当前位置: 仪器信息网 > 行业主题 > >

酵母细胞壁

仪器信息网酵母细胞壁专题为您整合酵母细胞壁相关的最新文章,在酵母细胞壁专题,您不仅可以免费浏览酵母细胞壁的资讯, 同时您还可以浏览酵母细胞壁的相关资料、解决方案,参与社区酵母细胞壁话题讨论。

酵母细胞壁相关的资讯

  • 酵母粉、酵母提取物、酵母浸粉和酵母浸膏的区别您知道吗?
    在给许多客户介绍酵母浸粉时,很多人都会将其与酵母粉混为一谈,经常会问:“酵母浸粉不就是酵母粉吗?”“酵母浸膏和酵母浸粉哪个好呢?” 首先我们了解一下什么是酵母粉、酵母浸粉和酵母浸膏吧! 酵母粉含义:一般是指灭活的酵母,产品成分主要是失去活性的酵母菌体,营养成分包括仍然包裹在菌体内部的粗蛋白、胞壁多糖以及丰富的维生素、生长素、微量元素等。 酵母粉分类:分糖蜜酵母粉与啤酒渣酵母粉两大类,前者专门发酵生产并干燥制成,以糖蜜为主要原料,品质好且质量稳定;后者采用啤酒生产的废料-废啤酒酵母泥为原料,一般采取滚筒干燥制成,成本较低,但杂质较多,酵母细胞较老化,微生物不易吸收利用,品质不稳定。酵母粉主要在传统的抗生素等发酵行业应用较广泛。 酵母粉特点:微生物对酵母粉的营养物质利用率与利用速率较低,发酵完毕后不能利用的残留物(粗蛋白与菌体细胞壁)较多,难以处理。 酵母浸粉含义:又称酵母提取物,是采用新鲜酵母经酵母自溶、过滤、 浓缩、喷雾干燥而得到的一种浅黄色至类白色 干燥粉末。有酵母自然 香味,易溶于水,水溶 液呈淡黄色。酵母浸粉吸湿性,请放阴凉干燥处保存。酵母浸粉当中含有氨基酸类、肽类、水溶性维生素、及酵母多糖、酵母核酸组成的一种混合物,酵母浸粉当中含有丰富的B族维生素和各种氨基酸。核苷酸类、有机酸类、矿物质类及维生素类的水溶性物质。在当中它起的主要作用是补充氮源和提供细菌生长的各种维生素及氨基酸。 酵母浸粉分类:同样可以采取糖蜜发酵的糖蜜酵母和啤酒生产的废啤酒酵母泥为原料生产。 糖蜜酵母生产的酵母浸粉一般品质较高,这一方面是糖蜜酵母发酵经过专业的生产控制,原料品质就比较高,另外啤酒酵母粉为原料也有利于酵母积累更丰富的天然营养成分。另外一方面是以糖蜜酵母为原料的酵母浸粉生产规模可以做的很大,生产厂家可以充分采用先进的生产工艺设备与技术,从生产技术的角度保证酵母浸粉产品的高品质。 酵母浸粉特点:酵母浸粉的生物利用度高,微生物的利用速率快,特别有利于对发酵培养基比较挑剔的营养缺陷型、基因重组工程菌的吸收利用,有助于缩短发酵周期,提高微生物发酵效价;同时发酵残留非常少,有利于发酵废液的环保处理。 酵母浸粉主要用于微生物培养基制备的基础原材料以及生物制药发酵。 酵母浸膏以酵母为原料,采用自溶法或加酶水解法工艺,经分离、脱色精制浓缩而成的,含氨基酸、肽、多肽及酵母细胞水溶性成分的膏状产品。 废啤酒酵母泥生产的酵母浸粉品质一般要大大差于糖蜜酵母浸粉,这主要是因为废啤酒酵母泥本身是啤酒生产的副产物,不存在什么质量控制;另外一方面是废啤酒酵母泥不能长途运输,生产厂家一般只能依赖周边啤酒厂的有限供应,生产规模难以扩大,因此限制了厂家的投资规模,一般只能土法上马,难以把生产技术装备以及所能采取的技术手段提升到理想的状态,导致产品色泽较深、不溶性杂质较多,维生素、生长素等微量营养物质的含量也比较欠缺。 酵母粉和酵母浸粉是完全不一样的产品,更不能混为一谈。 酵母浸粉和酵母浸膏的区别在于酵母浸粉经过高温瞬时干燥所损失的营养成分比酵母浸膏长时间浓缩所损失的营养要少得多,所以酵母浸粉在实际使用中用量更经济,且使用方便,也更易于运输和保存。 酵母浸粉和酵母浸膏应用领域食:品饲料领域、动物营养领域、生物发酵领域、营养保健领域、发酵工业领域:可用于抗生素新药、多肽、核苷酸、B族维生素、生长因子、氨基酸、有机酸、酶制剂、生物防腐剂、原料药、VC及肌苷、生物材料、维生素、微量元素、基因工程等生物工程产业。为微生物发酵培养提供全面均衡的营养 、微生物培养基:假单胞杆菌、醋酸杆菌、葡萄糖酸杆菌、大肠杆菌、枯草杆菌、乳酸链球菌、葡萄球菌、酵母及支原体。
  • 不可切除胶质母细胞瘤研究进展
    个法国研究团队评估了替莫唑胺为基础化放疗添加伊立替康和贝伐珠单抗可否改善不可切除胶质母细胞瘤患者的预后。ESMO 2012期间,B. Chauffert博士报告了该研究结果:患者无进展生存(PFS)有改善趋势。  这项Ⅱ随机研究共纳入了120例18~70岁的新发不可切除胶质母细胞瘤患者。患者卡诺夫斯基体能状态评分>50分,递归分割分析(recursive partitioning analysis ,RPA)5级。患者被随机分组,每组60例,接受4个周新辅助贝伐珠单抗和伊立替康治疗,继以替莫唑胺和贝伐珠单抗同步放疗,或者接受6个月的替莫唑胺同步放疗。  临床因素组间平衡性良好,疾病进展后可交叉治疗。治疗16个月时的评估显示,治疗组较对照组PFS期延长,6、12个月时的PFS率分别为65%、31%和41%、18%。但是,两组的总生存(OS)相似,6、12个月的OS率分别为75%、48%和72%和50%。  治疗相关严重不良事件发生情况如下:治疗组中,致命性脑出血3例,胆管或消化道穿孔/感染3例(1例致命),非致命性血栓栓塞发作4例;对照组中,非致命性胆管或消化道穿孔/出血2例,非致命性肺部感染1例,非致命性血栓栓塞2例,血栓和/或中性粒细胞减少症4例。  研究者作出结论:替莫唑胺为基础化放疗添加伊立替康和贝伐珠单抗新辅助和辅助治疗有改善PFS的趋势,但不改善6和12个月OS。
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • ACS Editors’ Choice:单细胞质谱分析
    近日,清华大学欧阳证教授课题组在analytical chemistry上发表了single-cell mass spectrometry analysis of metabolites facilitated by cell electro-migration and electroporation,且以acs editors' choice形式亮点报道。 文章介绍了基于细胞电迁移-电穿孔的单细胞质谱分析方法,该方法无需细胞高精度操控平台,仅通过对单细胞施加一定序列的电压,即可实现对单个酵母等具有细胞壁的细胞内代谢物的可控释放与质谱分析。 acs美国化学会报道: acs 编辑良择 | 基于细胞电迁移-电穿孔的单细胞质谱分析方法通讯作者:欧阳证,清华大学作者:zishuai li (李自帅),zhengmao wang (王正茂),junmin pan (潘俊敏),xiaoxiao ma (马潇潇),wenpeng zhang (张文鹏),zheng ouyang (欧阳证) 单细胞分析对研究细胞在转录组学、蛋白组学以及代谢组学等方面的异质性有着重要的意义。目前,科学家们开发了大量的单细胞分析方法和技术,例如荧光分析法、微流控芯片、流式细胞仪、单细胞测序等。质谱分析,因其低样品消耗量、高灵敏度、高定量准确性等优势,已经被广泛应用于单细胞蛋白组学、脂质组学和代谢组学分析中。然而,目前大部分的单细胞质谱分析方法,都需要依托于高精度操作平台,这给单细胞分析技术的应用带来了一定的挑战。 清华大学欧阳证教授课题组报道了一种基于细胞电迁移-电穿孔的单细胞质谱分析方法。该方法无需细胞高精度操控平台,仅通过对单细胞施加一定序列的电压,即可实现对单个酵母等具有细胞壁的细胞内代谢物的可控释放与质谱分析。如图1所示,在硼玻璃纳喷管中加入适当体积(约0.5 μl)的细胞悬浮液(约104细胞/ml),该溶液内平均只含有单个细胞。由于细胞表面通常带负电,通过非接触式电极对溶液施加直流负电压,使细胞迁移到纳喷管尖端,并在针尖处封闭一段超小体积(约1.5 pl)的液体。之后施加高压脉冲电压,在细胞膜表面形成电穿孔,细胞内代谢物即释放到前端的超小体积液体中,从而避免了细胞内代谢物的过度稀释。最后,采用非接触式电极加压,由纳升电喷雾离子化将该部分溶液离子化并进行质谱分析。图1. 基于细胞电迁移-电穿孔的单细胞质谱分析方法 该研究中,首先用酵母细胞进行了方法验证。如图2所示,从离子流热图中可以看出,施加脉冲电压后,在质荷比m/z 50到800的范围内出现了大量的代谢物离子信号。图2b-c中比较了施加脉冲电压前后的单细胞分析质谱图。通过精确质量对比、串级质谱分析等方法,该课题组在单个酵母细胞内检测到了71种代谢物。图3a-f展示了几种典型代谢物的串级质谱谱图。 图2. (a)质谱离子流热图。在5 s时刻施加了高压脉冲电压。(b)负离子模式。(c)正离子模式。 图3. 负离子模式下单酵母菌代谢产物典型的串级质谱谱图 (a) glu, (b) gsh, (c) amp, (d) adp, (e)atp, (f) udp-hex. 除了酵母细胞,该方法还可用于其他种类的具有细胞壁结构的单细胞菌类的高灵敏度质谱分析。图4展示了莱茵衣藻(chlamydomonas reinhardtti)、杜氏盐藻(dunaliella salina)、斜生栅藻(scenedesmus obliquus)、绿眼虫(euglena viridis)的单细胞分析质谱图。图4. 不同种类细胞的单细胞质谱谱图。从内向外依次为:莱茵衣藻,杜氏盐藻,斜生栅藻,绿眼虫。 此外,该课题组还研究了不同培养环境下,单个细胞内代谢物相对含量的变化情况。将两组莱茵衣藻细胞,分别在有/无光照条件下培养24小时,之后采用本方法进行单细胞内代谢物的质谱分析。单细胞质谱分析表明,在黑暗条件下,衣藻细胞内的卡尔文循环内的碳固定被终止,细胞内有氧呼吸强度下降,糖酵解代谢增强。此时,细胞的光合作用停止,细胞通过糖酵解分解糖类以提供基本的代谢需求,同时降低有氧呼吸强度以维持生存。图5. 黑暗条件下的莱茵衣藻单细胞内部分代谢物强度比值变化。 本研究的相关结果已发表在analytical chemistry,并以acs editors' choice形式亮点报道。该论文得到了国家自然科学基金项目的支持。 文章链接:https://pubs.acs.org/doi/full/10.1021/acs.analchem.0c02147
  • NEPA21高效电转化未去除细胞壁的衣藻
    2013年最新发表的一篇文章报到了,使用电转方法(NEPA21高效基因转染系统)成功高效转化了未去除细胞壁的衣藻,为人们进行植物细胞的转化提供了新思路。 衣藻作为单细胞藻类,常被用于基础生命活动的研究,如光合作用,细胞周期调控以及细胞运动等。植物细胞转化前通常要去除细胞壁(或使用无细胞壁的突变株),比较费时,而突变株细胞往往比较脆弱,且不适于某些实验,如光合作用的测定等。FIG. 2. (A) Colonies of hygromycin-resistant transformants plated on TAP agar medium containing 30 mg/mL hygromycin B. (B) Fluorescent signal of LCIBeGFP derived from transformants with the pTT1-LciB-GFP plasmid using NEPA21. Obvious ring fluorescence signals are present around the pyrenoid structure, as previously shown (12).Bar: 5 mm.Rapid transformation of Chlamydomonas reinhardtii without cell-wall removalhttp://www.sciencedirect.com/science/article/pii/S1389172312005348
  • 前沿进展 | 吉非替尼诱导胶质母细胞瘤细胞中EGFR和α 5β 1整合素共内吞作用
    “ 内吞作用是EGFR功能的一个重要调节因子,在胶质瘤细胞中经常发生失调,并与治疗耐药性有关。然而,在GBM细胞中从未检测过TKIs对EGFR内吞作用的影响。超分辨率dSTORM成像显示,在吉非替尼处理的细胞内膜室中,β1整合素和EGFR非常接近,表明它们潜在的相互作用。有趣的是,整合素的消耗延迟了吉非替尼介导的EGFR内吞作用。EGFR和β1整合素的共内吞作用可能会改变胶质瘤细胞对吉非替尼的反应。利用球状体胶质瘤细胞扩散的体外模型,我们发现α5整合素缺失的细胞比表达α5的细胞对TKIs更敏感。这项工作首次为EGFR TKIs可以触发大量EGFR和α5β1整合素共内吞作用提供了证据,这可能在治疗过程中调节胶质瘤细胞的侵袭性。”01—研究结果1、吉非替尼可引起EGFR的内吞作用胶质母细胞瘤(GBM)是融合星形细胞和少突胶质细胞肿瘤的一个亚群,是最常和比较具有侵袭性的脑肿瘤。GBM的特征是肿瘤间和肿瘤内的异质性和高度侵袭性的表型。表皮生长因子受体(EGFR、HER1、ErbB1)的过表达或突变是GBM中反复发生的分子改变,与不良预后相关。EGFR是一种跨膜受体酪氨酸激酶,属于ERBB家族,负责胶质瘤细胞的增殖、存活、侵袭性和干性调节。尽管EGFR在GBM中是一个有吸引力的治疗靶点,但使用EGFR-酪氨酸激酶抑制剂(TKIs)的靶向治疗未能改善患者的护理。EGFR的过表达驱动胶质母细胞瘤(GBM)细胞的侵袭,但这些肿瘤仍然对EGFR靶向治疗,如酪氨酸激酶抑制剂(TKIs)产生耐药性。在本研究中,作者发现吉非替尼和其他酪氨酸激酶抑制剂诱导EGFR在早期核内体中积累,从而导致内吞作用增加。此外,TKIs触发另一种膜受体的早期核内蛋白受体重新定位,即纤维连接蛋白受体-β1整合素,这是GBM中一个很有前途的治疗靶点,调节癌细胞的生理EGFR内吞和再循环。EGFR阻断调节失调参与了GBM的进展和侵袭性。然而,TKIs在EGFR迁移中的意义和作用尚不清楚。为了解决这个问题,作者用吉非替尼处理U87GBM细胞,并通过共聚焦显微镜检测了EGFR的定位,考虑到胶质母细胞瘤的异质性,作者分析了吉非替尼在其他3个具有不同水平EGFR表达的细胞系中对EGFR分布的影响。发现吉非替尼增加了T98G和LN443细胞中EEA1/EGFR的共定位,以及LN443、T98和LNZ308细胞中EGF的内吞作用。这些实验表明,吉非替尼在体外导致GBM细胞大量EGFR内吞。图1. 吉非替尼诱导U87细胞的EGFR内吞作用。用DMSO(对照细胞)或吉非替尼(20µM)处理4小时后,免疫检测肌动蛋白(绿)、EGFR(红)和内吞体标记物EEA1(青)。2、整合素和EGFR通过吉非替尼治疗而被共同招募到早期核内体中作者之前的实验清楚地表明,吉非替尼显著增加了EGFR的内吞率。整合素α5β1促进EGFR循环,全基因组基因筛选发现α5β1整合素是EGFR内吞作用的强启动子。因此,作者假设α5β1整合素,作为GBM中潜在的治疗靶点,可能会影响吉非替尼介导的EGFR内吞作用。作者接下来研究了EGFR和整合素是否被运输到相同的核内体。在未处理的细胞中,α5β1整合素和EGFR在质膜上或作为点状细胞内染色,令人惊讶的是,在短期吉非替尼治疗后,α5β1整合素明显被重新分配到大的EGFR阳性核内体中。吉非替尼治疗增加了核周区域整合素/EGFR的共定位,表明这两种受体在同一核内体中募集。图2. 吉非替尼引起EGFR和α5β1整合素的共内吞作用。用载体(对照)或吉非替尼处理的U87细胞的共聚焦图像。EGFR和β1的免疫检测接下来,作者对瞬时表达α5-GFP或Rab5-YFP的U87细胞进行了免疫标记和共聚焦分析。在吉非替尼治疗后,整合素β1和EGFR均定位于rab5阳性的早期核内体同样,EGFR和α5-GFP均在eea1阳性的早期核内体中被发现图3. 表达Rab5-YFP或α5-eGFP的U87细胞经吉非替尼处理后的共聚焦图像。在核周区域的插入物的高倍放大图像。箭头突出了标记有EGFR、整合素和早期核内体标记的囊泡接下来,作者使用2色dSTORM超分辨率显微镜来整合早期核内体中整合素和EGFR之间的潜在相互作用。在吉非替尼处理的细胞中,显示EGFR和整合素β1标记在核内体样结构中存在强覆盖,但不是在细胞外周处,这表明这两种受体更可能在核内体中相互作用,而不是在质膜上相互作用。此外,作者也在另外三个GBM细胞系中观察到内吞体整合素/EGFR共标记。图4. 吉非替尼处理的细胞的双色dSTORM图像显示细胞外周和核内体上的EGFR/β1整合素复合体02—研究总结 综上所述,这些数据表明EGFRTKIs增加了GBM细胞早期内吞体中EGFR的内吞作用和α5β1整合素的共积累。EGFR/α5β1整合素内吞作用和膜破坏。由于这些受体在癌细胞的侵袭和传播中发挥着关键作用,未来的挑战将评估TKIs对整合素生物学功能的影响,以及整合素/EGFR如何改变TKIs处理的细胞的内吞作用可能有助于GBM细胞逃避。并且,最近的一份报告强调了靶向治疗的靶标细胞毒性被低估的重要性。这项工作强调了需要更好地了解药物机制,以确定适当的生物标志物来预测药物的疗效。因此,描述吉非替尼等药物对内体转运的影响并揭示参与这些机制的分子将是很重要的。这可能为新的治疗方案提供理论基础,并改进脑肿瘤的精确医学方法。在本研究中,研究者主要借助STORM技术在更深一层次了解整合素之间的位置关系。这项2014年诺贝尔化学奖的发现已在国内实现产业化。宁波力显智能科技有限公司(INVIEW)现已发布超高分辨率显微系统iSTORM,采用3D随机光学重构技术、高精度细胞实时锁定技术、多通道同时成像技术等,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:1. Blandin, Anne-Florence, et al. "Gefitinib induces EGFR and α5β1 integrin co-endocytosis in glioblastoma cells." Cellular and Molecular Life Sciences 78.6 (2021): 2949-2962.
