当前位置: 仪器信息网 > 行业主题 > >

结构与表征

仪器信息网结构与表征专题为您整合结构与表征相关的最新文章,在结构与表征专题,您不仅可以免费浏览结构与表征的资讯, 同时您还可以浏览结构与表征的相关资料、解决方案,参与社区结构与表征话题讨论。

结构与表征相关的论坛

  • 产物结构的表征使用X射线衍射仪

    产物结构的表征采用XRD我们的样品是在AAO(AAO是三氧化二铝的一种多孔结构,固体。)上面生长了一层结构,现在我们想知道表面这层结构是什么物质,现在想问用XRD可以测不,测量的具体内容和具体方法

  • 【分享】化合物结构表征课件,希望大家用得上

    生物传感器一定会涉及化合物制备与表征等内容,这里我们共享一个好资料。此《化合物结构表征课件》包括:红外、紫外、核磁、质谱、XRD内容全面,值得学习!!!!看了、下了,帮忙顶下,谢谢!!!![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=28563]化合物结构表征课件[/url][url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url]

  • 透射电子显微镜表征材料结构

    本次微课主要开展透射电子显微镜表征材料结构关于材料准备方面的经验分享,包含粉末样品、块体样品、磁性样品和敏感样品等类型样品的准备方法。

  • 应用质谱技术提升传统中药的质量控制和生物大分子药物的结构表征能力

    [b][font='微软雅黑',sans-serif][color=black][back=white]【序号】:3【作者】: 何扬芳【题名】:应用质谱技术提升传统中药的质量控制和生物大分子药物的结构表征能力[/back][/color][/font][/b][align=left][font='微软雅黑',sans-serif][color=black][back=white]【期刊】:吉林大学 博士论文[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【年、卷、期、起止页码】:2020[/back][/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font][font='微软雅黑',sans-serif][color=black][back=white]【全文链接】:[/back][/color][/font][url=https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C447WN1SO36whLpCgh0R0Z-iVBgRpfJBcb4JAybTo8M4ljH5Ce6ATfKqWkZZyuKToFWj_RADn7Nr0YNPrffgey8c&uniplatform=NZKPT]应用质谱技术提升传统中药的质量控制和生物大分子药物的结构表征能力 - 中国知网 (cnki.net)[/url][/align][align=left] [/align]

  • 【第4季仪器心得】结构表征小能手之尼高力傅立叶变换红外光谱仪

    [align=center][font='calibri'][size=18px][b]【第4季仪器心得】结构表征小能手之尼高力傅立叶变换红外光谱仪[/b][/size][/font][/align][align=center][size=13px]通标小菜鸟[/size][/align][size=16px]在有机化合物的结构表征中,我们常常会用到四大谱图,这四大谱图分别为紫外光谱图、红外光谱图、质谱图以及核磁共振图谱。红外光谱作为四大图谱之一,常常是不可或缺的。我们通过对有机物的红外光谱图进行解析,可以大致判断化合物具有哪些官能团。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031843192088_5502_3141805_3.jpeg[/img][/align][size=16px]单位有一台美国Thermo尼高力傅立叶变换红外光谱仪,这台仪器承担着日常样品测试工作,比如未知样品官能团分析,对照品及原料药红外光谱图对比以及标准品的结构表征等等。[/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031843194983_9714_3141805_3.jpeg[/img][/size][/align][size=16px]这台仪器配备了两个模块,分别为iD1和iD5,这两个模块分别对应着两个不同的分析方法,在我们对化合物进行分析前,需要确定好使用哪种模式进行测定,不过这里推荐使用iD5模块,因为采用该模块对待测物的要求比较低,固体样品和液体样品都可以直接拿来测定,这样就方便很多,不需要另外对待测物采用模具进行压片制样。[/size][size=16px]在样品分析前我们要注意安装的模块是否正确,同时在仪器软件操作界面设置正确的操作模块和参数。在样品分析前还需要采集空白背景图谱,这时候我们的样品台晶体上一定不要有异物,事先擦拭干净,待采集完空白后再把待测样品均匀覆盖在晶体上,这样可以确保采集图谱的代表性。[/size][size=16px]美国赛默飞尼高力傅立叶变换红外光谱仪的仪器结构比较简单,还具有体积小的优点,它不像[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],质谱,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]等仪器需要占据桌面很大一块地方,它只要这些仪器1/2甚至1/3的占地面积就能安置。[/size][size=16px]同时它还具有操作简单,上手快的优点,对于样品类型也没有特定限制,液体样品和固体样品均可,但事先要将样品里面的水分除去,不然会影响测定结果。液体样品由于比较均匀,因此没有什么其它要求,对于固体样品要尽可能的进行研磨均匀。上样前需要检查一下样品台上面是否干净,有没有污染物,可使用异丙醇滴在样品台上,然后用棉签轻轻擦拭干净,保证光路无遮挡。测试样品结束后也进行同样操作,将残余样品清洗干净。[/size]

