕地种植成数与众源数据监测的作物分类成数相结合,可以更为高效可行地解决农田破碎区、作物种植结构复杂区的作物种植面积监测难题,可以满足全球作物种植面积监测时效性高等运行化的需求。作物单产监测则是农情遥感监测的难点。当前的作物单产预测方法可以归纳为:①基于农气信息、关键植被指数和微波特性的统计回归方法;②基于作物生长过程的物理模型法;③生物量和收获系数结合的半经验法;④以机器学习和深度学习为主的数据驱动的预测方法。作物单产预测模型(a.统计回归法,b.生物量与收获指数法,c.作物生长模型,d.数据驱动方法)然而,由于影响作物单产的要素众多,且要素之间相互关联,产量的形成和波动涉及复杂的生物、物理和化学过程,导致作物单产预测仍然是当前农情监测的最薄弱环节,原因是目前所使用的参数、指标和方法并不能完全解释作物单产的决定因素。未来,还需要发展新的传感器来预测作物单产,特别是在光学、微波、热红外监测的基础上,开展作物几何结构的观测,发展新的作物单产预测方法。农情监测:挑战与机遇在农情监测领域,实地观测数据和区域专家知识的缺乏,会显著降低监测信息的准确性和适用性,导致相关决策的误判。实地观测数据因费时、费力、可获得性差,一直制约着农情监测的发展。随着智能手机的普及,其内嵌的传感器越来越丰富,众源大数据有望弥补地面调查数据不足的问题。CropWatch团队基于智能手机开发的GVG众源信息采集APP,通过耦合深度学习算法,实现了带有位置标签的作物类型、灌溉类型信息的高效感知;同时通过融合计算机视觉方法,发展了可用于作物单产快速采集的技术,通过计算穗数、每穗的籽粒数和千粒重等参数,实现了小麦/水稻单产的无损化精确观测,显著提升了地面调查数据的采集效率。基于智能手机、计算机视觉和深度学习的小麦单产无损获取此外,虽然卫星观测数据美丽又客观,但是通过专家分析得到的信息往往包含利益导向。因此,综述作者明确主张发布农情信息需要避免利益冲突,用户也需要使用不同的信息源以避免无意识地被误导。为了减少农情监测的主观影响,CropWatch团队允许用户参与到农情监测信息分析的全过程,最大程度的确保了结果的客观性和透明度,避免了信息的偏差对决策的干扰。当然,最好的方式是用户有自己的农情监测系统。但受开发和维护成本以及技术的限制,这对大多数用户来说都很难实现。为此CropWatch以应用程序编程接口(API)方式开放了所有组件和功能供用户调用。莫桑比克农业和农村发展部通过调用相关功能,实现了整个国家的农情监测。这一实践被国际农业发展基金(IFAD)评为2020年最佳农村解决方案之一,也是2022年联合国“南南合作”促进可持续发展的优秀案例。上述成果得到了科技部政府间国际合作重点项目“GEOGLAM框架下的先进农情监测方法”和中科院地球大数据A类先导专项课题“一带一路资源调查与评估”等项目的支持。
  • ASD FieldSpec 4地物光谱仪在评估森林病虫害方面的应用
    “森林”这两个字一共由5个“木”字组成,正如同大自然中无数树木相互依存,彼此交织,形成了一个庞大而有机的生态系统。森林具有调节气候、保持水源、防止土壤侵蚀等重要功能,森林是地球上最宝贵的财富之一。然而,随着人类社会的发展和气候变化加剧,森林生态系统也在发生着变化。科研人员一直在努力了解并改善这些变化,随着遥感技术的发展,新的技术手段也带来了更多地研究可能。今天推荐大家了解的是北京林业大学和北京师范大学的研究团队所做的研究。森林生态系统是最基本的陆地生态系统组成部分之一,在调节气候变化、提供物种栖息地、维持生物多样性及减缓全球变暖等方面发挥着重要的作用。随着人类活动和气候变化的加剧,生物和非生物森林干扰事件频发。因此,有效监测影响森林健康的生物和非生物因素对于理解森林生态系统碳循环及监测全球变暖的影响至关重要。其中病虫害是生物干扰事件中最主要的干扰因素之一。检测早期病虫害位置对于识别高风险林分及预防其大规模爆发和蔓延至关重要。