当前位置: 仪器信息网 > 行业主题 > >

焦炉气

仪器信息网焦炉气专题为您整合焦炉气相关的最新文章,在焦炉气专题,您不仅可以免费浏览焦炉气的资讯, 同时您还可以浏览焦炉气的相关资料、解决方案,参与社区焦炉气话题讨论。

焦炉气相关的论坛

  • 焦炉煤气分析

    焦炉煤气,又称焦炉气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(1.5%~3%)、氧气(0.3%~0.8%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。(焦炉煤气成分分析、检测)主要特性:1、GC-2010[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],配备热导检测器检测器及相关检测器控制板.仪器技术指标、性能,检测器灵度都达到国家标准!2、全新集成数字电子电路,控制精度高,性能稳定可靠,温控精度可达0.01℃.3、独特的进样口设计解决进样歧视;双柱补偿功能不仅解决升温带来的程序漂移,而且减去背景噪音的影响,可以得到更低的最小的检测限。4、柱箱容积大,智能后开门系统无级可变进出风量,缩短了程序升/降温后系统稳定平衡时间;加热炉系统:(温度范围)环境温度+7℃~400℃.三阶程序升温,升温速率0-50℃/min;增量0.1℃/min可以由用户重新校正炉温,并随意设定最高温度。由用户决定加热炉温度平衡时间。5、可同时安装两种进样系统:填充柱、毛细管分流/不分流进样系统(具有隔膜清扫功能);可同时安装两种相同或不同的检测器:氢火焰离子化检测器(FID)、热导检测器(TCD).可选配自动/手动气体六通进样阀进样器、顶空进样器、热解析进样器、甲烷转化炉.6、检测器系统:热导检测器容易拆卸和安装,便于清洁或更换喷嘴;高阻值单柱热导检测器检测灵敏度高,基线稳定快(15分钟即可稳定);输入信号可进行对数放大,减少干扰,提高灵敏度.可选配FID、ECD、NPD。7、具有开机自诊断功能、秒表功能(方便流量测定)、运转定时器功能、停电储存保护功能、键盘锁定功能。(焦炉煤气成分分析、检测)技术指标:温 控控温范围:室温上10℃~400℃(增量0.1℃)检测限:≤5×10-12g/s(正十六烷) 程升阶数:三阶基线噪声:≤6×10-12A/H 程升速率:0.1℃~50℃/min(增量0.1℃)线性范围:≥105稳定时间:20min检测器TCD 敏感度:≥10000mVml/mg(正十六烷)基线噪声:≤30uV(载气为99.999的氢气)

  • 焦炉烟气脱硫脱硝技术应用

    1、前言  在烟气治理领域焦炉烟气脱硝一直是时下关注的重点,特别是国家颁布了最新的《炼焦化学工业污染物排放标准》之后,对焦化烟气脱硝技术提出了更高的要求,本文针对焦炉烟气脱硫脱硝技术进行阐述,希望能给钢铁企业提供一定的借鉴价值。  2、脱硫脱硝工艺及原理  2.1 密相干塔脱硫+SCR脱硝技术  密相干塔脱硫+SCR脱硝技术是利用脱硫脱硝等各分系统的协同组合,实现焦炉烟气大气污染物的协同治理,具有良好的脱硫脱硝除尘效果和技术经济性,正在逐步被国内各大钢厂所采用。其中脱硝采用烟气经热风炉升温后(烟气温度280—320℃)的准低温SCR技术,脱除效率高,运行稳定可靠,脱硝后烟气利用余热锅炉进行热量回收。  2.2 半干法SDA脱硫+SCR脱硝技术  半干法SDA脱硫+SCR脱硝的主要流程为:废气首先进入脱硫塔,在脱硫塔内进行脱硫;从脱硫塔出来的脱硫后烟气进入除尘装置,烟气先经除尘器布袋除尘,除尘后的烟气与加入的还原剂(氨气)充分混合,混合后的烟气进入脱硝催化剂层,在催化剂作用下发生还原反应,脱除NOx;净化后的洁净烟气经过系统引风机送回烟囱排放。该工艺采用低温脱硝工艺,在脱硝之前采用半干法高效脱硫并除尘,延长低温脱硝催化剂在高效脱硝区的使用寿命,降低烟气净化工艺运行费用。主要工艺流程图如下:  3、两套脱硫脱硝装置的优越性  3.1 密相干塔脱硫+SCR脱硝技术的优势  3.1.1对脱硫脱硝原料品质要求低,价格低廉  该脱硫脱硝使用的原料为CaO和自产氨水,CaO的价格相对便宜,而且原料充足,脱硝效果良好。脱硝效率在80%以上。  3.1.2、节能效果良好  脱硝后的烟气经余热锅炉进行余热回收,除盐水吸收热量最终形成饱和蒸汽,送至焦化厂蒸汽总管,降低能源消耗,余热锅炉采用全自动运行。  3.1.3、自动化性能高,安全性能好  整个过程采用自动控制,工艺流程简单,设备少,容易操作。热风炉程序设有自动点火和自动吹扫操作,当高炉煤气压力较低时,可以适当补充焦炉煤气,提高炉膛温度,进而提高废气温度,满足脱硝要求。  3.2 半干法SDA脱硫+SCR脱硝技术的优势  3.2.1采用旋转喷雾干燥法(SDA法)进行高效低温降烟气脱硫,满足SO2排放要求的同时,吸附烟气中焦油等粘性物质,降低烟气中SO2及其他组分對低温脱硝效率的影响;并可根据烟气入口SO2浓度调节脱硫剂溶液的喷入量,实现在满足排放要求的前提下减少脱硫剂的使用量,以最经济的方式运行。  3.2.2采用低温脱硝催化剂利用NH3-SCR原理进行低温脱硝。此种催化剂对焦炉烟气具有很强的适应性,具有良好的低温活性,焦炉煤气升温幅度小,降低了高炉煤气的用量。  3.2.3脱硝前除尘,减少烟气中的粉尘在通过脱硝催化剂层时对催化剂表面的磨损,可以有效延长脱硝催化剂的使用寿命,减少脱硝催化剂的用量,同时可以脱出烟气中的粉尘等颗粒物,使烟气的颗粒物排放达标。  4、结语  通过两套脱硫脱硝装置的应用,焦炉废气中的颗粒物、SO2和NOx等三大指标全部满足国家特排标准,氮氧化物和颗粒物已经完全实现了超低排放,确保了焦炉生产稳定,有很好的推广价值。

  • 对于焦炉煤气脱硫方法的比较研究

    煤化行业作为能源消耗比较大、污染排放物比较多的一个行业,在生产运作中势必产生大量的焦炉煤气,因此要对其进行脱硫处理.一方面可以减少其对设备的腐蚀危害及维护成本,同时可以提高脱硫产品的回收质量,以便在循环使用中达到预期的目标.焦炉煤气不同脱硫方法的使用条件和范围上各有差异,这就需要明晰具体脱硫方法的特点,以便科学实效地应用,进而推动企业经济效益的提升.焦化企业在排放的时候对空气与环境的危害非常大,因为其中含有大量的硫化氢物质。近年来,焦化企业所取得的发展有目共睹,尤其是在技术更新和科学化、标准化、规范化管理方面下了很大功夫。此外焦化行业针对环境治理,也取得了很大成效。进而弥补了传统脱硫工艺脱硫效率的不足,而且还可以从煤气脱硫中回收硫氰酸铵、硫酸铵等高附加值的产品。改变了焦炉煤气脱硫产生废液危害物质的现状,实现了变废为宝。焦炉煤气在生成的时候会有很多的因素导致产量和用途的区别,所以焦化企业在对焦炉煤气进行脱硫处理时也要根据实际情况来选择适当的方法。总体来说,煤气的脱硫方法按吸收剂形态划分一般可为干法和湿法两大类。1 焦炉煤气脱硫方法的意义焦炉煤气脱硫处理在实际中的作用值极高,大大降低了煤气中硫化氢和燃烧后生成二氧化硫的含量,有力地减少了有毒物质的污染。而且可以有效保护周围的环境,还有助于企业降低生产成本、提高生产效率。此外还能够促使钢铁企业生产出优质的钢材,并防止设备的腐蚀。另外回收之后的硫磺还可以用到其它的生产领域。因此在实际的应用中要根据煤气脱硫方法的特征选择适当的方式,在保证质量的基础上提高实效。随着社会和行业的发展,也在持续推动着焦炉煤气脱硫方法的不断创新与完善。2 对焦炉煤气脱硫方法的比较研究2.1 干法脱硫的原理简单来讲,干法脱硫的原理是通过利用氢氧化铁或及其合剂作为催化剂来达到脱硫的目的,以脱除煤气中的硫化氢物质,多采用固定床原理,操作相对简单可靠,脱硫精度高,但处理量小。干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中常用的还是以铁系和锌系脱硫剂为主。2.2 干法脱硫的的特点干法脱硫的适用范围相对较窄,但是脱硫精度很高。干法一次脱硫有利于气体中的氢氧化铁的清除。干法脱硫的使用特征包括设备占地面积小,这样就会节约前期投资成本,并且脱硫的效率十分高,只要按照规定的标准进行脱硫就可以满足城市煤气的供需关系。干法脱硫通常又可以分为两种形式:箱式和塔式。两种方式在使用上各有优势,箱式的需要相对大的占地空间,且具体操作起来的环境质量没有塔式的舒适,在脱硫过程中比较容易更换脱硫剂,成本费用也不是很高。而塔式脱硫占地面积比较小,环境也好,但是设备的成本相对高一些。2.3 湿法脱硫的原理湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢,按溶液的吸收和再生性质又分为湿式氧化法、化学吸收法、物理吸附法和物理—化学吸收法。其在,湿式氧化法是采用脱硫催化剂在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]下进行氧化还原反应,使被弱碱溶液吸收的硫化氢随即被氧化成单质硫析出来,同时吸收液得到再生。该法是焦炉煤气脱硫比较普遍使用的方法,其实质就是使硫化氢被氧化生成单质硫;此外,化学吸收法、物理吸附法和物理—化学吸收法这三种方法主要用于天然气和炼油厂的煤气脱硫,不能直接回收硫磺,在焦炉煤气脱硫中较少使用。随着技术的进步,针对湿法脱硫改进及创新方法很多,例如:FRC 法、HPF 法、OPT 法、DDS法、MEA法、AS法、ADA法及改良ADA法、TH法TV法和PDS法等等。

  • 焦炉煤气对流量计的影响

    在实际的运用过程中,焦炉煤气是由多种气体的混合气体,本身具有流速低,密度小, 带有焦油、灰尘、水分等特点,煤气计量测量介质存在水分和杂质,往往造成对计量数据产生误差,影响计量的准确性。以下是焦炉煤气对流量计的影响:1、焦炉煤气中必然含有粉尘和焦油,因此管道经过长期使用后,不可避免地会有粉尘和焦油沉积下来并在管道内形成厚度不均的沉积物。气体中往往含有水蒸气,当温度降低或压力上升都会使其中的水蒸气结成水,与粉尘等其它杂质的积聚形成灰尘,在孔板或别的差压式流量计前后管道中沉积。2、生产单位每年进行年修时,对煤气管道式在截止阀处开始吹扫,若此时管道装的是孔板流量装置,从而造成孔板长期没有吹扫;目前市场上大量应用在焦炉煤气管道上测量装置主要是靶式流量计,通过对日新靶式流量计工作原理得知,焦油、杂质、粉尘等对其流量传感器的影响微乎其微,而且靶式流量计的主要运用就再于:高粘度、高低温、抗杂质、耐脏等极其恶劣的工矿下使用的流量计,所以这时采用靶式流量计就是一个很好的选择,当然也包括用于煤气的贸易计量结算。