  • 新型水溶性壳聚糖的制备、结构表征及性能分析

    【序号】:4【作者】: 程鸿昊【题名】:新型水溶性壳聚糖的制备、结构表征及性能分析【期刊】:深圳大学【年、卷、期、起止页码】:2015【全文链接】:https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201502&filename=1015419049.nh&uniplatform=NZKPT&v=QgCQWC8E7NV0DuUWCarIReSDOH9hlLxapcjlUYLQPTNi7WCZwmL_ofmQU5cEmZ-9

  • 【第3季仪器心得】结构表征小能手之尼高力傅立叶变换红外光谱仪

    【第3季仪器心得】结构表征小能手之尼高力傅立叶变换红外光谱仪

    [align=center][font='arial'][size=18px]结构表征小能手之尼高力傅立叶变换红外光谱仪[/size][/font][/align]红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。[img]https://ng1.17img.cn/bbsfiles/images/2023/05/202305281607173272_1018_3141805_3.jpg[/img]在有机化合物的结构表征中,我们常常会用到四大谱图,这四大谱图分别为紫外光谱图、红外光谱图、质谱图以及核磁共振图谱。红外光谱作为四大图谱之一,常常是不可或缺的。我们通过对有机物的红外光谱图进行解析,可以大致判断化合物具有哪些官能团。[img]https://ng1.17img.cn/bbsfiles/images/2023/05/202305281607178490_1171_3141805_3.jpg[/img]单位有一台美国Thermo尼高力傅立叶变换红外光谱仪,这台仪器承担着日常样品测试工作,比如未知样品官能团分析,对照品及原料药红外光谱图对比以及标准品的结构表征等等。美国赛默飞尼高力傅立叶变换红外光谱仪的仪器比较简单,而且具有易操作及体积小的优点,它不像[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],质谱,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]等仪器需要占据桌面很大一块地方,它只要这些仪器1/2甚至1/3的占地面积就能安置。同时它还具有操作简单,上手快的优点,对于样品类型也没有特定限制,液体样品和固体样品均可,但事先要将样品里面的水分除去,不然会影响测定结果。液体样品由于比较均匀,因此没有什么其它要求,对于固体样品要尽可能的进行研磨均匀。上样前需要检查一下样品台上面是否干净,有没有污染物,可使用异丙醇滴在样品台上,然后用棉签轻轻擦拭干净,保证光路无遮挡。测试样品结束后也进行同样操作,将残余样品清洗干净。总而言之,如果你们有红外图谱测试的需要,买一台这种类型的仪器,我觉得不失为一个好的选择。