然而,不同病虫害在垂直结构的不同位置破坏树木。了解如何监测和评估垂直冠层结构上不同病虫害的异质胁迫对于提高森林质量至关重要。传统的田间调查方法费时费力,难以在区域尺度上监测森林。近几十年来,遥感技术的出现为森林病虫害监测提供了新的途径和技术手段。随着地基、机载、星载平台等多源遥感技术的快速发展,使得高效、动态地监测不同时空尺度的森林病虫害成为可能。基于此,来自北京林业大学和北京师范大学的研究团队在中国河北省怀来遥感站纯人工落叶阔叶林(40.35°N,115.78°E)进行了田间测量(结构信息、叶面积指数(LAI)、上中下垂直冠层高度5个不同位置收集叶片、树皮和土壤反射率)、受损叶片分类(健康、轻度、中度和重度受损)、光谱分析(植物反射率和透射率,ASD FieldSpec4 Hi-Res NG)、TLS激光扫描、3D森林场景重建、机载高光谱激光雷达和高光谱图像模拟、高光谱点云表征胁迫水平、随机森林(RF)模型构建及分类模型准确性评估(混淆矩阵和kappa系数)。主要目的是基于3D辐射传输模型(LESS)评估机载高光谱激光雷达(AHSL)在森林病虫害胁迫监测方面的潜力。具体来说,首先根据TLS数据和测量的受损叶片光谱重建虚拟3D森林场景,并在此基础上定义不同冠层受损位置和不同胁迫水平的不同病虫害干扰场景。然后,针对不同受损位置和胁迫水平的每种组合,使用LESS模拟AHSL点云和相应的高光谱图像(HI)。提取AHSL点云不同层的LiDAR点云并光栅化为3m空间分辨率的图像,结合高光谱图像,使用随机森林预测病虫害。研究区域位置,林地照片及受损叶片示例【结果】受胁迫叶片和树皮的光谱反射率基于高光谱LiDAR评估不同受损位置不同胁迫水平分类模型的准确度基于高光谱图像评估不同受损位置不同胁迫水平分类模型的准确度【结论】结果表明,AHLS在森林病虫害异质垂直胁迫监测方面具有巨大潜力。对整个冠层受损和冠层上部受损的监测能力最优,不同胁迫水平分类的总体精度和kappa系数分别为65.95%~89.45%和54.58%~85.92%。此外,在冠层中部(OA:77.56%,kappa:69.90%)和冠层下部(OA:65.95%,kappa:54.58%)也可以获得良好的分类准确度。作者还基于相同的胁迫场景模拟了HI数据,并与AHSL进行了比较。在整个冠层受损的情况下,HI具有最好的分类准确度(OA:57.02%,kappa:41.86%)。但上、中、下冠层受损的分类准确度差异较小。研究结果表明,AHSL提供了结构和光谱信息。与HI数据相比,AHSL能够避免土壤、阴影及其他林下混杂因素的影响。脉冲穿透可以监测森林中下部的病虫害胁迫,但也需要考虑树枝的影响。
  • 农业部再批复多个实验站建设项目 仪器购置费超千万
    p  近日,农业部官方网站公布了多个实验站建设项目的批复,项目建设总投资在4000万以上,项目建设期为1年或2年。/pp  本批次公布的项目中主要建设内容就是相关仪器设备的购置,涉及的仪器设备包括质谱、色谱、固相萃取、PCR仪、拉曼光谱仪等分析测试仪器以及土壤水分分析仪、植物根系监测系统、田间小气候观测仪、冠层测量仪等农业专用仪器。预计农业系统在未来两年将会有不少于2000万明确的仪器采购提前公开。/pp  详情如下:/ptable border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd valign="top" width="160"pstrong项目 /strong/p/tdtd valign="top" width="113"pstrong投资金额 /strong/p/tdtd valign="top" width="228"pstrong仪器设备购置 /strong/p/tdtd valign="top" width="89"pstrong建设周期 /strong/p/td/trtrtd valign="top" width="160"p《关于重新上报广东省兽药饲料质量检验所畜禽产品质量安全风险监测能力建设项目(华南)可行性研究报告的函》(粤农计[2015]137号)/p/tdtd valign="top" width="113"p总投资632万元,span style="color: rgb(255, 0, 0) "其中仪器设备购置费585万元/span,工程建设其他费29万元,预备费18万元。