当前位置: 仪器信息网 > 行业主题 > >

结晶度表征

仪器信息网结晶度表征专题为您整合结晶度表征相关的最新文章,在结晶度表征专题,您不仅可以免费浏览结晶度表征的资讯, 同时您还可以浏览结晶度表征的相关资料、解决方案,参与社区结晶度表征话题讨论。

结晶度表征相关的资讯

  • 《RISE大招》无机材料之结构分析和结晶度分析
    《RISE大招》前情回顾:这是一个荡气回肠的相遇、相知、相恋、相爱的故事。本系列前两集讲述了RISE从传统扫描电镜“心有余而力不足”的分析困境下一跃而出到它对于无机相鉴定和金属夹杂分析的武功路数,相信大家对RISE电镜-拉曼一体化系统已经有了基本了解。(然而小编还是无比体贴的放上了前两集链接:点击下列文字即可快速阅读)。01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!科研无涯,却无需苦作舟。路即在此,英雄闻声而至。话不多说,今天呢,接着上次的招式,给大家讲讲RISE在无机材料结构分析和结晶度分析上的套路。无机材料之结构分析对于无机材料来说,经常会碰到同分异构的情况。但是仅仅通过扫描电镜和能谱,我们只能得到形貌和成分数据,而没有办法对样品进行准确的结构分析。而结构作为物质的基本特性,极大的影响着热、力、光、电、磁等性能,因此也是微区表征不容忽视的方面。而目前在SEM系统中,能够进行结构表征的也只有EBSD,但是前提依然是要有严格的样品制备,局限性很大。而成分相同结构不同的同分异构材料的拉曼光谱,往往表现出较大的差异,因此拉曼光谱分析手段是很好的表征结构的手段。因此,通过SEM+EDS+Raman (RISE) 的综合分析手段,我们就可以对同分异构材料进行全面准确的形貌、成分和结构分析。 如下图,试样为TiO2粉末,TiO2有锐钛矿和金红石两种结构,并且两者表现出完全不同的拉曼光谱特征。因此在RISE系统中通过拉曼光谱的面扫描分析,可以轻易的区分出蓝色区域为锐钛矿结构,红色区域为金红石结构。再例如下图,通过EDS数据知道电镜分析区域为Sm2O3 ,然后在此基础上进行拉曼面分布分析。虽然试样并不平整,完全不够EBSD的测试要求,但是RISE系统依然可以发现其中红色区域为立方结构的Sm2O3 ,蓝色区域为单斜结构的Sm2O3 。无机材料之结晶度分析对于无机材料来说,结晶度也是重要的参数。目前能够很好的表征结晶情况的主要是XRD,并且是基于宏观分析,能在微区尺度对结晶度进行表征的手段则很少。而无机晶体材料的结晶度却会对特征拉曼峰产生较大的影响。结晶度程度高,特征拉曼峰高而尖锐;反之,若结晶度低,则特征峰会变宽。因此,可以通过特征拉曼峰的宽度来对结晶度进行评判。由此可见,原位一体化的RISE对微区领域的结晶度分析提供了新的途径。如下图,用SEM-FIB双束电镜在硅表面进行图形加工。由于Ga+离子的注入效应、热效应等会使加工区域的硅产生一定程度上的非晶化。仅凭形貌是无法知道非晶化程度的。而在此区域用RISE进行拉曼面扫描,并用每一个测试点的Si的特征拉曼峰的半高宽为依据进行RISE成像,红色区域为半高宽较窄,蓝色区域为半高宽较宽。由此形成的RISE图像,对于研究FIB加工产生的非晶化一目了然。RISE七十二般武艺,招招新奇,但一招一式,每一个路数都为更好的帮助您的科研分析而生。除了切实突破并解决了传统扫描电镜分析能力薄弱的问题,针对传统意义上的电镜-拉曼联用系统的种种分析弊端,RISE系统采用了扫描电镜-拉曼光谱一体化的硬件和软件设计,使得综合分析更加行之有效。 故事刚开始,我们已相遇,还有相知、相恋、相爱̷̷跑远了,下面请收看“下集预告”:《RISE大招》下集看点:无机材料之微量元素分析、取向分析、取向应力分析。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN中国官方微信“TESCAN公司”,更多精彩资讯。↓ ↓ ↓ 观看RISE大招全系列,请戳:01 “我的前半生”结束了,后面的科研之路就靠它了!02 无机材料分析,RISE还有这些大招!
  • 云唐升级|ATP荧光检测仪可对表面洁净度快速筛查
    云唐升级|ATP荧光检测仪可对表面洁净度快速筛查  该设备为全新升级产品,大屏幕触摸显示屏,代替传统按键。操作采用生物化学反应方法检测ATP含量,ATP荧光检测仪基于萤火虫发光原理,利用“荧光素酶—荧光素体系”快速检测三磷酸腺苷(ATP)。ATP拭子含有可以裂解细胞膜的试剂,能将细胞内ATP释放出来,与试剂中含有的特异性酶发生反应,产生光,再用荧光照度计检测发光值,微生物的数量与发光值成正比,由于所有生物活细胞中含有恒量的ATP,所以ATP含量可以清晰地表明样品中微生物与其他生物残余的多少,用于判断卫生状况。ATP荧光检测仪产品链接https://www.instrument.com.cn/netshow/SH104655/C467598.htm ATP荧光检测仪创新点和产品特性:  云唐ATP荧光检测仪广泛应用于:细菌微生物检测、医药卫生、食品安全、市场执法、表面洁净度检测、医疗防疫、水质水政、生产线卫生、工业水处理、环保检测、海关出入境检疫及其他执法部门等多种行业。  仪器特性:  实用性 —— 可根据环境检测需求设定上下限值,做到数据快速评估预警,表面洁净度快速筛查。  灵敏度高 —— 10-15~10-18 mol  速度快 —— 常规培养法18-24h以上,而ATP只需要十几秒钟 .  可行性 —— 微生物数量与微生物体内所含ATP有明确的相关性。 通过检测ATP含量,可间接得出反应中微生物数量  可操作性 —— 传统培养方法需要在实验室由经过培训的技术人员进行操作 而ATP快速洁净度检测操作非常简便,只需简单的培训即可由一般工作人员进行现场操作。  体验更好 —— 试子套管采用插拔式灵活设计,可定期清洗长期使用,延长仪器寿命。  主要参数:  1、显示屏:3.5英寸高精度图形触摸屏  2、处理器:32位高速数据处理芯片  3、检测精度:1×10-18mol  4、大肠菌群:1-106cfu  5、检测范围:0 to 999999 RLUs  6、检测时间:15秒  7、检测干扰:±5﹪或±5 RLUs  8、操作温度范围:5℃到40℃  9、操作湿度范围:20—85﹪  10、ATP回收率:90-110%  11、检出模式:RLU、大肠菌群筛查  12、可任意设定上限值,下限值  13、自动判断合格与不合格  14、自动统计合格率  15、内置自校光源  16、开机30秒自检  17、配有miniUSB接口,可将结果上传至PC  18、配备专用软件驱动U盘代替传统光盘  19、仪器尺寸(W×H×D):188 mm×77mm×37mm  20、使用可充电锂电池免电池更换  21、备用状态(20℃):6个月  22、中文操作手册  23、稳定的液体荧光素酶  24、润湿的一体化采集拭子  随机配置:ATP荧光检测仪(手持)主机、铝合金手提箱、驱动U盘、仪器包、挂绳、PC数据线、数据分析软件、中文操作手册
  • 一站式3D打印用原材料表征方案:从粒度分析到元素分析
    增材制造常被称作3D打印,是一种从无到有逐层构建三维结构或组件的制造工艺。其原理是以计算机三维设计模型为蓝本,通过软件分层离散和数控成形系统,将三维实体变为若干个二维平面,利用激光束、热熔喷嘴等方式将粉末、塑料等特殊材料进行逐层堆积黏结,最终叠加成形,制造出实体产品。目前增材制造应用行业日益增多,包括航空航天,汽车制造,消费电子,生物医疗,工业设备等。增材制造工艺包括:粉床熔融成型,立体光刻工艺,熔融沉积成型,喷胶粘粉工艺等。相比于传统的减材制造方式,增材制造工艺具有低成本、高效益等优势,越来越受到各行业的青睐。但要成功地进行增材制造,前提是必须对组件的原材料(如金属粉末和聚合物粉末)进行表征筛选。为什么材料表征很重要?使用增材制造工艺生产的组件在性能上高度依赖于其基本的微结构,而微结构又取决于原材料(金属、聚合物)的性能和所使用的工艺条件。在工艺条件固定的情况下,最大的不确定性就来自于材料;材料性能不一致会导致组件成品的性能不一致。因此,要生产出质量一致的增材制造组件,制造商必须了解并优化材料的特性,例如金属粉末、聚合物粉末或其他材料(如陶瓷和聚合物树脂)。材料的哪些特性很重要?这取决于所采用的增材制造工艺和使用的材料类型。例如,在喷胶粘粉工艺和粉床熔融成型等金属粉床工艺中,材料的粒度和粒形是其关键特性,因为它们会影响粉末的流动和填充度。而在这些工艺中,材料的化学成分同样重要,尤其是金属粉末;粉末材料需满足指定的合金成分,这会直接影响成品的性能。晶体结构是金属粉末的另一个重要特性。因为在某些增材制造过程中,快速加热 - 冷却循环会引起物相变化并产生残余应力,进而影响组件的疲劳寿命等机械性能。另外,对于增材制造使用的聚合物材料,聚合结构(支化度、结晶度)可能会影响材料的液态和固态性能,包括粘度、模量以及热性能等。增材制造原材料表征方案在粉床熔融过程中,金属粉末层分布于制造平台上,被激光或电子束等选择性地熔化或熔融。熔化后平台将被降低,此过程将持续重复,直到制造完成。未熔融粉末将被去除,根据其状态重复使用或回收。因此,粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动行为和堆积密度。从新合金或聚合物开发到粉末回收,制造商必须在供应链的各个阶段对粉末性能进行表征。其中,激光衍射、自动图像分析、X 射线荧光和 X 射线衍射是用于表征增材制造粉末的四种常用关键分析技术。粒度分布及大小在粉床式增材制造工艺中,粒度分布会影响粉床的填充度和流动性,进而影响生产质量和最终组件的性能。为了测定增材制造使用的金属、陶瓷和聚合体粉末的粒度分布,全球粉末生产商、组件制造商以及机器制造商通常使用激光衍射技术来鉴定和优化粉末性能。使用激光粒度衍射仪Mastersizer 3000 系统或在生产线上使用在线Insitec 粒度测量系统,可在实验室环境中提供完整的高分辨率粒度分布结果。激光粒度仪Mastersizer 3000颗粒形状粒度和粒形直接影响粉床的致密度和粉末流动性。形状平滑规则的颗粒比表面粗糙、形状不规则的颗粒更容易流动和填充。增材制造商为保证所用颗粒具有规则形状,可使用 Morphologi 4 自动成像系统对金属、陶瓷和聚合物粉末的粒度和粒形进行分类和鉴定。该系统可将颗粒的长度、宽度等大小测量结果与圆度、凸曲度(粗糙度)等形状特征评估结果相结合,帮助制造商完成上述工作。Morphologi 4快速自动化粒度和粒形分析仪元素组成元素组成对于合金材料尤其重要,合金元素含量的微小变化都会影响其化学和物理性能,包括强度、硬度、疲劳寿命和耐化学性。为了检测这些变化以及污染物或夹杂物,并确定这些金属合金和陶瓷的元素成分,可使用 X 射线荧光 (XRF) 系统,比如 Zetium 和 Epsilon 等系统。而且,与其他技术相比,XRF 还能显著节省时间和成本。X射线荧光光谱仪Zetium台式能谱仪一体机Epsilon1微结构诸如物相成分、残余应力、晶粒大小和晶粒取向分布(织构)等微结构特性,也会影响成品组件的化学和机械性能。 为了分析这些微结构特性并控制成品组件的性能,制造商通常使用台式 X 射线衍射 (XRD) 系统分析金属的物相,比如 Aeris 系统。 如需获取有关材料在各种条件下的织构、晶粒尺寸和残余应力的更多信息,则可以使用多用途衍射仪,比如 Empyrean 衍射仪。 XRD 还广泛用于研究聚合物和陶瓷的结构和结晶度。 如要确定聚合物粉末的分子量和分子结构,则大多会使用凝胶渗透色谱 (GPC) 系统,比如 Omnisec 系统。台式X射线衍射仪Aeris马尔文帕纳科增材制造表征解决方案可用于: 确保始终如一的粉末供应防止产品质量波动 为采用不同撒布器或耙式设计的机器确定合适粉末 优化雾化条件以实现所需的粉末特性 预测并优化粉末堆积密度和流动特性 确保粉末具有正确的元素组成和相结构 确定制造组件的残余应力、应变和织构作者:马尔文帕纳科
  • 高分子表征技术专题——拉曼光谱技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!拉曼光谱技术在高分子表征研究中的应用Application of Raman Spectroscopy in the Characterization of Polymers作者:袁媛,王梦梵,曲云菲,张泽军,张建明作者机构:青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029 北京航空航天大学化学学院,北京,100191作者简介:张建明,男,1973年生. 山东省泰山学者特聘教授,博士生导师. 2003年毕业于中科院化学所并取得博士学位,师从著名的光谱学家沈德言先生. 自2009年1月起在青岛科技大学工作. 研究方向为高分子凝聚态结构及其相变行为、生物质纳米材料制备及功能复合材料构筑,已发表SCI学术论文130余篇,所发论文被引6000余次,H-指数为38,获批中国发明专利20余件. 先后获日本JSPS博后奖、德国洪堡资深学者、山东省泰山学者、山东省杰出青年、山东省自然科学二等奖及中国石化联合会青年科技突出贡献奖等荣誉或奖励.摘要拉曼光谱作为一种强大的工具,被广泛应用于聚合物结构的表征. 随着共振拉曼光谱、扫描角度拉曼光谱、高分辨率拉曼成像、极化拉曼光谱、表面增强拉曼散射等拉曼技术的迅速发展,拉曼光谱的应用范围不断扩大. 本文首先介绍了拉曼光谱设备的基本原理和组成,总结了拉曼技术的实验技巧和数据处理中需要注意的问题,讨论了红外光谱和拉曼光谱的区别,在此基础上,综述了近十年来拉曼技术在聚合物结构表征领域的最新应用和研究进展. 其应用包括以下六个方面:高分子链的构象、聚合物的聚集状态、聚合物结晶度的计算、高分子链的取向、外场作用下的结构转化、高分子共混物化学或物理成分的识别. 最后,对拉曼光谱在聚合物研究中的发展进行了展望. 希望本文能够对试图从拉曼光谱中获取聚合物结构信息的学者有所帮助.AbstractAs a powerful tool, Raman spectroscopy is widely used in the characterization of polymer structures. Along with the rapid development of Raman technology such as resonance Raman spectroscopy, scanning angle Raman spectroscopy, high-resolution Raman imaging, polarized Raman spectroscopy, and surface-enhanced Raman scattering, the application range of Raman spectroscopy has been continuously extended. In this paper, we first introduced the basic principle and the composition of the Raman equipment, and then we summarized the experimental skills of Raman technology and the issues that need attention in data processing. The difference between the infrared spcectroscopy and the Raman spectroscopy was discussed. Afterwards, we reviewed the latest applications and research progress in the fields of polymer structure characterization by using Raman technology in recent decade. The applications include the following six aspects: the macromolecular chain conformation, the aggregation state of polymers, the calculation of the polymer crystallinity, the macromolecular chain orientation, the structural transformation under the external fields, and the identification of the chemical or physical composition in polymer blends. Last, the development of Raman spectroscopy in polymer research was prospected. It is hoped that this review could be helpful for the one who tried to obtain the information about the polymer structure from Raman spectroscopy.关键词拉曼光谱  结构表征  原理  应用KeywordsRaman spectroscopy  Structure characterization  Principle  Application 拉曼散射现象是由印度科学家Raman于1928首先发现并报道的,但拉曼散射信号只相当于瑞利散射百万分之一,在拉曼散射现象被发现之初由于没有足够功率的光源而并未被广泛的应用. 近半世纪以来随着激光光源以及显微技术在拉曼光谱仪中的应用,拉曼光谱迸发出了旺盛的生命力.拉曼光谱与红外光谱同属分子振动光谱,但其原理与红外光谱截然不同. 如今拉曼光谱在高分子领域中已经有广泛的应用,包括分子链构象、取向、结晶度等方面的研究等. 本文在结合拉曼基本原理及实验技巧的基础上,总结了近年来拉曼光谱在高分子表征中的最新研究进展.1基础原理1.1光的散射当光线遇到分子时,绝大部分的光子(多于99.999%)都会发生弹性散射(即瑞利散射),瑞利散射具有与入射光相同的波长. 然而,少部分的光子(少于0.001%)会发生能量(频率)偏离的非弹性散射(即拉曼散射). 光散射过程可以用量子力学进行描述,如图1所示,当一束光照射到某体系时,体系中粒子吸收光的能量而被激发,从而发生能级跃迁过程,同时辐射出散射波. 不同的跃迁方式决定了不同的散射类型,例如(拉曼)斯托克斯散射、瑞利散射、(拉曼)反斯托克斯散射(高分子样品测试中常用的拉曼散射范围)[1~7]. 在拉曼测试过程中,经常也会出现荧光信号,与拉曼散射不同,荧光过程中粒子被激发至能量更高的电子能级而非拉曼散射中的虚态. 因此短波长比长波长激光更易产生荧光效应.Fig. 1Quantum mechanics description of Rayleigh, Raman scattering and florescence.1.2拉曼散射与拉曼光谱1.2.1拉曼散射的基本原理假设一束频率为v0的光照射在一个分子上,分子中电子会被入射光的电场激发做受迫局域运动而出现极化现象,产生电偶极矩,假设入射光电场可以表示为:式中E0为光电场的振幅,则由于分子运动所产生的偶极矩可以表示为:式中α为极化率,极化率的变化是分子的核外电子云受外部电场诱导而产生的(通过平衡位置两边的)形变而导致的.如果分子的极化电场所释放出的光与入射光频率相同,则把这种散射过程称为瑞利散射. 而如果α被分子的振动所调制(modulated),则α可以展开为关于振动简正坐标q的级数:q由以下公式得出:则有:以上公式表明在当前情况下频率为(v0±vk)的(拉曼)散射会与频率为v0的瑞利散射同时出现. 某一分子振动为拉曼散射活性的前提条件为(∂α∂q)0的值不为0,也就是说分子的极化率随分子振动而改变[8,9].如图2所示,假设频率为v0电场(入射光)可以诱导分子的偶极矩P产生同频率(v0)的振动. 如果此时分子极化率具有随时间变化的极低频的振动vm,那么经过以上2种不同频率的振动调制后的散射光将包含3种不同频率的光,分别为v0(瑞利散射)、v0+vm(反斯托克斯散射)、v0-vm(斯托克斯散射). 反之如果分子的振动不能使极化率产生低频振动,则不会有调制的出现,进而不会出现拉曼散射效应[8,10].Fig. 2Schematic representing of Rayleigh and Raman scattering: (a) the incident radiation makes the induced dipole moment of the molecule oscillate at the photon frequency (v0) (b) the molecular vibration can induce the polarizability,α,to have a frequency ofvm the result as shown in (c) is an amplitude modulated dipole moment oscillation,and three components with steady amplitudes which can emit electromagnetic radiation can be achieved as:v0 (Rayleigh component), v0+vm (Raman anti-Stokes component), and v0+vm (Raman Stokes component), as shown in (d).由于诱导分子偶极矩P与电场E均为矢量,且一般情况下两者方向不同,因而连接这2个物理量的极化率α可以用一个二阶张量来表达,则P=αE可以表示为其中,x,y,z为分子在笛卡尔坐标系中的坐标. 极化率为对称的二阶张量矩阵,包含了6个独立的元素,αxx、αyy、αzz、αxy、αyz、αxz. 上式的意义为,例如沿x方向电场Ex诱导了沿y方向的偶极矩Py,则可表示为Py=αxyEx. 此式在通过偏振拉曼研究分子对称性时具有重要意义[9].1.2.2拉曼活性的判据如上所述,非弹性散射源于在平衡位置附近分子的极化率关于简正坐标q的导数不为0,这一关系为小分子的拉曼散射提供了“选择定律”的基础. 以对称双原子分子的对称伸缩振动(symmetric stretching vibration)为例,如图3(a)所示,当两原子的位置无限接近时,体系电子密度分布类似于单一原子的电子密度;而当两原子的位置无限远离时,体系电子密度分布近似于2个独立的单原子的电子密度. 因此对于双原子分子的对称振动,其极化率沿简正坐标方向成单调增长模式,因此其在平衡位置导数不为0,为拉曼活性振动. 而对于分子偶极矩,对称伸缩振动过程中其正负电荷中心并没有产生位移,所以偶极矩没有发生变化,因此为红外非活性振动. 例如氧气与氮气分子的对称伸缩振动只能使用拉曼光谱进行研究,因为在红外谱图中不会出现吸收峰.Fig. 3The derivatives of polarizability (red) and dipole moment (blue) are schematically depicted for the normal modes of a two (a) and a three (b) atomic molecule. Based on these intuitive considerations,conclusions on the IR and Raman activity of the modes can be drawn.线性三原子分子比双原子分子稍显复杂,例如二氧化碳分子. 对于其对称伸缩振动,如图3(a)所示,极化率的变化类似于双原子分子的对称伸缩振动,为拉曼光谱活性,红外光谱非活性. 对于非对称伸缩振动(antisymmetric stretching vibra-tion)以及变角振动(bending vibration) (图3(b)),极化率在平衡位置两边的变化虽不为0,但是其变化是关于平衡位置对称的. 因此极化率在平衡位置周围变化可以认为是简谐的,也就是说(∂α∂q)q0=0,因此非对称伸缩振动与变角振动均为拉曼非活性;而偶极矩在平衡位置两侧的方向是反转的,因此(∂μ∂q)q0≠0,表现为红外活性[11].2实验技巧为了得到更丰富的样品信息,我们希望拉曼光谱在准确的基础上具有尽可能高的信噪比(signal-noise ratio,SNR). 关于拉曼散射的强度IR一般有如下关系式:其中,v和I0为入射激光的频率及强度;N为参与散射过程的分子数量;(∂α∂q)2是与分子结构有关的参数.上式表明,使用短波长激光并增加激光能量密度的同时增加样品量可以增强拉曼散射信号(注:拉曼光谱位移不随入射波长的变化而改变). 但在实际的测试过程中,不同类型的样品需要根据其自身的特点选择与其匹配的波长的激光以及激光能量,不能为了增强拉曼信号就去用短波长激光去测试所有样品,很多高分子样品在短波长激光下可能没有拉曼信号或者拉曼散射被很强的荧光信号所淹没.2.1样品制备2.1.1固态样品相对于无机样品,有机高分子样品的拉曼信号相对较弱(一部分原因是由于高分子样品中存在大量的无序结构). 对于高分子粉末或膜样品,一般需要保证沿光的入射方向有一定的厚度并同时使其表面尽量平整,以便于显微镜的聚焦. 对于透明样品,可将其放置于铝箔上进行测试(因为金属一般都有增强拉曼信号的作用,用铁片作为基底同样有着很好的效果). 或者,由于拉曼接收的是散射光,太薄的透明样品极易被激光穿透从而打到基底上,因此为了得到更好的拉曼信号,制样时要尽可能增大薄膜厚度. 另外由于激光一般都是偏振的,因此对于取向样品,例如纤维,需首先确定入射光的偏振方向,之后再确定样品的(某一)取向轴与入射光偏振方向平行(或垂直),再开始测试,这样才能得到正确的结构信息.2.1.2液态样品由于拉曼可以聚焦到几十微米下检测一定深度的样品信号,无需担心盖玻片和毛细管对拉曼信号的影响,因此高分子液态样品的拉曼测试相对于红外测试比较便捷,可以直接进行测试. 一般可以使用凹面载玻片或者金属制液体样品槽承载液体样品. 测试时可先将激光聚焦于液体表面,然后将样品平台沿激光方向上抬,使激光聚焦于液体样品内部,这样可以得到较好的光谱. 如果液体易挥发,可以使用盖玻片将样品封闭于容器内或将液体封入毛细管内.2.2设备调试2.2.1拉曼装置的构成随着拉曼仪器的发展,如今在一般情况下,背散射模式,也就是入射激光与散射激光平行,已经足够应对大部分高分子样品的测试需求. 对于一些特殊情况,例如取向或单晶样品的偏振拉曼测试,需要使用到90°入射的模式,也就是入射光路方向与散射光路方向为90°,原因可以参考上节极化率的二阶张量公式.以雷尼绍(Renishaw,UK) inVia型拉曼光谱仪为例,如图4所示,拉曼装置一般包括入射激光光源、入射光路系统(包括扩束器)、显微镜及样品台系统、滤波器、衍射光栅及CCD检测器. 在实际测试过程中,我们需要选择合适的入射光波长及显微镜物镜.Fig. 4Schematic diagram of the Raman instrument.当今市场上主要的拉曼仪器根据应用的场景可分为手持型、便携型以及桌面型拉曼光谱仪. 手持型拉曼光谱仪集成性很高,小巧轻便,操作非常简单,几乎可以在各种需要的地点、时间对从原材料到成品进行鉴定分析. 便携型拉曼光谱仪集成性相对较高,并具有一定的扩展性,可作为小型移动实验室使用. 桌面型拉曼光谱仪体积较大且不可移动,如图4中示意图即为桌面型拉曼光谱仪,但这类光谱仪具有极强的扩展性,几乎可以变更从入射激光光源、入射光路、样品平台至光栅等所有组成部分,从而可以为不同样品以及不同条件的测试创造可能.2.2.2激光波长的选择激光波长与能量密度成反比,使用短波长激光可以得到较强的拉曼散射信号,例如532 nm要比785 nm激光的拉曼散射强度强. 但对于高分子样品来说使用532 nm激光产生荧光干扰的可能性也会增加. 所以在一些情况下可以选择785 nm的光源. 如前所述,样品产生的拉曼位移不会随激发光源的波长改变而改变,因此只要可以避开荧光效应可以自由选择激光波长. 需要注意,虽然拉曼位移不随激光波长而改变,但使用同一物镜下,不同波长可以到达的空间分辨率不同. 例如,物镜的数值孔径(NA)为0.9,532 nm激光的空间分辨率可达0.72 μm,而在同样条件下使用785 nm激光时,空间分辨率仅为1.1 μm.另一种情况,如果样品内的分子振动与入射激光可以产生共振效应,那么可以以此来选择入射激光波长,则可以得到较强的拉曼散射信号.2.2.3显微镜的选择通常显微镜的物镜上会标注2个参数,分别为放大倍数(5×、10×、20× 等)与数值孔径(numerical aperture,NA,是与镜头光通量有关的参数,一般为0.05~0.95). 一般放大倍数与数值孔径成正相关关系,而数值孔径决定空间分辨率,有如下公式 [12]:其中,R为最大空间分辨率. 在实际测试时需要注意激光能量会随光斑尺寸(空间分辨率)变化,更高的空间分辨率意味着激光密度会更大,此时需要注意样品可能会被激光热解. 对于高分子样品来说,一般要先从低激光功率测试开始尝试,如果此时拉曼散射信号很弱,则少量增加激光功率,但同时要注意观察样品是否被热解,如此反复尝试直到找到最适宜测试的激光强度.2.2.4Ne灯校准一般除用单晶硅对拉曼位移进行校准,另外使用内置的Ne灯也可以达到校准的效果. 一般在测试样品时与Ne灯同时使用,则所得到的拉曼谱图中同时包括样品与Ne灯的峰,由于Ne灯的拉曼峰位置已确定,因此可用于校正样品的峰位置.2.2.5测试参数设置在确定适宜样品的激光波长及显微镜倍数的前提下,为了提高信噪比,可以首先在不损伤样品的前提下尽量提高入射激光的强度,其次适当延长曝光时间(有效的提高散射信号强度),同时也可以增加循环(cycling)测试的次数(有效降低噪音的影响). 但需要注意曝光时间不宜过长,因为过长会导致检测器的饱和,例如当同时需要较强与较弱的拉曼散射峰时,较弱的散射峰由于信噪比较低而难以使用时,可以固定曝光时间并增加循环测试次数来降低最终谱图中噪音的干扰.2.3数据处理2.3.1高分子样品拉曼谱的初判在取得拉曼光谱后,首先需要对谱图的构成进行判断,因为其中可能同时包含样品以及非样品的拉曼信号. 如果可以排除样品不纯净的可能,那么非样品的拉曼信号可能来自于宇宙射线、自然光或照明光等所产生的干扰,另外如果样品透光性好,激光可能透过样品打到基底上,也可能产生部分非样品信号.宇宙射线所产生的特征峰强度高且十分尖锐,并且可能在任意波数出现. 而如果在测试时对照明光抑或显示器背光的屏蔽不彻底,则也会出现一些尖锐的谱峰,这些谱峰的位置与光的类型有关. 但同宇宙射线不同的是,这些峰不是随机出现,而是会在相同的位置重复出现.对于结晶性高分子样品来说,由于内部存在大量的晶格缺陷及非晶组分,通常即使是结晶特征峰也不会是非常尖锐的峰,这种情况类似于红外测试的结果. 一般来说,对于同一振动模式,相较于非晶峰,结晶峰的峰强较强,峰宽较窄. 对于未知的结晶性高分子样品,可以通过分别测试结晶与熔融状态下的样品来确定结晶与非晶的特征峰. 确定特征峰是进一步测试分析的基础.由于我们常规使用的拉曼散射的波束范围恰好与中红外测试波段相似(400~4000 cm-1),并且两者均为分子的基团振动光谱,所以兼具红外与拉曼活性的同一分子基团振动在两谱图中的频率相似,两者可以互为参考. 而在低波数范围(400 cm-1),也就是远红外区间(一般反应分子链主链的振动),由于空气中的水气对测试有极大的干扰,所以远红外测试需要对样品仓抽真空,这也极大地限制了远红外光谱的应用,因此在实际测试中远红外与中红外区不能同时测试. 而拉曼的测试范围可以直接覆盖远红外及中红外波束段,并且测试过程中无需进行硬件切换,这也为高分子的研究提供了极大的便利.2.3.2谱线的平滑与拟合在一些情况下,由于样品或仪器的原因,即使已经选择了最优的测试条件,所得的光谱仍可能存在信号起伏大,信噪低的情况. 此时为了便于数据分析,可以对光谱进行平滑或拟合处理. 但是由于平滑后光谱会发生微小的变化,例如肩峰可能会因此消失,所以在对样品光谱没有十足把握的情况下,进行平滑处理时要十分谨慎. 一般如果噪声水平在中整条光谱中都比较均一,可以对光谱进行平滑处理,在平滑时,尽量选用最少的数据点个数为平滑单位,不能以牺牲数据准确来换取谱线的平滑美观. 