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 纳米表征技术的新突破

    纳米表征技术的新突破 在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?北京科技大学方克明教授经过20多年的研究,探索出了一种新的方法———  “纳米”这个名词越来越引起人们的兴趣。大家知道“纳米”是一个非常微小的长度单位。具体地说,一纳米约一根头发粗细的万分之一。纳米技术应用到传统产品中,会极大地改善产品的性能。例如,碳纳米管是由一层或若干层碳原子卷曲而成的管状“纤维”,直径只有几到几十纳米。比重只有钢的六分之一,而强度却是钢的100倍。如果把碳纳米管制成绳索,是从月球上挂到地球表面而惟一不被自身重量所拉断的绳索。  在“纳米”技术愈来愈广泛地开发应用的同时,人们可能会提出这样的问题∶如此微小的“纳米”是用何种科学手段检测的?据了解,目前我国用来检测纳米的纳米表征技术正日趋成熟并取得了新的突破。  记者日前在采访中了解到,北京科技大学冶金学院博士生导师方克明教授经过20多年的研究,在纳米表征技术方面取得了新的突破,探索出了用透射电镜或高分辨电镜对纳米材料进行表征的新方法。该技术采用金属包埋法可以从纳米材料中切取纳米尺度的薄膜,然后用透射电镜或高分辨电镜研究纳米材料的微观形貌和微观结构。该技术的成功为我国纳米技术的发展提供了一种重要的检测手段,它荣获第十二届全国发明展览会金牌奖并取得了国家专利,目前在国内外处于该领域的领先水平。  纳米材料包括纳米颗粒及其以纳米颗粒为基础的材料;纳米纤维及其含有纳米纤维的材料;纳米界面及其含有纳米界面的材料。纳米材料的性能与其微观结构有着重要的关系。因此研究纳米材料微观结构的表征对认识纳米材料的特性,推动纳米材料的应用有着重要的意义。  透射电镜是研究材料的重要仪器之一,在纳米技术的基础研究及开发应用中也不例外。但是用透射电镜研究材料微观结构时,试样必须是透射电镜电子束可以穿透的纳米厚度的薄膜。单体的纳米颗粒或纳米纤维一般是透射电镜电子束可以直接穿透的。研究者通常把试样直接放在微栅上进行透射电镜观察。但是由于纳米颗粒或纳米纤维容易团聚,因此,用这种方法常常得不到理想的结果,有些研究内容也难以实施。比如∶纳米颗粒的表面改性的研究,纳米纤维的横切面研究都比较困难,研究界面问题则有更大的难度。因此,纳米材料的透射电镜研究,其样品制备问题是一个值得探讨的重要课题。对此,方克明教授进行了研究,探索了一种比较适用的制样方法。该方法可以从纳米颗粒或微米颗粒中直接切取可以进行透射电镜研究的薄膜,对进行纳米纤维横切面观察或纳米界面观察的制样也有很高的效率。  这一技术的特点是从纳米或微米尺度的试样中直接切取可供透射电镜或高分辨电镜研究的薄膜。试样可以为简单颗粒或表面改性后的包覆颗粒,对于纤维状试样,既可以切取横切面薄膜也可以切取纵切面薄膜。对含有界面的试样或纳米多层膜,该技术可以制备研究界面结构的透射电镜试样。技术的另一重要特点是不损伤试样的原始组织。制膜过程中不使用高温,不接触酸碱,必要时也可以不接触水或水溶液。  目前上述技术已应用于多项课题研究,如:沸石颗粒中半导体纳米团簇组装过程的研究;纳米碳纤维微观结构的高分辨电镜研究;纳米颗粒微观结构与尺寸的表征;多层膜层间结构的透射电镜研究;粉体颗粒表面改性的研究;电容钽粉颗粒渗氧层及介质膜的研究;铸铁中各种石墨微观结构的研究等。  该技术在全国已经获得了广泛应用,为北大、清华、中科院等上百个新材料科研课题组和企业提供了技术支持。为我国高新材料的深入研究提供了一种重要方法,引起了国内外的关注。  纳米表征技术是高新材料基础理论研究与实际应用交叉融合的技术。对我国高新材料产业的发展有着重要的推动作用。我们希望这项新技术能得到有关部门的关注并在全国更广泛地推广应用,以加速我国高新材料研究的进程,为我国高新技术产业的发展作出更大的贡献