  • 焦炉烟气脱硫脱硝技术进展与建议

    摘要:分析了我国焦化行业SO2、NOx排放现状及污染物浓度的主要影响因素,对比了以氨法、石灰/石灰石法、双碱法、氧化镁法、喷雾干燥法、循环流化床法等为代表的焦炉烟气脱硫技术,以低氮燃烧技术、低温选择性催化还原脱硝技术、氧化脱硝等为代表的焦炉烟气脱硝技术,以活性焦、液态催化氧化等为代表的焦炉烟气脱硫脱硝一体化技术的工艺原理、脱硫脱硝效率及各自优缺点;总结了焦炉烟气脱硫脱硝技术在工艺路线选择、烟气排放、次生污染等方面存在的问题。指出焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面,并不断加强焦炉操作管理水平及新技术的应用。  引言  燃煤烟气中的SO2和NOx所引起的酸雨、光化学烟雾和雾霾等环境污染已严重影响人类生存与发展。目前最有效且应用最广的燃煤烟气SO2和NOx污染治理措施是燃烧后烟气脱硫脱硝技术。作为国内第二大用煤领域,我国煤炭焦化年耗原煤约10亿t,占全国煤炭消耗总量的1/3左右。当前,燃煤发电领域气脱硫脱硝技术发展及应用相对成熟,大部分煤电企业SO2和NOx排放已达超净标12017年第6期洁净煤技术第23卷准;但作为传统煤化工行业,我国焦化领域发展相对粗放,污染物治理措施更是在近年来不断严苛的环保政策下迫以实行,多数焦化企业尚未实现焦炉烟气SO2和NOx排放有效防控,与GB16171—2012《炼焦化学工业污染物排放标准》中的规定有一定差距。由于焦炉烟气与燃煤电厂烟气在烟气温度、SO2和NOx含量等方面均存在差异,故二者的脱硫脱硝治理技术路线不能完全等同。研究与实践表明,我国焦炉烟气脱硫脱硝技术在工艺路线选取、关键催化剂国产化、系统稳定运行等方面存在一定问题,严重制约了焦化行业污染物达标排放。  1焦化行业SO2及NOx排放现状  据统计,2015年全国SO2排放总量为1859.1万t、NOx排放总量为1851.8万t。煤炭焦化是工业用煤领域主要污染源之一,焦炉烟气是焦化企业中最主要的废气污染源,约60%的SO2及90%的NOx来源于此。焦炉烟气中SO2浓度与燃料种类、燃料中硫元素形态、燃料氧含量、焦炉炭化室串漏程度等密切相关;NOx浓度则与燃烧温度、空气过剩系数、燃料气在高温火焰区停留时间等密切相关。以焦炉煤气为主要燃料的工艺,其烟气中的SO2直接排放浓度为160mg/m3左右、NOx直接排放浓度为600~900mg/m3(最高时可达1000mg/m3以上);以高炉煤气等低热值煤气(或混合煤气)为主要燃料的工艺,其烟气中的SO2直接排放浓度为40~150mg/m3、NOx直接排放浓度为300~600mg/m3。可见,无论以焦炉煤气或高炉煤气为主要燃料的工艺,如未经治理,其烟气中的SO2和NOx浓度均难以稳定达到标准限值排放要求。  随着国家对环境保护的日益重视,我国焦化领域烟气达标排放势在必行。2017年起,《排污许可证申请与核发技术规范-炼焦化学工业》将首次执行,该规范对焦化行业污染物排放提出了更高要求。如前所述,焦炉烟气中SO2和NOx达标排放的主要技术手段为末端脱硫脱硝治理,故本文将对比分析我国焦炉烟气现行脱硫脱硝技术工艺原理、硫硝脱除效率及各自技术优缺点,总结国内焦炉烟气脱硫脱硝技术应用存在的共性问题,以期为我国焦化行业脱硫脱硝技术的选择与优化提供参考。  2焦炉烟气脱硫脱硝技术  目前,我国焦炉烟气常用的末端脱硫脱硝的治理工艺路线可分为单独脱硫、单独脱硝、脱硫脱硝一体化等3类。  2.1脱硫技术  根据脱硫剂的类型及操作特点,烟气脱硫技术通常可分为湿法、半干法和干法脱硫。当前,焦炉烟气脱硫领域应用较多的为以氨法、石灰/石灰石法、双碱法、氧化镁法等为代表的湿法脱硫技术和以喷雾干燥法、循环流化床法等为代表的半干法脱硫技术,而干法脱硫技术的应用较为少见,故本文着重介绍湿法及半干法焦炉烟气脱硫技术。  2.1.1湿法脱硫技术  1)氨法  氨法脱硫的原理是焦炉烟气中的SO2与氨吸收剂接触后,发生化学反应生成NH4HSO3和(NH4)2SO3,(NH4)2SO3将与SO2发生化学反应生成NH4HSO3;吸收过程中,不断补充氨使对SO2不具有吸收能力的NH4HSO3转化为(NH4)2SO3,从而利用(NH4)2SO3与NH4HSO3的不断转换来吸收烟气中的SO2;(NH4)2SO3经氧化、结晶、过滤、干燥后得到副产品硫酸铵,从而脱除SO2。  焦炉烟气氨法脱硫效率可达95%~99%。吸收剂利用率高,脱硫效率高,SO2资源化利用,工艺流程结构简单,无废渣、废气排放是此法的主要优点;但该法仍存在系统需要防腐,氨逃逸、氨损,吸收剂价格昂贵、脱硫成本高、不能去除重金属、二噁英等缺点。  2)石灰/石灰石法  石灰/石灰石法脱硫工艺由于具有吸收剂资源丰富、成本低廉等优点而成为应用最多的一种烟气脱硫技术。该工艺主要应用氧化钙或碳酸钙浆液在湿式洗涤塔中吸收SO2,即烟气在吸收塔内与喷洒的吸收剂混合接触反应而生成CaSO3,CaSO3又与塔底部鼓入的空气发生氧化反应而生成石膏。焦炉烟气石灰/石灰石法脱硫效率一般可达95%以上。石灰/石灰石法脱硫的优点在于吸收剂利用率高,煤种适应性强,脱硫副产物便于综合利用,技术成熟,运行可靠;而系统复杂、设备庞大、一次性投资大、耗水量大、易结垢堵塞,烟气携带浆液造成“石膏雨”、脱硫废水处理难度大等是其主要不足。  3)双碱法  双碱法,即在SO2吸收和吸收液处理过程中使用了不同类型的碱,其主要工艺是先用碱金属钠盐清液作为吸收剂吸收SO2,生成Na2SO3盐类溶液,然后在反应池中用石灰(石灰石)和Na2SO3起化学反应,对吸收液进行再生,再生后的吸收液循环使用,SO2最终以石膏形式析出。双碱法焦炉烟气脱硫效率可达90%以上。双碱法脱硫系统一般不会产生沉淀物,且吸收塔不产生堵塞和磨损;但工艺流程复杂,投资较大,运行费用高,吸收过程中产生的Na2SO4不易除去而降低石膏质量,吸收液再生困难等均是该技术需要解决的问题。  4)氧化镁法  氧化镁法脱硫是一种较成熟的技术,但由于氧化镁资源储量有限且分布不均,因此该法在世界范围内未得到广泛应用;而我国氧化镁资源丰富,有发展氧化镁脱硫的独特条件。该工艺是以氧化镁浆液作为吸收剂吸收SO2而生成MgSO3结晶,然后对MgSO3结晶进行分离、干燥及焙烧分解等处理后,MgSO3分解再生的氧化镁返回吸收系统循环使用,释放出的SO2富集气体可加工成硫酸或硫磺等产品。该法脱硫效率可达95%以上。氧化镁法脱硫技术成熟可靠、适用范围广,副产品回收价值高,不发生结垢、磨损、管路堵塞等现象;但该法工艺流程复杂,能耗高,运行费用高,规模化应用受到氧化镁来源限制且废水中Mg2+处理困难。  2.1.2半干法脱硫技术  1)喷雾干燥法  喷雾干燥法脱硫是利用机械或气流的力量将吸收剂分散成极细小的雾状液滴,雾状液滴与烟气形成较大的接触表面积,在气液两相之间发生的一种热量交换、质量传递和化学反应的脱硫方法。该法所用吸收剂一般是碱液、石灰乳、石灰石浆液等,目前绝大多数装置都使用石灰乳作为吸收剂。一般情况下,喷雾干燥法焦炉烟气脱硫效可达85%左右。其优点在于脱硫是在气、液、固三相状态下进行,工艺设备简单,生成物为干态易处理的CaSO4、CaSO3,没有严重的设备腐蚀和堵塞情况,耗水也比较少;缺点是自动化要求比较高,吸收剂的用量难以控制,吸收效率有待提高。所以,选择开发合理的吸收剂是喷雾干燥法脱硫面临的新难题。  2)循环流化床法  该法以循环流化床原理为基础,通过对吸收剂的多次循环延长吸收剂与烟气的接触时间,通过床层的湍流加强吸收剂对SO2的吸收,从而极大地提高了吸收剂的利用率和脱硫效率。该法的优点在于吸收塔及其下游设备不会产生黏结、堵塞和腐蚀等现象,脱硫效率高,运行费用低,脱硫副产物排放少等。但此法核心技术和关键设备依赖于进口,且造价昂贵,限制了其应用推广。因此因地制宜的研究开发具有自主知识产权,适合我国国情的循环流化床焦炉烟气脱硫技术成为研究者关注的重点;此外,该法副产物中亚硫酸钙含量大于硫酸钙含量,并且为了达到高的脱硫率而不得不在烟气露点附近操作,从而造成了吸收剂在反应器中的富集,这也是循环流化床脱硫工艺有待改进的方面。  2.1.3焦炉烟气常用脱硫技术对比  焦炉烟气常用脱硫技术对比见表1。  2.2脱硝技术  当前,焦炉烟气常用脱硝技术主要包括低氮燃烧技术、低温选择性催化还原(低温SCR)技术和氧化脱硝技术等3种。  1)低氮燃烧技术  低氮燃烧技术是指基于NOx生成机理,以改变燃烧条件的方法来降低NOx排放,从而实现燃烧过程中对NOx生成量的控制。焦炉加热低氮燃烧技术主要包括烟气再循环、焦炉分段加热、实际燃烧温度控制等技术。烟气再循环是焦化领域目前应用较普遍的低氮燃烧技术,我国现有焦炉大部分采用该技术。研究实践表明:烟气再循环的适宜控制量32017年第6期洁净煤技术第23卷为10%~20%,若超过30%,则会降低燃烧效率;该方法的控硝效果最高可达25%。焦炉分段加热一般是用空气、煤气分段供给加热来降低燃烧强度,从而实现热力型氮氧化物生成量减少的效果。实际燃烧温度控制技术是我国自主研发的焦炉温度控制系统,该技术可优化焦炉加热制度,调整焦炉横排温度,降低焦炉操作火道温度,避免出现高温点,降低焦炉空气过剩系数,从而减少NOx生成。理论计算表明,焦炉若采用烟气再循环与分段加热技术组合,可实现NOx排放量低于500mg/m3以下的目标;若采用烟气再循环与实际燃烧温度控制技术组合,NOx排放可控制在600mg/m3左右。  2)低温SCR脱硝  与火电厂烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,焦炉烟气温度相对较低,一般为170~280℃;针对该特性,我国相关机构开发出低温SCR焦炉烟气脱硝技术,该技术的脱硝效率可达70%以上。低温SCR焦炉烟气脱硝工艺是在一定温度的烟气中喷入氨或尿素等还原剂,混有还原剂的烟气流经专有催化剂反应器,在催化剂作用下,还原剂与烟气中的NOx发生还原反应而生成氮气和水,从而达到脱硝的效果。  低温SCR烟气脱硝技术是目前焦炉烟气脱硝技术中相对成熟和可靠的工艺,脱硝效率较高且易于控制,运行安全可靠,不会对大气造成二次污染;催化剂是制约低温SCR脱硝技术发展的核心问题,降低催化剂进口依赖程度、防止催化剂中毒、解决废弃催化剂所产生的二次污染问题是低温SCR焦炉烟气脱硝技术应努力攻关的方向。  3)氧化脱硝  氧化脱硝技术是利用强氧化剂将NO氧化成高价态的氮氧化物,然后利用碱液进行喷淋吸收的脱硝工艺;目前,在焦炉烟气脱硫脱硝措施中应用的氧化剂主要为臭氧和双氧水。该法设备占地面积小,能同时脱除汞等其他污染物;但该工艺存在氧化剂消耗量大,运行费用高,能耗高,对设备材质要求高,易产生臭氧二次污染等问题。  2.3脱硫脱硝一体化技术  烟气脱硫脱硝一体化技术在经济性、资源利用率等方面存在显著优势,成为近年来研究与利用的点。焦炉烟气脱硫脱硝一体化技术主要集中于活性焦脱硫脱硝一体化技术和液态催化氧化法脱硫脱硝2种。  1)活性焦脱硫脱硝一体化技术  活性焦脱硫脱硝一体化技术是利用活性焦的吸附特性和催化特性,同时脱除烟气中的SO2和NOx并回收硫资源的干法烟气处理技术。其脱硫原理是基于SO2在活性焦表面的吸附和催化作用,烟气中的SO2在110~180℃下,与烟气中氧气、水蒸气发生反应生成硫酸吸附在活性焦孔隙内;脱硝原理是利用活性焦的催化特性,采用低温选择性催化还原反应,在烟气中配入少量NH3,促使NO发生选择性催化还原反应生成无害的N2直接排放。  该法SO2和NOx脱除效率可达80%以上。不消耗工艺水、多种污染物联合脱除、硫资源化回收、节省投资等是焦炉烟气活性焦法脱硫脱硝技术的优点;而该工艺路线也存在活性焦损耗大、喷射氨造成管道堵塞、脱硫速率慢等缺点,一定程度上阻碍了其工业推广应用。  2)液态催化氧化法脱硫脱硝技术  液态催化氧化法(LCO)脱硫脱硝技术是指氧化剂在有机催化剂的作用下,将烟气中的SO2和NOx持续氧化成硫酸和硝酸,随后与加入的碱性物质(如氨水等)发生反应而快速生成硫酸铵和硝酸铵。焦炉烟气液态催化氧化法SO2、NOx脱除效率可分别达到90%及70%以上。硫硝脱除效率高、不产生二次污染、烟温适应范围广等优势使焦炉烟气液态催化氧化法脱硫脱硝技术具有较好的推广前景;但硫酸铵产品纯度、液氨的安全保障、有机催化剂损失控制、设备腐蚀等问题仍是液态催化氧化脱硫脱硝技术亟需解决的难点。  2.4当前焦炉烟气脱硫脱硝技术存在的问题  1)单独脱硫与单独脱硝组合顺序的选择  根据工艺条件要求,脱硝需在高温下进行,脱硫需在低温下进行。若选择先脱硫后脱硝,则经过脱硫后烟温降低,进入脱硝工序之前需将烟温由80℃提升至200℃以上,这将造成能源浪费并增加企业成本;若选择先脱硝后脱硫,在脱硝催化剂作用下,烟气中SO2被部分催化氧化成SO3,生成的SO3与逃逸的NH3和水蒸气反应生成硫酸氢铵,硫酸氢铵具有黏性和腐蚀性,会对脱硝催化剂和下游设备造成堵塞和腐蚀,从而影响脱硝效果及设备使用寿命。  2)焦炉烟气脱硫脱硝后烟气排放问题  焦炉烟气经脱硫脱硝后,可选择直接通过脱硫脱硝装置自带烟囱排放或由焦炉烟囱排放2种方式。若选择直接通过脱硫脱硝装置自带烟囱排放,则当发生停电事故时,烟气必须通过焦炉烟囱排放,而焦炉烟囱由于长时间不使用处于冷态,无法及时形成吸力而导致烟气不能排放,从而引发爆炸等安全事故;脱硫脱硝后的烟气若选择通过焦炉烟囱排放,由于当前很多脱硫脱硝工艺经净化后焦炉烟气温度低于130℃,这种低温将使烟囱吸力不够、排烟困难,从而引起系统阻力增大、烟囱腐蚀,不利于整个生产、净化系统稳定,甚至引起安全事故。  3)焦炉烟气脱硫脱硝后次生污染问题  焦炉烟气经脱硫脱硝后可能产生以下次生污染:①湿法脱硫外排烟气中的大量水汽与空气中漂浮的微生物作用形成气溶胶,最终导致雾霾天气的发生;②氨法脱硫工艺存在氨由于挥发而逃逸的问题;③当前,脱硫副产物的市场前景及销路不畅,会大量堆存污染环境;④当前的脱硫脱硝催化剂大多为钒系或钛系,更换后,用过的催化剂成为危废,若运输和处理过程中管理不当易产生污染。  3结语与建议  1)焦炉烟气污染治理需有效融合源头控制、低氮燃烧、末端净化3方面;应重视污染物源头控制措施,如:有条件的企业应采用高炉煤气或高炉煤气与焦炉煤气的混合作为加热燃料,从源头控制污染物的产生,从而为后续净化系统降低处理难度;选择合理的焦炉煤气脱硫工艺,将焦炉煤气中的硫化氢、氰化氢等尽可能脱除,以减少焦炉煤气作为加热热源燃烧时产生的硫氧化物。  2)加强焦炉操作管理,对控制污染物排放具有积极促进作用,如:通过加强炉体维护可有效控制炉体串漏,从而避免未经净化的荒煤气进入燃烧室而引起焦炉烟气污染物排放超标;故焦化企业应重视并采取可靠手段加强焦炉操作与管理,以实现控制污染物排放、延长焦炉使用寿命、维护产品质量稳定的多重效益。  3)烟气燃烧温度对氮氧化物产生量具有重要影响,煤炭焦化领域可采取适用的低氮燃烧技术从源头控制污染物产生;如:可采取分段燃烧、烟气再循环等加热方式,控制燃烧室温度,从而抑制氮氧化物产生,以减少后续脱硝系统净化难度。

  • 焦炉煤气中苯萘含量的测定

    [b][color=#330099]有人做过焦炉煤气的组分分析吗?[/color][color=#330099]你们做焦炉气里面的苯萘含量吗?[/color][color=#330099]有用色谱做的吗?还是其他方法?[/color][color=#330099][img]https://simg.instrument.com.cn/bbs/images/default/em09507.gif[/img][/color][/b]

  • 焦炉煤气的在线分析

    准备做一个焦炉煤气成分的在线分析,可能要求分析的组分有CH4、CO、CO2、O2、N2、H2、NH3、H2S、HCl和C2~C4的不饱和烃,请问有仪器能做到同时完成上述组分的在线分析吗?如果不行,哪些仪器组合比较好?

