当前位置: 仪器信息网 > 行业主题 > >

结构特征

仪器信息网结构特征专题为您整合结构特征相关的最新文章,在结构特征专题,您不仅可以免费浏览结构特征的资讯, 同时您还可以浏览结构特征的相关资料、解决方案,参与社区结构特征话题讨论。

结构特征相关的论坛

  • 【原创大赛】热稳定化过程中PAN纤维特征结构的氧化行为

    【原创大赛】热稳定化过程中PAN纤维特征结构的氧化行为

    在PAN纤维的热稳定化过程中,环境中的氧对特征结构的形成起到了至关重要的作用。有研究表明PAN纤维中的环化结构是发生氧化反应的前提条件,同时氧气还可以促进辖内中更多环化结构的生成。1、 PAN纤维特征结构在后续氧化反应过程中的演变将在惰性气氛下250℃热处理12h的PAN纤维进行不同温度空气气氛的热处理,将得到的纤维进行核磁测试,如图1所示。观察图1中的核磁谱图,可以发现与环化纤维相比,145-170ppm之间的三个特征峰由原来的三个峰逐渐变成一个155ppm处尖峰,这是由于与150ppm和164ppm处特征峰相比,155ppm处特征峰强度逐渐增加,其峰型将其他特征峰掩盖。因此,将核磁谱图进行分峰处理,分析三处特征峰即他们代表的三种特征结构在氧化反应中的演变规律。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567675_3043450_3.jpg图1环化纤维经不同氧化温度热处理后的核磁谱图从图2中可以看出,在后续氧化反应过程中亚胺结构含量随着氧化温度的升高而不断降低,说明在氧化处理过程中亚胺结构继续向其他结构转变,且随着热处理温度的升高转变的越多;而图中共轭结构含量基本保持不变,烯胺结构结构含量随着温度的升高而不断增加,说明在后续氧化反应过程中亚胺结构只发生异构化反应生成烯胺结构,而不再继续脱氢向共轭结构转变。与环化纤维对比,经过氧化热处理过的PAN纤维核磁谱图中出现了176ppm处特征峰,该特征峰代表C骨架上的C=O,说明环化纤维发生氧化反应主要生成了C=O。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567676_3043450_3.jpg图2176ppm处特征峰相对含量随热处理温度的变化http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567677_3043450_3.jpg图3136ppm和28ppm处特征峰相对含量随热处理温度的变化为了研究三种特征结构在空气气氛下的氧化行为,观察图3中136ppm和28ppm处特征峰相对含量的变化。可以看出136ppm处特征峰相对含量没有变化,表明此处的C原子没有发生氧化反应,这与前面共轭结构含量不发生变化的现象一致,共同说明了在后续氧化反应过程中,PAN纤维中亚胺不再向共轭结构转变,且共轭结构不会被与氧发生化学反应。而28ppm处特征峰相对含量随着氧化温度的升高而不断降低,说明此处的C原子被氧化形成了羰基结构,也就是说亚胺结构和烯胺结构在空气气氛下可以发生氧化反应形成相应的羰基结构,如图4所示。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567678_3043450_3.jpg图4热稳定化过程中PAN纤维特征结构发生的的氧化反应2、 PAN纤维特征结构的氧化特性http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567679_3043450_3.jpg图5PAN原丝在空气气氛下的DSC曲线图5为PAN原丝在空气气氛下的DSC曲线,图中出现了a和b两个放热峰,a峰代表在空气气氛下氰基发生的环化反应,b峰代表环化结构发生的氧化反应,而将经过惰性气氛热处理过的纤维进行空气条件下的热处理时,出现了图6所示的情况。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567680_3043450_3.jpg图6经惰性气氛不同温度下恒温热处理12h的PAN纤维在空气气氛下的DSC曲线DSC曲线中出现了除a和b两个峰以外的c峰,这个放热峰代表纤维中已经存在的环化结构发生的氧化反应。随着惰性气氛下热处理温度的升高,c峰强度逐渐增加,a峰和b峰的强度逐渐降低,这是由于随着热处理温度的升高PAN纤维中已存在的特征结构越多,代表这部分特征结构发生的氧化反应的c峰强度也越来越高,而PAN纤维中未发生反应的氰基越来越少,氰基在空气气氛中发生的反应也较少,从而导致a峰和b峰强度的降低。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241548_567681_3043450_3.jpg图7特征结构含量和c峰峰面积与温度的关系PAN纤维中烯胺结构含量与c峰峰面积的关系作图(图7),可以看出,烯胺结构含量与Ac存在着较好的线性关系,说明PAN纤维中烯胺结构的存在对纤维氧化反应的放热有着较大的贡献。而且烯胺结构(-CH2-C=C-NH-)中CH2上的氢很活泼,容易与氧发生反应,因此可以认为与其他特征结构相比PAN纤维中形成的烯胺结构较容易发生氧化反应。3.2.3小结在预氧化过程中,PAN纤维中共轭结构不易发生氧化反应,而亚胺结构和烯胺结构发生氧化反应生成C=O结构。将充分环化的纤维在空气气氛下热处理,在氧气的促进作用下,亚胺结构不会脱氢生成共轭结构,而是向烯胺结构转变,且随着氧化温度的升高而转变的越多。将在惰性气氛下经不同温度热处理得到的PAN纤维进行空气气氛下的DSC分析,通过对氧化反应放热量和特征纤维的结构含量变化的关系,认为烯胺结构比其他特征结构更容易发生氧化反应。