  • 结构表征小能手之尼高力傅立叶变换红外光谱仪

    [align=center][font='calibri'][size=13px]结构表征小能手之尼高力傅立叶变换红外光谱仪[/size][/font][/align][align=center][font='calibri'][size=13px]通标小菜[/size][/font][font='calibri'][size=13px]鸟[/size][/font][/align][font='calibri'][size=13px]红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011321398207_2707_3141805_3.jpeg[/img][font='calibri'][size=13px]在有机化合物的结构表征中,我们常常会用到四大谱图,这四[/size][/font][font='calibri'][size=13px]大谱图分别[/size][/font][font='calibri'][size=13px]为紫外光谱图、红外光谱图、质谱图以及核磁共振图谱。红外光谱作为四大图谱之一,常常是不可或缺的。我们通过对有机物的红外光谱图进行解析,可以大致判断化合物具有哪些官能团。[/size][/font][font='calibri'][size=13px]单位有一台美国[/size][/font][font='calibri'][size=13px]Thermo[/size][/font][font='calibri'][size=13px]尼高力傅立叶变换红外光谱仪,这台仪器承担着日常样品测试工作,比如未知样品官能团分析,对照品及原料药红外光谱图对比以及标准品的结构表征等等。[/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2023/07/202307011321400185_3748_3141805_3.jpeg[/img][font='calibri'][size=13px]美国[/size][/font][font='calibri'][size=13px]赛默飞尼高[/size][/font][font='calibri'][size=13px]力傅立叶变换红外光谱仪的仪器比较简单,而且具有易操作及体积小的优点,它不像[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],质谱,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]等仪器需要占据桌面很大一块地方,它只要这些仪器1/2甚至1/3的占地面积就能安置。[/size][/font][font='calibri'][size=13px]同时它还具有操作简单,上手快的优点,对于样品类型也没有特定限制,液体样品和固体样品均可,但事先要将样品里面的水分除去,不然会影响测定结果。液体样品由于比较均匀,因此没有什么其它要求,对于固体样品要尽可能的进行研磨均匀。[/size][/font][font='calibri'][size=13px]上样前[/size][/font][font='calibri'][size=13px]需要检查一下样品台上面是否干净,有没有污染物,可使用异丙醇滴在样品台上,然后用棉签轻轻擦拭干净,保证光路无遮挡。测试样品结束后也进行同样操作,将残余样品清洗干净。[/size][/font]

  • 【求助】【求助】如何表征高分子溶液在流动形态的结构

    在下对分析化学不太懂,只知道一般待测试表征的溶液或样品都是在静态下进行的,请问有没有谁做过动态条件(就是在测试的时候让待测液流动起来)下的测试呀?或者了解国内哪里能做这个的?请不吝指教。老板一个月前安排的工作,到现在没有进展,请大家多多帮忙,在线等。

  • 电子显微学表征技术盘点专题,邀您发言互动!

    显微学表征技术主要扫描电镜(SEM)、透射电镜(TEM)、扫描探针显微镜(SPM/AFM)及其相关领域的技术。显微学技术以其独特的优势在材料、生命科学、机械、电子、化工等学科中得到了广泛的推广与应用。显微表征新技术也一直被研究领域乃至生产行业高度关注,2017年诺贝尔化学奖授予Jacques Dubochet,Joachim Frank和Richard Henderson 3位科学家,以表彰他们在发展利用冷冻电子显微学技术解析溶液中生物大分子高分辨率结构方面做出的开创性贡献,至此,业界对显微学技术的关注再次掀起热潮。 与此同时,面对市场的需求,各大显微技术仪器设备生产商也纷纷加大对新技术、新产品研发的投入,以期在需求不断增长的市场中博得一席之地。

  • 石墨表面sei膜的表征用SEM还是TEM好?

    我做锂电池负极SEI膜的表征方面的工作,SEI膜大约10nm厚,做要成分是低聚物有机化合物,我以前做过聚合物的TEM,它能放大3万倍左右,能够很清楚地看到纳米级材料的结构。 我现在做了SEM对SEI膜的表征不能看清楚它的表面结构,我想问一下,关于我说得SEI膜能用TEM得到好的结果么?

  • 多功能聚烯烃分析表征仪 (CFC)

    目前聚烯烃分析表征的手段有很多,比如分子量表征、化学组分分布表征等,但是各种表征手段的侧重点不同,分子量表征关注的聚合物分子链的大小,不关注支链情况;而化学组分分布表征只关注聚烯烃的支链情况。所以有时候单独分别表征聚烯烃样品的分子量及其分布或者是化学组分分布,不足以完整清晰地表征聚烯烃树脂的微观结构。详见:http://www.instrument.com.cn/netshow/SH101663/down_510096.htm

  • 【讨论】GPC表征接枝共聚物的优劣?