在其他情况下,例如存在非拉曼信号,则不能使用平滑处理来消除,而应改变测试条件来避免非拉曼信号的产生.当谱图中有2个或多个峰重叠时,为了便于分析数据,需要进行分峰拟合(通常使用高斯加洛伦兹函数拟合),要注意虽然拟合的目标是尽量还原原始光谱,但不能为了达到这个目标而任意增加分峰的个数而忽略了每个峰的物理意义,这样便失去了分峰的价值.总之,不论何时原始数据都是最重要的,任何数据处理方法都需要在遵从原始数据的基础上进行.3拉曼光谱应用举例2010年至今,拉曼光谱在高分子多层级结构解析中的应用主要涉及6个方面,分别是:分子链构象研究、分子聚集态研究、结晶度计算、分子链取向研究、外场作用下的结构转变研究、化学/物理组成研究. 应用到的拉曼光谱种类主要为:共振拉曼光谱(resonance Raman spectro-scopy)、扫描角度拉曼光谱(scanning angle Raman spectroscopy)、高分辨拉曼成像(high-resolution Raman imaging)、偏振拉曼光谱(polarized Raman spectroscopy)及表面增强拉曼光谱(surface-enhanced Raman scattering, SERS).3.1分子链构象研究Gao等[13]利用共振拉曼光谱识别了聚(2,5-双(3-十四烷基噻吩-2-基)噻吩[3,2-b]噻吩)(PBTTT)与电子受体[6,6]-苯基C61丁酸甲酯(PCBM)共混的体异质结太阳能电池中PBTTT的有序和无序构象. 作者提出PBTTT噻吩环C=C对称伸缩振动(νs(C=C))包括主链有序构象和无序构象2个组分的贡献:如图5所示,有序构象的特征峰位置在1489 cm-1,半峰宽约为15 cm-1;无序构象的特征峰位置在1500 cm-1,半峰宽约为25 cm-1. PBTTT不同构象的相对含量随PCBM含量、退火温度与拉曼激发能的改变而变化. 共振拉曼图像进一步证实有序的PBTTT链集中在富含PCBM的双分子晶体中. Martin 等[14]同样借助共振拉曼光谱结合光电流成像技术,考察了高分子-富勒烯共混物中依赖于构象变化的电荷沿主链的传输特性. 实验及理论计算的结果均证实当共轭高分子的主链呈现平面构象时,电荷传输率最高. 体系形貌表征的结果表明当高分子与富勒烯达到良好共混状态时,高分子主链构象更易于平面化.Fig. 5Simulated Raman spectra (a) of the BTTT-C2 monomer and structures (b) (Reprinted with permission from Ref.‍[13] Copyright (2014) American Chemical Society).原位共振拉曼表征被成功地应用于研究ps尺度上聚(3-己基噻吩)(P3HT)分子链在氯苯中的构象松弛过程[15]. 如图6(a)所示,基于激发态拉曼特征的时间依赖性及与其他高分子的拉曼光谱进行对比,作者归属了构象松弛过程中不同结构的拉曼特征峰. 通过绘制拉曼特征峰的强度变化对时间的关系曲线(见图6(b)),揭示了松弛过程中主链共轭长度的变化,据此提出了P3HT分子链在氯苯中的构象松弛动力学机理.Fig. 6(a) Valence-bond structures of the quinoidal excited state of P3HT and the time-resolved resonant-Raman spectra of P3HT in chlorobenzene photoexcited at 510 nm. (b,c) Time dependence of Raman band intensities in figure (a). Integrated intensities (b),black lines correspond to biexponential fits with constrained lifetimes of (9±1) and (220±20) ps. Relative change in feature intensities attributed to torsion-induced exciton conformational relaxation (c). (Reprinted with permission from Ref.[15] Copyright (2012) American Chemical Society).3.2分子聚集态研究Gao等[16]在对P3HT/PCBM共混薄膜分子聚集态的研究中区分了不同聚集态对P3HT主链C=C伸缩振动νs(C=C)的贡献. 对样品光谱的拟合结果(如图7(a)所示)表明,共混膜的(νs(C=C))峰来自于聚集分子链与非聚集分子链的双重贡献,前者的特征拉曼频率约为1450 cm-1,后者约为1470 cm-1. 聚集态与非聚集态峰强度的相对比值R(R = IC=Cagg/IC=Cun)在样品退火后增加(如图7(b)所示),R值与不同聚集态的相对密度相关. 如图7(c)所示,作者进一步应用共振拉曼成像来考察R值变化对共混形貌的依赖关系,通过R值对比,对退火的共混薄膜中4种聚集程度不同的P3HT分子链进行了识别与成像分析. 在此工作基础上,作者通过分析拉曼特征峰的强度变化,考察了P3HT聚集态对共混物体系中局部光电流产生效率[17]、激发态结构变化及初期振动动力学[18]的影响. 共振拉曼结合成像技术分析也被成功地应用于其他共轭聚合物结构与性能的对应关系研究中[19].Fig. 7(a, b) Raman spectra of as-cast (a, red) and annealed (b, blue) blend films excited with 488 nm light show theνs(C=C) band of P3HT represented by the shaded regions of the complete spectra shown as insets. The band is fitted with two Lorentzian functions (dashed traces), showing the relative contributions of both aggregated (IC=Cagg) and unaggregated (IC=Cun) components. (c1 and c2)IC=CaggandIC=Cuncenter frequency dispersion images for P3HT/PCBM as-cast films,and (c3) histograms of frequency components. (c4 and c5)IC=Cagg and IC=Cuncenter frequency images for P3HT/PCBM annealed films,and (c6) histograms of frequency components (Reprinted with permission from Ref.[16] Copyright (2012) American Chemical Society).拉曼光谱结合高空间分辨成像技术可用于高分子多晶型结构,例如针对聚己二酸丁烯酯(PBA)的环带球晶研究[20]. 在此工作中作者首先识别了2种晶型(α晶与β晶)及非晶结构的拉曼特征峰,选择能够反映不同聚集态相对含量的特征峰(C-peak),在此基础上通过拉曼成像考察了球晶内部多晶型晶体的分布及分子链取向. 通过对比球晶的偏光照片(图8(a))与拉曼成像照片(图8(b))可知,2种晶型的晶体在球晶中心、环带区域及外层非环带区域呈现非均匀分布,二者能够在相同的温度区间(31~33 ℃)成核和生长,然而环带区域α晶的相对含量会随结晶温度而提高. 2种晶型的拉曼成像数据结合Hermans取向函数分析(见图8(c))结果证实,环带区域的分子链沿球晶半径方向和基底平面取向,且沿环带球晶径向方向的取向呈周期性变化.Fig. 8(a) Optical micrographs of PBA31-33. (b) Raman imaging of C-peak position for the same area in (a). (c) Hermans orientation function image calculated by using the C-peak area of PBA32 measured with polarization parallel (0°) and perpendicular (90°‍) to the horizontal direction (Reprinted with permission from Ref.‍[20] Copyright (2017) American Chemical Society).拉曼成像技术作为一种强有力的表征手段,可以精确表征(分辨率最高可达0.1 μm)单片层石墨烯或氧化石墨烯在片层不同区域的氧化结构. Zhang等[21]通过拉曼成像技术对具有不同氧化结构的单片层氧化石墨烯进行了表征,通过D/G峰的比值差异分析了单片层在不同区域的氧化程度. 如图9所示,JGO纳米片与GO差异显著,后者呈现出统一的颜色(图9(a)和9(b)). 此外,从图9(c)和9(d)可以看出,在蓝色区域(低氧化区域),JGO的ID/IG比值较低(~0.72),而在红色区域(高氧化区域),ID/IG比值较高(~1.07),与GO的ID/IG比值存在显著差异(整个区域的ID/IG比值为~1.02). Badi等[22]同样借助拉曼成像技术,通过D峰与G峰的光谱解析,考察了石墨烯纳米片在聚苯胺(PANI)中的分散情况.Fig. 9(a-d) Raman mapping of a GO sheet (a) and JGO (c) using theID/IG ratio from the corresponding Raman spectra (b, d) (Reproduced with permission from Ref.[ 21] Copyright (2020) Elsevier).3.3结晶度计算包括拉曼光谱在内的波谱技术经常被用于计算高分子晶体的结晶度. Mannanov等[23]利用原位拉曼光谱直接表征了应用于太阳能电池的P3HT:‍富勒烯基受体活性层中、P3HT在50~150 ℃温区的结晶动力学,并考察了溶剂、富勒烯基受体种类与结晶温度对P3HT结晶度的影响[14]. 结晶度的计算在选择合适的结晶特征峰与非晶特征峰基础上,结合光谱分峰/拟合处理及选择合适的结晶模型实现. 例如:Agarwal等[24]利用2种光谱分析方法计算了纤维素I晶体的结晶度,一种方法称为“单变量方法(univariate method)”,借助结晶峰/非晶峰强度的比值计算;另一种方法称为“多变量方法(multivariate method)”,应用偏最小二乘回归模型(partial least squares regression model)计算. 通过与已知结晶度的参比样品对比证实,2种方法在评价结晶度处于0%~80.5%范围内的纤维素样品时结果可靠,且由单变量方法得到的结晶度数值比由WAXS表征得到的更理想. Wang等[25]应用针尖增强拉曼光谱技术结合随机生长结晶模型,估算了合成的二维聚合物单层的结晶度,据此揭示了二维聚合物单层生长的交联本质[26].3.4分子链取向由于激光本身具有偏振性,如果使用偏光片对入射激光以及散射光的偏振方向进行调制,则可以获得高分子链中分子基团的取向信息,进而解析高分子链的取向结构,这种方法称为偏振拉曼[26~28]. 例如Richard-Lacroix等[26]使用偏振拉曼手段对使用不同收丝方法所得的静电纺聚氧化乙烯(PEO)单根纤维中PEO分子链的取向情况进行了研究. 测试过程中对于每一根纤维均需测试4组不同偏振角度的入射光与散射光的组合拉曼光谱,例如假设平行纤维轴方向为Z轴,垂直于纤维轴方向为X轴(Y轴暂不考虑),那么4组拉曼光谱分别为(X(入射光偏振方向)X(散射光偏振方向))、(XZ)、(ZX)与(ZZ). 不同的偏振组合所得的拉曼光谱中峰的强度有较大差别,说明分子链有取向存在,利用这些数据再通过进一步的计算便可以得出分子链的取向分布方程(orientation distribution function). Richard-Lacroix等的研究结果表明,单根纤维中的分子链总具有较高的取向并且与收丝方法无关.近年来,新的偏振拉曼数据分析手段也在不断地涌现,例如Richard-Lacroix等[28]提出了最可几分布(most probable distribution, MPD)方法,用以更加精确地定量分析分子链取向. Papkov等[29]利用一种改进的偏振拉曼分析方法,对直径分布在140~1000 nm范围的单根聚丙烯腈电纺纳米纤维的分子链取向进行了定量研究. Svenningsson等[30]基于包绕洛伦兹函数(wrapped Lorentzian function),开发了一种新的偏振拉曼光谱分析方法,并应用于确定再生纤维素纤维的分子取向研究. 这种方法的优势在于消除了偏振拉曼测试时对偏振角度的限制,所得结果能够与广角X-射线衍射与固体核磁的数据直接比较. 测量散射光偏振度随偏光片旋转角度的变化可以提供取向分布函数形状的半定性信息,Park等[31]据此分析了聚乳酸(PLLA)薄膜内部特征振动散射强度的角度依赖性,对结构单元的取向性进行了量化.3.5外场作用下的结构转变研究借助原位拉曼表征技术,能够对诸如温度变化[32~34]、时间改变[35]、拉伸过程[36,37]等的高分子结构演变进行追踪. Jin等[32]利用变温拉曼考察了高密度聚乙烯(HDPE)多重熔融行为中的构象变化. 作者对与熔融相关的变温拉曼光谱进行了如图10(a, b)所示的二维相干光谱分析(least squares moving-window method, LSMW),通过整个熔融过程中构象变化的相似性结合与“熔融-再结晶”、“中间相预熔融”及“多层片晶熔融”模型的比对,提出了如图10(c)所示的HDPE熔融时晶相直接转变为非晶相的机理. Kasiouli等[33]研究了β-环糊精包封的聚(4,4' -二苯基乙烯基) (PDV.Li)构象随温度的变化. 特征拉曼振动的强度变化证实,包封前后PDV.Li的主链平面性没有变化. 更高温度下主链构象的改变归因于由热诱导聚集引发的相邻苯环之间的扭转角度降低.Fig. 10(a,b) Least squares moving-window (LSMW) analysis of the HDPE Raman spectra with the window size of 11 spectra (ΔT = 1 °C). (a) A contour map of the first order derivative (d I/dT) as a function of Tave of a moving window. (b) The dI/dT of six Raman peaks are plotted after numerically integrated over frequency ranges to cover the Raman peaks: 1415-1425, 1115-1136, and 1299-1325 cm -1. (c) The schematic of the multithickness lamellae model. (Reprinted with permission from Ref.[32] Copyright (2017) American Chemical Society).基于拉曼光谱的多技术联用能够实现拉伸过程中高分子结构变化的表征与分析. Lόpez-Barrόn等[36]利用原位偏振拉曼技术,考察了线性低密度聚乙烯(LLDPE)拉伸过程中的单链构象及分子链取向变化. 结果表明,反式构象随拉伸程度的增加呈线性增加,分子链的伸展分为3个阶段,即弹性伸展阶段、塑性伸展阶段与应变硬化阶段. 取向因子受分子量影响,低分子量部分取向因子小. Kida等[37]利用原位偏振拉曼光谱与原位拉伸测试联用,考察了分子量分布对单轴拉伸过程中高密度聚乙烯形貌及变形行为的影响. 结果表明,连接片晶的带分子(tie molecules)数量随分子量分布的增大而增加,而晶体结构不受分子量分布影响. 晶区分子链沿拉伸方向的取向程度及连续的反式构象链的形成均在高分子量分布的样品中得到提高.3.6化学/物理组成研究表面增强拉曼光谱是一种能够在高分子共混结构的组分研究中提供潜在选择性与垂直分辨的强大技术. Razzell-Hollis等[38]借助此光谱探索了P3HT:聚((9,9-二辛基芴)-2,7-二基-alt-[4,7-双(3-己基噻吩-5-基)-2,1,3-苯并噻唑]-2' ,2"-二基)(F8TBT)共混薄膜的界面组成与分子有序性. 作者首先分别表征了P3HT与F8TBT的光谱,识别了由于样品退火引起的、与本体/界面形貌相关的光谱变化. 随后为了确定共混薄膜的化学组成,表征了不同共混样品的光谱并对光谱进行了分峰处理,获得了代表P3HT含量的强度值α与代表F8TBT含量的强度值β,结果见图11. 光谱分析的结果表明热退火改变了共混体系的界面组成:预退火增加了低表面能P3HT的含量,而后退火增加了高表面能F8TBT的含量. 此外,表面增强拉曼光谱还成功地应用于对纳米厚度尺度上高分子薄膜表面与底面的化学组分识别[39].Fig. 11Raman (a) and SERS (b) spectra for an as-cast sample of quartz (quartz) Q/Ag/P3HT:F8TBT, fitted using RR-P3HT (as ordered fraction), RRa-P3HT (as disordered fraction) and F8TBT spectra to obtain relative contributions of P3HT (α) and F8TBT (β). Normalized Raman (c) and SERS (d) spectra for P3HT:F8TBT blends in five different sample configurations, with variation in the relative intensity of the F8TBT peak at 1356 cm-1 shown in each inset (Reprinted with permission from Ref.‍[38] Copyright (2016) American Chemical Society).共聚焦显微拉曼技术近几年被广泛地应用于高分子多组分体系的化学/物理组成研究. 化学组分识别的相关研究涉及药物输送体系中聚乳酸-羟基乙酸共聚物[40]、聚己内酯和聚环氧乙烷的复合电纺纤维[41]、聚二甲基丙烯酰胺-甲基丙烯酸二苯甲酮共聚物[42]等. 物理组分识别方面,Hu等[43]研究了左旋聚乳酸/右旋聚乳酸(PLLA/PDLA)共混物球晶的等温结晶行为. 在如图12(a)和12(b)所示的800~600 cm-1波数范围内分别选择736与754 cm-1峰作为均晶与立构复合晶的特征峰,通过对球晶内部与外部两峰强度的成像分析(见图12(c)和12(d),证实大球晶内部包含均晶与立构复合晶2种晶体,立构复合晶均匀地分散在非晶区与球晶区域.Fig. 12Peak fitting results in the 800-600 cm-1 region at the single point at the position of 1# and 2# (a) and the peak fitting spectra of PLA with different crystal forms (b) Imaging result with imaging parameter: band intensity at 754 cm -1 (c) band intensity at 736 cm -1 (d) (Reproduced with permission from Ref.[ 43] Copyright (2019) Elsevier).其他成像方式如共振拉曼光电流成像(resonance Raman-photocurrent imaging, RRPI)[44,45]、飞秒激发拉曼成像(femtosecond stimulated Raman microscopy, FSRM)[46]、针尖增强拉曼成像(tip-enhanced Raman mapping, TERM)[47]、宽带相干反斯托克斯拉曼散射(broadband coherent anti-stokes Raman scattering, CARS)显微镜[48]、反转显微拉曼光谱(inverse micro-Raman spectroscopy, IMRS)[49]、等离子体波导共振拉曼光谱(plasmon waveguide resonance Raman spectroscopy, PWRRS)[50]等也应用于高分子化学组成分析.扫描角度拉曼光谱适用于分子有序程度的研究,能够同时获取增强的拉曼信号、薄膜厚度及分子有序程度的信息,此外结合均方电场计算(MSEF)可以确定聚合物薄膜中是否产生拉曼散射[51,52]. Meyer等[51]利用此光谱(示意图见图13(a))研究了P3HT:PCBM共混物在蓝宝石、金和铟锡氧化物界面处的形貌,考察了P3HT结构有序程度对基底的依赖性. 选择性激光入射角度下薄膜在蓝宝石基底上的拉曼光谱如图13(a)所示. 扫描角度从35°增加到60°,P3HT膜的拉曼强度呈现下降趋势,而当扫描角度进一步增加时拉曼强度提高. 与之不同,共混薄膜的拉曼强度随扫描角度的增加而持续下降. MSEF计算(见图13(b))揭示了拉曼信号在z方向上的距离依赖性,用于拉曼光谱的辅助解析,预期的拉曼信号与整个聚合物厚度上的积分MSEF成正比,这与实验的拉曼光谱一致. 此外,研究表明噻吩环C=C伸缩振动峰的宽度对P3HT的分子有序程度敏感,据此作者考察了分子有序程度对基底的依赖性.Fig. 13(a) Schematic of the SA Raman interface used to collect the data shown in B and C (A). SA Raman spectra at the indicated incident angles for (B) P3HT and (C) 1:1 P3HT:PCBM deposited on a sapphire substrate. (b) Calculated MSEF as a function of distance and incident angle for the interface: 0-1000 nm sapphire/1000-1230 nm P3HT:PCBM/1230-6000 nm air (A), 0-1000 nm sapphire/1000 to 1300 nm P3HT/1300 to 6000 nm air (B). The MSEF in the sapphire layer (0-1000 nm) and the majority of the air layer (greater than 1500 nm) are omitted for clarity. The calculated plots show the expected distance dependence of the experimental Raman signal in theZ direction. (Reprinted with permission from Ref.[ 51] Copyright (2013) American Chemical Society).4拉曼光谱应用展望激光拉曼光谱虽与红外光谱同属于分子振动光谱,但其拥有诸多红外光谱不可比拟的优势,例如高的空间分辨率、高解析度、测试范围横跨远红外与近红外光谱波段并且可以直接对水体系进行测试等. 如今伴随着新型高分子材料的不断涌现与应用,诸如高分子水凝胶,高分子纳米或多层复合材料等,以及表面增强拉曼,针尖增强拉曼以及共聚焦拉曼成像等新技术的接连出现,必将会使拉曼光谱在高分子材料的研究领域中迸发出强大的活力.然而与此同时,仍有一些问题限制了拉曼光谱的应用,例如在拉曼成像中,样品表面的高空间分辨率可以实现,但是垂直于入射激光深度方向上的空间分辨率则不佳,虽有研究使用金属粒子包埋在高分子样品中,再借助表面增强拉曼技术以实现高深度方向分辨率,但是这种方法的普适性稍显不足. 另外,如今拉曼成像技术一般仍为逐点扫描(mapping)模式,而红外成像则已多采用阵列扫描(imaging)模式,这就意味着拉曼成像需要较长的时间,从而很难使用拉曼成像进行过程研究,这也严重影响了拉曼成像的应用. 现今高分子的研究中多设备同步协同测试是一个趋势,例如X射线散射、拉曼及红外光谱同步在线测试,这也对拉曼设备的小型化以及快速响应提出了更高的要求. 相信通过拉曼设备以及技术的不断升级,这些问题都会迎刃而解,彼时拉曼光谱技术将会在高分研究领域占有更加举足轻重的地位.参考文献1Zhang Shulin(张树霖).Raman Spectroscopy with Low Dimensional Nanometer Semiconductors(拉曼光谱学与低维纳米半导体).Beijing(北京):Science Press(科学出版社),2008.3-352Koenig J L.Spectroscopy of Polymers.Netherlands:Elsevier,1999.207-252.doi:10.1016/b978-044410031-3/50005-03Chalmers J,Griffiths P.Handbook of Vibrational Spectroscopy, 5 volumes set.New Jersey:John Wiley & Sons,2002.1-174Sasic S,Ozaki Y. Raman,Infrared, andNear-Infrared Chemical Imaging.New Jersey: John Wiley & Sons,2011.1-215Schrader B.Infrared and Raman Spectroscopy: Methods and Applications.New Jersey:John Wiley & Sons,2008.7-616McCreery R L.Raman Spectroscopy for Chemical Analysis.New Jersey:John Wiley & Sons,2000.15-30.doi:10.1002/04717216467Colthup N B,Daly L H,Wiberley S E.J Am Chem Soc,1965,87(5):1155-11568Wilson E B,Decius J C,Cross P C,Sundheim B R.J Electrochem Soc,1955,102(9):235C.doi:10.1149/1.24301349Tadokoro H.Structure of Crystalline Polymers.New Jersey:John Wiley & Sons,1979.179-322.doi:10.1002/macp.1979.02002197911010Larkin P.Infrared and Raman Spectroscopy.Netherlands:Elsevier,2011.7-25.doi:10.1016/b978-0-12-386984-5.10002-311Dieing T,Hollricher O,Toporski J.Confocal Raman Microscopy.Berlin:Springer,201112Gautam R,Samuel A,Sil S,Chaturvedi D,Dutta A,Ariese F,Umapathy S.Curr Sci,2015:341-356.doi:10.1140/epjti/s40485-015-0018-613Gao J,Thomas A K,Johnson R,Guo H,Grey J K.Chem Mater,2014,26(15):4395-4404.doi:10.1021/cm501252y14Martin E,Bérubé N,Provencher F,Côté M,Silva C,Doorn S,Grey J.J Mater Chem C,2015,3(23):6058-6066.doi:10.1039/c5tc00847f15Yu W,Zhou J,Bragg A E.J Phys Chem Lett,2012,3(10):1321-1328.doi:10.1021/jz300329816Gao Y,Grey J K.J Am Chem Soc,2009,131(28):9654-9662.doi:10.1021/ja900636z17Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c18Gao J,Grey J K.J Chem Phys,2013,139(4):490319Gao J,Thomas A,Yang J,Aldaz C,Yang G,Qin Y,Grey J.J Phys Chem C,2015,119(16):8980-8990.doi:10.1021/acs.jpcc.5b0216620Wang M,Vantasin S,Wang J,Sato H,Zhang J,Ozaki Y.Macromolecules,2017,50(8):3377-3387.doi:10.1021/acs.macromol.7b0013921Zhang Z , Qin J , Diao H , Huang S,Yin J,Zhang H,Duan Y,Zhang J.Carbon,2020,161:316-322.doi:10.1016/j.carbon.2020.01.07822Badi N,Khasim S,Roy A S.J Mater Sci Mater Electron,2016,27(6):6249-6257.doi:10.1007/s10854-016-4556-823Mannanov A A,Bruevich V V,Feldman E V,Trukhanov V A,Pshenichnikov M S,Paraschuk D Y.J Phys Chem C,2018,122(34):19289-19297.doi:10.1021/acs.jpcc.8b0313624Agarwal U P,Reiner R S,Ralph S A.Cellulose,2010,17(4):721-733.doi:10.1007/s10570-010-9420-z25Wang W,Shao F,Kroger M,Zenobi R,Schluter A D.J Am Chem Soc,2019,141(25):9867-9871.doi:10.1021/jacs.9b0176526Richard-Lacroix M,Pellerin C.Vib Spectrosc,2017,91:92-98.doi:10.1016/j.vibspec.2016.09.00227Richard-Lacroix M,Pellerin C.Macromolecules,2012,45(4):1946-1953.doi:10.1021/ma202749d28Richard-Lacroix M,Pellerin C.Macromolecules,2013,46(14):5561-5569.doi:10.1021/ma400955u29Papkov D,Pellerin C,Dzenis Y A.Macromolecules,2018,51(21):8746-8751.doi:10.1021/acs.macromol.8b0186930Svenningsson L,Lin Y C,Karlsson M,Martinelli A,Nordstierna