  • 焦炉煤气组分气相色谱法分析实验研究

    摘 要:为了找到焦炉煤气组分气相色谱法分析最优的分析条件,使用自装柱,通过正交实验设计,研究了分析  条件对分析结果的影响。结果表明:最优分析条件为:载气流速:43ML/min;柱箱温度:室温;检测器桥电流:  120mA;检测器温度:100℃。通过分析可得出如下结论:柱箱温度是影响分析的主要条件,而载气的流速、检  测器温度和检测器桥电流的影响并不显著。  关键词:组分分析;焦炉煤气;气相色谱法;装柱; 正交实验  0 引 言  焦炉煤气中含有多种组分,如甲烷、氢气、一氧化碳、氧气和氮气等。焦炉煤气中各组分含量关系到燃气的热量、华白数等一系列重要参数。因此,焦炉煤气中各组分含量的精确检测对于燃气生产和输配企业来说非常重要。气相色谱法作为一种高选择性、高效能和高灵敏度的分析手段,被广泛应用于各种气体的分析检测中。国家早在1989 年就制定了GB10410.1-89《人工煤气组分气相色谱分析法》国家标准。在几十年的应用中发现了不少问题,有很多作者对其进行了分析和改进,并与传统的化学分析法作了比较。但是,其中仍缺乏对分析条件系统研究,缺乏详细、系统的实验数据。国家在2009年又出台了新的国家标准GB/T 10410-2008《人工煤气和液化石油气常量组分气相色谱分析法》,并对相关内容进行了修改。在新出台的标准中柱箱温度的适用范围缩小了。这说明在旧标准所规定的温度条件值得商榷。在新标准出台之前,实验室的分析测试中也发现了同样的问题。另外,由于分析过程中,  焦炉煤气中CO2 在分子筛上存在不可逆吸附,分子筛遇水也会老化,因此,在实际测试过程中需要经常更换色谱柱。如果操作者在实验室能够自行填充色谱柱,则更为方便。针对以上问题,作者对色谱柱的填充过程进行了研究,自行填装了色谱柱。并使用自填柱,通过正交设计方法,讨论了分析条件对分析结果的影响,确定了最佳测试条件。  1 实验  1.1 实验仪器及试剂  气相色谱仪(;热导检测器(TCD)取样袋(光明化工研究设计院);标准气(北京兆格气体科技有限公司);氮气(鞍山鸿泰低温设备厂);氢气发生器(天津市分析仪器厂);样品取自鞍山市管道焦炉煤气。  色谱填料:13X 分子筛、GDX-104 填料(天津化学试剂二厂);空色谱柱(内径3 mm,长3 m 的色谱柱一根,装填13X 分子筛;内径2 mm,长2 m色谱柱一根,装填GDX-104 填料)(大连伟达分析仪器厂)。  标准气(? (CO2)=2.03%;? (CO)=7.12%;? (CH4)=30.4%;? (O2)=0.508%;? (N2)=9.19%;H2 为平衡气)(光明化工研究设计院)。  1.2 气相色谱柱的装填  首先用碱溶液将空柱管清洗干净,然后用清水将柱管中的碱液冲洗干净,放置到烘箱中烘干,待用。按一定的填充密度/ML), 根据柱体积计算所需的填料质量,并用电子天平称取,待用。  在柱的一端用玻璃丝绵堵住,用自制的装柱配件将柱连接到真空泵上,另一端通过装柱配件连接到柱头。将填料少量、多次地填到装柱漏斗中,并用真空抽吸,并不断震荡柱,使填料填充均匀。待柱装满后,将柱的另一端也用玻璃丝绵堵住,并标注填充方向。  在通氮气的条件下,将柱在200 ℃下,老化4 h,然后测试柱效和分离效果。  1.3 气相色谱法分析焦炉煤气成分条件的选择  由于焦炉煤气中含氢气、甲烷、氧气、氮气、 一氧化碳、乙稀和乙烷等多种气体,不能在一个分析条件下进行全分析。因此,需要在不同条件下对不同组分进行分析。本论文采用表1 所示的条件对焦炉煤气进行分析,其它分析条件则通过实验作进

  • 焦炉炉框的适用介绍

    炉门炉框的使用寿命,焦化炉门和焦炉炉框是河铸重工的主打产品;   焦化炉门通过低导热性能带来高的节能效果;具有抵抗_热冲击的能力;   衬体无需烘干和养护,所以安装好以后便可立即投入使用;   锚固系统远离组件的热面,使得金属锚固件处在相对低的温度下。   焦化炉门一般指有机物质碳化变焦的过程。在煤的干馏中指高温干馏。   在石油加工中,焦化炉门中的“焦化”是渣油焦炭化的简称;   是指重质油(如重油,减压渣油,裂化渣油甚至土沥青等)在500℃左右的高温条件下进行深度的裂解和缩合反应;   产生气体、汽油、柴油、蜡油和石油焦的过程。   焦炉炉框是一种通常由耐火砖和耐火砌块砌成的炉子,用于使煤炭化以生产焦炭。用煤炼制焦炭的窑炉。   焦炉炉框是炼焦的主要热工设备。现代焦炉是指以生产冶金焦为主要目的;   可以回收炼焦化学产品的水平室式焦炉,由炉体和附属设备构成。   保护板在安装前,需要在炉顶机焦两侧对应保护板和炉柱的安装位置处分别安设临时固定架;   将保护板吊装_位并调整后,用绑扎件将其的上部与临时固定架连接,对其进行临时固定。   焦炉炉门炉框的使用寿命 ,泊头河铸主要产品有:   机床铸件,铸铁平板平台,烧结台车,蓖条,拦板,冷床用矫直板,裙板,钢锭模,中注管,浇注底盘,渣包渣罐,焦化设备等。

  • 焦炉炉框的适用介绍

    炉门炉框的使用寿命,焦化炉门和焦炉炉框是河铸重工的主打产品;   焦化炉门通过低导热性能带来高的节能效果;具有抵抗_热冲击的能力;   衬体无需烘干和养护,所以安装好以后便可立即投入使用;   锚固系统远离组件的热面,使得金属锚固件处在相对低的温度下。   焦化炉门一般指有机物质碳化变焦的过程。在煤的干馏中指高温干馏。   在石油加工中,焦化炉门中的“焦化”是渣油焦炭化的简称;   是指重质油(如重油,减压渣油,裂化渣油甚至土沥青等)在500℃左右的高温条件下进行深度的裂解和缩合反应;   产生气体、汽油、柴油、蜡油和石油焦的过程。   焦炉炉框是一种通常由耐火砖和耐火砌块砌成的炉子,用于使煤炭化以生产焦炭。用煤炼制焦炭的窑炉。   焦炉炉框是炼焦的主要热工设备。现代焦炉是指以生产冶金焦为主要目的;   可以回收炼焦化学产品的水平室式焦炉,由炉体和附属设备构成。   保护板在安装前,需要在炉顶机焦两侧对应保护板和炉柱的安装位置处分别安设临时固定架;   将保护板吊装_位并调整后,用绑扎件将其的上部与临时固定架连接,对其进行临时固定。   焦炉炉门炉框的使用寿命 ,泊头河铸主要产品有:   机床铸件,铸铁平板平台,烧结台车,蓖条,拦板,冷床用矫直板,裙板,钢锭模,中注管,浇注底盘,渣包渣罐,焦化设备等。

  • 焦炉烟道气脱硫脱硝除尘技术应用

    炼焦行业中焦炉煤气燃烧给焦炉加热时会产生大量的大气污染物,包括二氧化硫(SO2)、氮氧化物(NOx)及烟尘等,此类污染物经焦炉烟囱呈有组织高架点源连续性排放至大气中,对环境造成严重污染,尤其是SO2和NOx这两类有害气体不仅会形成酸雨,破坏臭氧层,而且还是PM2.5的主要气态物质,严重危害人体健康。鉴于此,国家于2012年6月颁布了《炼焦化学工业污染物排放标准》(GB16171—2012),明确规定了现有焦化企业2015年1月1日后焦炉烟道气中污染物的排放限值和特别限值,部分地区更是提出了更为严格的要求,以临汾市为例,《临汾市大气污染防治2018年行动计划》里明确要求:焦化行业分步实施大气污染物特别排放限值改造,2018年10月1日前50%的焦化企业完成大气污染物特别排放限值改造,2019年10月1日前全市焦化企业全部完成大气污染物特别排放限值改造。  在此严苛的环保形势下,位于临汾市洪洞县的山西焦化股份有限公司新上了脱硫脱硝工艺装置,山西焦化股份有限公司2#、3#焦炉烟道气中前期NOx、SO2及颗粒物的排放量分别为1 200mg/m3、200mg/m3 和30mg/m3,不能满足炼焦化学工业污染物排放标准(GB16171-2012)的要求,因此山西焦化股份有限公司于2018年6月建成了焦炉烟道气脱硫脱硝及余热回收工艺装置,该工艺采用“SCR脱硝+余热回收+半干法脱硫”的路线,保证了出口NOx、SO2及颗粒物排放量分别低于150、30、15mg/m3。  1 工艺流程  脱硫脱硝与余热回收工艺流程示意图,如图1所示。焦烟道气自2#、3#焦炉原有地下烟道分别引出汇合经脱硝预处理后,进入脱硝系统,在脱硝反应器上游设置喷氨格栅,将氨气送入烟气中充分混合,混有氨气的烟气进入脱硝反应器中,在催化剂作用下进行还原反应生成N2和H2O,经过脱硝后的烟气继续进入热管式余热锅炉进行热量回收,产生的饱和低压蒸汽输送到公司热力管网,冬季供居民采暖使用,降温后的烟气则进入脱硫系统,脱硫系统采用半干法脱硫,脱硫后的烟气经除尘后通过引风机增压排放至原有烟囱,实现烟气的达标排放。image.png  1.1 烟气脱硝系统  本系统选择中低温SCR脱硝技术,还原剂采用NH3。其脱硝的原理是NOx在催化剂作用下,在一定温度条件(中低温230℃~300℃)下被氨气还原为无害的氮气和水,不产生二次污染,SCR 脱硝的化学反应式见式(1)~式(5):  4NO+4NH3+O2——4N2+6H2O(主反应)(1)  6NO2+8NH3——7N2+12H2O (2)  6NO+4NH3——5N2+6H2O (3)  NO+NO2+2NH3——2N2+3H2O (4)  2NO2+4NH3+O2——3N2+6H2O (5)  来自液氨站的氨气与稀释风机来的空气在氨/空气混合器内充分混合后与焦炉烟道气一起进入SCR脱硝反应器,反应器内混合烟气竖直向下流动,反应器入口设有气流均布装置和整流装置,确保混合烟气流场均匀;反应器内装有专用的中低温催化剂,催化剂的活性温度230℃~300℃,催化剂能够满足烟气最大量时脱硝效率达到87.5%以上的需求,同时SO2/SO3的转化率控制在1%以内。另外,催化剂采用“2+1”布置方式,具有较高的化学稳定性、热稳定性和机械稳定性,从而保证了SCR脱硝反应器出口氨逃逸不大于10×10-6。该SCR脱硝反应器适应焦炉50%~100%工况之间任何负荷运行。  1.2 余热回收系统  余热锅炉采用立式布置,自脱硝系统处理后的烟道气竖直进入锅炉蒸发器、省煤器后进入后续脱硫系统。来自供气的除氧水进入省煤器,预热后送入锅筒。在锅筒内部汽水通过上升、回流管路参与蒸发器换热面的吸热循环,产生压力0.8MPa饱和蒸汽,经气液分离后输出,输出饱和蒸汽外送至蒸汽管网。锅筒、蒸发器、省煤器设有排污口,可定期清除内部残留污物及水垢。锅炉系统中共设置两个安全阀,在系统超压0.85MPa时,安全阀自动依次起跳,泄放压力,保证锅炉系统安全,当系统压力恢复正常时,安全阀回座。  1.3 脱硫除尘系统  烟道气从底部进入脱硫塔,与再循环灰和添加的碳酸钠溶液进行反应,反应除去烟道气中的SO2和其他酸性物质后烟道气到达脱硫塔顶部,供应的碳酸钠通过真空上料机送进碳酸钠粉仓,碳酸钠粉通过粉仓底部的星型卸料阀送至碳酸钠溶液箱内,在溶液箱内与水搅拌制成一定浓度的碳酸钠溶液,碳酸钠溶液通过多级离心泵打入脱硫反应器,通过调节溶液输送管道上的调节阀改变进入脱硫塔的碳酸钠溶液量,以达到最佳的雾化效果。反应后的烟道气以混合物形式从脱硫塔顶部离开进入布袋除尘器,在布袋除尘器进行气体和固体进行分离,分离的固体大部分通过螺旋输送机回到脱硫塔继续脱硫,少部分通过螺旋输送机出口的分料阀送至灰仓,灰仓内物料达到一定高度后经散装机通过运输车外送。布袋除尘器出口的烟道气粉尘含量降低到15mg/m3,除尘后的烟道气经过引风机送入原有烟囱。净化烟道气的排气温度在140℃以上,不会在烟囱周围产生烟囱雨,并可以避免烟气温度低于酸露点而引起的烟囱腐蚀。  在脱硫塔内,碳酸钠浆液与脱硫塔内烟气接触迅速完成吸收SO2的反应,在低温降下具有极高的SO2脱除效率,由于喷入塔内的碳酸钠浆液是小雾滴,因此完成脱硫反应后的脱硫产物也为极细的颗粒,并且完成反应的同时也即迅速干燥。碳酸钠转化成亚硫酸钠和硫酸钠的反应方程式,见式(6)~式(7):  SO2+Na2CO3 →Na2SO3+CO2 (6)  2Na2SO3+O2 →2Na2SO4 (7)  2 技术特点  (1)直接利用焦炉烟道气原有温度进行脱硝,最大程度的保证了脱硝温度在较高的温度范围内,同时免去了对烟气进行加热产生的能源消耗,且烟气经过SCR反应器后,温度损失5℃~10℃,不影响后序余热回收系统运转,符合热能回收利用的要求;(2)余热回收系统可以对焦炉尾气显热高效回收利用,实现了按温度梯度进行热量梯级利用,符合国家对企业环保节能的要求;(3)脱硫系统脱硫效率高。  3 工艺运行指标  截止到2019年2月,装置已运行半年多,取得了良好的效果,焦炉烟气各项污染物如NOx、SO2和粉尘质量浓度均符合《炼焦化学工业污染物排放标准》排放限值规定,脱硫脱硝除尘工艺性能参数,如表1所示。image.png  4 结语  山西焦化股份有限公司焦炉烟道气脱硫脱硝及余热回收技术工艺流程设计简单,布置合理,占地面积小,能耗低,热能回收充分,运行成本低,烟道气治理效果好,可有效提升企业环保管理水平和治理能力,该套技术的成功投用,为焦化行业相关企业焦炉烟道气脱硫脱硝提供了经工业验证的技术选择。