/p/tdtd valign="top" width="228"p电感耦合等离子体质谱仪、多维色谱质谱联用系统、全自动样品消化系统、全自动固相萃取系统、全自动在线固相萃取液相色谱系统各1台(套),风险预警信息系统硬件设备1套。/p/tdtd valign="top" width="89"p2016-2017年/p/td/trtrtd valign="top" width="160"p《西藏自治区农牧厅关于呈报〈2015年农业部重点实验室建设项目可行性研究报告〉的请示》(藏农厅计〔2015〕3号)/p/tdtd valign="top" width="113"p总投资827万元/p/tdtd valign="top" width="228"p四极杆-飞行时间串联质谱检测器、超高速冷冻离心机、全自动电泳仪、荧光PCR仪、遗传分析系统、高分辨率激光共聚焦显微拉曼光谱仪、超低温冰箱及冻存管理系统、人工气候箱等仪器设备各1台(套)。/p/tdtd valign="top" width="89"p2016-2018年/p/td/trtrtd valign="top" width="160"p《关于报送农业部东北地区作物栽培科学观测实验站建设项目可行性研究报告的函》(辽农(计)字〔2015〕4号)/p/tdtd valign="top" width="113"p总投资388万元/p/tdtd valign="top" width="228"p细胞破碎仪、全自动化学分析仪、自动气象站、高精度冠层测温仪、蒸发蒸腾测量仪、植物生理生态监测系统、差分GPS定位系统、碳通量观测系统、多通道时域反射土壤湿度监测系统、土壤养分测定仪、冷冻干燥机、显微镜(带数码摄像系统)、叶面积仪、低温冰箱各1台(套)/p/tdtd valign="top" width="89"p2016-2018年/p/td/trtrtd valign="top" width="160"p《关于报送农业部东北水稻生物学与遗传育种重点实验室建设项目可行性研究报告的函》(辽农(计)字〔2015〕5号)/p/tdtd valign="top" width="113"p总投资842万元/p/tdtd valign="top" width="228"p超高效液相色谱仪、同位素质谱仪、荧光分光光度计、荧光PCR仪、遗传分析系统、生物大分子分析仪、样品种质等超低温保存系统、人工气候箱、植物光合测定系统、近红外分析仪、田间土壤呼吸监测系统、植物生理生态监测系统、全自动电泳系统各1台(套)/p/tdtd valign="top" width="89"p2016-2018年/p/td/trtrtd valign="top" width="160"p《关于报送农业部东北设施园艺工程科学观测实验站建设项目可行性研究报告的函》(辽农(计)字〔2015〕6号)/p/tdtd valign="top" width="113"p总投资367万元/p/tdtd valign="top" width="228"p自动气象站/田间小气候观测仪、全自动太阳分光光度计、土壤水分分析仪、差分GPS定位系统、多通道热流计各1台(套),购置物联网数据获取与处理系统,购置田间施药机具、播种机各1台(套)/p/tdtd valign="top" width="89"p2016-2018年/p/td/trtrtd