L.Macromolecules,2019,52(10):3918-3924.doi:10.1021/acs.macromol.9b0052031Park M,Wong Y S,Park J,Venkatraman S,Srinivasarao M.Macromolecules,2011,44(7):2120-2131.doi:10.1021/ma101553v32Jin Y,Kotula A P,Snyder C R,Hight Walker A R,Migler K B,Lee Y J.Macromolecules,2017,50(16):6174-6183.doi:10.1021/acs.macromol.7b0105533Kasiouli S,Di Stasio F,McDonnell S O,Constantinides C P,Anderson H L,Cacialli F,Hayes S C.J Phys Chem B,2013,117(18):5737-5747.doi:10.1021/jp400732h34Winfield J M,Donley C L,Friend R H,Kim J S.J Appl Phys,2010,107(2):1073.doi:10.1063/1.327625735Magnanelli T J,Bragg A E.J Phys Chem Lett,2015,6(3):438-445.doi:10.1021/jz502605j36López-Barrón C R,Zeng Y,Schaefer J J,Eberle A P R,Lodge T P,Bates F S.Macromolecules,2017,50(9):3627-3636.doi:10.1021/acs.macromol.7b0050437Kida T,Hiejima Y,Nitta K.Macromolecules,2019,52(12):4590-4600.doi:10.1021/acs.macromol.8b0274038Razzell-Hollis J,Thiburce Q,Tsoi W C,Kim J S.ACS Appl Mater Interfaces,2016,8(45):31469-31481.doi:10.1021/acsami.6b1212439Linde S,Carella A,Shikler R.Macromolecules,2012,45(3):1476-1482.doi:10.1021/ma201867e40McManamon C,Delaney P,Kavanagh C,Wang J J,Rasappa S,Morris M A.Langmuir,2013,29(19):5905-5910.doi:10.1021/la400402a41Kotzianova A,Rebicek J,Mojzes P,Pokorny M,Palacky J,Hrbac J.PolymerVelebny V,2014,55(20):5036-5042.doi:10.1016/j.polymer.2014.08.03242Janko M,Jocher M,Boehm A,Babel L,Bump S,Biesalski M,Meckel T,Stark R W.Biomacromolecules,2015,16(7):2179-2187.doi:10.1021/acs.biomac.5b0056543Hu J,Wang J,Wang M,Ozaki Y,Sato H,Zhang J.Polymer,2019,172:1-6.doi:10.1016/j.polymer.2019.03.04944Gao Y,Martin T P,Thomas A K,Grey J K.J Phys Chem Lett,2010,1(1):178-182.doi:10.1021/jz900038c45Grey J K.Acc Chem Res,2019,52(8):2221-2231.doi:10.1021/acs.accounts.9b0008846Nixdorf J,Di Florio G,Bröckers L,Borbeck C,Hermes H E,Egelhaaf S U,Gilch P.Macromolecules,2019,52(13):4997-5005.doi:10.1021/acs.macromol.9b0020547Xue L,Li W,Hoffmann G G,Goossens J G P,Loos J,de With G.Macromolecules,2011,44(8):2852-2858.doi:10.1021/ma101651r48Lee Y J,Snyder C R,Forster A M,Cicerone M T,Wu W L.ACS Macro Lett,2012,1(11):1347-1351.doi:10.1021/mz300546e49Raupp S M,Siebel D K,Kitz P G,Scharfer P,Schabel W.Macromolecules,2017,50(17):6819-6828.doi:10.1021/acs.macromol.7b0103750Meyer M,McKee K,Nguyen V H T,Smith E.J Phys Chem C,2012,116(47):24987-24992.doi:10.1021/jp308882w51Meyer M W,Larson K L,Mahadevapuram R C,Lesoine M D,Carr J A,Chaudhary S,Smith E A.ACS Appl Mater Interfaces,2013,5(17):8686-8693.doi:10.1021/am402322552James D T,Kjellander B K C,Smaal W T T,Gelinck G H,Combe C,McCulloch I,Wilson R,Burroughes J H,Bradley D D C,Kim J.ACS Nano,2011,5(12):9824-9835.doi:10.1021/nn203397m原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20251
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challenge in the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.Fig. 8Schematic illustration of crystal structure analysis of polymer by X-ray diffraction method.2.1样品制备对于X射线衍射法解析晶体结构而言,非取向的样品有很多衍射峰是重合的,不利于进行结构分析,所以要想得到尽可能多的衍射点,最主要的就是制备尽可能高取向度和高结晶度的且具有单一晶型的样品. 下面给出了几种不同制样方法.2.1.1单轴取向样品通常利用高分子粉末或粒料样品,将其在溶液溶解后浇铸成膜或者熔融温度以上热压成膜. 所得到的高分子膜可以再通过加热熔融后淬冷到冰水或者液氮中,会得到有利于进行后续的拉伸的完全非晶或者低结晶度的样品. 而后利用单轴拉伸仪将薄膜或者纤维牵伸至最大倍数,最后将拉伸的样品在适当温度退火处理,以达到最大结晶度. 在此过程中为了防止样品回缩,样品两端始终要处于固定或者夹紧的状态. 另外, 高分子在不同的制样条件下可能得到不同晶型的样品,因此在制样之前要掌握高分子不同晶型的制备条件,避免得到不同晶型共存的样品. 例如聚乳酸在高温(120 °C)结晶会得到α相,在100 °C以下结晶会得到δ(α' )相[18]. 全同聚丁烯-1在熔融温度附近拉伸可以得到晶型Ⅱ,室温拉伸得到晶型I[19].2.1.2双重取向样品图9所示的是制备双重取向样品的方法,首先对聚合物样品进行单轴拉伸,然后将拉伸后的样品利用双辊挤压的方法可以得到双重取向的样品,如果把样品切成一个小方块,可以从3个方向进行测试,可将其分别定义为through,edge和end方向.图10所示为无规聚乙烯醇(at-PVA)的单轴取向和双重取向样品的二维广角X射线衍射图[20]. 对单轴拉伸的无规聚乙烯醇样品进行双辊挤压后,如图10(b)所示,可以看到through和edge方向的二维衍射图,和单轴取向的二维图比较相似,但是through方向的(11¯1)晶面信息在edge方向就几乎消失[20]. 这里面比较重要的是end方向的衍射图,因为对于单轴取向的样品而言,从end方向观测通常得到的是非取向的衍射环. 而利用双重取向法,可以使a轴和b轴分别取向,如果X射线的入射方向沿着c轴也就是分子链的方向,从end方向就可以得到不同的a轴和b轴方向上的信息,对其指标化后可以确定相应的晶胞参数,利用此方法也可以从end方向原位观测结构演变的信息.Fig. 9Method of doubly-oriented sample.Fig. 10X-ray diffraction patterns ofat-PVA sample for the (a) uniaxially-oriented and (b) doubly-oriented sample (Reprinted with permission from Ref.[20] Copyright (2020) American Chemical Society).另外,在实际操作中,有时实验室合成的聚合物的量较少,大家也常采用剪切[21~25]、熔体拉伸以及浓溶液拔丝[26,27]的方法. 根据不同高分子的特点,还可以利用凝胶拉伸法[28~30]以及电磁场取向[31,32]等方法,得到高取向度的样品用于晶体结构解析.2.2二维广角X射线衍射图的数据采集2.2.1光源的选择实验室常用的金属靶材料为波长1.54 Å铜靶(Cu)和波长为0.71 Å钼靶(Mo),根据布拉格公式可知,利用波长小的靶材,有利于得到更多的布拉格衍射峰的数目. 与实验室光源相比,同步辐射光源强且准直性好,并且由于同步辐射光源波长能够实现连续可调,可根据测试需求选择最优波长.图11分别选用同步辐射光源和钼靶X射线衍射图进行对比,当选择波长为0.3282 Å的同步辐射光源时,可以得到接近700个衍射点,这种高质量的数据对得到高可信赖度的晶体结构非常重要[33].Fig. 112D-WAXD patterns ofα crystal form of PLLA measuring with different incident λ (Reprinted with permission from Ref.[ 33] Copyright (2011) American Chemical Society).2.2.2探测器的选择根据衍射谱图的维度区分,可以将X射线探测器分为零维,一维和二维三类探测器. 在进行晶体结构测试时选择圆筒形成像板(image plate)的二维探测器较多,其适合做静态结构测试,像素点尺寸100 μm × 100 μm,特点是尺寸大,采集信号范围广,缺点是测试耗时比较长. 目前普遍流行的硅元素阵列二维探测器(Pilatus),其特点是采集数据速度快,对原位测试时间分辨的结晶和相变行为非常有效,但是由于其像素点尺寸(172 μm × 172 μm)偏大,探测器分段等制约因素,不适用于做高分子晶体结构分析的研究.在实际测试过程中,为了得到高质量的衍射点,通常在测试时对样品使用低温氮气进行持续冷却吹扫,这是因为低温可以抑制晶格内原子振动,使晶体结构更趋于完善.2.3高分子晶体结构解析2.3.1计算纤维周期通常定义c轴是沿着链轴方向,计算纤维周期I也就确定了c轴信息.图12(b)和12(d)为分别利用Rigaku公司的X射线衍射仪(Rapid II)的圆筒成像板(image plate)和Xenocs公司的X射线衍射仪(Xeuss 2.0)的平板探测器(Pilatus 300K)得到的高取向聚乙烯的二维X射线衍射图. 我们利用国内实验室常用的平板探测器为例来计算聚乙烯的晶胞参数等信息,测试的曝光时间为1 h,Pilatus 300K的像素点尺寸为0.172 mm × 0.172 mm,测试中相机距离R=127.1 mm,光源是铜靶(λ=1.54189 Å),ϕ为衍射的仰角,根据图12(a)以及12(c)的示意图可以得到下面的公式:Fig. 12(a) Schemes of the X-ray fiber diffraction patterns recorded on a cylindrical photographic film (b) 2D-WAXD pattern of polyethylene by imaging plate (c) Schemes of the X-ray fiber diffraction patterns recorded on a flat photographic film (d) 2D-WAXD pattern of polyethylene by Pilatus 300K.ym为第m层层线到赤道线的距离,R为样品到探测器的距离. 如图12(c)所示,根据平面探测器的特点,找到第一层所有衍射点中心位置连成一条双曲线,读出双曲线最低点的坐标位置,计算到中心点的实际距离,确定第一层到中心点y1值. 结合Polanyi公式,可以计算出聚乙烯的纤维周期I= 2.54 Å. 如果有更多的层能被观测到,我们需要对所有层到赤道线计算出来纤维周期求平均值. 对于聚乙烯,其分子链结构为平面锯齿型,C ― C键长为1.54 Å,键角大约109.5°,通过计算得到的I= 2Rsin(φ/2) = 2.52 Å,与X射线法计算的等同周期结果相一致.2.3.2确定晶系和计算晶胞参数从平面探测器得到二维数据后,读出所有衍射峰坐标,然后把平面直角坐标系(x,y)的衍射峰坐标转换为倒易空间下的柱面坐标系(ξ,ζ). 其(ξ,ζ)与倒易矢量以及(x,y)的空间关系如图13所示.Fig. 13(a) Cylindrical coordinates of reciprocal lattice (b) Relation between cylindrical coordinates (ξ,ζ) and rectangular coordinates (x,y).对于平面探测器其转换关系如下:其中D为样品到探测器的距离,λ为入射X射线的波长.对于圆筒形成像板,可利用下面的公式进行转换:其中R为圆筒成像板的半径.图12(d)中一共有16个衍射峰,每一个二维图的峰位置(x,y)即对应一个ξ值,赤道线和第一层总共对应8个ξ值,其值根据公式(11)转换后如表1所示.如图14所示,分别在L0和L1层建立的坐标系下以ξ值为半径画圆. 这时我们需要寻找合适的晶胞参数在倒易空间坐标系下进行标定,以保证所有的倒易晶格都与以ξ为半径的圆有交点. 一般采用尝试法,其原则是从简单晶系比如正交或者四方晶系开始寻找,从数值较小的晶面开始尝试,要保证所有层的所有倒易晶格都能落在圆周上,然后对其衍射峰进行指标化. 确定晶系后,我们可以利用不同的晶面信息分别计算a和b值,以及α,β和γ等晶胞参数的信息. 最后得到聚乙烯属于正交晶系,晶胞参数为a=7.44 Å,b=4.95 Å,c=2.54 Å.Fig. 14Reciprocal lattice and indexing of reflections for the equatorial and first layers of PE.2.3.3估算晶胞内分子链的数量其中ρ为晶体密度,M为重复单元相对分子质量,V为晶胞体积. 对聚乙烯来说,其所属晶系为正交晶系,重复单元分子摩尔质量M= CH2=14 g/mol,晶胞体积V=a×b×c= 7.44 × 4.95 ×2.54 = 93.543 Å3. 实验测得的晶体密度ρ= 0.98 g/cm3,所以晶胞内的分子链个数为Z=ρVNA/M= 3.93,Z取整数,大约4根分子链在一个晶胞内.2.3.4晶体对称性的消光法则计算由前面可知X射线衍射的强度跟结构因子|Funit cell|2成正比,可以利用公式(14)进行计算. 例如聚乙烯为平面锯齿链结构,c轴方向为二重螺旋轴,2个碳原子C1和C2的坐标分别为(x,y,z)和(-x, -y,z+0.5),如图15所示,对于00l层的衍射,根据公式(9)可以得到下式:Fig. 152-screw axis of zigzag chain.当l为偶数的时候,Funit cell≠0;当l为奇数的时候,Funit cell=0,所以根据消光法则,晶面(001),(003)… 层的衍射观测不到.2.3.5计算模拟(Cerius 2)借助计算机强大的图形处理功能,可以对X射线衍射,电子衍射以及中子衍射等数据进行模拟计算,直观地在三维空间观测分子的结构特征, 我们主要通过软件Cerius 2的Crystal Builder (晶体建立模块)进行模拟计算,通过实验数据和模拟的结构模型对比确定晶体结构[34]. 进行能量最小化用到的力场模型通常选用COMPASS力场,模型的构建采用了全原子模型,能够模拟出更准确的高分子的结构与性质.图16(a)和16(b)分别是全同聚丁烯-1晶型I的二维X射线衍射图和利用晶体结构模型计算模拟得到的二维X射线衍射图[19].Fig. 162-Dimensional X-ray diffraction pattern of orientedit-PB-1 form I sample taken at room temperature: (a) the observed data and (b) the calculated diagram using the crystal structure (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).一般的操作步骤是,首先输入分子结构的重复单元,输入计算得到晶胞参数信息,利用COMPASS力场进行能量最小化. 找出尽可能多的候选空间群,计算稳定的分子结构,对所有可能的候选模型与实验数据进行对比.图17(A)就是对全同聚丁烯-1的晶型I提出的所有可能候选空间群. 把二维衍射图转换成一维数据,需要从赤道线开始,对每一层的衍射点进行逐层积分,与模拟所得的一维衍射数据进行对比,模拟的数据要尽可能真实地反映实测数据,以保证所有层的衍射峰的峰位置与峰相对强度一致,从而确定最佳的候选空间群.图17(B)为全同聚丁烯-1晶型I的不同计算机模拟和实验数据的一维积分曲线对比图. 最后通过调整相关参数使体系能量最小化,得到最稳定的晶体结构模型.Fig. 17(A) Various possibilities of the crystal structure model ofit-PB-1 form I (B) Comparison of the observed X-ray layer line profiles ofit-PB-1 crystal form I with those calculated for the three possible space groups (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).其他如Materials studio软件中的也包含COMPASS Ⅱ,Forcite Plus(各种通用力场)等模块,可以对建立的晶体结构进行弹性力常数,晶格能等物理性质的计算和预测,也可以进行动力学模拟研究动态过程.2.3.6可信赖因子把X射线衍射数据得到的所有衍射峰积分强度和确定的模型计算得到的衍射峰强度按公式(15)进行计算,求出可信赖因子R. 对单晶结构来说,R 0.05,如果 R值是0.1左右,说明得到的高分子晶体结构非常好,如果R 0.2,得到的晶体结构被认为是可以接受的模型. 2.3.7输出最终结构图18是全同聚丁烯-1晶型I的最终晶体结构模型,分别对应a轴和b轴,以及a轴和c轴方向示意图[19]. 晶体结构模型确定后,可以输出每一个晶面对应的(hkl)值,晶面间距,实验和模拟的强度对比值以及原子分数坐标等信息.Fig. 18Crystal structure ofit-PB-1 form I (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).3典型进展和应用近些年来大量的高分子晶体结构被建立或者精修. 下面概述近些年来,主要通过X射线衍射法建立的晶体结构在高分子表征领域内的进展和典型应用.3.1晶体结构解析在高分子复合体中的应用通常情况下,大多研究单一组分高分子样品的结晶行为以及结构分析. 但高分子领域也存在大量的共结晶现象,例如高分子立构复合体[35~44]、高分子与多碘离子[20, 45~50]形成的复合体等,在这些情况下,晶体结构解析会变得相对复杂.以高分子-多碘复合体为例,诸多高分子都可以与多碘离子形成复合体,最具代表性的包括淀粉-碘复合体及聚乙烯醇(PVA)-碘复合体等. 高分子碘复合体赋予了高分子诸多新的特性,例如导电性、光学特性和抗菌性等. 这些特性与复合体的晶态结构密切相关,而相关的研究至今也已经持续了近百年.高分子碘复合体的晶体结构解析与纯结晶高分子体系有所不同,因为碘原子相对于碳原子有较大的质量,从而碘原子的X射线原子散射系数远远大于碳原子,因此在二维X射线衍射图中一般只能观测到由于多碘离子在空间有序排列而出现的衍射点,而高分子主链部分的衍射信息则无法或极难观测到. 如图19所示,图19(a)为PVA单轴取向纤维的二维X射线衍射图,图19(b)~19(e)分别为PVA在不同浓度的碘溶液中浸泡不同时间后所形成的PVA-碘复合体二维X射线衍射图,可以看出,随碘溶液浓度的升高与浸泡时间的延长(即:随PVA样品中碘离子浓度的升高),PVA晶体的X射线衍射点逐渐变弱(绿色箭头所示),而PVA碘复合体结晶的衍射则逐渐变强[45]. 在此需要再次申明,PVA碘复合体X射线衍射图中的衍射强度主要由碘离子提供.Fig. 192D X-ray diffraction patterns measured for the uniaxially oriented PVA samples dipped in the KI/I2 solutions with different concentrations for the different time. The vertical direction is parallel to the drawn direction. (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).在进行结构分析之前,需要注意到在图19中衍射图的子午方向上出现很强的平行横向条纹(streak line),这种情况是由于柱状碘离子沿取向轴方向的排列高度是随机的,以图20说明,图20(a)为单独多碘离子模型的计算X射线衍射图,图20(b)为多碘离子平行但高度随机分布的计算X射线衍射图,图20(c)为PVA-多碘离子复合体样品测试所得X射线衍射图,可以看出,计算与实际测试所得的X射线衍射图具有很好的对应性,均表现为沿子午线方向的平行横向条纹衍射,说明在复合体中多碘离子沿取方向排布具有随机性.Fig. 20Simulation of X-ray diffuse scatterings observed for PVA-iodine complex: (a) isolated I3-, (b) randomly arrayed I3- ions, and (c) actually observed pattern (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).通过X射线研究结晶结构完全依赖于衍射信号,因此通过高分子-碘复合体的X射线衍射图只能确定碘离子的空间位置,但很难确定高分子链的排布,这也为高分子-多碘复合体的结构解析造成了一定的困难. 这种情况下,我们需要首先建立高分子基体的结晶模型,而后结合多碘离子的空间排布对复合体进行结构分析,从而建立复合体的结构模型,如图21所示.图21(a)为PVA结构模型,图21(b)为PVA多碘复合体结构模型.Fig. 21Crystal structures of (a) the original PVA and (b) the complex II. The large circles (purple color) are iodine atoms. The smaller circles (green color) are potassium atoms (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).进一步确认PVA与PVA-碘复合体晶体结构的空间关系,采用X射线垂直于分子链方向入射模式(end-pattern)进行研究,结果如图22所示,PVA碘复合体与PVA晶体中PVA分子链具有不同的空间排布模式. 以此上结果为根据,我们可以建立PVA与PVA碘复合体结构的关联性,这也可以为进一步分析复合体的形成过程提供理论支撑.Fig. 22Spatial relation of the crystal orientation between PVA and complex II derived from the X-ray end pattern (Reprinted with permission from Ref.[45] Copyright (2015) American Chemical Society).又如聚乳酸立构复合体的研究,在对其进行结构分析时,既要考虑PLLA与PDLA分子链的空间排布位置,也需要考虑2种分子链的相对比例,因为在2种分子链不同比例的情况下也可以形成同样结构的复合体晶体. Tashiro等[44]在前人工作的基础上,进一步研究了PLA立构复合体的晶体结构,提出了全新的PLLA和PDLA在立构复合体晶体中的随机排列模型(Random Packing Model),如图23所示,并以此来解释当 PLLA与PDLA分子链不等量时也能形成立构复合体的问题.Fig. 23The random packing model of R and L chain stems within PLLA/PDLA stereocomplex (Reprinted with permission from Ref.[42] Copyright (2017) American Chemical Society).3.2在高分子材料极限力学性能预测方面的应用结晶高分子材料的表观力学性能往往与其结晶区的力学性能直接相关,也就是说随着结晶度的提高,高分子的力学性能也会随之增强. 而现如今绝大多数高分子材料的极限力学性能尚没有被真正地发挥出来,究其原因,一方面我们对于高分子材料认知以及其制备手段仍需进一步发展,另一方面我们也需要对高分子的极限力学性能进行预测以指导高分子材料产品的发展方向.取向高分子的受力过程可以简化为沿高分子链方向上的受力,因此高分子链的组成与构型构象会直接影响高分子的力学性能[51~56]. 以PLLA的α相为例,通过计算,其分子链在受力过程中主要发生主链沿轴向的扭转[52]. 高分子链的在晶格中的形态也是结晶结构解析中必不可少的信息. 因此在结晶结构解析成功建立的同时,如图24所示,可以使用得到的分子链结构此对晶体的力学性能进行预测.Fig. 24Molecular deformation calculated for PLLAα form chain subjected to a hypothetically large tensile force of 30 GPa (Reprinted with permission from Ref.[52] Copyright (2012) American Chemical Society).计算过程一般为:首先通过计算所得分子链在晶胞中的形态,进而计算出弹性常数张量矩阵(elastic constants tensor matrix)及柔度张量矩阵 (compliance tensor matrix) (图25),基于这2个矩阵通过进一步的计算可以得到高分子链在垂直分子链主轴平面方向上的理论杨氏模量以及线性压缩率(linear compressibility),如图26中所示为计算所得聚甲醛(POM)与PLLAα相的理论杨氏模量以及线性压缩率[46]. 以此,可以建立结晶性高分子材料的结构与力学性能之间的关系.Fig. 25Elastic constants tensor matrix and compliance tensor matrix of PLLAα form.Fig. 26Comparison in the calculated anisotropy of Young' s modulus and linear compressibility in the plane perpendicular to the chain axis among the PLLAα and δ forms and polyoxymethylene (POM) crystal (Reprinted with permission from Ref.[52] Copyright (2015) American Chemical Society).Tasaki等[54~56]研究了一系列不同亚甲基序列芳香族聚酯,发现链构象在偶数和奇数序列中有非常大的区别,如图27(a)和27(b)所示.图27(c)说明随着―CH2序列的增加,重复周期也随之呈线性增加,亚甲基序列长度可以对聚酯杨氏模量进行调控,亚甲基单元为5~6时,其杨氏模量达到最小值. 这一理论计算结果与使用X射线测试所得的杨氏模量值具有高度的吻合性,如图27(d)所示.Fig. 27Chain conformation with different mGTs (a) odd number (b) even number (c) repeating period of mGT on the number of methylene units m, and (d) comparation of the crystalline Young' s modulusEc of arylate polyester chains on the number of methylene segmental units by X-ray observed values and calculated values (Reprinted with permission from Ref.[56] Copyright (2014) Elsevier Ltd.).3.3高分子在外场作用下结构转变解析中的应用很多半结晶性高分子在外场作用下会发生结晶结构的转变,对于相转变过程中的结构演变研究是相变研究的基础和难点. 借助于晶体结构解析技术可以对相变过程进行预测.例如Tashiro等[19]分别对全同聚丁烯-1晶型Ⅱ和晶型I分别进行了晶体结构的精修,通过对2种晶型的所有空间群和衍射数据进行对比,发现P3¯低对称性空间群比高对称性R3c 空间群更适合晶型I,而晶型Ⅱ的空间群为P4b¯2,在2种结构中,向上的链和向下的链都是统计学上各有50%几率分布在晶胞内, 晶型I如图18所示. 随后通过电子衍射原位研究晶型Ⅱ到I的固-固转变过程,发现两相共有(110)晶面,相邻分子链会在转变中向相反方向移动,类似一种soft mode的转变模式,如图28所示,晶型Ⅱ晶格内相邻的分子链可以通过向相反的方向移动,最终在新的位置稳定,最终转换为晶型I. 以上相变过程的机理分析都是在基于it-PB-1晶体结构解析的基础上.Fig. 28Concrete structural change in the phase transition from form II to form I ofit-PB-1. In the route (a) the (11/3) helical conformation is kept up to the stage of the formation of hexagonally packed structure as a transient state. (Reprinted with permission from Ref.[19] Copyright (2016) American Chemical Society).又如聚乳酸存在α相、δ(α' )相、β相及γ相,围绕这些晶态结构的研究也一直是PLA研究中最重要的一环[18,33, 57~60]. 