  • 在线焦炉煤气孔板流量计的清扫

    焦炉采用焦炉煤气或高炉煤气加热时,通常选用孔板流量计来计量煤气的用量。由于焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,存在一次取压口与引压管路易堵塞、计量不准确、在线清扫困难等问题。为了保证计量的准确性并降低维修人员的劳动强度,经摸索,制造了一种实用的现场专用设备,并总结出了一种有效的处理方法,较好地解决了上述问题,取得了良好的效果,满足了生产要求。炼焦是将配制好的洗精烟煤通过高温干馏,得到高炉炼铁需要的冶金焦或其他的焦炭及气体燃料——焦炉煤气和有关化工产品。焦炉采用自产并经过精制处理的焦炉煤气或高炉冶炼过程中产生的高炉煤气加热,将配制好的洗精烟煤在炭化室加热到950~1050℃变成焦炭。焦炉炉体的特性,决定了焦炉加热与生产具有长期高度连续性的特点,通过配套回炉焦炉煤气或高炉煤气管道体系来保证加热的连续性。由于高炉煤气热值低,为了保证焦炉加热的要求,需要掺混9%的焦炉煤气进入高炉煤气系统及使用焦炉煤气进行炉头补充加热。每座焦炉加热使用的焦炉煤气约占其自身煤气发生量的45%左右,对于一座65孔,高4.3mm,宽407mm达到设计生产水平的焦炉,其焦炉煤气的使用量约9000m3/h。通常一座焦炉在其一代炉龄里,头几年与zui后的几年都采用焦炉煤气加热,中间可以采用高炉煤气或焦炉煤气加热。由于焦炉生产的能耗较大,为了控制能源消耗,保证加热及方便不同焦炉之间的比较,需要安装计量仪表和参与加热控制的计量仪表。1孔板流量计的使用1.1孔板流量计的工作原理燃气计量仪表有容积式流量计、速度式流量计、差压流量计和涡街式流量计。差压流量计又叫节流流量计,是工业上应用zui广的一种测量流体流量的仪表,根据节流件的不同分为孔板、喷嘴和文丘里管3种。由于孔板流量计结构简单,制造成本与加工精度要求相对较低,安装与使用方便,使用寿命长、适应性较广,已标准化且焦炉煤气中含有焦油、萘、氨、硫化物和氰化物等杂质,为了保证计量的准确性并达到计量仪表在管道上的布局要求,通常选用标准孔板作为检测的节流装置。其工作原理是流体在管道中通过孔板时,突然断面缩小,流体的动能发生变化产生一定的压力降,压力降的变化与流速有关,此压力降可通过孔板前后测压点的引压管路(图1),借助差压计测出,经现场变送器转换成标准的电信号传输,经组合仪表处理后可在线显示实际的煤气用量并累积计算。压力差与体积流量的关系式如下。1.2孔板流量计在焦炉上的使用(1)焦炉煤气总管?焦炉煤气加热时,煤气总管上装有显示每小时用量的孔板流量计(图1),其一次取压口一般采用标准的一英寸法兰连接,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。(2)机焦侧混合煤气支管?高炉煤气加热时,显示每小时用量的孔板流量计(与图1原理相同),其一次取压口一般采用标准的角接法,通过测量孔板前后的压力降并经组合仪表处理后可在线显示实际的煤气用量并累积计算。此外,还可将测得的煤气量信号反馈现场执行机构控制翻板开度来调节煤气用量。1.3使用中问题由于焦炉煤气中含有焦油、萘、氨、硫和氰化物等杂质,长期使用后,流量检测系统的一次取压口、引压管路极易发生堵塞使其不畅通,导致流量无法准确测量。更令人头痛的是焦炉煤气内的杂质吸附在孔板的刀口上,使孔板孔径变小,造成孔板前后压力降增大而使煤气流量计量值增大甚至不能正常运行,严重影响焦炉煤气计量和用量的调节。由此可知,焦炉煤气孔板流量计存在一次取压口或引压管路易堵塞、在线清洗频繁且困难、仪表维修工作量大、测量不准确等问题。由于焦炉煤气的使用量较大,而发生的周期短,处理又比较困难,而且必须在正常生产时进行,增加了维修人员的劳动强度。为了保证计量的准确性并降低维修人员的劳动强度,必须找到有效的清扫方法。2解决方法2.1孔板清洗方法对于孔板、孔径因积焦油、萘等杂质变小问题,通常的清洗方法是停止加热拆下清洗、更换孔板、从引压管路通入蒸汽清洗,从孔板前冷凝液排放管中用蒸汽管或水管清洗等。该方法使用时需要停止加热,影响了焦炉的正常生产。带气作业时有煤气泄漏影响安全、在线用蒸汽清洗时几千立方米每小时的煤气流量带走了蒸汽热量,中低压冷水不能融化焦油、萘等杂质,故清洗效果不理想。经过长期的摸索后,制造出了一种取材方便、投资少、制造简单、现场安装搬运调试方便的专用设备(图2),并总结了一种有效的处理方法解决了上述问题。使用方法为:将图2所示的设备搬到现场安装好,向铁桶6内注满水,用蒸汽加热到60℃以上,开动增压泵4,待看到高压水枪1侧出口小孔的水流稳定且压力表上显示达到4~8MPa后,关闭图1中计量阀门7,打开计量变送器8上方的平衡阀,拆下丝堵4,将图2中带有比枪管孔径稍大丝堵2的高压水枪1,从图1中冷凝液排放管3伸入,上好丝堵2,打开阀门5,高压水枪喷孔对准孔板上下并小角度转动,将孔板冲洗干净。该方法的优点是设备投资少,搬运、安装、调试方便,操作简单,在线清洗不需停止加热,水流在比枪管稍大的丝堵处起液封煤气的作用,操作安全,高压热水清洗效果好,清洗后的计量准确。2.2一次取压口及引压管路的清扫对于一次取压口及引压管路堵塞问题,通常的方法是用蒸汽或高压氮气清扫。由于通常的蒸汽压力只有0.5MPa左右,一次取压口径又小,堵塞不严重时,该方法是可行的,若堵塞严重,该方法的使用效果不理想。为此,将用于孔板清洗的设备去掉图2中1、2、3后与引压管路连接好清扫,然后用蒸汽清扫,效果较好,保证了生产需要

  • 焦炉煤气怎么分析?

    样品:焦炉煤气分析成分:CO\CO2\N2\O2\CH4\C2H4\C3H6请各位高手指点,谢谢!![em49] [em49] [em49]

  • 电除尘在焦炉烟气净化中的运用

    1 焦炉尾气处理工艺流程  某焦化厂是一个集炼焦、发电为一体的焦化企业,在运行的过程中不仅会生产出焦炭,而且还能够充分利用炼焦炉烟气的热量,通过余热回收系统进行发电。焦化炉尾气处理的工艺流程如下所示:焦化炉生产出的高温烟气在温度达到600℃的时候,高温烟气会进入到余热回收系统中,经过余热回收系统的汽水分离处理能够将高温蒸汽送入到汽轮机中,带动发单机的发电。焦化炉尾气处理工艺流程具体如图1所示。焦化炉尾气处理操作涉及到的各类参数信息如下所示:①锅炉型号为Q96/750-27-2.5型号的焦炉煤气余热回收系统;②锅炉的额定蒸发量是每小时20吨;③锅炉的烟气量是每小时310000m3;④锅炉的最高温度是300℃;⑤烟气的含尘量是1g/Nm3;⑥锅炉的运行压力是2~-6Kpa之间。59.jpg  2 电除尘器概述  2.1 内涵  电除尘是一种利用强电场使气体电离,即产生电晕放电,进而使粉尘荷电,并在电场力的作用下,将粉尘从气体中分离出来的除尘装置。  2.2 电除尘器的特点  烟气大多来自焦化炉,在焦化炉使用的过程中虽然经历了余热回收系统的热交换,进入除尘器的烟气温度达到250~260℃,最高情况下能够达到300℃,因而和一般的煤粉炉烟[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]比,电除尘器的使用效率基本上高出了一倍左右。另外,受焦化炉使用不稳定的影响,在焦炉的烟气温度不超过500℃的时候,焦炉中的烟气焦油含量也会相应增多,对电除尘器的除灰工作带来了难度。电除尘器的设计要点具体表现在以下几个方面:第一,气体流动速度不能较高,受粉尘颗粒直径较小、重量较轻的影响,在风速较高的情况下,进入到电场中粉尘往往会被气流带出电场,达不到收尘的目的,同时,在风速较大的情况下还会将收集到的粉尘重新带入到电场中,出现生产加工的二次粉尘飞扬,因此,在烟气量一定的情况下需要确保除尘器断面的强大;第二,收尘极板的合理选择,收尘极一方面要具备良好的电性能,另一个方面还需要确保振打加速度分布的均匀,从而减少粉尘的二次飞扬,从电除尘器的收尘极板应用来看,这类极板的电流密度分布比较均匀,型号是C480极板,在使用过程中板中间还会出现几个波形,由此在无形中增大了板子的刚度;第三,在出口位置上设置槽板装置,受低比电阻粉尘的跳跃影响,一些重返电磁场的粉尘会被气流带离电场,加上电场振打操作中出现的二次扬尘,如果没有对这些扬尘进行及时收集就会导致空气中的粉尘增多,降低除尘效率,为此,需要在除尘器的出口垂直位置上安排两层槽形板,在槽型板的作用下捕捉额外出现的粉尘,提升粉尘除尘效率。  2.3 电晕极和收尘极的选择  电场是静电除尘器的重要零部件,电场的运行在某种程度上决定了电除尘的除尘效果和除尘效率,正确选择收尘极和电晕极是有效利用除尘器的重要关键。在使用静电除尘器的时候,除尘器的阳极板适合应用综合性能良好的C480极板,材质为不锈钢。阴极线应用不锈钢芒刺线,受芒刺线起晕电压低特点的影响可以充分吸收尘埃。  2.4 低耗水量  除尘器在使用的过程中配套灰水处理自动循环系统,经过的喷嘴循环水流量不会随着机组的负荷变化而发生变化,电除尘器在应用的过程中用水量基本保持了一种不变的使用状态。循环水的补水量和烟气中的含尘量呈现出一种线性关系。  2.5 无运动部件  除尘器在使用的过程中大大降低了运行维护成本费用。除尘器的放电极应用了特殊形状的设计方式和安装方式,在使用过程中不会因为震动、腐蚀而出现损坏的现象。同时,在先进技术的支持下还实现了对喷淋系统喷嘴形式和尘埃汇集板型号的优化,使得除尘器的设计不具备额外的运动部件,在无形中降低了除尘器的工作量。  3 电除尘在焦化炉烟气净化运行中出现的问题及整改措施  3.1 振打制度设置不合理问题和整改措施  电除尘在焦化炉烟气净化运行中应用的时候虽然电流电压数值正常,但是烟囱的使用出现了比较明显的黑色烟气,除尘效果不理想。在经过一段时间的观察发现,烟尘的灰量在一定程度上减少,可以每间隔四到五天排放一次。60.jpg61.jpg  3.2 阴极吊挂设计  考虑到烟气温度较高且粉尘比电阻低、容易爬电的特点,在阴极吊挂设计的时候应用了一种耐高温能力强、不容易累积灰尘、爬距大的95瓷制作穿墙套管,具体如图2所示。设计好的阴极吊挂在经过一段时间的试用之后发现效果不理想,几处穿墙套管在电场内部,在受到击打会出现炸裂的现象,炸裂之后的零碎品会掉落到灰斗的内部,使得焦化炉的使用出现了不同程度的损坏。针对这个问题,在改进设计中相关人员替换掉了穿墙套管,将穿墙套管替换为一种耐高温的石英套管,并在大梁上使用的时候在外部额外添加防尘套,改进之后的阴极吊挂绝缘套管如图3所示。改进之后的阴极吊挂绝缘套管能够将粉尘到达瓷套的量有效降低,减少爬电现象的发生。  3.3 阴极大小框架热膨胀量  阴极振打轴跟着向下的位移量要比常规的大,在对阳极设计的时候由于振打轴和挡灰板之间的缝隙较小,由此导致振打轴在向下移动的时候会使挡灰板出现挤压变形问题。针对这个问题,可将挡灰板上的孔改变为椭圆形,这样便能够有效防止挡灰板出现挤压变形的问题。  4 结束语  综上所述,本文结合焦化炉尾气处理工艺流程和除尘器的工作原理、特点,分析了电除尘在焦化炉烟气净化运行中出现的问题及整改措施,在经过一段时间的應用之后发现,工厂的烟气量被有效控制在每小时289000m?,烟气的流动速度被控制在每秒11.96m,空气的过剩系数为2.3,尘埃的含湿量为253℃,出口含尘的浓度为48.5mg/Nm3,由此证明除尘器在焦化炉尾气处理中的良好应用效果具有广泛的应用前景,需引起相关人员的重视。

  • 焦炉是否需要折算?

    焦炉是否需要折算?我们这边有人认为应该按照钢铁行业基准氧含量8进行折算。但是我看国标和地标都没有标注焦炉的事情。炼焦化学里面16171-2012中说在国家未规定实施单位产品基准排气量之前,按照实测浓度走

  • 测量高炉焦炉煤气烟道气体用什么流量计比较好?

    为保证使用效果,我们必须先弄清楚这几种气体的主要成分和特点,然后才能有针对性地选择zui适合现场使用的流量计。 一、高炉煤气含尘量大。焦炉所用的高炉煤气含尘量要求zui大不超过15mg/m3。2012年以来由于高压炉顶和洗涤工艺的改善,高炉煤气含尘量可降到5mg/m3以下,但长期使用高炉煤气后,煤气中的灰尘也会在煤气通道中沉积下来,使阻力增加,影响加热的正常调节,因而需要采取清扫措施。 另外,高炉煤气是经过水洗涤的,它含有饱和水蒸汽。煤气温度越高,水分就越多,会使煤气的热值降低。从计算可知,煤气温度由20℃升高到40℃时,要保持所供热量不变,煤气的表流量约增加12%。因此要求高炉煤气的温度不应超过35℃。当煤气温度发生一定变化时,交换机工应立即调整加热煤气的表流量,以保证供给焦炉的总热量的稳定。 二、焦炉煤气,又称焦炉气,英文名为Coke Oven Gas(COG),由于可燃成分多,属于高热值煤气,粗煤气或荒煤气。是指用几种烟煤配制成炼焦用煤,在炼焦炉中经过高温干馏后,在产出焦炭和焦油产品的同时所产生的一种可燃性气体,是炼焦工业的副产品。焦炉气是混合物,其产率和组成因炼焦用煤质量和焦化过程条件不同而有所差别,一般每吨干煤可生产焦炉气300~350m3(标准状态)。其主要成分为氢气(55%~60%)和甲烷(23%~27%),另外还含有少量的一氧化碳(5%~8%)、C2以上不饱和烃(2%~4%)、二氧化碳(1.5%~3%)、氧气(0.3%~0.8%))、氮气(3%~7%)。其中氢气、甲烷、一氧化碳、C2以上不饱和烃为可燃组分,二氧化碳、氮气、氧气为不可燃组分。 三、烟道气(flue gas / stack gas)是指煤等化石燃料燃烧时候所产生的对环境有污染的气态物质。这些物质通常由烟道或烟囱排出。烟道气产生的过程大多是燃料不充分利用,不完全燃烧造成的。其主要成分为氮气、二氧化碳、氧气、水蒸气和硫化物等,若炉子操作不正常,会产生一氧化碳、氧化氮及其他有害气体。无机污染物占99%以上;灰尘、粉渣和二氧化硫含量低于1%,须经气体净化装置处理后排空,以减少对环境的污染。 综上所述,由于高炉焦炉煤气烟道气体的特殊性,含尘、含水汽、压力低、流量小,一般常用流量计如涡街流量计、涡轮流量计等都无法适应现场环境的需要,加上这些安装现场大多在高空烟囱或者管道,大多数管径又特别大,所以安装方面也是个大问题,根据以上分析和江苏奥科仪表有限公司多年现场经验,插入式热式气体质量流量计是个非常不错的选择。 热式气体质量流量计是利用热传导原理测流量的仪表。该仪表采用恒温差法对气体质量流量进行准确测量。具有体积小、数字化程度高、安装方便,测量准确等优点。 热式气体质量流量计传感器部分由两个基准级铂电阻温度传感器组成。采用桥式环路,一个传感器测量流量温度,另一个传感器维持高于流体温度的恒温差,可以在高温和高压条件下进行流量测量。具有以下优点: 1.宽量程比,可测量流速高至100Nm/s低至0.5Nm/s的气体,可以用于气体检漏。 2.抗震性能好,使用寿命长。传感器无活动部件和压力传感部件,不受震动对测量精度的影响。 3.安装维修简便。在现场条件允许的情况下,可以实现不停产安装和维护。 4.数字化设计。整体数字化电路测量,测量准确、维修方便。 如果采用RS-485通讯,或HART通讯,还可以实现工厂自动化、集成化管理的要求。

