当前位置: 仪器信息网 > 行业主题 > >

搅拌棒吸附萃取技术

仪器信息网搅拌棒吸附萃取技术专题为您整合搅拌棒吸附萃取技术相关的最新文章,在搅拌棒吸附萃取技术专题,您不仅可以免费浏览搅拌棒吸附萃取技术的资讯, 同时您还可以浏览搅拌棒吸附萃取技术的相关资料、解决方案,参与社区搅拌棒吸附萃取技术话题讨论。

搅拌棒吸附萃取技术相关的资讯

  • 大连化物所微型固态吸附棒萃取器和热解吸装置通过项目验收
    日前,大连化物所承担的“十五”科技攻关项目专题“微型固态吸附棒萃取器和热解吸装置”通过科技部组织的专家验收。专家组认为:该课题主要针对茶叶、烟草、乳制品、软饮料和水样等样品中农药残留分析的样品处理,攻关目标明确,立项合理,具有广阔的应用前景;微型固态吸附棒采用溶胶-凝胶法制备吸附涂层,耐温高,使用寿命长。   大连化物所于2001年开始进行该专题攻关,从实验室原理样机开始,尝试了多种技术路线,在两年的时间里完成了整套微型固态吸附棒和热解吸装置的研制与开发工作。本项目所研究的萃取棒萃取相的制作工艺及原理与其它商品化的萃取棒有着很大的区别,本项目中采用的制膜技术为溶胶凝胶法,制得的萃取相耐溶剂冲洗且在高温下不发生热解吸。微搅拌吸附棒可以实现批量生产。热解吸装置设计巧妙,体积小,容易与气相色谱仪联用,与国外同类仪器相比,本装置借助气相色谱进样口完成样品传输线加热,在分析过程中采用保留间隙技术而避免了由于使用冷阱需对样品聚焦,因此设备简化、可靠并大大降低制造成本。所制得的萃取棒耐用、成本较低,解吸器设计合理,结构简单,适合大规模工业化生产,设备适合我国的国情。   该装置可广泛应用于芳香烃、多环芳烃、多氯联苯、农药、香味物质、酚类等挥发性半挥发性物质的分析,同时实现对非挥发性物质的分析检测。我国有1万多个农科所/站、卫生防疫站、产品质量监督检验所/站,进出口商品检验检疫局,其中的绝大多数需要对农产品和食品的农残进行分析,所以在这些领域推广应用该项技术,对提高我国农副产品的进出口监测水平有重要意义。
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:最后,钱教授还介绍了分析非常极性风味化合物的另外一个技术方法, 来分析如呋喃酮(furaneol)以及4-羟基-2,5-二甲基-3(2h)-呋喃酮(4-hydroxy-2,5-dimethyl-3(2h)-furanone. 使用的方法是基于聚合物相的固相萃取法 lichrolut-en solid phase extraction。然后把30μl的提取液注入微型瓶中,再使用热脱附单元直接进行热萃取。装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! 背景介绍michaelc qian博士毕业于明尼苏达大学(导师gary reineccius教授),现为美国俄勒冈州立大学终生教授,美国化学学会农业和食品化学分会执行委员会委员,美国化学学会农业和食品化学分会前任主席(2014),美国化学学会会士(fellow),美国化学学会农业和食品化学分会会士,是中山大学、江南大学和西北农林科技大学的客座教授以及广东省农科院客座研究员。研究兴趣集中在食品和饮料体系(尤其是奶酪和乳制品,小浆果, 葡萄酒, 酿酒葡萄和白酒)中的香气/风味物质的产生机理,研究结果为酿酒葡萄的栽培实践和葡萄酒品质的改善作出了重大贡献;同时他运用风味化学理论和原理开创了中国白酒风味化学研究的先河。曾在acs全国会议上组织十余个科学专题讨论,是第一届(colombia),第二届(china)和第三届(chile)国际香料会议的发起者和主席。
  • 青岛博士夫妻攻克固相微萃取 农残检测等打破欧美20年垄断
    一根根几厘米长的探针,一根根不起眼的小黑棒,不仅打破了外国长达20年的技术垄断,还能应用于环境、食安检测中。青岛博士创业园的博士靳钊与妻子共同协作,攻克固相微萃取技术,研制出全国首款性能优异、产品稳定性强的固相微萃取产品,“举个简单的例子,它可以通过吸附茶叶的味道来判断里面有没有农残,还能使农残最小检出浓度降低100倍。”靳钊表示。正在做研究的靳钊博士  农残检出浓度降低100倍  固相微萃取技术看起来是一个晦涩难懂的专业术语,好像离我们很远,甚至很多人听都没听过。但实际上,早在10多年前,它就在食品安全检测方面与我们有过交集。而这一次的交集,也是促成靳钊博士想要攻克这一技术的契机。我们知道,中国是全球最大的茶叶生产国,而欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。”靳钊博士表示,这一技术使得农残最小检出浓度降低了100倍,而当时国内分析检测技术尚不能检测如此低含量的农药残留,“没有先进的检测技术,在对外贸易中我们就会成为聋子、瞎子,就无法取得与对方平等对话的权利,已成为对外贸易中最大的制约条件。”因此,在大连理工大学主修高分子材料学靳钊誓做固相微萃取的中国先行者。  2003年,靳钊接受一位女博士的邀请,共同研究“固相微萃取”课题,进行科研攻关,而材料开发就是当时最亟待解决的问题,“固相微萃取技术是利用一种特殊的涂层,涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。”当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求,“我们共同开发了几款材料,没想到效果很好。”经过4年的不懈努力,2007年,他们最终研制出了一款性能优异、产品稳定性强的固相微萃取产品——固相微萃取探针。固相微萃取搅拌棒  34款产品打破国外垄断  在过去的20年里,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果则彻底打破了技术和产品的国外垄断。2013年,靳钊成立青岛贞正分析仪器有限公司,他和团队专注于新一代超微量物质检测技术——固相微萃取技术的研发、推广与产业化,短短3年时间便获得国家发明专利授权,在推出固相微萃取探针的基础上,陆续研发出固相微萃取搅拌棒、固相微萃取吸附管等产品。  而相较欧美国家的类似产品,他们的固相微萃取产品取得了更优的性能。“以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60~80次,而我们的能使用150~200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出多款固相微萃取产品,“目前一共有34款产品。”广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  而在固相微萃取技术日臻完善的过程中,不仅让靳钊收获了一次次科研突破的喜悦,也将那位与他共同攻关的女博士变成了他的人生伴侣。固相微萃取探针  “闻闻”味,就知有没有农残  据靳钊介绍,他们研发的产品除了性能更优,应用方面也更重实用性,还是以搅拌棒为例,“德国搅拌棒主要是实验室应用,更适用于作为科学研究的工具,其市场规模较小。而我们将其作为环境在线监测仪器的核心部件,可显著提高传统环境监测仪器的性能,降低能耗。简单来说,他们用做科研,我们则更注重应用到民生当中去。”  那该如何应用到民生当中去呢?“以羊肉为例,现在大家都怕有假羊肉。目前实验室的检测方法一般是先把羊肉绞碎,再用溶剂萃取,泡出各种物质,再蒸干,浓缩,然后进仪器检测,操作程序特别复杂。”靳钊表示,而使用固相微萃取技术,只要通过味道来判断就行,“将羊肉放到密闭小瓶子里,把探针扎到小瓶里吸取挥发出的特定物质,再把探针拿出来后一加热,气味中的特定物质就检测出来了。”靳钊表示,这个味道我们可能闻不出来,但一到仪器上,所有味道成分就会被区分开,“只要跟真羊肉的色谱图比对就可以,羊肉破碎啊提取啊,这些工作都不需要做了。”  此外,检测茶叶或者蔬菜农残,或是辨别鱼虾等新不新鲜,只要拿黑色的小棒——固相微萃取搅拌棒或探针“闻闻”味道,放在仪器里一查就真相大白了。  富集吸附,污染物“没跑儿”  “闻闻”味道,就能知道有没有农残,确实挺神奇,而事实上,固相微萃取的神奇可不止这一点。据靳钊介绍,通过固相微萃取产品,还能检测空气和水中有没有污染物,而能实现这些是因为“我们的固相微萃取技术其实就是一个富集类的材料,就说空气里或水里的污染物本来很少,但都被吸收到我们这产品上面了,我们叫富集,定向吸附。”靳钊表示,他们目前有34款产品,而构成他们高分子材料是不一样的,“要针对不同的物质选择用哪种产品,例如查除草剂,就得用急性很强的高分子材料,即定向吸附原理。”  采访中,靳钊举了一个海洋监测的例子来表现产品在富集污染物质方面的效果。监测人员出海做海洋监测,需要监测上百个点的海水,其中每个点都得带回1升海水,因为水少了根本检测不出来,这样要做完这上百个点的监测,可能得带了一船的样品回来 如果用固相微萃取搅拌棒,就不用带大瓶了,每个点只要 30毫升就行,因为本身搅拌棒有吸附能力,把搅拌棒放到水里吸附后直接进仪器检测就行,“可以少带很多样品,以前需要一船,现在只要一手提箱就够了” 而如果用探针,连海水都不需要带回来了,“他只要用密封小瓶取海水,现场将探针放进去,晃一晃,直接把针密封好后带回来进行检测就行”。当然,使用哪种产品可以根据自身需要选择,但不管选哪种,“对于海洋监测来说,都能减少很大的工作量。”固相微萃取吸附管  用于刑侦,分析火灾起火源  采访中记者了解到,固相微萃取吸附管是靳钊的团队在今年8月份刚刚开发出来的新产品,外形类似搅拌棒,“目前吸附管正在上海公安局试点应用。” 这怎么还跟公安局扯上关系了?面对记者的疑问,靳钊解释道,这款产品能应用于刑侦领域,“火灾现场火源分析还有毒品快速检测。”例如,有地方着火了,可以通过吸附管来分析是什么原因引燃了这起火灾。  首先,用一种气体采样器,吸取火灾现场的空气,“气体只要经过吸附管就会被吸附,之后再分析其中的物质就可以。”靳钊表示,测试阶段,上海公安局的工作人员从某火灾现场提取了烧焦的衣服等物质,把它们放在一个密闭容器里,之后在从里面抽气,用吸附管提取,检测后查出是汽油引燃的,“那一般来说就是人为纵火。”谈到为何在上海试点而非青岛,靳钊解释,上海公安局在公安系统中是能够做科研的地方,“如果试点效果理想,上海公安局确定使用了,之后就可能会制定一个标准,在全国铺开使用,到时候青岛肯定也会用。”  将推新品检测黄曲霉毒素  对于下一步的打算,靳钊告诉记者,明年他们团队有两个方向的目标,一是以固相微萃取技术作为核心,把环境监测仪器开发出来。再就是推出一款测黄曲霉毒素的产品。“像花生、大豆、玉米、茶叶等食品只要发霉了就会产生黄曲霉毒素,这是一种高致癌物质。”靳钊表示,目前,国家标准采用“免疫亲和柱法” 来检测黄曲霉毒素,但该方法使用繁琐,且价格昂贵,大大增加了质检部门的检测时间和检测成本。“一个柱价格在160元左右,而且只能用一次。”  而靳钊团队将要开发的产品,应用固相微萃取技术,使用高分子材料制作,对黄曲霉毒素有一个定向吸附,“只吸附黄曲霉毒素。”而且,高分子成本低很多,基本上80元左右就能搞定,还可以多次使用,且不需要专用的大型设备,对操作人员要求不高,甚至可实现车载,检测人员可以对市场上的食用油进行实时的检测。此外,“他们的储存比较麻烦,得放在冰箱里,在4℃的环境里储存,我们开发的新产品对储存条件没有要求。”这些都将大大降低黄曲霉毒素的检测成本,保障食品安全。
  • 他,誓做固相微萃取中国先行者
    “这个长度只有一厘米多的搅拌棒作用可不小,以前进行海水增塑剂检测,至少需要一瓶矿泉水那么多的样本,每次出海需要在上百个监测点取样,这意味着出一次海至少要带回上千瓶矿泉水那么多的液体样本̷̷有了这个搅拌棒,每次检测只要一个矿泉水瓶盖的液体样本就足够了。”在位于城阳区的青岛博士创业园的实验室里,靳钊博士指着各种型号的搅拌棒和探针自豪地介绍着。  其实,真正神奇的不是这些黑色小棒或银色探针,而是靳钊与爱人坚持十余年的研发成果——固相微萃取技术。  固相微萃取,是很多人难以理解的专业名词,这门“小众”技术,高分子材料学博士毕业的靳钊与爱人坚持钻研了十余年。目前,这项技术已获得两项国家发明专利和一项实用新型专利,他所创立的青岛贞正分析仪器有限公司也成为国内在该领域首家拥有自主知识产权的企业。  靳钊说,他想做中国固相微萃取技术的先行者,事实上,他已经做到了。  民族的情怀:誓做固相微萃取中国先行者  固相微萃取技术这个看似高深难懂的专业术语,却是与食品安全息息相关的检测技术,更是中国对外贸易取得平等话语权的重要工具。  中国是全球最大的茶叶生产国,欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。使用这一新技术,农残的最小检出浓度降低了100倍。”靳钊说。当时,国内分析检测技术尚不能检测如此低含量的农药残留,出口茶叶面临因农残超标被遣回的风险,这严重制约茶叶出口。“没有先进的检测技术,在对外贸易中我们就无法取得与对方平等对话的权利,这成为我国对外贸易中最大的掣肘之一。”  因此,靳钊誓做固相微萃取的中国先行者。  人生“合伙人”协作 打破欧美技术垄断  2003年,在大连理工大学主修高分子材料学的靳钊博士收到一封邮件:一位分析化学专业的女博士在研究 “固相微萃取”课题时遇到了瓶颈,邀请靳博士共同进行科研攻关。  “固相微萃取技术是利用一种特殊的涂层,对检测物质进行定向吸附浓缩,以解决痕量(超微量)物难以检测的难题。”涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求。  “我们共同开发了几款材料,没想到效果很好。经过四年的不懈努力,在试用了几十种材料、加工工艺与应用方法后,终于研制出了一款性能优异、产品稳定性强的固相微萃取产品。”  在过去二十年,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果不仅打破了技术和产品的国外垄断,还取得了更优的性能。“就以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60-80次,而我们的能使用150-200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出十多款固相微萃取产品,广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  在这一过程中,两位博士也从技术 “合伙人”,发展成为一生的“合伙人”。  注册公司:在自家厨房开辟研发地点  既做科研又接触市场,科技成果产业化的思路深深根植于靳钊心中:“如果研发成果不进入市场,那这项研究就失去了意义。”2013年,随着产品体验者的增多,产品量产和市场化的需求凸显,成立公司成为顺其自然的选择。  “当时资金有限,根本没有钱去外面租专门的办公室,只能把公司注册在家里,研发地点是自家厨房。”靳钊用了一周时间拿到了小区单元42家住户的签字,又征求了街道同意,才算完成了公司的注册。  场地问题解决了,资金成为摆在靳钊面前的头等难题。这些年他为了搞研发、维系公司运转,陆续投入了70万。“这些钱都是从我和爱人每月工资里省出来的。”直到 2015年,靳钊在市人社局人才中心帮助下入驻青岛博士创业园,免费获得了100多平的办公用房,税务、工商等繁琐的手续也可以在园区的公共服务大厅一站办理。靳钊坦言,这让他能够把精力放在研发推广上,使公司真正快速发展。  造福于人:要把小众科技带进大众生活  前不久的一件小事让靳钊颇有感触:有位大妈从李沧专门坐车到城阳找他,想测测买的保健品成分合不合格。这让靳钊意识到,现实生活中,百姓对食品药品乃至环境安全如此重视,但权威、高效、便捷的检测手段太匮乏了。  “原本只是单纯地想做技术、做研究,但真做成了却发现,研究成果真正的意义是用在实践领域,是用来改变生活的。这更坚定了我把固相微萃取这项小众科技带进大众生活的信念。”  固相微萃取技术在食品安全领域还没有国家标准,所以技术的推广、百姓的认知度提升都还有一个漫长的过程。但今年初,国家有关部委明确提出要用固相微萃取检测水中有害物质,并力争在两年内建立环境监测领域固相微萃取的国家标准。“仿佛吹来了一阵春风,感觉固相微萃取这项技术的春天就要来了,十几年的坚持没有白费。”说着,靳钊脸上绽放出坚定的笑容。
  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。图 1 滴中滴液-液微萃取( Anal Chem 1996,68:1817-1882)  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。图 2 &ldquo 溶剂微萃取&rdquo 示意图( Anal Chem 1996,68:2236)  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图(M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示图4 顶空溶剂微萃取示意图  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相直接浸入 (DI)连续流动(CF)液滴-液滴 (DD)直接悬浮(DSD)顶空(HS)液-液-液(LLL)液-液-液+直接悬浮(LLL + DSD)图 5 SDME的7种模式  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。图 6 SDME各种模式的使用频率  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。  动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。图 7 把液滴温度降低的设备图1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口(Anal Chim Acta,2010,661:161)  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。图8 用热电冷却器冷却萃取溶剂(J Chromatogr A,2010,1217:5883)2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8图 8 SDME 与分析仪器的配合的比例  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1SDME 结合GC-FPD分析水中6种有机磷农药在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学)2通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20minChen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所)3用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学)4动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13minYang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学)5新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学)6单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学)7用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量&Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学)8单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学)10用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3minCabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)11以单滴微萃取GC-MS分析细辛中的挥发物正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学)12微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学)13表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 379014用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806(东北林业大学)15农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 768116用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 mindos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 12617动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237&ndash 242(吉林大学)18用顶空单滴液体微萃取光度法自动分析混凝土中的氨用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34&ndash 3719高效单滴液体微萃取-气相色谱新策略毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 &mu L氯苯液滴和1 &mu L空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545&ndash 255020用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析连翘精油1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143&ndash 150(东北林业大学) 21自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较用2&mu L正十一烷作萃取溶剂,30 ℃萃取3 min Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187&ndash 193(贵阳医学院)22用离子对单滴液体微萃取分析水中化学战剂降解产物分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679&ndash 68523液相微萃取-气质联用法测定水中硝基苯的含量l&mu L甲苯作萃取剂,,萃取15min,进行GC-MS中分析耿飞,青年科学,2014,(6):20824离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5&mu L微量进样器精密吸取12&mu L离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。李梅,科学与财富,2013,(12):26525顶空单滴液相微萃取与GC&mdash MS联用测定易挥发溶剂 了十二烷和正癸烷 作萃取溶剂,0.5&mu L萃取溶剂,萃取10 min徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-14726单液滴微萃取一气相色谱/质谱法检测水中多环芳烃萃取溶剂1.0&mu L、萃取时间20 min,萃取温度室温常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,8227单滴液相微萃取-气质联用在香精分析中的运用正戊醇作萃取溶剂2.0&mu L ,萃取温度 30 ℃,萃取时间35 min徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页28单滴微萃取.气相色谱-质谱联用测定水中的硝基咪唑类药物。用5&mu L迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-11029单滴微萃取.气相色谱法分析海水中的四种苯胺推荐一个环保的综合化学实验 将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-21630单滴微萃取-气相色谱法测定塑料食品包装浸出液中邻苯二甲酸酯类物质1.4&mu L二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min张聪敏,食品与生物技术学报,2011,30 (6):863-86731单滴微萃取技术测定饲料中硝基咪唑类药物残留研究 溶剂为2.5 &mu L正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-170632超声雾化一顶空单滴微萃取气相色谱质谱联用检测八角茴香中挥发油成分 3&mu L 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D07133不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究 将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-122134TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为 乙醇作为萃取溶剂,液滴体积保持约为10 &mu L吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-663、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758&ndash 3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做&ldquo 顶空水基液相微萃取&rdquo ,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54&ndash 66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和气相(液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加气相中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 载有安捷伦车载式气质联用仪的移动检测车奔赴地震灾区