  • 为了样品破壁处理差点长住实验室,与隔壁师妹相比到底输在哪
    对于多数微生物及藻类,无论是通过提取目的基因组 dna 进行下游测序、鉴定、克隆等分子实验,或者进行胞内物质如蛋白质、生物活性分子的研究,都需要首先对样本进行破壁前处理。现有的细胞破壁方式有很多种,有优势也存在不足之处。常见破壁方法特点酶法反应温和,但不具有通用性,不同菌种需选择不同的酶,效果各异,且溶酶易造成产物抑制,同时溶酶价格高,限制了使用。化学法选择性高,但效率较差,且化学试剂的添加会形成新的污染,给进一步的分离纯化增添麻烦。超声波法适合处理少量样品,但超声过程中容易产热,导致蛋白质变性,破坏分子活性。液氮研磨单个样本操作,要求操作快速,比较费时费力,且操作不慎容易冻伤。反复冻融法对于细胞壁较脆弱的菌体可采用此法,但耗时较长,冻融时间及次数需多次优化。高压匀浆法适用于大量样本,对设备要求高,且较小的革兰氏阳性菌、真菌菌丝容易对仪器造成堵塞及损伤,且费用较高。对于实验室操作人员来讲,方法越简单高效越好。那有没有适合少量样本的通用性强、可同时处理多个样本又不影响下游实验的简单的操作方法呢?当然有啦!那就是今天小编要给大家介绍的利用细胞破碎仪破壁的涡旋破壁法。细胞破碎仪细胞破碎仪的破壁作用原理是使细胞悬浮液与微珠在快速振荡的作用下充分混合,微珠之间及微珠与细胞之间相互剪切、碰撞,促使细胞壁破碎,释放内含物,破壁效果达80%以上,非常适用于普通实验室的研究工作。使用过程中只需要用到占地面积12cm2的小型细胞破碎仪mx-c、2ml ep管及破壁微珠。细胞破碎仪可以有效解决不同细胞由于其结构、数量等原因给细胞破碎带来的困难:革兰氏阳性菌细胞壁主要由肽聚糖和酸性多糖构成,各类酵母菌、真菌细胞壁主要由多糖和蛋白质构成,其致密的网状结构均不易破碎;部分样本取样困难,数量有限;不恰当的破壁方式可能会导致基因组断裂,影响后续试验。应用——酵母菌破壁01镜检验证酵母菌液 300ul,使用细胞破碎仪最大转速破壁 5min,破壁前后分别镜检计数。02qpcr 验证01取 106 个酵母细胞,破壁前和破壁后分别提取基因组后进行 qpcr 验证。未破壁 ct 值为 33.08,破壁后 ct 值为 22.83,破壁后基因组模板浓度提高 103 倍。02106 个酵母细胞 10 倍系列稀释至 105、104、103 破壁后分别提取基因组后进行 qpcr 验证。标准曲线 r2=0.99,说明细胞在 103-106 范围时,破壁效率基本一致,在低浓度时破壁效率依然达到 80% 以上,说明细胞破碎仪非常适用于少量稀有样本的破碎。如果童鞋们对它感兴趣,可以详询各地区负责人哦~http://www.dlabsci.cn/plus/list.php?tid=198
  • 马光辉院士/魏炜研究员团队开发工程化细胞外囊泡治疗胶质母细胞瘤
    通过交叉科学研究,提出并发展生物医学前沿新技术,是提高重大疾病治疗效果的重要手段。胶质瘤是发病率和死亡率最高的中枢神经系统肿瘤,其中胶质母细胞瘤(GBM)是最恶性的肿瘤,也被称为“癌中之王”。临床上治疗GBM以外科手术为主,同时辅助放化疗,但是效果非常有限;以手术和替莫唑胺联合治疗为例,5年生存率小于5%。因此,亟需开发新型高效的GBM治疗策略。 GMB治疗棘手的原因主要有三方面。首先, 血脑屏障(BBB) 的存在阻止了药物进入中枢神经系统,需要发展更有效的药物递送策略;其次,单一化疗药物的使用易导致耐药性的产生,需要联合新的肿瘤杀伤手段;另外,GBM具有复杂的肿瘤微环境,对其快速生长和向周围组织的浸润起到重要作用,在治疗的过程中不容忽视。 近日,中科院过程工程所生化工程国家重点实验室 魏炜 研究员、 马光辉 院士、深圳市第二人民医院 李维平 教授,作为共同通讯作者 在 Signal Transduction and Targeted Therapy 期刊发表了题为: Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects 的研究论文。 该研究基于工程化细胞外囊泡发展了“ 免疫调控-化学动力-乏氧激活 ”多级联动的治疗新策略,为胶质母细胞瘤的治疗带来了新思路。针对胶质母细胞瘤治疗难题,过程工程所生化工程国家重点实验室基于具有定向趋化能力的巨噬细胞的细胞外囊泡 (EVs) 和工程化的设计,提出了“免疫调控-化学动力-乏氧激活”多级联动的治疗新策略,并联合深圳市第二人民医院交叉合作,进行了个体化创新药物制剂的研发。 研究团队首先基于胶质瘤患者的临床样本和小鼠模型进行了免疫组化的研究,发现胶质瘤恶性程度越高,肿瘤组织中浸润的M2型巨噬细胞/M1型巨噬细胞的比例也相应更高,并且这些巨噬细胞大多来源于外周血。在此基础上,研究团队提出了以M1巨噬细胞EVs作为载体,一方面可以利用M1巨噬细胞的趋化特性在GBM部位大量蓄积,另一方面可以通过调控巨噬细胞表型实现GBM微环境的免疫调控。图1 胶质瘤样本中巨噬细胞的表型及其来源分析:a. 胶质瘤患者临床样本中巨噬细胞表型分析示意图;b. 不同级别胶质瘤中M1、M2和Ki67(细胞增殖指标)的分析;c. 基于TCGA数据库分析不同级别胶质瘤中M2/M1比例;d. 基于TCGA数据库分析胶质瘤患者瘤内M2/M1比例与生存曲线的关系;e. GBM组织中小胶质细胞和M1巨噬细胞的共定位分析;f. 免疫荧光染色分析GBM组织中小胶质细胞和M2巨噬细胞的共定位;g. 小鼠胶质瘤样本中巨噬细胞表型分析示意图;h. 在不同胶质瘤细胞系(U87MG、G422和GL261)中M1、M2和Ki67的分析;i. 免疫荧光染色分析不同鼠胶质瘤组织中小胶质细胞和M1或M2巨噬细胞的共定位情况;图中标尺均为50 μm 研究团队进一步在M1EVs的细胞膜和内腔差异化装载了化学激发分子对 (CPPO和Ce6) 以及乏氧药物 (AQ4N) ,以此将肿瘤微环境调控、化学激发动力学及肿瘤乏氧治疗合理有序地集成于M1EVs递送系统中。上述仿生剂型 (CCA-M1EVs) 静脉注射后,M1EVs可以携带上述组分穿过BBB进入GBM病灶,进而实现多级联动治疗:M1EVs调控免疫微环境产生大量过氧化氢,从而激发CPPO和Ce6生成自由基 (ROS) ,同时该反应消耗氧气激活细胞毒性药物AQ4N。借助上述作用的协同,在小鼠原位胶质瘤模型和患者来源的 (PDX) 模型上显著抑制了疾病的进程,大幅延长了生存期。图2 基于M1EVs的仿生剂型构建方案、抗肿瘤机制及PDX疗效:a. 仿生剂型的构建示意图;b. 仿生剂型在GBM模型中的累积及免疫调节、化学激发动力学和乏氧触发化疗的协同作用示意图;c. 基于光声成像分析仿生剂型在PDX小鼠GBM病灶中的累积;d. 各组PDX小鼠的抑瘤效果(20天核磁成像);e. 各组PDX小鼠的生存期分析;f. 各组PDX小鼠的TUNEL分析(标尺50 μm) 十余年来,过程工程所生化室魏炜研究员和马光辉院士创制了一系列仿生递送新剂型,利用其体内的天然路径和属性,在动物模型上成功用于肿瘤、传染病、炎症性疾病的防治,并且部分剂型已通过医院伦理批准进入个体化临床前和临床研究。 深圳市第二人民医院 王晓君 博士和丁辉博士为该论文的共同第一作者,中科院过程工程所生化工程国家重点实验室魏炜研究员、马光辉院士和深圳市第二人民医院李维平教授为共同通讯作者。论文链接 : https://www.nature.com/articles/s41392-022-00894-3
  • 北京林业大学植物细胞壁拉曼光谱大数据分析取得新突破
    近期,北京林业大学材料学院许凤教授团队在植物细胞壁拉曼光谱大数据处理技术上取得新突破。该技术成果构建了基于主成分分析的植物细胞壁拉曼光谱聚类分析方法,相关研究成果“Method for Automatically Identifying Spectra of Different Wood Cell Wall Layers in Raman Imaging Data Set”发表在《Analytical Chemistry》上。该期刊为美国化学会旗下国际分析化学领域顶级期刊,最新影响因子5.636,五年影响因子5.966。  拉曼光谱成像技术具有信息丰富、制样简单、对样品无损伤等特点,近年来已成为研究植物细胞壁局部化学的重要工具。然而,拉曼光谱分类技术落后,严重制约了光谱数据的深入挖掘及科学运用。传统的分类技术通过导出实验数据进行手动分析,不但费时费力,人为因素干扰严重,更会造成数据浪费,甚至丢失重要信息。针对这一问题,许凤教授团队经过探索创新,基于细胞壁超微结构特点,率先采用数学统计学结合自主研发的计算机程序分析处理植物细胞壁拉曼光谱数据,建立了快速分辨细胞壁不同形态学区域拉曼光谱的新方法。该方法能够根据植物拉曼光谱的自身特点,对所获海量拉曼光谱数据进行自动、准确、快速分类,将为植物细胞壁化学组分拉曼光谱定量研究提供理论依据。论文投稿期间,审稿人一致评价该方法创新性突出,对生物质相关领域的研究具有重要意义。  发表在《Analytical Chemistry》上的论文第一作者为北京林业大学材料学院林产化学加工工程学科2014级博士研究生张逊,论文发表获得国家杰出青年科学基金的资助。目前,在许凤教授的指导下,张逊正开展基于该技术的相关研究,希望在植物细胞壁拉曼光谱的定量分析上能有新的突破。
  • 打破对称!卵母细胞如何脱颖而出?
    在哺乳动物和果蝇中,雌性多细胞雌性生殖细胞包囊(Female germline cyst)中只有一个细胞会成为卵母细胞,但是这颗卵母细胞是如何打破对称性从中脱颖而出的还不得而知。为了揭开这一问题的答案,英国剑桥大学D. St. Johnston研究组与D. Nashchekin(第一作者)合作在Science发文题为Symmetry breaking in the female germline cyst,发现微管负极稳定蛋白Patronin/CAMSAP通过标记果蝇中的卵母细胞,促使生殖细胞打破对称性从而特化形成卵母细胞的具体分子机制。在许多生物中并非所有的雌性生殖细胞都会变成卵母细胞,一部分细胞会变成辅助细胞为卵母细胞提供物料和营养支持【1】。举例来说,小鼠卵巢中一个生殖细胞包囊中包含约30个细胞,其中只有一小部分细胞会变成卵母细胞,大多数的细胞会作为营养细胞(Nurse cells)经历细胞凋亡,将胞质的内容物通过环管(Ring canals)输送卵母细胞(图1)【2, 3】。在果蝇中,生殖细胞包囊形成于生殖腺,包囊具有三个区域。生殖干细胞产生成囊细胞(Cystoblast),成囊细胞在不完全的胞质分裂的情况下分裂四次,产生一个包含16个生殖细胞组成的包囊,这些生殖细胞通过环管相连接(图2)。卵母细胞的选择依赖于非中心体组织中心(noncentrosomal microtubule organizing center,ncMTOC)在未来的卵母细胞中组织一个具有极性微管网络指导动力蛋白(Dynein)依赖的细胞命运决定因子的运输。但是这颗卵母细胞是如何脱颖而出获得命中注定的卵母细胞命运呢?为了揭开这一问题的答案,作者们将目光集中在了Patronin以及其脊椎动物同源蛋白CAMSAPs上。该蛋白是微管负极结合蛋白,是 ncMTOCs非常关键的组分【4,5】。作者们在patronin突变体中检测了卵母细胞标记物的分布,发现突变体中卵母细胞标记物的累积显著地降低。限定表达在区域3中卵母细胞中的联会复合体蛋白C(3)G也在patronin突变体中也显著降低。这些结果说明Patronin对于卵母细胞的决定非常关键。为了对Patronin在生殖腺包囊中的定位进行检测,作者们对内源荧光标记的Patronin-Kate品系进行成像,发现Patronin在2a区域时开始在单独的一个细胞中表达,早于既定卵母细胞标记物的表达,该信号会持续累积在此单个细胞中到区域2b-3,发育到该时期时会在细胞中形成点状信号,最终此细胞发育成为卵母细胞。但是作者们发现patronin的mRNA并不会定位在包囊之中,因此这种不对称的分布依赖于Patronin蛋白而非mRNA的定位或者新蛋白的合成。另外作者们发现动力蛋白在patronin突变体中的定位在推定的卵母细胞中,该结果说明Patronin的缺失会破坏前体卵母细胞中MTOC的形成,从而导致极化的微管网络形成的缺失。通过检测微管正极末端追踪蛋白EB1-GFP对包囊中的MTOC进行可视化观察,作者们发现EB1-GFP信号与Patronin的信号在相同的细胞中共定位。同样,EB1-GFP的不对称定位在patronin突变体的包囊中会消失,此时EB1-GFP的分布模式会相对比较均质。随后,作者们想知道中心体是否对Patronin MTOC的形成是否有一定的贡献,为此对中心体蛋白Asterless与Patronin的共定位进行了探究。作者们发现Patronin与Asterless只有小部分共定位,大部分的Patronin信号都在中心体聚集体的之外,该结果说明Patronin形成的MTOCs是非中心体依赖的。目前,Patronin成为了未来卵母细胞最早的标记物。那么提出了一个新的问题即Patronin是如何富集在卵母细胞中从而打破包囊中细胞的对称性的。其中一个可能的机制是对称性打破依赖于融合体(Fusome)的不对称继承【6】。融合体在区域1的有丝分裂过程中就出现了不对称分布,因此母细胞会比子代细胞继承更多的组分,四环管时期两个细胞中的一个会具有比其他细胞更多融合体。为了验证这一想法,作者们使用融合体标记物Hts检测该观点。Patronin与融合体共定位于早期2a区域,但在包囊向区域3发展时信号会集中在一个细胞之中。因此,该结果说明Patronin的最初定位由融合体决定于早期2a区域,随后被某些机制进一步将此不对称性进行扩大。进一步地,作者们想要探究其中可能的扩大机制。Spectraplakin蛋白Shot引起了作者们的注意,因为该蛋白定位融合体上并且与卵母细胞的特化相关【7】。作者们发现在shot突变体中,Patronin不能在一个细胞中累积并且也不能形成点状信号,而且也不能与融合体相互作用。因此,Shot对于招募Patronin到融合体上是非常关键的,从而能够将融合体不对称信号带给Patronin从而交给细胞命运决定过程进行解码。由此,作者们得到了一个卵母细胞命运决定的工作模型,该模型被称为“四步走”模型(图3),第一步,在包囊形成过程中融合体的不对称性促使一个细胞中继承更多的融合体内容物;第二步,在区域2a,Patronin通过Shot蛋白被招募到融合体上,形成一个微微极化的微管网络结构;第三步,包囊中其他细胞通过动力蛋白将Patronin蛋白结合的微管蛋白运输到预卵母细胞之中;第四步,形成一个正反馈循环通路,动力蛋白运输更多的Patronin以及微管蛋白到卵母细胞中,进一步扩大微管的极性,从而促进动力蛋白运输更多的卵母细胞命运决定因子进入该细胞之中。通过该不对称性建立并逐渐扩展的方式,卵母细胞从包囊中“脱颖而出”。Patronin是CAMSAP家族中保守的成员,这说明该机制可能具有一定的保守性,虽然在哺乳动物中未发现融合体的存在,但是微管依赖的细胞器通过细胞环管运输已被证明在小鼠卵母细胞分化中发挥重要作用。这一发现对于卵母细胞命运建立提供了新的思考。原文链接:http://doi.org/10.1126/science.abj3125
  • 量子显微镜可详细观察活细胞细节
    显微镜技术取得重大突破!据最新发表在《自然》杂志上的文章,来自澳大利亚昆士兰大学的研究人员发明了一种量子显微镜,可使研究人员在的情况下检查活细胞,看到其他方式无法揭示的生物结构细节。这为生物技术的应用铺平了道路,且有望应用于导航、医学成像等领域。  显微镜由量子纠缠提供动力,爱因斯坦将这种效应描述为“远距离幽灵般的相互作用”。  来自昆士兰大学量子光学实验室和ARC工程量子系统卓越中心(EQUS)的沃里克鲍恩教授说:“这是第一个性能超过现有最佳技术的基于量子纠缠的传感器。”这台量子显微镜的成功首次证明,量子纠缠改变传感范式的潜力。  量子显微镜的一个主要成功之处在于,它能够跨越传统光基显微镜的“硬障碍”。通常,传统的光学显微镜会在被观察的生物样本上聚焦照明光线,更强大的光源使研究人员能够更细致地看到细胞。但这种方法的精确度存在一个根本性限制:在某一时刻,足够明亮的光线会破坏活细胞。  鲍恩和他的同事们已经找到了克服该问题的方法。他们使用了一种带有两个激光光源的显微镜,但通过一种特殊设计的晶体“挤压”了其中一束光线。它通过在光子(激光束中的光粒子)中引入量子纠缠来做到这一点。  光子被耦合成相互关联的对,其中任何具有不同于其他光子能量的光子都被丢弃,而不是被配对。这一过程降低了光束的强度,同时降低了其噪声,从而可以进行更精确的成像。  大约10纳米厚的酵母细胞的细胞壁及其细胞液,即使用最好的非量子显微镜,这两者的成像都是微弱的,用标准显微镜则是完全看不见的,而用量子显微镜则可以看到它们的结构细节,从而帮助我们在最小的尺度上理解生命的基本知识。  英国埃克塞特大学的弗兰克沃尔默表示:“这是光学显微镜领域的一项非常令人兴奋的进展,它为改进最先进的显微镜的工作方式打开了大门,其光强度正好不会破坏生物样本。”  鲍恩说,量子显微镜也将有实际应用。例如,光学显微镜经常被用来确定细胞是否癌变或诊断其他疾病,而量子显微镜可以显著提高这些测试的灵敏度,并加快测试速度。
  • “垃圾DNA”不“垃圾” ——酵母可能依赖内含子度过艰难时期