  • 【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    PAN纤维在热稳定化过程中会发生很多化学反应,形成多种不同的化学结构,本实验讨论研究热稳定化过程中各种特征结构的形成过程以及他们的演变规律。为了消除环境中的氧对特征结构形成过程的影响,选择在惰性气氛下对PAN纤维进行热处理。1、热稳定化过程中PAN纤维的特征结构种类http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567647_3043450_3.jpg图1惰性气氛下250℃热处理12h的PAN纤维的核磁谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567648_3043450_3.jpg图2 PAN分子链图1为经惰性气氛下250℃热处理过的PAN纤维的核磁谱图,对核磁谱图进行分缝处理,可以得到各种化学位移上的特征峰,每处特征峰所代表的不同位置的C原子如图中所示。28ppm处特征峰代表CH2,108ppm和115ppm处特征峰代表无氢C原子,136ppm处特征峰代表=CH-,150ppm处特征峰代表-C=N,155ppm处特征峰代表=C-N,164ppm处特征峰代表间位脱氢的-C=N。结合PAN分子链特征(图2),推断出在热稳定化过程中纤维中生成了以下几种化学结构。在热稳定化过程中氰基发生环化反应与相邻氰基连成环,也有可能与相邻氰基较远而不发生环化反应。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567649_3043450_3.jpg 图3热稳定化过程中PAN纤维中形成的化学结构仔细观察这几种化学结构,根据C与N之间的化学键以及周围的化学环境对其进行分类。将(a)(b)(c)三种化学结构归为一类,他们的共同特征是都含有C=C-C=N,因此称这类化学结构为共轭结构;(d)和(e)两种化学结构都含有-C=N且其间位未脱氢,称这两种化学结构为亚胺结构;(f)和(g)两种化学结构的共同特点是都含有=C-N,因此称其为烯胺结构。2、惰性气氛下反应温度的确定http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567650_3043450_3.jpg图4惰性气氛下不同升温速率的PAN纤维DSC曲线表1惰性气氛下不同升温速率的反应起始温度 升温速率(℃/min) 反应起始温度( ℃) 2 170.3 4 177.8 6 185.0 8 192.6 10 196.0 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567651_3043450_3.jpg图5反应起始温度与升温速率的线性关系图4为PAN纤维在惰性气氛下不同升温速率的DSC曲线,从图中可以看出不同升温速率下的DSC曲线的起始反应温度不同,这样我们表1中不同升温速率下DSC曲线中放热峰的起始反应温度,并以升温速率为横坐标、反应起始温度为纵坐标,得到图5,将图中的五个点进行线性拟合并利用倒推法可以得到,当升温速率为0时,起始反应温度为164.48℃,为了实验操作的方便性,选择170℃作为起始反应温度。 图6为PAN纤维在不同温度下处理相同时间的红外谱图。图中1450cm-1处吸收峰代表亚甲基,该亚甲基与碳氮键相连且亚甲基上面可以发生化学反应的氢较多,因此选择亚甲基作为判断化学反应变化的标志。随着热处理温度的升高,该峰逐渐红移,且逐渐变宽。将图6中的红外谱图进行分峰处理,可以得到图7不同热处理温度下亚甲基特征峰的半高宽变化趋势。图7显示出随着热处理温度的升高,亚甲基的半高宽逐渐变大,由于亚甲基周围的化学环境发生变化导致峰位红移,部分亚甲基周围化学环境变化峰位红移,而部分亚甲基未发生变化峰位未红移。图中亚甲基半高宽变化出现了两个转折点(190℃和230℃),说明PAN纤维中化学结构变化分为三个阶段,因此,我们将各个反应温度定在190℃、210℃、230℃和250℃。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567652_3043450_3.jpg图6不同温度下热处理12h的PAN纤维的红外谱图 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567653_3043450_3.jpg图7不同热处理温度下红外谱图中CH2的半高宽变化3、惰性气氛下特征结构的形成过程http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567654_3043450_3.jpg图8 PAN原丝与170℃热处理12h的PAN纤维的红外谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567655_3043450_3.jpg图9 170℃和190℃热处理12h的PAN纤维的红外谱图从图8中可以看出,与原丝红外谱图对比经过170℃热处理过的纤维谱图中2240cm-1所代表的氰基伸缩振动峰的强度降低,同时出现了1620cm-1所代表的C=N吸收峰,表明在热处理过程中PAN纤维中的氰基键断裂生成C=N;1450cm-1和1360cm-1两处吸收峰分别为亚甲基和次甲基的吸收峰,从图中可以看出这两处吸收峰峰强逐渐靠近,说明此过程中发生了脱氢反应;同时代表C=C的吸收峰1580cm-1出现,也说明了PAN纤维在低温热处理过程中发生了脱氢反应并生成了碳碳双键。由此我们推测在PAN纤维在170℃热处理温度下,氰基发生反应形成了亚胺结构,亚胺结构又脱氢形成了共轭结构。观察图9可以发现,经190℃热处理过的PAN纤维的红外谱图中出现了代表=C-N 的1150cm-1处振动峰,说明在190℃时PAN纤维中开始形成烯胺结构。亚胺结构与烯胺结构的元素组成相同,有研究者认为它们是互变异构体,在热稳定化过程中两种结构发生了互变反应,为了明晰热稳定化过程中烯胺结构的形成过程以及这两种结构之间的关系,将PAN纤维在190℃热处理不同的时间,将得到的样品进行

  • 微生物对黑土添加麦秸后腐殖质结构特征影响的红外光谱研究

    引言  土壤有机质(SOM)是土壤中具有结构性和生物性的基本物质,既是生命活动的条件,也是生命活动的产物。从化学本质角度,SOM中60%~90%为腐殖物质(HS),因此HS是SOM 研究的核心和主体。HS是经土壤微生物作用后,由多酚和多醌类物质聚合而成、含芳香环结构和脂族特征、新形成的一系列黑色至棕黑色的非晶形准高分子有机化合物,其形成与转化对土壤肥力、固碳和环境解毒均有重要意义。众所周知,微生物是土壤中最为活跃的部分,它们参与土壤有机质的分解、腐殖质的合成以及养分元素的转化。HS的形成是以微生物为主导的生物化学过程,但不同微生物种类对土壤HS结构和性质的影响目前还知之甚少,尤其是外源添加有机物料,经过微生物培养后,HS各组分的结构和性质是否发生变化,更不得而知。本研究针对这一问题,采用红外光谱法研究黑土添加麦秸后,接种不同种类微生物(细菌、真菌、放线菌和混合菌)培养180d,针对土壤中水溶性物质(WSS)、富里酸(FA)和胡敏酸(HA)特征峰和吸收强度的变化,旨在探索微生物在HS形成方面的作用及其转化机理,为有效培肥土壤、增大土壤环境承载力、促进碳循环提供理论参考和基础保障。