    载有安捷伦车载式气质联用仪的移动检测车奔赴地震灾区为确认灾区水质安全提供数据保障 2013年4月23日晚11时,载有Agilent 5975T车载式气质联用系统的移动水质监测车到达芦山地震灾区,为地震区域内灾后水质监测提供数据保障。地震灾后的重建阶段,防治次生灾害和灾民生活保障成为工作重点,其中灾区生活饮用水的安全、水源水质的安全都是当地领导关心的关乎民生的重要问题,移动水质监测车可以在灾区现场按照国家水质检测标准方法快速提供水质数据,为当地救灾工作和恢复重建的决策提供了快速数据支持。 Agilent 5975T LTM GCMS是一款专门针对于环保,食品,自来水,司法等领域中应对应急检测和快速检测的高性能车载气质联用仪; 5975T保留了安捷伦5975系列气质联用仪的优秀性能,整合了安捷伦专利的低热容(LTM)色谱技术,加入了适合车载的防震设计,使5975T成为唯一可以达到实验室分析品质的车载气质联用仪器。 全球超过70%的气质联用仪客户都使用安捷伦的气质联用仪器 安捷伦科技拥有超过40年的气质联用仪市场全球领导者的研发和生产气质联用仪器的历史,5975系列气质联用仪已经在全球销售了2万多台。许多行业应用的标准都是根据安捷伦的气质联用仪而制定, 同样因为Agilent 5975T GCMS具有安捷伦实验室GCMS的良好品质,实验室外所获得的结果同样可以以实验室标准来衡量,因此在应急检测中5975T的测试结果更加可靠。1、5975T 为现场快速应急分析需求提供可靠的技术支持 最近10年内,国内的多个省市由于突发的有机物环境污染事件发生导致水污染。面对突发的未知有机污染物水源污染,需要实验室品质的车载GCMS快速到达污染水源地,首先定性分析确定出主要的污染成分,其次,连续监测污染成分的变化直至浓度恢复正常。 5975T的下述特点和性能为现场快速应急分析需求提供可靠的技术支持。 1.1 可检测化合物质量范围更宽 应急分析要求仪器本身的性能能满足尽量多的有毒有害的危害环境化合物的定性检测,否则可能发生到现场后,GC/MS仪器根本不能分析的问题。5975T的质量范围是实验室GC/MS一样的指标2~1050, 保证能用GC/MS分析的危害环境化合物完全能被覆盖,不遗漏任何可能性。 1.2 唯一可以达到实验室分析品质的应急检测车载气质联用仪器 水的安全关系到千家万户,数据结果的准确性非常重要,只有准确可靠的结果才能保证对污染水源的科学正确处理,保证供水的安全。5975T具有实验室GCMS的品质,可以在现场分析得到实验室分析一样准确可靠的结果,不必再送样品回实验室做第二次的确证分析。 1.3 可提供更快速、可靠的检测结果,最大限度满足快速应急要求 应急监测对仪器方法和可靠性有着非常特殊的要求,要求快速反应。一般应急检测仪器中会附带一些标准方法,但是对于仪器标准方法中没有的化合物,不可能现场摸索新方法或用很多个方法(每个方法只分析几十种目标化合物)去慢慢地分析,如果是在实验室,可以慢慢去开发,去研究,但是在现场必须快速应对。安捷伦几十年的气质经验为5975T提供了一个很好的平台,我们在各个应用领域都有很全面的数据库,覆盖数百种目标化和物的分析方法和数据库帮客户解决这个问题,对未知化合物的鉴定非常容易,这也是目前市场上一些应急检测仪器所不具备的功能。例如,安捷伦有包含796 种有毒化学品数据库(含氯代二噁英和呋喃, 多氯联苯, 挥发物,半挥发物和 农药 等)。这些化合物对于饮用水安全具有重要意义。 当分析结束后,DRS(解卷积报告软件)和RTL(保留时间锁定)数据库软件自动地从谱图中找样品中存在的有毒化合物,自动地扣除样品基体干扰,避免人工操作带来的假阴和假阳结果出现。这样的一个方法就有了很广的应用覆盖性,满足应急监测的要求,就像我们使用百度搜索一样,方便,快速! 1.4 多种进样技术确保满足不同类型的液体准确分析要求 未知源水污染样品有可能很脏,基质复杂,也可能浓度很高(在污染发生初期),也可能很低(小于ppb浓度),有些溶解于水,有些不溶于水,需要灵活多样的样品处理和进样设备,才能快速地得到准确分析结果。 5975T可连接液体自动进样器,吹脱捕集,顶空,TSP(热分离进样杆) ,SPME(固相微萃取)等,适合不同类型和要求的分析。 1.5 可用于实验室检测的应急检测气质联用仪 5975T 不仅是一台用于现场快速分析的强大的现场监控GC/MSD 系统,而且它也可以用于日常实验室的分析。5975T 具有我们安捷伦的实验室台式GC/MSD 的同样的高性能和品质,包括从2 到1050u 的质量数范围适合最大范围的应用,以及经典的EI 质谱和惰性离子源。无论何时何地,无论实验室还是野外,您都可以信赖那些可靠的,可重复性的结果。您要买的这台5975T的利用率会更高,您的宝贵投资可以得到更大的回报和创造更多的价值。 1.6 有信誉的、快速反应的售后技术支持。 安捷伦在国内有一支训练有素,反应快速的售后服务工程师团队,为我们的客户提供快速放心的服务和支持。 安捷伦提供业界最好的GC/MS产品和最专业的服务,有口皆碑,是客户长期价值的保障。2、满足应急检测能力的 Agilent 5975T 特点 5975T 将安捷伦5975 系列GC/MSD 的优秀性能和先进设计理念与我们专利的低热容GC 技术进行完美结合,创造出一台结构紧凑,高性能,高可靠性,适应现场快速分析的GC/MS 系统。5975T 采用的防震底座保证运输更安全。 2.1 满足美军标的抗震设计,性能稳定可靠 专用的抗震结构和减震底座设计 ,抗震性能达到美军标MIL-STD-810G:514.5C-3 方法!无论车把5975T 带到哪里,你都不用为抗震性能担忧,性能稳定可靠。防震设计 2.2 高性能,超快速低热容色谱柱技术为应急检测提供快速保证 Agilent 专利, 最快的GC分离技术。升温速度可达1200 ℃/Min。可以帮您在应急现场快速得到分析结果。 利用安捷伦的DRS(解卷积报告软件)和RTL(保留时间锁定)数据库,更快速对现场化合物的筛查和分析。 整合快速分析的LTM技术非常适合车载 GC/MS - 5975T LTM GC/MSD 3. 多种进样系统,应对不同类型样品的应急分析需求 5975T可以配置多种不同的进样和样品处理装置,例如可配置安捷伦的7693A,7650A液体自动进样器,CTC自动进样器,吹扫捕集进样器,自动顶空进样器, TSP(热分离进样杆) ,SPME(固相微萃取)等,适合在现场或实验室内不同类型和要求的分析。以下主要介绍常配置的Stratum吹扫捕集进样器和热分离进样杆。 3.1 Stratum 吹扫捕集进样器 吹扫捕集自动进样器是检测水中挥发性有机物的常用进样设备,饮用水和地表水检测标准方法规定在使用气质联用仪作为检测仪器时,吹扫捕集自动进样器是标准的进样方法。 3.2 TSP(热分离进样杆)与萃取搅拌棒联用适合低浓度的有机化和物快速应急分析 SBSE(萃取搅拌棒)是一种适合在应急现场做低浓度样品富集的技术,只需要将外壁包裹着吸附材料的磁力吸附搅拌棒放入装有污染水样品的杯或瓶中,开动磁力搅拌器搅拌几分钟到10多分钟,痕量的污染有机化和物就会被富集吸附在搅拌棒上。通过萃取搅拌棒的富集,可以具有分析多种浓度低于ppb的污染化和物的能力。 热分离进样杆是安捷伦科技特有的装在毛细柱进样口的样品导入装置,可以实现在毛细柱进样口内的将吸附了污染样品的萃取搅拌棒热解析功能,请参考如下的TSP在5975T进样口的安装图1和TSP与毛细柱进样口连接的剖面和部件图2。 图2是热分离进样杆的示意图。1-TSP进样杆是将样品引入GCMS进样口的导入工具;2- TSP适配器将TSP进样杆连接到5975T GCMS进样口上,负责载气的输入,载气流入进样口将样品带入GCMS,此处载气的控制仍然由进样口原来的 EPC控制,TSP适配器只是改变气体流路位置,没有改变进样口的硬件结构,可以很简单的将TSP安装在GCMS进样口上;3-进样口衬管,TSP进样杆将搅拌棒带入GCMS原有的衬管,在这里样品汽化挥发,由载气带入色谱柱;样品被被毛细柱分离后不同化合物进入MS被分析。 SBSE技术不需要大量的溶剂萃取,富集效率比SPME(固相微萃取)高,因为动态搅拌富集,重复性也SPME好,使用简单方便,因此是一个适合污染水源现场分析的方法。对于半挥发或不挥发的污染物,吹脱捕集技术或顶空分析技术很难分析,但是,SBSE技术具有较好的效果。 1 TSP进样杆;2 TSP适配器;3 进样口衬管;4 萃取搅拌棒 图2. TSP在进样口的剖面和零件连接   安捷伦科技的车载式气质联用仪目前已经在水源地移动实验现场分析和污染减排等项目中得到广泛应用。 5975T车载式气质联用仪是目前市场上唯一可以帮您在现场第一时间得到实验室品质检测结果的车载气相色谱/ 质谱联用系统。 有关更多安捷伦车载式气质联用仪在地震灾区现场工作的消息,请关注安捷伦化学分析官方微博:http://www.weibo.com/agilentchem关于安捷伦科技 安捷伦科技公司(NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012财年,安捷伦的净收入达到 69亿美元。如欲了解关于安捷伦的详细信息,请访问www.agilent.com。
  • 上海沪析发布上海沪析RWD100顶置电动搅拌器新品
    产品应用:● 数显电动搅拌机采用数控触摸式无极调速器,高速方便,可数字显示运行转速,使机体更为安全可靠,工艺先进,低噪音机械减速结构,体积小,输出扭矩大,适用于科研,大专院校,化工,制药,医疗单位等多种用途。主要特征:● 转速范围100-2200rpm,可恒定转速,高低速精确可控。● 性能:直流无刷电机,超长时间连续稳定运行,性能出众。● 安全保护:包括过载保护和电机保护,出现过载,短路和速度异常等情况,自动切断电路并报警,保证运行安全和实验室安全。● 防样品溢出:平稳启动,有效防止样品溢出。● 封闭式外壳:封闭式外壳阻止液体溅入机器内部腐蚀电路,保障安全运行,有搅拌棒穿透孔,搅拌棒更换方便,不用上下移动搅拌头。● 丰富的扩展应用:可通过RS232数据传输口外接PC,控制仪器并记录转速、扭矩数据等。● 采用进口夹头,防止搅拌棒松动。● LCD显示转速的设定值和实际值,并可实时监控转速和扭矩。● 可根据样品粘度变化自动调整扭矩,运行过程中根据需求可以微调转速,方便实验操作。产品参数:型号RWD100最大搅拌量 (H2O)[L]40电机输入功率[W]120电机输出功率[W]100电压 [VAC]100-240频率 [Hz]50/60功率 [W]130转速范围[rpm]100-2200转速显示LCD转速显示分辨率[rpm]±1最大扭矩 [N.cm]60过载保护显示故障,自动停止电机保护显示故障,自动停止最大粘度 [mPas]50000钻夹头夹持直径范围 [mm]0.5-10外形尺寸(DxWxH) [mm]186 x 83 x 220重量 [kg]2.8DIN EN60529 保护方式IP42允许环境温度 [°C]5-40允许环境湿度[%]80RS232接口Yes创新点:1)该产品可高转速运行,长时间搅拌,并且产生的热量较小,2)可根据样品粘度自动调整扭矩,3)进口自锁式夹头,锁定功能,防止搅拌棒松动,轴心度高,上海沪析RWD100顶置电动搅拌器
  • 固相微萃取-高效液相色谱测定水产中丁香酚类麻醉剂
    丁香酚作为一种渔用麻醉剂,在水产品长途运输中,可降低呼吸和代谢强度,减少碰撞,降低其死亡率而被广泛使用。但有研究表明,高剂量的丁香酚会引起心律失常、肾脏损伤、消化系统等问题,对人类健康造成潜在危害,因此日本食品安全法规定丁香酚在水产品体内的最大残留量为50 μg/kg,但我国还未对其使用和残留量制定相关法规,针对其在水产品中的痕量残留检测的文献报道较少。  目前,丁香酚类麻醉剂常用的检测方法有气相色谱-质谱(GC-MS)、高效液相色谱-质谱(HPLC-MS)、高效液相色谱-紫外(HPLC-UV)和电化学(EC)等,但水产品中丁香酚类麻醉剂含量少,基质复杂,对其进行准确检测存在一定困难。  高效的样品前处理方法是获得准确结果的有效方法,现有液液萃取(LLE)、固相萃取(SPE)、分散固相萃取(DSPE)和固相微萃取(SPME)等方法应用在水产品前处理中,其中LLE方法操作简单,但很难消除水产品中色素、脂肪和蛋白质等杂质对测定的干扰,DSPE方法在处理过程中容易造成目标物损失导致回收率偏低,所以SPE和SPME技术在水产品前处理中更为常用,特别是针对水产品中一些挥发性和痕量物质检测时,SPME技术因其高效低耗、绿色环保显示出更大的优势而被广泛使用。  SPME涂层是决定方法选择性、灵敏度、寿命、重现性和应用价值的关键。SPME涂层的种类有限,其萃取容量或选择性难以满足不同性质复杂样品的痕量分析要求,亟待发展新型SPME涂层。氟化共价有机聚合物(fluorinated covalent organic polymer, F-COP)是一类具有拓扑结构的新型多孔聚合材料,主要由轻质原子通过较强的共价键相互连接而成,具有物理化学性质稳定、吸附容量高、孔结构和尺寸可控等特点,而且F-COP结构中含有氟官能团,可以与酚羟基之间形成氢键相互作用,从而实现对目标物的特异性识别与吸附,因此F-COP吸附剂在丁香酚类化合物的富集与分析中有很大的应用潜力。  本文以三氟甲磺酸钪为催化剂,在室温下合成一种F-COP材料,并采用黏合法在石英棒表面制备SPME涂层,结合HPLC-UV建立了测定丁香酚、乙酸丁香酚酯和甲基丁香酚的分析方法,并将该方法成功应用到罗非鱼和基围虾的分析中,为水产品中丁香酚类麻醉剂的残留检测提供技术支持。  01色谱条件  色谱柱:Diamonsil Plus C18-B(250 mm×4.6 mm, 5 μm);紫外检测波长:280 nm;流动相:甲醇-水(60:40, v/v);流速:0.800 mL/min;进样量:20.0 μL;柱温:30 ℃。  02标准溶液的配制  准确称取10.0 mg(精确至0.2 mg)丁香酚、乙酸丁香酚酯和甲基丁香酚标准品,用色谱纯甲醇配制成400 mg/L的混合标准储备液,于4 ℃下冷藏保存备用。实验所需不同浓度溶液均用超纯水进行稀释。  03F-COP-SPME石英棒的制备  F-COP材料的制备  根据文献报道的合成方法并进行适当修改,制备F-COP材料。具体合成方法如下:称取TAPB (36 mg)和TFA (31 mg),加入4 mL的1,4-二氧六环-1,3,5-三甲苯(4:1, v/v)混合溶液,超声至完全溶解。在超声条件下缓慢加入2 mg Sc(OTf)3催化剂,室温下密封静置反应10 min,得到黄色固体物质,分别用1,4-二氧六环和甲醇超声洗涤3次(3×10 mL),然后离心分离,获得的材料在60 ℃真空条件下干燥12 h备用。  F-COP-SPME石英棒的制备  截取5 cm石英棒,依次用1 mol/L氢氧化钠和1 mol/L盐酸溶液各浸泡5 h,再用超纯水超声清洗后于100 ℃下烘干备用。采用黏合法制备F-COP-SPME石英棒,具体过程如下: (a)分别称取90 mg F-COP粉末和90 mg PAN粉末于3 mL玻璃小瓶中,加入1.5 mL DMF,放入小磁子搅拌,超声分散形成均匀浆液;(b)将石英棒插入浆液中,再从浆液中缓慢拉出,置于空气中晾干1 min,再放入80 ℃烘箱中加热30 min,重复此操作2次;(c)将涂覆后的石英棒放入150 ℃烘箱中老化2 h; (d)老化后的石英棒涂层分别用10 mL丙酮、甲醇和超纯水各超声清洗10 min; (e)用刀片小心刮去多余涂层,保留涂层的长度为2.0 cm,最终得到SPME石英棒。F-COP-SPME石英棒每次使用前用10 mL甲醇和10 mL超纯水各清洗10 min后再进行萃取。  04样品前处理  鲜活罗非鱼和基围虾购于广州当地水产品市场,将其洗净去除鱼鳞、虾皮和内脏,然后用组织匀浆机绞碎样品,放入-20 ℃下保存待分析。称取2.00 g样品放入50 mL离心管中,加入5 mL乙腈和5.00 g硫酸钠后,依次涡旋振荡和超声各10 min,再以5000 r/min速度离心10 min,移取上层清液至另一支离心管中,残渣按上述步骤重复提取一次,合并两次上清液,加入5 mL正己烷脱脂,涡旋振荡10 min,静置10 min,去除上层正己烷相,将剩余溶液在室温下氮气吹干,加3.00 mL超纯水重溶,得到样品溶液。  05F-COP-SPME萃取过程  将3.00 mL样品溶液置于4 mL带密封垫的样品瓶中,插入制备的F-COP-SPME石英棒,涂层需全部侵入样品溶液中,室温下搅拌萃取(700 r/min) 30 min。然后将石英棒立即放入加有500 μL乙腈解吸液的小瓶中,超声解吸10 min,解吸液经0.45 μm滤膜过滤后待HPLC-UV分析。F-COP-SPME石英棒每次使用后,用10 mL甲醇和10 mL超纯水各清洗3次后待下次使用。  06模拟计算  通过Gaussian 09和Discovery Studio软件,在密度泛函理论方法优化结构的基础上,计算丁香酚、乙酸丁香酚酯和甲基丁香酚与所制备F-COP材料间的吸附能和电子云分布情况。
  • 李攻科:食品与药品安全分析中样品前处理技术研究进展
    仪器信息网讯2012广州国际分析测试与实验室设备展览会暨技术研讨会(China Lab 2012)于2012年5月30日在广州锦汉展览中心拉开帷幕。本届展会以“科技驱动,创见未来”为主题,携手来自全球10多个国家/地区的500多家参展企业,共同展示来自分析测试领域的最新技术成果和创新产品。   在中国(广州)分析测试论坛上,中山大学化学与化学工程学院的李攻科教授做了题为《食品与药品安全分析中样品前处理技术研究进展》的报告。中山大学化学与化学工程学院 李攻科教授  李攻科教授介绍说,样品前处理时间消耗占整个样品分析时间消耗的61%,误差来源占整个样品误差来源的30%,样品前处理已成为复杂体系分析瓶颈问题。由于样品前处理在样品分析中至关重要,越来越多的人开始关注样品前处理技术,因此,2011年在杭州,中国仪器仪表学会分析仪器分会专门成立了样品制备专业委员会。在样品前处理技术的学术研究上,2001-2011年国际上相关的SCI文章发表数量呈线性递增,其中微波辅助萃取技术论文的发表数量增速迅猛。微波辅助萃取技术在十年前主要应用在环境领域,而近年来主要应用在中草药研究和食品领域。微波辅助萃取技术发展概况  报告中,李攻科教授重点介绍了分子印迹微萃取、石墨烯微萃取及微波辅助萃取三种样品前处理方法的研究进展。  分子印迹微萃取技术  李攻科教授介绍说,在分子印迹聚合物的基础上用不同的合成方法或固载形式可以做成SPME探针、磁性微球、吸附萃取搅拌棒等及应用于在线的分离和分析。李教授通过对莠去津、吲哚—3—乙酸等磁性分子印迹微球及应用的实例,证实在磁性微球制备过程中采用微波辅助技术,大大缩短了磁性微球的制备时间;而吸附萃取搅拌棒边搅拌边吸附,与SPME探针相比,具有吸附容量大等优点,但是萃取和解析时间长,且需要专门的解析仪器;将印迹材料结合在气相色谱和液相色谱流路中,可以进行在线的分离和分析,是未来的发展方向。  石墨烯微萃取技术  据李攻科教授介绍,石墨烯在修饰电极、质谱、光谱等分析化学领域都有应用,在修饰电极方面应用最多。李教授将石墨烯作为SPME探针涂层材料,发现这种探针对多酚芳烃有很好的萃取效果。用石墨烯与氧化锌(ZnO)结合做成图层材料,石墨烯起到将氧化锌(ZnO)均匀分散的作用。通过对蒜类样品的萃取实验发现,这种图层材料对含硫化合物有很好的选择性。同样道理,在空心菜和土壤的试验中发现,MOF—199/氧化石墨烯SPME图层则对有机氯农药有很好的吸附作用。  微波辅助样品前处理技术在食品药物分析中应用  李攻科教授在介绍微波辅助样品前处理技术之前,举了一个形象的例子:我们在做鱼的过程中,会放入姜去鱼的腥味,腥味没有了,再去掉姜,就是一道色、香、味俱全的美食。微波辅助在样品前处理过程中就起到了姜的作用。李教授进一步介绍说:应用微波辅助的低温萃取技术在热敏性及易氧化物质的萃取上有很好的应用,微波超声辅助在固液固分散萃取上有良好的表现,微波辅助索氏固相萃取使萃取和净化分步完成。
  • 发布HPEA-lab500萃取-吸附设备新品
    应用于过程研究开发、质量传递和吸附现象研究领域,可进行高压萃取/吸附/反应的综合创新实验研究。少量固体材料(例如树叶等)置于萃取釜内,吸附釜釜体内放置吸附剂。第一阶段萃取釜内溶剂(例如高压CO2)萃取出的物质,进入第二阶段(独立的温度和压力条件),进行反应/转化/吸附过程,直至达到饱和。四个温控表分别独立控制萃取釜、吸附釜、可视釜和冷却装置的温度,背压阀控制系统压力,视窗侧面安装分光光度计来判断是否吸附饱和。创新点:最高压力50MPa(70MPa可选),最高温度120℃(150℃可选),萃取釜体积50ml,支持定制。用于实验室里对高压超临界CO2萃取工艺条件进行研究和优化,萃取釜采用电加热或流体换热,背压阀后气体减压,经冷阱冷凝析出萃取物。HPEA-lab500萃取-吸附设备