    p style="text-indent: 2em "strong酵母可能依赖内含子帮助它们度过艰难时期。/strong/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201901/uepic/1082ae37-6879-49ea-89f6-bd66609032f0.jpg" title="酵母.jpg" alt="酵母.jpg" width="300" height="200" border="0" vspace="0" style="width: 300px height: 200px "//pp style="text-align: center "span style="color: rgb(127, 127, 127) "图片来源:STEVE GSCHMEISSNER/spanbr//pp  就像从电影中删掉的片段一样,生物基因中的一些序列最终也会被剪掉,细胞不会利用它们制造蛋白质。现在,两项研究发现,这些被称为内含子的片段有助于酵母在艰难时期存活。这项研究揭示了DNA的另一种可能的功能,科学家曾认为这种功能是无用的。/pp  未参与该研究的美国加州旧金山州立大学进化分子生物学家Scott Roy说:“这些结果非常令人信服,也非常令人兴奋。”这项研究开启了了解“内含子作用的全新范式”。/pp  加州大学洛杉矶分校酵母微生物学家Guillaume Chanfreau说,这也回答了一个长期存在的问题:strong为什么酵母保留了以前被认为是“垃圾DNA”的东西/strong。/pp  内含子普遍存在于植物和真菌中,也存在于人类和其他动物体内——在大约2万个基因中,每个基因平均携带8个内含子。在最初将它们视为垃圾之后,研究人员最近开始确定内含子的某些功能。例如,一些基因中的内含子可能有助于控制细胞制造多少相应的蛋白质。/pp  为了确定剥夺内含子的影响,加拿大谢布鲁克大学RNA生物学家Sherif Abou Elela和同事系统地从酵母菌中删除内含子,并产生了数百个菌株。然后,研究人员将这些改良菌株与普通真菌一起培养。/pp  当食物缺乏时,大多数缺乏内含子的菌株很快就死掉了,研究小组近日在《自然》上报道称,它们无法与普通酵母竞争。然而,在营养更丰富的培养基中,经过改造的酵母具有优势。Abou Elela说:“如果你处于好时期,内含子是一种负担。但在逆境中,它是有益的。”/pp  麻省理工学院分子生物学家David Bartel和同事也独立研究出了类似的结果。他们测量了酵母细胞中不同RNA分子的数量,同时注意到,在“拥挤”的培养基中生长的酵母积累了大量内含子。相关论文刊登于《自然》。/p
  • 乔杰院士团队发表人体外成熟卵母细胞单细胞测序最新成果
    p  卵母细胞体外成熟是辅助生殖领域已开展近30年的一项重要技术,在预防卵巢过度刺激综合征,保存女性生育力,拓展辅助生殖技术应用领域等展现出巨大的应用价值。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/200e2031-e412-4cd0-a657-9cb63171a9a6.jpg" title="NewsDataAction.png"//pp  在啮齿类及家畜等动物中,卵母细胞经过体外成熟后,依然可以保持较高的发育潜能,但是人类辅助生殖临床中发现,体外成熟卵母细胞发育潜能较差,形成胚胎的流产率相对较高,且尚无公认的有效改善措施。此前有多项研究揭示小鼠卵母细胞成熟过程中的关键分子,然而对人类卵母细胞成熟过程中的分子表达特征尚不明确。/pp  2月27日,北京大学第三医院乔杰院士团队的李蓉教授、于洋副研究员与广州医科大学附属第三医院范勇教授,昆明理工大学谭韬副教授团队合作,在Antioxidants & Redox Signaling杂志在线发表题为“Single-cell transcriptomics of human oocytes: environment-driven metabolic competition and compensatory mechanisms during oocyte maturation”的研究成果,揭示了体外培养影响人卵母细胞成熟及发育潜能的关键分子及其作用机制。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/2df4c471-0a8d-4c97-a46b-adbe430a85dd.jpg" title="NewsDataAction-2.png"//pp/pp  在该研究中,研究者在伦理委员会指导下,通过来自于3名女性捐赠的6枚卵母细胞(每名女性捐赠1枚成熟与1枚不成熟卵母细胞),利用单细胞转录组测序技术,从整体水平上,对体外成熟卵母细胞中的RNA表达特征进行了阐述,并利用小鼠模型、干细胞模型、人类样本等,从基因、亚细胞结构、细胞发育等不同层面,系统揭示了代谢通路关键分子ACAT/HADHA-DPYD在维持卵母细胞发育潜能方面扮演重要的角色。/pp  首先,研究者利用高通量测序与生物信息学分析手段,明确代谢通路的改变是体外成熟卵母细胞与体内成熟卵母细胞的最典型差异。进而,通过多种筛选手段,包括与不同质量的体内成熟卵母细胞比较、物种间比较等,明确三种与辅酶A相关的酶编码基因(ACAT1、HADHA、DPYD)是潜在影响体外成熟卵母细胞发育潜能的靶标分子(下图)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/4ca2142c-ebee-4bd7-a0cd-9cd6e94c59c1.jpg" title="NewsDataAction-3.png"//pp/pp style="text-align: center "筛选与人体外成熟卵母细胞发育潜能相关的靶标分子/pp  其中,ACAT1和HADHA协同调控三羧酸循环的底物乙酰辅酶A与琥珀酸的生成,间接影响三羧酸循环的效率,导致线粒体功能不足。同时发现,三羧酸循环酶类的激活剂钙离子在体外成熟卵母细胞中浓度降低,再次提供证据表明体外成熟卵母细胞线粒体功能及能量代谢异常。/pp  然而,为维持发育的进行,卵母细胞在钙离子摄入障碍的情况下,内源钙离子释放,实现钙离子浓度代偿。同时,烟酰胺腺嘌呤二核苷酸转氢酶(NNT)编码基因上千倍上调表达,促进体内NADH与NADP+的生成。一方面NADH可以提供额外的能量供卵母细胞成熟发育,缓解线粒体功能失调导致的NADH生成减弱,维持其细胞质的生物学功能;另外一方面,NADP+的生成上调DPYD表达,对体外成熟卵母细胞中出现的异常DNA双链断裂进行修复,维持其细胞核的生物学功能。/pp  综上所述,研究者首次利用严格的对照,排除不同人群遗传的潜在影响,从组学筛选到靶标分子的生物学功能鉴定的系列实验中,明确人体外成熟卵母细胞从受损到功能代偿的分子机制。研究在提示辅助生殖技术每一步操作都潜在对生殖细胞产生影响的同时,也为辅助生殖技术的持续优化提供了理论基础。/pp  据悉,北京大学第三医院2011级博士生赵红翠为本文的第一作者,2017级博士生李天杰,赵越副研究员,昆明理工大学谭韬副教授为本文共同第一作者,北京大学第三医院李蓉教授为该论文的通讯作者,于洋副研究员,广州医科大学附属第三医院的范勇教授为共同通讯作者。/p
  • 清华大学重大成果:酵母核糖体组装前体的高分辨冷冻电镜结构
    核糖体是一种广泛存在于细胞中的分子机器。所有生物,包括微小的细菌直至人类个体,都依赖核糖体对各种各样的蛋白质进行生物合成。作为一个分子量巨大的复合物,核糖体本身是如何在细胞中由多条RNA链及超过70种蛋白分子装配而成?这一问题已困扰相关领域科学家近30年。  核糖体自身是一个由核糖核酸(RNA)和蛋白质组成的超大复合物(半径20纳米),其三维结构和分子机制的研究一直是生命科学基础研究中的重要方向。2009年的诺贝尔化学奖即授予了首次解析出细菌核糖体原子分辨率的三位结构生物学家。  真核细胞核糖体装配过程是个高度复杂的动态过程,有超过300种不同功能的辅助装配因子(蛋白质或者RNA)参与其中。然而绝大多数装配因子的结构及其行使功能的分子机理完全未知。此外,核糖体的组装与细胞的生长调控通路密切相关,某些装配因子的遗传突变会导致核糖体生物生成的失调,引起一系列的人类遗传性疾病(称为ribosomopathies)。某些特定的装配因子(例如eIF6)不正常表达也在多种人类癌症细胞中被发现。因此,针对核糖体装配过程的研究不仅具有重要的科学意义,还具有潜在的临床应用潜力。  图1酵母核糖体大亚基组装中间体的3.08埃冷冻电镜结构。a,3.08 埃冷冻电镜密度图,核糖体蛋白颜色为米色,核糖体RNA颜色为灰色。b,19个装配因子的原子模型。  清华大学生命科学学院高宁研究组自2009年一直致力于研究各种生物的核糖体装配过程。2013年,高宁研究组和美国卡内基梅隆大学的约翰伍尔福德(John L. Woolford Jr)教授研究组携手合作,利用清华大学的高端冷冻电镜平台,以真核生物酵母菌为材料,开展真核核糖体的装配研究工作。2015年,合作研究获得重大突破,课题组得到了酵母细胞核内的一系列组成上和结构上不同的核糖体60S亚基前体复合物的冷冻电镜结构。其中一种状态的三维结构分辨率达到3.08埃,其核心部分的分辨率可达2.8埃,是国际在核糖体组装研究领域迄今为止分辨率最高的结构。基于这一冷冻电镜结构,课题组确定了超过20种不同装配因子在核糖体60S前体上的结合位置,并获得了19种装配因子的原子模型。课题组所提供的丰富结构信息为详细阐释真核核糖体装配过程中的多种装配因子功能和分子机制提供了重要基础。  2016年5月25日,报道这一重大突破的研究论文在线发表于《自然》(Nature)期刊,题目为《细胞核内的核糖体组装前体结构揭示了装配熟因子的功能多样性》(Diverse roles of assembly factors revealed by structures of late nuclear pre-60S particles)。高宁研究员和卡内基梅隆大学约翰伍尔福德(John L. Woolford Jr)教授为论文共同通讯作者,清华大学生命学院2013级博士生吴姗为第一作者。北京生命科学研究所董梦秋教授及谭丹博士提供了化学偶联交联质谱数据。论文中冷冻电镜数据收集和处理工作获得了国家蛋白质科学(北京)设施清华大学冷冻电镜平台及高性能计算平台支持。课题组得到了中国科技部、国家自然科学基金委、清华大学自主科研、北京高精尖结构生物学中心的经费支持。  论文链接
  • 日立SU8000系列电镜与冷冻联用系统应用
    酵母细胞冷冻断面SEM 图像 SEM: SU8020 FE-SEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可以快速得到芽殖酵母细胞的断面。在SEM下可观测细胞的内部及表面构造。PF, 芽殖酵母EF, 裂殖酵母 芽殖酵母细胞表面冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 上图中可清晰观测到芽殖酵母细胞表面的内褶和膜蛋白,同时可发现膜蛋白在表面按一定规则分布排列。(表面内褶是芽殖角酵母的独有特征。) CMI, 细胞膜内褶芽殖酵母细胞内部断裂冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 研究了冷冻芽殖酵母细胞的随机断面,左图中可清晰地观测到细胞壁,细胞膜及细胞器。 右图中,细胞核的三维结构可在断裂细胞内观测到,同时外部(*) / 内部 (#)核膜及核膜孔也清晰可见。 CM, 细胞膜 CW, 细胞壁 ER, 内质网 M, 线粒体 N, 细胞核 NP, 核膜孔 脂质体混悬液冷冻断裂SEM图像SEM: SU8020 FESEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可快速冷冻脂质体并观察其断面。上图中可观测到脂质体表面及内部构造。 该产品更多信息请关注: http://www.instrument.com.cn/netshow/SH102446/C138508.htm 关于日立高新技术公司:   日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • Cancer Cell | 实现小儿神经髓母细胞瘤早期诊疗——LcGWS检测脑脊液cfDNA
    1947年,Mandel和Metais首次报道了外周血中存在游离DNA(Cell-free DNA, cfDNA)。正常生理状态下,血液中的cfDNA主要来源于白细胞的坏死和凋亡;在某些疾病和特殊状态下,如组织损伤、癌症和炎症反应等,细胞内的DNA片段也会被释放到各种体液中(血浆、脑脊液、尿液等)成为cfDNA。在癌症早期,当患者还未表现出明显的临床症状时,细胞内DNA状态就已经发生变化,这些DNA被释放到体液中,使得体液cfDNA中包含了与癌症相关的重要信息。通过对这些信息进行提取和处理,可对癌症进行非侵入式诊断,实现癌症的早期诊疗,因此,cfDNA检测是目前市场上最常见的液体活检形式。髓母细胞瘤(Medulloblastoma,MB)是一种恶性的儿童胚胎中枢神经系统肿瘤,具有沿软脑膜转移的倾向。根据基因组特征可分为4个亚群:WNT、SHH、 Group 3和Group 4。手术切除结合放化疗是目前治疗MB的首选治疗方案(可治疗约70%的病人),术后的标本则作为诊断和肿瘤特征分析的证据。MB能够随着时间的推移而发展,约1/3患有MB的儿童最终都是死于该疾病,存活下来的患者也需要长期忍受由于治疗而产生的毒性。目前,除了磁共振成像(Magnetic Resonance Imaging, MRI)和脑脊液(Cerebrospinal fluid, CSF)细胞学检测,还没有可靠的分子生物标志物来反应MB的进展情况。因此,通过纵向样本开发强大的、微创的、临床可操作的生物标志物是非常必要的。研究显示,在 CNS 恶性肿瘤患者中,CSF来源的cfDNA比从血浆中分离出来的cfDNA具有更大的效用【1-2】。MB基因组几乎没有热点驱动突变,而是以普遍的染色体拷贝数变异(Copy number variations, CNVs)为特征,因此限制了cfDNA 突变分析在MB中的通用性【2-3】。近日,来自美国St. Jude儿童研究医院的Paul A. Northcott团队在Cancer Cell杂志在线发表了题为Serial assessment of measurable residual disease in medulloblastoma liquid biopsies的文章。研究人员利用MB中染色体不稳定性的特点,通过低深度全基因组测序(Low-coverage whole-genome sequencing, Lc-WGS)对来自123名MB患者的476例CSF来源的cfDNA样本进行分析,鉴定了可作为可测量残留病变(Measurable Residual Disease, MRD)标志物的CNVs,阐释了cfDNA检测的疾病预测价值和诊断价值。本研究共收集了来自123名MB患者的共476例CSF样本,提取cfDNA进行低深度全基因组测序(lcWGS),并进行后续分析(图1)。首先,作者评估了cfDNA来源的CNVs作为MRD标志物的效用。数据显示,在67例样本(67/105)中检测到了MRD;相反,7例非肿瘤CSF样本中都没有检测到cfDNA来源的CNVs,即MRD阴性。MRD阳性CSF样本与相应的原发性肿瘤之间的CNVs检测谱高度一致。MRD检测与疾病的转移状态、分子亚群和肿瘤位置显著相关,与年龄、性别、切除范围、细胞学检查结果以及切除和脑脊液取样之间的时间无关。值得注意的是,无论相应的脑脊液细胞学结果如何,MRD在高危疾病患者中的阳性率相似:91例脑脊液细胞学阴性的样本中有56例样本的MRD呈阳性。图1. 样品收集及检测流程图随后,作者探究了连续MRD检测与疾病复发之间的关系。在30/77(39%)例放疗后、21/75(28%)例化疗中及20/68(34%)例治疗结束的患者中检测到MRD。出现疾病复发的患者在治疗期间的MRD持续率明显高于没有复发的患者。在MRI显示病情完全缓解的32例病人中,有16例病人在复发前3个月时就检测到了MRD,此时影像学或细胞学异常还不能检测到。在所有持续接受放化疗或细胞学有差异的12例病人的CSF样本(n=27)中均检测到了MRD。24/25例患者在病情发展的3个月内采集的脑脊液标本中MRD呈阳性;在病情没有进展的患者中,193/209(92%)例CSF样本都是MRD阴性。那么,连续检测MRD在临床上有何价值?作者发现,那些放化疗后、治疗期间或已经结束治疗的病人中,MRD阳性病人的无进展生存期(progression-free survival, PFS)比MRD阴性的病人差很多。与治疗结束时MRI和脑脊液细胞学检查的标准评价进行比较,同时进行的MRD检测对于病人分类更有效,其对残留病变的灵敏度也更高(64% vs. 24%)。在治疗结束的病人中,12/20(60%)MRD-阳性的病人的MRI/细胞学检查正常,但后期其中的10位病人的病情都有所进展;其余两例病人MRI正常其MRD也呈阳性。在高风险患者中,治疗结束时的MRD与PFS有显著关系。作为一个随时间变化的变量,随访期间MRD检测与PFS显著相关。接下来,作者对疾病复发中的肿瘤相关分子图谱进行了分析。为了同时在早期和疾病进展期检测渐进性疾病(Progressive disease, PD)和MRD阳性患者的CSF,作者比较了从患者匹配的CSF样本中提取的CNVs谱,发现了染色体非整倍性,提示12/15(80%)例患者存在克隆选择或进化。cfDNA 分析可以更早地检测出那些在疾病复发时占主导地位的肿瘤克隆。在研究过程中,作者也注意到了原位肿瘤与cfDNA中检测到的CNVs不一致的情况。例如,患者sj024被诊断为Group4髓母细胞瘤,随后又出现转移性骨骼复发。然而与相应的原位肿瘤CNV检测结果相比,患者的cfDNA来源的CNVs谱更符合复发肿瘤特性,提示患者的CSF样本中包含了具有侵略性的亚克隆,可以驱动疾病的进展。最后,作者进一步评估了基于 lcWGS 的 cfDNA 分析在其他儿童脑肿瘤中的适用性。通过对17名非髓母细胞瘤患者进行分析,发现所有患者在其相应的原发肿瘤中都存在染色体和/或局灶性CNVs。基于lcWGS分析CSF来源cfDNA显示,13例(76%)样本呈MRD阳性,包括3例转移样本。此外,作者还观察了与临床过程相呼应的cfDNA样本的分子反应,其与MB中的发现类似。综上所述,该研究利用从MB和其他CNS肿瘤患者收集的脑脊液样本的大型纵向队列,首次有效地、系统地论证了CSF来源的cfDNA谱在儿童CNS癌症中检测MRD的临床效用(图2)。虽然液体活检的种类和方式非常丰富,但作者认为使用lcWGS检测CSF来源的cfDNA中的肿瘤相关CNVs非常适合于MB:(1)MB切除后患者脑脊液或血浆中cfDNA的含量明显低于其他脑肿瘤患者【4-5】,这种低于毫微克的产物,若采用其他检测方法(如表观遗传组和突变分析)是极具挑战的,但对lcWGS已经足够;(2)染色体CNVs在儿童MB中几乎无处不在,捕获CNVs无需使用定制探针来靶向不同的突变驱动基因,适用于缺乏已知驱动基因突变的MB样本。该研究支持将前瞻性cfDNA评估纳入MB临床试验,以进行进一步的研究和技术改进,最终实现根据MRD反应进行个性化治疗。图2. cfDNA检测流程及临床效用原文链接:https://doi.org/10.1016/j.ccell.2021.09.012