valign="top" width="160"p《关于报送农业部东北玉米营养与施肥科学观测实验站建设项目可行研究报告的函》(辽农(计)字〔2015〕7号)/p/tdtd valign="top" width="113"p总投资381万元/p/tdtd valign="top" width="228"p购置自动气象观测站、土壤团粒分析仪、便携式土壤呼吸测量系统、在线水质分析系统、高温消解仪、蒸渗仪、台式冷冻离心机、土壤水势测量系统、植物光谱分析仪、植物根系监测系统、土壤三相测定仪各1台(套)/p/tdtd valign="top" width="89"p2016-2018年strong /strong/p/td/trtrtd valign="top" width="160"p《关于报送农业部东北地区(辽宁)果树科学观测实验站建设项目可行性研究报告的函》(辽农(计)字〔2015〕10号)/p/tdtd valign="top" width="113"p总投资416万元/p/tdtd valign="top" width="228"p快速细胞破碎仪、冷冻干燥机、低温冰箱、台式冷冻离心机、显微镜、全自动化学分析仪、自动气象站、叶面积仪、高精度冠层测温仪、蒸发蒸腾测量系统、野外植物生理生态监控系统、差分GPS定位系统、碳通量观测系统、多通道TDR土壤监测系统、土壤养分速测仪、孢子捕捉仪、飞行磨系统、生物测定用喷雾塔、植物光合测定仪各1台(套)/p/tdtd valign="top" width="89"p2016-2018年strong /strong/p/td/trtrtd valign="top" width="160"p《关于报送农业部沈阳作物有害生物科学观测实验站建设项目可行性研究报告的报告》(辽农(计)字〔2015〕210号)/p/tdtd valign="top" width="113"p总投资381万元/p/tdtd valign="top" width="228"p冷冻干燥机、低温冰箱、显微镜、孢子捕捉仪、多通道TDR土壤监测系统、蒸发蒸腾测量系统、差分GPS定位系统、碳通量观测系统、高精度冠层测温仪、野外植物生理生态监控系统、自动气象站各1台(套)/p/tdtd valign="top" width="89"p2016-2018年/p/td/tr/tbody/tablep /p
  • 在液体中测颗粒的比表面积?是的,你没有看错!
    日前,仪思奇(北京)科技发展有限公司杨正红总经理在长沙举办的“锂电及多孔材料的粒度和形貌表征技术进展研讨会”上高调介绍了Xigo系列胶体和悬浮液颗粒比表面积分析仪。在液体中测颗粒的比表面积?是的,你没有看错——测定胶体、乳液和悬浮液中颗粒的比表面积! 有什么用途? 浆料体系的颗粒比表面积与颗粒在体系的分散状态有关。比表面积能反映材料的许多性能,例如:涂料的遮盖能力,纳米颗粒的改性和包覆效果,乳液或浆料配方的稳定性,催化剂的活性、药物的疗效以及食物的味道等等。但是,目前的经典方法是气体吸附法测干燥固体的比表面。然而,绝大多数的样品无论是在生产过程中还是最终使用时,却都是分散在液体中,通过制浆过程形成终产品。因此,必须知道样品在悬浮液状态下的比表面信息,而固体样品的比表面积不具有代表性。美国Xigo Nanotools公司为我们提供了革命性的技术手段,使得电池隔膜用陶瓷浆料、锂电池正负极浆料、电子浆料、墨水、石墨烯和碳纳米管浆料以及原料药批次间的质量控制有了快速简便的解决方案,并且结合美国分散技术公司(DT)的声学技术,可为浆料体系和纳米粒子的粒度、表面化学状态或吸脱附状态及微观电学性质的研究,为破解导致不同批次之间差异和配方不稳定的原因提供了强有力的武器。 什么原理?Xigo系列采用专利的核磁共振技术(中国专利号:ZL200780016435.3),探知乳液或悬浮体系中“颗粒”与“溶剂”之间的表面化学、亲和性、浸润性,并在该状态下计算颗粒的比表面积。