  • 毛皮与皮革的结构特征分析

    毛皮与皮革的结构特征分析毛皮与皮革的结构特征分析:毛皮的构造与组成、天然毛皮、天然皮革、人造毛皮与皮革。 一、基本概念 裘皮与皮革是珍贵的服装面料。一般将鞣制后的动物毛皮称为裘皮,而把经过加工处理的光面或绒面皮板称为皮革。裘皮是防寒服装理想的材料,取其保暖、轻便、耐用,且华丽高贵的品质。皮革经过染色处理后可得到各种外观风格,深受人们的喜爱。近年来,毛皮与皮革服装成为流行的主流,因此有必要对其结构作一了解和认识。 二、毛皮的构造与组成 毛皮兽的毛皮是由毛被和皮板组成的。毛被由针毛、绒毛和粗毛等三种体毛构成,它随着毛的生长过程而变换。针毛生长数量少,是长而伸出到最外部的毛,呈针状,具有一定的弹性和鲜丽的光泽,给毛皮以华丽的外观;绒毛生长数量多,是在针、粗毛下面密集生长着的纤细而柔软的毛,主要起保持调节体温的作用,绒毛的密度和厚度越大,毛皮的防寒性能就越好;粗毛的数量和长度介于针毛和绒毛之间,毛多呈弯曲状态,具有防水性和表现外观毛色和光泽的作用。 皮板是由表皮层、真皮层和皮下层组成的。表皮层很薄,主要起保护动物体免受外来伤害的作用,其牢度很低,在皮革加工中被除去。真皮层是原料皮的基本组成部分,也是鞣制成皮革的部分,分上下两层。上层的乳头层具有粒状构造,形成皮革表面的“粒面效应”。下层的网状层主要由胶原纤维、弹性纤维和网状纤维呈网状交错而构成,起使皮革结实、有弹性、能整体抗击外来冲击的作用。皮下层的主要成分是脂肪,非常松软,制革工序中要除去。 三、天然毛皮 天然毛皮主要来源于毛皮兽。一般兽毛皮是由表皮层及其表面密生着的针毛、绒毛、粗毛所组成,但因动物种类不同,则这几种毛组成比例不同,因而决定了毛皮的质量有高低、好坏之差异。用作服装材料的毛皮,以具有密生的绒毛、厚度厚、重量轻、含气性好为上乘。就服装用毛皮来说,有以下种类:1、貂皮:分紫貂皮、白貂皮、黑貂皮、水貂皮等。其针毛粗、长、亮,毛被绵软,绒毛绸密,质软坚韧,为高级毛皮。用于服装的外套、长袍、披肩等。2、水獭皮:毛被密生着大量的绒毛,其中含有粗毛,属针毛劣而绒毛好的皮种,其皮板坚韧有力。多用于服装的长、短大衣、毛皮帽等。3、狐狸毛皮:因生长地区不同,有各种品种,如红狐狸、白狐狸、灰狐狸、银狐狸等,其质量有差异。一般北方产的狐狸皮品质较好,毛细绒足,皮板厚软,拉力强。狐皮的毛色光亮艳丽,属高级毛皮。多用于女用披肩、围巾、外套、斗蓬等。4、羔皮:指羔羊毛皮,其毛被花弯绺絮多样,无针毛,整体为绒毛,色泽光润,皮板绵软耐用,为较珍贵的毛皮。一般用于外套、袖笼、衣领等。5、绵羊皮:属中档毛皮,其毛被毛多呈弯曲状,粗毛退化后成绒毛,光泽柔和,皮板厚薄均匀、不板结。主要用来做帽、坎肩、衣里、褥垫等。6、貂毛皮:皮大绒厚,皮色鲜艳,斑点清晰优美,绒毛短平油亮,较为珍贵。因属野生动物保护品种,目前很少使用。7、狗毛皮:毛皮特点是针毛峰尖长,毛厚板韧,颜色甚多,一般用在被褥、衣里、帽子上。8、兔毛皮:属低档毛皮,毛色较杂,毛绒丰厚,色泽光润,皮板柔软。可用于衣帽及童大衣等。 四、天然皮革 各种兽皮、鱼皮等的真皮层厚度比较厚的原皮,经单宁酸鞣皮或重铬酸钾的铬鞣、明矾鞣、油鞣等方法制成熟皮革,作为服装材料使用已有着悠久的历史。衣用皮革主要是服装革和鞋用革,多以猪、羊、牛、马、鹿皮为主要原料皮,此外鱼类皮革、爬虫类皮革也用于服装的装饰革及箱包等的加工制作。各种服用皮革的分类见下表。目前,我们常见的几种服用皮革是:1、牛皮革:牛皮革的结构特点是真皮组织中的纤维束相互垂直交错或略倾斜成网状交错,坚实致密,因而强度较大,耐磨耐折。粒面毛孔细密、分散、均匀,表面平整光滑,磨光后亮度较高,且透气性良好,是优良的服装材料。常用于袋料、运动上衣、鞋类及皮包类等。2、猪皮革:猪皮的结构特点是真皮组织比较粗糙,且又不规则,毛根深且穿过皮层到脂肪层,因而皮革毛孔有空隙,透气性优于牛皮,但皮质粗糙、弹性欠佳。粒面凹凸不平,毛孔粗大而深,明显地三点组成一小撮则是猪皮革独有的风格。主要用于制鞋业。3、山羊皮革:皮身较薄,真皮层的纤维皮质较细、在表面上平行排列较多,组织较紧密,所以表面有较强的光泽,且透气、柔韧、坚牢。粒面毛孔呈扁圆形斜伸入革内,粗纹向上凸,几个毛孔成一组呈鱼鳞状排列。被用于做外套、运动上衣等。4、绵羊皮革:绵羊皮革的特点是表皮薄,革内纤维束交织紧密,成品革手感滑润,延伸性和弹性较好,但强度稍差。广泛用于服装、鞋、帽、手套、背包等。5、马皮革:比牛皮革组织稍粗,特别是后背部分的皮质细密坚实,可用于制鞋。其毛孔稍大呈椭圆形,斜伸入革内,形成波浪形排列。马皮革在服装上用的较少。 此外,鹿皮革、蛇皮革、鳄鱼皮革等也常在衣用服装和装饰用具上有应用。 五、人造毛皮与皮革 裘皮与皮革服装的天然优越性,加深了人们对它的偏爱,其价值也随之大幅度地上涨,到今天,一件做工精细的高档裘皮服装,价值连城,已成为一种富有、高贵身份的象征。为了降低天然毛皮与皮革产品的成本,扩大其来源,近年来,人造毛皮与皮革有了较大发展。1、人造毛皮:人造毛皮是指采用机织、针织或胶粘的方式,在织物表面形成长短不一的绒毛,具有接近天然毛皮的外观和服用性能。针织人造毛皮是指在针织毛皮机上采用长毛绒组织,由腈纶、氯纶或粘胶纤维做毛纱,在织物表面形成类似于针毛与绒毛的层结构。其外观相似于天然毛皮,且保暖性、透气性和弹性均较好。 机织人造毛皮是采用双层结构的经起毛组织,经割绒后在织物表面形成毛绒。这种人造毛皮绒毛固结牢固,毛绒整齐、弹性好,保暖与透气性可与天然毛皮相仿。 人造卷毛皮是采用胶粘法,在各种机织、针织或无纺织物的底布上粘满仿羔皮的卷毛纱线,从而形成天然毛皮外观特征的毛被。其表面有类似天然的花绺花弯,毛绒柔软,质地轻,保暖性和排湿透气性好,不易腐蚀,易洗易干,被广泛地用在各个方面。2、人造皮革:人造皮革主要是在棉布、化纤布等底布上,涂有乙烯、尼龙等,使表面具有类似于天然皮革的结构。乙烯涂制的人造革与天然皮革相比,有许多优点,如耐用性好、弹度、弹性好、不易变形、耐污易洗等,但缺少透气性和吸水性,影响穿着的舒适感。尼龙树脂制成的人造革比乙烯涂层人造革有所改观,增加了一定的透气和透湿效果。 聚氨酯合成革是近年发展起来的一种人造皮革,目前使用较为普遍。原因是这种合成皮革采用了具有微孔结构的聚氨酯作面层,以聚酯纤维制成的无纺织布作底布,既具有较好的耐水性和耐磨性,又提高了其透水汽性,仿真效果好,有类似于动物皮革的纤维结构,加之,易洗、易缝、易修补、价格便宜,因此成为一种广泛、普遍使用的产品。 裘皮服装:芬兰是世界最大的生产国之一,用芬兰养殖的貂皮和狐皮制作的高档裘皮时装具有原皮质量高,而且加工后像绸缎一样柔软的特点,因此着装效果带有飘逸感。一件精美的大衣可能只有一公斤重,叠放在衣箱内也不会起皱。