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • 基因组重排再造出超级酵母
    p style="text-indent: 2em "天津大学元英进教授带领的合成生物学团队,继人工合成酵母染色体打破非生命物质和生命物质界限后,日前首次利用精确控制基因组重排技术,培养出了能几何级生长的“超级酵母菌”。该成果填补了国内基因组结构变异的技术空白,提高了细胞工厂生产效率。该研究成果的三篇相关论文在《自然通讯》期刊同期发表。/pp style="text-indent: 2em "据介绍,以前的DNA变异技术大多只针对基因层面进行小规模改造,在更加复杂的基因组结构变异层面的人工构建技术仍具有挑战。 /pp style="text-indent: 2em "天津大学科研团队正是瞄准这一难题,研究出能够精准控制基因重排的方法,使作为研究对象的合成型酵母菌,在有限时间内产生几何级增长的基因组变异,驱动其快速进化生长。/pp style="text-indent: 2em "为了能够精准调控合成型酵母基因组重排过程,天地大的科研人员特意为细胞设计了一把“入门锁”,打开这把“锁”要用两把“钥匙”,只有两把“钥匙”同时转动的状态下,细胞内的基因组重排才会开启。而这两把“钥匙”就是添加到菌株培养基中的两种物质——半乳糖和雌激素。在它们的互相作用下,通过使用这一精准控制技术对合成型酵母基因组进行多轮迭代重排,酵母种类多样性得到了极大丰富。科研人员从中筛选出大量高产β-胡萝卜素的菌株,经过5轮迭代基因组重排,合成型酵母菌中β-胡萝卜素产量提升了38.8倍。/pp style="text-indent: 2em "在此基础上,研究人员还分别通过杂合二倍体基因组重排和跨物种基因组重排,获得了可以在摄氏42度温度下生长加快的菌株和咖啡因耐受性明显增强的酵母菌株。英国帝国理工大学的研究者们也利用天津大学合成型5号染色体的酵母菌进行基因组重排,实现底盘细胞的快速进化,显著提升了酵母紫色杆菌素合成能力和五碳糖代谢利用能力。/pp style="text-indent: 2em "这一研究未来对提升能源医药化学品的生产合成,对于工业菌株进化和功能知识发现具有重要意义。上述研究还得到国家自然科学基金委、科技部973计划以及国际合作项目的支持。/p
  • 天木生物ARTP成功助力耐受高浓度甘蔗糖蜜酿酒酵母的选育
    本期为您推荐广西科技大学生物与化学工程学院牛福星副教授课题组发表在Microbial Cell Factories上面的文章:Key role of K+ and Ca2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses。本研究利用常压室温等离子体进行诱变,筛选出对不同胁迫因素(高渗透压、高醇、高温、高盐离子以及高浓度甘蔗糖蜜)分别具有鲁棒性能的酿酒酵母菌株。其中由此所选育的对高浓度甘蔗糖蜜具有鲁棒性能的酿酒酵母乙醇合成产量达到目前物理诱变高水平(111.65 g/L,糖醇转化率达到95.53%)。最后结合酵母的细胞形态、发酵产能以及组学分析,揭示了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制性因素是K+和Ca2+同时存在的影响。 生物基乙醇的合成原料有很多,从环保、经济、富民的角度研发是重点。我国是人口大国,每年由于食品添加、工业应用等所消耗的糖量位居世界前列。甘蔗是糖分提炼的主要原材料之一,在提料糖分的同时会产生糖蜜,而且早期研究数据表明产3吨糖的同时可产约1吨糖蜜。糖蜜是一种混合物,成分复杂,直接排放或者用于田间施肥是为浪费且会造成环境污染,而且是为资源利用的不充分。但是利用糖蜜(非粮食)生物资源进行酿酒酵母的乙醇合成,却可以在不断满足人们对乙醇用量需求的同时,助推国家绿色低碳能源发展。酿酒酵母利用糖蜜进行乙醇发酵的工艺已经比较成熟,但是在利用高浓度的糖蜜来生产高浓度的乙醇效率方面却是一个挑战,究其原因便是各种胁迫性因素的影响。但是从科学研究的角度确切的阐述哪种才是限制性的关键影响因素早期还未有研究报道。 研究人员借助ARTP(室温等离子体)诱变、适应性进化以及高通量的基于三苯基-2H-四唑氯化铵(TTC)及前体物丙酮酸(或丙酮酸自由基离子)与Fe3+发生络合反应呈现黄色的双重高通量筛选方法(Py-Fe3+)获取了分别对高浓度甘蔗糖蜜(总糖浓度达到300 g/L)以及蔗糖添加模型下的高温(37℃)、高醇(10%)、高渗透压(400 g/L可发酵总糖)以及高浓度K+(15 g/L)、Ca2+(8 g/L)、K+&Ca2+(15 g/L &8 g/L)发酵环境下的七株鲁棒型酿酒酵母菌株(图1、表1)。通过各自鲁棒型菌株在高浓度甘蔗糖蜜环境下细胞形态比较(图2),乙醇合成的产率以及细胞数量(图3、图4)、鲁棒型菌株比较基因组学、比较转录组学GO、KEGG分析研究,得出K+、Ca2+同时存在才是限制酿酒酵母高浓度甘蔗糖蜜乙醇发酵的主要因素。图1 实验流程 表1 在相同发酵条件下与野生型J108相比产量差距图2 在250 g/L糖蜜发酵不同菌株的细胞形态A:NGCa2+-F1 B:NGK+-F1 C:NGK+&Ca2+-F1 D:NGTM-F1图3 不同菌株的乙醇合成率及细胞数图4.在5L发酵罐体系中利用250 g/L甘蔗糖蜜发酵, 菌株NGTM-F1的乙醇产量达到111.65 g/L 总结:甘蔗糖蜜对细胞的影响不仅仅局限于高浓度发酵,在低浓度情况下同样会对细胞的生长造成一定影响。该项目的研究是为初次从科学研究的角度准确阐述了限制酿酒酵母无法实现高浓度甘蔗糖蜜高浓度乙醇发酵的主要限制因素,其结果对于以甘蔗糖蜜作为底物的生物合成具有重要指导作用。文章链接:https://doi.org/10.1186/s12934-024-02401-5
  • 酵母实现葡萄糖变鸦片 我们如何应对?
    每年,世界著名的合成生物学竞赛iGEM( International Genetically Engineered Machine)都会吸引数以千计来自全球各地的学生,就&ldquo 组装生命系统&rdquo 的创意与技术一较高下。Jerome Sessini/Magnum为了探讨合成生物学给社会安全和人类健康带来的潜在风险,2014年11月,FBI特工爱德华· 尤(Edward You)假设了这样一个场景:如果经过遗传改造的酵母能将糖&ldquo 加工&rdquo 成鸦片,我们该怎么办?曾经的假想现在已经成真。就在2014年iGEM大赛结束一周后,两位专门研究如何用酵母制造鸦片的科学家找到了我们。那时他们还没有发表论文,希望听听我们作为生物技术政策研究人员的意见。他们想知道,如何能在论文中将研究的益处最大化,并且缓和由此带来的风险的尖锐性。如今,加利福尼亚大学伯克利分校的约翰· (John Dueber)、肯高迪亚大学的文森特· 马丁(Vincent Martin)和同事已经将这篇论文公诸于众。经他们改造的酵母具有将葡萄糖转换成吗啡的完整生化反应通路(见&ldquo &lsquo 酿造&rsquo 鸦片的酵母&rdquo );而卡尔加里大学的研究人员更是给这架&ldquo 鸦片机器&rdquo 添上了最后一块零件。我们现有的吗啡都提取自罂粟(Papaver somniferum)。而通过改造酵母,寻找更简单、更可控的生物合成途径,可以帮助我们获得更便宜、成瘾性更低、更安全,以及更有效的镇痛药物。酵母可以自我复制、容易生长、貌不显眼,还能轻易地播撒四方。因此,这一研究还会为鸦片制品的违禁交易提供便利。鸦片制品可以由此实现分散化、本地化生产,普通人可以轻而易举地得到它们。这些年来,合成生物学家利用改造过的酵母、细菌和真核植物,制造了许多&ldquo 友好&rdquo 的物质,例如抗疟疾药物、香氛、调味料、工业化学品和燃料。制造吗啡的酵母菌株,是我们研究出的第一种可以合成管制镇痛药的生物系统;然而,它肯定不会是最后一种可能&ldquo 惹麻烦&rdquo 的生物合成系统。合成生物学界应该和监管者合作,积极评估这类具有&ldquo 两面性&rdquo 的技术的风险与收益。本文列出了一些最需要优先讨论的问题,它们不仅关乎公共卫生与安全,也与合成生物学的前景密切相关。这些问题包括:只允许持有相关执照的机构、获得授权的研究人员和技术人员使用能够合成鸦片制品的酵母菌株;减小这种酵母菌株对鸦片违禁交易市场的吸引力;贯彻灵活、灵敏的监管措施,以应对我们对这一技术在认识上的转变,以及技术本身的变化。&ldquo 酿&rdquo 鸦片的酵母葡萄糖需要经过若干个生物化学反应才能变成吗啡,研究人员花费了7年时间才赋予了酵母合成吗啡的能力。参与这一研究的3个团队分别将罂粟、甜菜根,以及土壤中一种细菌的遗传物质转移到酵母中,使其获得发生其中一个或几个反应的能力。第4个团队则为这条反应链接上了最后一环,在酵母中实现了(S)-网状番荔枝碱[ (S)-reticuline] 到(R)-网状番荔枝碱的转化:一种能够实现&ldquo 葡萄糖&rarr 吗啡&rdquo 全转化的酵母由此诞生。理论上,只要懂得一些基本的发酵操作,任何人都能使用家用的啤酒发酵工具养殖这种酵母。如果你用发酵罐&ldquo 酿&rdquo 出了10g吗啡,只需喝下1~2ml发酵液,你就能摄入一个标准的处方剂量。现有的工程酵母菌株并没有这么高的产能,然而,其他一些相关的商业化发酵产物,已经达到了此种产出率,有些物质的产出率甚至比这还高10倍以上。尽管研究人员的初衷是制造合法的镇痛药,这一新技术还是带来了不少麻烦。生物合成的吗啡要么比现有吗啡具有更高的费-效比(即在成本相等的情况下效果更好)、更为监管者所接受,要么成瘾性更小、更安全。然而,现有的吗啡在制造、管理,以及运输环节上,成本都不高。2001到2007年间,高产罂粟的成功培育使得罂粟制品(又叫&ldquo 罂粟杆浓缩物&rdquo ,一般以大批量形式销售)的成本降低了20%(约为每公斤300~500美元)。合成生物学家、神经科学学家、药物化学家等不同领域从业人员必须通力合作,并且进行旷日持久、所费不赀的临床试验,才能设计出更具商业价值的鸦片类镇痛药。此外,为了防止更多人对鸦片上瘾,全球鸦片制品的供需都处于严格的管控之下。法律保障为了防止罂粟制品流向非法市场,国际社会、各个国家均制定了多种条约与法律。鸦片制造国往往会采用有安保措施的大型设施生产鸦片制品。为了加强安全性,澳大利亚甚至专门选种了一种含有大量二甲氢吗啡的罂粟品种。二甲氢吗啡很难转变成吗啡,直接口服还会导致中毒。我们很难预测全球最大的麻醉品管制机构&mdash &mdash 国际麻醉品管制局(International Narcotics Control Board,INCB))&mdash &mdash 会对这种新型吗啡合成系统作何反应。INCB不大可能因此削减目前鸦片类镇痛药的生产定额,也不大可能对目前合法的鸦片交易模式进行调整。这就阻碍了酵母菌株进入鸦片制造市场。这种新型酵母菌株很可能对鸦片的违禁交易市场产生巨大影响。如今,鸦片有两个主要的非法交易渠道。首先是药物处方。非法交易者会窃取氧可酮(oxycodone)或氢可酮(hydrocodone)等镇痛药处方、开具不合理处方,或将合法处方非法销售出去。其次是毒品犯罪网络。阿富汗、缅甸、老挝、墨西哥等国家非法种植的罂粟制成的海洛因会通过犯罪网络流入市场,并以几十上百倍于成本的价格出售。新型菌株为毒品犯罪网络(特别是对毒品有高需求的北美和欧洲)提供了一个新&ldquo 选项&rdquo 。使用酵母制毒极易掩人耳目。酵母生长迅速、运输方便,不论犯罪组织还是执法机构都很难对这种酵母的流向进行控制。总之,由此带来的&ldquo 分散化&rdquo 与&ldquo 本地化&rdquo 生产,必然会降低非法鸦片制品的生产成本,增加其易得性,对全球的鸦片问题起到持续的恶化作用。目前,全世界有超过1 600万人正在非法使用鸦片制品。理论上讲,有了这种酵母,你只需家用的啤酒酿造工具,就能制造吗啡。(How Hwee Young/EPA/Corbis)四点建议若要对这一研究进行灵活、合理的监管,我们需要克服两个主要障碍。首先,目前我们对&ldquo 工程微生物&rdquo 的监管,主要集中在病原微生物(例如炭疽杆菌和天花病毒)上;酵母本不在监管的范畴中。其次,要实现有效监管,各国与国际的药物监管部门、执法机构需要通力合作,然而他们的行为规范与准则各不相同。公共卫生专家、科学家、监管者和执法机构必须加强沟通与协调。INCB,以及其他研究生物安全与生物安保监管的专业组织,就可以担负起组织这类国际对话的责任。以下四点,是为四个亟待解决的问题敲响警钟。技术层面 我们在设计酵母菌株时,应该尽可能降低它们对犯罪分子的&ldquo 吸引力&rdquo 。例如,我们可以用它制造对毒贩无甚价值的麻醉药(比如二甲氢吗啡);另外,我们可以弱化工程菌株,使其只能在既定的实验室环境内发挥作用,这样一来,一般人就很难利用它在其他地方生产和收集鸦片制品;最后,我们还可以设计需要特殊的营养成分,才能正常生长的酵母菌株。我们已经将以上&ldquo 生物遏制手段&rdquo (methods of biocontainment)应用在了大肠杆菌(Escherichia coli)上。我们也可以给这种菌株打上DNA水标记(DNA watermark)之类的&ldquo 烙印&rdquo ,方便执法机构对其进行识别。加强审查 鉴于犯罪组织可能利用公开的DNA序列制造自己的菌株(尽管这种可能性不大),那些专门提供DNA片段定制服务的公司,也需要提高警惕。制造此种酵母菌株的基因序列必须被列入DNA片段供应商的审查列表。目前,这一审查列表由两个自发性组织&mdash &mdash 国际合成生物学学会(International Association of Synthetic Biology)与国际基因合成联合会(International Gene Synthesis Consortium)&mdash &mdash 负责监管, 而审查的对象仅限于病原体的基因片段。健全安保 我们应该对此种酵母的使用环境进行严格管控,只有经监管者许可、受到控制的场所,才能利用它生产麻醉剂。上锁、安警报、实验室与实验原料监控系统等物理性质的生物安保措施可以防止酵母被盗。实验室的工作人员需要通过安保审查,方能上岗。同样,研究人员要承担相应的权责,不能向未经合法授权的单位或个体提供酵母菌种。法律监管 监管麻醉剂的现有法律,例如《美国管制药物法案》(US Controlled Substance Act)以及其他国家的类似法律,应该将监管触角延伸至此类酵母,保证其产物在生产与销售上的合法性。生物技术的发展日新月异,如果我们能够对这种具有两面性的技术采取有力、有效的监管,就能给以后的类似情况树立榜样。事实上,参与此项研究的生物学家,已经在最关键问题上做出了表率:他们愿意,也正在为他们的&ldquo 造物&rdquo 担负责任。然而,这篇文章的写作对象并不是他们。其他基因组工程师也在沿着这条道路前进。参与研发基因组编辑工具CRISPR/Cas9的科学家已经对学术界和监管机构发出呼吁,对CRISPR/Cas9进行积极的风险评估;而在此之前,我们不能利用这一工具编辑野生动植物基因,或修改人生殖细胞基因组。合成生物学已经日臻成熟,这要求我们必须拿出负责的态度,做出负责的行动。(撰文:肯尼思· A· 奥耶(Kenneth A. Oye) J· 查普尔· H· 劳森 (J. Chappell H. Lawson) 塔尼亚· 布贝拉(Tania Bubela)。
  • 【文献速递】Nature子刊:胶质母细胞瘤靶向治疗新策略-联合抑制PDGFRA和EPHA2