这一划时代的分析手段可以直接测量悬浮液,无需样品处理,无需稀释,无颗粒形状的限制,测量过程仅需5分钟,对研磨和粉碎过程可基本实现实时监控。因此,该方法对任何大小、任何形状的固体或液体颗粒,特别是高浓体系样品是最理想的选择。由于软件可以自动设定所要优化的测量参数,操作者几乎不经培训即可操作,它将在品质管控和改善、缩短开发时间和工艺配方的筛选等方面提供助力。 仪思奇科技同时宣布,即将引进法国高端技术公司(Cordouan Technologies)的产品进入中国,包括Vasco kin原位时间分辨纳米粒度分析仪和MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪。 Vasco kin 的突出特点就是不接触样品,原位远程测定包装物及反应釜中的粒度分布及随时间的变化,具有极高的分辨率,并且可以和其它分析手段联用。为制药行业的反应监测和药瓶中的蛋白质聚集体纳米阶段的生成监控,甚至监控和研究中药汤剂在加热过程中的粒度变化都提供了有效的技术手段。同时,也是环境科学、功能化油墨,油田化学、锂电材料、催化剂、化妆品和食品等领域的动力学研究工具。 MAGELLAN(麦哲伦)痕量纳米颗粒浓度测定仪用于水中纳米颗粒的痕量表征,灵敏度高于传统的动态光散射技术一万倍,浓度测定低至ng/L的范围,可对10nm到1000nm之间的颗粒进行计数,为水处理在线监测、超纯水监测、滤膜效率及完整性监测以及过滤工艺、污染检测等提供了前所未有的计数手段。结合法国ZetaCAD流动电位分析仪,MAGELLAN将引领我国膜分析技术跨上新台阶!仪思奇(北京)科技发展有限公司是“产学研商网”一体的仪器技术研发及应用推广的仪器科技创新与服务平台。公司致力于在新能源领域、生物医药、催化基础与应用研究等领域的颗粒特性表征的前沿仪器产品和技术的引进与推广。自2019年6月起,仪思奇(北京)科技发展有限公司正式成为美国XIGO NANOTOOLS公司在中国区的总代理,全权负责该公司全系产品在中国境内的推广销售及售后服务工作。法国高端技术公司(Cordouan Technologies)全新纳米测量仪器的引入,更是填补了国内纳米科学研究技术手段的空白,对仪思奇目前拥有的Occhio图像法粒度粒形和zeta电位分析技术,超声法粒度和zeta电位分析技术是一个完美的补充,使公司能够提供(粒度)从纳米到厘米,(固含量)从极稀到极浓的体系的全方位解决方案,纳米颗粒分析研究将如虎添翼!
  • 武汉府河现大面积死鱼 有关部门连夜监测入江水质
    9月2日上午,东西湖区、黄陂区府河沿岸,随处可见大片白花花的死鱼漂泊,死鱼带从府河八一大桥进入我市,一直延伸到谌家矶附近入江口。死鱼大的约40-50厘米长,小的不到8厘米,大部分为10厘米左右。 得 知府河出现死鱼的消息后,武汉市环保部门监测人员立即赶赴现场,采样检测并调查死鱼原因,农业、水务、公安等多个部门也会同区环保局进行处置。下午,省、 市环保局派人赶到现场展开调查。东西湖区政府一方面要求区环保部门继续做好监测工作,随时掌握府河水质变化,同时组织沿线人员迅速打捞死鱼就地填埋,防止 死鱼流入市场。 严河流排查10公里未找到污染源 昨晚,黄 陂区环保局局长江秀国在电话中说,昨日上午9时许,接到上级部门通知及村民报告后,黄陂区政府领导带着区环保局、卫生局等部门负责人前往现场调查。省市环 保部门也对此高度重视,因怀疑是上游污染,调查人员一直排查至府河孝感河段10公里,发现当地河里也有死鱼,但仍未找到污染源。目前,已初步排除污染源在 黄陂境内,省市环保部门已在多处取了水样化验。 昨日,黄陂区已要求环保和卫生部门加强对滠口、武湖水厂生产监管,增加检测频 率,确保居民饮用水安全。来自东西湖区的消息说,府河东西湖段,从东山八一大桥到将军路,均有死鱼。