除γ相一般是由外延生长结晶法(epitaxial crystallization)得到外,其他几种晶相都是与通用PLA密切相关的. 随测试手段的不断进步,α相、δ(α' )相、β相的晶体结构的迷雾逐渐被揭开,从而为α→δ(α' )→β相的相转变及PLA立构复合体形成的研究提供了理论支持. Wasanasuk等[33,52,58,59]在一系列工作中利用同步辐射X射线及中子散射装置深入解析了α及δ(α' )相的晶体结构,如图29所示,其中PLA分子链在α相中以这一种准有序的(10/3)螺旋构象状态排列在晶胞单元中,而在δ(α' )中的(10/3)螺旋构象则更加无序. 而后,Wang等[60]对PLA的β相的晶体结构重新进行了系统的解析,对前人的解析结果进行了修正,并结合Wasanasuk等的研究结果对α→δ(α' )→β的在拉伸过程中相转变机理进行了探究,如图30所示.Fig. 29Helical conformations of the molecular chains of PLLAα form and δ form and the regular chain conformation (Reprinted with permission from Ref.[52] Copyright (2012) American Chemical Society).Fig. 30A schematic illustration of the tension-induced phase transition from theα form with a large single domain to the β form with the aggregated domains of smaller size via the δ form of the structurally disordered structure and smaller domains (Reprinted with permission from Ref.[60] Copyright (2017) American Chemical Society). 4总结与展望本文介绍了X射线衍射法在高分子晶体结构解析中的基本原理及实验方法和技巧等内容,概述了近些年来X射线衍射法在高分子晶体结构解析领域进展和相关应用. 在静态解析方面,介绍了高分子复合物的晶体结构的最新进展,通过对新合成高分子的晶体结构的解析或者传统高分子结构的重新修正,进而利用晶体结构的相关参数可以对材料的力学性能进行计算和预测. 动态研究方面,基于更为精确的晶体结构的建立,可以帮助我们从晶胞尺度基础上理解外场作用下高分子结晶和相变等过程,探明结构演变的机制. 对结晶性高分子来说,建立可信赖的高分子晶体结构在高分子研究领域都是必不可少的内容.如前文所说,现有高分子晶体结构的建立大多依赖于X射线衍射法,但X射线衍射法受限于衍射点数量少且比较弥散等因素的影响,要得到非常可靠的结构是很困难的. 随着同步辐射技术的发展以及高分辨率和灵敏度的探测器的进步,例如最新的EIGER探测器分辨率达到了75 µm × 75 µm,可以更有利于从静态和动态等方面研究高分子的晶体结构及外场下演变过程. 并且把振动光谱、核磁共振法、电子衍射、中子衍射以及计算机模拟的方法相结合,可以使我们从不同角度去揭示和理解高分子晶体结构信息. 在最新的文献中,Tashiro指出[14],利用X射线衍射以及中子衍射技术的结合,可以给出晶体结构中重原子和轻原子的位置信息,得到更为精确的晶体结构. 随着表征手段和计算机领域的不断进步,建立更加准确高分子晶体结构可以使我们更深刻理解高分子各级结构的复杂性,也有利于阐明高分子材料的结构与性能之间的关系.参考文献1Strobl G.The Physics of Polymers.3th ed .New York:Springer,2007.166-2222Piorkowska E,Rutledge G C.Handbook of Polymer Crystallization.Hoboken, New Jersey:John Wiley & Sons, Inc,2013.31-673Hu Wenbing(胡文兵).Principles of Polymer Crystallization(高分子结晶学原理).Beijing(北京):Chemical Industry Press(化学工业出版社),2013.1-15.doi:10.1007/978-3-7091-0670-9_104Vasile C.Handbook of Polyolefins.2nd ed .New York:Marcel Dekker, Inc,2000.175-1825Lotz B,Miyoshi T,Cheng S Z D.Macromolecules.2017,50(16):5995-6025.doi:10.1021/acs.macromol.7b009076Tashiro K,Kobayashi M,Tadokoro H,Fukada E.Macromolecules,1980,13(3):691-698.doi:10.1021/ma60075a0407Men Y,Li L.Polymer Crystallization,2019,2(2):e10067.doi:10.1002/pcr2.100678Tadokoro H.Structure of Crystalline Polymers.Malabar.Florida:Robert E. Krieger Publishing Company,1990.19-1789Rosa C D,Auriemma F.Crystals and Crystalline in Polymers.Hoboken, New Jersey:John Wiley & Sons, Inc,2014.88-18410Alexander L L.X-ray Diffraction Methods in Polymer Science.New York:John Wiley & Sons, Inc,196911Mo Zhishen(莫志深),Zhang Hongfang(张宏放),Zhang Jidong(张吉东).Structure of Crystalline Polymers by X-Ray Diffraction(晶态聚合物结构与X射线衍射).2nd ed .Beijing(北京):Science Press(科学出版社),2010.146-206.doi:10.1016/j.carbpol.2010.05.00812Hohn T.International Table for Crystallography.5th ed .Netherlands:Springer,200613Wilson C C.Single Crystal Neutron Diffraction from Molecular Materials.Singapore:World Sci. Pub. Co. Pte. Ltd,2000.doi:10.1142/402914Tashiro K,Kusaka K,Hosoya T,Ohhara T,Hanesaka M,Yoshizawa Y,Yamamoto H,Niimura N,Tanaka I,Kurihara K,Kuroki R,Tamada T.Macromolecules,2018,51(11):3911-3922.doi:10.1021/acs.macromol.8b0065015Dorset D L.Structural Electron Crystallography.New York:Springer Science+Business Media,1995.95-133.doi:10.1007/978-1-4757-6621-9_416Hodgkinson P.Prog Nucl Magn Reson Spectrosc,2020,118-119:10-53.doi:10.1016/j.pnmrs.2020.03.00117Mehring M.Principles of High Resolution NMR in Solids.2nd ed .New York:Springer-Verlag Berlin Heidelberg,1983.1‒62.doi:10.1007/978-3-642-68756-3_218Zhang J,Tashiro K,Tsuji H,Domb A J.Macromolecules,2008,41:1352-1357.doi:10.1021/ma070607119Tashiro K,Hu J,Wang H,Hanesaka M,Saiani A.Macromolecules,2016,49(4):1392-1404.doi:10.1021/acs.macromol.5b0278520Tashiro K,Kusaka K,Yamamoto H,Hanesaka M.Macromolecules,2020,53(15):6656-6671.doi:10.1021/acs.macromol.0c0083921Ru J F,Yang S G,Zhou D,Yin H M,Lei J,Li Z M.Macromolecules,2016,49(10):3826-3837.doi:10.1021/acs.macromol.6b0059522Li X J,Zhong G J,Li Z M.Chinese J Polym Sci,2010,28(3):357-366.doi:10.1007/s10118-010-9015-z23Chen Y H,Yang H Q,Yang S,Zhang Q Y,Li Z M.Chinese J Polym Sci,2017,35(12):1540-1551.doi:10.1007/s10118-017-1990-x24Wang Y,Na B,Zhang Q,Tan H,Xiao Y,Li L B,Fu Q.J Mater Sci,2005,40(24):6409-6415.doi:10.1007/s10853-005-1746-925Yang S G,Chen Y H,Deng B W,Lei J,Li L B,Li Z M.Macromolecules,2017,50(12):4807-4816.doi:10.1021/acs.macromol.7b0004126Petermann J,Gohil R M.J Mater Sci,1979,14:2260-2264.doi:10.1007/bf0068843527Li L,Xin R,Li H H,Sun X L,Ren Z J,Huang Q G,Yan S K.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145628Yoshiharu N,Shigenori K,Masahisa W,Takeshi O.Macromolecules,1997,30(20):6395-6397.doi:10.1021/ma970503y29Sikorski P,Hori R,Masahisa W.Biomacromolecules,2009,10(5):1100-1105.doi:10.1021/bm801251e30Yoshiharu N,Yasutomo N,Masahisa W.Macromolecules,2011,44(4):950-957.doi:10.1021/ma102240r31Davis G T,Mckinney J E,Broadhurst M G,Roth S C.J Appl Phys,1978,49(10):4998-5002.doi:10.1063/1.32444632Sugiyama J,Chanzy H,Maret G.Macromolecules,1992,25(16):4232-4234.doi:10.1021/ma00042a03233Wasanasuk K,Tashiro K,Hanesaka M,Ohhara T,Kurihara K,Kuroki R,Tamada T,Ozeki T,Kanamoto T.Macromolecules,2011,44(16):6441-6452.doi:10.1021/ma200662434Sun H.J Phys Chem B,1998,102:7338-7364.doi:10.1021/jp980939v35Shao J,Liu Y L,Xiang S,Bian X C,Sun J R,Li G,Chen X S,Hou H Q.Chinese J Polym Sci,2015,33(12):1713-1720.doi:10.1007/s10118-015-1715-y36Zhang Xiuqin(张秀芹),Xiong Zujiang(熊祖江),Liu Guoming(刘国明),Yin Yongai(尹永爱),Wang Rui(王锐),Wang Dujin(王笃金).Acta Polymerica Sinica (高分子学报),2014, (8):1048-1055.doi:10.11777/j.issn1000-3304.2014.1344437Li Xiaolu(李晓露),Wang Rui(王锐),Yang Chunfang(杨春芳),Dong Zhenfeng(董振峰),Zhang Xiuqin(张秀芹),Wang Dujin(王笃金),Wang Deyi(王德义).Acta Polymerica Sinica(高分子学报),2018, (5):598-606.doi:10.11777/j.issn1000-3304.2017.1719738Zhou W,Wang K,Wang S,Yuan S,Chen W,Konishi T,Miyoshi T.ACS Macro Lett,2018,7(6):667-671.doi:10.1021/acsmacrolett.8b0029739Chen W,Wang S,Zhang W,Ke Y,Hong Y L,Miyoshi T.ACS Macro Lett,2015,4(11):1264-1267.doi:10.1021/acsmacrolett.5b0068540Pan P,Yang J,Shan G,Bao Y,Weng Z,Cao A,Yazawa K,Inoue Y.Macromolecules,2012,45(1):189-197.doi:10.1021/ma201906a原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20258&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20258
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments. Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°. 从方位角峰值的变化,能够清晰地看出PDMS在低温拉伸过程中的结构演变.图3(a)给出了PDMS在-60 ℃下单轴拉伸过程中典型的二维WAXS衍射图和相应的应力-应变曲线,可以明显看到随着应变的增大,PDMS发生了应变诱导结晶.图3(b)中则给出PDMS在拉伸过程中WAXS衍射峰(2θ≈10.42°)的方位角分布演化(从拉伸方向逆时针积分). 可以看到,随着应变的增大,在ψ=60°和120°的位置首先出现2个峰,这是β晶型(011)晶面的衍射信号. 随着应变的进一步增加,2个峰合并成赤道方向(ψ=90°)的尖峰,这是α晶型(001)晶面的衍射信号. 方位角峰的转变表明晶体随着应变的增加从β晶转变为α晶. 通过多峰拟合,可以获得峰值位置(图3(b)中的红色虚线)和相应的半高峰宽(FWHM),并将二者对应变进行作图,如图3(c)所示. 当应变较低时(ε0.68),峰值位置始终位于120°附近,FWHM约为35°. 当应变增大至1.00时,峰值位置急剧变为90°且随着应变的进一步增大而几乎保持不变. 随着峰值位置的转变和应变的增大,FWHM先增加后减小. 峰值位置和FWHM的演变均表明当ε0.68时,发生β晶到α晶的固-固相转变,并在ε≈1时完成转变. 由于2种晶型的衍射峰的2θ值重叠(如图4(b)中的1D积分曲线),除了通过方位角峰位演化判断β-α型晶体结构转化,还可分别对β晶和α晶在相应的方位角范围内进行mask积分(如图4(a)所示45°倾斜Iob和赤道方向Ieq).图4(c)以归一化形式给出了结晶度(χc),Iob和Ieq随应变增大的变化关系,通过与相应的应力-应变曲线比较,从而得到拉伸诱导的β-α相变的临界应变值.Fig. 3Stress-strain (σ-ε) curve and selectedin situ 2D WAXS patterns acquired during uniaxial tensile deformation at -60 ℃(a), the evolution of the azimuthal intensity distribution of diffraction peaks at 2 θ of about 10.42° (b), and the corresponding peak position and FWHM of the characteristic peaks (c) (Reprinted with permission from Ref.[ 6] Copyright (2018) American Chemical Society).Fig. 4(a) The mask protocols of 2D WAXS patterns for integration of samples stretched toε=0.24 andε=1.36 at -60 ℃, respectively. The red enclosed area is the oblique masked (Iob) signal of (011) plane ofβform, the blue enclosed areas is the equatorial (Ieq) masked signals of (001) plane ofαform. (b) 1D diffraction intensity profiles of 2D WAXS scattering patterns at different strains. (c) The stress (σ), crystallinity (χc) and equatorial (Ieq) and oblique (Iob) masked relative crystal content curves with the normalized coordinate (Reprinted with permission from Ref.‍[6] Copyright (2018) American Chemical Society).使用同样的数据处理方法,分别得到PDMS在低温下不同晶体结构SIC和固-固相转变的临界应变,根据临界应变在温度-应变二维空间中绘制PDMS低温拉伸过程的非平衡结构演化相图.图5是不同填料含量增强的PDMS在低温拉伸下的结构演化相图. 从相图可以看出,填料的含量(纳米SiO2)对PDMS在低温拉伸过程中α' ,β' ,α和β晶型间结构转变的影响十分复杂. 结合核磁、SAXS等多尺度表征手段可以对中间态α' 和β' 到α和β的转变可能遵循的机理进行研究,如晶体滑移或旋转,分析得到晶体内部分子链螺旋结构、晶体间排列和晶体之间的结构转变机理. 通过建立对微观结构转变规律的认识,并结合宏观力学性能数据,我们可以分析出PDMS材料低温失弹的微观结构原因.Fig. 5The non-equilibrium crystallization phase diagram for SIC of PDMS with 10 phr (a), 25 phr (b), 40 phr (c), and 55 phr(d) filler in strain-temperature (ε-T) space (Reprinted with permission from Ref.[7] Copyright (2018) American Chemical Society).2同步辐射原位研究高分子薄膜加工的多尺度结构高性能高分子薄膜的制备方法和技术是工业界和学术界需要共同攻克的难题. 高分子薄膜加工包括从熔体、溶液到薄膜的固化过程和薄膜后拉伸过程,具有多步骤、多加工参数和多尺度结构演变的特点. 成膜过程的主要研究内容是流动场诱导结晶,包括加速成核和生长、诱导新晶型以及改变晶体形貌. 在后拉伸过程中,薄膜则可能发生晶体的破坏与重构、无定形区的微相分离、纤维晶形成以及微孔的成核和扩大等结构变化. 高分子薄膜加工过程中复杂的多尺度结构演化最终决定了其服役性能. 例如:干法制备聚烯烃微孔隔膜需要通过塑化挤出、风刀骤冷和流延辊高倍拉伸后才能得到初始预制膜. 在每个步骤中,环境温度、湿度、应变、应变速率、乃至挤出机螺杆长径比和口模流道的设计等因素都会对预制膜的结构与性能产生影响.通常,高性能薄膜的制备是在远离平衡态的加工条件(如高速拉伸)下进行的. 由于现有理论和实验条件的限制,非平衡问题不能简单地通过外延平衡理论解释. 高时空分辨的同步辐射硬X射线散射表征技术可以实时跟踪高分子材料在非平衡加工过程中不同尺度的结构演化,系统研究应变速率、温度等复杂外场作用下高分子材料结构与性能的关系. 通过研制贴近实际工业生产加工条件的原位研究装置,并开展同步辐射原位实验,可建立高分子材料的非平衡加工相图,从而进一步指导实际工业生产,实现高性能高分子材料的精准加工.在这里,笔者想要再次强调的是在明晰具体的材料体系和所需的实验条件后,需针对性地设计控制样品环境的原位装置,才能充分发挥出同步辐射硬X射线散射表征技术的优势. 目前,本课题组研制的同步辐射原位研究装置可分为复杂外场单轴拉伸装置和大型原位加工装置2类,前者主要模拟复杂外场下高分子材料的单轴拉伸过程,后者可以在较小的同步辐射线站空间内模拟高分子材料的实际加工过程. 依托这些同步辐射原位研究装置,可以就流动场诱导结晶、晶体的熔融再结晶、晶体固-固相转变等现象针对性地设计原位实验,加深对高分子材料加工背后基础物理问题的理解.2.1复杂外场下单轴拉伸复杂外场通常指温度场、流动场以及溶液、气压等样品环境. 通过复杂外场单轴拉伸实验可以模拟样品在实际加工中的形变过程的微观结构演化规律. 温度场的控制是高分子材料加工和服役性能的关键,聚乙烯(PE)、聚丙烯(PP)等常用塑料的加工温度窗口远高于室温(150~250 ℃),而天然橡胶(NR)、硅橡胶等弹性体其低温环境(0~-150 ℃)的服役性能更受研究者关注. 流动场包括剪切、拉伸外场,以拉伸场为例,拉伸速率对高分子材料内部结构演化规律,例如晶体的破坏、晶体结构转变等都有显著的影响. 工业中通常使用对拉的方式对样品进行单轴拉伸,而这种拉伸方式常由于拉伸比、腔体体积等原因受到限制. 因此,单轴拉伸通常根据材料和实验需要在对拉和辊拉2种方式中择优使用.图6(a)为采用对向拉伸的恒幅宽拉伸装置,装置的最大拉伸比可以达到700% (初始长度20 mm),拉伸速率范围在0~1000 mm/min,温度区间为室温至200 ℃[11,12].图6(b)为采用辊拉方式拉伸的高速拉伸装置,装置不受最大拉伸比限制,应变速率范围为10-2~102 s -1,温度范围为-40~300 ℃[13,14]. 考虑到在原位实验中的应用,装置被设计和建造得尽可能小型化. 高速拉伸装置配合上海光源高通量线站BL19U2使用Lambda 750K探测器可实现的最高分辨率为0.5 ms. 为了同步获得高速拉伸过程中的真实应变,利用时间分辨可达0.1 ms的高速CCD相机拍摄样品的拉伸过程.Fig. 6Constant width stretching device (a) and high speed stretching device with wide-temperature range (b).使用研制的复杂外场原位单轴拉伸装置主要用来研究流动场诱导结晶[15]以及后拉伸过程晶体形变与破坏. 流动场诱导高分子结晶是功能薄膜流延加工的关键,是熔体或溶液挤出口模冷却固化的过程,对于理解功能薄膜非平衡物理和指导实际工业生产具有重要意义. 流动诱导链段构象经过中间有序态发展为晶体,目前仍缺乏更多证据说明中间态结构的普适性、中间态的晶型、以及中间态的温度和流动场依赖性等问题. 为揭示详细的多步骤中间态,通过使用高时间分辨的同步辐射WAXS和SAXS联用技术,控制拉伸温度,对聚乙烯(PE)进行熔体拉伸,构建PE在温度-应力参数空间上非平衡流动场诱导结晶和熔融相图[16](图7(a)). 相图包含熔体、非晶δ相、六方(H)晶和正交(O)晶4个相区,并证实了拉伸诱导的δ相能够作为亚稳的中间相促进结晶发生,这支持了有序中间态是流动诱导结晶中的普遍规律的观点. 除了聚乙烯流动场诱导结晶的非平衡相图,针对功能膜加工的需要,工程实验室还系统构建了聚丁烯(PB)流动场诱导结晶的非平衡相图[17],如图7(b)所示,这些工作都为当前功能薄膜从感性粗放到理性精准加工积累了基础数据[18,19].Fig. 7Stretch induced crystallization non-equilibrium phase diagram of PE melt in temperature-stress space (a) (Reprinted with permission from Ref.[16] Copyright (2016) Springer Nature) and PB melt in temperature-strain rate space (b) (Reprinted with permission from Ref.[17] Copyright (2016) Wiley-VCH Verlag).在更大尺度上,即片晶和片晶间无定形的结构转变仍需要进一步研究工作. 笔者所在课题组以由高取向片晶簇构成的硬弹性聚乙烯、聚丙烯流延膜为研究对象,在室温下进行冷拉,研究取向片晶(如图8(a)和8(b))在不同拉伸外场中的结构演化与非线性力学行为的关系. 如图8(c)和8(d)所示,研究发现片晶簇的微屈曲和片晶间无定形相发生微相分离. 以α松弛温度和接近熔点为边界将温度分为3个区域,图9给出了高取向等规聚丙烯薄膜在温度-应变二维参数空间中的微观结构演化相图. 这些微观结构的演化规律解释了温度效应对材料的宏观非线性力学行为的影响[20,21]. 显然,研究形变机理对功能薄膜在后拉伸加工过程中的温度、应变及应变速率等参数的选择具有重要的指导意义.Fig. 8The structural evolution model of highly oriented lamella by uniaxial tensile (Reprinted with permission from Ref.[20] Copyright (2018) Elsevier).Fig. 9The structural evolution diagram of the highly oriented lamella in temperature-strain space (Reprinted with permission from Ref.[21] Copyright (2018) American Chemical Society).针对新能源电池隔膜加工需要,还系统构建了聚烯烃等工业预制膜后拉伸加工中的应变-温度空间或双向拉伸空间的非平衡相图[22,23],如图10所示. 通过模拟半晶高分子薄膜后拉伸加工,跟踪拉伸过程中晶体和无定形相的演化过程,不仅有助于指导高分子材料后拉伸加工中结构与性能调控,还可以为构建锂电池隔膜加工的材料基因组积累必要的结构和力学信息数据库.Fig. 10The structural diagram of processing in temperature-strain (a) (Reprinted with permission from Ref.‍[22] Copyright (2019) John Wiley and Sons) and biaxial stretch ratio (b) (Reprinted with permission from Ref.‍[23] Copyright (2019) Elsevier) spaces for PE gel film.2.2大型加工原位装置高分子薄膜的成型方法有很多,其中比较常见的有流延,吹塑和挤出拉伸(单向和双向)3种加工工艺. 目前,我国薄膜加工生产线和配套工艺主要还是依赖进口,国内生产线制造和薄膜加工企业处于成长阶段,缺乏原创高端产品. 究其原因,主要是缺乏相关基础和应用研究的支撑. 在真实的高分子加工过程中,伴随大应变、高应变速率、高温度(压力)变化等,高分子材料的结构经历复杂的非线性、非均匀和非平衡演变,相关研究极具挑战性. 当前的大多数原位研究仍处于模型化阶段,如利用低剪切水平的剪切热台、改造的流变仪等,不能反映真实加工条件下的物理行为. 因此,需要研制大型加工原位装置以最大程度地还原实际加工环境. 大型加工原位装置的研制主要的难点在于在能实现样品的复杂形变和环境温度的控制的前提下,需将产业化的装置设备缩小至能够满足同步辐射光源线站的空间限制的要求. 非常值得一提的是,上海光源即将建成开放的USAXS工业实验站(BL10U1)的空间将大大增加(长24 m,宽8 m,高6 m),可以放置大型工业应用原位实验装置. BL10U1的建成运行将大大降低对大型原位装置的尺寸限制. 下面我们以原位双向拉伸装置和原位挤出吹塑成膜装置为例,详细介绍大型加工原位装置及相关的研究应用.双向拉伸工艺可以制备具有优良服役性能的高分子薄膜(如BOPP和BOPA薄膜),其加工是一个非常复杂的过程,涉及高分子多尺度结构(分子链、晶格、片晶和球晶等)在多加工外场参数(如应力和温度)耦合作用下的协同转变. 因此,研究双向拉伸过程的结构转化动力学和机理,可以从基础原理上指导双向拉伸薄膜的加工,提高产品性能. 为实现双轴拉伸外场作用下高分子薄膜材料的多尺度结构演化在线跟踪,笔者所在课题组研制了与同步辐射技术联用的原位双向拉伸装备(见图11). 装备能够实现多种拉伸模式,其中包括受限、非受限单向拉伸,同步、异步双向拉伸. 装置的温度、速度、拉伸倍率、拉伸方式等外场参数均可独立控制,形变线速度范围为0.1~300 mm/s,双向拉伸比可达5×4,最高温度可达250 ℃. 该装备与同步辐射硬X射线光束线站联用,可实现0.1~500 nm尺度范围内的结构检测,时间分辨率为0.5 ms. 双向拉伸装置采用计算机高速控制-采集系统,控制系统采用PLC控制面板,可以远程控制电机运转,实现同步辐射光源棚屋外的控制. 该装备配备了力学信息采集系统,可同时采集拉伸过程中水平和垂直方向的力学信息,结合多尺度结构数据,可构建加工-结构-性能的关系,揭示双向拉伸外场作用下的高分子材料结构演化机理[24].Fig. 11The schematic diagram, and physical map used with synchrotron radiation of film biaxial stretching device (Reprinted with permission from Ref.[25] Copyright (2019) American Chemical Society).天然橡胶的优异力学性能通常归因于其应变诱导结晶行为. 受限于实验条件,目前大多数的研究均集中于单轴拉伸过程中的应变诱导结晶,然而接近于实际使用条件的多轴变形下的应变诱导结晶却很少报道. 本课题组采用高通量的原位同步辐射WAXS技术,结合在线双轴拉伸装置,研究了在双轴拉伸条件下天然橡胶的应变诱导结晶行为[25]. 利用同步辐射硬X射线散射研究天然橡胶双向拉伸形变过程物理,建立天然橡胶在真正服役条件下的多维外场-结构数据库.图12所示的二维WAXS结果表明,在双轴拉伸情况下,天然橡胶的应变诱导结晶行为会得到抑制:当两垂直方向的拉伸比比值为1时,室温下试样即使拉伸至断裂也不会出现结晶. 双轴拉伸阻碍了天然橡胶的SIC. 这一发现挑战了SIC在天然橡胶中在多轴变形下的自增强机制的共识.