    近日,重庆陆军军医大学西南医院病理科&西南癌症中心研究所卞修武院士和王岩教授研究团队在胶质母细胞瘤(Glioblastoma,GBM)的治疗策略方面取得了新的进展,相关研究成果已发表在Nature子刊“Signal Transduction and Targeted Therapy”(IF= 18.005,JCR1)。△ 图1Nature子刊《Signal Transduction and Targeted Therapy》(IF:18.187,JCR 1区)胶质瘤是最常见的脑肿瘤,2016年世界卫生组织(World Health Organization,WHO)将其分为四级(I-IV)。数字越大,恶性程度越高,预后越差,其中,GBM属于IV级。GBM恶性程度高、侵袭性强,患者的平均生存期约为15个月,5年生存率不到5%,因此,探究GBM的发生、发展机制,寻找复发相关的分子标志物,针对相关靶点进行转化研究,具有重要的意义。在临床上,大多数GBM患者(约90%)被诊断为野生型IDH1/2,定义为原发或新发的GBM;大约10%的GBM患者携带IDH1/2突变,定义为继发性GBM。根据癌症基因组图谱计划(The Cancer Genome Atlas,TCGA)中脑胶质瘤基因转录组,可以将GBM分为4种亚型:前神经元型、神经元型、经典型、间质型。经典型以EGFR基因扩增/突变为特征,前神经元型主要表现为PDGFRA(Platelet-derived growth factor receptor α)突变或IDH1/2 突变,间质型主要存在神经纤维蛋白1(Neurofibromatosis type 1,NF1 )突变。血小板衍生生长因子受体α(PDGFRA) 和受体β(PDGFRB) 属于受体酪氨酸激酶(Receptor tyrosine kinase,RTK)家族,并作为血小板衍生生长因子(Platelet-derived growth factor,PDGF)的受体发挥作用。哺乳动物中的四种 PDGF 基因(PDGFA、PDGFB、PDGFC 和 PDGFD)分别编码四种肽(PDGFA、PDGFB、PDGFC 和 PDGFD),它们形成五种功能同源或异源二聚体:PDGF-AA、PDGF- AB、PDGF-BB、PDGF-CC 和 PDGF-DD。研究发现PDGFA 和 PDGFRA 在胶质瘤发生和进展中起关键作用。实验也表明,PDGFA 和 PDGFRA 的过表达成功地诱导了小鼠模型中GBM的发育,这些结果表明PDGFRA 在GBM中的关键作用,并将 PDGFA/PDGFRA 轴确定为 GBM 的潜在治疗靶点。虽然已经开发出几种针对 PDGFRA 的抗肿瘤药物,体外和体内的数据也支持靶向PDGFRA对GBM细胞的有效抑制作用,然而,单一PDGFRA抑制剂的临床试验均未显示出抗肿瘤作用。基于上述背景,研究人员对GBM 中 PDGFA 和 PDGFRA 的调控机制进行了详细研究。首先开展的实验数据表明,PDGFRA 的活性或表达缺陷并没有有效地阻断PDGFA活性,所以推测PDGFRA 可能不是 PDGFA 功能所必需的。为了分析参与 PDGFA 功能的蛋白质,研究人员进行了免疫共沉淀 (Co-IP) 和质谱 (MS)实验,并首次描绘了 PDGFA 相关蛋白网络。令人惊讶的是,实验结果表明,即使没有激活 PDGFRA 和 AKT,EPHA2 也可以被 PDGFA 暂时激活。此外,MS、Co-IP、体外结合热力学(In vitro binding thermodynamics)和邻近连接实验(Proximity ligation assay)都一致地证明了EPHA2与PDGFA的相互作用,EPHA2的高表达导致 TCGA-GBM 数据库和临床 GBM 样本中 PDGF 信号靶标的上调。由于 PDGFA 诱导的 EPHA2 活化,通过抑制剂阻断 PDGFRA 不能有效抑制 GBM细胞的增殖,但同时抑制 EPHA2 和 PDGFRA后,在体外和体内的实验结果都显示出对GBM 细胞的协同抑制作用。因此,靶向PDGFRA 和 EHA2的双重抑制剂有望作为未来GBM的治疗新策略。△ 图2 PDGFRA和EPHA2联合抑制对GBM细胞的协同抑制作用。a、MTT实验测量过表达EPHA2(左)或敲低EPHA2(右)的LN18细胞的IC50。b、抗体阵列分析载体、EPHA2抑制剂(ALW)和PDGFRA抑制剂(IMA)处理的LN18细胞,显著变化的蛋白质用框架标记并单独列出。c、MTT实验评价联合药物在四种GBM细胞株的作用。d、载体、IMA、ALW 或 IMA + ALW 处理过的 U251 细胞原位生长的代表性图像(使用博鹭腾AniView100多模式动物活体成像系统拍摄)。e、生物发光信号强度绘制的肿瘤大小统计图。f、载体、IMA、ALW或IMA+ALW治疗的小鼠原位GBM肿瘤组织切片上Ki67的代表性免疫组织化学图像。论文链接https://www.nature.com/articles/s41392-021-00855-2广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了活体成像、分子影像、蛋白凝胶预制及印迹处理系统、发光检测四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 卓越电镜技术,助全球首次成功拍摄自噬图——访2016诺贝尔生理医学奖核心成员马场美铃研究员
    p  日本分子细胞生物学家,东京工业大学荣誉教授大隅良典(Yoshinori Ohsumi)荣获2016年诺贝尔生理学或医学奖,以表彰其在研究自噬性溶酶体方面作出的贡献。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 300px height: 257px " src="https://img1.17img.cn/17img/images/201906/uepic/8e5d5507-3d00-4365-a09c-829cdd0c93e6.jpg" title="1.jpg" alt="1.jpg" width="300" height="257" border="0" vspace="0"//pp  马场美铃老师作为本次获奖课题研究的核心人物,深受业界人士的关注。她是如何掌握电子显微镜技术,最终研发出酵母独特的快速冷冻置换固定法?/pp  还有,她对电镜观察的执着与热情来源于什么?/pp  为了找到这些问题的答案,我特地前往工学院大学八王子校园内的实验室,采访了马场美铃博士。/pp style="margin-top: 15px padding: 0px color: rgb(68, 68, 68) text-align: center " arial="" white-space:="" text-align:=""strongspan style="font-family: sans-serif font-size: 18px "捕捉自噬现象的决定性瞬间/span/strong/pp style="text-align: center "span style="color: rgb(63, 63, 63) "strongspan style="font-size: 18px "——凭借卓越的电镜技术,全球首次成功拍摄自噬图/span/strong/span/phr style="margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" height:="" border-right:="" border-bottom:="" border-left:="" border-image:="" border-top-style:="" border-top-color:=""/p style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""span microsoft="" color:="" style="margin: 0px padding: 0px "/span/pp style="padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" margin-top:="" margin-bottom:="" line-height:=""span style="margin: 0px padding: 0px font-size: 14px " span style="margin: 0px padding: 0px color: rgb(0, 176, 240) font-size: 16px " strong原文标题/strong:/span/spanspan style="color: rgb(38, 38, 38) font-family: sans-serif "オートファジー現象の決定的瞬間を捉えて——卓越した電子顕微鏡技術が世界初の撮影を成功させる/span/pp style="padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" margin-top:="" margin-bottom:="" line-height:=""span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "/span  span style="color: rgb(0, 176, 240) "strong采访· 文/strong:/spanspan style="color: rgb(38, 38, 38) "山田一郎,大塚智惠/span/pp style="padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" margin-top:="" margin-bottom:="" line-height:=""span style="margin: 0px padding: 0px color: rgb(0, 176, 240) "  strong中文编辑:/strongspan style="margin: 0px padding: 0px color: rgb(38, 38, 38) "蒋雪 span style="margin: 0px padding: 0px color: rgb(127, 127, 127) "(仪器信息网授权发布)/span/span/span/phr style="margin: 0px padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" height:="" border-right:="" border-bottom:="" border-left:="" border-image:="" border-top-style:="" border-top-color:=""/p style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:=""strong style="margin: 0px padding: 0px "/strong/pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""span style="font-family: sans-serif color: rgb(0, 176, 240) "/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 350px " src="https://img1.17img.cn/17img/images/201906/uepic/cc771970-ddca-4c28-9260-b746f9e0c93e.jpg" title="1.jpg" alt="1.jpg" width="450" height="350" border="0" vspace="0"//pp style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, " arial="" white-space:="" text-align:=""span style="font-family: sans-serif color: rgb(0, 176, 240) "工学院大学 综合研究所 研究员 马场美铃 博士/spanbr//pp style="text-align: center margin-bottom: 15px "span style="font-size: 18px "strongspan style="background-color: rgb(216, 216, 216) " span style="background-color: rgb(216, 216, 216) "从一开始觉得有趣到不断探索电子显微镜/span /span/strong/span/pp style="text-align: left "  2016年,大隅良典(东京工业大学荣誉教授)因“在细胞自噬机制方面的发现”获得诺贝尔生理学与医学奖,马场美铃博士也为这一课题研究发挥了至关重要的作用。之所以这么说,是因为马场博士的电子显微镜技术是大隅教授能够在自噬研究方面作出突破的基础。/pp  在日本女子大学上学时,马场博士第一次接触电子显微镜。她学的是家政学专业 家政理学系(理学部前身),大二的时候辅修了大隅正子教授的电子显微镜课。“通过电子显微镜观察动物细胞时,真的很意外,没想到细胞里面这么漂亮,我很开心,也非常感动”。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 206px " src="https://img1.17img.cn/17img/images/201906/uepic/e30382de-8542-4cde-acdf-da41ea1684af.jpg" title="2.jpg" alt="2.jpg" width="450" height="206" border="0" vspace="0"//pp  此后,马场博士开始孜孜不倦的阅读小川和郎课题组编著的“电子显微镜图说细胞学”(1974年发行)。这本书上有许多动物、昆虫、微生物、细菌等的电子显微镜图像,清晰呈现了肉眼看不到的微细结构,向世人展示了微观世界的美妙。/pp  由于对电镜的浓烈兴趣,大三时,马场博士到学校实验室当助手,帮忙制备植物细胞切片。“刚开始没什么经验,很难切出一个超薄的切片。所以一般我会先切,然后用电镜看看切的怎么样。观察自己第一次做的切片时,我看到了很多的刀痕,但是能够看到植物细胞壁的内部结构我还是很兴奋”,似乎也正是因为电镜的魅力,才促使她“毅然决然地选择了电子显微镜的研究”。日本女子大学校有电镜实验室,那时,马场博士一边做生物学的研究,一边跑电镜实验室,开启了电镜研究的日常。“当时实验室电镜设备一应俱全,所以可以说我是十分幸运的。除了透射电子显微镜(TEM)、扫描电子显微镜(SEM)外,还有冷冻复型电镜、冷冻切片机。实验室买了新设备,我都会学着用,慢慢学到的东西也越来越多。”/pp  马场博士卓越的操作技术,是她日积月累的成果。她锲而不舍,反复练习,才真正掌握了切片、冷冻复型、冷冻切片等技术。而且她还经常参加仪器培训。比如,在报名参加某个培训时,只有两个人,一个就是马场博士。一般的大会只是泛泛而谈,但这种培训会讲的十分详细,镜筒都会拆卸很多次。她熟读本阵良平著作的“医学生物学电子显微镜入门”(1968年发行),以掌握电镜理论。而且,电镜实验室的仪器出现故障时,她会紧跟在维修人员身后,观察他们的操作,不时提出疑问,在实践中不断学习。她也经常参加学术会议,与时俱进,学习新技术。她思维敏捷,洞察力强,能快速抓住要点。在日积月累的学习中,掌握了卓越的电镜技术。/pp style="text-align: center margin-bottom: 15px "span style="background-color: rgb(216, 216, 216) "strongspan style="background-color: rgb(216, 216, 216) font-size: 18px " 成功开发快速冷冻法,可观察酵母的超微结构 /span/strong/span/pp  酵母独特的快速冷冻置换固定法的研发成功,彰显出马场博士的电镜技术实力。当时,她一直在使用电镜观察真菌微生物--酵母,探究其微细结构。实验中发现:对于菌类细胞微细结构的观察,最大的问题是固定组织标本。观察运动细胞中的细胞器等物质时,必须要固定组织标本才可以正常观察。“市川老师课题组从10多年前就开始使用快速冷冻法对动物细胞标本进行固定,由此拍摄了很多电镜图像。但是,类似酵母这样的真菌细胞会受到细胞壁干扰,即使采用Heuser型金属接触法(动物细胞处理方法),观察效果还是欠佳。而且如果不破坏细胞壁,固定液就无法进入到细胞内,所以我觉得这个实验可能注定要失败了”/pp  就在这个关键节点,以田中健治(当时名古屋大学医学部附属医真菌研究机构教授)为代表的酵母细胞研究会,迫切需要一种快速冷冻方法。由于当时Howard,R.J. 和Aist,J.R. 已成功研发出快速冷冻线状真菌的方法,研究会郑重邀请其中一人,在日本举办了研讨会。田中教授和日本女子大学的研究员(小堀博美)参加了那场研讨会,并收获良多。但是,酵母和线性真菌的细胞壁性质不同,更不好处理,实验进展不太顺利。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/0e5baf88-6359-4abe-9767-71cd74dd16d1.jpg" title="3.jpg" alt="3.jpg"//pp  “于是我尝试将细胞壁切开,夹成“三明治”。把酵母细胞夹在两个铜板之间,浸入冷却保护剂中,使之快速冷冻,然后切割破坏细胞壁,将组织标本浸入锇酸(OsO4)溶液内,如此反复多次。最终成功研发出冷冻复型方法。核糖体也有细胞壁,当拍摄到细胞内清晰的结构时,我非常兴奋。当时也是别无他法,我才尝试溶解细胞壁,破坏核糖体,提取细胞组织。当然这些都写进论文里了”/pp  1987年,酵母独特的快速冷冻置换固定法别名“夹心法”诞生了。自此之后,电子显微镜可以观察到酵母细胞的整体形貌,但这需要操作人员熟练掌握操作技巧。1990年前后,全世界仅有3个人能够用这种方法成功观察酵母细胞。其中一人,自不必说,当然是经过诸多波折研发出这种新方法的马场博士本人。