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。1. 固相微萃取的由来  加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。  为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。  图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置2.SPME 的理论研究  为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。  他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。3.国内近年使用顶空固相微萃取气相色谱案例  我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。表 1 国内期刊上发表的HS-SPME-GC-MS分析案例序号分析对象主要设备文献13种山茶属花香气成分的HS-SPME-GC-MS分析安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-2072HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS陈青,高健,中国酿造,2014,33(1):141-142 3HS-SPME-GC-MS分析香荚兰豆中挥发性成分安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司)卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-824HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司),梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-905HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究HS-SPME手动进样,500顶空采样瓶,谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 8796SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-1527SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司)李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-1268SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-2779SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司);1200 GC(美国瓦里安公司)丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 13410SPME-GC-MS 分析商品藤茶中环烃类化合物Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094,11SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司)马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 10712SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-124913薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-1714保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶)林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-27015不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-22916顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-21717顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司)王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-17318顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司)许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3):19顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司)曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -114120顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司)施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,7521顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-12222发酵牛肉肠挥发性成分固相微萃取条件优化分析,SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-17823固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司)牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-23324酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司)赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-12425食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取85 &mu mCAR/PDMS陈冬梅, 福建分析测试, 2014,23(3):22-2626同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司)张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-16027应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司)李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-8029HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-10130SPME与SD提取八角茴香挥发性风味成分的GC-MS比较美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司)黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-10931SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-5532SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司)王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-10833SPME/GC-MS鉴别地沟油新方法(Ⅲ)Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-128234巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-6835保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶)林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-27036不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司),Trace MS气相色谱-质谱联用仪(美国Finnigan公司)王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-8937不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司)陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-10238顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国Supelco公司;萃取瓶美国Perkin Elmer公司汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-15739顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司)张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-15040多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司)王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -171441海南主要地域生咖啡豆挥发性化学成分对比研究QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342葎草鲜品不同部位的挥发油成分及含量仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181 43熟化方式对小米粉制品挥发性成分的影响气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-9744GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司)刘常金,张杰,周争艳等,食品科学,2013,34(20):261-26745HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头熊梅,张正方,唐军等中国调味品,2013,38(1):88-9146HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头张伟,卢引,顾雪竹等, 2013,19(20):97-9947HS-SPME-GC-MS分析螺旋藻挥发性成分 Agilent 6890-5975 气质联用仪(美国安捷伦公司);固相微萃取装置(SPME 手柄、65 &mu mPDMS/DVB萃取头)(美国Supelco公司)张丽君,许柏球,王金林等, 食品研究与开发,2013,34(9):72-7448SPME-GC/MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪(美国瓦里安公司),固相微萃取装置(美国Supelco公司), 100 &mu m PDMS、65&mu m PDMS/DVB、75&mu m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)降升平,张小,张玲玲等,太原理工大学学报,2013,44(3):272-27649SPME/GC-MS分析比较热处理乳中的挥发性化合物 固相微萃取装置,配有75&mu m碳分子筛/聚二甲基硅氧烷共聚物萃取头;Agilent 6890气相色谱仪;Agil ent 5973质谱仪陈伟,闰宁环,邬子燕等,中国乳品工业,2013,41(2):21-23,2750蚕豆酱酿造过程中挥发性风味物质分析,固相微萃取装置:萃取头CAR/PDMS 75 &mu m,碳分子筛/聚二甲基硅氧烷(美国Supelco公司, GC-2010气相色谱仪(日本岛津公司)王金晶,周敏,刘春凤等,东北农业大学学报,2013,44(8):14-2251侧柏叶及其炮制品在卷烟滤嘴中的应用 7890A/5975C气质联用仪、7694E顶空进样器、、Headspace-SPME-GC-MS、A gilednt 公司徐建荣,张毅立,余玉梅等,湖北农业科学,2013, 25(20):5010-501352顶空固相微萃取-气质色谱联用技术分析海州香薷与石香薷中挥发性成分Agilent 7890N-5973N GC.MSD气相色谱-质谱联用仪,65&mu m PDMS/DVBSPME萃取头李佳,刘红燕,张永清等,中国实验方剂学杂志,2013,19(16):118-12253湖南茯砖茶香气成分的SPME-GC-TOF-MS分析 LECO气相色谱-飞行时间质谱仪(美国LECO公司);CombiPAL全自动SPME进样系统(瑞士CTC公司),100 &mu m聚二甲基硅氧烷涂层纤维;30/50 &mu m-二乙烯苯-碳分子筛-聚二甲基硅氧烷涂层纤维,75 &mu m碳分子筛聚二甲基硅氧烷涂层纤维(美国Supelco公司)颜鸿飞,王美玲,白秀芝等,食品科学,2014,35(22):176-18054基于SPME.GC.MS联用技术检测的热处理黑莓清汁香气变化分析掌手动SPME进样器、萃取纤维头100&mu m DVB/CAR/PDMS 美国Supelco公司;Agilent 6890/5973型气相色谱质谱联用仪(美国Agilent公司)许颖,王行,马永昆等,食品科学,2013,34(18):212-21755赛里木酸乳原籍菌种发酵乳主体风味成分分析 SPME手动进样柄、75&mu m CAR/PDMS 萃取头(美国Supelco公司),1200L型气相色谱-质谱联用仪(美国瓦里安公司)雷华威,陈晓红,李伟等,食品科学,2013,34(20):127- 1303.固相微萃取装置的发展  Pawliszyn 研究组在自己组装 SPME 装置的基础上,于1992年和仪器厂家一起把 Hamilton 7005 注射器做一些改进安装到 8100 自动进样器里,形成 SPME 的自动进样装置 (Arthur C.L., Killam L.M., Buchholz K. D., J. Pawliszyn, Automation and Optimization of Solid-Phase Microextraction,Anal. Chem.1992, 64(17):1960-1966)。  1993年,有厂家把 SPME 萃取装置进行了商品化的工作,如图3的结构示意图。 图3 SPME 商品装置的结构示意图  1995 Pawliszyn 研究组使用商品萃取丝安装在气体取样罐中,进行空气中苯系物的分析,以FID、ECD 和 MS 进行检测[Arthur C.L., Killam L.M., Buchholz K. D., J. Pawliszyn, Automation and Optimization of Solid-Phase Microextraction,Anal. Chem.1992, 64(17):1960-1966],整体装置如图 4 所示。同年 Pawliszyn 设计了用SPME 在气相色谱中快速进样的装置[Arthur C.L., Killam L.M., Buchholz K. D., J. Pawliszyn, Automation and Optimization of Solid-Phase Microextraction,Anal. Chem.1992, 64(17):1960-1966],图 5 是这一设备的示意结构图。这一设计使用电容放电,让萃取丝快速升温,每秒可升温1000℃。Pawliszyn 还设计了在萃取丝内直接用电容放电加热的萃取装置,是把 商品 SPME 萃取装置进行改造的,如图6所示。图4 空气中苯系物的分析的SPME取样装置  图中 1&mdash &mdash 进样口,2&mdash &mdash 垫圈,3&mdash &mdash 隔垫,4&mdash &mdash 螺帽,  5&mdash &mdash 针的导轨,6&mdash &mdash 0.53mm 熔融石英毛细管  7&mdash &mdash 螺帽,8&mdash &mdash 密封圈,9&mdash &mdash 加热器,10&mdash &mdash 连接头  11&mdash &mdash 继电器,12&mdash &mdash 电容器,13&mdash &mdash 开关图6 SPME-萃取丝內快速加热装置  在 1995年 Pawliszyn 研究组设计了萃取丝内用CO2冷却的装置,这是为了把样品加热到较高温度的同时,把萃取丝的温度降低,既可以增加被分析物的挥发度,又可以增加萃取介质的保留能力,于是大大提高了萃取效率。这一设计的示意图见图7。图7 SPME-萃取丝內冷却的装置  1997 年Pawliszyn为了测定病人呼吸气中的乙醇、丙酮和异戊二烯含量,设计了图9的SPME萃取装置,把它放入病人口中10s钟,然后用GC/MS测定吸收(吸附)在萃取介质上的化合物。 图8 用于人呼吸气的SPME-萃取装置  国内中科院生态环境研究中心于2002年完成了&ldquo 十五&rdquo 科技攻关项目专题《固相微萃取器的研制与开发》,研制出商品化的全套固相微萃取器,如图9所示。  图9 国内研究生产的SPME装置  最近把SPME直接与质谱连接,进行质谱检测,见图10图10 SPME直接与质谱连接进行质谱检测  这一新技术可用于直接分析血样中的药物,只需要5 min 就可以快速、高选择、灵敏地完成分析。(Anal Chem 2015,87:754)5.萃取丝吸着剂的演变  Pawliszyn 研究组最早使用的是涂渍有二甲基硅氧烷(PDMS)和聚丙烯酸酯(PA)涂层的萃取丝,涂渍工艺类似于毛细管气相色谱柱,但是膜厚远高于毛细管气相色谱柱。起初商品SPME萃取丝的固定相有:聚二甲基硅氧烷,聚丙烯酸酯,聚二甲基硅氧烷-二乙烯基苯,聚乙二醇-二乙烯基苯,聚乙二醇-聚二甲基硅氧烷,石墨,活性炭等。  萃取头的基质主要使用石英纤维,但是由于石英纤维易折断,操作时需非常地小心,从而其使用寿命及范围得到了很大的限制。所以,此后研究开发廉价而且具有更大机械稳定性的萃取头收到重视。现行商品SPME主要品种和用途:涂层类型极性适用试样PDMS(聚二甲基硅氧烷)非极性有机氯、有机磷、有机氮农药;药品和麻醉品;食品中香味;挥发物;食品中咖啡因、卤化物。PA(聚丙烯酸酯)极性有机氮农药;脂肪酸;药物;食品中香味、酚。聚乙二醇/二乙烯基苯极性体液中乙醇  除去这常用的固定相之外,十几年来人们研究了多种固定相涂层,在SPME应用中,没有一种单一的涂层可以适应所有的化合物。涂层的性质要和被分析物的性质相匹配,选用的固定相涂层首先要对有机分子有较强的萃取富集能力,使分析物在涂层中有较快的扩散速度,能在较短时间内达到分配平衡,并在热解析时能迅速脱离固定相涂层,而不会造成峰的扩宽。同时,由于分析物是在高温下易于解吸,因此针对不同的分析物对涂层可有多种选择,为了适应各种需要,特别是用于极性化合物的SPME固定相,这就推动了新SPME固定相的开发和研究。  人们首先开发的是混合型SPME萃取丝涂层,如PDMS-DVB(聚二甲基硅氧烷-二乙烯基苯),PDMS-Carboxen(聚二甲基硅氧烷-专利碳吸附剂),CW-DVB(聚乙二醇-二乙烯基苯),CW-TRR(聚乙二醇-高温树脂),上述固定相商家都把它们形成商品SPME产品。为了改进能够萃取极性化合物的涂层,又要满足涂层必须涂渍到石英丝上、可适应高温的要求,因此寻找新的性能优越的SPME固定相是比较困难的。  人们研究的SPME固定相涉及的无机材料有石墨化碳黑,铅笔芯,玻璃碳,陶瓷等,碳类SPME是研究最多的一类涂层材料。自从1997年刘玉等把HPLC固定相使用的键合硅胶固定相C8和C18用做SPME的涂层以后,研究和应用越来越多。西北师范大学的杜新贞和侯经国把介孔材料用于SPME,研究表明 MCM-41 型介孔材料制成的SPME 其灵敏度、选择性和萃取效率都高于键合硅胶型SPME。  1999年Pawliszyn 研究组把导电聚合物用于SPME涂层,他们把聚吡咯(PPY)及其衍生物用电化学方法涂渍在金属丝上,它有利于通过 &pi -&pi 相互作用力萃取芳香族化合物,特别是多环芳烃,由于它有极性基团适合于萃取极性多环芳烃,它还具有阴离子交换的倾向,可以萃取阴离子化合物,此后这一SPME有多方面的研究和使用。  分子印迹技术(molecular imprinting technology , MIT) 是一种高选择性分离技术,由于MIT模仿了生物界的锁匙作用原理,使制备的材料具有极高的选择性,在固相萃取、化学或生物传感器、不对称催化和模拟酶等方面得到了应用。2001年 Koster把 MIP 用作 SPME 萃取丝上的分离介质, Pawliszyn 研究组MIP 用作管内 SPME 固定相和HPLC联用测定体液中的 &beta -阻断剂药物。  限进介质吸附剂(的 restricted accessmatrix sorbents)是针对大分子的体积排阻功能和对小分子分析物的保留功能,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的亲水性修饰,使得生物或环境样品溶液中的大分子不能进入吸附剂的内孔中去,且亲水性的外表面使生物大分子在吸附剂外表面不会发生不可逆的变性和吸附,可以用这一类吸附剂排除生物大分子,而对小分子分析物可以进行萃取,这种限进介质吸附剂在固相萃取中得到很多应用。  Pawliszyn 研究组等用高温环氧胶将烷基二醇硅胶内表面反相填料粘附在固相微萃取纤维表面,制得限进介质固相微萃取纤维,并将此纤维应用到尿样中几种安定类药物的萃取和液相色谱测定, 还用管内SPME对苯二氮卓类药物进行限进介质固相萃取和色谱测定。  为了萃取极性化合物,很多研究是设计和研究极性基团的SPME丝,有两种途径制作极性SPME丝,一种是使用溶胶-凝胶技术,即把有机组分结合到无机聚合物结构中(萃取丝),如能选择适当的有机基团,就可以萃极性强的化合物。武汉大学的吴采樱研究组和曾昭睿研究组近年来在这一领域做了大量出色的研究,他们用溶胶-凝胶技术制备了含有冠醚和杯芳烃基团的SPME涂层,这类SPME萃取丝对一些酚类、胺类和有机磷金属化合物的回收率都高于一般商品 PDMS, PA, CW-DVB 或 PDMS-DVB 萃取丝。此外近年有使用聚苯胺(PANI)做SPME涂层的报告,中科院生态研究中心江桂斌研究组采用电化学聚合的方法,在不锈钢丝上制备了一种具有多孔结构的聚苯胺涂层。并运用顶空固相微萃取技术结合GC-FID分析水溶液中六个芳胺类化合物,通过在相同条件下6次重复测定2 mg mL-1加标水样评估方法的重复性。结果显示在多数芳胺化合物的分析过程中,PANI纤维具有与传统CW/DVB纤维相当的精确度。6.SPME 的发展趋向  SPME 是一种应用及其广泛的样品制备技术,和气相色谱连用只是一个方面,和HPLC以及其他仪器连用也很多。所以SPME还有更多的发展空间,2013年Agata Spietelun等撰写的综述中列出以下的SPME发展趋向:改善萃取条件改进萃取技术发展新装置萃取头涂层小型化CCF &ndash SPME*萃取模式自动化管内SPME温度和萃取时间萃取头制备新方法管内萃取丝SPME萃取头涂层膜厚内冷萃取方法管内金属萃取丝样片体积与GC,HPLC等仪器在线连接M-SPME**样品搅拌类型 电化学控制SPME盐析和酸度 衍生化 (文献:Agata Spietelun et al., Chem Rev, 2013, 113, 1667&minus 1685)  注: *CCF &ndash SPME 冷却萃取丝的固相微萃取 **M-SPME 是膜固相微萃取图中 1&mdash 石英丝,2&mdash 聚乙二醇(PEG),3&mdash 聚合物膜(聚二甲基硅氧烷)  小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。  下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。  最后预祝读者羊年快乐!万事如意!
  • 香烟香气成分大揭秘,TD-SBSE-GCMS技术带你深入了解!