  • 【分享】土壤结构的类型、特征及改良

    土壤结构的类型、特征及改良①块状结构体:近似立方体型,长、宽、高大体相等,走私一般大于3cm,1-3cm之内的称作核状结构体,外形不规则,多在粘重而乏有机质的土中生成,熟化程度低的死黄土常见此结构,由于相互支撑,会增大孔隙,造成水分快速蒸发跑墒,多有压苗作用,不利植物生长繁育。  改良方法:可在墒情合适时耙耱,冬季冻土后,辗压,以提高土壤有机质含量,也可掺河沙或炉渣灰来改良。  ②片状结构体:水平面排列,水平轴比垂直轴长,界面呈水平薄片状;农田犁耕层、森林的灰化层、园林压实的土壤均属此类。不利于通气透水,造成土壤干旱,水土流失。  改良方法:松土施用有机肥,公园街道绿地行人常经过的地方,可进行透气铺装、种植地被植物或进行必要的围栏保护,结皮和板结的可采取适墒深翻,增施有机肥解决。  ③柱状结构体和棱状结构体:沿垂直轴排列,垂直轴大于水平轴,土体直立,结构体大小不一,坚实硬,内部无效孔隙占优势,植物的根系难以介入、通气不良、结构体之间有形成的大裂隙,既漏水又漏肥。  改良方法:通过深翻施肥和深翻种植绿肥。  ④团粒结构体:这是最适宜植物生长的结构体土壤类型,它在一定程度上标志着土壤肥力的水平和利用价值。其能协调土壤水分和空气的矛盾;能协调土壤养分的消耗和累积的矛盾;能调节土壤温度,并改善土壤的温度状况;能改良土壤的可耕性,改善植物根系的生长伸长条件。 中国的土壤污染据报道,目前我国受镉、砷、铬、铅等重金属污染的耕地面积近 2000 万公顷,约占总耕地面积的 1/5,其中工业“三废”污染耕地 1000 万公顷,污水灌溉的农田面积已达 330 多万公顷。例如:某省曾对 47 个县和郊区的 259 万公顷耕地(占全省耕地面积的五分之二)进行过调查。其结果表明,75% 的县已受到不同程度的重金属污染的潜在威胁,而且污染趋势仍在加重。   污水灌溉等废弃物对农田已造成大面积的土壤污染。如沈阳张士灌区用污水灌溉 20 多年后,污染耕地 2500 多公顷,造成了严重的镉污染,稻田含镉 5-7mg/kg。天津近郊因污水灌溉导致 2.3 万公顷农田受到污染。广州近郊因为污水灌溉而污染农田 2700 公顷,因施用含污染物的底泥造成 1333 公顷的土壤被污染,污染面积占郊区耕地面积的 46%。80 年代中期对北京某污灌区进行的抽样调查表明,大约 60% 的土壤和 36% 的糙米存在污染问题。另一方面,全国有 1300~1600 万公顷耕地受到农药的污染。除耕地污染之外,我国的工矿区、城市也还存在土壤(或土地)污染问题。中科院地理科学与资源环境研究所研究员陈同斌前后用了3年多的时间对北京市全市的土壤和蔬菜进行了大规模的取样分析和研究,发现土壤污染问题已经比较严重,并且已经影响到蔬菜等农产品的质量。    南京农业大学农业资源与生态环境研究所研究员潘根兴在2002年初做过一个南京市各城区的土壤重金属污染调查。结果同样很严重。超过70%的采样区域存在重金属污染,测出的最高铅含量超过900ppm,超过国家标准3倍以上。    陈同斌在2001年对北京市的公园土壤重金属污染做了一项调查,结果让人吃惊。被公认为城市中环境质量优良的公园存在着不容忽视的土壤重金属污染。而且公园建成的年代与土壤重金属污染的程度成一个指数关系。土壤污染的危害1. 土壤污染导致严重的直接经济损失——农作物的污染、减产。对于各种土壤污染造成的经济损失,目前尚缺乏系统的调查资料。仅以土壤重金属污染为例,全国每年就因重金属污染而减产粮食 1000 多万吨,另外被重金属污染的粮食每年也多达 1200 万吨,合计经济损失至少 200 亿元。2. 土壤污染导致生物品质不断下降我国大多数城市近郊土壤都受到了不同程度的污染,有许多地方粮食、蔬菜、水果等食物中镉、铬、砷、铅等重金属含量超标和接近临界值。土壤污染除影响食物的卫生品质外,也明显地影响到农作物的其他品质。有些地区污灌已经使得蔬菜的味道变差,易烂,甚至出现难闻的异味;农产品的储藏品质和加工品质也不能满足深加工的要求。3. 土壤污染危害人体健康土壤污染会使污染物在植(作)物体中积累,并通过食物链富集到人体和动物体中,危害人畜健康,引发癌症和其他疾病等。4. 土壤污染导致其他环境问题土地受到污染后,含重金属浓度较高的污染表土容易在风力和水力的作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。