/pp style="text-align: center margin-bottom: 15px margin-top: 10px "span style="font-size: 18px "strongspan style="background-color: rgb(216, 216, 216) " 自噬研究源于“想要观察” /span/strong/span/pp  马场博士一直努力钻研电子显微镜技术,逐渐她开始渴望更深入的研究。于是她辞去日本女子大学的工作,1988年进入工学院大学,专注于科学研究。那之后她经常到大隅良典的驹场实验室做技术交流,当时大隅良典刚升为东京大学教养学部的副教授。大隅教授曾将分离的液泡送至日本女子大学进行冷冻复型处理,随后不久,大隅教授和马场博士二人便开始一起进行科研项目研究。“日积月累,我掌握的技术越来越多,于是我开始不满足于现状,就在这时听说大隅教授建了驹场实验室。刚开始,两个人只是讨论一起写的论文。后来,我会用电子显微镜来验证一些假想,随着研究思路和方向日渐清晰,我觉得实验过程也变得十分有趣,而且令人沉迷。所以,我连歌手荒井由美结婚了都不知道(笑)。我一心扑在研究上,不太关注其他事情”/pp  大隅教授主要研究酵母菌液泡的物质输送。液泡可储存细胞内的有机代谢产物,它和溶酶体一样均含有分解酶,所以推测液泡应该具备分解作用。使用光学显微镜观察饥饿状态的酵母细胞,我们发现液泡内堆积着很多圆形颗粒。/pp  “但是,光学显微镜的分辨率低,很难捕捉到颗粒的内部结构。“想要看看这到底是什么”。因为大隅教授的这句话,开启了自噬机制研究”。大隅教授与桂勋(现国立遗传学研究所所长)成立了共建实验室,实验室有光学显微镜,走廊还放了一台细胞培养装置。据马场博士回忆,如果拿“宇宙时代”比喻当时日本女子大学的设备等级,那驹场实验室就是“石器时代”。“大隅教授一探究竟的想法很强烈。最初大隅教授通过溶解酵母细胞壁,形成原生质体,然后向细胞组织内注入锇酸,采用常用的固定法观察了组织细胞。他当时说道,“即使污染标本也没关系,想用电镜观察看看”。观察时,液泡内一片漆黑。所以只能通过快速冷冻处理组织切片。但是,驹场实验室没有固定时所用的细胞冷冻装置。他拿着自己画好的图纸,让本乡的工厂照图生产。”/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/1df89095-433e-4fcd-a7f6-7ce8899634cd.jpg" title="4.jpg" alt="4.jpg"//pp style="text-align: center margin-top: 10px margin-bottom: 15px "span style="background-color: rgb(216, 216, 216) font-size: 18px "strong 世界首次成功拍摄自噬的电镜图 /strong/span/pp  工厂生产的小型细胞冷冻装置虽然没有温控功能,但只要具备熟练的操作技巧和丰富的专业知识,就能成功冷冻细胞。但是,快速冷冻酵母细胞对于马场博士来说也是一道难关。因为饥饿状态的酵母细胞,细胞壁会变厚,液泡体积增大。“液泡和细胞质不同,含水量多,宛如水中漂浮的颗粒。在低温冰冻过程中液泡会迅速形成冰晶,难以切出结构完整的组织切片,而且产生的冰晶会损伤细胞的内膜系统。很难做到细胞冷冻状态刚刚好,我尝试很多次都失败了。而且,切割标本时,刀需要正对标本,制备超薄切片要步步严谨,整个标本制备的过程必须全神贯注。”/pp  历经诸多波折,马场博士终于找到快速冷冻酵母细胞的方法。并于1989年拍摄到自噬现象的电镜图像,成为世界第一人。“拍到的图片真的是太漂亮了。颗粒是圆形的。从这张图上可以清晰地看到被细胞膜包围的细胞质。当大隅教授看到(运动的颗粒正是)细胞质时,他激动地说道‘用它可以写两篇论文了’”/pp  事实上图像拍摄也蕴含了很多技术含量,比如,冷却速度需在1秒内冷却到10,000° C以下,当然这些鲜为人知。想要获取清晰图像可不是那么轻松的。/pp  马场博士之所以能取得这一辉煌成就,是因为她在工学院大学夜以继日地钻研和努力。实验中使用的仪器就是日立生产的高分辨电镜H-500H。拍摄完图像后还要写总结报告,据悉她有时将近3个月都呆在实验室里。日立生产的电子显微镜不单单对工学院大学,对其他高校的研究也发挥了重要的作用。“日立集团旗下的日制产业(日立高新技术前身)在市谷建立了实验室,我还借用过那里的H-7000或H-7100。很可惜现在不能租借了,而且最难得的是,以前用户可以免费使用一整天。当时拍摄的图像作为抑制性细胞被刊载在获奖论文中”/pp  她这样总结电子显微镜对自噬研究作出的贡献。“毫不夸张的说,细胞质的发现开启了自噬研究的大门。这是第一步。第二步,通过快速冷冻置换固定法观察标本,清晰观察到膜动态,推动了酵母自噬体的研发进程。反复实验证实了液泡内的机制。根据生物化学方法无法观察到自噬体和液泡膜融合的过程,而通过电镜可以清晰捕捉到自噬体进入液泡的瞬间,这是电镜独有的特点。而且图像极其清晰,其他实验室做不到。”/pp  自噬机制是指液泡与自噬体融合形成溶解酶,降解不需要的蛋白质,重新生成生命活动所需的蛋白质。两年后大隅教授将这一发现写入论文,但大隅实验室对于自噬研究的脚步不曾停止。1996年马场博士因“酵母自噬的形态学研究”,被授予博士(理学)学位。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/c363e334-fbef-49ef-98fe-6b3a92a39ced.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "span style="color: rgb(0, 176, 240) "左:细胞在饥饿状态下,自噬体(细胞质)进入液泡内/span/pp style="text-align: center "span style="color: rgb(0, 176, 240) "右:自噬体遭到破坏时,细胞吸收液泡内的营养物质/span/pp style="text-align: center margin-bottom: 15px margin-top: 10px "span style="font-size: 18px background-color: rgb(216, 216, 216) "strong 挑战尚未解开的无数自噬谜题 /strong/span/pp  2016年10月3日大隅良典教授荣获诺贝尔生理学或医学奖。2015年就是日本人荣获这一殊荣,所以马场博士觉得“今年希望渺茫”,甚至她都忘了颁奖这么重要的日子。共同参与自噬项目研究的马场则男,当接到报社记者打来的电话时,十分意外,慌张地打开电视,看到大隅教授正在接受记者采访。/pp  “她发言时还提到我的名字。科研就是这样的,身边的人得奖,所以我做的相关研究也受到了关注,但是我当时并没有那么兴奋,反而十分冷静,感触倒是很多。随后,我接受了记者采访。随着时间的沉淀,我越发感觉到这个奖项的分量。”/pp  自噬研究始于1988年,历经28年才得此殊荣。目前马场博士正在和自噬期刊主编(国外科研学者)合作,共同研究自噬现象。/pp  “有时我们可以捕捉到细胞变化的决定性瞬间。所以,研究人员要保持好奇心,善于发现,这非常重要。自噬体膜会被溶酶体释放的各种酶破坏,因此很难被检测到。当然我们也曾苦恼于看不清膜结构,究其原因也无人知晓。前方的路未知,脚踏实地大胆探索,才能走出一条成功路。我一直秉承着这种工作态度。/pp  自噬实则是一种细胞自身成分降解和循环的基本过程,据说帕金森病等神经退行性疾病就受自噬效应影响。因此这一发现对于未来医疗发展具有深远的意义。引一句大隅教授的话,“目前我们对自噬现象的了解只有30%。”马场博士也提到:“自噬体膜的起源尚未可知,而且目前我们对于变异株的了解也只是皮毛,所以未来的路任重道远”。为揭开基础领域的面纱,马场博士利用电子显微镜专心研究自噬形态学,日复一日年复一年,从未放弃。/pp  /pp style="margin-bottom: 10px "  span style="font-size: 18px " span style="font-size: 18px background-color: rgb(216, 216, 216) " strong编者按 /strong/span/span/pp  img style="float:left " src="https://img1.17img.cn/17img/images/201906/uepic/72a5595f-5be1-4595-b385-f995780b98da.jpg" title="00.jpg" alt="00.jpg"/马场博士直言相告道,“前方的路未知,脚踏实地大胆探索,才能走出一条成功路”,想必这句话能引起不少读者的共鸣吧。不论是什么行业,那些勇于探索未知的人大抵都怀着同样的气魄,不断尝试开辟一条新路。由于史无前例,毫无借鉴经验参考,所以经常会碰壁,尽管如此他们还是一往无前。这份动力大概源于“热爱”吧。/pp  在旧刊号INTERVIEW Vol.6的影像结尾小泉秀明如是说道。马场博士用事实向我们证明了“只要你满怀热爱,就算周围人反对也一定会坚持到底,以及一个优秀的团队是创新的重要基石”。SI NEWS特辑也迎来了“INTERVIEW”系列第7版。我十分敬佩老师们志存高远和坚持不懈的努力精神,每每看到这些,我都备受鼓舞,充满干劲。SI NEWS今后将继续努力为您传播正能量。由于某些原因本期分两次采访。/p
  • 北大首次用酵母菌实现PM2.5毒性实时在线监测
    空气污染特别是PM2.5是当前人类面临的重要的环境问题之一。北京大学课题组研究人员近期在此问题上取得跨学科进展,首次以荧光标记的酵母菌取代现有方法中的半导体传感器,实现了对PM2.5多方面毒性的实时在线监测。  据了解,目前对于大气颗粒物的毒性研究,大多采用离线的方式,不能及时知晓其毒性 而细胞染毒或动物暴露实验灵敏度偏低,一些健康效应不易检测到。在颗粒物致病机理方面,目前也存在类似“盲人摸象”的现象,不能够全方面地了解PM2.5的毒性机理。  受酵母菌相关研究的启发,由北大环境科学与工程学院研究员要茂盛、物理学院副教授罗春雄领导的研究团队,集成利用空气采样、微流控、荧光蛋白标记的酵母菌以及单酵母菌蛋白荧光自动检测平台,用活体酵母菌替代传统半导体传感器,创建了大气PM2.5毒性实时在线监测系统。  要茂盛介绍,课题组先将PM2.5颗粒物采集到液体中,再将样品实时输送至放有酵母菌的芯片里。由于酵母菌会对来自颗粒物的刺激发生反应,通过用不同荧光蛋白标记酵母菌的所有基因,就可实时看到酵母菌的哪些基因对颗粒物的刺激发生了响应,就好像可“实时监测不同地区车辆行驶状况”。  目前,此项研究成果已申请国家发明专利。课题组正在利用该体系对不同国家、地区颗粒物的毒性进行研究,同时也在筛查更多有响应的酵母菌蛋白,并研究其灵敏度、响应的毒性标定,以进一步揭示PM2.5对人体的具体致病毒性机制。
  • 使用QPCR 检测酵母,避免巨大经济损失 -- 将英国Bibby 的荧光定量用于红酒行业
    英国Bibby Scientific 集团,子品牌PCRmax 下的荧光定量PCR仪ECO, 或者子品牌TECHNE下的PRIME PRO 48, 可以有效而可靠地检测名叫“德克.布鲁赛尔”的酵母。 对于全球红酒行业而言,该酵母的存在是破坏红酒的一个主要原因。从这方面说,Bibby 的基于PCR的荧光定量检测方法也有助于红酒行业防止巨额经济损失。酵母中释放的可破坏味道的酚成份, 产生了不可预计的芳香成份,通常会与谷仓的味道或动物的汗味等结合,从而破坏红酒的味道。如果采用传统的微生物学技术去检测酵母,太费时费力,成本高, 结果也不太可靠。相反, 实时定量PCR方法,能高效快速并精确地检测酵母。检测“德克.布鲁赛尔”酵母的存在,可用Bibby 的荧光定量PCR仪 ECO 或Prime Pro 48,及“德克.布鲁赛尔26S核醣体RNA” 检测试剂。该试剂专门用于德克.布鲁赛尔酵母基因组的定量检测, 由引物与探针序列组成,检测范围广。广州语特仪器科技有限公司全权代理Bibby产品在中国大南方区的销售。Bibby PCR Detection Methods Could Prevent Large Economic Losses in the Wine IndustryBibby Scientific has announced that it has launched a PCR-based method for reliable and highly specific detection of the yeast, Dekkera bruxellensis, which is a major cause of wine spoilage worldwide, causing large economic losses within the global wine industry.Flavour-spoiling phenolic compounds released from this yeast lead to undesirable aromas, known as ' Brett' taints, that are normally associated with aromas of barnyard, burnt plastic, wet animal and horse-sweat. Detection of the yeast through traditional microbiological techniques can be time-consuming, costly and unreliable. In contrast, real-time or quantitative PCR-based detection methods allow for exceptionally rapid and highly specific identification of the yeast. Testing for the presence of D. bruxellensis can be determined using the Techne Prime Pro 48 qPCR system in conjunction with the Techne qPCR test ' Dekkera bruxellensis 26S ribosomal RNA' . The Techne qPCR Kit for D. bruxellensis is designed for the in vitro quantification of D. bruxellensis genomes. The kit is designed to enable the broadest detection possible whilst remaining specific to the D. bruxellensis genome. The kit is comprised of primers and probe sequences that have 100% homology with a wide range of D. bruxellensis sequences based on comprehensive bioinformatics analyses关于语特 和 英国Bibby / 德国ART / 德国CAT / 瑞士Gerber Instruments 广州语特仪器科技有限公司专注于搅拌器/分散乳化机等实验室样品制备等通用仪器, 熔点仪/光度计/冰点仪等分析仪器,以及PCR等生命科学仪器。 作为英国比比(Bibby )在中国南方的首代,广东,广西,四川,重庆,云南,海南,贵州和西藏是我司的服务范围。语特公司也是德国ART, 德国CAT,瑞士Gerber Instruments 在中国的首代。 * 英国BIBBY 成立于上个世纪50年代,作为英国最大的实验室科学仪器生产商, 旗下有4个子品牌:Stuart,Techne,Jenway,Electrothermal. 专注于样品前处理等通用实验室仪器(如:熔点仪, 搅拌器, 混匀器,摇床, 培养箱,干浴器/氮吹仪,水浴,菌落计数器, 纯水蒸馏器),分子生物学研究设备(基因扩增仪PCR,荧光定量,杂交箱);分光光度计/超微量紫外等分析仪器,及平行反应工作站相关产品。 * 德国ART 成立于上个世纪,是德国乃至全球最专业的分散乳化专家。顶级分散乳化产品从实验室仪器,中试产品到工业设备, 分散头种类组合高达上百种;应用领域覆盖了化工,化妆品,制药,食品,环保等各大领域。 * 德国CAT 成立于上个世纪50年代,是德国样品制备仪器方面的专家之一, 以”品质稳定”而闻名。其顶置式搅拌器种类多样,从手持式,教学用,到科研通用型,高粘度型,是CAT的代表产品线。 * 瑞士Gerber Instruments 有超过120的历史,是专注于乳食品行业的典型代表。其产品冰点仪, 乳脂离心机, 食品专用PH计, 流出式粘度计等, 风靡欧洲及其它大陆国家。
  • 青岛能源所单细胞拉曼流式分选技术研究获进展