图13针对天然橡胶在多维拉伸空间的应变诱导结晶,提出了一种理论上的应变诱导结晶模型,即将构象熵和链段取向对成核位垒的贡献解耦. 将结晶度(χc)、无定形取向参数(f)和取向无定形的含量(Oa)在双向拉伸应变空间内定量化,提出模型:ΔG*f=ΔG*0−TΔSf−(TΔSori+ΔUori),其中,ΔG*f是成核位垒,ΔG*0是静态条件的成核位垒,ΔSf是构象熵减,ΔUori是取向造成的自由能变. 将几种结构参数定量化,得到应变空间内的结晶度分布. 基于该模型,二维应变空间的结晶度与实验结果高度吻合,并有助于建立更具有普遍意义的半结晶聚合物的流动诱导结晶理论模型.Fig. 122D WAXD patterns of the NR samples at the maximum planar draw ratio (λx×λy), where (a-h) denote stretch conditions of free uniaxial stretch (FS), CS, andvy=0.1, 0.2, 0.4, 0.5, 0.6, and 0.7 mm/s, respectively.vx remains constant at 1 mm/s, whose direction is given by a two-head arrow in the center (Reprinted with permission from Ref.‍[25] Copyright (2019) American Chemical Society).Fig. 13Distributions of (a) crystallinity (χc), (b) Hermans' orientation parameter of the amorphous phase (f), (c) weight portion of the oriented amorphous phase (Oa), (d) absolute value of entropy reduction (ΔSf), and (f) theoretically fitted crystallinity (χc (P)) in λx versus λy space. Gradient directions of contours for Δ Sf,f, andχc (e) (Reprinted with permission from Ref.[ 25] Copyright (2019) American Chemical Society).高分子吹膜加工是非线性、非平衡的多尺度结构快速演化过程,并伴随拉伸场、温度场和气氛环境等复杂外场,其过程模型如图14(a). 吹膜加工过程中,熔体拉伸、吹胀和降温主要发生在熔体出口模到霜线前后的阶段,这一阶段也是决定材料吹膜加工性能和薄膜使用性能最为关键的阶段. 利用同步辐射硬X射线散射技术的优势,考虑到同步辐射实验线站的空间限制条件等因素,研制了与同步辐射联用的原位挤出吹塑成膜装置(见图14(b)),并配合升降机、红外测温、高速CCD相机等其他单元形成吹膜加工原为在线检测系统[26,27],建立了吹膜加工过程原位在线检测方法[28]. 原位挤出吹塑成膜装置将工业薄膜吹塑装备小型化,实现了整个吹膜过程原位在线结构检测,吹膜过程加工参数连续可调,能够真实模拟实际加工过程. 利用同步辐射技术实现WAXS/SAXS同步采集,可获得结晶度、晶粒尺寸、取向度、片晶长周期等结构信息及其演化动力学信息,并且可以同步获得膜泡不同位置温度场及流动场信息. 基于该系统可建立吹膜加工过程原位在线研究方法并开展不同分子结构/加工参数下聚乙烯(PE)棚膜、PBAT(poly(butyleneadipate-co-terephthalate))地膜等薄膜产品的原位在线研究. 原位挤出吹塑成膜装置是高性能高分子薄膜加工领域研究方法技术的突破,有利于深入研究高分子薄膜加工物理,有效支撑了高性能薄膜产品的研发[29~31].Fig. 14The model of film blowing process (a) and the physical map of the film blowing device used with synchrotron radiation (b).通过PE材料的同步辐射在线吹膜实验总结了吹膜加工过程结构演化规律. 通过对晶体取向度、结晶度等数据的分析,根据吹膜过程的结构演化提出了相应的模型图(图15),并将结构演化过程分为4个区域. I区(霜线位置51~61 mm):拉伸诱导熔体结晶及滑移网络的拉伸. Ⅱ区(61~65 mm):晶体交联网络的拉伸. Ⅲ区(65~92 mm)及Ⅳ区(92~160 mm):不可形变网络的填充. 以上结论表明大量的晶体形成是对不可形变网络的填充,这一过程类似于静态等温结晶[32].Fig. 15The model of evolution of structural parameters during film blowing (Reprinted with permission from Ref.‍[32] Copyright (2018) American Chemical Society).基于对于吹膜过程从高分子缠结网络-晶体交联网络-晶体网络的理解,通过设计变温吹膜实验研究了温度和外部流场对不同拓扑结构的聚乙烯吹膜的影响. 研究发现不同吹胀比(12和20)的线性和长链支化聚乙烯(MPE和LPE)对温度和流动场具有不同的响应. 通过同步辐射硬X射线散射在吹膜过程中对PE的微观结构演变的进一步分析揭示了3种不同类型的网络演化(如图16):(1) 温度诱导结晶主导过程(MPE);(2) 流动诱导结晶主导过程(LPE-20);(3) 成核和生长由温度和流动的耦合效应(LPE-12)确定. 预计目前的结果将指导薄膜吹塑的加工,并为远离平衡条件下的流动场诱导结晶研究提供新的观点[33].Fig. 16The different types of the structure and network evolutions of TIC, TIC coupled with FIC, and FIC. The scale bar of SEM images is 500 μm. (Reprinted with permission from Ref.[33] Copyright (2019) American Chemical Society).基于同步辐射硬X射线散射实验结果,可以得到从缠结网络到可变形晶体网络,再到最终不可变形晶体支架的网络演化. 这些结构演化信息能够帮助完善数学模型,进一步优化和开发新的吹膜设备和方法. 吹膜过程的原位研究为高性能高分子薄膜的高效研发提供了可能的解决方案. 原位挤出吹塑成膜装置通过改变加工参数来调节链的取向,在生产具有特定性能的聚合物薄膜方面具有很大的潜力.3总结和展望同步辐射硬X射线散射技术在高分子表征中已得到广泛的应用. 研制与同步辐射联用的原位在线研究装置是用好同步辐射硬X射线散射技术的关键. 高效地使用同步辐射硬X射线技术需要我们根据不同高分子材料的特定性能,分析样品所处的外部复杂坏境,设计富有创新性的实验,再根据样品环境“量身打造”同步辐射原位表征装置. 依托高亮度的现代同步辐射光源如上海光源,配合超快探测器的使用,实现高时间、高空间分辨的多尺度结构表征.小型的同步辐射原位在线研究装置可用来研究拉伸、剪切等简单流动场和复杂外场(温度、应变、应变速率、溶液环境等)耦合条件下的结晶、晶体网络破坏等物理问题. 大型加工原位装置通过将大型加工装置小型化至可与同步辐射光束线站联用,真实反映高分子材料在实际工业加工过程中微观结构演化规律. 本文中涉及的原位研究装置均为笔者所在课题组根据研究内容自主设计并制造,大部分零部件是非标的,需要定制. 我们诚挚欢迎有相关原位研究装置需求的读者与我们联系,以期更好地发挥这些装置的作用,共同扩展它们的应用范围. 本课题组致力于发展和集成与同步辐射联用的高分子材料性能表征技术,建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中进行搜索最优参数的能力,从理论上切实指导实际生产加工.参考文献1Li Haohu(李浩虎),Yu Xiaohan(余笑寒),He Jianhua(何建华).Modern Physics(现代物理知识),2010,22(3):14-192Li Xiaodong(李晓东),Yuan Qingxi(袁清习),Xu Wei(徐伟),Zheng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:10.1002/pcr2.100436Zhao J,Chen P,Lin Y,Chang J,Lu A,Chen W,Meng L,Wang D,Li L.Macromolecules,2018,51(21):8424-8434.doi:10.1021/acs.macromol.8b018727Zhao J,Chen P,Lin Y,Chen W,Lu A,Meng L,Wang D,Li L.Macromolecules,2020,53(2):719-730.doi:10.1021/acs.macromol.9b021418Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201810052796.3.2018-06-12.doi:10.3390/land100606319Li Liangbin(李良彬),Chen Pinzhang(陈品章),Zhang Qianlei(张前磊),Lin Yuanfei(林元菲),Meng Lingpu(孟令蒲).China patent, CN.ZL201820097340.4.2018-01-19.doi:10.3390/land1006063110Chen P,Zhao J,Lin Y,Chang J,Meng L,Wang D,Chen W,Chen L,Li L.Soft Matter,2019,15(4):734-743.doi:10.1039/c8sm02126k11Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201220733325.7.2013-11-06.doi:10.3390/land1006063112Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Cui Kunpeng(崔昆朋),Li Jing(李静).China patent, CN.ZL201210579459.2,2013-11-23.doi:10.3390/land1006063113Chang Jiarui (常家瑞).Structural Evolution and Mechanical Behavior of Typical Elastomer Meterials in a Wide Range of Strain Rate(典型弹性体材料在宽应变速率范围内的结构演化与力学行为).Doctoral Dissertation of University of Science and Technology of China,201914Li Liangbin(李良彬),Ju Jiangzhu(鞠见竹),Wang Zhen(王震),Ye Ke(叶克),Meng Lingpu(孟令蒲).China patent, CN.ZL201710070789.1.2017-05-31.doi:10.3390/land1006063115Wang Z,Ma Z,Li L.Macromolecules,2016,49(5):1505-1517.doi:10.1021/acs.macromol.5b0268816Wang Z,Ju J,Yang J,Ma Z,Liu D,Cui K,Yang H,Chang J,Huang N,Li L.Sci Rep,2016,6(1):1-8.doi:10.1038/srep3296817Ju J,Wang Z,Su F,Ji Y,Yang H,Chang J,Ali S,Li X,Li L.Macromol Rapid Commun,2016,37(17):1441-1445.doi:10.1002/marc.20160018518Xu Jiangli(徐佳丽),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Li Xueyu(李薛宇),Lei Caihong(雷彩红),Wang Wei(王卫),Acta Polymerica Sinica(高分子学报),2015, (4):38-44.doi:10.11777/j.issn1000-3304.2015.1430319Lin Yuanfei(林元菲).Study of the Intrinsic Deformation Mechanism ofiPP Oriented Lamellar Stacks(等规聚丙烯取向片晶的本征形变机理研究).Doctoral Dissertation of University of Science and Technology of China,2018.doi:10.31219/osf.io/k7ehx20Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Li L.Polymer,2018,148:79-92.doi:10.1016/j.polymer.2018.06.00921Lin Y,Li X,Meng L,Chen X,Lv F,Zhang Q,Zhang R,Li L.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025522Lv F,Wan C,Chen X,Meng L,Chen X,Wang D,Li L.J Polym Sci,Part B:Polym Phys,2019,57(12):748-757.doi:10.1002/polb.2482923Wan C,Chen X,Lv F,Chen X,Meng L,Li L.Polymer,2019,164:59-66.doi:10.1016/j.polymer.2019.01.02124Li Liangbin(李良彬),Meng Lingpu(孟令蒲),Lin Yuanfei(林元菲),Chen Xiaowei(陈晓伟),Xu Jiali(徐佳丽),Li Xueyu(李薛宇),Zhang Rui(张瑞),Zhang Qianlei(张前磊).China patent, CN.ZL201420449291.8.2014-12-10.doi:10.3390/land1006063125Chen X,Meng L,Zhang W,Ye K,Xie C,Wang D,Chen W,Nan M,Wang S,Li L.ACS Appl Mater Inter,2019,11(50):47535-47544.doi:10.1021/acsami.9b1586526Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201720215641.8.2018-01-30.doi:10.3390/land1006063127Li Liangbin(李良彬),Zhang Rui(张瑞),Ji Youxin(纪又新),Ju Jiangzhu(鞠见竹),Zhang Qianlei(张前磊),Li Lifu(李立夫),AliSarmad,Zhao Haoyuan(赵浩远).China patent, CN.ZL201710131585.4.2017-05-31.doi:10.3390/land1006063128Zhang Qianlei(张前磊).Study on Physics of Polymer Film Stretching Processing(高分子薄膜的拉伸加工物理研究).Doctoral Dissertation of University of Science and Technology of China,2019.doi:10.30919/es8d50529Zhao H,Zhang Q,Xia Z,Yang E,Zhang M,Wang Y,Ji Y,Chen W,Wang D,Meng L,Li L.Polym Test,2020,85:106439.doi:10.1016/j.polymertesting.2020.10643930Zhao H,Li L,Zhang Q,Xia Z,Yang E,Wang Y,Chen W,Meng L,Wang D,Li L.Biomacromolecules,2019,20(10):3895-3907.doi:10.1021/acs.biomac.9b0097531Zhang Q,Chen W,Zhao H,Ji Y,Meng L,Wang D,Li L.Polymer,2020,198:122492.doi:10.1016/j.polymer.2020.12249232Zhang Q,Li L,Su F,Ji Y,Ali S,Zhao H,Meng L,Li L.Macromolecules,2018,51(11):4350-4362.doi:10.1021/acs.macromol.8b0034633Zhao H,Zhang Q,Li L,Chen W,Li L.ACS Appl Polym Mater,2019,1(6):1590-1603.doi:10.1021/acsapm.9b00391原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21111&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21111
  • 一号文件再强调食安问题,食安检测中瓶皿洁净度起到关键作用
    一号文件概述文件指出,牢牢守住保障国家粮食安全和不发生规模性返贫两条底线,扎实有序做好乡村发展、乡村建设、乡村治理等重点工作,推动乡村振兴取得新进展、农业农村现代化迈出新步伐。食品安全现状食品安全的隐患和食品安全问题日趋严重,人们对食品安全的重视和关注程度也不断增强,国内发生了很多食品安全事件,如2010年青岛毒韭菜事件、2011年瘦肉精事件等等,这些食品安全问题都直接威胁着人们身体健康和生命安全。民以食为天,食以安为先食品安全检测的技术发展至今,食品安全检测技术已逐渐趋于成熟,常见的检测技术有:1、色谱技术:广泛的应用于天然毒素、农药、食品添加剂、兽药等的检测。2、光谱技术:在农畜产品、食品的品质与安全性检测中有着广泛的应用。3、生物技术:在食品安全检测中可应用于食源性微生物、病毒、药物、真菌毒素以及转基因食品等的检测分析。4、快速检测:在现场对样品进行筛查,其特点是相对危害指标进行定性检测,检测速度快,能赢得时间,可消除食品安全隐患。瓶皿的洁净度在食品安全检测中的重要性无论运用哪种检测技术,在检测中采集样品、制配样品环节必定少不了玻璃瓶皿的使用,如试管、烧杯、容量瓶、三角瓶等等,其玻璃器皿的洁净程度往往决定着检测数据的准确性!那大家都会使用何种清洗方式呢?手工刷?人力资源消费大,还不一定洗干净;换新的?不仅废料处理麻烦更是一笔不小的财力支出。何不来看看这台全自动洗瓶机?洗瓶机的清洗方式将瓶皿放入洗瓶机后,最快三键便捷启动提供完美的人机交互体验360°上下旋转喷淋臂与一对一注射式清洗完美结合瓶皿内外清洗无死角模组模块化设计,自由搭配,想洗什么就洗什么!清洗完成后自动开门,散发腔体内剩余热气,保护使用者安全民以食为天,食以安为先食品安全一直是国家乃至全世界一直关注的一大难题,食品安全的检测在其中一直扮演着重要的角色,为保证检测结果的准确性,瓶皿的清洁度成了重中之重。全自动洗瓶机的普及及使用,是对瓶皿洁净度的保障,更是检测结果准确性的最后防线!
  • TA仪器与陕西科技大学联合举办“材料热分析和粘弹性表征及其应用技术交流会”邀请函
    TA仪器与陕西科技大学联合举办&ldquo 材料热分析和粘弹性表征及其应用技术交流会&rdquo 近年来随着材料研究的不断发展,在化工、医药、食品、能源、新材料等工程技术领域对于材料的研究不断深入,作为材料研究的重要工具,流变仪,动态热机械分析仪、热重分析仪、差示扫描量热仪等仪器越来越广泛的应用其中,这些仪器对于材料的粘弹性能、热物性能的研究提供了的重要技术手段。此次会议主要是加强这些领域的技术交流,针对各领域研究人员及工程技术人员,达到深入的了解材料在热分析和粘弹性等方面的基础理论和表征方法的目的,包括这些测试的最新应用。提高技术人员在自己的研究领域内,确定材料在热物性和粘弹性方面的测试目的和评价手段,更好的针对自己的研究领域和实验所需参数选择和组织更好的研究工作。会议主要内容:一、材料热分析表征及其应用1、材料热分析(热重、差热)的特性及其表征方法2、材料热分析测试的结果分析及其实验方法改进3、材料热分析测试的应用二、材料粘弹性能表征及其应用1、材料的粘弹特性及其物理指标2、材料粘弹特性的仪器测试方法3、材料粘弹特性的应用--------------------------------------------------------------------------------------演讲嘉宾:(以下排名按照演讲顺序,不分先后)刘保健副教授陕西科技大学化学与化工学院 主要研究方向 高分子物理,聚合物结构与表征的实验研究,不同结晶度聚乳酸膜降解性的研究等王宇副教授西安交通大学理学院材料物理系 物质非平衡合成与调控教育部重点实验室,目前从事的研究领域主要包括: 智能材料、形状记忆与磁控形状记忆合金、固态相变与玻璃化转变、磁热与磁致伸缩效应。曾在日本国立物质材料研究机构、美国Los Alamos国家实验室进行研究工作。杨胜鹰 先生毕业于北京化工大学高分子材料系,国家高级工程师,在加入美国TA仪器之前,他在石化行业材料研发行业任职多年,拥有非丰富的研发和技术支持经验。李润明 博士TA仪器流变技术支持,上海交通大学材料学博士。主要研究方向是聚合物流变学,在材料表征分析和测试领域具有丰富的经验。马倩 博士TA仪器热分析技术支持,美国Tufts大学凝聚态物理博士,师从美国著名热分析科学家Peggy Cebe。有着多年高分子热分析表征以及X射线散射理论和实验研究经历。会议时间 2013年4月18日会议地点:陕西科技大学逸夫楼会议室会议日程安排08:50 - 09:00 会议嘉宾致辞09:00 - 09:40 材料动态粘弹性理论及实验表征 李润明 博士09:40 - 10:30 流变在材料粘弹性的表征方法及其应用 李润明 博士10:30 - 10:40 茶歇10:40 - 11:00 流变仪技术应用专题 刘保健 先生11:00 - 11:40 DMA在材料粘弹性的表征方法及其应用 李润明 博士11:40 - 12:00 DMA在记忆合金方面的测试和应用 王宇 先生12:00 - 14:30 午餐14:30 - 15:20 差热法对于材料的表征方法及其应用 杨胜鹰 先生15:20 - 16:10 热重法对于材料的表征方法及其应用 马倩 博士16:10 - 16:20 茶歇16:20 - 16:50 TA热物性测试仪器及其应用 马倩 博士16:50 - 17:30 参观陕西科技大学化学与化工学院重点实验室仪器展示现场问答附件:材料热分析和粘弹性表征及其应用技术交流会详情请垂询: TA仪器市场部王小姐电话: 021-34182128 传真: 021-64951999Email: vwang@tainstruments.com
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.3)上得到了很好的显示。在 P/P0 = 0.3,298K 时,HKUST-1 的水容量为 512 cm3/g STP (41wt.%),表明水捕集技术在相对湿度较低的环境中具有潜在的应用前景。在 P/P0 =0.90,298K 时 ,HKUST-1 的水容量为 648 cm3/g STP (52wt.%),超过了传统的水吸附剂,如氧化铝和沸石。另一方面,MIL-101 的水分主要来源于较高的相对湿度,P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。
  • 高分子表征技术专题——扫描电镜技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!扫描电镜技术在高分子表征研究中的应用ApplicationsofScanningElectronMicroscopyinPolymerCharacterization作者:郑鑫,由吉春,朱雨田,李勇进作者机构:杭州师范大学材料与化学化工学院,杭州,311121作者简介:李勇进,男,1973年生.1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位.2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员.2011年加入杭州师范大学,主要从事高分子材料成型加工研究.先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的MorandLambla奖(2019年)、浙江省自然科学奖(2020年)等.摘要扫描电子显微镜(scanningelectronmicroscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmissionelectronmicroscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.AbstractScanningelectronmicroscopy(SEM)isoneofthemostimportanttoolsforthecharacterizationofpolymermaterials' microstructureandcomposition.First,itiseasytooperate thentherearevariouselectronicsignalsavailablewhichcontaindifferentsampleinformationforSEMimaging besides,therearelittlesampledamageduringSEMobservation.Inthiswork,theworkingprincipleofSEMwaselucidatedsystematically.Also,acomparisonwasmadebetweenSEMandTEMwithrespecttoworkingprinciple,resolutionandmagnification,viewanddepthoffield,samplepreparation,sampledamageandpollution.Therefore,theadvantagesandfeaturesofSEMwerehighlighted.Inaddition,theexperimentmethodsofSEMwereillustratedindetail,includingsamplepreparation,instrumentparametersettings,operationskillsandimagetreatment.ThekeyfactorswhichdeterminesthequalityofSEMimagewererevealed.ThemainapplicationsofSEMinpolymercharacterizationwereintroduced.Specifically,thesecondaryelectronsimagingwasusedtoinvestigatethemicrostructureofpolymercomposition,compatibilityofpolymerblends,crystalstructureofpolymer,morphologyofpolymerporousmembrane,biocompatibilityofpolymermaterial,self-assemblebehaviorofpolymerandsoon.Besides,thebackscatteredelectrons,characteristicX-ray,transmittanceelectronswerealsousedtorevealthemorphologyandcompositioninformationofpolymersystems.ThecombinationofSEMwithRamanspectrometerandFocusedionbeamandtheinsituSEMtechniqueswereillustrated.Finally,therecenttrendsofSEMdevelopmentwereprospected.关键词扫描电子显微镜  高分子材料  微观结构  组成信息  应用KeywordsScanningelectronmicroscopy  Polymermaterial  Microstructure  Composition  Application 材料的宏观特性是由其组分及微观结构决定的,因此,深入了解材料的微观结构,明确微观结构与宏观特性之间的内在联系对于开发新材料、提升已有材料性能是至关重要的.电子显微镜技术是探测微观世界的重要研究手段之一,在材料的研究和发展历程中发挥了巨大的作用.电子显微镜是在光电子理论的基础上发展起来的,包括扫描电子显微镜(scanningelectronmicroscope,SEM)和透射电子显微镜(transmissionelectronmicroscopy,TEM)两大类.二者在结构、工作原理、对样品的要求等方面有着本质的区别.下文将对其进行详细阐述.由于二者的成像原理不同,所反映出来的样品信息也不尽相同,因此在实际应用中,往往需要二者相互配合,才能揭示材料最真实的微观结构.与TEM相比,SEM具有更大的视野和景深,样品制备相对简单且对样品厚度要求不严格,并且不容易造成样品的损伤和污染,是快速表征材料微观形貌结构的首选技术.自1965年第一台商用扫描电镜问世以来,经过不断的创新、改进和提高,扫描电镜的种类和应用领域也在不断拓展[1].现有的扫描电镜主要包括钨丝/六硼化镧扫描电镜(SEM)、场发射扫描电镜(FESEM)、扫描透射电镜(STEM)、冷冻扫描电镜(Cryo-SEM)、环境扫描电镜(ESEM)等[2].此外,通过配置功能附件,如X射线能谱仪、X射线波谱仪、阴极荧光谱仪、二次离子质谱仪、电子能量损失谱仪、电子背散射衍射仪等,许多扫描电镜除了研究材料微观结构之外,还兼具微区物相分析的功能[3].鉴于扫描电镜在材料微观结构表征中的重要作用,本文将从扫描电镜的结构与工作原理出发,通过与透射电镜进行对比,突出其性能和特点;详细讨论扫描电镜的实验方法与操作技巧,揭示获得高质量扫描电镜图像的关键技术;总结扫描电镜在高分子材料表征中的应用与最新进展;最后,对扫描电镜的发展趋势进行展望.1扫描电镜的结构与特点1.1扫描电镜的结构扫描电镜的内部结构较为复杂,可分为电子光学系统、样品仓、信号电子探测系统、图像显示与记录系统、真空系统这5个主要部分[3].下文将针对这5个主要部分详细展开.扫描电镜实物图及其主要部件如图1所示.Fig.1TheHitachiS-4800cold-fieldemissionSEManditsmaincomponents.1.1.1电子光学系统电子光学系统主要包括电子枪、聚焦透镜、扫描偏转线圈等.其作用是产生用于激发样品产生各种信号的电子束.为了获得较高的信号强度和图像分辨率,通常要求电子束具有较高的亮度、稳定的束流及尽可能小的束斑直径.因此,电子光学系统是扫描电镜中尤为重要的组成部分.电子枪阴极用来提供高能电子束,常见的有钨丝电子枪、六硼化镧电子枪和冷/热场发射电子枪.表1汇总了几种电子枪的性能及相关参数[4].Table1Severalelectrongunsandthemainperformanceparameter.由电子枪阴极发射的电子束初束尺寸通常较大,需通过聚焦透镜将其大幅度缩小方可照射样品并获得较高分辨率的扫描图像.