  • 焦炉煤气脱硫脱氰技术及优化建议

    简要回顾了煤气脱硫脱氰工艺的发展历程,介绍了湿式吸收法和湿式氧化脱硫法的原理及进展。总结了硫磺回收、WSA接触法制硫酸、克劳斯炉生产硫磺、硫氰酸盐和硫代硫酸盐的提取、昆帕库斯法制浓硫酸、希罗哈克斯法制硫酸铵等副产品回收工艺过程。并从工艺优选、设备及技术开发、废液资源化处理方面提出煤气脱硫脱氰技术的优化建议。  焦化产业是煤化工的支柱产业之一。炼焦原料煤主要由碳、氢、氮、硫和氧5 种元素组成,其中硫元素以有机硫和无机硫形式存在。一般干煤含全硫质量分数0.5%~1.2%,在成焦过程中,约有30%的硫进入煤气中,其中95%的硫以H2S 形式存在。煤气中一般含H2S(质量浓度4 g/m3~10 g/m3)和HCN(质量浓度1 g/m3~2.5 g/m3),在煤气净化过程中对工艺设备有腐蚀危害,燃烧后对环境有污染,因此需要对煤气进行脱硫脱氰净化处理。  笔者在煤气脱硫脱氰工艺原理分析的基础上,总结了副产品回收技术,并对煤气脱硫脱氰技术的优化提出建议,旨在促进新技术的开发。  1 焦炉煤气脱硫脱氰工艺发展简述  目前,国内的煤气脱硫脱氰技术是在煤气净化工艺基础上建立的。20 世纪70 年代以前,我国绝大部分焦化企业的焦炉煤气净化工艺沿用与原苏联20 世纪40 年代焦炉炉型相配套的初冷 -洗氨 -终冷 -洗苯的煤气净化工艺流程,一般不设置脱硫装置,仅对氨进行回收。  20 世纪80 年代末开始,随着煤气净化技术的引进,宝钢等一些大型钢铁企业,陆续引进了MEA 法、TH 法等脱硫工艺。但国内大部分焦化企业仍停留在采用氢氧化铁干法或ADA 法脱硫的阶段,甚至有些焦化企业没有脱硫装置。此时,我国的ZL 脱硫脱氰工艺正处于研究探索阶段。20 世纪90 年代初,国内焦化生产企业先后引进了FRC 法、氨 -硫化氢循环洗涤法(AS 法)、真空碳酸盐法等脱硫技术。  之后在湿式氧化脱硫技术基础上,开发出了诸多适合我国国情的煤气脱硫脱氰新技术,如栲胶法、HPF法、PDS 法、888 法、APS 法、OMC 法、OPT 法、YST 法和RTS 法等,极大地推动了我国焦化行业湿式脱硫脱氰技术的发展[3]。目前,湿式氧化法脱硫脱氰工艺分为3 个部分:硫化氢及氰化氢等酸性气体的脱除、脱硫富液的再生及副产品回收。湿式吸收法脱硫工艺也分为3 个部分:硫化氢的脱除、脱硫富液的再生及酸性气体再处理生产副产品。  2 煤气脱硫脱氰工艺原理及副产品回收技术  根据工艺原理不同,煤气脱硫脱氰技术主要分为干法脱硫技术和湿法脱硫脱氰技术。干法脱硫工艺设备体积庞大,脱硫剂容易结块、需定期更换,可作为湿法脱硫的补充精脱硫技术。国内目前主要采用湿法脱硫脱氰技术,根据工艺原理不同,可分为湿式吸收法和湿式催化氧化法。根据脱硫脱氰工艺在煤气净化工艺中的位置不同,又可分为前脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺前)和后脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺后)。根据脱硫脱氰所用吸收剂的不同,可分为以碳酸盐为碱源和煤气中制取的氨水为氨源2 种吸收剂。  2.1 煤气脱硫脱氰工艺原理  目前,我国焦炉煤气湿式催化氧化法脱硫工艺中使用的催化剂大致可分为2类:一类是酚 -醌转化(活性基团转化)类催化剂,如ADA、对苯二酚、栲胶、苦味酸和1,4 -萘醌-2 -磺酸钠等,通过变价离子催化。这类催化剂存在不能脱除有机硫、总脱硫效率低、硫泡沫不易分离、设备易堵塞、H2S 适应范围小和脱硫成本较高等缺点。另一类是磺化酞菁钴和金属离子类(铁基工艺、钒基工艺)脱硫催化剂,如PDS 和复合催化剂对苯二酚-PDS -硫酸亚铁等,这类催化剂通过本身携带的原子氧完成氧化和再生反应。  湿式吸收工艺主要建立在吸收 -解吸理论基础上。利用煤气混合物中各组分(溶质)在碱性脱硫脱氰吸收液中的溶解度不同,实现分离(硫化氢在碱性溶液中的溶解度远大于氨),利用酸性气体溶质在碱性溶液中的溶解度随温度升高而降低的规律,通过加热脱硫富液,脱除HCN 等酸性气体。  例如,以碳酸钾为碱源的湿式吸收脱硫脱氰工艺中,吸收方程式见式(1)~(3),解吸方程式见式(4)~(6):  K2CO3+H2S→KHCO3+KHS (1)  K2CO3+HCN→KCN+KHCO3 (2)  K2CO3+CO2+H2O→2KHCO3 (3)  KHS+KHCO3→K2CO3+H2S (4)  KCN+KHCO3→K2CO3+HCN (5)  2KHCO3→K2CO3+CO2+H2O (6)  湿式氧化脱硫工艺与湿式吸收工艺脱硫单元操作相同,再生工艺不同。脱硫富液再生时,在空气中氧气、催化剂作用下,S2 -氧化为单质硫,从而使煤气中酸性气体得以去除。  例如,以碳酸钠为碱源的湿法氧化脱硫工艺中,脱硫阶段的方程式见式(7)~(9),副反应见式(10)~(13):  Na2CO3+H2S→NaHS+NaHCO3 (7)  HS-+2V5+→2V4++S+H+ (8)  2V4++ 催化剂(氧化态)→2V5++ 催化剂(还原态)(9)  Na2CO3+2HCN→2NaCN+H2O+CO2 (10)  NaCN+S→NaCNS (11)  2NaHS+2O2→Na2S2O3+H2O (12)  2Na2S2O3+O2→2Na2SO4+2S (13)  氧化还原反应首先在脱硫吸收塔内发生,根据E°V5+/V4+=1.000 V,E°S/S2-= -0.508 V[5],标准电极电位高的V5+ 将S2 -氧化为单质硫。同时,V5+ 被还原为V4+。在碱性条件下,E°O2/H2O=1.23 V[5],则E°O2/H2OE°V5+/V4+E°S/S2-,催化剂携带的氧气可将V4+ 氧化为V5+,使脱硫富液再生。同时,氧气可将在脱硫塔未被氧化的负二价硫继续氧化为单质硫。  2.2 脱硫脱氰富液副产品的回收工艺  在湿式吸收脱硫脱氰工艺中,富液再生过程通过蒸汽加热实现。因此,反应速度慢,生成的废液极少。在湿式氧化脱硫脱氰工艺中,由于再生过程中氧气的带入而发生副反应,生成硫代硫酸铵、硫氰酸铵等副盐,总量为450 g/L~550 g/L。目前,每生产1 t 焦炭产生脱硫废液10 kg 左右,焦化厂虽配套废水处理设施,但其污染物浓度超高,难以有效处理。  目前湿式氧化工艺副产品回收技术主要为富液空气催化氧化产单质硫;剩余富液处理主要为希罗哈克斯法高温高压制硫铵、昆帕库斯法焚烧后制硫酸及还原热分解产单质硫。湿式吸收工艺技术主要为WSA接触法制酸和克劳斯炉(SCL)生产硫磺。  2.2.1 富液空气催化氧化产单质硫  再生塔脱硫富液中S2 -在空气中氧及催化剂作用下,生成悬浮单质硫,从再生塔顶分离出来的质量分数为5%~10%硫泡沫进入硫泡沫槽中,经初步分离,再经固液分离设备脱水,得到含水质量分数40%~ 50%的硫膏,最后经熔硫釜熔融并分离出杂质后,冷却制成硫块。  2.2.2 WSA 接触法制硫酸  脱硫脱氰富液经热解吸处理后,产生酸性气体,送入WSA 制酸系统。WSA 制酸工艺的基本原理为酸性气体燃烧产生SO2,在催化剂作用下转化为SO3,再与气体中的水蒸气进行水和反应,生成气态硫酸,冷却为液态酸。  该工艺主要通过酸性气燃烧、过程气除杂、SO2 转化、硫酸冷凝冷却、热能回收利用等步骤,生产质量分数为98%的浓硫酸及中压过热蒸汽,多与真空碳酸钾法脱硫工艺配套使用。  2.2.3 克劳斯炉(SCL)生产硫磺  脱硫装置真空泵送来的含H2S、HCN 及CO2 等的酸性气体,进入克劳斯炉,酸气中1/3 的H2S 与空气燃烧生成SO2,2/3 的H2S 与生成的SO2 反应,生成单质硫。该工艺多与真空碳酸钾法脱硫工艺配套使用。  2.2.4 硫氰酸盐和硫代硫酸盐的提取  根据硫氰酸盐和硫代硫酸盐在水中溶解度的不同,通过控制蒸发浓度(比重)和冷却温度,达到分别提纯的目的。  以碳酸钠为吸收液的湿式催化氧化脱硫脱氰工艺为例,反应后脱硫富液催化剂浓度低,可忽略不计,溶液中主要含NaCNS、Na2S2O3 及Na2CO3 等。其中Na2CO3溶解度最小,且随温度升高变化不大。所以提取时可直接将脱硫富液吸收液蒸发浓缩,Na2CO3 首先析出并经过滤除去,再将过滤所得母液冷却、结晶和分离,可回收NaCNS 和Na2S2O3。  NaCNS 在水中的溶解度随温度的下降而降低,将NaCNS 饱和液温度降至过饱和状态时,NaCNS 结晶析出。但当吸收液中Na2S2O3 含量较高,超过NaCNS 含量的1/3 时,需首先将Na2S2O3 提出,否则将影响NaCNS产品质量。  2.2.5 昆帕库斯法制浓硫酸  该法一般作为FRC 法的一部分(即C 部分),脱硫吸收液多为氨源,脱硫后富液多为含单质硫、硫氰酸铵和硫代硫酸铵的脱硫富液,浓缩后与一定量的用于促进燃烧的煤气在燃烧炉内进行高温裂解,产生的SO2 随燃烧废气排出,对废气进行催化氧化处理,将正二价的硫化物氧化成正三价的硫化物,最后采用高浓度硫酸对其进行吸收,可生产出更高浓度的硫酸。该浓硫酸被送往硫酸铵工段。  2.2.6 希罗哈克斯法制硫酸铵  在273 ℃~275 ℃、7 000 kPa~7 500 kPa 的条件下,在氧化塔内将脱硫废液中的铵盐及硫磺氧化成硫酸铵,送入硫铵工段生产硫酸铵。该法与塔卡哈克斯法联用,亦可进行HPF 法脱硫废液的处理。  2.2.7 废液焚烧法  废液焚烧法又叫还原热分解法,脱硫浓缩液经蒸汽雾化后[9],喷入炉内火焰中,炉内操作温度约1 000℃。以碳酸钠碱源吸收液为例,浓缩液中的硫氰酸钠和硫代硫酸钠等受热分解,硫以硫化氢形式进入废气中,钠被还原成碳酸钠和硫化钠。  焚烧产生的废气出焚烧炉,经冷却后进入碱液回收槽内,碳酸钠和硫化钠等易溶解性盐被回收槽内液体吸收,废气被冷却至90 ℃左右。含水蒸气的废气由回收槽上部进入气液分离器,经冷却至约35 ℃后,进入废气吸收塔吸收硫化氢。排出的废气中含有微量的硫化氢和部分未完全燃烧的可燃性气体,送入回炉煤气管中进一步处理。  3 优化建议  3.1 工艺优选  3.1.1 产品生产的批量化、集成化  寻找煤气脱硫工艺与脱氨工艺产品的共性,实现产品的批量化、集成化生产。当采用T-H 法脱硫后配希罗哈克斯法脱硫工艺生成硫铵溶液时,因硫铵脱氨工艺产品为硫铵结晶,所以煤气净化工艺的脱氨工艺宜采用硫铵脱氨,而不采取磷铵等脱氨工艺。当采用FRC 法C 部分(昆帕库斯法)生产浓硫酸工艺时,应配套硫铵系统,供脱氨使用。  3.1.2 碱型及氨型脱硫吸收剂的选取  新建化产回收系统前,应先根据煤中元素组成,判断煤气中硫化氢、氨等气体含量,遵循脱硫与脱氨互补性原则,当氨含量能满足硫化氢去除、且脱硫后能满足不同煤气使用指标时,考虑采用氨型吸收剂脱硫;否则采用碱型吸收剂脱硫。  3.1.3 工艺位置的选择  碱型吸收剂前脱硫过程中,降低煤气中氰化氢含量,可减少煤气终冷洗涤水中氰化氢含量。相应的,终冷洗涤水通过凉水架冷却时,其中氰化氢被吹入空气中的量减少,也可减少大气污染。  当焦炉采用焦炉煤气加热时,因回炉煤气也经过前脱硫系统,煤气中硫化氢含量降低,焦炉烟气中二氧化硫含量明显减少。但由于前脱硫煤气处理量大,使投资成本比后脱硫系统大。因此,采用何种流程工艺,应在焦炉烟气脱硫投资和焦炉煤气脱硫系统投资间寻求经济平衡点。  3.1.4 运行工况的稳定性  在脱硫前,为降低煤气中焦油及灰尘含量,应定期维护电捕焦油设备,以免焦油堵塞脱硫塔内件,造成脱硫液品质恶化,影响再生效果。同时,应加强温度控制,减少萘结晶析出,防止脱硫工段进煤气管路阻塞。焦炉煤气除了回用焦炉燃烧供热以外,在钢铁焦化联合企业也供钢材加工和金属冶炼等使用,焦化厂还可利用煤气生产甲醇等新型煤化工产品。但由于各工段需根据市场情况组织生产,因此煤气用量波动较大,直接影响脱硫效率。在建厂前,需根据煤气全厂分配供应情况,综合考虑再生空气用量及脱硫液循环液量等因素,使其处于可调控范围,提高脱硫效率。  3.2 设备及技术开发  3.2.1 塔设备及配件研发设计  在湿法氧化脱硫系统再生单元中,空气中氧气起到催化剂再生作用,并使二价硫进一步反应生成单质硫。新型再生塔空气分布装置的研发设计,可以增强脱硫富液与空气混合效果,提高再生率,减少空气用量;再生塔新型高效塔盘的研发,可减小塔径,节省设备投资,节约占地面积。  3.2.2 填料的设计开发  填料是煤气脱硫装置的关键内件,基于碱源吸收酸性气体的传质动力学及煤气含尘、含萘的特点,新型填料的研究开发,应从提高气液传质效率和比表面积及提高通量、降低压降等方面入手。  3.2.3 催化剂的开发  根据阿伦尼乌斯化学动力学公式,活化能越低,HS -被氧化的速度越快,催化剂在反应过程中主要是降低HS -向S 转化的活化能。但是,由于脱硫脱氰催化剂价格昂贵,其使用量有一定限制。科研工作者应在原有催化剂成功使用的基础上,筛选出溶解效果好、使用寿命长、再生效果好的催化剂。催化剂多为由一种或几种有机物及变价金属离子配置的复合催化剂,且不同焦化企业炼焦过程中煤种及配比不同,炼焦煤气各杂质气体含量存在差异,脱硫废液组成随之变化,因此企业在开工调试前,需通过试验及现场经验,寻找合适的复合催化剂配比,从而减小催化剂使用量,降低运行成本。  3.3 废液资源化处理  目前,脱硫废液提盐法技术相对成熟。但在蒸发结晶前脱硫液的脱色吸附处理过程中,需投加大量的吸附脱色材料。如脱色后送煤厂与原煤混合炼焦或外运处理,会造成资源浪费和环境污染。为降低运行成本并减小污染,需寻找更合适的吸附材料或采取再生回用措施。  采用分步结晶法,需要与市场接轨,生产出满足工业级别纯度要求的硫氰酸盐及硫代硫酸盐,形成经济增长点。希罗哈克斯法、昆帕库斯法及克劳斯法等资源化处理工艺,有设备技术要求高、投资大及能耗高等缺点,需结合企业自身脱硫工艺特点及经济基础而选用。  4 结语  焦炉煤气脱硫脱氰是煤气净化的重要工艺单元,探寻技术可行、经济合理的煤气脱硫脱氰工艺,能够提高煤气脱硫脱氰效率。通过废液资源化回收途径,能够提高经济效益,减小脱硫废液造成的危害。脱硫脱氰后,煤气满足回用焦炉煤气或送用户煤气硫化氢含量标准的同时,可减少燃烧后有害气体对环境的污染,寻求经济效益与环境效益的平衡点。