    日前,中国科学院青岛生物能源与过程研究所单细胞研究中心在基于微流控的单细胞拉曼流式分选技术研究中取得新进展,相关成果于2月5日在线发表在Analytical Chemistry (Zhang PR, et al, Anal Chem, 2015)。  单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。  由研究员徐健和马波领导的研究团队针对上述瓶颈开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别(下图A)。通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles 下图B),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。  单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。  该研究得到了科技部创新方法专项、国家自然科学基金面上项目、微进化重大研究计划及中科院重点部署方向项目等的支持。  原文链接:  1. Raman-activated Cell Sorting based on dielectrophoretic single-cell trap and release, Anal. Chem., 2015, doi: 10.1021/ac503974e.  2. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip, 2014 Dec 21 14(24):4599-603. doi: 10.1039/c4lc00833.  3. Raman activated cell ejection for isolation of single cells, Anal. Chem., 2013. doi: 10.1021/ac403107p.     (A)基于阵列介电单细胞捕获/释放单细胞拉曼分选示意图 (B)基于电磁阀吸吮的微流控细胞分离技术(Cover Article)。
  • 中国学者权威期刊发表流式细胞新技术
    流式细胞技术与相关的荧光激活细胞分选技术(fluorescence-activated cell sorter,FACS)对生物学研究产生了深远的影响,但是它们还是存在一些局限性,近年来,科学家们研发出了一些新的策略,但他们并没有修改传统的流式细胞仪,而是在新型微流控装置上进行精简。这些微型芯片实验室能帮助研究人员在更为多样的物理和分子特征基础上进行筛选和分型,而且也不需要抗体。以下是几位学者提出的新型流失细胞技术与研究策略。  研究人员:中科院青岛生物能源与过程研究所单细胞研究中心主任徐健研究员  当前项目: 微生物生物燃料发展  存在问题: 生物燃料研发需要标识出那些能进行特殊碳化学反应的细胞,但是这些细胞无法正常培养和研究,因此研究人员也不清楚是否有一些能识别和分拣细胞的分子标记。  解决方案:  徐健研究组以单细胞拉曼分选(RACS)为基础,研发出了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。  单细胞拉曼分选(RACS)是一种极具潜力的活体细胞功能分选技术。与目前通用的荧光激活细胞分选(FACS)相比,RACS具有直接基于细胞功能分选、无需标记、不需预知生物标识物的关键优势,因此在海洋资源挖掘、生物能源种质筛选、肿瘤监测与分选、环境微生物监控、农业生态研究等诸多领域具有广阔应用前景。但由于细胞固有拉曼信号弱所导致的细胞分选通量低这一问题限制了其应用与推广。开发高速流动细胞拉曼信号的快速采集和识别已经成为发展高通量拉曼流式细胞分选的关键技术挑战之一。  为此,这一研究组开发了一种基于阵列介电单细胞捕获/释放的快速拉曼识别技术。通过对高速流动单细胞的介电操控,实现了单细胞流在电极上的捕获/释放,并在细胞捕获期间(毫秒-秒)完成拉曼信号的采集识别。  通过耦合该团队同期建立的基于电磁阀吸吮的微流控细胞分离技术(Zhang Q, et al., Lab on a Chip 2014, Cover page, 2014 HOT Articles),实现了产色素工程酵母和普通酵母细胞的拉曼流式分选。前述工作首次建立起基于介电单细胞捕获/释放的单细胞拉曼流式分选原理和装置,为下一步发展高通量拉曼流式细胞分选仪器奠定了原理和关键技术基础。  单细胞中心前期建立的单细胞弹射分选方法(Wang Y, et al, Anal Chem, 2013)适用于贴壁生长的细胞、微生物生物膜等固相细胞的分选。而该研究开发的单细胞流式分选方法针对于流动相细胞的分选。这两种方法学的建立和相互结合,为研制广谱性适用于自然界各种细胞存在状态的单细胞拉曼分选装备提供了可行性。  如何入手:  徐健研究员表示,在国内已经配置了两台微流控RAC系统,同时还有另外两台正在组装中。第三台RAC系统在牛津大学,研究人员可以申请使用这些仪器,他表示,&ldquo 欢迎提出任何问题,我们的一些资助资金也鼓励项目合作。&rdquo
  • 小型台式无掩膜光刻机制备微流控通道助力不同形貌酿酒酵母菌的有效分类和收集
    【引言】酿酒酵母菌是一种具有高工业附加值的菌种,其在真核和人类细胞研究等领域也有着非常重要的作用。酿酒酵母菌由于自身所在的细胞周期不同,遗传特性不同或是所处的环境不同可展现出球形单体,有芽双体或形成团簇等多种形貌。因此获得具有高纯度单一形貌的酿酒酵母菌无论是对生物学基础性研究还是对应用领域均有着非常重要的意义。 【成果简介】麦考瑞大学Ming Li课题组利用MicroWriter ML3小型台式无掩膜光刻机制备了一系列矩形微流控通道。在制备的微流控通道中,通过粘弹性流体和牛顿流体的共同作用对不同形貌的酿酒酵母菌进行了有效的分类和收集。借助MicroWirter ML3中所采用的无掩模技术,课题组轻松实现了对微流控传输通道长度的调节,优化出对不同形貌酵母菌进行分类的佳参数。 【图文导读】图1.在MicroWriter制备的微流控通道中利用粘弹性流体对不同形貌的酿酒酵母菌进行分类。(a)对不同形貌酿酒酵母菌,而非根据尺寸进行分类的原理图。微流控结构有两个入口,一个是用于注入酿酒酵母菌溶液,另一个用于注入聚氧乙烯(PEO)鞘液。除此之外,该结构还有一个微流控传输通道,一个扩展区和七个出口。所有的酵母菌初期排列在鞘液的边缘,在界面弹性升力和内在升力的共同作用下,酿酒酵母菌根据形貌在鞘液内被分类。(b)对酿酒酵母菌进行形貌分类的微流控通道设计图(左)和用MicroWirter ML3制备出的实际微流控通道(右)的对比。图中比例尺为10 μm。图2. 微流控传输通道的长度对不同形貌酿酒酵母菌分类的影响。(a)不同形貌的酿酒酵母菌在不同长度传输通道参数下的实际结果。黑色虚线代表传输通道的中心线。图中比例尺是50 μm。(b)不同形貌的酿酒酵母菌在侧向的分布结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。误差棒代表测量100次实验的分布结果。图3. PEO浓度1000 ppm,微流控传输通道长度15 mm,酵母菌流量为1μL/min, 鞘液流量为5μL/min的条件下不同形貌的酿酒酵母菌的分类和收集效果。(a)收集不同形貌酿酒酵母菌的七个出口。(b)不同形貌酵母菌在入口和出口的比较图。(c)实验表明不同形貌的酵母菌可在不同出口处进行收集。单体主要在O1出口,形成团簇的菌主要O4出口。(d)不同出口处对不同形貌的酿酒酵母菌的分类结果,单体(蓝色),有芽双体(黄色)和形成团簇(紫色)。(e)和(f)不同出口对不同形貌的酿酒酵母菌的分离和收集结果的柱状图。误差棒代表着三次实验的误差结果。 【结论】随着微流控在生物领域的应用逐渐增多,影响力逐渐扩大,如何快速开发出符合实验设计的原型微流控结构变得十分重要。由于实验过程中需要及时修改相应的参数,得到优化的实验结果,灵活多变的光刻手段显得尤为重要。从上文中可以看出,MicroWirter ML3小型台式无掩膜光刻机可以帮助用户快速实现原型微流控结构的开发,助力生物相关微流控领域的研究。 【参考文献】[1]. Liu P , Liu H , Yuan D , et al. Separation and Enrichment of Yeast Saccharomyces cerevisiae by Shape Using Viscoelastic Microfluidics[J]. Analytical Chemistry, 2021, 93(3):1586-1595.
  • 技术线上论坛|1月21日《亚微米尺度下的胶原蛋白分析及其在单细胞、细菌层面的生物学应用》
    [报告简介]在本次网络研讨会中,我们将讲述亚微米同步光热红外(O-PTIR)光谱和拉曼显微镜(IR+Raman)是如何在生命科学领域中应用和文章发表的,从组织到细胞,甚至单个细菌细胞。Kathy Gough教授(加拿大马尼托巴大学)将展示她近期发表的关于O-PTIR在胶原蛋白、肌腱和纤维分析上的新研究成果。在该研究中,偏振光被用于深入了解分子层次取向,从完整定向肌腱切片(在CaF2和玻璃上)和直径约500 nm的单个纤维中获得红外光谱和图像,以获得生物聚合物的次经过验证的互补化数据。原纤维红外光谱中酰胺I和酰胺II条带相比于完整肌腱较窄,且相对强度和条带形状均发生了改变。这些红外光谱代表了正常I型胶原原纤维在偏振光下的可信赖红外谱图,可作为未来胶原组织研究的基准来进行使用。[注册链接]PC端用户点击https://www.photothermal.com/webinars/报名 ,手机用户请扫描上方二维码进入报名[主讲人介绍]Prof. Kathy Gough,Department of Chemistry, University of Manitoba, Canada (加拿大曼尼托巴大学, 化学系)Kathleen M. Gough是加拿大曼尼托巴大学化学系教授、地理与环境系兼职教授,也是生物医学工程研究项目的核心成员。她是远场FTIR和O-PTIR振动光谱以及近场红外成像和拉曼显微镜的专家。她的研究领域从生物/生物医学研究(细胞和细胞核、脑组织、正常和损伤的心脏组织、正常和机械损伤的肌腱、真菌、酵母细胞、北海冰硅藻)到新材料(合成蜘蛛丝、用于伤口敷料的聚丙烯酸水凝胶、自消毒材料)。Kathy Gough教授开创了使用远场红外光谱层析成象技术并用于3 D可视化微观目标的先驱工作,立体像素分辨率可达1.1 µm3,并和其前博士生CFindlay (2017)共同拥有该。2017年,她被选为应用光谱学学会会员,同时也是临床光谱学和应用光谱学编辑顾问委员会成员。Dr. Mustafa Kansiz, Director of Product Management and Marketing, Photothermal Spectroscopy Corp. (PSC公司产品运营和市场总监)[报告时间]开始: 2021年1月21日 10:00 AM结束: 2021年1月21日 11:00 AM请点击注册报名链接,预约参加在线讲座[技术线上论坛]http://www.qd-china.com/zh/n/2004111065734
  • 如何有效评价酵母等微生物发酵能力及发酵特性?
    发酵指人们借助微生物在有氧或无氧条件下的生命活动来制备微生物菌体本身、或者直接代谢产物或次级代谢产物的过程。经发酵过程制造食品时所利用的。最常用的有酵母菌、曲霉以及细菌中的乳酸菌、醋酸菌、黄短杆菌、棒状杆菌等。通过这些微生物作用制成的食品通常有以下5类:1、酒精饮料:如蒸馏酒、黄酒、果酒、啤酒等;2、乳制品:如酸奶、酸性奶油、马奶酒、干酪等;3、豆制品:如豆腐乳、豆豉、纳豆等;4、发酵蔬菜:如泡菜、酸菜等;5、调味品:如醋、黄酱、酱油、甜味剂(如天冬甜味精)、增味剂(如5′-核苷酸)和味精等。 如何有效地评估酵母等微生物的发酵能力、培养基(面团、啤酒等)发酵特性及样品的发酵条件等?如何长时间监测面包面团、酒类酿造、生物乙醇相关的发酵过程以及BP(发酵粉=化学膨胀剂)等工艺过程? 产品推荐 日本WSF-2000MH系列发酵特性分析仪是一种通过自动持续测量并记录各种样品在微生物发酵过程中产生的气体总量和产气速度的变化曲线,分析样品的发酵条件、发酵特性等,可同时分析10到20个样品,每个样品独立控制、监测和分析。 产品应用微生物方面——菌株的育种、烘焙制品、酒类酿造、酱油、食品腐败、工业酒精以及甲烷氢气等领域,如小麦粉品质评价、酿造品质控制、微生物菌株筛选等。化学方面——食品膨胀剂、发泡剂、洗涤剂、入浴剂以及医药品等领域,如膨化剂、发泡剂等的新品开发和质量管控等。
  • 世界电镜九十年之荷兰电子显微镜早期发展历史(上)
    本文作者:Woutera van Iterson,荷兰阿姆斯特丹大学阿姆斯特丹生物中心、分子生物学研究所、分子细胞学部,摘译原文发布于1996年。一、荷兰电子显微镜的起源1939年,代尔夫特只是一个有着著名历史的小镇。1584年,被称作“荷兰国父”的沉默者威廉正是在这里被暗杀。而在代尔夫特的Nieuwe Kerk依旧可以找到奥兰治王室成员的墓穴。微生物学的创始人Antoni van Leeuwenhoek也在代尔夫特通过自制的玻璃透镜研究他的“小动物”。如果不是因为代尔夫特理工大学以及它的创新产业,代尔夫特在二战前留给人们的总体印象只是一座古老的城镇。在这本回忆录中,代尔夫特产业中一个特别的部分,即荷兰的精神象征法布里克(简称“酵母工厂”)扮演了一个重要的角色。首先,在代尔夫特理工大学的技术环境中,酵母工厂为国家最重要的微生物研究传统的发展做出了巨大贡献。1885年,酵母工厂的总经理J.C.van Marken邀请M.J.Beyerinck加入工厂。Beyerinck于1895年成为微生物学教授,并被称为微生物学之父。1921年,A.J.Kluyver(微生物学家之父)接替了Beyerinck的工作。Kluyver将他的教授任期与酵母厂的咨询工作结合了起来。这些是如何与电子显微镜联系起来的?答案就是酵母细胞。1939年夏天,代尔夫特理工大学有一名工科学生,名叫Jan B. Le Poole。Jan B. Le Poole(图1)向他的物理学教授H.B.Dorgelo提出了一个大胆的请求,即为他自己的工程专业制造一台电子显微镜。因缘际会之下,这时的时机恰好成熟。图1 J. B. Le Poole博士,荷兰电子显微镜的创始人,荷兰电子显微镜学会的首任会长彼时,Dorgelo、F.G.Waller(酵母工厂总经理)和A.J.Kluyver于1939年7月6日访问完柏林的西门子公司刚刚返回。而Kluyver很熟悉最近出版的微生物照片和电子显微镜提供的相对高放大倍数的照片。问题是,是否有可能用这样一种仪器来确定酵母细胞是否配备了一个带有染色体的真正的浓缩细胞核,或者它是否类似于细菌,是否可以在核物质和细胞质之间作出明确的区分?考虑到这个问题的实际意义,Waller、Kluyver与Dorgelo讨论后,此三人决定前往透射电子显微镜及其理论背景的圣地:战前的德国。早在1939年,西门子就根据von Borries和Ruska的设计,成功售出了第一台商业化的电子显微镜。它的放大倍数高达4万倍,分辨率比光学显微镜高得多,其价格约为80000荷兰盾(笔者注:按2022年5月汇率1荷兰盾约合3.37元人民币)。然而,该电镜与其提供的可能效果有一定出入。此外,在柏林,他们确实在电镜“高”放大率下观察到了酵母细胞,但那不过是一个“丑陋”的黑点,而在光学显微镜下,一个整齐的生物体,在细胞壁内具有原生质、液泡和各种其他结构,只有细胞核是暗黑的。一般说来,当时这种生物研究工具是否有用颇具争议。在整个细胞都聚焦的情况下,人们能否分辨出重要的细节?此外,电子一直被认为是粒子,直到1924年,人们通过德布罗意的工作才意识到,电子也会像波一样传播。然而,这并没有改变这样一个事实,即微粒肯定会轰击,继而破坏有机材料。最重要的是,生命的本质在于细胞中高百分比的水,而细胞在仪器的真空条件下会发生脱水。当电子显微镜的发明变得更广为人知时,在某些生物学圈内能听到这样的说法:“电子显微镜只是收集了一些人工制品。”毕竟,瑞士的Frey Wyssling和其他人已经用间接方法充分分析了细胞的总体结构。关于生物膜的结构性质,重要的论文也几乎达到了分子水平。电子显微镜真的能给20世纪30年代这一重要的知识宝库增添什么吗?这些反对意见促成了代尔夫特理工大学未来年轻科学家的冒险,也成就了他们的幸运。鉴于所有不确定性,年轻的Jan Le Poole渴望成为一名先锋,后来证明他很幸运。Jan Le Poole建立了一台两级电子显微镜,1941年可以拍摄第一张电子显微照片。然而,40k V的加速电压被证明是非常局限的。因此,Jan Le Poole决定与飞利浦物理实验室合作建造一台150k V电子显微镜。在埃因霍温的飞利浦,A.C.van Dorsten开发了一个非常稳定的150k V的部件,同时Le Poole在H.J.de Heer的协助下正在代尔夫特研究电子光学系统。在1944年春天的代尔夫特,全新的150k V电子显微镜被研制成功。二、荷兰电子显微镜的早期组织人们很快认识到,开发电子显微镜并研究其在生物学和其他学科中的应用需要成立一个组织和专项资金。1941年,TPD(Technisch Physische Dienst)由应用科学研究组织(TNO)和代尔夫特大学合作成立。1943年11月1日,一个专门的电子显微镜研究所作成立,隶属于TPD,不过其预算独立。该研究所得到了代尔夫特酵母工厂、飞利浦、Van Houten、Algemene Kunstzijde Unie(AKZO)、喜力啤酒厂和TPD等工业的资助。后来,荷兰联合利华和荷兰皇家壳牌公司也提供了每年不少于3000荷兰盾的资助。该研究所由一个咨询委员会监督,技术和日常管理由Le Poole负责,而Dorgelo和Kluyver负责科学监督。三、代尔夫特的电镜我们来自Le Poole的小组,在荷兰从战争的苦难中解放出来之前,我们只能孤立地工作,因此几乎没有意识到电镜的设计包含了许多令人兴奋的创新。其中一项创新是在40倍放大的物镜和160倍放大的投影镜头之间增加了两个镜头。其中一个额外的镜头有一个小孔,可以使放大倍数在6400倍到80,000倍间连续变化。放大到6400倍时,电流通过所谓的衍射透镜(另一个更大孔径)。使用该衍射透镜,可以从小至3μm的样品选定区域获得衍射图案。