    表征共聚物的分子量及分子量分布通常要用到GPC,但是我是做接枝共聚物的,聚合物的结构与PS标样相差很大。因此导致做出来的数据很难说清楚其物理意义。因此恳请大家来谈一谈GPC表征接枝共聚物的优劣,改进方法以及替代方法等。热切期待中.......................

  • 石墨表面sei膜的表征用SEM还是TEM好?

    我做锂电池负极SEI膜的表征方面的工作,SEI膜大约10nm厚,主要成分是低聚物有机化合物,我以前做过聚合物的TEM,它能放大3万倍左右,能够很清楚地看到纳米级材料的结构。 我现在做了SEM对SEI膜的表征不能看清楚它的表面结构,我想问一下,关于我说得SEI膜能用TEM得到好的结果么?

  • 第四届ICPC聚合物表征年会综述

    国际聚合物表征年会(International Conferenceof Polyolefin Characterization)是唯一一个聚烯烃表征领域中的国际会议,由西班牙Polymer Char公司举办,每两年举办一次。第四届ICPC国际会议于2012年10月成功在美国Houston举办。ICPC会议第一届在Houston举办,第二届在Valencia举办,第三届在上海举办,举办地点依此循环。第四届ICPC会议邀请了来自世界上超过25个国家的顶级的聚烯烃表征方面的专家学者,内容涉及PP和PE分子结构表征的各个方面,包括分子量分布(GPC/SEC),嵌入共聚用单体含量及其分布,长支链,结晶度和流变特性。ICPC技术委员会由Dr.Benjamin Monrabal (Polymer Char),Dr.Colin Li Pi Shan(陶氏化学),Prof.Joan Soares(加拿大滑铁卢大学),Prof.Minoru Terano(日本先进科学技术研究院),Prof.Dujin Wang(中科院化学研究所)组成,参会单位包括神华宁夏煤业集团、埃克森美孚化学、陶氏化学、雪佛龙菲利浦化学公司、滑铁卢大学、日本先进科学技术研究院、中科院化学研究所、德国弗劳恩霍夫结构耐久性和系统可靠性研究所等。本次会议由41篇演讲和37幅海报宣传组成。其中有44篇关于ICPC技术介绍,6篇关于CEF技术介绍,另有几篇其他聚烯烃表征方面的新技术。ICPC会议网址聚烯烃中共聚用单体馏分分布对于工业和学术研究都很重要。目前HT-TGIC作为一种新型馏分分离技术,被引进到这个领域进行研究分析。该技术中,通常使用HYPERCARB®柱子,使用有孔石墨碳(PGC),根据交互作用的不同来分离聚烯烃。HT-TGIC分析不受共结晶效应影响,而共结晶效应对根据结晶度不同进行分离的技术,如TREF、CEF会产生影响。使用SG-IC、TG-IC和高温GPC联用技术和多检测器,可以对聚烯烃分子量及其分布、共聚物单体含量及其分布、长支链及其分布、嵌段物含量及其分布等微观结构进行表征分析。陶氏化学最新研发出了一种超强的聚烯烃分离技术,通过选择以碳作为稳定相的吸附剂,使用HT-HPLC高温溶剂梯度液相色谱分离技术,在很短的时间内,可以很好地对聚烯烃进行表征。Polymer Char通过引入不用碳吸附的载体,而是采用石墨烯作为填料来实现分离,使用TGIC技术用于聚烯烃分析。HT-TGIC独特的长处是用于分离结构不同的聚烯烃,配上IR4,可以得到浓度和千碳甲基数信息。使用TREF、HT-SEC-FTIR、HT-SEC-DSC和HT-2D-LC方法综合分析PP共聚物的组分信息。其中, HT-SEC-FTIR提供了与分子量相关的化学组成、结晶度信息。使用新型DSC(示差扫描量热法)对SEC馏分信息进行热分析可以得到PP共聚物的多相性信息:熔点、结晶行为。例如:PP共聚物80℃下馏分为含不同乙烯、丙烯含量和不同序列长度分布的混合物。在用TREF分离后,使用高温溶剂梯度HPLC,可以知道其含有大量的PE均聚物和含有长乙烯序列长