  • 【原创大赛】Mg-Y-Nd-Zn合金中非常规变形孪晶带的形成及结构特征

    【原创大赛】Mg-Y-Nd-Zn合金中非常规变形孪晶带的形成及结构特征

    1 引言镁合金发生塑性变形时,除了基面滑移,孪晶是最常见的变形结构。然而关于六方晶体中孪晶的形成理论,到目前为止仍存在诸多争论。即使是针对最常见的-型孪晶,其形成机制也存在不同说法。通常,电子衍射分析是实验判定其存在和类型的重要手段,根据衍射谱表现出的孪晶对称特征,可以把镁合金中的变形孪晶带大致区分为常见低指数型和其它鲜见的高指数类型。经典的切变-重组理论认为决定孪生开动与否的关键因素是切变量的大小,但该理论在解释高指数型孪晶形成时存在弊端,因为沿高指数晶面孪生时切变量较大,需要启动重组的能量太高,这显然无法解释实际具有高指数孪晶衍射谱的变形带确实存在以及它们可能先于很多低指数孪晶出现的情况。因此,探索发现六方结构材料中各种可能的高指数型变形孪晶带存在形式、研究其结构特征及形成机制对加深了解六方孪晶变形结构多样性以及丰富其形成理论具有重要意义。Reed-Hill等学者首先在单晶镁的轴向拉伸中观察到了孪晶的形成,并指出这种高指数型孪晶带附近总是伴随晶格畸变。Hideo等接着指出这种孪晶经常与孪晶同时出现。然而,由于当时实验条件的限制,他们均未能给出这种高指数孪晶更微观的结构信息,如孪晶带内部及孪晶界面特征等细节。事实上,在层错能较低的六方镁合金中高指数形式孪晶的产生并非偶然现象。近年来,我们在研究Mg-Y-Nd-Zn合金的冲击变形结构时还发现了以及型孪晶的存在。数量可观的高指数型变形孪晶带与常规低指数孪晶共存,对协调应变提高合金变形能力起着重要作用,然而对这类高指数孪晶带的形成过程及结构实质的认识和研究却存在较大空白。本文利用TEM手段对Mg-Y1.1-Nd0.4-Zn0.8合金室温压缩变形产生的非常规型变形孪晶带进行了细致的结构表征,结合实验观察结果对其形成机理进行了探讨并在此基础上从晶体学几何分析角度预测了六方镁合金中其它可能出现的高指数形式孪晶。2 实验方法本实验以高纯镁为原料,添加一定量的Y、Nd、Zn元素在氩气环境下的高频感应炉中熔炼成合金铸锭,测得合金成分为Mg-Y1.1-Nd-0.4Zn0.8(at.%)。随后,将铸态样品置于电阻炉内,在798K下热处理10h,水淬得到固溶处理样品。从固溶处理后样品上切下5×5×10mm的立方体式样进行室温压缩变形,恒应变率为0.001s-1。采用电解双喷和离子减薄的方法制备透射电子显微镜样品。双喷液的成分是15%的硝酸、15%的丙三醇和70%的甲醇(Vo1.%)。用加速电压为200 kV的FEI Tecnai G220型透射电子显微镜来获得样品明暗场像和选区电子衍射图。3 结果与讨论3.1 高指数型变形孪晶带的形貌及结构对经室温压缩10%的Mg-Y1.1-Nd0.4-Zn0.8合金试样进行透射电镜观察发现,除了常规的低指数孪晶外,还形成了宽度可达数百纳米的非常规的高指数型孪晶带,它们可以与基体具有严格的孪晶取向关系。其形貌可以是单一的板条状,也可以与其它常见型孪晶一起形成复杂的组态。图1(a)[color

  • 高低温湿热交变试验箱设备的结构特征是什么呢

    高低温湿热交变试验箱设备的结构特征是什么呢?高低温湿热交变试验箱设备主要由哪些部分组成的呢?每一个组成部分又都有怎样的作用呢?下面请看小编的详细解答。高低温湿热交变试验箱主要由箱体、制冷系统、加热系统、空气轮回系统以及控制系统组成。箱体外观:箱体的外壳为采用冷轧钢板静电喷塑或者304不锈钢板,内胆采用优质304SUS镜面不锈钢板,箱门中间设大面积观察窗,并配有飞利浦观察灯,使用户可以清楚地看到试样的试验情况。外型整体美观大方。保温层为硬质聚氨脂发泡加上少量的超细玻璃棉,具有强度高,保温性有好等特点。控制系统:该设备主要温度控制仪采用智能数显温湿度控制仪,人道化设计的操纵方法,易学易用,并且不同功能档次的仪表操纵相互兼容。输入采用数字校正系统,内置常用热电偶和热电阻非线性校正表格,丈量精确不乱。具备位式调节和AI人工智能调节功能,0.2级精度,多种报警模式。升温、降温、加湿、去湿独立,独特的BTHC平衡调温调湿方式。制冷系统采用法国“泰康”全封锁入口压缩机组,机械式单级制冷或复迭低温回路系统,全自动控制与安全保护协调系统。加热采用不锈钢翅片加热管。该设备是以下列尺度之一或其结合为依据制造GB 10589-89 低温试验箱技术前提GB 10592-89 高低温试验箱技术前提GB 11158-89 高温试验箱技术前提GB/T5170.2-1996 电工电子产品环境试验设备基本参数检定方法 温度试验设备GB2423.1-89 电工电子产品基本试验规程 试验A:低温试验方法GB2423.2-89 电工电子产品基本试验规程 试验B:高温试验方法GB2424.1-89 电工电子产品基本环境试验规程 高温低温试验导则

  • 【分享】氙灯试验箱的结构特征及操作

    氙灯试验箱应用的行业很广泛,比如:涂料油墨油漆、树脂、塑料、印刷包装、铝型材、粘合剂、汽车摩托车工业、化妆品、金属、电子、电镀、医药等。它的结构特征如下:  氙灯试验箱的外壳为冷轧钢板静电喷塑或优质不锈钢板材,内胆为优质不锈钢板。辐射光源为风冷全太阳光谱氙灯,辐照强度自动跟踪,黑板温度可精确控制,辐照周期、黑暗周期、喷淋周期均可根据相关试验标准或客户要求自由设置。氙灯耐气候试验箱的控制器可根据用户自行的需要选择进口触摸屏控制仪或智能数显控制仪。  氙灯试验箱的试样架耐腐蚀的不锈钢材料制成,可以根据用户的要求选择平板抽屉式或者转鼓型试样架。氙灯试验箱装有紫外辐照传感器,它可以对因灯管老化或任何其他变化造成的光能量下降及时做出修正。紫外辐照传感器允许你在测试过程中选取适当的光辐照。紫外辐照传感器可以在辐照室内连续监测光辐照强度,并且通过调节灯管的功率,精确将辐照强度保持在运行设定值。水喷淋循环能有效模拟温度剧变和雨水侵蚀过程。由于经常遭到来自雨水的冲刷,木材的涂料层,包括油漆和著色剂,会出现相应的侵蚀现象。近期研究结果表明,这种雨水层冲刷掉,从而将材料本身直接暴露在UV和水分的破坏性影响之下。雨水喷淋功能可以再现此类环境条件,增强某些涂料气候老化试验。    在使用氙灯试验箱需要的现场条件如下:  1.温度:15℃~35℃  2.相对湿度:不大于85%RH  3.周围无强烈振动、无强烈电磁场影响  4.周围无高浓度粉尘及腐蚀性物质  5.无阳光直接照射或其它热源直接辐射  6.周围无强烈气流,当周围空气需要强制流时,气流不应直接吹到箱体上。  7.试验箱应放置平稳,保持水平。  8.试验箱的四周应留有一定的距离,方便维修操作。  9.安装场地通风良好  10.良好接地  所以在使用氙灯试验箱的时候应该注意一下细小的问题,这样可以避免一些不必要的事故。使操作人员更加放心与方便操作。资料来源于:http://www.shyc17.com/yuchen17-Article-114953/