聚焦透镜分为强激磁、短焦距的聚光镜和弱激磁、长焦距的物镜,二者均通过磁场作用改变电子射线的前进方向而使电子束产生汇聚.扫描系统是扫描电镜一个独特的结构,包含扫描发生器、扫描偏转线圈和放大倍率变换器,其作用是使电子束在样品表面和显示屏中作光栅状同步扫描,以获得样品表面形貌信息.这即是扫描电镜的工作原理,可简单总结为“光栅扫描,逐点成像”.下文将对其进行进一步说明.此外,通过改变电子束在样品表面的扫描振幅还可获得不同放大倍数的扫描图像.1.1.2样品仓样品仓位于物镜的下方,用于放置样品和信号探测器.内设样品台,并提供样品在X-横向、Y-纵向、Z-高度3个坐标方向的移动,以及样品绕自身轴旋转R和倾斜T的动作.通过对这5个自由度的选择性控制,可以实现对样品全方位的观察.其中“Z”方向的距离称为工作距离,通常在2~50mm范围内,工作距离越大,观察的视野越大.1.1.3信号电子探测系统信号探测系统包括信号探测器、信号放大和处理装置及显示装置,其作用是探测样品被电子束激发出的各种信号电子,并经放大转换为用以调制图像的信号,最终在荧光屏上显示出反映样品特征的图像.图2给出了电子束激发样品所产生的主要信号电子,包括二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE)、俄歇电子(AS)、阴极荧光(CL)等,及其所反映的样品性能特征的示意图.而不同的信号电子要用不同的探测系统,目前扫描电镜的探测器有电子探测器、阴极荧光探测器和X射线探测器三大类.Fig.2Theoverviewofmainsignalelectronsgeneratedduringtheinteractionbetweenelectronbeamandsample.1.1.4图像显示与记录系统图像显示与记录系统由显像管和照相机组成.显像管的作用是将信号探测系统输出的调制信号转换成图像显示在阴极射线荧光屏上,并由照相机将显像管显示的图像、放大倍率、标尺长度、加速电压等信息拍摄到底片上.1.1.5真空系统为了确保电子光学系统能正常、稳定地工作,防止样品污染,电子枪和镜筒内部都需要严格的真空度.以场发射扫描电镜为例,通常要靠一台机械泵、一台分子泵和一台离子泵联合完成.真空度越高,入射电子的散射越少,电子枪阴极的寿命越长,同时高压电极间放电、打火等风险隐患也会降低.1.2扫描电镜的性能和特点扫描电镜和透视电镜是分析材料微观形貌的2种常用表征手段.为了明确扫描电镜性能和特点,本文将扫描电镜与同为电子显微镜的透射电镜进行全方面比较说明.1.2.1成像原理结合扫描电镜的结构,其成像原理如下:在高压作用下,由电子枪阴极发射出的电子束初束,经聚光镜汇聚成极细的电子束入射到样品表面的某个分析点,与样品原子发生相互作用而激发出各种携带样品特征的信号电子,通过相应的探测器接收这些信号电子,经放大器放大后进行成像,即可分析样品在电子束入射点处的特征.同时,通过扫描线圈驱动入射电子束在样品表面选定区域作从左到右、从上到下的光栅式扫描,实现对选定区域每个分析点的采样,从而产生一幅由点构成的图像.其工作原理如图3(a)所示.扫描电镜是信号电子成像,主要用来观察样品表面形貌的立体(三维)图像.Fig.3SchemeofthestructureandimagingprincipleforSEM(a)andTEM(b).作为电子显微镜的另一大类,透射电镜的总体工作原理与扫描电镜有着显著差别[2].在透射电镜中,由电子枪发射出的电子束初束同样通过聚光镜汇聚成极细的电子束照射在极薄的样品(50~70nm)上.与扫描电镜不同的是,透射电镜通过穿过样品的电子,即透射电子,来反映样品的内部结构信息.携带了样品信息的透射电子经过物镜的汇聚调焦和初级放大后,形成第一幅样品形貌放大像;随后再经过中间镜和投影镜的2次放大,最终形成三级放大像,以图像或衍射谱的形式直接投射到荧光屏上,通过配有电荷耦合器件(chargecoupleddevice,CCD)的相机拍照或直接保存在计算机硬盘中.其工作原理如图3(b)所示.透射电镜是透射成像,用来观察样品在二维平面内的形态和内部结构.1.2.2分辨率和放大倍数分辨率表示对物点的分辨能力,指的是能够清晰地分辨2个物点的最小距离.显微镜的理论分辨率(γ0)可用贝克公式(公式(1))表述.显然,仪器所用光源波长越短,分辨率越高.根据德布罗意公式(公式(2))和能量公式(公式(3)),电子显微镜的电子束波长随加速电压增加而缩短,进而明显提高电子显微镜的分辨率.而仪器的有效放大倍率(M有效)与仪器的理论分辨率是直接相关的.由公式(4)可知,仪器分辨率越高,有效放大倍率越大.当仪器分辨率确定后,其有效放大倍率也随之确定.因此,分辨率才是评价显微镜的核心指标.而我们通常意义上说的放大倍率实际是图像放大倍率,也即屏幕输出比(M)(公式(5)).在超高真空条件下,扫描电镜的水平和垂直分辨率分别可达0.14和0.01nm.放大倍数从10倍到1.5×106倍连续可调;透射电镜的最高分辨率可达0.1nm,放大倍数从几百倍到1.5×106倍连续可调.式中λ为光源波长,n为显微镜内介质的折光率(真空环境时n=1),α为透镜孔径半角.式中h为普朗克常数,m为电子质量,v为电子运动速度.式中e为电子电荷量,U为加速电压.式中γe为人眼分辨率(0.2mm).式中Lm为荧光屏成像区域边长(通常为10cm),Ls为电子束在试样上的扫描区域边长.1.2.3视野和景深视野指的是能看到的被检样品的范围,与分辨率和放大倍率有关;景深指可获得清晰图像的深度范围.扫描电镜的视野(10mm~10μm)比透射电镜(1mm~0.1μm)大得多,景深也比透射电镜大.如图4所示,扫描电镜图像更有立体感,更适合观察样品凹凸不平的细微结构[5].Fig.4TheSEM(a)andTEM(b)imagesforthesamesample(ReprintedwithpermissionfromRef.[5] Copyright(2019)ElsevierLtd.).1.2.4样品制备扫描电镜的样品制备比较简单,对样品的厚度要求不严格,不导电的样品要经过镀膜导电处理(后文将以高分子材料为例,详细介绍扫描电镜样品的制备方法),强磁性样品需消磁后方可观察;而对于透射电镜来说,电子必须穿过样品才能成像,因此样品要很薄,通常要经过特殊的超薄切片进行制备,过程相对复杂.1.2.5样品的损伤和污染在用扫描电镜观察样品时,照射在样品上的束流(10-10~10-12A)、电子束直径(5nm)和加速电压(2kV)都较小,故电子束能量较低.此外,电子束在样品上做光栅状扫描,因此观察过程中对样品的损伤和污染程度较低;而使用透射电镜时,为了使图像有足够的亮度,要用较强的束流(~10-4A)和加速电压(100kV),因此电子束能量较高,且固定照射在样品的某处,因此引起样品的损伤程度较大,易造成样品和镜筒的污染.综上所述,扫描电镜的性能和特点显著,如成像立体感强,放大倍数范围大、分辨率高,不仅对样品具有普适性,且制样简单,观察时对样品的损伤和污染小,此外还可以通过调节和控制各种影响成像的因素和参数来改善图像质量(详见下文),因此是观察材料显微结构的重要工具.2实验方法与技巧要获得一幅优质的扫描电镜图像,需掌握样品制备技术、熟知操作要点并对图像进行必要的处理.下文将以高分子材料为例,对扫描电镜的实验方法与操作技巧进行阐述.2.1样品制备高分子材料扫描电镜样品的制备方法根据要观察的部位、样品形态及高分子本身的性质有所不同.观察块状或薄膜样品表面时,只需将大小合适的样品表面朝上用导电胶黏贴在样品台上;观察块状或薄膜样品内部结构时,通常要将样品置于液氮中,通过淬断获得维持形貌的断口,然后再将断口朝上用导电胶固定在样品台上进行观察.对于较薄且自支撑性较差的薄膜样品,可带支撑层一起淬断.如将载有纳米纤维膜的锡箔纸,或将纤维膜浸水之后进行淬断,更便于得到其断面.此外,黏贴样品时应尽量保持样品平稳、牢固,减少样品与导电胶之间的缝隙,以增加其导电和导热性.有时,为了分辨高分子复合体系的组分分布情况,还需要对样品进行适当的刻蚀,利用选择性溶剂去除复合体系中的某一相,以暴露更多微观细节[6~8],之后再进行清洗、干燥、黏贴、镀膜等步骤.观察粉末样品时,要保证粉末与样品台粘接牢固,在样品仓抽真空时不会飞溅导致电镜污染.根据粉末样品的尺寸,可选择用干法或湿法来制备扫描样品.其中,干法适用于制备尺寸大于2μm的粉末样品.通常在导电胶上负载薄薄一层粉末样品后,要用洗耳球等从不同方向吹掉粘接不牢固的粉末;湿法适用于制备尺寸在2μm以下的粉末样品.首先选择合适的分散液(如水、乙醇等),将粉末样品通过超声处理均匀地分散在其中,随后用滴管将样品溶液滴加到硅片上,待溶剂挥发后固定在样品台上进行下一步处理.对于导电性好的高分子样品,只要用导电胶将要观察的部位朝上粘接在样品台上即可观察[9,10];而大部分高分子材料都是绝缘的,经过高能电子束的持续扫描,样品表面会产生电荷积累,不仅会排斥入射电子,还会干扰信号电子,影响探测器对信号电子的接收,造成图像晃动、亮度异常、出现明暗相间的条纹等现象.这就是所谓的“荷电效应”[11~13].为了解决这个问题,除了要用导电胶将其粘接在样品台上,还可以选择对其进行镀膜处理以提高样品的导电性[11].通常,5nm的镀膜厚度足以改善样品的导电性.对于具有特殊结构的样品,如表面不致密或者起伏较大的样品,可以适当增加镀膜厚度.常用的镀膜材料有碳膜、金膜、银膜、铂膜等.其中,金膜二次电子产率高、覆盖性好,在中低倍(1.5×104倍)以下观察时较常使用.在进行更高放大倍数、更高分辨率分析时,通常会选择颗粒较小的铂膜或金-铂合金膜.而镀膜可以通过真空镀膜和离子溅射镀膜技术来实现.镀膜层的厚度以能消除荷电效应为准.但是,镀膜会掩盖一些样品的微观形貌细节,使得观察结果产生偏差;此外,对于还要进行能谱分析的样品,镀膜也会对结果产生不利影响.此时,可以选择在低压模式下对样品进行观察(详见3.4节),即使不镀膜也可以观察到细微的结构.当使用常规扫描电镜观察时,磁性样品要预先消磁,所有样品还需要经过彻底的干燥处理后方可观察.2.2实验技巧2.2.1仪器参数样品制备完成后,需要对扫描电镜进行操作,调整相应的参数,获取扫描电镜图像.通常,一幅优质的扫描电镜图像要能够清晰、真实地反映样品的形貌,需具备较高的分辨率、适中的衬度、较高的信噪比、较大的景深等.其中,信噪比指一个电子设备或者电子系统中信号与噪声的比例.当扫描过程中采集的信号电子数量太少时,仪器或测试环境的噪声太大,信噪比太低,会导致显示屏上出现雪花状噪点,从而掩盖了样品图像的细节.而较高的分辨率是高质量扫描电镜图像的首要特征.此外,图像的分辨率、衬度、信噪比、景深等特征之间是相互关联的,通过调整电镜的参数可以改变上述特征发生不同效果的变化.(1)加速电压加速电压升高,束斑尺寸减小,束流增大,有利于提高图像的分辨率和信噪比.此外,升高加速电压还能提高二次电子的发射率,但与此同时,电子束对样品的穿透厚度增加,电子散射增强,这些反而会导致图像模糊、分辨率降低.因此,应根据样品的实际情况进行适合的选择.对于高分子材料来说,由于其耐热性和导电性均不佳,为了避免观察、拍摄过程中样品发生热损伤及荷电效应导致图像不清晰,应适当采取较低的加速电压.(2)束流束流是表征入射电子束电子数量的参数,束流与束斑直径之间的关系可用公式(6)表示:其中,i束流,d是束斑直径,β是电子源的亮度,α是电子探针的照射半角.由此公式可知,当其他参数不变时,束流增大,束斑尺寸也会相应变大,此时分辨率会下降,而由于束流增大有利于激发出更多的信号电子,故信噪比提高.所以,束流对分辨率和信噪比的影响是相反.通常,随着观察的放大倍数增加,图像清晰度所要求的分辨率也要增加,因此可适当减小束流,而信噪比可以通过其他途径,如延长扫描时间等手段来弥补.(3)工作距离工作距离是指物镜最下端到样品的距离,对入射至样品表面的电子束的束斑尺寸有直接影响.缩短工作距离可以减小束斑尺寸,进而提高图像分辨率.然而,缩短工作距离会导致电子束入射半角α增大,因此景深变小,图像立体感变差.因此,要得到高分辨率的图像时,需选择较小的工作距离(5~10mm);而要观察立体形貌时,可选用较长的工作距离(25~35mm),获得较大的景深.(4)物镜光阑物镜是扫描电镜中最靠近样品的聚光镜,多数扫描电镜在物镜上都设有可动光阑,用于遮挡非旁轴的杂散电子并限定聚焦电子束的发散角,同时还兼具调节束斑尺寸的功能.所用的光阑尺寸越小,被遮挡的杂散电子越多,在一定的工作距离下,孔径半角越小,因此景深变大,图像立体感变强,同时束斑尺寸减小,图像分辨率提高.另一方面,光阑孔径小会导致入射电子束束流减小,激发出的信号电子数量减少,导致信噪比变差.因此,对于放大倍率不高的扫描样品,或者需要使用能谱仪对样品微区进行化学组成成分分析时,应选用较大孔径的光阑,获得较大的束流和较高的信噪比.通过上述分析可知,影响扫描电镜图像质量的各个因素之间是有内在联系的,在实际操作过程中,需根据样品的自身性质及拍摄的具体需求选择合适的条件参数.2.2.2操作要点为了获得高质量的扫描电镜图像,除了选择合适的仪器参数,还应掌握正确的操作方法.(1)电子光学系统合轴在扫描电镜中,由电子枪阴极发射的电子束通过聚光镜、物镜及各级光阑,最终汇聚成电子探针照射到样品表面并激发出电子信号.其中,到达样品表面的电子束直接决定了扫描电镜的图像质量.因此,在观察样品前必须使上述各部件的中轴线与镜筒的中轴线重合,使得电子束沿中轴线穿行,将光学系统的像差减到最小,这就是“合轴”‍.合轴主要通过镜筒粗调和电子束微调来实现.镜筒粗调又称机械合轴,一般仪器安装后会由专业的维修工程师进行操作.此外,仪器使用过程中发现光斑偏离过大也需要进行机械合轴.以日立SU8000扫描电镜为例,通过调节对应位置的螺丝和旋钮,依次进行电子枪、聚光镜光阑、物镜光阑、各级聚光镜、像散合轴等,此时屏幕中心应会出现一个既圆又亮的光斑,说明机械合轴完成.随后,还要利用扫描电镜的对中电磁线圈所产生的磁场拖动电子束进行精确合轴,又称电子对中.相较于机械对中,电子对中幅度小、合轴精确度高,一般在完成机械对中的基础上进行.实际使用扫描电镜时,如在调焦或消像散时发现图像位置移动,说明电子束对中出现问题,需对其进行校正.电子对中可通过倾斜(tilt)和平移(shiftX/Y)实现.Tilt用于调整电子束的发射倾斜角度,ShiftX/Y用于电子束平面X、Y方向的移动.在调整过程中注意观察图像的亮度,亮度最大时调整结束.(2)放大倍数和视野选择根据观察要求,选择合理的放大倍数及视野,确保观察部位具有科学意义,通过观察到的样品形貌能够回答要解决的研究问题.此外,所观察的画面和角度要符合传统的美学观点,同时具有良好的构图效果.(3)电子束聚焦和相散消除电子束聚焦和相散消除是电镜操作中最核心的步骤.聚焦是指通过旋转Focus旋钮调节物镜的励磁电流,使其在欠焦、正焦、过焦这3种状态下反复切换,并通过对比图像的清晰度来确认正焦的位置,此时束斑直径最小.调焦过程中电子束在样品表面的变化如图5所示.在过焦和欠焦状态下,图像在相互垂直的方向上出现拉长的现象,且在正焦状态下也不清晰,此时就表明出现了像散.在消除像散时,首先要把图像聚焦到正焦状态,随后通过调节消像散器的X、Y旋钮,辅以调焦操作,并观察图像是否被拉长,再根据实际情况,重复上述过程,直到图像清晰为止.图5也展示了不同聚焦状态下有无像散的电子束斑形状及尺寸.显然,消除像散后正焦时电子束斑尺寸更小,因此此时的图像具有更高的清晰度.Fig.5Theshapeandsizechangeofelectronbeamduringfocusingprocessbeforeandaftertheastigmatismbeingeliminated.(4)衬度和亮度调整图像中最大亮度和最小亮度的比值就是图像的衬度,也称对比度或反差,可通过改变扫描电镜中光电倍增管的电压进行调整.亮度则是通过改变电信号的直流成分进行调节.实际上,反差增强时直流成分也会增加,因此相应地亮度也会提高.在进行扫描电镜观察与拍摄时,应交替调节衬度和亮度,保证图像具有清晰的细节和适当的明暗对比.(5)扫描速度调整扫描速度要结合样品自身的性质与观察要求进行调整.通常情况下,低倍观察时用快速扫描,高倍观察时用慢速扫描.当图像要求高分辨率时常用慢速扫描.对于导热性和导电性较差的高分子材料,为避免热损伤和荷电效应,通常要采用快速扫描.(6)样品台角度调整表面较为光滑的样品通常其形貌衬度较弱,通过调整样品台的角度,可以使更多二次电子离开倾斜的样品表面,提高信号电子的强度(如图6所示),进而改善图像衬度和分辨率[14].Fig.6TheSEescapedfromthehorizontal(a)andtilted(b)sample.(7)图像拍摄在实际观察与拍摄时,通常要先在较低的倍率下对整个样品进行观察,之后选择具有代表性的区域再进行放大.遵循“高倍聚焦、低倍拍照”的原则,在高于所需拍摄放大倍数的状态下(1.2~2倍放大倍数)进行聚焦,后回调至所需放大倍数进行拍照,可获得清晰度更高的图像.此外,为了使SEM图像更具有代表性和准确性,一方面,要对具有代表性的观察区域进行一系列放大倍数的拍摄,此时可按从高倍率到低倍率的顺序进行拍摄,过程中无需反复执行电子束聚焦的步骤,仍可获得高清晰度的图像;另一方面,也要进行多点观察,即对样品不同区域进行观察.2.3图像处理图像处理是指在探测器的后续阶段,通过各种图像处理技术,对图像的衬度、亮度或噪声等进行改善,获得一幅细节更清晰、特征更明显的图像.在此过程中,不应改变样品的原始信息.表2总结了仪器参数和操作要点对图像质量的影响[3,4].Table2TheinfluencefactorsoftheSEMimagesandthecorrespondingadjustment.3扫描电镜在高分子材料表征方面的主要应用总体而言,扫描电镜是一个功能十分强大的测试平台,除了最基本的成像功能之外,通过搭配不同的信号电子探测器,或与其他仪器(如拉曼光谱、单束聚焦离子束系统等)联用,或引入原位分析手段等方法,可以对材料的微观结构、元素、相态等进行分析.3.1不同信号电子在高分子材料表征方面的应用常用于高分子材料表征的信号电子为二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE).其中,SE、BSE和特征X射线对样品厚度没有要求,当高能电子束入射至样品后,这3类信号电子的逃逸深度及大致对应的扫描电镜图像分辨率如图7所示[15].而TE要求样品的厚度在100nm以下,因此需要超薄切片处理,且为了获得足够的衬度,通常要对共混物的其中一个组分进行染色处理.通过在SEM平台搭配不同的信号电子探测器,可以得到不同的SEM成像方式.Fig.7TheescapedepthofSE,BSEandcharacteristicX-rayandtheirapproximateimageresolution.3.1.1二次电子成像高能入射电子与样品原子核外电子相互作用使其发生电离形成自由电子,并克服材料的逸出功,离开样品的信号电子即为二次电子SE,其产额为每个入射电子所激发出的二次电子平均个数.二次电子是扫描电镜中应用最多的信号电子.由于其能量较低且容易损失,只有样品表面或亚表面区域所产生的二次电子才能离开样品到达探测器[16].此外,表面形貌的变化对二次电子产额影响较大,图8展示了不同表面形貌,如尖端、平面、斜面、空洞、颗粒等,对二次电子产额的影响.显然,凸出的尖端、较为倾斜的面以及颗粒在经电子束照射后逃逸的SE较多[17].在成像时,SE产额较多的表面形貌通常更亮.这种由于形貌差异导致的图像亮度不同而获得的图像衬度即为形貌衬度.二次电子提供的形貌衬度是扫描电镜最常用的图像衬度.通过搭配二次电子探测器,可以做如下研究:Fig.8SchemeoftheSEyieldondifferentsurfacemicrostructure.(1)高分子复合材料微观结构以高分子为基体,通过引入增强材料(如各种纤维[18~20]、晶须[21~23]、蒙脱土[24,25]、粒子[26~28]等)作为分散相,可以获得具有优异特性的复合材料.通常,其性能强烈依赖于增强材料的尺寸、分散性等.SEM在开发高性能高分子复合材料中发挥了重要作用.于中振等制备了一种具有良好电磁屏蔽性能的聚苯乙烯(PS)/热还原氧化石墨烯(TGO)/改性Fe3O4纳米粒子的复合材料[29].由扫描电镜图像可以清晰地分辨不同形貌的填料,如改性的零维Fe3O4颗粒结构(图9(a))与二维还原氧化石墨烯(RGO)的片层结构(图9(b)).此外,扫描电镜图像也能反映填料的分散情况.如图9(a),RGO在PS基体中表现出明显的聚集,而从图9(c)可见,TGO和改性的Fe3O4纳米颗粒(Fe3O4-60)在PS基体中可以很好地分散.图9(c)所显示的具有许多小空间的微观结构有利于电磁波的衰减.Fig.9SEMimagesof(a)PS/RGO,(b)PS/Fe3O4-60and(c)PS/TGO/Fe3O4-60composites(ReprintedwithpermissionfromRef.[29] Copyright(2015)ElsevierLtd.).刘欢欢等通过扫描电镜对MWCNTs在PP基体中的分散进行了观察,扫描电镜图像中PP基体和MWCNTs表现出明显的衬度差异(图10(a)),是由于二者不同的形貌造成的[30].在较暗的PP基体中出现了大块较亮的MWCNT团聚体,说明其分散性较差.通过引入马来酸酐接枝PP(MAPP)作为增容剂,同时引入Li-TFSI离子液体帮助MWCNTs分散后,图10(b)的扫描电镜图像呈现均一的衬度和亮度,说明此时MWCNTs在PP基体中的分散性有大幅改善.Fig.10SEMimagessofimpactfracturesurfaceofPP/MWCNTs(a)andPP/MWCNTs/Li-TFSI/MAPP(b)(ReprintedwithpermissionfromRef.[30] Copyright(2019)ElsevierLtd.).(2)高分子共混体系相容性对现有高分子材料进行共混是获得高性能新材料的有效途径.共混体系组分之间的相容性是共混改性的基础,其对共混体系的性能起到了决定性的作用[31].因此,对共混体系相容性的研究十分重要,通常要用多种方法,如DSC、FTIR、NMR、SEM等,从不同角度进行研究分析[32].其中,SEM可以直接反应共混物的相形貌,能粗略、直观表征共混体系的相容程度,因此相较于其他方法应用更为广泛.近年来,李勇进和王亨缇等针对不相容共混体系做了一系列工作,通过设计合成并添加反应性增容剂,制备了众多高性能功能化的高分子共混物[5,33~39].在其工作中,大量运用扫描电镜对增容共混体系的相结构、微区尺寸、两相界面等进行研究,并结合透射电镜与红外等其他表征手段,系统研究了不同反应性增容剂的增容机理.图11(a)的扫描电镜图像中,较大的分散相尺寸以及较差的界面黏附性说明了增容前的共混体系是完全热力学不相容的;加入反应性接枝共聚物作为增容剂后,分散相尺寸明显细化,并形成了双连续的相形貌,同时界面也有显著增强(如图11(b)所示).图11(c)的透射电镜图像同样印证了增容后共混体系相容性得到改善的结论[36].Fig.11(a)SEMimageofpolyvinylidenefluoride(PVDF)/poly(lacticacid)(PLLA)=50/50blendwithoutcompatibilizer SEM(b)andTEM(c)imagesofPVDF/PLLA=50/50blendwithcompatibilizer(ReprintedwithpermissionfromRef.[36] Copyright(2015)AmericanChemicalSociety).(3)高分子的晶态结构晶态和非晶态结构是高分子最重要的2种聚集态,其对材料的性能有着重要的作用.扫描电镜为研究高分子的结晶形态提供了更直观的视角[40~42].为了更清晰地观察晶体及其细微结构,如片晶等,通常要对样品进行选择性的刻蚀,以去除晶体中的无定形区[43~46].Aboulfaraj等用扫描电镜对等规聚丙烯(iPP)的球晶结构进行了详细的研究[46].扫描样品经抛光处理,得到平整、光滑的观察面,随后浸泡在含1.3wt%高锰酸钾、32.9wt%浓H3PO4和65.8wt%浓H2SO4的混合溶液中去除PP球晶中的无定型部分,经清洗、干燥、喷金后用扫描电镜进行观察.从图12(a)~12(d)的SEM图像中可以分辨出衬度明显不同的2种PP的球晶结构,其中暗的是α-球晶而亮的是β-球晶.之所以出现这种对比效果,与电子束照射在不同表面形貌的样品上时二次电子的产额不同有关.首先,α-球晶的片晶沿径向和切向交互贯穿呈互锁结构,因此刻蚀后表面平整,在进行扫描电镜观察时,入射电子的径向扩散很弱;作为对比,β-球晶以弯曲的片晶和束状晶体结构为特征,因此刻蚀后表面较为粗糙,可以产生更多的二次电子供探测器接收.通过调整样品台的旋转角度,可以根据衬度的变化清楚地分辨出PP的2种球晶.不同旋转角度对应不同二次电子的产额,如图12(e)和12(f)所示.Fig.12SEMimagesofPPplateobservedatdifferenttiltangles:(a)0°,(b)20°,(c)40°and(d)60° Schemeofthereflectionoflightraysbytheetchedsectionsofα‍-andβ‍-spherulitesunderconditionsofdirect(e)andlow-angle(f)illumination.(ReprintedwithpermissionfromRef.[46] Copyright(1993)ElsevierLtd.).傅强等用扫描电镜研究了高密度聚乙烯(HDPE)/多壁碳纳米管(MWCNTs)复合材料注塑样品从皮层到芯层的微观结构和晶体结构[44].扫描样品同样经过了刻蚀处理.扫描电镜图像明显揭示了复合材料中的纳米杂化shish-kebab晶体,其中CNTs作为shish,而HDPE的片晶作为kebab(图13).此外,由于注塑成型过程中的剪切梯度和温度梯度的影响,纳米杂化shish-kebab晶体结构沿着复合材料注塑样条厚度方向发生变化.Fig.13SEMmicrophotographofthenanohybridshish-kebabatthelayerof400μmalongthethicknessdirectionintheHDPE/MWCNTscomposite.ThesamplewasetchedbeforeSEMobservation.(ReprintedwithpermissionfromRef.[44] Copyright(2010)ElsevierLtd.).此外,扫描电镜在研究结晶-结晶[45,47~49]、结晶-非晶[50,51]聚合物共混体系中的晶体形态方面也有重要的应用.李勇进等系统研究了聚乳酸(PLLA)/聚甲醛(POM)结晶/结晶聚合物共混体系的结晶形态及结晶动力学,通过用氯仿刻蚀掉共混物中的PLLA组分,利用扫描电镜对POM的结晶形态、PLLA的分布等进行了研究[45].由图14可见明显的聚甲醛环带球晶结构,说明即使在PLLA存在的情况下,POM仍会发生结晶形成连续的晶体框架.此外,在POM的环带球晶中观察到许多周期分布的狭缝孔,说明此处原本是PLLA的聚集区.Fig.14SEMimagesobtainedfromquenched(a),141℃(b)and151℃(c)isothermallycrystallizedPOM/PLLA=50/50blendinwhichthePLLAwasetched.(ReprintedwithpermissionfromRef.[45] Copyright(2015)AmericanChemicalSociety).(4)高分子多孔膜的形貌表征膜分离技术是解决水资源、能源、环境等领域重大问题的有效手段,其核心是分离膜[52,53].高分子多孔膜是一类成本相对较低、应用较为广泛的分离膜,但由于其普遍疏水的特性,在实际应用中容易造成污染,导致膜孔堵塞,通量下降,分离效率降低等问题[54].广大专家学者发展了多种改性方法来提高高分子多孔膜的亲水性及防污性[55~59].扫描电镜在开发高性能多孔膜的过程中发挥了重要的作用.徐志康等利用扫描电镜对比了改性前后PP微孔膜的表面孔形貌变化[60];魏佳等研究了不同Gemini表面活性剂体系对多孔膜污染类型及堵塞指数的影响,并用扫描电镜对膜表面形貌和污损情况进行了观察[61];靳健等用扫描电镜表征了聚酰胺(PA)纳滤膜(NF)表面褶皱结构的形成过程[62].从图15的扫描电镜图像中可以清晰地分辨纤维结构、纳米颗粒结构、孔结构及随着反应时间延长所产生的形貌变化.Fig.15Thepreparationofpolyamide(PA)nanofiltration(NF)membranewithcrumpledstructures:Top-viewSEMimagesofpristinesingle-walledcarbonnanotube(SWCNTs)/polyethersulfone(PES)compositemembrane(a),polydopaminemodifiedMOFZIF-8nanoparticles(PD)/ZIF-8loadedSWCNTs/PEScompositemembrane(b)andmorphologychangeofthemembraneimmersedintowaterindifferenttimeafterinterfacialpolymerizationreactiononPD/ZIF-8nanoparticlesloadedSWCNTs/PEScompositemembrane(c-f)(Thescalebarofimagesis1μm).(ReprintedwithpermissionfromRef.[62] Copyright(2018)SpringerNatureLimited).(5)高分子材料的生物相容性聚醚砜(PES)是一类十分重要且应用十分广泛的生物医用膜材料,表现出优异的化学稳定性、机械性能及成膜性[63].然而,其疏水性极大地限制了其在临床领域的应用.为了提高PES作为血液透析膜的使用性能,赵长生等展开了一系列改性研究,旨在改善PES膜的血液相容性[64~66].通过扫描电镜观察血小板在生物材料表面的黏附情况是评估材料血液相容性的重要手段.由图16所示的扫描电镜图像可见,未改性的PES膜有较多的血小板黏附,说明血液相容性较差;而改性过后的PES膜血小板黏附情况有明显改善,对应了较好的血液相容性[65].Fig.16SEMmicrographsoftheadheredplateletsonsurfacesofPES(a)andmodifiedPESHMPU-2(b)andHMPU-8(c).(ReprintedwithpermissionfromRef.[65] Copyright(2014)ElsevierLtd.).(6)高分子自组装行为高分子自组装可以获得具有特定结构和功能的聚合物超分子体系.利用扫描电镜对其组装结构进行观察是揭示其构效关系的重要手段.ByeongduLee等合成了一系列不同接枝密度的嵌段共聚物,并利用SEM对的自组装形貌进行了研究[67].如图17所示,所合成的聚乳酸-聚苯乙烯嵌段共聚物(PLA-b-PS)自组装成了长程有序的片层状结构,且从扫描电镜图像中可以明显看出,随着接枝密度的降低,其片层尺寸也有明显的减小.SEM观察到的这种标度行为为嵌段共聚物及其材料的设计提供了新的思路.Fig.17SEMimagesofpoly(D,Llactide)‍-b-polystyrene(PLA-b-PS)with(a)z=1.00,(PLA)100-b-(PS)100 (b)z=0.75,(PLA0.75-r-DME0.25)110-b-‍(PS0.75-r-DBE0.25)110 (c)z=0.50,(PLA0.5-r-DME0.5)104-b-‍(PS0.5-r-DBE0.5)104 and(d)z=0.25,(PLA0.25-r-DME0.75)112-b-‍(PS0.25-r-DBE0.75),inwhichthegraftingdensities(z)changedbysubstitutingPLAwithendo,exonorbornenyldimethylester(DME)andPSwithendo,exonorbornenyldi-n-butylester(DBE).(ReprintedwithpermissionfromRef.