    导语为了改善烟草的品质,丰富其香气,并掩饰潜在的不良气味,香烟制造过程中通常会添加专门的香精和香料。这些精心配制的香料能够使烟草的口感和香气变得更加醇厚、甜美、清新,从而增加吸烟时的愉悦感和品质享受。同时,它们还能有效掩盖烟草的苦味和杂质,让烟草的口感更加舒适。深入分析香烟烟丝中的香气成分对于控制香烟添加剂的使用标准、洞察市场趋势,以及评估香精香料添加的适宜性等方面,都具有至关重要的作用。因此,从烟丝中有效地提取香气和气味成分是至关重要的。在本研究中,运用热脱附TDU与搅拌棒吸附萃取(SBSE)相结合的技术,配合气相色谱-质谱联用(GC-MS)分析,对烟丝中的挥发性风味和香气成分进行了详细的分析和鉴定。利用自动质谱解卷积和识别系统(AMDIS、NIST)软件,成功识别了共洗脱色谱峰。同时,保留指数的应用进一步促进了烟丝中风味成分的识别。通过TD-SBSE-GCMS,总共成功鉴定了大约68种挥发性风味化合物,展示了该方法在化合物的全面分析方面的强大能力。提取风味成分,样品前处理是关键在关键的样品前处理环节中,利用传统的溶剂萃取技术从烟草中提炼香精时,常常面临诸如溶剂消耗大、干扰问题、灵敏度下降以及操作流程繁琐等挑战。烟草的基质极为复杂,这就需要一种简便、快速,且更优选无溶剂或低溶剂的提取技术来分析其香精成分。相较于液液萃取(LLC)、同时蒸馏萃取(SDE)、固相萃取(SPE)、超临界流体萃取(SAFE)和加速溶剂萃取(ASE)等常规萃取技术,后者往往需要经历繁琐的步骤,使用较多的溶剂,并需要后续的浓缩过程。搅拌棒吸附萃取(SBSE)作为一种无溶剂技术,因其在提取和浓缩痕量有机化合物方面的优异表现而受到关注。其优点包括高灵敏度、良好的重现性、样本用量小以及操作简便迅速,这些特点都超越了传统的固相微萃取(SPME)。SBSE特别适用于分析和测定烟草中的香精和风味化合物。此外,考虑到经常添加到烟草中的调味剂,如丙二醇和甘油等极性溶剂,它们可能会干扰调味成分的准确测定,这为分析工作带来了挑战。同时,丙二醇和甘油有可能与其他调味成分一同被洗脱出来。为了克服这个问题,添加饱和氯化钠水溶液已被证实可以有效减少极性溶剂(如丙二醇和甘油)的干扰。此外,盐析作用还能进一步提高其他调味成分的提取效率。分析结果香烟烟丝的香气挥发性化合物总离子色谱图(TIC)通过使用搅拌棒吸附萃取 (SBSE) 从烟丝中提取挥发性化合物,鉴定出大约 68 种挥发性风味化合物。新植二烯成为主要化合物,占总量的 41% 以上,成为烟草中的主要香气成分。其他含量较高的值得注意的化合物包括薄荷醇、凉味剂WS23和尼古丁,所有这些都是卷烟中的关键气味成分。已鉴定的化合物范围包括各种萜烯、醛、醇、酮、酯、酚、酸、吡咯和烟丝中释放的几种芳香化合物。详细信息请阅读原文,其中详细列出了通过 SBSE 获得的烟丝成分。也欢迎您直接联系我们,给我们留言或电话。可见,搅拌棒吸附萃取 (SBSE) 作为一种用于萃取和浓缩痕量有机化合物的无溶剂方法而脱颖而出。其显着特点包括高灵敏度、出色的重现性、最少的样品需求以及简单、快速的操作,优于传统固相微萃取 (SPME) 的灵敏度。事实证明,SBSE 对于辨别烟丝中的香气和风味化合物特别有效。通过TD-SBSE-GCMS,总共成功鉴定了大约68种挥发性风味化合物,展示了该方法在化合物的全面分析方面的强大能力。配置了热脱附系统的 GERSTEL MPS LabWorks 平台,一个平台十大进样技术(包括液体、顶空、热脱附、SPME、SBSE等)原文链接:Determination of Flavor Compounds in Cut Tobacco by TD-SBSE-GCMS | GERSTEL
  • 汗诺双向电动搅拌器震撼上市
    根据用户需求开发出双向电动搅拌器,现已成功上市,欢迎各地经销商前来洽谈同时欢迎各地用户提出宝贵建议,您的满意,是我们永恒的追求致电联系:18621653239 薄利明电动搅拌器是在大功率电动搅拌的基础上改进而成,设有机械定时,搅拌棒选材不锈钢,有优越的抗腐蚀性能,操作简便,运转平衡,无级调速,小而强有力的马达能在较广的速度范围内对高粘度的液体溶液进行稳定精密的搅拌。转速有数字显示,准确、直观。特别适合搅拌大体积的样品,是石油、化工、冶金、纺织、食品、医药卫生、环保、生化实验室、分析室、教育科研的必备工具。 电动搅拌器JJ-40W功率:40W定时范围0~120分调速范围0~3000转/分580元JJ-60W功率:60W定时范围0~120分调速范围0~3000转/分620元JJ-90W功率:90W定时范围0~120分调速范围0~3000转/分680元JJ-100W功率:100W定时范围0~120分调速范围0~3000转/分800元JJ-160W功率:160W定时范围0~120分调速范围0~3000转/分1560元JJ-200W功率:200W定时范围0~120分调速范围0~3000转/分1900元JJ-300W功率:300W定时范围0~120分调速范围0~3000转/分2300元主要特点:【1】采用低压直流无刷电机驱动,无火花,力矩大,效力高,调速性好。【2】搅拌棒和叶片为优质不锈钢材料,耐腐蚀。【2】搅拌轴最大力矩: 0.7N· m。【4】适用介质粘度:0~100000mpas。
  • 电动搅拌器,多买就多优惠,单台7折起售
    一:特点 该机选用永流式直流电机,具有增加功能,转速稳,连续可调,嗓音小,搅拌棒采用不锈钢制成,耐腐蚀,另配控制箱,可远离工作台操作。 二:性能:1:电源:220V+10%,50Hz2:电机功率:任选3:转速:3000转/分4:噪音:小于40分贝 三:使用方法: 将零部件按图所示按装,根据要求调整好高度,接通电源,就可工作。 四:注意事项1:使用时,如发现搅拌不同心,搅拌不稳定的现象,请调整支架紧夹头,使搅拌棒同心,如果使用三角烧瓶搅拌,将搅拌棒对准中心,然后再开机搅拌。2:使用时突然电源不通,请检查一下电源线,插头是否有脱落现 象,如无以上状况,请通知本厂修理。
  • 李攻科教授:复杂体系痕量分析样品前处理方法研究进展
    仪器信息网讯 2012年4月13日-16日,由中国化学会主办,四川大学承办的中国化学会第28届学术年会在四川大学举行。本届年会恰逢中国化学会八十华诞,受到国际国内化学界同行高度重视,来自国内国际的包括50位两院院士和第三世界院士在内的4000多名化学界代表参加了此次盛会。  在大会组织的分析化学学术分会中,中山大学化学与化学工程学院李攻科教授做了题为《复杂体系痕量分析样品前处理方法研究进展》的报告。中山大学化学与化学工程学院 李攻科教授  李攻科教授介绍说在样品分析过程当中,样品前处理时间占整个分析过程的61%,数据处理与报告占27%,样品采集和分析测定时间各占6% 而整个分析过程当中的误差来源的前两位是样品前处理占30%,操作者占19%,另外污染、样品引入、分析测定、数据处理、仪器、校正等引入的误差均在10%以下。由此可见,样品前处理已成为复杂体系分析的瓶颈问题。  2001-2011年有关样品前处理技术的SCI文章呈稳步上升的趋势,从2001年的800余篇文章增长到2011年的1600余篇。其中各种微萃取技术的论文数量从高到低为:固相微萃取、磁性微球、液相微萃取、搅拌棒萃取技术等。从2001年到2011年,固相萃取技术的论文数量增长平缓,液相微萃取和磁性微球技术论文数量增长较快。  分子印迹微萃取在复杂样品分析中的应用  李攻科教授介绍说分子印迹聚合物兼备了生物识别体系和化学识别体系的优点,能从复杂样品中选择性分离富集印迹分子及其结构类似物。适合用作“分离介质”,在复杂样品前处理领域中具有发展潜力和应用前景。从2001年-2011年,有关分子印迹样品前处理技术的论文数量也是呈上升趋势,并且从2007年-2011年每年都保持了较高的增长率。  分子印迹微萃取技术的核心是纤维涂层材料的研发,李攻科教授在报告中介绍了课题组的一些研究成果,如研发扑草净、四环素、心得安、雌二醇、2,2-联吡啶分子印迹探针的涂层,并且在大豆、玉米、血液、尿液等复杂样品分析中取得很好的效果 研发莠去津、生长素、莱克多巴胺和β-谷甾醇磁性分子印迹微球,结合了磁性分离和分子印迹技术各自的优点,具有效率高、选择性好、实现动态萃取等优点。进行了样品分析,实验结果良好 研发特丁津、磺胺二甲啊嘧啶、莱克多巴胺等分子印迹萃取搅拌棒涂层,搅拌棒通过化学键合作用涂渍的分子印迹涂层非常牢固,具有较好的机械性能,使用40-50次后涂层表面保持完好,萃取性能没有明显改变。  微波辅助样品前处理技术在样品分析中的应用  另外,李攻科教授还介绍了微波辅助样品前处理技术的发展情况,从论文数量来看,微波萃取技术的相关研究也越来越多。从应用领域来看,2001年微波萃取技术主要用在环境领域,占53.57%,而到2011年, 固相微萃取技术主要用于中草药及其他天然产物的分析,占37.69%,其次是食品分析,环境居第三位。  李攻科教授介绍了课题组正在研究的微波辅助低温萃取技术,在低温真空环境中结合微波辅助萃取技术,可避免热敏性及易氧化物质的降解和氧化,使溶剂在较低的温度下保持回流状态萃取目标物,促进溶剂和样品充分接触,提高目标物萃取率。适合于食品药物中热敏性、易氧化物质的萃取。  微波超声辅助固液固分散萃取联用技术:目标物和干扰组分在复合场的作用下同时进入萃取溶剂,干扰组分被分散吸附剂吸附,目标物则留在萃取溶剂中,分散吸附剂应有充分的活性以保留萃取液中的杂质,同时能够使目标物被洗脱。  微波辅助索氏固相萃取技术,溶剂被微波加热并回流,样品中的目标物和干扰组分同时进入萃取溶剂,干扰组分被固相吸附剂吸附,目标物则保留在萃取溶剂中。该技术集萃取、净化为一体,可分析西洋参中的农残,可拓展至其他复杂样品中极性目标物分析。
  • “食品风味分析及安全检测最新技术"主题网络研讨会答疑集锦来了!
    7月15日,哲斯泰携手我要测网成功举办了“食品风味分析及安全检测最新技术"主题网络研讨会(从样品前处理到进样到嗅觉检测全方位解决方案)”主题网络研讨会,五位行业资深专家带来了精彩干货分享,吸引了1000多人次报名参与。下面让我们一起来看看老师分享的精彩内容吧。 来自中国农业科学院茶叶研究所的朱荫老师带来了主题为:“茶叶中手性挥发性成分研究及香气活性成分鉴定”的报告。朱老师从茶叶中手性挥发性成分研究和香气活性成分鉴定两个方面带来了团队最新的研发成果。用Es-GC×GC-TOFMS、Es-GC-MS及Es-GC-O/GC-MS等技术首次建立了茶叶中26种重要手性挥发性成分的精确定量分析方法,查明了茶叶中挥发性萜类及内酯类化合物的对映异构体分布与茶叶类别、茶树品种、产地、加工工艺、季节及储藏时间等因素间的内在联系,最后阐明了各对映异构体的香气特征及其对茶叶香气品质形成的具体贡献。来自北京工商大学的宋焕禄教授带来了主题为:“感官导向风味分析-理论与实践”的报告。分子感官科学( molecular sensory science) 是近年来提出来的,在分子水平上研究食品感官质量的多学科交叉技术。它的特点是将仪器分析与感官评价有机地结合,筛选出由少数物质组成的、代表样品风味特征的风味重组物,从分子水平上揭示了食品感官品质的化学本质,为食品加工贮藏过程中的品质控制提供了科学依据。宋教授就利用气象色谱—嗅闻技术(GC-O)寻找关键香气物质为中心进行讲解,并以具体试验数据案列详细讲解了肉类、水果等分析实验过程。来自中山大学化学学院的欧阳钢锋教授带来了主题为:“固相微萃取活体采样分析技术在食品安全检测中的应用”的报告。欧阳教授重点介绍了其所制备的系列基于传统材料和米、多孔材料的新型SPME探针,及其在多种鱼类和蔬菜中药物、农残、麻醉剂等毒害有机物的活体采样监测,传统的采样分析的操作繁琐,不能对单一生物体进行系统分析研究,发展简单、环保的原位/活体采样分析技术是分析化学的重要发展方向来自江南大学生物工程学院的范文来老师带来了主题为:“饮料酒及发酵食品中痕量与超痕量物质定量策略”的报告。极微量风味成分分析是一项具有挑战性的工作。范老师从痕量与超痕量物质定量策略概述、固体半固体物物料样品前处理与定量技术和液态样品前处理与定量技术三个方面进行了精彩分享。应用Gerstel公司的Multi-Purpose Sampler结合HS-SPME和/或SBSE技术可以检测饮料酒和发酵食品的原料、生产过程和产品中的微量风味成分,包括固体样品(如化合物原料、酒醅、酱)、液体样品(如白酒、黄酒、葡萄酒)和混浊样品(如米醋)。不同的样品、不同测定的目标产物需要选择不同的样品处理方法。multi-purpose sampler与GC-MS联用后,可以快速、稳定和可靠的分析酿造过程的所有样品。 行业资深专家朱建设老师带来了主题为:“应用搅拌棒吸附萃取SBSE技术分析食品饮料中的风味成分”的报告。朱老师重点分享了SBSE技术用于食品和饮料的香气香味化合物的分析的具体案例。品饮料中香气香味化合物种类繁多,结构复杂,浓度范围变化大,有的含量非常低,提取分离鉴定难度大。需要一种简单快速,无溶剂或少许溶剂的提取富集技术。和一般LLC,SDE,SPE,SAFE等样品提取制备方法相比,搅拌棒吸附萃取(SBSE)是一种无溶剂的用于萃取和浓缩痕量有机物的技术。其原理类似于固相微萃取SPME,但是SBSE拥有更多的萃取吸附层,是SPME的50到250倍,使得检测的灵敏度大大提高。具有简单,高效,快速,重现性好,绿色无溶剂等优点。应用SBSE技术测定食品饮料中的香气香味化合物是非常好的选择。  视频回放:https://www.woyaoce.cn/webinar/Video/Video/Collection/10590
  • 倪永付:用检测技术保障百姓“舌尖安全”
    近日,实验室里,青岛海关所属济宁海关综合技术服务中心的高级工程师倪永付正在进行农药残留快速检测技术研究,确保食品安全。他告诉科技日报记者:“该项技术如能研发成功,将提高检测效率,降低食品安全监管成本,为社会提供优质安全的食用农产品。”  “事关安全,都是大事,我必须用心去做。”这是倪永付心中的信条。自2008年开始从事食品安全检测工作的那一刻起,他一直兢兢业业地用检测技术保障着百姓“舌尖上的安全”。  2011年,山东省济宁市特色出口水产品微山湖小青虾被检测出呋喃西林代谢物。出口企业被认为在养殖小青虾的过程中使用了禁用药物,产品出口受到严重影响。  “不对,不应该出现这种检测结果。”倪永付得知这一情况后,主动放弃周末休息时间,多次将从备案基地取来的小青虾样品分别制样,按虾头、虾壳、虾肉反复进行实验研究。结果发现,小青虾在没有使用任何硝基呋喃类药物的情况下,仍能检出呋喃西林代谢物。其中,虾壳含量最高,其次是虾头,虾肉含量最低。  问题到底出在哪里呢?经过反复的思考和查阅资料,倪永付推断呋喃西林代谢物存在内源性,即小青虾自身能够产生呋喃西林代谢物。如果在检测过程中根据呋喃西林代谢物检测结果,就简单地断定使用了禁用药物,有失客观。  倪永付的实验结果和思考,得到了相关文献的印证。在倪永付的建议下,相关企业随即与国外进口商联系沟通,纠正了误判。问题解决后,当地小青虾出口额逐年递增,高峰期营业收入可达每年400万元。  2014年以来,倪永付又为“金乡大蒜”畅通了检测之路。  金乡大蒜具有蒜头个大、辣味纯正、抗霉变等优点,是济宁市的拳头特色农产品。济宁市每年金乡大蒜出口量约占全国金乡大蒜出口总量的一半,金乡大蒜成为当地农民增收致富的重要来源。  出口量大,检测需求也大。倪永付所在的实验室每年要检测金乡大蒜样品近2000批次,涉及检测项目2万多项次。倪永付说:“质量是产品的生命,时间是企业的效益。我们实验室的检测,既是出口农产品质量安全的重要保障,更要争分夺秒抢速度。”他决定找到速度与质量的“最佳结合点”。  农药残留检测是大蒜品质检测的重要内容,如果农残检测效率提升,大蒜检测的时间自然就能缩短。但是,由于大蒜基质复杂,在进行农残检测时干扰物质比较多,复杂的前处理过程影响了检测速度。  经过不断研究探索,倪永付设计出了搅拌棒吸附萃取及溶剂解析装置,找到了搅拌棒吸附不同类型农药的最佳条件。结合串联质谱技术,倪永付最终实现了萃取、净化、浓缩的“一步完成”,使大蒜前处理效率提升20%以上,大蒜出口检测大幅提速。这一成果获得了山东省轻工业联合会科学技术创新进步二等奖、中国仪器仪表学会科学技术三等奖。  有些人认为,天天埋头做实验和检测是一项“无聊”的工作。但在倪永付眼中,“做实验是最有趣的事,能探索和研究的东西实在是太多了。随着食品工业的发展,食品中的成分也越来越复杂,通过实验检测能够发现其中的危险因子,让人们更安全地享受舌尖美味,这非常有意义!”倪永付笑着说,“我要一直从事食品安全检测工作,直到退休。”  在孩子们眼中,倪永付是热心科普食品安全知识的“倪老师”。  “这些都是学校周边小卖部里受欢迎的‘五毛食品’,别看它们外表华丽、色彩诱人,但很多都是‘三无’产品、山寨产品。”在孩子们的簇拥中,“倪老师”指着实验台上一堆小零食认真地介绍,“有些微生物超标、有些滥用食品添加剂,长期食用会严重危害我们的身体健康。”  “每年,我们都会举行实验室开放日活动,每次大约有40到50名孩子走进海关实验室。”倪永付告诉记者,孩子们对实验室里的仪器设备感到很新鲜好奇,当讲到日常生活中的“不合格”食品时,他们都会瞪大眼睛认真听。“这些活动能增加孩子们的见识,让他们更了解食品安全科学。”  “倪老师”还将继续活跃在“实验室开放日”活动中,将食品安全的种子撒播在孩子们心中。
  • 一种灵巧的微量固相萃取技术(MEPS)