有人猜测,污染源或来自孝感市下辖的云梦、应城、安陆 等地,这些地方开办有化工企业。至昨晚发稿前,记者尚未得到官方查找到污染源的确切消息。 疑为上游化工厂排污 &ldquo 从府河黄陂段上游的八一大桥,一直到东西湖沿线甚至孝感境内20多公里的河面,都出现了大面积死鱼。&rdquo 黄陂区环保局局长汪秀国对金报记者说。 据 了解,昨晚6时许,黄陂区相关领导已经赶赴现场,成立了应急指挥部调查此事。记者当时从指挥部了解到,上游发生污染已经超过40个小时,波及范围超过40 公里,且影响范围仍在进一步扩大。该区环保局于昨日下午多处取水化验,对水质进行分析。&ldquo 现在水质已经是劣四类和劣五类水质,人畜都应该远离该水域。&rdquo 汪 秀国在向指挥部汇报情况时说。 昨晚8时许,记者致电汪秀国,对方表示目前还是不能确认污染来源,并称正在开紧急会议便迅速挂 断了电话。事件发生后,有一种猜测是武汉本地的化工厂泄漏,导致污染事故。对此,黄陂区环保局一工作人员回应称,如果是本地化工厂,死鱼只可能往下游漂, 从目前的情况判断不可能是人为投毒,而极有可能是上游的化工污染。而位于黄陂府河上游的东西湖区,在由该区环保局调查过后,排除了当地排污口引发污染的可 能。 环境监测中心连夜监测水质 府河惊现大量死鱼后,武汉市政府应急办**时间发出了微博。昨晚,微博再次公布该事件处理进展。据介绍,武汉市政府对府河死鱼事件十分关注,责令环保部门迅速调查原因,并采取相应处置措施。 目 前,武汉市政府已经严令黄陂、东西湖、江岸区领导到现场不间断组织打捞死鱼,严防流入市场。此外,武汉市环境监测中心正连夜对府河入境断面、府河入长江断 面监测水样有机物和重金属进行分析。目前检测结果尚未出来。武汉市政府应急办发微博称,府河武汉段无饮用水源,居民饮用水并未因此受到污染。 府河污染十年未绝 府 河总长近385公里的河流,发源于湖北随州大洪山北麓,原流经随县、安陆、应山、云梦、应城、汉川六县入汉水。1959年湖北省治理刁汊湖,改府河下流由 云梦东进孝感,至卧龙潭与环水汇合,再入市境黄陂县与滠水并流,流经东西湖北面,在汉口谌家矶入长江。在武汉市境内,流程总共48公里。 近十年来,关于府河的污染报道一直未绝。在武汉段,府河作为武汉市汉口地区的主要纳污水体,长期接纳沿线大量未经有效处理的生活及工业废水。而在上游,化工企业污染府河的现象,也极为严重。 今年8月,位于府河上游的云梦县农民,在遭遇大旱之后仍然不敢取府河水灌溉,只因河水遭到当地化工企业的污染。此事一度成为当地电视台报道的热点。 同月,同处府河上游的安陆市棠棣镇渔民,在引府河水养鱼之后,发生大面积死鱼事件,死鱼达到3万斤。而此次府河大规模死鱼事件,再次为府河的治理敲响了警钟。
  • 人工智能赋能农业,开启数字化新征程
    人工智能作为计算机科学的一个重要分支,伴随着信息技术的快速发展,已经渗透在医疗、教育、金融等众多领域,农业作为国民经济的基础性产业,也不例外,近年来,农业被评为最具前景的人工智能与机器学习应用场景之一。在我国,农业人工智能的应用主要涉及基于机器视觉技术的农作物图像分析和基于数据挖掘技术的农业大数据分析、算法模型构建等。其中,图像分析技术的应用有农作物根-茎-叶-种子的表型分析测量、农作物长势识别、杂草识别、病虫害识别、果蔬品质检测以及自动采摘等方面;大数据分析与算法模型构建的应用有农作物病害预测、虫害预测、墒情预测、产量预测、价格预测、专家系统等,能够对农作物的生产链进行实时的监管控制,从而提升作物的产出量和品质。伴随着农业领域多元性数据的存在与大量理解力问题的出现,单一机器学习技术已经难以解决。作为一家深研农业十余年的现代化企业,托普云农将前沿信息技术与农业专业深度融合,通过传统图像处理与最新深度学习等技术,构建起针对农业的多维混合算法模型,并使用积累多年的农业数据样本进行训练学习,满足当前多元化人工智能时代的发展需要,并深受业内关注。