[67] Copyright(2017)AmericanChemicalSociety).2004年,颜德岳和周永丰等创新性地制备了一类两亲性超支化多臂共聚物,其可以在丙酮溶剂中自组装成宏观多壁螺旋管,首次实现了具有不规整分子结构的超支化聚合物的溶液自组装及分子的宏观自组装[68].在之后的工作中,高超和颜德岳等利用这类两亲性超支化聚合物制备了具有高度有序蜂窝状孔结构的多孔膜,并用SEM对其结构进行了详细研究[69].从图18(a)的扫描电镜中可以明显观察到,几乎所有孔都是规整均匀的六边形孔,孔径宽度为5~6mm.此外,由图18(b)和18(c)可见,每个六边形单元都像一个有六面双层墙壁的巢室.这里应用了2个扫描电镜的观察技巧:图18(b)是将样品台倾斜了45°所观察到的形貌,而观察图18(c)时所使用的加速电压高于20kV,此时被顶层覆盖的下层骨架也可以显示出来.Fig.18RepresentativeSEMimagesofthehoneycombpatternedfilmspreparedfromanamphiphilichyperbranchedpoly(amidoamine)modifiedwithpalmitoylchloride(HPAMAM10KC16)onasiliconwafer(a-c).Thesamplewastilted45°intheimagesof(a)and(b).Theacceleratingvoltagewas20kVfor(c).Thescalebarsare20mm(a),2mm(b),5mm(c).(ReprintedwithpermissionfromRef.[69] Copyright(2007)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2背散射电子成像高能入射电子受到样品原子核的散射而大角度反射回来的电子称为背散射电子BSE,其产额为样品所激发的背散射电子数与入射电子数的比值.当加速电压大于5kV时,背散射电子产额可用公式(7)表示[3]:其中,φ为样品倾斜角,Z为原子序数.显然,背散射电子的产额随样品倾斜角和原子序数的增加而增加,尤其原子序数越高时,其对应的背散射电子图像越亮[70].这种由于原子序数差异导致的图像衬度称为成分衬度.通过在高分辨扫描电镜平台上搭配背散射电子探测器,不仅可以对高分子材料的总体相形态进行分析[71~73],还可以显示出更细节的片晶结构[74,75].其优势在于,BSE成像既不需要像TEM那样的超薄样品,也不需要像二次电子检测或原子力显微镜成像的高压,仍可以显示出较高的衬度、分辨率和信息量.张立群等用原位动态硫化的方法制备了一种可再生的热塑性硫化橡胶(TPV)作为3D打印材料,该TPV包含一种生物基弹性体PLBSI和聚乳酸PLA[72].SEM-BSE图像清晰了反映了动态硫化过程中共混体系的相态变化,其中PLA是亮相而PLBSI是暗相(如图19所示).此外,Bar等利用SEM-BSE观察了聚丙烯共聚物、乙丙共聚物等样品的片晶结构[75].不同于SE成像时通过形貌衬度观察结晶性高分子的晶体及其片晶结构,BSE成像则是通过成分衬度突出片晶形貌.Fig.19SEM-BSEmicrographsofpoly(lactate/butanediol/sebacate/itaconate)bioelastomers/poly(lacticacid)(PLBSI/PLA)(70/30)thermoplasticvulcanizate(TPV)samplescollectedatA(a),B(b),C(c),D(d),E(e)andF(f)pointintorquecurvewhichvariedwithblendingtime(g)andthechemicalreactionofinsitudynamicalvulcanization(h).(ReprintedwithpermissionfromRef.[72] Copyright(2017)ElsevierLtd.).3.1.3X射线能谱分析高能入射电子作用于样品后,部分入射电子打到核外电子上,使原子的内层(如K层)电子激发并脱离原子,而邻近外层(如L层)电子会填充电离出的电子穴位,同时产生特征X射线,如图20所示.该X射线的能量为邻近壳层的能量差(ΔE=EK-EL=hc/λkα)[3].由于不同原子壳层间的能量差值不同,因此利用能量色散X射线光谱仪(EDX)对特征X射线的能量进行分析,可以研究样品的元素和组成[76~80].需要注意的是,EDX通常用于分析原子序数比硼(B)大,含量在0.1%以上的样品,且加速电压必须大于被测元素线系的临界激发能,加速电压对分析的深度、面积、体积等起到重要影响.此外,EDX又包括3种分析方法:点分析、线扫描分析及面分布分析.其中,点分析是指高能入射电子固定在某个分析点上进行定性或定量的分析,当需要对样品中含量较低的元素进行定量分析时,通常只能选用点分析方法;线扫描可以分析样品中特定元素的浓度随特征显微结构的变化关系,是电子束沿线逐点扫描的结果;面分布分析则是指高能入射电子在某一区域做光栅式扫描得到元素的分布图像,又称Mapping图.背散射电子像可以通过图像衬度粗略反映出所含元素的原子序数差异,而特征X射线的Mapping图则可以精确反映出元素构成及其富集状态.在Mapping图中,不同元素可以用不同颜色进行区分,元素富集程度不同则元素的颜色深度不同,因此可以获得彩色的衬度图像.该衬度为元素衬度.在上述的3种分析方法中,点分析灵敏度最高,面分布分析灵敏度最低,但可以直接观察到相分布、元素分布的情况及均匀性.具体实验中,应根据样品自身特点及分析目的等选择合理的分析方法.图21(a)、21(b)和21(c)~21(e)分别为典型的EDX点、线、面分析结果[78,79].Fig.20ThegenerationmechanismofcharacteristicX-ray.Fig.21PointEDXscanonoutersurfaceoftheglassfiber(a)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) lineEDXscanforCainglassfiber-reinforcedpolymer(GFRP)(b)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) SEMimage(c)andthecorrespondingEDXmappingscanspectraofC(d)andF(e)elementofpoly(acrylicacid)graftedPVDF(G-PVDF)hollowfibermembrane.(ReprintedwithpermissionfromRef.[79] Copyright(2013)ElsevierLtd.).3.1.4透射电子成像当样品厚度低于100nm时,部分高能入射电子可以穿透样品,从样品下表面逃逸,这部分信号电子称为透射电子TE,其携带了样品内部的结构信息.扫描透射电子显微镜(STEM)是一种通过位于样品正下方的TE探测器接收TE信号的新型SEM,它同时具备了TEM信息量丰富和SEM分辨率较高的优势.在高分子材料表征中,可以利用STEM得到样品的内部形貌、化学成分及晶体结构等信息[36,81~85].如图22(a)和22(b)所示,STEM及其EDX元素分析为研究反应性增容体系的内部形貌及增容剂纳米胶束的分布提供了直观的图像[36];图22(c)的STEM图像揭示了嵌段共聚物的微相分离结构[84];此外,STEM还可用于观察聚合物的片晶结构,由于晶区密度高于无定形区密度,这种密度差提供了衍射衬度,故在STEM图像中晶区更明亮而无定形区较暗(图22(d))[83].Fig.22STEMimagesoftheselectivedispersionofnanomicellesinP((S-co-GMA)‍-g-MMA)compatibilizedPVDF/PLLA=50/50blend(a)anditscorrespondingFelementmapping(b),thesamplewasstainedbyRuO4.(ReprintedwithpermissionfromRef.‍[36] Copyright(2015)AmericanChemicalSociety) STEMimage(darkfieldTEMmode)ofpolystyrene-polyisopreneblockcopolymer(PSt-PI-1)(c),inwhichthebrightanddarkpartsareattributedtothePImoietiesWstainedwithOsO4andPStmoieties,respectively(ReprintedwithpermissionfromRef.‍[84] Copyright(2008)TheRoyalSocietyofChemistry) STEMimageofHDPEspecimenshowingdiffractioncontrastoflamellae(d)(ReprintedwithpermissionfromRef.‍[83] Copyright(2009)AmericanChemicalSociety).综上所述,本文对SE、BSE以及特征X射线成像的特点进行了总结,详见表3.Table3Featuresofimagesobtainedfromdifferentsignalelectrons.3.2SEM与其他仪器联用在高分子材料表征方面的应用3.2.1拉曼光谱(Raman)-SEM联用Raman光谱在高分子科学中应用十分广泛,它提供了各种关于化学结构、分子构象、结晶、取向等的定量信息[86].SEM与共聚焦Raman光谱的联用(RISE)是显微镜学一个重要的里程碑.如图23所示,利用RISE既可以获得高分辨率的电镜图像,还能获得关于化学和结构组成的信息[87].此外,在SEM图像中衬度较弱的样品还能通过其光特性的差别突出显示[88].如图24所示,在SEM图像中不明显的PS微球,通过拉曼成像,可以清晰地分辨其位置.此外,由于拉曼信号强度强烈依赖于颗粒数量,因此拉曼成像中颗粒的亮度也反映了颗粒数量.Fig.23(a)SEMimagesofthematrix(M)ofrecycledpolyvinylchloride(PVC)powders(RPP)andtheselectednanoparticles(P1,P2,andP3)onRPPsurface (b)RamanspectraofnanoparticlesonthesurfaceofRPPrecordedwiththeconfocalRaman-in-SEMsystem(532nmlaser)(ReprintedwithpermissionfromRef.[87] Copyright(2020)AmericanChemicalSociety).Fig.24(a,d)SEMimagesof500nmPSbeads,inwhichtheredsquareindicatedselectedregionforRamanimaging (b,e)Ramanimagesoftheindicatedregionsshowingtheintensityofthe1001cm-1bandafterspectralintegrationovertherangefrom970cm-1to1015cm-1,indicatedbytheblackcrossesin(c).(f)ThespatiallyintegratedRamanintensity,shownin(b)and(e),foreverysingleorclusterofpolystyreneparticles.(ReprintedwithpermissionfromRef.[88] Copyright(2016)JohnWiley&Sons,Ltd.).3.2.2聚焦离子束(focusedionbeam,FIB)-SEM联用FIB是一种将离子源产生的离子束经离子枪加速并聚焦后对样品表面进行扫描的技术.与SEM联用成为FIB-SEM双束系统后,通过结合各种附件,如纳米操纵仪、各种探测器和样品台等,FIB-SEM可用于快速制备TEM样品[89,90]和进行微纳加工[90],此外基于其层析重构技术还能实现材料微观结构的三维重建及分析[91~94].图25(a)~25(a' ' )为利用FIB-SEM制备TEM样品的示意图及原位观察得到的样品SEM图像[89,90].FIB-SEM联用为精确定位制样区域,高效制备TEM样品提供了新的方向.图25(b)和25(b' )展示了FIB在聚合物薄膜样品上铣削微米尺寸孔洞的SEM和TEM图像[90].FIB-SEM在材料的精细加工领域表现出明显的优势.图25(c)的SEM图像中,暗相对应较深的孔,亮相对应较浅的孔,而中等亮度区域对应乙基纤维素(EC)固体.在其对应的三维重构图中(图25(c' )),较硬的多孔EC骨架结构是黑色的,而白色的区域表示孔洞结构[91].三维重构是理解晶粒、孔隙及分相等微结构与性能之间关系的重要手段,通常要经过SEM传统的二维成像手段结合FIB连续切片获取不同位置截面信息,再经过图像处理获得二值化数据之后方可进行三维重构.该方法具有较高的空间分辨率,但同时也存在重构范围有限,重构效率低等不足,这也是后续扫描电镜等技术发展的重要方向.Fig.25(a)SchematicoftheShadow-FIBtechniqueforTEMsamplepreparation(ReprintedwithpermissionfromRef.[89] Copyright(2009)MicroscopySocietyofAmerica) SEMimagesofpoly(styrene-b-isoprene)(PS-b-PI)filmonthesiliconwafers(a' )beforeand(a' ' )aftershadowFIBpreparation(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (b)SEMimageof100pAFIB-milledholesinthepoly(styrene-b-methylmethacrylate)(PS-b-PMMA)diblockcopolymersheetand(b' )thecorrespondingBFTEMimageofPS-b-PMMAsheetmilledfor9s(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (c)SEMimageoftheporousnetworkofleachedethylcellulose(EC)/hydroxypropylcellulose(HPC)filmwhichcontained30%HPC(HPC30)and(c' )itscorresponding3DreconstructionsoftheporousstructureofHPC30.(ReprintedwithpermissionfromRef.[91] Copyright(2020)ElsevierLtd.).3.3原位表征技术在高分子材料表征方面的应用通过配置专门的样品台,如制冷台、加热台、拉伸台,可以在电镜样品室内对样品进行诸如加热、制冷、拉伸、压缩或弯曲等操作,并可以用SEM实时观察样品的形貌、成分等的变化.冷冻扫描电镜(Cryo-SEM)是一种集冷冻制样、冷冻传输与电镜观察技术于一体的新型扫描电镜,需配置制冷台.常规的扫描电镜要求高真空环境,因此样品需干燥无挥发组分.而一些特殊样品,如囊泡、凝胶、生物样品等,在干燥过程中会发生结构变化,通过常规扫描电镜无法观察样品的真实结构.Cryo-SEM则弥补了这一不足,适用于含水样品的观察.图26展示了Cryo-SEM在表征高分子囊泡[95]、凝胶[96]与乳胶[97]方面的应用.显然,Cryo-SEM最大限度地保留了样品的原始结构.Fig.26(a)Cryo-SEMimagesofpolymervesiclesarmoredwithpolystyrenelatexspheres(ReprintedwithpermissionfromRef.[95] Copyright(2011)AmericanChemicalSociety) (b)High-pressurefrozen-hydratedpoly(acrylicacid)(PEG-AA)microgels(ReprintedwithpermissionfromRef.[96] Copyright(2021)AmericanChemicalSociety) (c)Plasticallydrawnparticlesfromfrozensuspensionsofpolystyrenelatexwithadiameterof500nm.(ReprintedwithpermissionfromRef.[97] Copyright(2006)AmericanChemicalSociety).加热台常用于分析金属或合金样品的腐蚀、还原或氧化反应[98,99],在高分子材料表征中少有应用.此外,拉伸台在高分子材料表征中较为常用.图27(a)为碳纤维/环氧树脂共混物薄片沿加载方向的破坏情况[100];图27(b)展示了循环荷载的炭黑填充天然橡胶体系的裂纹尖端演变[101].显然,原位分析可以清晰地反映材料性能变化的第一现场.Fig.27(a)InsituSEMimageof:initialfailureinacarbonfiberreinforcedpolymer(HTA/L135i(902/07/902))laminate(ReprintedwithpermissionfromRef.[100] Copyright(2006)ElsevierLtd.) (b)Evolutionofacracktipduringcyclicloadingafter1,10and21insitucycles,respectively.(ReprintedwithpermissionfromRef.‍[101] Copyright(2010)WileyPeriodicals,Inc.).3.4其他扫描电镜技术在高分子材料表征方面的应用高分子材料通常具有较高的电阻值和较差的导热性,当高能入射电子束在样品表面持续扫描时,样品极易发生荷电效应并受到热损伤,这些对扫描电镜的观察均会造成不利影响.因此,在使用常规扫描电镜时,为了消除荷电效应,提高样品的导热性,一般要在样品表面镀上一层导电薄膜.但是,镀膜有时会掩盖样品表面的形貌信息.低压扫描电镜(LV-SEM)通过低能电子束照射样品,能够实现对高分子材料的极表面进行无损伤的测试观察,因此可以反映材料最真实的微观结构[102~104].LV-SEM对样品表面形貌的灵敏度由图28可见.图28(a)和28(b)均是聚氨酯/二氧化硅复合物的扫描电镜图像,其中,图28(a)样品经过了镀碳处理,且是在20kV加速电压下捕捉的;图28(b)未经镀膜处理,观察所用加速电压为1kV[15].显然,在较低的加速电压下,样品表面细节更清晰,而在较高电压下,由于电子束穿透深度更大,因此表面以下的二氧化硅颗粒也显现出来.Fig.28SEMimagesofpolyurethanesamplefilledwithsilicamicroparticlesobservedatdifferentacceleratingvoltages:(a)20kV(carboncoated),(b)1kV(uncoated).(ReprintedwithpermissionfromRef.‍[15] Copyright(2014)DeGruyter).4扫描电镜的发展趋势随着高分子材料科学的发展,扫描电镜及其应用技术也在不断改进.首先,低压成像技术的发展为观察绝缘、耐热差的高分子材料表面的微观结构提供了可能.同时,即使不喷镀导电膜也能清晰成像,因此可以获得更真实、更细节的微观结构.此外,用传统的扫描电镜无法观察的特殊样品也可以利用低压技术成像,如含水高分子材料或生物样品,几乎不需要对样品进行处理.现有水平下,1kV加速电压成像的分辨率也可以达到1~1.8nm[3].如何在超低压下获得更高分辨率的扫描电镜图像是后续扫描电镜发展要解决的问题.其次,如文中介绍,电子束与样品相互作用所产生的信号电子种类较多,每种信号电子都携带了样品大量的特征信息,通过配置不同的功能附件,可以获得高分子样品形貌、结构、化学组成等信息.一方面,对高分子材料来说,很多信号电子所携带的信息未能被充分解析.如背散射电子(BSE),除了直接成像,其对应的衍射(EBSD)技术还可以揭示材料的晶体微区取向和晶体结构等信息.然而由于高分子材料通常结晶度不能达到100%,因此很难通过EBSD进行检测.另一方面,开发功能更强大的扫描电镜附件也是重要的发展方向.此外,扫描电镜的原位分析技术也为高分子材料科学的发展提供了有力支撑,二者的有效结合实现了对材料宏观-微观多层次结构的分析.最后,基于扫描电镜的二维图像进行拼接、重构三维图像几近年来也获得了极大的发展.这种跨多维度的扫描电镜分析技术在高分子材料的表征中目前还存在很大限制.综上,扫描电镜的发展将会为高分子材料提供更为便捷、信息量更丰富、更准确的表征手段.致谢感谢南京大学胡文兵教授在论文修改过程中给予的帮助和指导.参考文献1PeaseRFW.AdvImagElectPhys,2008,150:53-86.doi:10.1016/s1076-5670(07)00002-x2GuoSuzhi(郭素枝).ElectronMicroscopeTechnologyandItsApplication(电子显微镜技术及应用).Xiamen(厦门):XiamenUniversityPress(厦门大学出版社),20083RenXiaoming(任小明).ScanningElectronMicroscope/PrincipleofEnergySpectrumandSpecialAnalysisTechnique(扫描电镜/能谱原理及特殊分析技术).Beijing(北京):ChemicalIndustryPress(化学工业出版社).20204ZhangDatong(张大同).ScanningElectronMicroscopeandX-RayEnergyDispersiveSpectrometerAnalysisTechnics(扫描电镜与能谱仪分析技术).Guangzhou(广州):SouthChinaUniversityofTechnologyPress(华南理工大学出版社).20085WeiB,LinQ,ZhengX,GuX,ZhaoL,LiJ,LiY.Polymer,2019,185:121952.doi:10.1016/j.polymer.2019.1219526ParkJ,EomK,KwonO,WooS.MicroscMicroanal,2001,7(3):276-286.doi:10.1007/s1000500100747ZhengX,LinQ,JiangP,LiY,LiJ.Polymers,2018,10(5):562.doi:10.3390/polym100505628SumitaA,SakataK,HayakawaY,AsaiS,MiyasakaK,TanemuraM.ColloidPolymSci,1992,270(2):134-139.doi:10.1007/bf006521799SainiP,ChoudharyV,DhawanSK.PolymAdvTechnol,2012,23(3):343-349.doi:10.1002/pat.187310LiW,BuschhornST,SchulteK,BauhoferW.Carbon,2011,49(6):1955-1964.doi:10.1016/j.carbon.2010.12.06911EgertonRF,LiP,MalacM.Micron,2004,35(6):399-409.doi:10.1016/j.micron.2004.02.00312HeinLRO,CamposKA,CaltabianoPCRO,KostovKG.Scanning,2013,35(3):196-204.doi:10.1002/sca.2104813RaviM,KumarKK,MohanVM,RaoVN.PolymTest,2014,33:152-160.doi:10.1016/j.polymertesting.2013.12.00214JoyDC.JMicrosc,1987,147(1):51-64.doi:10.1111/j.1365-2818.1987.tb02817.x15ŠloufM,VackováT,LednickýF,WandrolP.Polymersurfacemorphology:characterizationbyelectronmicroscopies.In:PolymerSurfaceCharacterization.Berlin:WalterdeGruyterGmbH&CoKG,2014.169-206.doi:10.1515/9783110288117.16916SeilerH.JApplPhys,1983,54(11):R1-R18.doi:10.1063/1.33284017JoyDC.JMicrosc,1984,136(2):241-258.doi:10.1111/j.1365-2818.1984.tb00532.x18SathishkumarTP,SatheeshkumarS,NaveenJ.JReinfPlastCompos,2014,33(13):1258-1275.doi:10.1177/073168441453079019KarataşMA,GökkayaH.DefTechnol,2018,14(4):318-32620ForintosN,CziganyT.ComposBEng,2019,162:331-343.doi:10.1016/j.compositesb.2018.10.09821WangWenjun(王文俊),WangWeiwei(王维玮),HongXuhong(洪旭辉).ActaPolymericaSinica(高分子学报),2015,(9):1036-1043.doi:10.11777/j.issn1000-3304.2015.1500722FavierV,ChanzyH,CavailléJY.Macromolecules,1995,28(18):6365-6367.doi:10.1021/ma00122a05323ConverseGL,YueW,RoederRK.Biomaterials,2007,28(6):927-935.doi:10.1016/j.biomaterials.2006.10.03124RameshP,PrasadBD,NarayanaKL.Silicon,2020,12(7):1751-1760.doi:10.1007/s12633-019-00275-625YangJintao(杨晋涛),FanHong(范宏),BuZhiyang(卜志扬),LiBogeng(李伯耿).ActaPolymericaSinica(高分子学报),2007,(1):70-74.doi:10.3321/j.issn:1000-3304.2007.01.01326LiShaofan(‍李‍少‍范),WenXiangning(‍温‍向‍宁),JuWeilong(‍鞠‍维‍龙),SuYunlan(‍苏‍允‍兰),WangDujin(‍王‍笃‍金).ActaPolymericaSinica(高分子学报),2021,52(2):146-157.doi:10.11777/j.issn1000-3304.2020.2018927HuangDengjia(黄‍登‍甲),SongYihu(宋‍义‍虎),ZhengQiang(郑‍强).ActaPolymericaSinica(高分子学报),2015,(5):542-549.doi:10.11777/j.issn1000-3304.2015.1436528FuZhiang(傅志昂),WangHengti(王亨缇),DongWenyong(董文勇),LiYongjin(李勇进).ActaPolymericaSinica(高分子学报),2017,(2):334-341.doi:10.11777/j.issn1000-3304.2017.1628829ChenY,WangY,ZhangH,B,LiX,GuiC,X,YuZ,Z.Carbon,2015,82:67-76.doi:10.1016/j.carbon.2014.10.03130LiuH,GuS,CaoH,LiX,JiangX,LiY.ComposBEng,2019,176:107268.doi:10.1016/j.compositesb.2019.10726831SeyniFI,GradyBP.ColloidPolymSci,2021,299(4):585-593.doi:10.1007/s00396-021-04820-x32KrauseS.Polymer-polymercompatibility.In:PolymerBlends.NewYork:AcademicPress,1978.15-113.doi:10.1016/b978-0-12-546801-5.50008-633WangH,YangX,FuZ,ZhaoX,LiY.LiJ.Macromolecules,2017,50(23):9494-9506.doi:10.1021/acs.macromol.7b0214334FuZ,WangH,ZhaoX,LiX,GuX,LiY.JMaterChemA,2019,7(9):4903-4912.doi:10.1039/c8ta12233d35WangH,FuZ,ZhaoX,LiY,LiJ.ACSApplMaterInterfaces,2017,9(16):14358-14370.doi:10.1021/acsami.7b0172836WangH,DongW,LiY.ACSMacroLett,2015,4(12):1398-1403.doi:10.1021/acsmacrolett.5b0076337FuZ,WangH,ZhaoX,HoriuchiS,LiY.Polymer,2017,132:353-361.doi:10.1016/j.polymer.2017.11.00438DongW,HeM,WangH,RenF,ZhangJ,ZhaoX,LiY.ACSSustainChemEng,2015,3(10):2542-2550.doi:10.1021/acssuschemeng.5b0074039WeiB,ChenD,WangH,YouJ,WangL,LiY,ZhangM.Polymer,2019,160:162-169.doi:10.1016/j.polymer.2018.11.04240GanZ,KuwabaraK,AbeH,IwataT,DoiY.PolymDegradStabil,2005,87(1):191-199.doi:10.1016/j.polymdegradstab.2004.08.00741ChenX,DongB,WangB,ShahR,LiCY.Macromolecules,2010,43(23):9918-9927.doi:10.1021/ma101900n42ShahD,MaitiP,GunnE,SchmidtDF,JiangDD,BattCA,GiannelisEP.AdvMater,2004,16(14):1173-1177.doi:10.1002/adma.20030635543AboulfarajM,G' sellC,UlrichB,DahounA.Polymer,1995,36(4):731-742.doi:10.1016/0032-3861(95)93102-r44YangJ,WangK,DengH,ChenF,FuQ.Polymer,2010,51(3):774-782.doi:10.1016/j.polymer.2009.11.05945YeL,ShiX,YeC,ChenZ,ZengM,YouJ,LiY.ACSApplMaterInterfaces,2015,7(12):6946-6954.doi:10.1021/acsami.5b0084846AboulfarajM,UlrichB,DahounA,G' sellC.Polymer,1993,34(23):4817-4825.doi:10.1016/0032-3861(93)90003-s47YeL,