    往期讲座内容见:傅若农老师讲气相色谱技术发展第十九讲一种灵巧的微量固相萃取技术(MEPS)  大家知道在分析和生物分析方法的开发中,样品处理是十分重要的一步。现代分析对一个样品的分析测定所用的时间越来越短,但是,样品制备过程所用的时间却仍然很长。据统计,在大部分的仪器分析实验室中,将一个原始样品处理成可直接用于仪器分析测定的样品状态,所消耗的时间约占整个分析时间的60-70%。在各种样品前处理方法中,目前各种无(少)溶剂的绿色样品处理技术成为仪器分析主要的前处理方法。当然近年最具吸引力的技术是固相微萃取(SPME),它是从固相萃取(SPE)衍生出来的一种无溶剂的样品处理技术,从SPE衍生出来的另一种微量固相萃取方法是填充吸着剂微萃取(Microextractionbypackedsorbent,MEPS),它是2004年出现的一种精巧、环保、便利的固相萃取方法,(JChromatogrB,2004,801:317–321 JMassSpectrom,2004,39(12):1488)由瑞典阿斯特拉公司研发部(AstraZenecaR&DSodertalje)的MohamedAbdel-Rehim首先提出的。Abdel-Rehim(现时在瑞典斯德哥尔摩大学分析化学系)在2015年发表一篇有关MEPS的综述文章(TrAC,2015,67:34–44),讲述这一技术的发生和发展及其应用,这里以此文为主综合介绍MEPS的概况及应用。  MEPS是一种小型化的固相萃取(SPE)技术,用于样品的纯化,但与一般SPE有显著差异,它是把吸着剂直接集成到注射器中(BIN),而不是一个单独的小柱子。因此,不需要使用一个单独的萃取装置。MEPS甚至可以用于血浆或尿液样进行100次以上的萃取纯化,而常规固相萃取小柱只能使用一次。MEPS可以处理容量小的样品或容量大的样品(10μ L-1000μ L血浆,尿或水样),可与气相色谱/质谱,液相色谱/质谱,毛细管电色谱/质谱联用。可在反相、正相,混合离子交换模式下使用。用注射器作为进样装置,可以自动化,包括样品处理,萃取和注射等步骤。SPE的洗脱处理只能是从上到下,而MEPS可以从两个方向洗脱处理。1MEPS的装置  MEPS的装置是把大约2mg固体吸着剂像塞子一样装到注射器(100,250μ L)的筒和针之间,如图1所示,这种技术结合样品萃取、预浓缩和洗脱于一体,设备有两部分:MEPS注射器和MEPS床,也叫做BIN,BIN包括MEPS床(固体吸着剂),和填充MEPS床的注射器针。BIN使用100-μ L或250-μ L气密MEPS注射器,它可以经受正常SPE的压力。图1MEPS的装置  当BIN失效或需要更换其他吸着剂时,把螺母拧开更换旧的BIN,换上新的BIN。整个装置可以手动或在线使用,MEPS适合于使用反相、正相、和离子交换模式下进行萃取富集。一般上讲,MEPS可以适应SPE的特点要求,只是把有效体积缩小到10μ L,这样可以适应于LC或GC的自动进样注射器进样。MEPS的特点是使用很少量吸着剂,并且用很少量溶剂就可以把样品洗脱下来。2MEPS的各种形式  MEPS经过多年的研究进化,从手动(装在注射器中,或叫BIN)到半自动和全自动装置,见图2。图2MEPS的各种形式  MEPS的最重要的部分是吸着剂,重要的吸着剂见图3,最常用的是以硅胶为基质的键合于硅胶表面的烷烃固定相C2、C8和C18,很多研究者也喜欢使用聚酯类吸着剂。  通用型吸着剂的缺点是没有选择性,为了克服这个问题,人们选择分子印迹聚合物(MIPs),用以识别特异性的目标化合物。另一方面MEPS也使用聚吡咯或聚酰胺类吸着剂,它们成功地用于杀虫剂和水性样品的分离。此外有人合成了聚苯胺(PANI)纳米丝,做成网络用于从水样中选择性分离三嗪、有机氯、有机磷农药。  近来Abdel-Rehim研究组合成了一些适合于MEPS的新型吸着剂,具有高效、耐用、易于使用的特点,例如碳基吸着剂材料、针内溶胶凝胶MIP、溶胶凝胶MIP修饰的膜、和溶胶凝胶MIP点纺丝吸着剂。有关样品萃取吸着剂有多种多样品种可供选择(TrendsinAnalyticalChemistry,2016,77:23–43),下一讲讨论这一问题。3MEPS装置的自动化应用举例  MEPS自动化是把MEPS与自动进样器结合起来组成一个系统,来完成MEPS的所有步骤,包括样品的保温、萃取、清洗、温度控制、萃取和解析的时间控制,通过计算机上的操作系统来进行整个分析过程,这种设备有多家公司的商品仪器出售。  这种自动化的MEPS再与96微盘进样结合起来,可以大大缩短总分析时间,构成高通量分析模式。MEPS自动化可以使用多支萃取头组成萃取头集合,如图3的A,也可以和管尖填充固定相微萃取(MEPS),如图3的F,它的结构是萃取头放在微量吸液管的管尖处。也可以使用管内SPME或固相微萃取棒与HPLC组成自动化系统。图3MEPS的自动化设备图3的说明:  A--多个萃取头集合 B--96支微管机械手操作台:(1)96-TFME(薄膜微萃取)设备,(2,4,5)是轨道搅拌器,分别用于预处理、萃取、和解析,(3)是固定相洗涤台,(6)是96支微管的氮气排空设备,(7)是注射器臂,(8)是XYZ行程臂,用于TFME或氮气排空设备准确地定位,置于多管萃取瓶(2-5)上 C—是B图中TFME设备的详图 D—是TFME与DESI(脱附电喷雾电离)结合图,其中(1)电喷雾器,(2)进样毛细管,(3)是TFME设备固定于台子上,(4)是旋转台,(5)是按XYZ方向运行的样品台,(6)是气源,(7)是溶剂瓶 E—处于轨道搅拌器位置的活体SPME96微管解析设备 F--管尖填充固定相微萃取设备详图 G--管尖固相微萃取设备与商品TomtecQuadra96结合使用图。  (VuckovicD,TrAC,2013,45:136-153)4MEPS在各个方面的应用举例  MEPS近年有很多应用,下表1列出100例的应用实例。表1近年MEPS应用举例分析物吸着剂基体方法文献1利多卡因,甲哌卡因、布比卡因,罗哌卡因C18人血浆Gc-MSJChromatogrB,2004,801:317–3212肌氨酸MIP人血浆,尿液LC-MS/MSJSepSci,2014,doi:10.1002/jssc.2014011163局部麻醉药硅基苯磺酸阳离子交换剂人血浆LC-MS/MSJChromatogr,2004,B813:129–135.46-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine)聚苯乙烯聚合物ISOLUTEENV+血浆,尿液LC-MS/MSJChromatogrB,2005,817:303–3075奥罗莫星(Olomoucine)聚苯乙烯聚合物人血浆LC-MS/MSAnalChimActa,2005,539:35–396罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因)硅胶基(C8),聚合物(ENV+),和甲基丙烯酸甲酯的有机整体柱血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2006,29:829–840.7醋丁洛尔,美托洛尔聚苯乙烯聚合物血浆,尿液LC-MS/MSJLiqChromatogrRelatTechnol,2007,30:575–5868美沙酮Csilica-C8血浆,尿液GC/MSJSepSci,2007,30:2501–25059环磷酰胺C2-吸附剂病人血浆LC-MS/MSJLiqChromatogrRelatTechnol,2008,31:683–694.10AZD3409(N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸1-甲基乙酯)C2,C8,聚苯乙烯聚合物大鼠,狗和人血浆样品LC-MS/MSJChromatogrSci,2008,46:518–523.11布比卡因和[d3]-甲哌卡因C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+)血浆样品LC-MS/MSAnalChimActa,2008,630:116–12312氟喹诺酮类C18尿样CE-MSAnalChem,2009,81:3188–319313可卡因及其代谢物C8,ENV+,OasisMCX,CleanScreenDAU人尿样MS-TOFJAmSocMassSpectrom,2009,20:891–89914麻醉药品C18人血浆CE-MSElectrophoresis,2009,30:1684–169115甲基安非他明和安非他明C18头发MiAMi–GC/MSJChromatogrA,2009,1216:4063–407016溶解性有机物和天然有机物C18河水海水样品FT-ICR-MSAnalBioanalChem,2009,395:797–80717单萜类代谢产物C18人尿样GC/MSMicrochimActa,2009,166:109–11418有机优先污染物和暴露的化合物C18硅胶废水和雪水GC/MSJChromatogrA,2010,1217:6002–601119抗抑郁药C8人血浆LC-UVJChromatogrB,2010,878:2123–212920利培酮及其代谢产物C8血浆和唾液LC库伦检测器Talanta,2010,81:1547–155321紫外滤光片和多环麝香化合物C8,C18水样GC-MSJChromatogrA,2010,1217:2925–293222奥卡西平及其代谢物C18血浆和唾液LC-DADAnalChimActa,2010,661:222–22823可替宁C2,C8,C18,硅胶,C8/SCX人尿样GC–MSAnalBioanalChem,2010,396:937–94124甾体代谢物C18动物尿样GC–MSJChromatogrA,2010,1217:6652–666025利培酮和9-羟利培酮C8人血浆、尿样,唾液LC-UVJChromatogrB,2011,879:167–17326氟喹诺酮类化合物MIP水样LC–MS/MSAnalChimActa,2011,685:146–15227非极性杂环胺C18尿样μ LC-荧光检测Talanta,2011,83:1562–156728瑞芬太尼C8人血浆LC–MS/MSJChromatogrB,2011,879:815–81829氯氮平及其代谢产物--干血斑LC库伦检测器JChromatogrA,2011,1218:2153–215930阿托伐他汀及其代谢产物C8病人血清UHPLC-MS/MSJPharmBiomedAnal,2011,55:301–30831氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬C18水样PTV–GC–MSJChromatogrA,2011,1218:9390–939632雌激素类化合物的17β -雌二醇MIP,C18-硅胶(改性)水样GC–MSAnalChimActa,2011,70341–5133阿片类药物C8海洛因成瘾患者血浆LC-CDAnalChimActa,2011,702:280–28734(E)-白藜芦醇C2,C8,C18,SIL(未改性硅胶),M1(80%C8和20%SCX)酒UPLC-PDAJSepSci,2011,34:2376–238435美沙酮C18干血斑(美沙酮维持治疗患者)LC库伦检测器AnalBioanalChem,2012,404:503–51136黑索金,TNTC18人血浆,火药LC-UVChromatographia,2012,75:739–74537多环芳烃C18水GC–MSTalanta,2012,94:152–15738免疫抑制药物C8全血LC–MS/MSJChromatogrB,2012,897:42–4939生物相关的酚类成分C2,C8,C18,SIL,andM1酒UPLC-PDAJChromatogrA,2012,1229:13–2340哌嗪类兴奋剂C18人尿样LC-DADJPharmBiomedAnal,2012,61:93–9941精神治疗药C18,C8,和C8-SCX人血清LC-DADAnalBioanalChem,2012,402:2249–225742普萘洛尔、美托洛尔、维拉帕米C2,C8,C18,1M(阳离子交换剂)和Sil尿样微量毛细管阵列电离质谱RapidCommunMassSpectrom,2012,26:297–30343普伐他汀普伐他汀内酯C8大鼠血清和尿样UHPLC–MS/MSTalanta,2012,90:22–2944酚酸C18血浆GC–MSJChromatogrA,20121226:71–7645抗癫痫剂C18人血浆和尿样LC-UVJSepSci,2012,35:359–36646离子液体硅胶河水CETalanta,2012,89:124–12847有机磷农药聚吡咯/尼龙水样GC–MSJSepSci,2012,35:114–12048挥发性和半挥发性成分C2,C8,C18,硅胶和M1(混合C8-SCX)酒GC–MSTalanta,2012,88:79–9449哌嗪类兴奋剂C8,C18人尿样UPLC-DADJChromatogrA,2012,1222:116–12050感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8C2,C8和ENV+血浆GC-MS,LC-MSBiomedChromatogr,27,2013:396–40351大环麝香香水C18废水GC-MSJChromatogrA,2012,1264:87–9452多环芳烃C8水GC-MSJChromatogrA,2012,1262:19–2653抗癫痫药物C18人血浆和尿液GC-MSJSepSci,2012,35:2970–297754卤代苯甲醚C18酒GC-ECDJChromatogrA,2012,1260:200–20555芳香胺C18环境水样GC-MSAnalBioanalChem,2012,404:2007–201556农药聚苯胺纳米线水样GC-MSAnalChimActa,2012,739:89–9857黄酮醇C2、C8、C18和C8/SCX,SIL葡萄酒UPLC-DADAnalChimActa,2012,739:89–9858褪黑素与其他抗氧化剂C8食品LC-荧光检测JPinealRes,2012,53:21–2859L-抗坏血酸的测定C2,C8,C18和含C8的硅胶类似M1饮料LC-UVFoodChem,2012,135:1613–161860卤代乙酸C18氯化水GC-MSJChromaogrA,2013,1318:35–4261局部麻醉剂:利多卡因,甲哌卡因和布比卡因MIP血浆和尿液LC-MS/MSBiomedChromatogr,2013,27:1481–148862心脏药物C8尿液UHPLC-MS/MSJChromatogrB,2013,938:86–95635-羟色胺再摄取抑制剂,抗抑郁药C8和强阳离子交换剂血浆非水-CEJBrazChemSoc,2013,24:1635–164164麝香酮C18河水表面增强拉曼光谱(SERS)AnalBioanalChem,2013,405:7251–725765利多卡因C8唾液LC-MS/MSBiomedChromatogr,2013,27:1188–119166非甾体类抗炎药C18人尿UHPLC-UVJChromatogrA,2013,1304:1–967苯基黄酮C2、C8、C18,SIL,M1啤酒UHPLC-DADJChromatogrA,2013,1304:42–5168大麻类C18口服液LC-MS/MSJChromatogrA,2013,1301:139–14669氯苯C18水样GC-MSAnalBioanalChem,2013,405:6739–6748.70迷迭香酸CMK-3纳米碳水样LC-UVChromatographia,2013,76:857–86071氧化应激生物标记物C2,C8,C18,SIL,M1病人尿样UHPLC-PDATalanta,2013,116:164–17272橄榄生物酚CMK-3纳米碳大鼠血浆LC-UV73AnalSci,2013,29:527–53273抗精神病药物80%C820%SCX血浆GC-MS/MSAnalBioanalChem,2013,405:3953–396374多环芳烃和硝基麝香C18环境水LVI-GC–MSAnalChimActa,2013,773:68–7575氧化损伤DNA尿中的生物标记物C8尿LC-PDAPLoSONE8(2013)e5836676抗精神病药物C18血浆GC-MSAnalChimActa,2013,773:68–7577羟基苯甲酸和羟基酸C2、C8、C18和C8,SIL/SCX葡萄酒LC-PDAMicrochemJ,2013,106:129–13878抗精神病药齐拉西酮C2血浆LC-UVJPharmBiomedAnal,2014,88:467–47179可的松,皮质酮,acortisolC8唾液、血浆、尿液和血液LC-DADJPharmBiomedAnal,2014,88:643–64880恩替卡韦多孔石墨化碳颗粒血浆,血浆超滤液LC-MS/MSJPharmBiomedAnal,2014,88:337–34481莱克多巴胺C18和C8/SCX,8μ L容器猪肌肉和尿液样本LC-UVFoodChem,2014,145:789–79582芳香胺DVB纺织品中偶氮染料GC-MSTalanta,2014,119:375–38483氨基甲酸乙酯SIL,C2,C8,C18,andM1强化葡萄酒GC-MSAnalChimActa,2014,818:29–3584贝塔受体阻滞剂美托洛尔和醋丁洛尔聚苯乙烯人血浆和尿样C-MS/MSM.M.Moein(Ph.D.thesis),StockholmUniversity,201485多环芳香族碳氢化合物C8水样GC-MSJChromatogrA,2006,1114:234–23886布比卡因,利多卡因,罗哌卡因C18人血样LC-MS/MSBioanalysis,2010,2:197–20587卤乙酸C18氯化水GC-MSJChromatogrA,2013,1318:35–4288三环类抗抑郁药C8/SCX口腔液体UHPLC–MSChromatogrA,2014,1337:9–1689氯酚C18土壤样品GC-MSJChromatogrA,2014,1359:52–5990溴联苯醚C18污泥GC-MSJChromatogrA,2014,1364:28–3591非甾体类抗炎药物C18血浆和尿样HPLC-PDAJChromatogrA1367(2014)1–892瘦肉精,MIP猪肉样品HPLCJPharm.BiomedAnal.91(2014)160–16893卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平C18血浆HPLC-DADJChromatogrB971(2014)20–2994千金藤素C8血浆UPLCJAnalMethodsChem,2014,2014:1–695磺胺类药物C8鸡粪废水样品HPLCJLiqChromatogrRelatTechnol,2014,37:2377–238896五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀)氨丙基杂化硅胶整体柱血浆LC–MS/MSTalanta1,2015,40:166–17597肉碱和酰基肉碱C2,C8,C18,M1人尿LC–MS/MSJPharmaceuBiomedAnal,2015,109:171–17698儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺)C18干燥血浆和尿渍HPLC-库伦检测器JPharmaceuBiomedAnal,2015,104:122–12999氯胺酮及其代谢物M1血浆GC-MS/MSJChromatogrB,2015,1004:67–78100贝塔受体阻滞剂美托洛尔,醋丁洛尔Carbon-XCOS血浆LC-MS/MSJChromatogrB,2015,992:86–905小结  样品制备是分析复杂样品的难题,例如对生物分析样品的处理,其成分复杂,有时样品量很少,所以MEPS很适合在这一场合的应用,从举出的100例应用中也可以看出它适合于生物样品分析的前处理。
  • 配件耗材搅拌子热卖中
    A系列搅拌子 编号 型号 价格 1 A100 4 2 A150 5 3 A200 6 4 A250 7 5 A280 8 6 A300 9 7 A350 10 8 A400 12 9 A500 15 10 A700 45 C系列搅拌子 编号 型号 价格 1 C100 3 2 C150 4 3 C200 6 4 C250 8 5 C300 9 6 C350 10 7 C400 12 8 C500 13 江苏金坛市亿通电子有限公司地址:金坛市华城开发区华兴路180号Http://www.kx17.cnE-mail:crh3090@pub.cz.jsinfo.net 搅拌子价格表 B系列搅拌子 编号 型号 价格 1 B130 4 2 B150 5 3 B200 7 4 B250 9 5 B280 10 6 B300 10 7 B350 12 8 B380 13 9 B450 14 10 B500 15 11 B650 20 12 B800 22 13 B998 36 搅拌棒 编号 型号 价格 1 E300 28 2 E350 38 3 E400 48
  • 新型样品前处理技术及其在环境和食品中分析中的应用