  • 三维透射电镜表征

    三维透射电镜表征

    大多数固体材料是由成千上万个小晶体组成,这些小晶体的取向、大小、形状以及它们在样品内的三维空间分布和排列决定了材料的性能。最近,中国科学院金属研究所沈阳材料科学国家(联合)实验室刘志权研究员与丹麦科技大学Risø可持续能源国家实验室、清华大学、美国约翰霍普金斯大学的科学家们共同合作,开发出了一种利用透射电子显微镜对纳米材料进行直接三维定量表征的新方法,这一成果发表在5月13日出版的《科学》周刊上Science332(2011)833. (http://www.sciencemag.org/content/332/6031/833.full)通常,材料内部的微观结构信息是通过对截面样品的二维观察得到的,这种二维观察不能提供材料内部小晶体在三维空间的相对分布和晶界特性等重要的微观结构参数,从而制约了对材料微观结构与宏观性能相互关系的深刻理解和材料性能的改进和优化。近年来,在世界范围内,科学家们就开发先进的微观结构三维表征技术进行了不懈的努力探索,三维X-射线衍射技术的成功开发和应用就是一个重要例子。但是这种技术的空间分辨率只能达到100纳米 (1纳米=百万分之一毫米)。本次合作开发的新的三维透射电子显微技术其空间分辨率已达到1纳米,比三维X-射线衍射技术提高了两个数量级。这种新的三维透射电镜表征技术是表征纳米材料的理想方法,它可对组成纳米材料的各个小晶体进行精确描述,包括其各个晶体的取向、大小、形状和在三维样品内的空间位置等。图1所示的是利用这种方法得到的纳米金属铝的三维微观结构特征图的一个例子。图中不同颜色表示不同的晶体取向,晶体的大小(从几纳米到约100纳米)和形状(伸长的或球体状的)都清晰地显示出来了。这些微观结构参数的精确定量测定为理解和优化纳米材料的性能提供了坚实的基础。这一方法的一个重要优点是它是一种“无损”的分析技术,即在微观表征过程中不破坏样品,因此它可用来研究纳米材料微观结构在外加条件下(如加热或变形)的演变过程,从而为研究纳米材料的动态行为开辟了新的途径。http://ng1.17img.cn/bbsfiles/images/2011/07/201107160951_305155_1606080_3.jpg图1. 纳米金属铝的三维微观结构特征图清晰地显示了样品内各个晶体在三维空间的形状、大小和位置。图中不同颜色表示不同的晶体取向。摘自沈阳金属所主页:http://www.imr.cas.cn/xwzx/kydt/201105/t20110513_3132072.html有没有高人能更加详细的科普一下这种表征技术先将原文附上,大家共同讨论学习

  • 催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    [align=center][img=https://www.instrument.com.cn/webinar/meetings/catalyst2022/,690,151]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101025467345_9400_3295121_3.jpg!w690x151.jpg[/img][/align][size=24px][color=#ff0000]催化剂表征与评价 主题网络研讨会[/color][/size][size=18px]举办时间:6月28日 14:00[/size][font=&]1、韩一帆(华东理工大学/郑州大学 长江学者、中原学者、教授/博士生导师):Elucidating Active Sites for Syngas to Olefins through F-T Reaction[/font]2、周琰(安东帕(上海)商贸有限公司 产品经理):气体吸附在催化剂表征中的应用3、刘丽萍(大连理工大学 高级工程师):固体多孔材料比表面积和孔结构分析方法应用探讨4、杨军(中国科学院过程工程研究所 研究员):贵金属基异质结构纳米材料及其电催化应用戳链接,[size=18px][color=#ff0000]免费[/color][/size]报名:[url]https://www.instrument.com.cn/webinar/meetings/catalyst2022/[/url]

  • 钙钛矿膜的形貌表征

    钙钛矿由于本身材料的稳定性不好,在电镜表征时易发生形貌上的变化。有不少透射电镜研究其降解晶体结构的改变,研究机理,但扫描对其研究不多,所以我想做做扫描电镜对它的测试。不知需要考虑样品哪些条件:选用哪种材料的钙钛矿?我觉得MAPbX3文献报道得比较多,是不是选这个好。另外是否需要考虑涂膜的膜厚度?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制