  • 焦炉煤气脱硫脱氰技术及优化建议

    简要回顾了煤气脱硫脱氰工艺的发展历程,介绍了湿式吸收法和湿式氧化脱硫法的原理及进展。总结了硫磺回收、WSA接触法制硫酸、克劳斯炉生产硫磺、硫氰酸盐和硫代硫酸盐的提取、昆帕库斯法制浓硫酸、希罗哈克斯法制硫酸铵等副产品回收工艺过程。并从工艺优选、设备及技术开发、废液资源化处理方面提出煤气脱硫脱氰技术的优化建议。  焦化产业是煤化工的支柱产业之一。炼焦原料煤主要由碳、氢、氮、硫和氧5 种元素组成,其中硫元素以有机硫和无机硫形式存在。一般干煤含全硫质量分数0.5%~1.2%,在成焦过程中,约有30%的硫进入煤气中,其中95%的硫以H2S 形式存在。煤气中一般含H2S(质量浓度4 g/m3~10 g/m3)和HCN(质量浓度1 g/m3~2.5 g/m3),在煤气净化过程中对工艺设备有腐蚀危害,燃烧后对环境有污染,因此需要对煤气进行脱硫脱氰净化处理。  笔者在煤气脱硫脱氰工艺原理分析的基础上,总结了副产品回收技术,并对煤气脱硫脱氰技术的优化提出建议,旨在促进新技术的开发。  1 焦炉煤气脱硫脱氰工艺发展简述  目前,国内的煤气脱硫脱氰技术是在煤气净化工艺基础上建立的。20 世纪70 年代以前,我国绝大部分焦化企业的焦炉煤气净化工艺沿用与原苏联20 世纪40 年代焦炉炉型相配套的初冷 -洗氨 -终冷 -洗苯的煤气净化工艺流程,一般不设置脱硫装置,仅对氨进行回收。  20 世纪80 年代末开始,随着煤气净化技术的引进,宝钢等一些大型钢铁企业,陆续引进了MEA 法、TH 法等脱硫工艺。但国内大部分焦化企业仍停留在采用氢氧化铁干法或ADA 法脱硫的阶段,甚至有些焦化企业没有脱硫装置。此时,我国的ZL 脱硫脱氰工艺正处于研究探索阶段。20 世纪90 年代初,国内焦化生产企业先后引进了FRC 法、氨 -硫化氢循环洗涤法(AS 法)、真空碳酸盐法等脱硫技术。  之后在湿式氧化脱硫技术基础上,开发出了诸多适合我国国情的煤气脱硫脱氰新技术,如栲胶法、HPF法、PDS 法、888 法、APS 法、OMC 法、OPT 法、YST 法和RTS 法等,极大地推动了我国焦化行业湿式脱硫脱氰技术的发展[3]。目前,湿式氧化法脱硫脱氰工艺分为3 个部分:硫化氢及氰化氢等酸性气体的脱除、脱硫富液的再生及副产品回收。湿式吸收法脱硫工艺也分为3 个部分:硫化氢的脱除、脱硫富液的再生及酸性气体再处理生产副产品。  2 煤气脱硫脱氰工艺原理及副产品回收技术  根据工艺原理不同,煤气脱硫脱氰技术主要分为干法脱硫技术和湿法脱硫脱氰技术。干法脱硫工艺设备体积庞大,脱硫剂容易结块、需定期更换,可作为湿法脱硫的补充精脱硫技术。国内目前主要采用湿法脱硫脱氰技术,根据工艺原理不同,可分为湿式吸收法和湿式催化氧化法。根据脱硫脱氰工艺在煤气净化工艺中的位置不同,又可分为前脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺前)和后脱硫脱氰工艺(脱硫脱氰在煤气终冷 -脱苯工艺后)。根据脱硫脱氰所用吸收剂的不同,可分为以碳酸盐为碱源和煤气中制取的氨水为氨源2 种吸收剂。  2.1 煤气脱硫脱氰工艺原理  目前,我国焦炉煤气湿式催化氧化法脱硫工艺中使用的催化剂大致可分为2类:一类是酚 -醌转化(活性基团转化)类催化剂,如ADA、对苯二酚、栲胶、苦味酸和1,4 -萘醌-2 -磺酸钠等,通过变价离子催化。这类催化剂存在不能脱除有机硫、总脱硫效率低、硫泡沫不易分离、设备易堵塞、H2S 适应范围小和脱硫成本较高等缺点。另一类是磺化酞菁钴和金属离子类(铁基工艺、钒基工艺)脱硫催化剂,如PDS 和复合催化剂对苯二酚-PDS -硫酸亚铁等,这类催化剂通过本身携带的原子氧完成氧化和再生反应。  湿式吸收工艺主要建立在吸收 -解吸理论基础上。利用煤气混合物中各组分(溶质)在碱性脱硫脱氰吸收液中的溶解度不同,实现分离(硫化氢在碱性溶液中的溶解度远大于氨),利用酸性气体溶质在碱性溶液中的溶解度随温度升高而降低的规律,通过加热脱硫富液,脱除HCN 等酸性气体。  例如,以碳酸钾为碱源的湿式吸收脱硫脱氰工艺中,吸收方程式见式(1)~(3),解吸方程式见式(4)~(6):  K2CO3+H2S→KHCO3+KHS (1)  K2CO3+HCN→KCN+KHCO3 (2)  K2CO3+CO2+H2O→2KHCO3 (3)  KHS+KHCO3→K2CO3+H2S (4)  KCN+KHCO3→K2CO3+HCN (5)  2KHCO3→K2CO3+CO2+H2O (6)  湿式氧化脱硫工艺与湿式吸收工艺脱硫单元操作相同,再生工艺不同。脱硫富液再生时,在空气中氧气、催化剂作用下,S2 -氧化为单质硫,从而使煤气中酸性气体得以去除。  例如,以碳酸钠为碱源的湿法氧化脱硫工艺中,脱硫阶段的方程式见式(7)~(9),副反应见式(10)~(13):  Na2CO3+H2S→NaHS+NaHCO3 (7)  HS-+2V5+→2V4++S+H+ (8)  2V4++ 催化剂(氧化态)→2V5++ 催化剂(还原态)(9)  Na2CO3+2HCN→2NaCN+H2O+CO2 (10)  NaCN+S→NaCNS (11)  2NaHS+2O2→Na2S2O3+H2O (12)  2Na2S2O3+O2→2Na2SO4+2S (13)  氧化还原反应首先在脱硫吸收塔内发生,根据E°V5+/V4+=1.000 V,E°S/S2-= -0.508 V[5],标准电极电位高的V5+ 将S2 -氧化为单质硫。同时,V5+ 被还原为V4+。在碱性条件下,E°O2/H2O=1.23 V[5],则E°O2/H2OE°V5+/V4+E°S/S2-,催化剂携带的氧气可将V4+ 氧化为V5+,使脱硫富液再生。同时,氧气可将在脱硫塔未被氧化的负二价硫继续氧化为单质硫。  2.2 脱硫脱氰富液副产品的回收工艺  在湿式吸收脱硫脱氰工艺中,富液再生过程通过蒸汽加热实现。因此,反应速度慢,生成的废液极少。在湿式氧化脱硫脱氰工艺中,由于再生过程中氧气的带入而发生副反应,生成硫代硫酸铵、硫氰酸铵等副盐,总量为450 g/L~550 g/L。目前,每生产1 t 焦炭产生脱硫废液10 kg 左右,焦化厂虽配套废水处理设施,但其污染物浓度超高,难以有效处理。  目前湿式氧化工艺副产品回收技术主要为富液空气催化氧化产单质硫;剩余富液处理主要为希罗哈克斯法高温高压制硫铵、昆帕库斯法焚烧后制硫酸及还原热分解产单质硫。湿式吸收工艺技术主要为WSA接触法制酸和克劳斯炉(SCL)生产硫磺。  2.2.1 富液空气催化氧化产单质硫  再生塔脱硫富液中S2 -在空气中氧及催化剂作用下,生成悬浮单质硫,从再生塔顶分离出来的质量分数为5%~10%硫泡沫进入硫泡沫槽中,经初步分离,再经固液分离设备脱水,得到含水质量分数40%~ 50%的硫膏,最后经熔硫釜熔融并分离出杂质后,冷却制成硫块。  2.2.2 WSA 接触法制硫酸  脱硫脱氰富液经热解吸处理后,产生酸性气体,送入WSA 制酸系统。WSA 制酸工艺的基本原理为酸性气体燃烧产生SO2,在催化剂作用下转化为SO3,再与气体中的水蒸气进行水和反应,生成气态硫酸,冷却为液态酸。  该工艺主要通过酸性气燃烧、过程气除杂、SO2 转化、硫酸冷凝冷却、热能回收利用等步骤,生产质量分数为98%的浓硫酸及中压过热蒸汽,多与真空碳酸钾法脱硫工艺配套使用。  2.2.3 克劳斯炉(SCL)生产硫磺  脱硫装置真空泵送来的含H2S、HCN 及CO2 等的酸性气体,进入克劳斯炉,酸气中1/3 的H2S 与空气燃烧生成SO2,2/3 的H2S 与生成的SO2 反应,生成单质硫。该工艺多与真空碳酸钾法脱硫工艺配套使用。  2.2.4 硫氰酸盐和硫代硫酸盐的提取  根据硫氰酸盐和硫代硫酸盐在水中溶解度的不同,通过控制蒸发浓度(比重)和冷却温度,达到分别提纯的目的。  以碳酸钠为吸收液的湿式催化氧化脱硫脱氰工艺为例,反应后脱硫富液催化剂浓度低,可忽略不计,溶液中主要含NaCNS、Na2S2O3 及Na2CO3 等。其中Na2CO3溶解度最小,且随温度升高变化不大。所以提取时可直接将脱硫富液吸收液蒸发浓缩,Na2CO3 首先析出并经过滤除去,再将过滤所得母液冷却、结晶和分离,可回收NaCNS 和Na2S2O3。  NaCNS 在水中的溶解度随温度的下降而降低,将NaCNS 饱和液温度降至过饱和状态时,NaCNS 结晶析出。但当吸收液中Na2S2O3 含量较高,超过NaCNS 含量的1/3 时,需首先将Na2S2O3 提出,否则将影响NaCNS产品质量。  2.2.5 昆帕库斯法制浓硫酸  该法一般作为FRC 法的一部分(即C 部分),脱硫吸收液多为氨源,脱硫后富液多为含单质硫、硫氰酸铵和硫代硫酸铵的脱硫富液,浓缩后与一定量的用于促进燃烧的煤气在燃烧炉内进行高温裂解,产生的SO2 随燃烧废气排出,对废气进行催化氧化处理,将正二价的硫化物氧化成正三价的硫化物,最后采用高浓度硫酸对其进行吸收,可生产出更高浓度的硫酸。该浓硫酸被送往硫酸铵工段。  2.2.6 希罗哈克斯法制硫酸铵  在273 ℃~275 ℃、7 000 kPa~7 500 kPa 的条件下,在氧化塔内将脱硫废液中的铵盐及硫磺氧化成硫酸铵,送入硫铵工段生产硫酸铵。该法与塔卡哈克斯法联用,亦可进行HPF 法脱硫废液的处理。  2.2.7 废液焚烧法  废液焚烧法又叫还原热分解法,脱硫浓缩液经蒸汽雾化后[9],喷入炉内火焰中,炉内操作温度约1 000℃。以碳酸钠碱源吸收液为例,浓缩液中的硫氰酸钠和硫代硫酸钠等受热分解,硫以硫化氢形式进入废气中,钠被还原成碳酸钠和硫化钠。  焚烧产生的废气出焚烧炉,经冷却后进入碱液回收槽内,碳酸钠和硫化钠等易溶解性盐被回收槽内液体吸收,废气被冷却至90 ℃左右。含水蒸气的废气由回收槽上部进入气液分离器,经冷却至约35 ℃后,进入废气吸收塔吸收硫化氢。排出的废气中含有微量的硫化氢和部分未完全燃烧的可燃性气体,送入回炉煤气管中进一步处理。  3 优化建议  3.1 工艺优选  3.1.1 产品生产的批量化、集成化  寻找煤气脱硫工艺与脱氨工艺产品的共性,实现产品的批量化、集成化生产。当采用T-H 法脱硫后配希罗哈克斯法脱硫工艺生成硫铵溶液时,因硫铵脱氨工艺产品为硫铵结晶,所以煤气净化工艺的脱氨工艺宜采用硫铵脱氨,而不采取磷铵等脱氨工艺。当采用FRC 法C 部分(昆帕库斯法)生产浓硫酸工艺时,应配套硫铵系统,供脱氨使用。  3.1.2 碱型及氨型脱硫吸收剂的选取  新建化产回收系统前,应先根据煤中元素组成,判断煤气中硫化氢、氨等气体含量,遵循脱硫与脱氨互补性原则,当氨含量能满足硫化氢去除、且脱硫后能满足不同煤气使用指标时,考虑采用氨型吸收剂脱硫;否则采用碱型吸收剂脱硫。  3.1.3 工艺位置的选择  碱型吸收剂前脱硫过程中,降低煤气中氰化氢含量,可减少煤气终冷洗涤水中氰化氢含量。相应的,终冷洗涤水通过凉水架冷却时,其中氰化氢被吹入空气中的量减少,也可减少大气污染。  当焦炉采用焦炉煤气加热时,因回炉煤气也经过前脱硫系统,煤气中硫化氢含量降低,焦炉烟气中二氧化硫含量明显减少。但由于前脱硫煤气处理量大,使投资成本比后脱硫系统大。因此,采用何种流程工艺,应在焦炉烟气脱硫投资和焦炉煤气脱硫系统投资间寻求经济平衡点。  3.1.4 运行工况的稳定性  在脱硫前,为降低煤气中焦油及灰尘含量,应定期维护电捕焦油设备,以免焦油堵塞脱硫塔内件,造成脱硫液品质恶化,影响再生效果。同时,应加强温度控制,减少萘结晶析出,防止脱硫工段进煤气管路阻塞。焦炉煤气除了回用焦炉燃烧供热以外,在钢铁焦化联合企业也供钢材加工和金属冶炼等使用,焦化厂还可利用煤气生产甲醇等新型煤化工产品。但由于各工段需根据市场情况组织生产,因此煤气用量波动较大,直接影响脱硫效率。在建厂前,需根据煤气全厂分配供应情况,综合考虑再生空气用量及脱硫液循环液量等因素,使其处于可调控范围,提高脱硫效率。  3.2 设备及技术开发  3.2.1 塔设备及配件研发设计  在湿法氧化脱硫系统再生单元中,空气中氧气起到催化剂再生作用,并使二价硫进一步反应生成单质硫。新型再生塔空气分布装置的研发设计,可以增强脱硫富液与空气混合效果,提高再生率,减少空气用量;再生塔新型高效塔盘的研发,可减小塔径,节省设备投资,节约占地面积。  3.2.2 填料的设计开发  填料是煤气脱硫装置的关键内件,基于碱源吸收酸性气体的传质动力学及煤气含尘、含萘的特点,新型填料的研究开发,应从提高气液传质效率和比表面积及提高通量、降低压降等方面入手。  3.2.3 催化剂的开发  根据阿伦尼乌斯化学动力学公式,活化能越低,HS -被氧化的速度越快,催化剂在反应过程中主要是降低HS -向S 转化的活化能。但是,由于脱硫脱氰催化剂价格昂贵,其使用量有一定限制。科研工作者应在原有催化剂成功使用的基础上,筛选出溶解效果好、使用寿命长、再生效果好的催化剂。催化剂多为由一种或几种有机物及变价金属离子配置的复合催化剂,且不同焦化企业炼焦过程中煤种及配比不同,炼焦煤气各杂质气体含量存在差异,脱硫废液组成随之变化,因此企业在开工调试前,需通过试验及现场经验,寻找合适的复合催化剂配比,从而减小催化剂使用量,降低运行成本。  3.3 废液资源化处理  目前,脱硫废液提盐法技术相对成熟。但在蒸发结晶前脱硫液的脱色吸附处理过程中,需投加大量的吸附脱色材料。如脱色后送煤厂与原煤混合炼焦或外运处理,会造成资源浪费和环境污染。为降低运行成本并减小污染,需寻找更合适的吸附材料或采取再生回用措施。  采用分步结晶法,需要与市场接轨,生产出满足工业级别纯度要求的硫氰酸盐及硫代硫酸盐,形成经济增长点。希罗哈克斯法、昆帕库斯法及克劳斯法等资源化处理工艺,有设备技术要求高、投资大及能耗高等缺点,需结合企业自身脱硫工艺特点及经济基础而选用。  4 结语  焦炉煤气脱硫脱氰是煤气净化的重要工艺单元,探寻技术可行、经济合理的煤气脱硫脱氰工艺,能够提高煤气脱硫脱氰效率。通过废液资源化回收途径,能够提高经济效益,减小脱硫废液造成的危害。脱硫脱氰后,煤气满足回用焦炉煤气或送用户煤气硫化氢含量标准的同时,可减少燃烧后有害气体对环境的污染,寻求经济效益与环境效益的平衡点。

  • SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理的应用

    前言  随着环保排放要求越来越严格,企业治理污染的力度也不断加大,焦炉烟气治理也越来越受到重视。焦炉生产过程中会产生含粉尘、SO2、NOx 等有害物质的废气,对环境造成污染。为减少焦炉烟气中SO2 和NOx 等有害物质排放量,使其满足环保要求,同时更好地改善大气环境质量,很多先进的方法已被应用于实际项目。卢昊等[1] 研究发现,SCR 脱硝技术在低温环境中具有很好的抗硫性能,烟气脱硝率达到85% 以上。金辉等[2] 将SCR 技术实际应用于江苏沂州煤焦化有限公司某项目,攻克了焦炉烟气无法在低温下处理的难题。王岩等[3] 认为焦炉烟气处理应有效融合源头控制、低氮燃烧、末端净化三方面,并对其引起重视。  通过脱硫脱硝除尘工艺净化后,焦炉烟气排放浓度达到SO2 ≤ 30 mg/m3,NOx ≤ 150 mg/m3,粉尘浓度≤ 15 mg/m3,满足GB 16171—2012《炼焦化学工业污染物排放标准》中的特别排放限值要求,并能够达到超低排放标准要求。  1 焦炉烟气脱硫脱硝工艺  1.1 工艺流程  焦炉烟气分别由地下机侧和焦侧烟道引出,经旁路烟气管道阀门和新增入口管道阀门切换并汇合后进入烟气总管。同时高效的脱硫剂(颗粒粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置喷入总烟道并在烟道内被加热激活,其比表面积迅速增大,与焦炉烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化,经吸收并干燥的含粉料烟气进入布袋除尘器进行进一步脱硫反应及烟尘净化。脱硫除尘后的烟气在SCR 脱硝反应器内进行脱硝净化,烟气中的NOx 与喷氨格栅喷出的NH3在静态混合器内充分混合,并在SCR 反应器内在中低温催化剂的作用下与NH3 发生化学反应,生成N2和H2O,从而达到去除烟气中NOx 的目的,净烟气由增压风机抽引,经出口烟道至原焦炉烟囱排入大气。  回原焦炉烟囱的烟气温度满足焦炉热备温度要求,可保证事故状态下焦炉烟囱热拔力依然保持正常。  1.2 副产物综合利用  SDS 干法脱硫的脱硫剂选用高效复合脱硫剂。由于SDS 工艺过喷量很小,因此与其他脱硫方法相比,该方案脱硫副产物很少。副产物中Na2SO4 所占比例  很高,便于综合利用。副产物为干态粉状料,其中,Na2SO4 质量约占总质量的80%~90%,Na2CO3 质量约占总质量的10%~20%。  焦炉脱硫副产物可作为矿山尾矿固化剂的生产原料以外,也可应用在以下领域:掺入水泥中,使水化产物硫铝酸钙更快地生成,加快水泥的水化硬化速度;在玻璃工业用以代替纯碱;在造纸工业中用于制造硫酸盐纸浆时的蒸煮剂;在化学工业中用作制造硫化钠、硅酸钠和其他化工产品的原料;在纺织工业中用于调配维尼纶纺丝凝固剂;还可用于有色冶金、皮革等方面。该脱硝系统更新后的废催化剂,由催化剂厂家回收。  2 工艺技术的选择比较  常用的焦炉烟气脱硫脱硝方法主要有SDS 干法脱硫+ 中低温SCR 脱硝,SDA(Na) 半干法脱硫+ 中低温SCR 脱硝,SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝以及活性炭干法脱硫脱硝工艺等。  2.1 SDS干法脱硫工艺  高效脱硫剂(粒径为20~25 μm)通过SDS 干法脱酸喷射及均布装置被喷入烟道并在烟道内被加热激活,其比表面积迅速增大并与烟气充分接触后发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。该技术的开发背景是垃圾焚烧行业开发的HCl脱除干法系统,其副产物的主要成分为NaCl,可被回收作为原料再用于生产纯碱。之后SDS 干法脱酸技术在欧洲得到迅速发展,其配套的喷射系统、研磨系统相继被开发。目前在欧洲市场该工艺主要用于垃圾焚烧炉尾气脱酸,但该技术在其他行业包括焦化、玻璃制造、燃煤电厂、危险废物焚烧炉、柴油发电、生物质发电、水泥等都取得了很好的应用效果。  SDS 干法脱硫+ 中低温SCR 脱硝工艺的优点是脱硫、脱硝效率高,无温降,无水操作,投资省,占面积小,副产物少,低电耗,无腐蚀,设备简单,操作维护,脱硫副产物产生量小,硫酸钠含量高等;缺点是会产生少量的脱硫副产物,需要对其进行综合利用。  2.2 SDA半干法脱硫工艺(包括Na法和Ca法)  旋转喷雾干燥(SDA)脱硫技术于二十世纪七十年代早期由丹麦[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]o 公司研制开发。其脱硫过程是将CaO 或Na2CO3 加水配置成固含量为20%~25% 的Ca(OH)2 浆液或Na2CO3 溶液,通过雾化器高速旋将溶液雾化成30~80μm 的雾滴喷入吸收塔内,塔内的Ca(OH)2 浆液或Na2CO3 溶液雾滴(吸收剂)迅速吸收烟气中的SO2,达到脱除SO2 及其他酸性介张庆文,等:SDS干法脱硫及SCR中低温脱硝技术在焦炉烟气处理中的应用质的目的。同时,焦炉烟气热量瞬间干燥喷入塔内的液滴,使其成为粉状干固体,由袋式除尘器捕集。脱硫工艺流程简单,吸收塔为空塔结构。  SDA(Na) 半干法脱硫+ 中低温SCR 脱硝的优点是脱硫效率高、无废水产生、低水耗、低电耗、无腐蚀;缺点是脱硫剂易结晶、维护困难、副产物难回收利用。SDA(Ca) 半干法脱硫+GGH -中低温SCR 脱硝工艺的优点是脱硫效率中、无废水产生、低水耗、低电耗、无腐蚀;缺点是占地面积大、烟气温度先降低后升高,能耗高、副产物难以利用。  2.3 活性炭干法脱硫脱硝工艺  以物理 -化学吸附原理为基础,活性炭吸附烟气中的SO2、H2O 和O2 后催化反应生成硫酸,然后将其迁移到微孔中储存,而烟气中的NOx 在活性炭催化作用下,和喷入烟气中的氨水发生还原反应,生成N2 和H2O。活性炭通过再生系统释放活性吸附位继续吸附SO2,再生系统排放的含SO2 烟气进入副产物回收系统,SO2 可被加工成多种硫化工产品。  活性炭在再生过程中会产生磨损及化学消耗,因此需要定期补充新的活性炭,磨损的活性炭粉则可返回配煤工段进行再利用。  活性炭干法脱硫脱硝工艺即采用活性炭的吸附作用吸附烟气中的SO2、颗粒物和NOx,从而实现同时脱硫、脱硝和除尘的目的。缺点是烟气温度需降低到150 ℃以下;脱硫副产物中包含硫酸的同时产生污染废水,一次性投资大,运行成本高。  综上所述,无论从工艺技术的先进性(脱硫、脱硝效率),还是从工艺技术的实用性,占地面积,投资成本,废水,副产物利用等方面进行综合分析比较,SDS 干法脱硫及中低温SCR 脱硝工艺是最适合焦炉烟气净化的最佳工艺技术,其配置合理,控制水平达到国际先进水平,可确保脱硫脱硝系统长期、安全、稳定、连续地运行。  3 工艺原理  3.1 SDS工艺原理  SDS 干法脱酸喷射技术是将高效脱硫剂(粒径为20~25 μm)均匀喷射在管道内,脱硫剂在管道内被加热激活,比表面积迅速增大,与酸性烟气充分接触发生物理、化学反应,烟气中的SO2 等酸性物质被吸收净化。  其主要化学反应为:  2NaHCO3 +SO2+1/2O2 → Na2SO4 +2CO2+H2O  2NaHCO3 +SO3 → Na2SO4 +2CO2+H2O  其与其他酸性物质(如SO3 等)的主要反应为:  NaHCO3 +HCl → NaCl +CO2+H2O  NaHCO3 +HF → NaF +CO2+H2O  3.2 SCR脱硝工艺原理  选择性催化还原法(SCR)即在装有催化剂的反应器内用氨作为还原剂来脱除氮氧化物,如图1 所示。  烟气中的NOx 一般由体积浓度约为95% 的NO 和5%的NO2 组成。NOx 经脱硝反应转化成分子态的氮气和水蒸气。SCR 主要反应方程式为:  4NH3+4NO+O2 → 4N2+6H2O  4NH3+2NO2+O2 → 3N2+6H2O31.jpg  4 工艺特点  4.1 SDS脱硫工艺技术特点  SDS 脱硫工艺具有良好的调节特性,脱硫装置运行及停运不影响焦炉的连续运行状态,脱硫系统的负荷范围与焦炉负荷范围相协调,保证脱硫系统可靠稳定地连续运行。该工艺技术特点如下:  (1)系统简单,操作维护方便 ;  (2)一次性投资少,占地面积小;  (3)运行成本低;  (4)全干系统,无需用水;  (5)脱硫效率高;  (6)合理的脱硫剂均布装置;  (7)灵活性很高,可以随时根据排放指标要求调整;  (8)对酸性物质具有较好的脱除效果;  (9)对焦炉工况适应性强;  (10)副产物量少,硫酸钠纯度高,便于回收利用;  (11)系统设置事故通道快速切换装置,一旦出现故障也不影响焦炉的正常生产。  4.2 SCR中低温脱硝工艺特点  焦炉烟道烟气脱硫后采用中低温脱硝催化剂进行脱硝,该催化剂具有催化反应温度窗口宽、SO2 转化率和NH3 逃逸率低、抗硫性好、脱除效率高、比表面积大、结构强度高、寿命长等特点。  脱硝系统运行一定时间后,为了使催化剂活性保持稳定(防止催化剂表面沉积较多黏稠状硫酸氢铵),采用原位再生热解析系统对催化剂进行再生。当催化剂寿命周期届满时,可将SCR 中低温脱硝催化剂进行返厂再生,有效解决了催化剂危废处理问题,同时降低了后期更换催化剂的成本。  5 脱硫脱硝工艺系统组成  焦炉烟气脱硫、脱硝系统由以下几个部分组成:  (1)SDS 脱硫剂投加及均布装置( 关键设备考虑备用) ;  (2)除尘设备及附属设备;  (3)脱硝反应器系统及附属设备;  (4)脱硫脱硝系统公辅设备,包括氮气供应系统、循环水供应等;  (5)仪表、通信、供配电、在线监测、消防与控制系统等。  6 脱硫系统实施后的效果  以鞍钢集团鞍钢炼焦总厂二炼焦7# 焦炉作为SDS+SCR 焦炉烟气脱脱硝试验项目进行实施,该项目基本情况如下。  6.1 焦炉烟气参数  焦炉烟气参数可见表1。32.jpg  该项目焦炉烟气采用SDS 法脱硫、SCR 脱硝及除尘净化工艺处理,设计时除了考虑将来焦炉泄漏率为5% 时的烟气处理净化能力外,还考虑了今后更严格的超低排放标准要求,为脱硫脱硝装置留有富裕的净化能力。  6.2 脱硫脱硝净化效果  该装置对烟气脱硫脱硝后的效果如下:SO2 排放浓度≤ 30 mg/m3,NOx 排放浓度≤ 150 mg/m3,颗粒物排放浓度≤ 15 mg/m3。  今后环保排放标准会更加严苛,即要求颗粒物限值为10 mg/m3,二氧化硫限值为15 mg/m3,氮氧化物限值为50 mg/m3。设计时充分考虑了余量,保证烟气能够达到超低排放标准要求。  6.3 现场应用情况  鞍钢二炼焦7# 焦炉于2017 年10 月10 日开始施工,2018 年2 月2 日该系统开始进行热负荷联动试车。通过对脱硫脱硝入口及烟囱外排口处进行在线监测发现,脱硫脱硝效果明显且系统设备运行稳定。  当入口处SO2、NOx 浓度及颗粒物浓度分别为35.49、447.22、26.51 mg/m3 时,脱硫脱硝后烟囱在线监测显示SO2 浓度、NOx 浓度及颗粒物浓度分别为3.45、70、4.62 mg/m3。在处理过程中无论入口如何变化,出口指标都能稳定控制在标准范围内,并能达到特排标准。经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,烟气满足现有焦化企业污染物排放标准,并达到特排要求,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  图3~ 图5 所示为脱硫脱硝入口及烟囱外排口处烟气各成分的在线检测对比曲线。33.jpg34.jpg  从烟气进出口对比曲线可以看出出口处烟气SO2浓度、NOx 浓度及颗粒物浓度能够分别有效控制在30、150、15 mg/m3 以下,满足合同功能考核指标要求,同时通过严格控制可以满足特排指标要求。  7 结论  (1)SDS+SCR 工艺具有操作方便、易于维护、运行成本低等优点,且在实际运行中效果较好。  (2)经过SDS+SCR 工艺处理后,烟气能够达到特排标准,即SO2 排放浓度≤ 15 mg/m3,NOx 排放浓度≤ 50 mg/m3,颗粒物排放≤ 10 mg/m3。  (3)经过一个月的功能考核及168 考核验收,鞍钢首套焦炉烟气脱硫脱硝装置正式投入使用,预计每年可减排SO2 146 t、NOx 263 t、颗粒物112 t。  (4)项目投运后所产生的废弃物主要成分为Na2SO4,该副产物可以回收利用作为水泥添加料。  (5)该工程投产后具有较好的环境效益和社会效益,明显改善了该地区的大气环境,有效减少了酸雨的形成。  (6)该技术成功应用后,已被迅速推广到其他项目中, 目前鞍钢集团内的18 座焦炉均采用该技术进行烟气脱硫脱硝,该技术具有广泛的应用前景和推广价值。