    样品前处理技术近年来越来越重要,大部分仪器在进行测定之前都要进行样品前处理,在分析测试中,样品前处理占大部分时间。与其他技术相比,新型样品前处理技术有以下几个优点:能同时定量分析多种有害组分,而不是单一组分 对环境不造成二次污染,符合绿色化学 能处理海量样本,高通量分析 准确、重复性好,不同实验室数据可比 成本合理。  在2009年4月9日召开的“2009中国科学仪器发展年会”上,中国科学院大连化学物理研究所关亚风研究员在本次报告中详细介绍了一种新型样品前处理技术——萃取技术,并从固相萃取、固相微萃取、液相微萃取、加压溶剂萃取等几个方面介绍了萃取技术的最新进展以及其在环境和食品中分析中的应用。  1、固相萃取(SPE):主要介绍了分子印迹固相萃取技术( M I-SPE )和基质固相分散技术(MSPD)等萃取技术。其中,分子印迹技术( MIT)源于生物学上抗原与抗体的作用机理,利用此技术所制得的MIPs 除了具有强大的分子识别功能外,还具有机械强度好、耐高温、耐酸碱、耐溶剂性好、稳定性好、能够反复使用等优点。分子印迹固相微萃取的形式包括“管内M I-SPME”和“萃取纤维”。  2、固相微萃取(SPME):介绍了纤维针(Fiber-SPME)、吸附搅拌棒 (SBSE)、样品萃取瓶(Vial-SPME)、膜萃取(MSPME)等几种固相微萃取技术。  3、液相微萃取(LPME):介绍了分散液相微萃取(DLLME)、悬滴式( drop-based, LPME) 、中空纤维式( hollow fiber based,LPME)等几种液相微萃取技术。  4、加压溶剂萃取:介绍了加压流体萃取(PLE) 、加速溶剂萃取(ASE)、超临界流体萃取(SFE)、亚临界流体萃取(SCFE)等加压溶剂萃取技术。  最后,亚风研究员还简要介绍了微波辅助萃取技术和凝胶渗透色谱(GPC) 萃取技术。
  • 解开浓香型白酒的风味密码—基于现代分离技术与分子感官评价揭示浓香型白酒香气成分的研究进展
    2022年3月,北京工商大学白酒化学团队在Journal of Food Composition and Analysis(Q1, IF:4.556)在线发表了题为“Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation”的综述文章。该研究得到国家自然科学基金(32001826)、西藏自治区科技计划(XZ202001ZY0017N)和四川省固态酿造技术创新中心建设项目(2021ZYD0102)资助。北京工商大学轻工科学技术学院赵东瑞副教授为通讯作者,硕士研究生王俊山为第一作者。白酒是中国的国酒,在中国的食品工业中占有重要的地位。2020年,白酒行业销售总收入达到5836.39亿元。浓香型白酒是四种基本香型白酒之一,因其香味怡人而深受消费者喜爱。因此,对浓香型白酒中微量成分及其对浓香型白酒香气轮廓影响的研究已逐渐展开。本研究主要介绍了浓香型白酒的工艺流程,综述了近年来浓香型白酒中微量成分的研究进展,特别是香气化合物对浓香型白酒香气特征的影响。本研究旨在为浓香型白酒的研究方向提供思路,为今后相关标准的完善和白酒行业的高质量发展奠定基础。综述亮点本文概述了浓香型白酒的流派和生产工艺。对白酒中微量成分的提取(前处理)方法和检测技术进行了归纳总结。总结了近年来浓香型白酒中微量成分的研究历程和研究进展,为浓香型白酒的研究方向提供思路。综述结论截至目前,在浓香型白酒中共检测出861种化合物,其中有141种化合物被认为是浓香型白酒的主要香气成分。根据分子感官科学的结果,有32种香气化合物被确定为浓香型白酒的关键香气化合物,包括酯类、醇类、芳香族化合物、含硫化合物、含氮化合物等。这些化合物使浓香型白酒具有协调浓郁的风味。未来,我们应继续完善和丰富白酒感官组学的研究手段和工具,构建浓香型白酒香气轮廓,稳定白酒的品质,这将为相关标准的完善和白酒行业的高质量发展奠定基础。图文赏析图文摘要图1. 2014年至2020年白酒行业规模以上企业数量、年产量、年销售额、年利润变化趋势。图2. 浓香型白酒的生产工艺示意图。图3:浓香型白酒生产的发酵工艺和蒸馏工艺。图4:浓香型白酒的关键香气化合物。欢迎阅读原文 https://doi.org/10.1016/j.jfca.2022.104499本文转载自 科学私享搅拌棒吸附萃取SBSE搅拌棒吸附萃取SBSE所使用的搅拌吸‍‍附子Twister‍‍‍热脱附设备介绍最新热脱附仪TD3.5+GERSTEL热脱附进样的多样性:可以对多种样品进行分析,包括固态样品、吸附剂、用于SBSE的搅拌棒Twister、液态(微型瓶)、薄膜固相微萃取TF-SPME、以及同时热脱附TF-SPME和SBSE气相色谱-闻嗅技术介绍气相色谱-嗅闻技术GC-O所使用的嗅觉检测口ODP哲斯泰“风味,香气和气味分析”整体解决方案:多种风味化合物萃取技术(LLE/HS/DHS/SPME/TF-SPME/SBSE)+气相色谱-嗅闻-质谱联用技术(GC-O-MS)+Aroma Office 2D
  • 傅若农第二十一讲:碳用于固相萃取的演变
    往期讲座内容见:傅若农老师讲气相色谱技术发展   碳是有机世界的“主角”,在地球上按重量计算,占地壳中各元素总重量的0.4%,按原子总数计算不超过0.15%。而元素碳是一种十分神奇的物质,像碳纤维是比钢轻而抗拉强度高于钢7-9倍的材料。尤其是近20年纳米级大小的碳(富勒烯,碳纳米管,石墨烯等)人们给以前所未有的重视。  在利用各种吸附剂进行混合物分离发展的早期,人们就利用各种形态的碳做吸附剂用于分离各种混合物,现在人们又把目光投向富勒烯,碳纳米管,石墨烯等纳米级材料做新型分离材料用作固相萃取的吸附剂。  1.活性炭作固相萃取吸附剂  活性碳是最早使用的固相萃取吸附剂,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,吸附性能不能令人满意,就把它改性,以适应萃取分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最重要的是原料的选择和预处理。活性碳的基本性质取决于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质——主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个m2/g,使之没有过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成化合物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂。制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。活性碳表面具有很高的化学和几何不均一性,特别是工业用活性碳尤为严重。  固相萃取(SPE)使用活性炭始于上世纪50年代初,Braus等人使用活性碳做吸附剂,在铁管中装1200-1500g碳纤维,用以富集水中的污染物,之后用索氏萃取器提取被吸附的有机物,包括水中的有机氯农药。(AnalChem,1951,23:1160)。萃取管长91.44cm,直径在10.16cm,装填1200-1500g颗粒状活性碳,通过5000gal-7500gal地表水吸附有机氯氯农药。  由于活性碳的缺点妨碍其使用,即吸附性不均一,重复性不好,有过高的吸附性,有不可逆活化点,回收率低。所以从上世纪60年代末到80年代初,一直在寻找更为合适的适应性更强的SPE填料。  2.碳分子筛作固相萃取吸附剂  在上世纪70到80年代,在研究聚合物吸附剂和键合有机物硅胶的同时,再次使用了性能改进的碳吸附剂——碳分子筛。这是由于当时的碳吸附剂结构改进、材质均一、性能稳定,同时它对极性化合物的吸附有好的选择性。碳分子筛的性能与XAD-4大孔树脂(以苯乙烯和丙烯酸酯为单体、乙烯苯为交联剂进行聚合)相同。  1968年Kaiser制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是CarbosieveB,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000m2/g,平均孔径为1.2nm。这种吸附剂用于气-固色谱的固定相,我国称之为碳多孔小球(TDX),自然可以用作固相萃取的吸附剂。早年我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(TanDuokongXiaoqiu,TDX),具体的牌号有TDX-01 TDX-02。它们的堆积密度为0.6g/mL,比表面为800m2/g。碳多孔小球的特点是:非极性很强,表面活化点少,疏水性强,耐腐蚀、耐辐射,寿命长。表1列出国外厂家的碳分子筛的性能。表1商品碳分子筛的性能吸附剂商品名厂家比表面/(m2/g)孔径/nm堆积密度/(g/mL)CarbosieveBSupelco10001-1.20.226CarbosieveSSupelco5601-1.20.5-0.7CarbosieveS-II*Supelco5480.5-0.70.55-0.60CarbosieveG*Supelco2040.5-0.70.25-0.28SpherocarbFoxboro12001.50.5+0.05CarbosphereChrompack10001.3  3近年用碳纳米材料作固相萃取吸附剂  自从1991年日本学者饭岛澄男(SumoIijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域。在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,它们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图1所示。图1碳家族的各种形态(TrAC,2016,77:23–43)  (1)富勒烯及其衍生物作固相萃取吸附剂  自从1990年Huffman和Kratschmer发表了能大量制备富勒烯(C60)之后,对这类物质进行大量研究,对这类化合物的制备和性能有不少文章和综述发表,日本的JinnoKiyokatsu研究组对富勒烯进行了大量研究(Anal.Chem.,1995,67:2556),把富勒烯键合到硅胶上用作HPLC的固定相,分离多环芳烃。Gallego等揭示了C60作为吸附剂在分离富集金属离子的潜力(AnalChem,1994,66:4074),它对金属离子的分离富集能力优于常规萃取剂——键合烷基硅胶和活性炭。例如超痕量镉在C60富勒烯微柱上进行分离,形成中性配合物,用200mL对甲基异丁基酮洗脱吸附的镉,用原子吸收光谱进行测定。用双螯合试剂,即吡咯烷铵(APDC)和8-羟基喹啉,在一个流路中进行检测。APDC和C60富勒烯对镉进行选择性吸附,与含有的铜、铅、锌、铁中分离出来。与其他方法对比,C60和APDC的方法得到更为准确的结果(JAnalAtomSpectrom,1997,12:453–457)。  2000年MValcá rcel等使用一个简单的流动注射系统,在C60富勒烯吸附柱上在线富集金属二硫代氨基甲酸盐(杀菌剂),无需使用常规方法的酸水解,以便释放CS2,也不用衍生化,它可以直接保留在吸附柱上,随后用稀硝酸洗脱。将洗脱的馏分直接送入火焰原子吸收光谱仪进行测定(Analyst,2000,125:1495–1499)。  2004年MGallego等用富勒烯萃取柱选择性吸附汞的二乙基二硫代氨基甲酸配合物,分析水中的无机和有机汞,免除许多金属离子的干扰(JChromatogrA,2004,1055:185–190)。  2009年MGallegoa等利用C60富勒烯萃取柱区分非芳香族(脂族和环状)和芳香族亚硝胺,用C60和LiChrolutEN组成一组串联萃取柱,25ml样品通过C60柱只有芳香族亚硝胺保留,然后通过LiChrolutEN柱非芳香亚硝胺馏分被保留。用150μ L乙酸乙酯–乙腈溶液(9:1)洗脱非芳香亚硝胺,进样1μ L萃取物到GC-MS中进行测定。通过比较C60和C70富勒烯和碳纳米管的研究,显示C60富勒烯是选择性地保留芳香族馏分最佳。(JChromatogrA,2009,1216:1200–1205)。表2是勒烯及其衍生物作固相萃取吸附剂的用例。表2富勒烯及其衍生物作固相萃取吸附剂的用例1富勒烯C60Cd水,牡蛎组织,猪肾牛肝AAS--JAnalAtSpectrom,1997,12:453–4572富勒烯C60汞(II)、甲基汞(I)与乙基汞(I)海水,废水和河水GC-MS80–105JChromatogrA,2004,1055:185–1903富勒烯C60有机金属化合物水溶液GC-MS--JChromatogrA,2000,869:101–1104富勒烯C60金属二硫代氨基甲酸盐粮FAAS92–98Analyst,2000,125:1495–14995富勒烯C60BTEX海水,废水,地表水,雨水,湖水,饮用水和河水GC-MS94–104JSepSci,2006,29:33–406富勒烯C60,C70芳烃和非芳烃,亚硝化单胞菌游泳池水,废水,饮用水和河水GC-MS95–102JChromatogrA,2009,1216:1200–12057富勒烯C60-键合硅胶阿马多瑞多肽人血清MALDI-TOFMS--AnalBiochem,2009,393:8–22  (2)碳纳米管及其衍生物作固相萃取吸附剂  碳纳米管(CNTs)是由管状碳同素异形体,由一个单一的石墨薄片卷形成的结构,即单壁碳纳米管(SWCNT)或几个同心排列的碳纳米管结构,即多壁碳纳米管。单壁碳纳米管的直径可达3nm,多壁碳纳米管最多至100nm。由于CNTs具有表面积大、活化点多、π -π 键作用力强等特殊性能,适合于在固相萃取中应用,而且它的纳米级多孔性能有利于减小传质阻力,有利于平衡。碳纳米管具吸附性?,特别是多壁碳纳米管有很强的吸附性,比如它对TCDD(2,3,7,8-四氯代二苯并二恶英)的吸附性比一般活性碳吸附剂高1034倍(JAmChemSoc,2001,123:2058.)。开始CNTs用于从水中分离双酚,壬基酚和辛基酚(AnalBioanalChem,2003,75:2517),回收率可达102.8%。其他多壁碳纳米管的SPE应用于包括极性和离子性化合物的目标物,如磺脲类除草剂,头孢菌素,抗生素、磺胺类和酚类化合物,苯氧羧酸类除草剂。(AnalSci,2007,23:189 AnalChimActa,2007,594:81 MicrochimActa,2007,159:293)。  碳纳米管的一个有趣的特点是它们的表面可以进行化学改性,得到功能化具有独特性能的吸附剂。例如,有人在原单壁碳纳米管进行氧化,以便引入羧酸基团,可以萃取非甾体类抗炎药如布洛芬 从尿液萃取托美汀和吲哚美辛(JChromatogrA,2007,1159:203)。碳纳米管进行表面修饰使其具有高选择性,如吉首大学的张华斌等在多壁碳纳米管表面通过酰胺化反应接枝双键,以L-组氨酸为模板,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯交联剂,偶氮二异丁腈为引发剂,利用表面印迹技术,在多壁碳纳米管表面制备印迹聚合物(MWNTs-MIPs)。可选择性吸附红霉素从鸡组织制剂中提取红霉素回收率达95.8%。(AnalBioanalChem,2011,401:2855 JChromatogrB,2011,879:1617)。图2是多壁碳纳米管(a和c)和多壁碳纳米管的分子印迹聚合物(MWNTs-MIPs)(b和d)的扫描电镜(a和b)和透射电镜(c和d)图。图2多壁碳纳米管和和多壁碳纳米管的分子印迹聚合物的扫描电镜  另外他们(JChromatogrB,2011,879:1617)在Fe3O4磁性纳米粒子的表面涂渍了用羧基改性的多壁碳纳米管,并在表面接枝了牛血清白蛋白(BSA),使其具有印迹吸附功能(MIP)选择性吸附剂。  碳纳米管通过表面化学修饰,使之成为有选择性的吸附剂,成为近年研究的热点。表面修饰使碳纳米管物理和化学性能改性,这不仅扩大了其应用范围还可以提高其溶解性,这是由于提高了它和溶剂的色散作用力,可与大多数溶剂作用。表面化学修饰功能化过程通常包括酸化、氧化处理,提供了可作用的功能团,也减少了在碳纳米管的合成过程中造成的杂质。可以使用简单的或复杂的方法获得共价键合或非共价方式修饰碳纳米管。直接键合可通过碳纳米管壁形成的羧基可以直接与想要的功能团进行结合。另一方面,可通过范德华力、静电力、堆积作用、氢键和疏水相互作用形成非共价聚集体。两个或多个相互作用的结合,可提高了系统稳定性和选择性。表3是使用碳纳米管作样品前处理的应用实例。表3使用碳纳米管进行样品处理的应用分析物样品基体分析方法碳纳米管特点回收率/%文献1邻苯二甲酸酯水样GC–MS/MSMWCNTs,o.d.: 8nm,长:0.5–2μ m,比表面: 500m2/g86.6–100.2JChromatogrA,2014,1357:53–672邻苯二甲酸酯饮料,自来水,香水GC–MSMWCNTs,o.d.:10–20nm,长:5–15μ m64.6–125.6同上3邻苯二甲酸单酯人尿GC–MSMWCNTs,o.d.:30–60nm,长:3–5μ m,92.6–98.8同上4直链烷基苯磺酸盐湖水,河水,污水人工湿地HPLC–UVMWCNTs,o.d.:30–60nm,长:~20μ m,比表面:~60m2/g87.3–106.3同上5对羟基苯甲酸酯饮料HPLC–DADMWCNTs,o.d.:20–40nm,长:5–15μ m--同上6神经剂及其标记蒸馏水自来水,浑浊水GC–FPDMWCNTs,o.d.:7–15nm,,i.d.:3–6nm,长:0.5–200μ m55.5–96.3同上7(氟)喹诺酮类人血浆UPLC–UVMWCNTs,o.d.:110–170nm,长:5–9μ m70.4–100.2同上8氟喹诺酮类矿泉水,蜂蜜CLCMWCNTs,o.d.: 8nm,长:0.5–2μ m84.0–112同上9苯并[a]芘解决方案有机溶剂、水溶液MALDI–TOF–MSMWCNTs--同上10PAHs食用油GC–MSWCNTs,o.d.:10–20nm,长:5–15μ m87.8–122.3同上11PAHs活性炭/烧烤肉GC–MSMWCNTs,o.d.:30–60nm,长:5–3μ m81.3–96.7同上12雌激素,自来水,矿泉水,珠江水,蜂蜜EC–UVMWCNTs,o.d.: 8nm,:0.5–2μ m89.5–99.8同上13雌激素牛奶HPLC–FLDMWCNTs,o.d.:10–20nm,长:5–15μ m93.7–107.2同上14核酸相关蛋白质人细胞裂解物,肝癌BEL-7402细胞Nano-LC–MS/MSMWCNTs,o.d.:20–30nm--同上15核酸相关蛋白质人肝癌BEL-7402细胞Nano-LC–MS/MSMWCNTs,o.d.:20–30nm--同上16双酚A,双酚F和缩水甘油醚自来水,河水,雪水GC–MS/MSMWCNTs,i.d.:60–100nm88.5–115.1同上17Se(IV)自来水,湖水HG–AFSMWCNTs平均20nm96.3–102.3同上18Pb(II)废水、河水,大米,红茶,绿茶,洋葱,马铃薯FAASMWCNTs,o.d.:8–15nm,比表面:233m2/g97–104.5同上19六种邻苯二甲酸酯茶油GC-MSMWCNTs,o.d.:1–2nm,长:0.5–2μ m比表面:380m2/g86.4-111.7色谱,2014,32(7):735-74020114种农药残留烟草LC-MS/MSMWNCTs1-5:外径:<8->50nm,长度:10-30μ m,比表面:40-500m2/g93-114烟草科技,2015,48(5):47-5521金刚烷胺鸡肉LC-MS/MSMWNCTs1-5:外径:<8->50nm长度:10-30μ m,比表面:40-500m2/g97.8-103.6肉类研究,2014,28(4):14-182216种有机磷农药水样GC-FPDMWNCTs1-5:直径:20-40,nm长度:5-15μ m,比表面:40-500m2/g 75分柝化学,2009,37(10):1479-148323有机氯和除虫菊农药蔬菜GC-ECD多壁碳纳米管(L-MWNT-2040),20-40,nm长度:5-15μ m, 70色谱,2011,29(5):443-44924溶菌酶蛋清SDS-PAGE凝胶电泳MWNCTs:外径:40-60nm,96.4高等学校化学学报,2—8,29(5):902-90525有机磷农药水样GC-PFPD--70厦门大学学报(自然科学版),2004,43(4):531-53526有机磷农药大蒜方波伏安法--97.0-104.0分析试验室,2007,26(增刊)(10):216-21727酰胺类除草剂饮用水GC-MS/MS--82-93.5分析试验室,2009,28(增刊)(5):82-8428唑4种磺胺类药物环境水(HPLC—PDA己基-3.