并可以在电子图像和电子衍射间来回切换,这在代尔夫特已被发现可以用于粘土矿物的测定。选区衍射的原理先前已被H.Boersch发现,但当时Le Poole还不知道。引入中间透镜的另一个优点是电镜镜筒的高度减小,从样品到最终图像的总距离达到60cm。此外,LePoole引入了一种特殊的对焦装置,尤其在高倍率下,当荧光屏上的强度较低时,可进行精确聚焦。入射电子束通过聚光镜和样品中两组平行板间的横向电场,以50Hz的频率振动。当物镜没有完全聚焦时,这种振动会使图像模糊。这有助于聚焦,并大大提高了代尔夫特研究所拍摄电镜照片的质量。从那以后,这种“摇摆”的磁型版本成为飞利浦所有透射电镜的特征。早期电镜中的图像场非常大(直径18cm),并投射到锥形烧瓶的底部,并转至荧光屏(图2)。通过在屏幕上方束流横截面足够小的位置引入35毫米胶片,可以在随后的照片放大中覆盖整个图像。发射电压在50-120kV之间变化,对于生物样品,电压越高,电子束的穿透力往往越强。图2. 150 kV电子显微镜,像场投射到沉积在锥形玻璃烧瓶底部的荧光材料上代尔夫特还研制了静电电子显微镜,该电镜于1951年由W.A.leRutte完成,在固定放大倍数下具有8nm的分辨率。1952年,Le Rutte发表了一篇关于他对静电电子光学贡献的论文,但由于当时电磁式电子显微镜的技术优势,这项工作被迫中断。另一个有趣的发展始于1943年中期。早在1942年,由于酵母细胞体积过大,Le Poole就提议建造一个发射电压1 MeV的电镜,以提高电子对样品的穿透力。建造这种电镜,必须克服种种问题,因此最终决定在飞利浦研究实验室建造400 kV的显微镜。Le Poole设计了这个电镜的电子透镜系统,而飞利浦的Van Dorsten负责设计高压设备,Oosterkamp负责发射枪,Verhoeff负责装配。1947年,这台电镜安装在代尔夫特研究所。四.代尔夫特电镜的早期工作不仅是电子显微镜的研究,代尔夫特对于电镜应用的开展也比较早。在准备研制基础型150 kV电子显微镜的这些年里,旧的两级型电镜在用于检验Le Poole的新想法的同时,还用于科学研究。在这项工作的成功,很大程度上归功于Harrie de Heer引进了出色的拍摄技术。生物学家A.Quispel于1942年10月开始在A.J.Kluyver教授的带领下担任研究助理。他做的第一件事是在单孔样本架上准备足够的“Geisselthallack”支撑膜。Quispel的任务是研究该电镜在生物学研究中的作用,尤其是研究酵母核中的染色体。为了做到这一点,Quispel开发了一种“染色”酵母核的方法,即与其他细胞相比提高对比度。这种选择性染色需要重金属,因此,他改变了Feulgen的方法,使用银及镧盐。然而,酵母没有揭示其染色体核的秘密,染色体核仍然处于漆黑一片的状态。Quispel接着尝试用蛋白水解酶使细胞质对电子束更透明。1943年9月,Quispel离开代尔夫特时,这项工作移交给了我,最初也得到了J. M. van Brakel的协助。然而,事实证明,对太大的酵母细胞进行研究还为时过早。当时我们深受战争的压迫,但我们年轻,对这项工作充满热情。我们急切地研究了酵母细胞、噬细胞菌、疗养院医生用的结核菌、各种其他细菌以及土壤样品中的粘土矿物、颜料、金属和在35mm胶片上拍摄的各种其他物品。五、战争快结束时的情况1944年,150 kV电子显微镜及其所有改进装置投入使用,但仅使用了几个星期。随着1944—1945年饥荒的来临,国家的形势变得非常危急。盟军已经解放了荷兰的南部,但是盟军在大河附近被拦截。在那个冬天,在河流以北的我们食物配给量减少到每周800卡路里。大家在解决温饱与绝望中挣扎。没有电,客运列车也没有运行,我们只有木制轮胎的自行车用于运输。为了保全电镜的透镜等核心部件,大家不得不做好随时拆除电镜的准备。值得一提的是,飞利浦电镜高压发电机中的冷却油无意间为大家解决了一些生存难题,这些冷却油被分配给研究所的工人作为燃料,大家在家里用它来照明等。我们也积极参与地下活动,试图抵抗危险的压迫环境。曾经,德军试图逮捕所有18至40岁的男性在德国从事强迫劳动,大家不得不躲起来试图逃避。六.解放以后在加拿大军队解放的动乱平息下来之后,代尔夫特电镜被重新组装起来。但此时,自己也开始怀疑,在与世隔绝的环境下使用代尔夫特电镜开展相关研究,是否对促进电子显微学的发展具有意义。来自盟军国家参观者的反应给我们的印象是, Le Poole电镜或将是一种意义重大的仪器设备,但我们不能依赖这种仅有的“大家的印象”,何况,在埃因霍温的飞利浦根本不准备开始在商业基础上生产电子显微镜,因为该公司主要对销售数千台以上的产品感兴趣。有没有办法提高同事们的希望?答案是有的。首先,我写了一篇关于美国在电子显微镜领域活动的综述。之所以能够做到这一点,是因为1944年9月荷兰南部解放后不久,荷兰国家矿业图书馆(DSM)就有了专门的美国科学期刊。虽然很明显,美国科学家的工作是广泛的和令人印象深刻的,但这篇综述让代尔夫特的物理学家相信,他们的成就并没有白费。此外,我还与我的父亲讨论了他们的担忧。父亲既是一名科学家,也是荷兰国家矿业公司董事会成员,能够理解新仪器的重要性以及飞利浦的工业观点。飞利浦的总裁Anton Philips博士刚刚从英国回来,他在那里度过了战争的岁月。我陪父亲去了埃因霍温,在那里我们在总裁家里吃了午饭。Philips先生仔细地听着,因为他还没有听说过代尔夫特电子显微镜的构造,以及他的公司已经如此密切地参与其中。1946年1月,Jan Le Poole有机会访问英国,并参加了英国电子显微镜集团的一次会议。在那里,他最后的一丝怀疑消失了:代尔夫特电镜确实是一种创新。他在英国遇到了Van Dorsten,他们讨论了对商用飞利浦电子显微镜的要求。1946年1月,飞利浦董事会似乎改变了观点,开始准备推动电子显微镜样机的开发,商业生产电镜有了基础。该电镜在某种程度上可以在X射线设备业务部开发,但样机是在飞利浦物理实验室(后称为飞利浦研究实验室)制造的。后来,一个特殊的电子显微镜部门成为科学和工业下医疗系统集团(一个主要的工业业务集团)的一部分。回想起来,这是早期所有努力的真正结果。1946年,飞利浦公司制造的电镜原样机在牛津的一次大会上展出,虽然当时这台“顽固”的电镜现场未能展示有用的电镜图片,但同样受到了人们的赞赏。(大会结束后,有人发现一个孔盘在运输过程中滑出了立柱,从而阻挡了电子束。)下一步,飞利浦决定建立一系列的四台电子显微镜原型机,其中一部分零件将在莱顿大学 Kamerlingh Onnes实验室的仪器制造商学院进行制造。飞利浦EM100的最终设计于1947年完成。一个独特的早期特征是荧光屏在透射中观察并倾斜到水平方向,如图3所示。在所有随后的飞利浦电镜中,这种结构被放弃,因为垂直柱比倾斜柱在机械上更稳定。图3 飞利浦EM100七、战后时期代尔夫特研究所的工作人员逐渐增加:有4名物理学家、1名生物学家、1名工程师、2名仪器制造师和4名技术人员。从1946年起, Le Poole得到了J. Kramer的协助,J. Kramer在过去的36年中一直是Le Poole的得力助手。1946年,物理学家的首要任务是校正电镜的像散,提高高电压稳定性,以及进一步发展一种更强的物镜,即在不需要进一步稳定透镜电流和高电压的情况下充分降低色差。包括其他工作在内,这项工作为飞利浦简化电子显微镜的设计提供了背景。除了电子显微镜的发展外,仪器的使用也变得越来越重要。后者包括微生物学方面的研究和为研究所以外的客户所做的工作。三台电子显微镜确实不是一件奢侈的事,但当时只有一台,并且为了仪器研制,有时不得不将这台电镜拆开。电子显微镜的质量体现在制备好试样的显微图片的质量上。当时,样品制备技术也正处于开创性的阶段。即使是主要用于生物标本的90kV,这些样品要么太脆弱,缺乏图像对比度,要么像酵母细胞一样太厚。在拍摄来自Lisse花球研究实验室的植物汁液样品时,缺乏对比度尤其令人不安,因为在这些样品中必须识别病毒棒。通常,我拍摄这些病毒时甚至都无法观察它们。在马里兰州贝塞斯达的国立卫生研究院的RalphW.G.Wyckoff博士来访后,我们对阴影投射技术有了很大的了解。这实际上为带有长鞭毛的细菌的电子显微照片(图4)和许多其他样本增加了一个新的维度。1947年,我有幸在贝塞斯达的国立卫生研究院获得奖学金并前往美国工作。那年12月,在费城的EMSA大会上,我提出了一篇题为《代尔夫特电子显微镜在生物学中的一些应用》的论文。在解释了代尔夫特显微镜的原理之后,投影了各种鞭毛细菌的显微照片,随后是为L.Algerica制作的叶绿体显微照片以及为Utrecht大学的L.H.Bretschneider制作的公牛精子显微照片。其中一张精子照片的特殊之处是用一种铁糖复合物喂养细胞,这是Bretschneider早期成功地尝试,目的是提高细胞代谢最活跃部位的对比度。由于我去了美国,A.L.Houwink博士于1947年接替了我在代尔夫特的工作,他继续进行细菌鞭毛和一些原生动物的研究。图4. 梅氏弧菌,视野7微米当时在制备技术方面遇到的问题很大。TNO金属研究所的 J. A. Nieuwenhuis在1944年发展了复制技术,该技术被Dalitz和Schuchmann(1952年)以及Beekhuis和Schuchmann(1952年)发表。1947年,高电压电镜从埃因霍温带到了代尔夫特,巨大的酵母细胞研究仍然令人失望。在高电压下,未经制备的酵母细胞以及真菌孢子,没有揭示重要的细节。此外,在这台高电压电镜样机准备就绪时,对这种仪器的需求已经消退。光束穿透的问题已经被一种新策略的发展所规避:薄片技术。因此,高电压电子显微镜的发展在1950年停止,但在1960年国际上对高电压电子显微镜的兴趣恢复后,以一种新颖的设计重新焕发生机。L.H.Bretschneider(1949年)在Utrecht大学为他在代尔夫特的电子显微镜工作进行了这种薄片技术的实验。他和他的同事P. F. Elbers穿着厚重的外套,在4°C的温度下,用剑桥1890年产的摇式切片机将切片嵌入石蜡和硬蜡混合物中。1954年,这项技术在对蛔虫肠道细胞的研究中得到了进一步发展,其中在剑桥1952年产的显微镜摇式切片机上进行了冷切片。在同一研究所,Elbers构建了一种单通道旋转切片机,配有用于甲基丙烯酸酯嵌入的热扩展装置,并专注于电子染色的使用。不久之后,H.B.Haanstra(1955年)在飞利浦研究实验室成功地制造了一台简单的切片机,并于1958年获得了专利。1949年7月,在代尔夫特举行的国际电子显微镜大会对荷兰所有电子显微镜学家来说都是一个巨大的鼓舞,在大会上,我们有机会展示我们的最佳成果,并与国外的同行结识。八、20世纪50年代初:荷兰涌现更多电镜当飞利浦公司开始商业化交付电子显微镜时,代尔夫特对电子显微镜研究的垄断宣告结束。1949年完成的第一个EM100,被送往哥本哈根的Statens血清研究所进行试验。在荷兰,每所州立大学都有自己的电镜,还有一些特殊的研究所也是如此,如利瑟的花球培养实验室、荷兰皇家贝壳实验室、Sikkens(一家油漆和清漆工厂),当然还有飞利浦研究实验室。当然,正是代尔夫特的工作引起了大学和研究所的兴趣。然而,也有各种各样的失望,由于大多数大学对于电镜进行有序研究的要求还没有准备好,严重低估了电镜使用的实际意义,因此出现了各种令人失望的情况。在格罗宁根大学(University of Groningen),E.H.Wiebenga教授为自己的研究做了充分准备,在美国Cecil Hall为其传授过蛋白质晶体(edestin and exalsin) 的制备;在英国,Wiebenga熟悉蛋白质的X射线衍射技术。1950年11月,他在学校拍摄出了第一张电子显微图片。然而,1951年10月,一名攻读博士学位的学生接手了Wiebenga关于种子球蛋白的工作,发现新安装的电镜无法使用。第一批电镜提供的分辨率约为5nm,不足以完成这类工作,他不得不使用X射线衍射技术。1952年前后,G.Boom对几种晶体材料表面结构的研究和E.F.J.van Bruggen对蛋白质变性的研究得到了新的物镜和更合适的制备技术(如负染法)的支持。这标志着格罗宁根大学在蛋白质结构化学方面卓有成效的研究工作的开始。由于朱莉安娜女王的到访,瓦赫宁根农业大学有幸成为1951年首批安装EM100的学校之一。趁着飞利浦技术人员还在的情况下,非常聪明的女王及时喊道:“我什么都没看到!” 在最初的挫折之后,Christina van der Scheer 的工作在 S. Henstra 的协助下,主要关注病毒颗粒的研究现在的工作人员很少意识到刚开始时遇到的困难。在阿姆斯特丹大学(University of Amsterdam),EM100于1951年1月交付,安装在一个地下室的自行车存放区,天花板低得足以磕头,没有通风。由于我们没有专项基金,电镜胶片必须用我的厨房用具来冲洗。尽管如此,在1953年,我还是在罗马举行的第十届微生物学大会上发表了一篇关于细菌鞭毛的特邀论文。1959年,我获得了科学博士学位,著有专著《不同视角下的Gallionella ferruginea》。早在1952年,在莱顿大学,之前提到的、和仪器制造学院合作制造的四台电子显微镜样机之一(不是Philips EM100)安装在医学院的解剖学大楼。电镜放在一个大房间中央的贝都因帐篷里。在W.G.Braams的看管下,它成为了一个规模不大的服务设施。电镜的应用还包括为医学生物学领域的未来研究提供基础。1957年,该电镜被Philips EM75样机取代。1958年12月,Braams被W. Th. Daems接替,W. Th. Daems和我们在阿姆斯特丹接受过电镜使用训练,在斯德哥尔摩的Sjostrand实验室接受过固定、嵌入和超薄切片的训练。1959年底,西门子Elmiskop I电镜取代了EM75,在酶细胞化学和放射自显影的帮助下,最终为形态学和细胞生物学研究奠定了基础。在乌得勒支大学(the University of Utrecht),情况并不比在阿姆斯特丹容易。1952年3月20日,Utrecht EM100正式落成,但该仪器被放置在物理大楼里,距离L.H.Bretschneider(自1950年以来一直专注于细胞学和电子显微学)和他的同事P.F.Elbers(曾在巴黎接受W.Bernhard的培训)都不方便。直到1954年,生物学家才可以方便地每天使用电子显微镜。Bretschneider于1955年获得教授职位,并成为生物体亚显微研究中心负责人,Elbers负责日常事务。直到1957年,奈梅亨大学(the University of Nijmegen)才安装EM100电子显微镜。在这里,首先为医学、及科学学院配置了一台电镜,由Bretschneider和Elbers的学生A.Stadhouders负责。这台电镜被安装的建筑物的地基恰好位于铁路站场共用的砾石床上!因此,在火车转轨过程中,电镜无法正常使用,直到确定并纠正了干扰源。奈梅亨大学的电镜装置迅速得到扩展应用,开展了重要的研究活动,主要是在人类病理学和植物学领域。在飞利浦研究实验室,H.B.Haanstra多年来一直负责电子显微镜的研究。在20世纪50年代和60年代,他出版了大量出版物。在代尔夫特理工大学,A.J.Kluyver教授的微生物学实验室安装了一台EM100,Le Poole研究所的生物学工作就此结束。在这里,A.L.Houwink与P.A.Roelofsen教授一起研究了植物细胞壁内的组织,这催生了“multinet growth”理论(1954年)。他和D. R. Kreger 博士一起研究了酵母的细胞壁(1953年)。Houwink于1953年在一种螺菌的壁上发现了晶体结构,后来加拿大的R.G.E.Murray对其进行了广泛研究,成为分子生物学的一个重要课题。在Le Poole的电子显微镜研究所,在电镜仪器开发和电镜商业化方面的有趣发展在持续进行。1954年,Le Poole发表了博士论文《电子和电离光学的一些设计》。它包含了如此多的创新,以至B. Von Borries在贺信里写道:“这可能是三篇论文。”1957年,Le Poole成为代尔夫特理工大学的教授。他继续研究像散与磁透镜孔圆度不足之间的关系,以及通过校正各种像差来提高分辨率,多年来,图像质量的提高一直是他关注的焦点。九、回顾过去回想起来,一开始,生物学的主要困难之一似乎是光学显微镜所见与电子显微镜所见之间的差距。这需要很多年的时间来弥补这一差距,而这只有在光学显微镜专家开始使用电子显微镜专家开发的制备程序时才能实现。 此外,长期以来,电子显微镜学家对于他的物理学家朋友和传统生物学家来说,都是个陌生人。在电子显微镜照片上看到的东西在很长一段时间里都是纯描述性的形态学,那时分子解释过于投机。生物化学已经成为将超微结构研究引入分子生物学领域的主要支持之一。第一批商业生产的电镜可能不足以满足所有电子显微镜学家的所有期望,但这也是对以后生产越来越优秀电镜的一种鼓舞。早期在组织、技术以及纯科学方面的巨大努力为荷兰卓有成效的研究奠定了基础。电子显微镜教会了我什么? Kluyver教授在我的职业生涯中强烈地激励了我,他的伟大想法是他在生物化学中的统一概念。在我多年的积极研究中,我和许多研究人员都非常清楚,超微结构研究揭示了基本细胞结构的多样性的统一。在我晚年的思考中,这种统一对我们生活哲学基础的影响已经在我个人身上慢慢开始显现。致谢在本次审查中,下列同事提出了许多有用的建议:B. J. Spit, P. F. Elbers, H. B. Haanstra, C . C。E. Hulstaert, E. F. J. van Bruggen等。除此之外,它主要是基于我自己的笔记和回忆。拓展阅读:捷克斯洛伐克电镜发展史系列世界电镜九十年之怀念捷克斯洛伐克电子显微镜先驱——Delong、Drahoš和Zobač世界电镜九十年之捷克斯洛伐克早期电子显微镜发展史
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制