  • 浅谈差压式流量计在焦炉煤气计量中的应用

    浅谈差压式流量计在焦炉煤气计量中的应用  对于现场参数选型流量计,我们首先要了解流体的物理性质,因为我们只有了解流体的特性,才能更好的为工艺选择合适的流量计,今天我们再来谈谈差压式流量计在煤气测量上的应用。差压式流量计其实在煤气测量上历史还是比较悠久的,早期的一般是圆缺孔板使用的比较多点。首先还是先来给大家介绍下煤气流量测量主要的特点:  1、流体静压低,流速低,允许压损小,一般不允许缩小管径的方法提高流速。依据这个特点,一般选择压力损失较小的文丘里管,常用的有V锥流量计,V锥流量计因为其延续了文丘里和环形孔板的优点,所以在这种场合的测量上非常适应  2、流体湿度高,有的测量对象还带有少量水,在管道底部做分层流动  3、有的测量对象氢含量高,流体密度较小,采用频率输出的流量计测量时候,信号较弱  4、煤气发生炉,焦炉等产生的煤气一般带粘稠物,有的还带少些尘埃。依据这个特性,以前一般选用圆缺孔板,但随着V锥流量计的数据的不断完善,在测量含杂质的煤气的时候,V锥流量计的优势就体现出来了,压损小,防堵性好。  5、测量点位于压气机出口的时候,还存在一定的流动脉动。在这种场合,频率输出的旋涡流量计更是不能应用。  6、流体属于易燃易爆介质,对仪表本身有防爆要求  7、从小到大各种管径都有  针对以上的特性,就差压式流量计如何应用来和大家探讨下:首先就煤气含杂质的问题,在上面也就阐述,现场以前主要采用圆缺孔板,不过,现在应用广泛的还算是V 锥流量计和楔形流量计,主要优势在这里就不做过多的阐述了  其次是针对煤气测量范围大的问题,大家都知道,孔板流量计正常测量范围在3:1这样,所以现场采取并联管道测量的方法在弥补板流量计量程比小的问题。  而对于大口径的管道煤气的测量,主要是采用插入式流量计测量,常见的有阿牛巴流量计,威力巴流量计,他们在测量煤气上对于大口径的管道来说,都有着经济比较好的优势。

  • 浅谈怎么用涡街流量计测量焦炉煤气

    涡街流量计可广泛用于大、中、小型各种管道给排水、工业循环、污水处理,油类及化学试剂以及压缩空气、饱和及过热蒸汽、天然气及各种介质流量的计量并可作为流量变送器应用于自动化控制系统中,采用EEPROM对累积流量进行掉电保护,保护时间大于10年。涡街流量计是一种用途极广泛的流量仪表,几乎可以用在所有气体,液体和蒸汽的流量计测量和控制,我公司的数字智能涡街流量计,它突破了传统模拟方式处理涡街信号的局限,通过现代数字信号处理的方法对涡街探头信号进行识别、筛选,从而得到正常的流量信号,极大的提高涡街的抗震性能,从根本上解决了围绕涡街几十年来不抗震问题,它广泛应用于石油化工、轻工、热电、造纸等行业的给水、给盐、给风的流量。 XHLUGB 涡街流量计www.xuhuiyb.com/在测量焦炉煤气上应用的还是比较多,但是也不乏会出现一些问题,来说说这些问题的原因及解决方法:  现场计量系统出现故障的原因可归纳为两大原因,一是流量仪表或其关联设备引起的。二是非流量仪表方面的原因,即流量仪表正常,而环境或系统方面原因造成故障,这类原因难以查找。除了要求技术人员要熟悉该仪表性能外,还需具有广博的知识和丰富的现场经验进行分析、推理、多方试验,方能确认。有些故障还是一些意想不到的事件造成的。对非流量仪表方面的故障往往表现为输出信号不稳定。根据实际经验,涡街流量计测量焦炉煤气时,输出信号不稳定的原因有以下几点:  1)涡街流量计不适宜安装在强振动的场合是应用者广为熟知的,但在磁场频繁变化的场合,涡街流量传感器会测出高于正常值的信号输出。实践证明,在无气体流动的现场,当涡街流量传感器处于变化的磁场中时在磁场变化的瞬间,涡街流量传感器会感应出一个错误信号而输出,当变化结束,仪表处于一个稳定的磁场时,仪表则会输出一个正常信号。  2)焦炉煤气因出厂时温度高,湿度大,因此在气体输送过程中会有水分存在。气体流动带动水分往复波动,从而形成脉动流。涡街流量传感器处于这种流体状态时输出数据忽大忽小,根本无法反映生产状况。  3)由于焦炉煤气多杂质,易结晶,杂质凝结于传感头,从而造成计量失准。温度升高时,杂质挥发,灵敏度增加,信号增强 相反则降低。从而造成数据不稳定。  4)仪表接线过程中压线不实,从而造成传输过程中信号的时断时续。  5)仪表接地线不符合规范要求,从而使强电中的50Hz干扰进入,当正常信号高于50Hz时输出正常信号,反之则会输出错误信号。  解决办法:  1)在仪表安装、连接过程中,应确保每一个环节的准确无误,其中包括安装前对现场的考察、安装过程中仪表接线、系统接地线等方面,从而确保检测到真实数据并能够准确输出。  2)对于运行中的计量系统可采用“双轨计量,对比确认”的方法,以及“替代法”对运行中的计量仪表故障进行确认和排除。  3)定期对仪表进行整体清洗,必要时可对仪表的传感头部分进行吹扫,避免杂质在传感头处的凝结。寒冷的季节在计量直管段及仪表部分加伴热装置也有利缓解杂质在计量仪表处的凝结。  4)定期对管道进行排水,特别是直管段前的水分,依据具体情况设置专人定期排放,尽可能降低计量管段中的水分,zui大限度的排除流体中的脉动。  5)加强对计量系统数据的管理,设置定时打印功能,依据打印数据结合生产状况对仪表的运行分析。

  • 孔板流量计与V锥流量计在焦炉煤气使用中的优缺点

    焦炉煤气过去一直使用标准孔板流量计、均速管进行计量。但使用过程中主要存在以下几方面的问题:(1)焦炉煤气脏,孔板容易污染,由于连续生产不能拆除孔板进行清洗,影响系统测量精度 (2)焦炉煤气脏,仪表导压管易堵,必须定期用蒸汽吹扫仪表导压管,否则就会影响测量精度,甚至系统不能正常运行 (3)煤气中所夹带的蒸汽或水雾,当温度降低时凝结成水,在管道中很难排除,影响系统测量精度。(4)直管段要求长,煤气管道口径通常比较大,要保证流量测量准确的20~40D直管段很难满足。(5)量程比小,仅为3∶1,例如因城市煤气用量高峰或低谷时要求输送煤气量的不同,出厂煤气计量的输送量在一天内的变动超过10∶1,孔板因量程比小就达不到使用要求。V锥流量计的优势:(1)直管段要求低。(2)耐污染,不易堵。(3)差压值大,量程比宽,适用于低压低流速介质的流量测量。经过10多年的应用实践,人们已逐渐了解锥形流量计的特点并且能亲身体验到它作为一种更有效的流量仪表的种种优点。实践证明:利用锥形流量计能在更短的直管段条件下,以更宽的量程比对洁净或脏污流体实现更准确更有效的流量测量。

  • 煤焦油沥青挥发物和焦炉逸散物的测定

    求助: 煤焦油沥青挥发物和焦炉逸散物的测定 我要测工作场所 煤焦油沥青挥发物和焦炉逸散物,查GBZ/T 160.44的方法,发现方法的毒性较大,大家有没有用其他方法做过的?

  • 名词解释:原煤、焦炉煤气、天然气、汽油、煤油等

    1.原煤:原煤是指煤矿生产出来的未经洗选、筛选加工而只经人工拣砰的产品。包括天然焦及劣质煤,不包括低热值煤等。按其炭化程度可划分为泥煤、褐煤、烟煤、元烟煤。原煤主要作动力用,也有一部分作工业原料和民用原料。 2.焦炉煤气:焦炉煤气是指用几种烟煤配成炼焦用煤,在炼焦炉中经高温干馏后,在产出焦炭和焦油产品的同时所得到的可燃气体,是炼焦产品的副产品。主要作燃料和化工原料。 3.天然气:天然气是指地层内自然存在的以碳氢化合物为主体的可燃性气体。在动力工业、民用燃料、工业燃料、冶金、化工各方面有广泛应用。 4.汽油:汽油是指从原油分馏和裂化过程取得的挥发性高、燃点低、元色或淡黄色的轻质油。汽油按用途可分航空汽油、车用汽油、工业汽油等。 5.煤油:煤油是一种精制的燃料,挥发度在车用汽油和轻柴油之间,不含重碳氢化合物。按用途可分灯用煤油、拖拉机用煤油、航空用煤油和重质煤油。煤油除了作为燃料外,还可作为机器洗涤剂以及医药工业和油漆工业的溶剂。 6.柴油:柴油是指炼油厂炼制石油时,从蒸馏塔底部流出来的液体,属于轻质油,其挥发性比煤油低,燃点比煤油高。根据凝点和用途的不同,分为轻柴油、中柴油和重柴油。轻柴油主要作柴油机车、拖拉机和各种高速柴油机的燃料。中柴油和重柴油主要作船舶、发电等各种柴油机的燃料。 7.燃料油:燃料油也称重油,是炼油厂炼油时,提取汽油、煤油、柴油之后,从蒸馏塔底部流出来的渣油,加入一部分轻油配制而成。主要用于锅炉燃料。 8.液化石油气:液化石油气亦称液化气或压缩汽油,是炼油精制过程中产生并回收的气体在常温下经过加压而成的液态产品。主要用途是石油化工原料,脱硫后可直接做燃料。 9.热力:热力是指可提供热源的热水和过热或饱和蒸汽。包括使用单位的外购蒸汽和热水。不包括企业自产自用的蒸汽和热水。 10.电力:电力是指发电机组进行能量转换产出的电能量,包括火力发电、水利发电、核能发电和其它动能发电。

  • LUGB涡街流量计测焦炉煤气不稳定原因与解决方法

    涡街流量计在测量焦炉煤气上应用的还是比较多,但是也不乏会出现一些问题,来说说这些问题的原因及解决方法:现场计量系统出现故障的原因可归纳为两大原因,一是流量仪表或其关联设备引起的。二是非流量仪表方面的原因,即流量仪表正常,而环境或系统方面原因造成故障,这类原因难以查找。除了要求技术人员要熟悉该仪表性能外,还需具有广博的知识和丰富的现场经验进行分析、推理、多方试验,方能确认。有些故障还是一些意想不到的事件造成的。对非流量仪表方面的故障往往表现为输出信号不稳定。LUGB涡街流量计测量焦炉煤气时,输出信号不稳定的原因有以下几点:1.涡街流量计不适宜安装在强振动的场合是应用者广为熟知的,但在磁场频繁变化的场合,涡街流量传感器会测出高于正常值的信号输出。实践证明,在无气体流动的现场,当涡街流量传感器处于变化的磁场中时在磁场变化的瞬间,涡街流量传感器会感应出一个错误信号而输出,当变化结束,仪表处于一个稳定的磁场时,仪表则会输出一个正常信号。2.焦炉煤气因出厂时温度高,湿度大,因此在气体输送过程中会有水分存在。气体流动带动水分往复波动,从而形成脉动流。涡街流量传感器处于这种流体状态时输出数据忽大忽小,根本无法反映生产状况。3.由于焦炉煤气多杂质,易结晶,杂质凝结于传感头,从而造成计量失准。温度升高时,杂质挥发,灵敏度增加,信号增强;相反则降低。从而造成数据不稳定。4.仪表接线过程中压线不实,从而造成传输过程中信号的时断时续。5.仪表接地线不符合规范要求,从而使强电中的50Hz干扰进入,当正常信号高于50Hz时输出正常信号,反之则会输出错误信号LUGB涡街流量计解决办法:1.在仪表安装、连接过程中,应确保每一个环节的准确无误,其中包括安装前对现场的考察、安装过程中仪表接线、系统接地线等方面,从而确保检测到真实数据并能够准确输出。2.对于运行中的计量系统可采用“双计量,对比确认”的方法,以及“替代法”对运行中的计量仪表故障进行确认和排除。3.定期对仪表进行整体清洗,必要时可对仪表的传感头部分进行吹扫,避免杂质在传感头处的凝结。寒冷的季节在计量直管段及仪表部分加伴热装置也有利缓解杂质在计量仪表处的凝结。4.定期对管道进行排水,特别是直管段前的水分,依据具体情况设置专人定期排放,尽可能降低计量管段中的水分,zui大限度的排除流体中的脉动。5.加强对计量系统数据的管理,设置定时打印功能,依据打印数据结合生产状况对仪表的运行进行分析。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制