甲基咪唑六氟磷酸([C。MIM][PR])离子液体自聚集于磁性多壁碳纳米管上0.6-99.99分析化学,2015,43(5):669-67429多环芳烃河水GC-MS--60.4-89.3分析化学,2009,37,(增刊):D02530甲硝唑食品LC-UV--68-112分析测试学报。2010,29(8):807-8ll  (3)石墨烯作固相萃取吸附剂  石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构,它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbonnano-tube,CNT)或者堆垛成三维(3D)的石墨(graphite),因此石墨烯是构成其他石墨材料的基本单元。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,是目前最理想的二维纳米材料.。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π 键,π 电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料。自然,人们不会忘记把它用作吸附剂用于固相萃取。因为它有高比表面积,2630m2/g,高的吸附能力,良好的化学和热稳定性,高机械强度,价格便宜,网上戏称是白菜价。基于它的离域π -电子体系,它可以和带有苯环的化合物形成π -π 堆积相互作用,因而对这类化合物有很强的吸附作用。氧化石墨烯(GO),石墨烯的含氧基团,如羧基和羟基,可以化合物以共价键,静电或氢键结合。  基于石墨烯的吸附剂已用于含苯环化合物的预富集。2011年江桂斌院士的研究组利用石墨烯作吸附剂制成固相萃取柱,萃取水中的8种氯代酚,比较了几种吸附剂对8种氯代酚的回收率,见图3(JChromatogrA,2011,1218:197-204).  新加坡国立大学的HKLee等使用磺化石墨烯片作为吸附剂的固相微萃取,测定水中8种多环芳烃(JChromatogrA,2012,1233:16-21),萃取效率远高于C8和C18萃取剂,见图4.图4磺化石墨烯与C8和C18吸附效率的比较G1,G2—磺化石墨烯Nap—萘 Ace—苊 Flu—芴 Phe—菲 Ant—蒽 Flt—荧蒽 Pyr—芘表4是石墨烯用作固相萃取吸附剂的用例表4石墨烯用作固相萃取吸附剂的用例萃取剂被分析物样品基质检测回收率/%文献1石墨烯,Pb环境水和蔬菜火焰原子吸收光谱(FAAS)95.3–100.4AnalChimActa,2012,716:112–1182石墨烯谷胱甘肽人血浆荧光分光光度计92-108SpectrochimActa,2011,79:860–1863氧化石墨烯氯苯氧酸除草剂河水与海水CE93.3-102.4JChromatogrA,2013,1300:227–2354RGO-silica(氧化石墨烯衍生物-硅胶)氟喹诺酮自来水和河水LC-FLR72–118JChromatogrA,2015,1379:9–155磺化石墨烯多环芳烃河水GC-MS81.6-113.5JChromatogrA,2012,1233:16–21  3.碳用作萃取吸附剂的综述文献  表5是碳纳米材料用作吸附剂近几年发表的综述文献,读者可以了解到更多的有关碳纳米材料在固相萃取中的应用情况。  表5碳纳米材料用作吸附剂近几年发表的综述文献1碳纳米管在分析化学中的应用(引用273篇文献)SPE,SPME,膜,吸附棒J.Chromatogr.A,2014,1357:110–1462碳基吸附剂—碳纳米管(引用194篇文献)SPE,SPME,吸附棒JChromatogrA,2014,1357:53–673石墨烯基材料—制备及其在分析化学中的吸附应用(引用203篇文献)SPE,SPME,色谱固定相JChromatogrA,2014,1362:1–154石墨烯作吸附剂在分析化学中的应用SPE,SPME中的应用TrAC,2013,51:33-435碳纳米管在分离科学中的应用-综述(引用241篇文献)SPE,SPMELC,GC,CE,ECE,中的应用AnalChimActa,2012,734:1–306碳纳米管在分析科学中的应用(引用93篇文献)在分离、传感器、样品制备中的应用MicrochimActa,2012,179:1–167碳纳米管在分离科学中的应用研究进展(引用90篇文献)在SPE,SPME,LC,GC,CE中的应用色谱,2011,29(1):6-148碳纳米材料在分析化学中的应用(引用215篇文献)在样品制备、分离及检测中的应用AnalChimActa,2011,691:6-179碳纳米管用于原子吸收光谱分析金属的固相萃取吸附剂(引用140篇文献)固相萃取吸附剂AnalChimActa,2012,749:16-3510碳纳米管用于磁固相萃取吸附剂(引用116篇文献)固相萃取吸附剂AnalChimActa,2015,892:10-2611碳纳米管用于杀虫剂分析的吸附剂(引用53篇文献)固相萃取吸附剂Chemosphere,2011,83:1407–141312碳基吸着剂-碳纳米管(引用194篇文献)固相萃取吸附剂JChromatogrA,2014,1357:53–6713固相萃取新倾向——新吸附介质(引用153篇文献)固相萃取吸附剂TrAC,2016,77:23–4314色谱分析样品处理中的固相萃取吸附剂进展(引用214篇文献)固相萃取吸附剂TrAC,2014,59:26-4115固相萃取吸附剂中新材料及倾向(引用68篇文献)固相萃取吸附剂TrAC,2013,43:14-:316碳纳米管应用研究进展(引用47篇文献)固相萃取吸附剂化工进展,2006,25(7):750-75417磁纳米材料的功能化修饰及在环境分析中的应用研究(引用116篇文献)固相萃取吸附剂湖南大学邹瑩硕士论文,201418多壁碳纳米管固相萃取--高效液相色谱技术联用在有机污染物分析中的应用固相萃取吸附剂河南师范大学刘珂珂硕士论文,201219多壁碳纳米管在痕量元素分离富集中的应用固相萃取吸附剂华中师范大学丁琼硕士论文,200620基于碳纳米管表面分子印迹固相萃取材料研究(引用131篇文献)固相萃取吸附剂吉首大学张华斌硕士论文,201121生物功能化碳纳米管的合成、表征及分析应用(引用147篇文献)碳纳米管作为吸附剂的研究南开大学刘越博士论文,200922碳纳米材料在环境分析化学中的应用研究(引用107篇文献)固相萃取吸附剂河南师范大学汪卫东硕士论文,200623新型纳米材料与传统吸附材料性能比较研究(引用131篇文献)固相萃取吸附剂东南大学邓思维硕士论文,201424新型吸附材料在样品前处理技术中的应用研究(引用170篇文献)固相萃取碳纳米管西南大学汪卫东博士论文,200925修饰碳纳米管对砷的吸附及其应用研究固相萃取吸附剂西南大学李璐硕士论文,2009
  • 【医学应用】微萃取技术在呼吸生物标志物分析中的应用
    新冠肺炎还未走,支原体肺炎又起!许多企业已经开始纷纷入局呼吸道诊断赛道,尝试通过呼吸物分析能够诊断和监测相关疾病。而前不久,由德国PAS Technology转让到德祥旗下英诺德INNOTEG旗下的技术产品——Needle Trap动态针捕集技术及配套采样装置,在通过呼吸产物分析的诊断与检测应用中具备相当的优势。本文将分享英诺德INNOTEG Needle Trap动态针捕集技术及配套采样装置在临床领域的应用优势。呼吸生物标志物呼气挥发性有机物(VOCs)分析是一种新的医学科学方法,有望成为一种新型的无创诊断工具。呼吸取样与血液或组织分析相反,其无创,并且可以频繁重复检测,对患者和采集样本的工作人员没有任何风险。呼吸 VOCs 的来源可以是作为细胞或微生物的生化产物,也可以是外源污染物或先前吸收。 表1:在人类呼吸中检测到的典型挥发性有机化合物和建议的来源呼吸气体采样一般来说,呼吸周期的不同阶段物质浓度不同,彻 底控制取样是一项关键要求。由于对呼吸采样标准没有严格要求,许多研究使用的是整个呼气的采样(混合呼气)。这就导致了一个问题:混合呼吸会有污染物的影响!该如何解决?解决方案肺泡气中血液中挥发性物质的浓度比混合呼气样高出两倍,污染物的浓度也比混合呼气样低。因此,对呼出气的不同阶段进行取样,不仅可以提高呼气分析的可 靠性,还可以帮助确定呼气生物标志物的来源。 图1:通过二氧化碳示踪识别呼吸阶段和控制肺泡取样。I+II+III 期=呼气期(“混合呼气期”),III 期=肺泡/潮气期。PetCO2=潮汐末二氧化碳分压自动肺泡取样 图2:英诺德INNOTEG Sampling Case 自动采样器英诺德INNOTEG Sampling Case-B,一种新的呼吸气体自动控制取样装置,可在护理点进行直接肺泡取样,无需任何额外的取样或储存步骤。采样前,设置 CO2阈值(通常为 25 和 30 mmHg pCO2),以便区分呼吸周期的吸气期和肺泡期。一旦超过阈值,瓣膜就会打开,肺泡气体可采入一种带填料的捕集针被吸附——英诺德INNOTEG Needletrap 动态捕集针。采样原理图如下,这样可以准确地识别呼吸周期的肺泡期和吸气期: 图3:二氧化碳自动控制动态针捕集微萃取呼吸采样装置结论内源性呼吸生物标志物的浓度变化与肺炎、急性呼吸窘迫综合征(ARDS)等急性肺疾病和哮喘、慢性阻塞性肺疾病(COPD)等慢性疾病有关,因此可以帮助诊断和监测护理。由于细菌在生长过程中会产生VOCs,甚至可能通过呼吸 VOCs识别传染源。NT具备更有针对性的临床应用应用英诺德INNOTEG Needle Trap(动态针捕集微萃取),由于样品体积小以及水的影响小,快速可控的样品制备有利于临床的应用。采样和解吸程序的自动化以及采样稳定性的提高,增强了英诺德INNOTEG Needle Trap作为患者和分析仪器之间的通用接口的潜力,用于筛选以及在临床环境中的有针对性的应用。英诺德INNOTEG 气体采样器Sampling Case 英诺德INNOTEGSampling Case气体采样器是一种采集VOCs样品的便携式自动采样装置,与Needle Trap动态捕集针技术或热吸附管联用,用于挥发性有机物VOCs分析。用户通过设定采样体积,采样流速即可实现自动采集气体样品。 英诺德INNOTEG Sampling Case 气体采样器和Needle Trap动态捕集针相连,采样器自动采集气体样品中的挥发性有机物到动态捕集针或热脱附管中。应用于环境,食品,植物,临床呼吸等不同行业VOCs采样,不仅可用于现场采样和临床采样,还可以便携式带到野外采样。产品优势:1. 便携式设计:可实现实验室和野外采样;2. 取样量:10ml-10L;3. 电子MFC,流速范围: 1-50ml/min或5-250ml/min;4. 控制器:带液晶屏的控制器单元;5. 电源:LiPo-lon锂电池,24V直流,10Ah;6. 充电:110-230V AC,50/60 HZ,2A;7. 多种型号可选,SC-XS和SC-S型号用于常规采集;SC-L型号用于常规采样、静态顶空采样;SC-XL型号用于常规采样、静态/动态顶空采样、外接气源压力控制采样;SC-B型号专门用于呼吸肺泡气采样。型号: 英诺德INNOTEG Needle Trap动态针捕集技术英诺德INNOTEG 新型的动态针捕集装置(Needle Trap),把吸附剂填充在针尖内,可装填多达三种不同商用固体填料,是一种新型的无溶剂微萃取技术,集采样、萃取、浓缩、进样于一体,适于痕量挥发性及半挥发性有机物分析。英诺德INNOTEG Needle Trap动态针捕集技术,为气态基质中的痕量分析提供了一种新的样品制备方式。通过增加吸附剂的量以及复合不同种类的吸附剂在增加吸附能力,尤其是对小分子的吸附。利用样品量少和内部膨胀气流热解析的技术进行快速解析而无需冷凝装置,有利于痕量级别的气体分析,其灵敏度高,检出限低。产品优势:1. 英诺德INNOTEG Needle Trap技术易于操作使用,便捷,可用于现场采样的技术;2. 灵敏度高,填有多种吸附剂的动态针捕集装置分析ppb/ppt级低浓度范围挥发性有机物;3. 英诺德INNOTEG Needle Trap的体积小,需要的样品量少,热解析速率只需30s,一方面不需要冷阱聚焦聚焦来解吸样品并且不会造成拖尾峰,另一方面,投入成本和使用成本大大降低;4. 样品采集和存储稳定性强,针头两端有PTFE堵头密封,易于保存,运输方便。规格:Luer-Lock连接头长度:在50mm至70mm之间直径:三种尺寸可选0.7mm/0.4mm;22号规格 (0.72mm/0.4mm) ;23号规格 (0.64mm/0.35mm) ;针尖形式:圆锥形(侧孔,钝面,或根据需求定制)填料:可根据目标组分选择填充不同种类的吸附剂,增大吸附容量和吸附范围如果您对上述产品感兴趣,欢迎随时联系德祥科技。德祥科技德祥集团成立于1992年,总部位于香港特别行政区。作为科学仪器供应商和服务商,德祥服务于大中华区和亚太地区,每年都为数以千计的客户提供全套解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。作为深耕科学仪器行业的供应商与服务商,德祥现已服务于政府、高校、科研、制药、检测、食品、医疗、工业、环保、石化以及商业实验室等众多领域。公司目前在亚太地区设有13个办事处和销售网点,3个维修中心和1个样机实验室。2009至2021年间,德祥先后荣获了多个奖项。我们始终秉承诚信经营的理念,致力于成为更好的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德INNOTEG还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。
  • 汗诺精密增力电动搅拌器现货促销,欢迎抢购
    上海汗诺仪器有限公司专业仪器设备生产商,汗诺仪器研发生产的精密增力电动搅拌器,功率小动力强,噪音低,寿命长,众多科研机构院校选择使用汗诺电动搅拌器,欢迎致电咨询,现现货特价供应,时间有限,速速抢购:18621653239 薄利明 电动搅拌器是在大功率电动搅拌的基础上改进而成,设有机械定时,搅拌棒选材不锈钢,有优越的抗腐蚀性能,操作简便,运转平衡,无级调速,小而强有力的马达能在较广的速度范围内对高粘度的液体溶液进行稳定精密的搅拌。转速有数字显示,准确、直观。特别适合搅拌大体积的样品,是石油、化工、冶金、纺织、食品、医药卫生、环保、生化实验室、分析室、教育科研的必备工具。 电动搅拌器JJ-40W功率:40W定时范围0~120分调速范围0~3000转/分580元JJ-60W功率:60W定时范围0~120分调速范围0~3000转/分620元JJ-90W功率:90W定时范围0~120分调速范围0~3000转/分680元JJ-100W功率:100W定时范围0~120分调速范围0~3000转/分800元JJ-160W功率:160W定时范围0~120分调速范围0~3000转/分1560元JJ-200W功率:200W定时范围0~120分调速范围0~3000转/分1900元JJ-300W功率:300W定时范围0~120分调速范围0~3000转/分2300元主要特点:【1】采用低压直流无刷电机驱动,无火花,力矩大,效力高,调速性好。【2】搅拌棒和叶片为优质不锈钢材料,耐腐蚀。【2】搅拌轴最大力矩: 0.7Nm。【4】适用介质粘度:0~100000mpas。
  • 第十一届慕尼黑上海分析生化展展商速递 -- 哲斯泰(上海)贸易有限公司
    亚洲重要的分析、实验室技术和生化领域专业博览会——第十一届慕尼黑上海分析生化展(analytica China 2022)即将于2023年7月11-13日在国家会展中心(上海)8.2H、1.2H、2.2H拉开帷幕。哲斯泰(上海)贸易有限公司2.2E211GERSTEL LabWorks平台是真正通用的GC-MS样品进样系统,为解决分析挑战提供了全面的能力支撑和灵活性。GERSTEL LabWorks 平台LabWorks 平台提供10种自动进样技术,全部由GERSTEL Maestro软件控制,该软件与安捷伦化学工作站、MassHunte r和 OpenLab 软件无缝插入,亦可以独立运行。无需为每种技术使用不同的仪器。液体、顶空和热解吸都包括在内,无需额外的工作台空间。 Labworks 可以实现的10大进样技术LabWorks 平台采用 TrueTrap(无选择性捕集)技术,无需阀门和传输线即可提供无歧视的化合物捕集,是测定未知化合物(非靶向分析)的前提条件。该技术可与顶空、热脱附、SPME、SPME-Arrow、SBSE和TF-SPME结合使用,实现真正的化合物富集,和检测限。LabWorks 平台还具有样品制备功能,例如内标添加、样品稀释、衍生化和校准曲线的制备。此平台易于扩展,可以执行20多种样品引入和制备技术。对于希望快速解决应用挑战的研究人员来说,LabWorks 平台是可用的强大的系统。GERSTEL LabWorks 平台提供的技术自动化进样技术:液体进样大体积进样顶空进样固相微萃取SPME (包括连续顶空和SPME萃取)直接热萃取吸附管微型瓶萃取液体样品搅拌棒吸附萃取SBSE薄膜固相微萃取 TF-SPME薄膜固相微萃取+搅拌棒吸附萃取 TF-SPME-SBSE样品自动化制备技术:加标样稀释衍生自动制作标准曲线加热、振荡LabWorks 平台的主要特点一个平台拥有10个进样技术 无选择捕集技术,只需一个捕集阱应对所有应用对目标分析物的分析无需液氮制冷剂可实现真正的顶空、固相微萃取、热脱附、搅拌棒吸附萃取、薄膜固相微萃取以及动态顶空技术无阀无传输线-准确分析未知物分的保证轻松升级额外10个样品进样技术, 如动态顶空,热裂解等轻松升级成高阶分析技术,如 ODP, 二维 GC 等GC 进样口在各大技术的切换之间无需改变无需格外的实验室空间Maestro 软件可与 Agilent 软件界面无缝插入,亦可以独立运行LabWorks 平台所包含的硬件设备MPS robotic 自动进样器——自动化所有样品引入技术以及样品制备功能冷进样系统 (CIS4) - PTV 型进样口,也可用作热解吸的通用捕集冷阱热脱附单元 (TDU2) - 为所有类型的样品基质提供分析物的引入技术Labworks平台核心产品之大体积冷进样口CIS4CIS4 是 GC-MS 分析中的万能进样口,拥有特有的无隔垫进样头技术,可实现分流/不分流进样、大体积进样、程序升温进样、柱上进样,并且作为 LabWorks 平台中热脱附的冷阱,实现二次热脱附。CIS4 的程序升温进样,可以消除进样过程中的化合物歧视和降解。无隔垫进样头 (SLH) 可防止因隔垫流失或隔垫颗粒进入进样口衬管而造成的污染,即使在数百次进样后也能保持柱头压力。“无选择性捕集”冷阱技术结合了正向吹扫、低温冷阱和惰性的捕集表面,以将分析物100%转移到 GC 色谱柱上而不会造成化合物损失、歧视或降解。“管套管”技术无需在流路中使用阀门或传输线,从而实现分析完整性,尤其是在执行非靶向分析时。Labworks 平台核心产品之热脱附单元 TDU2TDU2 热脱附单元可以用于所有样品基质(气体、液体、固体和吸附管)以及 SBSE 和 TF-SPME 的热解吸。该系统使用 CIS 入口作为冷阱,保证分析结果的全面性,特别是对于非靶向的化合物的分析。该系统在 TDU 和 CIS 之间使用独特的“管套管”联接,提供了一个完全惰性的流路,无需阀门或传输线,很大程度上简化了系统的配置并提供了优秀的稳健性。TDU2 系统具有先进的温度和气动控制功能,在温度和气流编程方面提供灵活性,以实现优秀的分析条件;所有这些都使用 GERSTEL MAESTRO 软件进行控制,该软件使用简单易用的图形用户界面。PP会员卡来了!analytica China 2022扫描左侧二维码进行观众预登记就有机会获得PP会员卡!