其中图像处理主要是对图像进行分割、前景提取、获取关键信息等,深度学习主要包括目标检测和图像分类等对目标进行识别分析。农业病虫害目标识别是人工智能技术的应用热点之一。托普云农通过大量数据样本对已构建好的算法模型进行训练学习,利用训练后的目标检测算法模型对各作物的病虫害进行识别,根据识别的病虫害数量对病虫害的严重程度进行判断与预警;根据识别的病虫害的种类给出病虫害档案,包括病虫危害情况、病虫害特征、病虫害原因、防治措施等。历经近十年的研究实践,托普云农已有60TB约2000多万张图库,15万张精选样本库,每月增量达3TB。目前已覆盖包括草地贪夜蛾、大螟、二化螟、稻飞虱等国家一二类农作物主要虫害109种的识别,病害识别覆盖小麦、玉米、水稻等6种农作物,涵盖赤霉病、灰斑病、稻瘟病等在内59种病害,平均识别一张图片3s左右,为粮食安全、生态保护提供了有力保障。植物表型研究在作物育种领域有着不可替代的作用。托普云农人工智能技术通过对农作物根-茎-叶-种等器官进行特征提取与降维、目标分割与定位、高精度图像识别与检测,现已实现了对玉米珠型、作物株高、剑叶夹角、籽粒果穗考种、作物形态测量、叶面积分析、亩穗数测量等的多个作物表型识别与测量。大数据分析与算法模型构建是人工智能技术的另一重要应用。托普云农通过监督机器学习算法,从大规模数据集中训练出墒情预测、作物病虫害预测、作物生长等模型,搭建成作物生长管理系统,由此为作物生产进行规划与管理;通过海量图像数据的积累以及高精度的目标检测和样本分类技术的应用,对病虫害分布及时自动感知,对虫害首发期、爆发期的有效预警预测;通过对传感器数据与视觉数据的分析以及统计模型的应用,进而预测作物产量。此外,托普云农的人工智能技术还应用于果实成熟期禁止打药监测等农事作业行为识别;烟火识别;文字识别以及人脸、动物、车辆、农机等集成第三方生态识别领域……有效保障农业生产安全、提高农业农村领域网格化治理能力,提升乡村居民幸福感。随着对人工智能的利用不断深入,农业生产管理与科研领域也展现出更多新的变革。在江苏海门的高标准农田里,从选种耕种、土壤成分监测、农田灌溉用水分析、病虫害识别预警、农业环境监测到农业专家系统、作物采收管理、产量预测、品质检验等全过程动态管理,极大提升了资源利用率和劳动效率,藏粮于地更藏粮于技。在乔司农业产业示范园里,通过对数据资源的采集、整合、分析,打造全域数字孪生、智慧农机系统、遥感监测系统、农情监测系统、种植管理系统、智能灌溉系统,形成了生产、预测、防控等全要素智能化管理,带动农业可持续发展。在江西湘东的数字种业园区里,结合科研和产业需求,建设现代化种业基地,打造智慧种业服务平台,涵盖6大应用场景,从育种、制种、种子检验、加工、仓储、流通等各环节强化信息监测以及溯源管理,探索水稻生长标准模型,创新园区服务体系,保障优质种业发展。在浙江古林的数字农田里,利用北斗导航、物联网、农业遥感、机器视觉等技术手段,打造农机高精度自动作业与导航系统、大田精细化生产灌溉管理系统、“天空地”一体化公共服务平台,并在超过1万亩的规模化种植基地进行集成示范,形成了一套可复制的产业应用模式,为更多水稻产区提供种植推广示范样板。当前,以数字孪生、人工智能、移动互联网、区块链等为代表的新一代信息技术与先进制造业加速融合,现代农业、服务业领域新产品新业态新模式竞相涌现。未来,在各种农业人工智能设备工作中,数据上“云”更便捷;在农业生产中,全要素数据采集汇聚、智能决策分析、精准作业指导和操控,节本降耗、提质增效、环境友好、生态安全;在农业科研中,基地管理、数据采集、数据挖掘分析更加便捷、智能,研发更加高效,目标更加精准。虽然现代农业与人工智能的深度融合还面临着许多困难和挑战,但是以人工智能为核心的智慧农业发展已是大势所趋。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制