  • 生物识别:常见的生物特征识别方式

    生物识别:常见的生物特征识别方式生物识别技术主要是指通过人类生物特征进行身份认证的一种技术,这里的生物特征通常具有唯一的(与他人不同)、可以测量或可自动识别和验证、遗传性或终身不变等特点。所谓生物识别的核心在于如何获取这些生物特征,并将之转换为数字信息,存储于计算机中,利用可靠的匹配算法来完成验证与识别个人身份的过程。一、生物识别技术概念生物识别技术的特征分类生物识别的涵义很广,大致上可分为身体特征和行为特征两类。身体特征包括:指纹、静脉、掌型、视网膜、虹膜、人体气味、脸型、甚至血管、DNA、骨骼等;行为特征则包括:签名、语音、行走步态等。生物识别系统则对生物特征进行取样,提取其唯一的特征转化成数字代码,并进一步将这些代码组成特征模板,当人们同识别系统交互进行身份认证时,识别系统通过获取其特征与数据库中的特征模板进行比对,以确定二者是否匹配,从而决定接受或拒绝该人。下表对五类主要的人体生物特征的自然属性进行了比较自然属性虹膜指纹面部DNA静脉唯一性因人而异因人而异因人而异亲子相近同卵双胞胎相同唯一性稳定性终身不变终身不变随年龄段改变终身不变终生不变抗磨损性不易磨损易磨损较易磨损不受影响不受影响痕迹残留不留痕迹接触时留有痕迹不留痕迹体液、细胞中含有不留痕迹遮蔽情况可戴手套面罩不能戴手套不能戴手套不需接触从上表列出的特性可以看出,某一应用领域可能特别需要某种生物特征,如刑侦应用与静脉、指纹识别、亲子鉴定与DNA等。与其他生物特征相比,虹膜组织更适合于信息安全和通道控制领域。例如,虽然多种特征都具有因人而异的自然属性,但虹膜的重复率极低,远远低于其他特征。又如,容易留痕迹可以给刑侦带来很大方便,但痕迹易被他人利用来造假,则不利于信息安全。再则,虹膜相对不易因伤受损,更加大大减少了因外伤而导致无法进行识别的可能性。而静脉识别更完美,精确度可以和虹膜识别媲美,无需接触,操作方便,适应人群广泛。二、几种常见的生物特征识别方式1.指纹识别指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。2.静脉识别静脉识别系统就是首先通过静脉识别仪取得个人静脉分布图,从静脉分布图依据专用比对算法提取特征值,通过红外线CMOS摄像头获取手指静脉、手掌静脉、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,将特征值存储。静脉比对时,实时采取静脉图,提取特征值,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,同存储在主机中静脉特征值比对,采用复杂的匹配算法对静脉特征进行匹配,从而对个人进行身份鉴定,确认身份。全过程采用非接触式。3.虹膜识别虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。从普通家庭门禁、单位考勤到银行保险柜、金融交易确认,应用后都可有效简化通行验证手续、确保安全。如果手机加载“虹膜识别”,即使丢失也不用担心信息泄露。机场通关安检中采用虹膜识别技术,将缩短通关时间,提高安全等级。4.视网膜识别视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。视网膜识别的优点就在于它是一种极其固定的生物特征,因为它是“隐藏”的,故而不可能受到磨损,老化等影响;使用者也无需和设备进行直接的接触;同时它是一个最难欺骗的系统,因为视网膜是不可见的,故而不会被伪造。另一方面,视网膜识别也有一些不完善的,如:视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;设备投入较为昂贵,识别过程的要求也高,因此角膜扫描识别在普遍推广应用上具有一定的难度。5.面部识别面部识别是根据人的面部特征来进行身份识别的技术,包括标准视频识别和热成像技术两种。标准视频识别是透过普通摄像头记录下被拍摄者眼睛、鼻子、嘴的形状及相对位置等面部特征,然后将其转换成数字信号,再利用计算机进行身份识别。视频面部识别是一种常见的身份识别方式,现已被广泛用于公共安全领域。热成像技术主要透过分析面部血液产生的热辐射来产生面部图像。与视频识别不同的是,热成像技术不需要良好的光源,即使在黑暗情况下也能正常使用。6.手掌几何学识别手掌几何学识别就是通过测量使用者的手掌和手指的物理特征来进行识别,高级的产品还可以识别三维图象。作为一种已经确立的方法,手掌几何学识别不仅性能好,而且使用比较方便。它适用的场合是用户人数比较多,或者用户虽然不经常使用,但使用时很容易接受。如果需要,这种技术的准确性可以非常高,同时可以灵活地调整性能以适应相当广泛的使用要求。手形读取器使用的范围很广,且很容易集成到其他系统中,因此成为许多生物特征识别项目中的首选技术。7.DNA识别人体内的DNA在整个人类范围内具有唯一性(除了同卵双胞胎可能具有同样结构的DNA外)和永久性。因此,除了对同卵双胞胎个体的鉴别可能失去它应有的功能外,这种方法具有绝对的权威性和准确性。DNA鉴别方法主要根据人体细胞中DNA分子的结构因人而异的特点进行身份鉴别。这种方法的准确性优于其它任何身份鉴别方法,同时有较好的防伪性。然而,DNA的获取和鉴别方法(DNA鉴别必须在一定的化学环境下进行)限制了DNA鉴别技术的实时性;另外,某些特殊疾病可能改变人体DNA的结构组成,系统无法正确的对这类人群进行鉴别。8.声音和签字识别声音和签字识别属于行为识别的范畴。声音识别主要是利用人的声音特点进行身份识别。声音识别的优点在于它是一种非接触识别技术,容易为公众所接受。但声音会随音量、音速和音质的变化而影响。比如,一个人感冒时说话和平时说话就会有明显差异。再者,一个人也可有意识地对自己的声音进行伪装和控制,从而给鉴别带来一定困难。签字是一种传统身份认证手段。现代签字识别技术,主要是透过测量签字者的字形及不同笔划间的速度、顺序和压力特征,对签字者的身份进行鉴别。签字与声音识别一样,也是一种行为测定,因此,同样会受人为因素的影响。9.亲子鉴定(基因识别)由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础。三、生物特征识别在中国的发展状况我国生物特征识别行业最早发展的是指纹识别技术,基本与国外同步,早在80年代初就开始了研究,并掌握了核心技术,产业发展相对比较成熟。而我国对于人脸识别、虹膜识别、掌形识别等生物认证技术研究的开展则在1996年之后。1996年,现任中国科学院副秘书长、模式识别国家重点实验室主任的谭铁牛入选中科院的“百人计划”,辞去英国雷丁大学的终身教职务回国,开辟了基于人的生物特征的身份鉴别等国际前沿领域新的学科研究方向,开始了我国对人脸、虹膜、掌纹等生物特征识别领域的研究。目前,中科院自动化研究所是我国最具权威的生物特征识别认证科研机构,在人脸识别、虹膜识别、指纹识别、掌纹识别等领域均已取得了国内或国际领先的研究成果。以国内顶级科研单位、著名高校的生物特征识别科研成果为依托,北京中科虹霸、北京行者、中科奥森、北京数字指通、北大高科、杭州中正生物认证有限公司、上海银晨科技、道肯奇等一批生物特征识别领域的高新技术公司慢慢发展起来,带动着行业的发展。自2003年后,生物特征识别行业步入成长期,主要特征有:产品体系已建立,技术标准逐渐完善,行业内企业数量激增(全球目前从业公司已上千家),产品成本已大幅度下降,技术已获得客户广泛认可,各领域应用渐趋普及,行业体系也已成型。在此阶段,中国生物特征识别行业开始诞生了一批在细分市场具有领导优势的企业,如北京艾迪沃德指纹科技(IDworld)、北大高科、中控电子在科刑侦和社保指纹门锁指纹考勤等领域,都取得了一定优势。以中科院自动化所科研成果为依托的北京中科虹霸科技有限公司在虹膜识别产业化方面积极探索,于2006年10月研发出国内第一款嵌入式网络化虹膜识别仪,其性能达到国际领先。部分企业在技术研发等领域也取得突破,如亚略特、银晨科技在人脸识别等技术上都取得了领先水平。