  • 中国固相萃取仪市场研究报告(2017版)
    p  固相萃取技术(SOILD PHASE EXTRACTION,简称SPE)于八十年代在国外兴起,它取代了传统的液-液萃取技术。目前,固相萃取技术在样品前处理中所起的作用也显得日益重要,已被广泛应用于医药、血液、检验检疫、环保、水质、食品领域中的样品前处理。同时,人们也开始使用固相萃取技术对复杂的生物样品基质进行纯化。此外,随着技术的成熟,全自动固相萃取仪的使用也越来越广泛。/pp  span style="color: rgb(0, 176, 240) "strong固相萃取技术现状/strong/span/pp  固相萃取技术基本原理和液相色谱相同,但两者最终需要达到的目的不一样。固相萃取技术纯化的原理为:在萃取过程中,固定相对分析物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床。通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。/pp  相比较高效液相色谱需要在短时间内将各化合物分离并保持好的峰形,固相萃取则是要从复杂的基液中分离出所需要的化合物并将其浓缩,以便进一步的分析。因此,一般固相萃取柱填料的粒径比高效液相色谱柱填料的粒径要大,而且固相萃取柱填料的形状是不规则的,这样可以增加接触样品的表面积。目前用的最广泛的是键合硅胶柱和聚合树脂柱。/pp  span style="color: rgb(0, 176, 240) "strong固相萃取仪市场及相关应用/strong/span/pp  固相萃取技术已经越来越广泛地被应用在各种实验室。然而,大部分用户仍在用手动固相萃取。手动固相萃取一般是采用多个固相萃取柱(SPE小柱)一次同时进行多个样品萃取。这就要求操作人员必须全神贯注,否则容易发生添加顺序混乱,导致样品作废。其次,采用手动固相萃取容易造成样品回收率重现性较差。在固相萃取过程中,样品及洗脱液通过固相萃取柱的速度会直接影响最后的回收率及重现性。而在手工操作过程中,控制流速十分困难的。因此其重现性很难保证。此外,采用手动固相萃取所需时间较长。/pp  自动固相萃取仪可以很好地弥补手动固相萃取仪的缺陷。首先,自动固相萃取仪严格按照系统设定程序进行,不会出现手工操作的错误。其次,自动固相萃取仪能够准确控制液体流速,保证实验结果的重现性。此外,自动固相萃取仪能够运行多个不同的程序,建立的方法便于推广及建立标准方法。因此,自动固相萃取仪不仅能够降低实验人员的劳动强度,提高效率,更重要的是能够保证结果的可靠性及重现性。目前国内许多实验室要求按照GLP标准进行管理,这就要求所有的原始实验数据都必须完整地保存,而自动固相萃取仪可以很好地保存已建立的方法及实验数据,从而方便了按照GLP标准的管理。/pp  全自动固相萃取仪按处理样品量的不同可分为:小体积全自动固相萃取仪和大体积全自动固相萃取仪。小体积全自动固相萃取仪针对的样品主要为进样量在50ml以下的食品、药品、血液等 大体积全自动固相萃取仪主要为进样量在200ml量以上的水样。全自动固相萃取仪按萃取载体可分为:柱萃取全自动固相萃取仪和膜萃取全自动固相萃取仪,其中,膜萃取全自动固相萃取仪主要为大体积水样而设计的,膜萃取速度快是其优点,而且不容易堵塞,但是单个样品的处理成本较柱萃取高。/pp  目前国内有10余家在做全自动固相萃取仪。据统计,全自动固相萃取仪国内年销售额在3~4亿元。从市场总体情况来看,整个固相萃取仪年销售量在***台左右(包括手动、半自动和全自动),其中全自动固相萃取仪的年销售量在***台左右。产值排名靠前的部分全自动固相萃取仪生产厂家主要有:北京普立泰科仪器有限公司、天津博纳艾杰尔科技有限公司(已被SCIEX公司收购)、上海屹尧仪器科技发展有限公司、济南海能仪器股份有限公司、美国Horizon Technology公司、吉尔森公司、Biotage AB、德国lctech公司、莱伯泰科有限公司和睿科仪器有限公司等。就国产技术方面来看,相比较进口品牌的全自动固相萃取仪,国产品牌全自动固相萃取仪近年来的发展速度较快,基本掌握了全自动固相萃取仪生产技术,但也存在一些差距。strong(span style="color: rgb(0, 176, 240) "不同品牌之间的技术和价格比较及市场占有率分布详见:/span/stronga href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target="_blank" title="" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong中国固相萃取仪市场研究报告(2017版)/strong/span/aspan style="color: rgb(255, 0, 0) "strong)/strong/span/pp  span style="color: rgb(0, 176, 240) "strong受调研用户单位性质及应用领域分布/strong/span/pp  《中国固相萃取仪市场研究报告(2017版)》得到了广大用户、企业以及业内专家的大力支持。其中,共有380余位来自食品、环境、制药、第三方检测、科研机构等领域的专家和实验室用户参与了此次固相萃取仪调研。根据统计,参与本次调研的用户当中,检测/质控人员所占比例最高,为67% 接下来为科研人员和单位管理人员,所占比例分别为24%和9%。/pp  从参与本次抽样调研的固相萃取仪用户的分布领域来看,用户集中在食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生等领域,其中食品/饮料领域中固相萃取仪用户的比例最高,达到30%,其次是环保/水工业领域,所占比例为28%。食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生领域的用户合计占整个用户的比例为85%。/pp  span style="color: rgb(0, 176, 240) "strong受调查用户购买全自动固相萃取仪价格分布/strong/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/insimg/83569614-c7ba-40d7-861f-7b5533f6c0d6.jpg" title="QQ图片1.png"//pp style="text-align: center "strong图4.2 受调查用户购买全自动固相萃取仪价格统计分布/strong/pp style="text-align: right "  (数据来源:仪器信息网抽样调研)/pp  从图中可以看出,受调查用户购买的全自动固相萃取仪价格集中在10万-40万之间,其中全自动固相萃取仪采购价格在20万-30万之间的受调查用户,占到了总调查人数的20%。此外,6%的仪器用户全自动固相萃取仪的购买价格在60万以上。/pp  span style="color: rgb(0, 176, 240) "strong2016年全自动固相萃取仪采购招标情况分布/strong/span/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201710/insimg/d80d51a1-e303-4061-8742-5a397bb3a96e.jpg" title="QQ图片2.png"//pp style="text-align: center "strong图4.3 2016年全自动固相萃取仪采购招标数量月分布(单位:台)/strong/pp style="text-align: right "  (数据来源:互联网)/pp strong 注:1、数据统计从2016年1月1日到2016年12月31日 2、采购数据来源于互联网公开发布的相关招中标信息。/strong/pp  通过对互联网公开发布的2016年度全自动固相萃取仪的招投标信息进行梳理汇总发现,目前市场对全自动固相萃取仪的需求呈现周期性波动。但从整体趋势来看,产品需求成规律性变化趋势strong(span style="color: rgb(0, 176, 240) "具体变化规律及相关政策解读详见:/span/strongspan style="text-decoration: none "stronga href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target="_blank" title=""span style="text-decoration: none color: rgb(255, 0, 0) "中国固相萃取仪市场研究报告(2017版)/span/a/strong/spanstrong)/strong/pp  span style="color: rgb(0, 176, 240) "strong2016年全自动固相萃取仪采购区域分布/strong/span/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201710/insimg/e2c9a604-8755-4da3-8cc8-f5b683cfff77.jpg" title="QQ图片20171025143337.png"//strong/pp style="text-align: center "strong图4.5 2016年全自动固相萃取仪采购区域分布/strong/pp style="text-align: right "  (数据来源:互联网)/pp  注:1、数据统计从2016年1月1日至2016年12月31日 2、采购数量来源于互联网公开发布的相关招中标信息,此处仅统计中标结果,废标和谈判中数据未列入 3、区域分布图通过第三方软件“地图慧”绘制所得。/pp  2016年,通过公开招标采购全固相萃取仪的单位共涉及28个省份/直辖市。其中以西南、华南和华东地区较为密集。strong(/strongspan style="color: rgb(0, 176, 240) "strong各省份全自动固相萃取仪具体需求状况及采购单位详情请见:/strong/spana href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target="_blank" title="" style="text-decoration: underline "span style="color: rgb(255, 0, 0) "strong中国固相萃取仪市场研究报告(2017版)/strong/span/astrong)/strong。/pp style="text-align: center "span style="color: rgb(0, 176, 240) "strong《中国固相萃取仪市场研究报告(2017版)》/strong/span/pp  strong目录/strong/pp  strong第1章、 固相萃取仪技术与市场概述. 9/strong/pp  1.1 固相萃取仪技术与市场简介. 9/pp  1.2全自动固相萃取仪市场部分主流仪器情况统计. 11/pp  1.3 全自动固相萃取仪市场部分主流仪器价格区间统计. 12/pp  1.4全自动固相萃取仪市场部分主流厂商情况分析. 13/pp strong 第2章、 固相萃取仪技术现状及发展趋势. 15/strong/pp  2.1固相萃取仪技术特点与优势. 15/pp  2.2部分主流全自动固相萃取仪主要性能参数对比. 17/pp  2.3 当前产品缺陷及用户关注点. 20/pp  strong第3章、 固相萃取仪主要应用领域与目标用户分析. 22/strong/pp  3.1 受调查用户所在单位性质统计. 22/pp  3.2 受调查用户所在领域统计. 22/pp  3.3 受调查用户固相萃取仪使用特点分析. 23/pp  3.4全自动固相萃取仪主要应用领域分析. 24/pp  strong第4章、 全自动固相萃取仪市场保有量/市场规模分析. 28/strong/pp  4.1全自动固相萃取仪主流品牌占有率. 28/pp  4.2受调查用户购买全自动固相萃取仪价格分析. 28/pp  4.3全自动固相萃取仪市场容量/年销售量. 29/pp  4.4 2016年全自动固相萃取仪采购招标情况分析. 31/pp  4.5固相萃取仪部分主要用户单位分布情况. 33/pp  strong第5章、 总结. 35/strong/pp  strong附录:全自动固相萃取仪部分潜在用户单位列表. 37/strong/ppbr//pp style="text-align: center "strong更多报告内容请阅读:/strong/pp class="f18" style="margin: 0px padding: 0px font-size: 18px color: rgb(60, 84, 151) font-family: 宋体, ' Arial Narrow' text-align: -webkit-center white-space: normal background-color: rgb(255, 255, 255) "a href="http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target="_blank" title="" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong中国固相萃取仪市场研究报告(2017版)/strong/span/a/pp style="text-align: center "strong 【咨询热线】:010-51654077-8042/strong/pp更多相关报告内容:/pp  · 2016食品行业政策解读及相关分析仪器市场动态研究报告/pp  · 2016年制药行业市场发展及对仪器市场影响分析报告/pp  · 2016年分析仪器中标信息统计分析报告/pp  · 2016年中国环境监测市场分析及未来市场预测报告/pp  · 中国气质联用仪市场调研报告(2016版)/pp  · 中国气相色谱仪市场调研报告(2016版)/pp  · 中国在线挥发性有机物分析仪市场调研报告(2016版)/pp  · 2016年第三季度分析仪器中标信息分析报告/pp  · 中国傅立叶变换中红外光谱仪市场调研报告(2016版)/p
  • 第5届SBSE技术峰会暨SBSE20周年庆典在巴黎成功举办
    本月23号,24号,第5届SBSE技术峰会在法国巴黎成功举办。 本次会议同时也为庆祝搅拌棒吸附萃取技术SBSE发明20周年。来自全世界各地的知名学者,应用化学师们,齐聚一堂,共同分享SBSE技术在环境,材料,食品,医疗健康等领域的最新应用以及先进的气相色谱质谱技术,并且介绍了哲斯泰GERSTEL的自动化样品制备技术在分析领域中带来的优势。作为SBSE技术的发明者,比利时根特大学的Pat Sandra教授做了“SBSE搅拌棒吸附萃取技术20年回顾与展望”的报告。Pat Sandra是分离性科学领域的杰出人物,著有500多篇学术论文,获得许多奖项。1986年他在比利时建立了“色谱研究所R.I.C.”,是色谱和质谱研究和教学的卓越中心。RIC也是GERSTEL哲斯泰公司在比利时和法国的唯一代理商。1999年,Pat Sandra教授发明了SBSE技术后,同年由哲斯泰公司将其产品商品化,命名为Twister(磁力搅拌棒)。至今为止全世界发表了超过2000篇学术文献。此次会议上,由来自全世界各地的著名高校,知名企业,和研究所的科学家们做了精彩的报告。他们的共同点:都是哲斯泰技术的忠实用户。让我们一起来分享一下会议上精彩的内容。在食品领域的报告:比利时的BARRY CALLEBAUT百乐嘉利宝,带来的“可可和巧克力的香气分析”。法国的BEL贝勒集团,分享“探索不同的有效萃取技术以获得不同种类奶酪的香气特征”。南非大学的化学系教授,做了“SBSE在微酿酒和传统非洲啤酒中的应用”,塔夫茨大学(Tufts University)的化学系教授,呈现了“植物-气候相互作用对茶叶代谢组的影响”的报告。在香精香料领域的报告:来自新加坡芬美意的香水部门分析服务高级经理,带来了“使用1维2维-SBSE-GCMS技术分析香气”在环境领域的报告:英国ALS有限公司,探讨了“自动样品制备和高灵敏度的GC-MS对环境水体中SVOC和农药分析的优势”,法国威立雅Veolia研发和创新公司,分享了“碳氢化合物指数:一种完全小型化和自动化的技术”,哲斯泰GERSTEL的应用化学家,为大家介绍了“使用SBSE-MS/MS检测欧盟水框架指令中的重要有机污染物进行超痕量分析” 此方法得到了土耳其科学技术研究委员会的验证,做了“SBSE分析地表水中110中有机污染物的验证”的演讲。在医疗健康领域的报告:法国列日大学,分享了“二维气相色谱-飞行时间质谱在经活体和活体内对肺炎机制研究的应用”, 色谱研究所 R.I.C“ 评价不同吸附采样技术在研究人体VOC排放中的应用”在材料领域的报告:比利时的Certech测试技术服务公司,带来“使用热脱附-二维气相色谱-高分辨率飞行时间质谱来鉴定复杂聚合物基质中的气味化合物”关于绿色自动化样品前处理技术的报告:色谱研究所RIC的科学家们,介绍了“化学分析中灵活的样品制备工具:动态顶空DHS技术”,以及“多功能全自动样品前处理平台MPS robotic的新特点和优点"SBSE技术发明20年以来,至今为止全世界范围内已发表了超过2000篇学术文献。应用领域非常广泛。SBSE原理类似于固相微萃取SPME,是一种无溶剂的用于萃取和浓缩痕量有机物的绿色萃取技术。但是SBSE拥有更多的萃取吸附层,是SPME的50到250倍,进而在相同的萃取条件下,回收率可以达到SPME的100-1000倍,大大提高了检测的灵敏度。具有简单,高效,快速,重现性好,绿色无溶剂等优点。同一个Twister可以重复利用超过200次以上。SBSE技术的成功,我们有目共睹。哲斯泰GERSTEL除了拥有SBSE技术外,还有更多的绿色高效的样品前处理技术。当色谱和质谱技术日益提高,唯有同时提高样品前处理的效率和回收率,才能使测试结果的整体灵敏度得到相应的展现。俗话说“好马配好鞍”,再好的检测仪器,也需要优秀的前处理与之配合。这次第5届SBSE技术峰会的成功举行,预示着绿色萃取技术和自动化样品前处理技术,是整个分析领域的趋势,将继续受到行业内的推崇。有关会议的具体介绍,日程,以及历届会议的演讲内容和PPT,大家可以点击会议的官方网页获取。我们的客户介绍BARRY CALLEBAUT百乐嘉利宝,是世界上最大的可可生产商。在中国,为联合利华生产梦龙雪糕的巧克力脆皮,并为麦当劳出售的巧克力羊角面包提供馅料。是雀巢,好时,吉百利的长期供货商。其亚太区总部设在中国苏州,并设有亚太区研发中心,工厂和全球第八家巧克力学院。BEL集团是一家以法国为中心的跨国奶酪营销公司。成立于1865年法国,总部位于巴黎。历经一百多年的发展,贝勒集团现已成为全球领先的奶酪集团。自公司的创始人Jules Bel起,Bel家族一直坚持不懈打造顶尖优质奶酪品牌,在全球享有盛誉。南非大学是南非的一所大学,为非洲最大的大学系统。该大学吸引了南非三分之一的高等教育学生就读。通过各大学和附属机构,南非大学拥有超过30万名学生,其中包括来自全球130个国家的国际学生,使其成为世界上最大的大学之一。塔夫茨大学是一所美国著名大学,也是25所新常春藤成员之一。塔夫茨大学拥有美国最古老和最富盛名的国际关系研究生院之一:弗莱彻法律与外交学院。其著名的生物医学研究中心塔夫茨医学中心 (Tufts Medical Center) 是塔夫茨大学医学院的主要教学医院。更有在营养学上名声在外的弗里德曼(Friedman School) 营养科学与政策学院,是学术界的标杆之一。总部位于瑞士日内瓦的Firmenich芬美意公司是一家具有100多年历史的国际化的私营公司,亦是全球最大的从事香精原料研究和生产的公司,无论是技术力量还是销售额(28亿瑞士法郎)均在世界同行业中名列前茅。ALS有限公司(ASX:ALQ)是一家总部位于澳大利亚布里斯班的公司,在65个国家的370多个站点提供测试、检验、认证和验证服务。2012年,该公司入选昆士兰商界领袖名人堂。威立雅集团设计并实施水、废弃物及能源管理领域的解决方案,支持城镇和企业的可持续发展。2018年,威立雅集团为1亿居民提供饮用水,为6100万居民提供废水处理服务,生产能源近5400万兆瓦时,回收再利用废弃物3000万吨。土耳其科学技术研究委员会是土耳其的一个国家机构,其既定目标是制定“科学、技术和创新”政策,支持和开展研究与开发,以及在国家“科技文化建设中发挥主导作用”。成立于1963年,是一个由科学委员会管理的自治公共机构。列日大学成立于1817年,是第一所由国家资助的公立法语国际性大学,是欧洲最早成立的、公立高等学府之一。位于比利时的法语区首府——第三大城市列日市。近两百多年来,已发展成为一所学科齐全、以先进严谨的学术教育和一流科研水平而著称的世界一流综合性大学。在校学生17000名。列日大学和德国亚琛工业大学以及荷兰马斯特里赫特大学都是ALMA大学联盟的一员。色谱研究所(R.I.C.)由Pat Sandra教授于1986年创立,为行业、私人和政府实验室提供分析服务和关键解决方案。自成立以来,研究活动和方法开发项目已在广泛的应用领域,如(生物)化学、生物技术、石油化学、临床化学、食品、香料和天然产物、高分子科学、药学、毒理学、环境化学和生命科学。与这些服务平行的是,R.I.C.提供全面的分析解决方案,并参与仪器创新以及与制造商的合作。Certech是一家研究和开发合作伙伴,为从事化学相关活动的公司提供分析和技术服务:聚合物;制药、医疗和保健;环境和能源;汽车和运输;包装;建筑。我们的使命是根据可持续化学和循环经济的原则,为产品和工艺的改进或发展提供创新的解决方案,以满足工业和社会的需要。一个由40名在材料、工艺和环境领域高素质、经验丰富、反应灵敏、以客户为中心的员工组成的多学科团队。
  • 实验室选择搅拌器的技巧和窍门
    了解搅拌器的应用和velp提供的实验室设备解决方案,满足您的需求和实验室要求。实验室中的一些应用需要搅拌,有许多不同类型的实验室设备可用于执行搅拌和混合任务。样品和溶液制备、水/油浴制备、溶解缓冲剂和试剂、分散、乳化、均质。这些只是食品和饮料、化妆品、制药、化工、油漆和涂料、胶水和粘合剂、塑料/聚合物和建筑行业的实验室的各种搅拌器所支持的一些应用。哪一款适合您的应用和实验室?选择适当的搅拌设备时涉及的变量‍粘度粘度是衡量流体因分子间的内部摩擦而产生的流动或形状变化的阻力,它与搅拌介质所需的努力有关。像水一样的样品可以通过磁力搅拌器进行搅拌,而高粘度的混合则需要使用顶置搅拌器。这对于样品的粘度随着搅拌的进行而增加的应用来说尤其如此,如乳液或聚合反应。要搅拌的样品粘度越大,需要的扭矩就越大。在选择合适的顶置式搅拌器时,粘度和扭矩规格至关重要。体积磁力搅拌器非常适合于搅拌类似于水的体积,标准台式型号可达到20升,更高的体积可达到50升。而顶置式搅拌器能够搅拌到100升。速度磁力搅拌器的速度从30rpm到1700rpm不等,以支持具有挑战性的化学和制药应用。然而,最高的速度有时可能会导致脱钩和不满意的搅拌性能。当需要非常低或非常高的速度来搅拌样品时,顶置式搅拌器提供了更多的选择,因为其速度设置范围从6到2000rpm。温度一些型号的磁力搅拌器具有一个热板,能够在混合过程中对样品进行加热。顶置式搅拌器需要单独的设备进行加热。基于应用的方法:为您的需求提供全面搅拌解决方案磁力搅拌器和热板搅拌器执行低剪切力混合任务,并依靠磁力搅拌棒产生的涡流来混合液体,而顶置式搅拌器配有各种搅拌轴,支持低剪切力和高剪切力搅拌以及不同的混合运动,无论有无涡流。意味着大力混合乳剂和搅拌中等或高粘性物质(如聚合物)的应用,可以得到顶置式搅拌器的很好支持。这种设备适合于复制生产混合的条件,以测试打算用于更大生产规模的样品。磁力搅拌器和加热磁力搅拌器通常在实验室中用于执行一些需要精确和持续控制介质温度和搅拌速度的应用。例如,热板搅拌器是适合油浴和化学合成应用的解决方案。通过一个探针,在样品内测量温度,增加对反应的控制,确保设备在必要时提供加热,避免过热。半球形碗增加了圆底烧瓶的表面,提高了传热效率。附件使您可以根据不同的任务和应用来定制您的搅拌设备,使之与众不同。大容量磁力搅拌器是为低粘度的实验室搅拌应用而设计的,特别是在制药行业。高容量制剂缓冲溶液的制备缓冲液制备和wfi(注射用水),特别是在下游部门疫苗制造涡旋混合器通常用于混合小瓶液体、检测试剂或实验样品和稀释剂,利用橡胶杯的轨道运动。velp制造了广泛的解决方案,以满足任何要求,甚至是最多样化和最具挑战性的要求。涡流混合器磁力搅拌器和高容量磁力搅拌器热板搅拌器顶置式搅拌器
  • 食博会上“海诚食品安全检测系列产品”备受关注
    2011第六届中日韩国际食品博览会”于6月3日-5日在烟台国际博览中心举行,中国、日本、韩国两千多家参展商集中展出了名优食品和机械设备,作为食品安全检测分析技术和仪器等领域领军企业的海诚高科技有限公司应邀参加了此次展会。 展会上,海诚公司展出了其研发的食品安全检测分析仪器产品,其中包括MSE-1 型无溶剂高效萃取仪、FNLY-10型便携式拉曼光谱仪、NCY-40型浓缩氮吹仪、SPE-16Ⅰ型-固相萃取仪、PDMS固相微萃取吸附搅拌棒、PPESK固相微萃取吸附搅拌棒和食品快速检测试剂盒系列。     技术人员向客户演示拉曼光谱仪的使用方法     FNLY-10型便携式拉曼光谱仪备受关注     技术人员介绍食品快速检测试剂盒的多种用途     农药残毒检测仪得到客户的赞赏
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制