  • 同一元素不同线系,特征谱线之间相对强度是否也有比例关系呢

    如题,谢谢大家。书上说:同一线系,它每条特征谱线的相对强度取决于电子在各能级之间的跃迁几率和原子结构(它应该也适用 对于同一元素的不同线系吧?)~~之间相对强度有比例关系。结合铅 砷的特征谱线的选择及干扰谱线校正,同一元素不同线系特征谱线的相对强度也应该有比例关系。虽然书上没有说

  • 【分享】液位变送器的特征及应用

    液位变送器是根据不同比重的液体在不同高度所产生压力成线性关系的原理,实现对水、油及糊状物的体积、液高、重量的准确测量和传送。液位变送器适合容器内液体介质的液位、界面的测量。 液位变送器具有结构简单、安装方便、维护方便、耐腐蚀、无需电源、防爆等特征;指示机构与被测介质完全隔离、密封性好、可靠性高,因此使用较安全;液位变送器采用灵敏度较高的传感,具有响应速度快、准确反映流动或静态液面的细微变化,测量准确度高。除现场指示,还可配远传变送器、报警开关、检测功能齐全。 液位变送器不仅适用于普通水的测量,还适用于高温、粘稠、腐蚀等介质特殊场合的液位测量。液位变送器可广泛适用于化工、楼宇自控、恒压供水、城市供水及污水处理、水文监测与控制、冶金、电站、水利、城市供水和工业废水等领域。

  • 特征X荧光之俄歇电子篇 可能理解不透彻 请大家指教

    [size=18px]前几天在重新温习X荧光知识的时候,突然出现了一个名字-俄歇电子,这个名称还就在我的脑子中挥之不去了,当时一时间想不起什么才是俄歇电子,后来在网上查了查,把自己的理解和大家分享一下,大家也看看我说的对不对,欢迎大家交流指教。一说到俄歇电子,我看到有的仪器是以根据俄歇电子能谱,来研究固体表面结构和表面物理化学性质的变化等,所以我就对这一概念就更加好奇了。我查到俄歇电子能谱(Auger Electron Spectronmetry,简称AES)。首先先要明确的就是我理解的一个概念,就是当X射线照射样品时,并非所有产生的空穴都会形成特征X荧光,就是我们之前举例说的跃迁-回迁-释放能量的过程,在这个过程中不是所有空穴都会产生特征X荧光的,我的理解是当X射线照射样品时,如下图(特征X射线产生):[/size][img=,530,519]https://ng1.17img.cn/bbsfiles/images/2024/03/202403191439566241_1826_2645693_3.jpg!w530x519.jpg[/img][size=18px]当x射线照射样品后1号电子获得能量跃迁,出现空穴,2号电子进行空穴的填补,并释放特征X荧光,重点来了,在2号去补缺空穴时释放的特征X荧光恰好激发了3号电子,使之形成了新的空穴,这个被激发跃迁的3号电子就是俄歇电子。不知道我这样的理解对不对,请专家指教。同时也请大家帮我看看对不对,一起讨论下![/size]

  • 【分享】耐磨试验机的特征及功能介绍

    耐磨试验机是用于印刷品印刷墨层耐磨性、PS版感光层耐磨性及相关产品表面涂层耐磨性的测试试验,采用微电脑控制、LCD动态显示、机电一体化原理,耐磨试验机具有设计合理、结构简单、造型美观、操作方便、转动平稳、读数直观等特点。 耐磨试验机采用了摆线针轮减速机,具有减速比大、结构紧凑、传动平稳、磨料流量可调的特征;可显示测试速度、及设定试验次数。从而达到对各类产品表面之喷油、丝印等印刷体作耐磨擦寿命试验;耐磨试验机的控制系统具有断电记忆功能,即每次重新上电后,保持上次断电前输入的参数状态;钢轮转数可预置,并具有转数显示功能,转到预定转数时,电机自动停止转动。 耐磨试验机可广泛用于塑料、电线、电器、皮革、布、纸、涂料、合板、地砖、玻璃、天然塑料等。

  • 【原创】不锈钢疲劳裂纹特征讨论

    【原创】不锈钢疲劳裂纹特征讨论

    对304不锈钢焊管角焊缝裂纹分析发现,[u][color=red]疲劳[/color][/u]辉纹并不明显,断口显示明显的穿晶裂纹特征,少部分区域[u][color=red]疲劳[/color][/u]辉纹分布在穿晶裂纹的小面上。该管材角焊缝确实是结构上的应力集中部位,但整个部件没有受到很大的周期性应力作用,只有管材连接的软管的振动影响。我们认为断口主要呈现了脆性的穿晶裂纹特征,而不是如教科书上所说的韧性较好的奥氏体材料[u][color=red]疲劳[/color][/u]辉纹有比较明显的分布特征。虽然[u][color=red]疲劳[/color][/u]与脆性断裂并不矛盾,但能否确认主要的失效模式为[u][color=red]疲劳[/color][/u]?我们对于马氏体不锈钢在周期性应力作用下的断口分析,反而发现有明显的[u][color=red]疲劳[/color][/u]辉纹,且面积较大,因此想和大家讨论,是否304不锈钢材料的[u][color=red]疲劳[/color][/u]辉纹本身就不是很明显?[img]http://ng1.17img.cn/bbsfiles/images/2010/02/201002042315_200481_1739834_3.jpg[/img][img=498,528,left]http://ng1.17img.cn/bbsfiles/images/2010/02/201002042316_200482_1739834_3.jpg[/img]

  • 新模型可将原子核两种特征统一

    中国科技网讯 在费米子系统下,原子核既有液体特征,又有类似于分子的特征。据物理学家组织网7月30日报道,最近法国一个研究小组通过模拟中子星提出了一种新模型,将这两方面统一起来,并首次证明了核子聚集成簇的一个必要条件。核子的类分子性质有助于人们理解元素是怎样合成的,而这是生命出现的关键。相关论文发表在最新一期《自然》杂志上。 在描述原子核的时候,科学家通常把它当作是一滴直径约为千万亿分之一米的量子液。一方面,在研究包含大量质子和中子的重核裂变时,这种类似液体的性质能提供合理的解释;另一方面,轻原子核却像是由中子和质子构成的微小的“分子”或“原子簇”。在从铍到镍这些轻核中,聚集成簇是常见特征。 “分子—原子核”和“液态—原子核”这两种观点同时存在。最近,来自巴黎第十一大学核物理研究所、法国原子能委员会(CEA)的一个研究小组和克罗地亚萨格勒布大学合作,提出把这两方面统一起来的新模型。 研究人员找到了一种原子核从液态转化到晶体状态的机制,并以氖-20为例,用能量密度函数的理论框架,涵盖了原子核的簇状态和量子液两个方面特征。通过方程显示,聚簇条件与界定原子势深度有关,势的深度决定了单个核子轨道的能量间隔,也就是相应波函数的区域,由此决定了原子核聚集的密度,这是核子聚集成簇的一个必要条件。 研究人员解释说,轻原子核更多表现出类分子的行为(倾向于变成结晶状态),重原子核则表现出更多类似液体的行为。当中子和质子之间的相互作用不够强,不足以将它们固定在原子核内时,它们就会处于一种量子液的状态,质子和中子离开原位。反过来,在晶体状态时,核内中子和质子固定在一定间隔距离内,“原子核分子”就处于一种量子液和晶体的中间态。 此外,他们还预测了会出现更多明显的聚簇结构,研究的长期目标是对各种状态的原子核形成统一理论。(常丽君) 《科技日报》(2012-8-1 二版)

  • SIM塑化剂特征离子和非特征离子

    菜鸟又开始提问啦判断是否为塑化剂会有些不确定,SIM 特征离子的比例都合适但是有些非特特征离子的丰度很大,不知道是否该判?SIM 特征离子和标准图谱都能对上,但是非特征离子丰度大了很多?这种是不是塑化剂呢?全扫描的时候是判断一个物质是按丰度比进行的?这两种不同方法,判断的时候方法也不同?

  • 【分享】耐破度试验机的特征及应用简介

    耐破度试验机可分为电子式破裂强度试验机和数显式破裂强度试验机,耐破度试验机采用全电脑控制技术、开放式结构,具有自动化程序高、操作简单方便、安全可靠、性能可靠、技术先进等优点。 耐破度试验采用高精度传感器、高速处理芯片设计,确保采样准确度,具有机结构紧凑、外观美观大方、维修方便等特征。采用微电脑采集数据,其运算速度高,测试材料破裂时,结果自动保留最大破裂强度值由仪表显示并可以选择由微型打印机打印输出。只要把材料放进试验机,具有自动侦测、自动试验、自动油压回位及自动计算、储存测试数据、打印的功能。 耐破度试验机可用于测量包装材料,主要用于测定各种纸板及单层和多层瓦楞纸板、丝绸、棉布等非纸质材料的耐破强度的测试。耐破度试验机可广泛的适用于般纸张、瓦楞纸、卫生纸、包装纸、皮革、布类、包装薄膜行业的耐破度试验。

  • 【分享】百分表的特征及功能

    百分表是利用齿条齿轮或杠杆齿轮传动,将测杆的直线位移变为指针的角位移的计量器具,主要由表体部分、传动系统、读数装置,3个部件组成。百分表是一种精度较高的比较量具,只能测出相对数值,不能测出绝对数值。 百分表是利用将被测尺寸引起的测杆微小直线移动,经过齿轮传动放大,变为指计在刻度盘上的转动,从而读出被测尺寸的大小,这一原理工作的。百分表采用新颖定位装置,操作方便、定位精度高;外廓尺寸小、重量轻、传动机构惰性小,传动比较大,采用圆周刻度,并且有较大的测量范围。适于对新制、修理及使用中的钟表式百分表、杠杆式百分表,百分表采用大型易读的液晶显示屏,具有可设置跳动量值,测量时可作跳动量判断,测量方向可转换;可设置公差值,测量时可作偏差判断等特征。 百分表的结构较简单,传动机构是齿轮系,不仅能作比较测量,也能作绝对测量,主要用于测量形状和位置误差,也可用于机床上安装工件时的精密找正。

  • 特征谱疑问

    有几个问题,请大家帮忙解释一下。1、X射线发出K系特征谱线时,是不是肯定会有L等其他的特征谱线啊?K特征谱是不是需要的管电压最高,而其他的就会低一点?2、如果用金属去防护X射线,那么金属是不是还会激发出二次荧光X射线呢?

  • 特征离子的选择

    HJ 605标准中,第一特征离子和第二特征离子,分别指的是定量离子和辅助离子吗?如图如果是的话,有时第二特征离子强度比第一特征离子大好几倍,比如定量离子强度为100%,定性离子强度为500%。这种情况,大家怎么办的啊?[img]https://ng1.17img.cn/bbsfiles/images/2020/03/202003311441449316_6404_3435104_3.png[/img]

  • 特征离子丰度比

    标准品特征离子丰度比和样品特征离子丰度比相差很大,能否判定不是同一种物质?

  • 特征谱问题

    有几个问题,请大家帮忙解释一下。1、X射线发出K系特征谱线时,是不是肯定会有L等其他的特征谱线啊?K特征谱是不是需要的管电压最高,而其他的就会低一点?2、如果用金属去防护X射线,那么金属是不是还会激发出二次荧光X射线呢?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制