QiuJ,WuT,ShiX,LiY.RSCAdv,2014,4(82):43351-43356.doi:10.1039/c4ra06943a48YeC,CaoX,WangH,WangJ,WangT,WangZ,LiY,YouJ.JPolymSci,2020,58(12):1699-1706.doi:10.1002/pol.2019023249YeC,ZhaoJ,YeL,JiangZ,YouJ,LiY.Polymer,2018,142:48-51.doi:10.1016/j.polymer.2018.02.00450WangJ,DingM,ChengX,YeC,LiF,LiY,YouJ.JMembrSci,2020,604:118040.doi:10.1016/j.memsci.2020.11804051WangJ,ChenB,ChengX,LiY,DingM,YouJ.JMembrSci,2021:120065.doi:10.1016/j.memsci.2021.12006552JhaveriJH,MurthyZVP.Desalination,2016,379:137-154.doi:10.1016/j.desal.2015.11.00953YanX,AnguilleS,BendahanM,MoulinP.SepPurifTechnol,2019,222:230-253.doi:10.1016/j.seppur.2019.03.10354RynkowskaE,FatyeyevaK,KujawskiW.RevChemEng,2018,34(3):341-363.doi:10.1515/revce-2016-005455LiJH,ShaoXS,ZhouQ,LiMZ,ZhangQQ.ApplSurfSci,2013,265:663-670.doi:10.1016/j.apsusc.2012.11.07256ZhangX,LiangY,NiC,LiY.MaterSciEngC,2021,118:111411.doi:10.1016/j.msec.2020.11141157XingC,GuanJ,LiY,LiJ.ACSApplMaterInterfaces,2014,6(6):4447-4457.doi:10.1021/am500061v58ZhengX,ChenF,ZhangX,ZhangH,LiY,LiJ.ApplSurfSci,2019,481:1435-1441.doi:10.1016/j.apsusc.2019.03.11159HuMX,YangQ,XuZK.JMembrSci,2006,285(1-2):196-205.doi:10.1016/j.memsci.2006.08.02360YangYF,LiY,LiQL,WanLS,XuZK.JMembrSci,2010,362(1-2):255-264.doi:10.1016/j.memsci.2010.06.04861ZhangW,LiangW,HuangG,WeiJ,DingL,JaffrinMY.RSCAdv,2015,5(60):48484-48491.doi:10.1039/c5ra06063j62WangZ,WangZ,LinS,JinH,GaoS,ZhuY,JinJ.NatCommun,2018,9(1):1-9.doi:10.1038/s41467-018-04467-363HariharanP,SundarrajanS,ArthanareeswaranG,SeshanS,DasDB,IsmailAF.EnvironRes,2021:112045.doi:10.1016/j.envres.2021.11204564NieS,XueJ,LuY,LiuY,WangD,SunS,RanFZhaoC.ColloidSurfaceB,2012,100:116-125.doi:10.1016/j.colsurfb.2012.05.00465MaL,SuB,ChengC,YinZ,QinH,ZhaoJ,SunSZhaoC.JMembrSci,2014,470:90-101.doi:10.1016/j.memsci.2014.07.03066FangB,LingQ,ZhaoW,MaY,BaiP,WeiQ,ZhaoC.JMembrSci,2009,329(1-2):46-55.doi:10.1016/j.memsci.2008.12.00867LinTP,ChangAB,LuoSX,ChenHY,LeeB,GrubbsRH.ACSNano,2017,11(11):11632-11641.doi:10.1021/acsnano.7b0666468YanD,ZhouY,HouJ.Science,2004,303(5654):65-67.doi:10.1126/science.109076369LiuC,GaoC,YanD.AngewChem,2007,119(22):4206-4209.doi:10.1002/ange.20060442970RobinsonVNE.Scanning,1980,3(1):15-26.doi:10.1002/sca.495003010371MurariuM,FerreiraADS,DegéeP,AlexandreM,DuboisP.Polymer,2007,48(9):2613-2618.doi:10.1016/j.polymer.2007.02.06772HuX,KangH,LiY,GengY,WangR,ZhangL.Polymer,2017,108:11-20.doi:10.1016/j.polymer.2016.11.04573GoizuetaG,ChibaT,InoueT.Polymer,1993,34(2):253-256.doi:10.1016/0032-3861(93)90074-k74BlacksonJ,Garcia-MeitinE,DarusM.MicroscMicroanal,2007,13(S02):1062-1063.doi:10.1017/s143192760707604075BarG,TochaE,Garcia-MeitinE,ToddC,BlacksonJ.MacromolSym,2009,282(1):128-135.doi:10.1002/masy.20095081376BoraJ,DekaP,BhuyanP,SarmaKP,HoqueRR.SNApplSci,2021,3(1):1-15.doi:10.1007/s42452-020-04117-877KorolkovIV,GorinYG,YeszhanovAB,KozlovskiyAL,ZdorovetsMV.MaterChemPhys,2018,205:55-63.doi:10.1016/j.matchemphys.2017.11.00678KamalASM,BoulfizaM.JComposConstr,2011,15(4):473-481.doi:10.1061/(asce)cc.1943-5614.000016879ZhangF,ZhangW,YuY,DengB,LiJ,JinJ.JMembrSci,2013,432:25-32.doi:10.1016/j.memsci.2012.12.04180AbdMutalibM,RahmanMA,OthmanMHD,IsmailAF,JaafarJ.Scanningelectronmicroscopy(SEM)andenergy-dispersiveX-ray(EDX)spectroscopy.In:Membranecharacterization.Amsterdam:ElsevierLtd,2017.161-179.doi:10.1016/b978-0-444-63776-5.00009-781GuiseO,StromC,PreschillaN.Polymer,2011,52(5):1278-1285.doi:10.1016/j.polymer.2011.01.03082FortelnýI,ŠloufM,SikoraA,HlavatáD,HašováV,MikešováJ,JacobC.JApplPolymSci,2006,100(4):2803-2816.doi:10.1002/app.2373183LoosJ,SourtyE,LuK,deWithG,BavelS.Macromolecules,2009,42(7):2581-2586.doi:10.1021/ma802658984HiguchiT,TajimaA,YabuH,ShimomuraM.SoftMatter,2008,4(6):1302-1305.doi:10.1039/b800904j85InamotoS,YoshidaA,OtsukaY.MicroscMicroanal,2019,25(S2):1826-1827.doi:10.1017/s143192761900986386ButlerHJ,AshtonL,BirdB,CinqueG,CurtisK,DorneyJ,MartinFL.NatProtoc,2016,11(4):664-687.doi:10.1038/nprot.2016.03687ZhangW,DongZ,ZhuL,HouY,QiuY.ACSNano,2020,14(7):7920-7926.doi:10.1021/acsnano.0c0287888TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.JRamanSpectrosc,2016,47(8):956-962.doi:10.1002/jrs.493189KimS,LiuG,MinorAM.MicroscToday,2009,17(6):20-23.doi:10.1017/s155192950999100390TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.Ultramicroscopy,2011,111(3):191-199.doi:10.1016/j.ultramic.2010.11.02791FagerC,BarmanS,RödingM,OlssonA,LorénN,vonCorswantC,BolinDRootzénH,OlssonE.IntJPharmaceut,2020,587:119622.doi:10.1016/j.ijpharm.2020.11962292ČalkovskýM,MüllerE,MeffertM,FirmanN,MayerF,WegenerM,GerthsenD.MaterCharact,2021,171:110806.doi:10.1016/j.matchar.2020.11080693NeusserG,EpplerS,BowenJ,AllenderCJ,WaltherP,MizaikoffB,KranzC.Nanoscale,2017,9(38):14327-14334.doi:10.1039/c7nr05725c94GhoshS,OhashiH,TabataH,HashimasaY,YamaguchiT.IntJHydrogEnergy,2015,40(45):15663-15671.doi:10.1016/j.ijhydene.2015.09.08095ChenR,PearceDJ,FortunaS,CheungDL,BonSA.JAmChemSoc,2011,133(7):2151-2153.doi:10.1021/ja110359f96LiangJ,XiaoX,ChouTM,LiberaM.AccChemRes,2021,54(10):2386-2396.doi:10.1021/acs.accounts.1c0010997GeH,ZhaoCL,PorzioS,ZhuoL,DavisHT,ScrivenLE.Macromolecules,2006,39(16):5531-5539.doi:10.1021/ma060058j98MotomuraS,SoejimaY,MiyoshiT,HaraT,OmoriT,KainumaR,NishidaM.JElectronMicrosc,2015,65(2):159-168.doi:10.1093/jmicro/dfv36399HeardR,HuberJE,SiviourC,EdwardsG,Williamson-BrownE,DragnevskiK.RevSciInstrum,2020,91(6):063702.doi:10.1063/1.5144981100HobbiebrunkenT,HojoM,AdachiT,DeJongC,FiedlerB.ComposPartA,ApplSciManuf,2006,37(12):2248-2256.doi:10.1016/j.compositesa.2005.12.021101BeurrotS,HuneauB,VerronE.JApplPolymSci,2010,117(3):1260-1269.doi:10.1002/app.31707102JoyDC,JoyCS.Micron,1996,27(3-4):247-263.doi:10.1016/0968-4328(96)00023-6103MohaiyiddinMS,OngHL,OthmanMBH,JulkapliNM,VillagraciaARC,Md.AkilH.PolymCompos,2018,39:E561-E572.doi:10.1002/pc.24712104PrimoGA,ManzanoMFG,RomeroMR,IgarzabalCIA.MaterChemPhys,2015,153:365-375.doi:10.1016/j.matchemphys.2015.01.027原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21377&lang=zhDOI:10.11777/j.issn1000-3304.2021.21377《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • 高分子表征技术专题——小角X射线散射技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角X射线散射技术在高分子表征中的应用Typical Applications of Small-angle X-ray Scattering Technique in Polymer Characterization作者:吕冬,卢影,门永锋作者机构:中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室,长春,130022作者简介:门永锋,男,1973年生. 1995年获东南大学理学学士,1998年获中国科学院长春应用化学研究所理学硕士,2001年德国弗赖堡大学物理系获自然科学博士. 2002~2005年,德国BASF公司高分子研究中心,博士后、Physicist. 2005年加入中国科学院长春应用化学研究所开展工作. 2005年入选中国科学院百人计划,2014年入选科技部中青年科技创新领军人才,2016年入选第二批万人计划科技创新领军人才,2015年获国家基金委杰出青年基金、英国皇家学会牛顿高级学者基金. 目前担任高分子物理与化学国家重点实验室主任、中国晶体学会小角散射专业委员会主任、IUPAC商用聚合物结构与性能分会主席. 主要从事高分子结构与性能方面研究工作.摘要小角X射线散射(SAXS)技术是表征高分子材料微观结构的一种重要手段. 当X射线穿过材料时,在材料不均一的电子云密度分布作用下,发生散射并形成特定的散射图案,使得我们可以根据特定的模型来反推材料的微观结构,并计算相关结构参数. SAXS特有的对微观结构的统计平均及无损探测使其成为了一种不可或缺的高分子材料微观结构分析手段. 本文首先简述了SAXS技术的基本理论,在此基础上根据测试中的实际问题给出了测试时可采取的实验技巧. 最后,结合典型实例,概述了高分子材料中可用SAXS技术表征的微观结构及其相应的理论模型. 希望本文能作为入门文献,帮助初学者更好地理解SAXS技术的原理,并结合实际需求迅速了解SAXS技术的适用范围及相关实验技巧,高效地完成相关实验.AbstractSmall-angle X-ray scattering (SAXS) technique is one of the most significant methods for determining the micro-structures of polymeric materials due to its statistical average and nondestructive detecting feature. Usually, a monochromatic parallel beam of X-rays is used for scattering experiments. When passing through a sample, the oscillating electromagnetic field (mostly the electric part) of X-rays interact with electrons, making the electrons secondary sources of X-rays of the same frequency. Those secondary X-rays interfere with each other to form a specific pattern deviating from the primary beam path depending on the actual locations of the electrons in the sample. Mathematically, such interferences can be obtained by a summation of all secondary X-ray waves. As the number of the electrons within the sample is very large, an integration is used to represent the summation mentioned above. Because of the wave nature of the X-rays, the amplitude of the scattered X-rays determined by the above integration is just a Fourier transformation of the electron density distribution within the scattering volume. Due to the limitation in detection technique, the complex value of amplitude of scattered X-rays with real and imaginary parts cannot be recorded. It is the intensity rather than the amplitude that is recorded during experiments resulting in a loss of the phase information. Therefore, obtaining exact structural information (electron density distribution) becomes not easy and must be based on specific model fittings. Besides structures, SAXS intensity distribution can be used to investigate sample’s gross properties such as fraction of phases or local properties such as fractal dimensions of interfaces between phases. This work began with an introduction of the fundamental theories of the SAXS technique, followed by practical suggestions on performing the experiments and brief summaries of models developed for different structures. The authors wish this review could help the beginners to comprehend the elements of the SAXS technique and serve as an instruction manual for valid data acquisition.关键词高分子表征  小角X射线散射(SAXS)  片晶  微观结构KeywordsPolymer characterization  Small-angle X-ray scattering (SAXS)  Lamellae  Micro-structure 11小角X射线散射原理简述X射线是波长介于紫外与γ射线之间的电磁波,其波长范围涵盖了10-8~10-12 m,相应的频率范围为10 16~1022 Hz. 人们通常利用单一波长(单色)的X射线进行散射与衍射实验,例如:实验室中通常使用波长为0.154 nm的CuK α线特征辐射作为入射光源开展实验,而在同步辐射光源则可以根据需要选择合适的波长. X射线散射通常是指一束近乎平行的单色X射线穿过样品后产生的偏离入射光方向散射光强的现象. 当X射线通过物质时,其电磁波中的高频电场迫使物质中的电子发生同频震荡,产生次级波,这些次级波在空间中传播叠加. 不同位置的电子发出的次级波到达空间特定位置时具有不同的相位,因此,最终在不同位置的散射光的振幅取决于样品中电子的空间分布[1~3]. 由于物质中电子的数量极其巨大,上述各个位置振幅的叠加过程可以简化为积分,也就是:其中ρ(r)是样品内部电子密度分布函数,r是样品内电子的坐标,V是X射线照射的体积,q是散射矢量,定义为:其中S0和S分别为入射光及散射光方向的单位矢量.q的大小为:其中2θ是入射光与散射光之间的夹角,也就是散射角. 可见,X射线散射实验获得的散射光振幅在q空间的分布只与样品内部电子密度分布函数相关,利用不同波长X射线进行测试获得的散射光振幅分布具有不同的角度依赖性,但换算成q空间分布则是唯一的. 观察公式(1)可以发现A(q)其实就是ρ(r)的傅里叶变换. 如果我们可以直接测量A(q),便可以直接进行反傅里叶变换获得期待的ρ(r),也就是样品内部的微观结构. 然而,如前所述,X射线的频率非常高,目前的电子学技术不能有效测量A(q),在测量过程中会丢掉相位信息,只能测得强度信息,也就是:公式(1)所展示的代表实空间结构的ρ(r)与A(q)代表q空间散射光振幅分布函数显然具有倒易性,即,实空间中尺度越大的结构将在q空间中小q区呈现强的散射光. 可见,根据公式(3)及通常使用的X射线的波长(在0.1 nm量级),几纳米至几百纳米的微观结构将在较小的q(2θ)处产生散射信号. 因此,探测纳米至微米尺度微观结构的X射线散射技术被称为小角X射线散射(SAXS). 尽管通过散射强度I(q)不能直接得到体系的电子云密度分布函数ρ(r),但是ρ(r)的自相关函数Γρ(ρ)恰巧是散射强度的反傅里叶变换. 因此,代表体系微观结构的ρ(r)、散射光振幅A(q)、可测量的散射光强度I(q)及ρ(r)的自相关函数Γρ(ρ)之间就具有了图1所示的关系. 这一物理量间相互转化的关系是SAXS技术的基础[4,5]. 值得注意的是,由Γρ(ρ)不能直接反推样品体系的电子云密度分布情况. 在实际数据分析中,我们还需结合体系的电子云密度分布特性进行讨论. 因此,对于体系电子云密度分布的描述十分重要,目前主流的数据分析发展趋势主要是集中于如何选取简化的模型,推导出具有特征形状的自相关函数Γρ(ρ)[6],来间接描述体系的电子云密度分布. 模型确定后,就可以根据散射强度分布来计算一些特定的结构参数. 篇幅所限,这里只给出了极简版的SAXS原理以及获得结构信息的大致思路,想要深入地了解SAXS技术的原理的读者可以参考文末所列出的经典教科书[1~4,7~11].Fig. 1Relationships amongρ(r),A(q),Γρ(r) andI(q)[5].SAXS技术的测试结果不直观,倒空间的散射信号还原成实空间中材料的微观结构的过程中,涉及到大量的数学运算及相应理论模型的拟合,稍有不慎极有可能得出错误的结果. 因此,在利用SAXS分析材料微观结构时,常常需要扫描电子显微镜(SEM)、透射电子显微镜(TEM)、示差扫描量热仪(DSC)等实验来辅助验证分析结果. SAXS技术的优点则在于适用于多种材料体系,对测试样品不需要进行前期预处理,测试过程中也不改变样品的结构性质,属于无损测试. SAXS测试结果为体系的统计平均值,更能代表材料的整体信息. 此外,多数SAXS仪器与其他仪器兼容性好,可以实现SAXS技术与各种小型设备,例如拉伸仪、剪切仪、热台、注塑机、模拉仪器等多种仪器的联用[12],从而在线观测材料在各种条件下的微观结构演变及服役行为. 因此,虽然SAXS技术对于初学者来说门槛略高,但由于其多方面的优势,在高分子材料结构表征领域中仍扮演着不可替代的角色.2实验技巧从上述X射线散射的基本原理可知SAXS实验方面相对简单,只需利用成熟的商用仪器或同步辐射线站将待测样品置于X射线光路之中特定的位置即可. SAXS也可以通过以很小的角度掠过表面来测试薄膜样品,此时的SAXS实验被称为掠入射SAXS (GISAXS),其基本原理与SAXS相近,本文受篇幅限制不对GISAXS进行讨论. 除了简单的静态样品SAXS测试,还可以利用SAXS测试样品在不同外场下的微观结构演化过程,例如高分子加工成型条件下的相变与结晶、服役环境中的形变与破坏等. 为实现最优化的SAXS实验,在开始实施之前确实需要做一些必要的准备. 以下是一些常见的需要注意的事项.2.1谱仪参数选择任何SAXS设备都只具备有限的可测量q范围,这就决定了可观测的微观结构尺寸必然是有限的,因此,一个初步的判断,甚至是初步的实空间实验通常是需要的. 很多SAXS设备具有多段可调q范围,初步的实验有助于选择合适的仪器参数实现相关尺度微观结构的统计平均测试.目前主流的实验室SAXS设备及同步辐射SAXS实验站都可提供X射线波长、光斑尺寸、样品到探测器距离等参数的选择. 配备2种金属靶(例如铜及钼)的实验室SAXS设备逐渐成为一个很好的选择,其提供的铜或钼的特征辐射具有不同的波长,也就是具备不同的穿透能力,在具有环境腔窗口的情况下可根据不同的窗口材料选择合适的光源. 光斑尺寸的选择原则是在宏观的谱仪尺度上可被看成是点光源,但在微观结构尺度上又能实现足够大的覆盖以实现统计平均. 简而言之,如光斑尺寸过大则会对SAXS数据造成明显的模糊效应,也就是探测器同一个像素点采集到了样品不同位置散射的本应是不同q处的信号. 尽管可以利用光斑形状的数据对最终获得的SAXS数据进行去模糊处理,通常我们还是应该避免这一步骤,原因是去模糊过程不可避免地带来计算的简化及误差,进而影响实验数据的精度. 同样的道理,如果光斑尺寸过小则会造成统计平均不足的问题,特别是在先进的同步辐射实验站,当光斑尺寸接近待测微观结构尺寸时就会丧失应有的统计性及小q区数据的可靠性. 这一点可从公式(1)来理解,其中的积分体积V是X射线照射的样品体积,因此,光斑的尺寸的倒数就决定了可探测的最小q值.取决于通常的二维面探测器像素点尺寸,我们在实验之前可估算能实现的q空间分辨率,也就是2个相邻像素代表的q之差Δq. 常见的误区是只关注能实现的最小q而忽视Δq. 这种情况在探测目标微观结构尺寸较大时尤为突出. 根据SAXS谱仪的结构,可通过改变样品到探测器之间的距离实现Δq的合理选择,该距离越大则对应的从样品位置出发的2个相邻像素点对应的角度也就越小,从而实现更小的Δq.2.2样品尺寸选择样品的宏观尺寸对获得优质的SAXS数据也很重要,通常选用足够大的样品以使入射X射线全部照射在样品上而不触及样品边缘,这样做的目的是尽量避免边缘光滑表面可能带来的对掠过的X射线的反射,这种反射将会污染实际的SAXS数据. 这种情况在测试直径小于光斑尺寸的纤维样品时比较突出,通常的做法是利用与纤维密度相仿的液体浸润一束纤维以消除纤维与空气的界面影响.X射线与物质相互作用除了散射以外还包括被吸收,因此,在确定样品沿X射线传播方向的最佳厚度时就需要考虑吸收和散射的平衡. 基本的思想非常简单,散射强度依赖于X射线照射到的总电子数,也就是和厚度成正比,吸收则相反,厚度越大则吸收越严重,因此,对特定的样品在特定的X射线波长下一定存在一个最佳的厚度进行SAXS实验. 根据计算,通常实验室SAXS设备利用的CuKα线下聚乙烯样品的最佳厚度为2 mm左右. 因吸收系数是X射线波长的函数,具体到特定条件下最优样品厚度的寻找需借助工具书或进行实测[7].2.3数据处理从上述讨论可知,与显微学手段(如电子显微镜、原子力显微镜等)相比,SAXS实验实现起来相对简单,但SAXS数据是在q空间呈现的,远没有显微学实验获得的结果直观,并且实验测得的原始数据还需校正才能使用.首先,任何SAXS谱仪都不可避免会有背底散射,也就是在没有加载样品时也会有一定程度的散射信号可被探测器记录,这些背底散射来自光路中可能的窗口、气体分子及探测器的电子学噪音. 因此,正确扣除这部分背底散射非常重要. 目前主流的SAXS设备和同步辐射SAXS实验站都配备了标准的流程进行背底散射的扣除. 这里需要注意的是正确计算加载样品之后的背底散射,考虑到样品对入射X射线的吸收,在加载样品后通过样品后光路中的X射线总量减少,因此,在没加载样品条件下测得的背底散射数据实际上是被高估了,需要进行样品吸收校正. 背底散射扣除后的SAXS数据已经可以用于体系微观结构参数的计算,但其散射强度还只具有任意单位,需要进行进一步的数据处理才能获得绝对散射强度[10,13]. 绝对散射强度包含了体系微观结构的所有信息. 通常可以利用已知绝对散射强度的样品(例如纯水)作为标准进行比对,获得所测样品的绝对散射强度分布. 上述介绍的强度校正基本可以满足一般需求,但在精确的计算中还涉及到更多信号校正,这里不再一一展开说明. Pauw在综述中关于信号校正的种类,校正对信号影响大小,及应用各类校正的先后顺序进行了详细的阐述[14].按照正确步骤得到散射曲线后就可以进行数据分析. SAXS数据中散射强度与散射矢量之间一般具有幂率关系,也就是I(q)~q−ν ( ν是正自然数),因此,SAXS曲线通常用双对数坐标表示以方便获得幂律关系,这就要求我们不能对散射强度进行加减操作,以免改变应有的幂律关系. 有时为图示清晰,可对SAXS数据进行乘除常数的操作,获得曲线在双对数坐标下的上下平移,达到合适的视觉效果而不影响通过幂指数规律进行数据分析.在高分子领域,利用SAXS对结晶高分子体系片晶-非晶区叠层结构长周期的研究极为广泛和成功,其中常见对散射强度(I(q)versusq)数据做洛伦兹校正,既将I(q)乘以q2之后对q做图,然后利用I(q)q2versusq曲线探讨体系结构参数[7,9]. 这里的洛伦兹校正是考虑到片层体系的特殊几何结构而进行的对测得的散射强度的必要修正,具有其他几何形状的微观结构产生的散射强度不能直接套用该校正. 首先,我们考虑一个在空间中固定的片层结构,其宽度和长度远大于厚度,这就意味着该片层产生的散射强度将集中在片层法向方向,在q空间形成一个细棒状分布,所以,理论上该片层在法向方向以外都不产生散射信号. 然而,实际体系中由于片层结构会沿不同方向平均化,这主要是因为在液体分散体系中的片层会高速运动(旋转、平动),使得测量时间尺度范围内本应是细棒状的强度分布平均分不到整个三维q空间,那么对于任意q而言,强度就被稀释了以q为半径的球壳面积倍,也就是4πq2倍. 所以,测得的散射强度需要按q2校正. 在结晶高分子体系,尽管片晶不能旋转,但是众多片晶在空间中沿不同方向分布,其实际效果和上述分散体系类似,因此也需对测得的I(q)进行q2校正. 根据上述讨论,其他形状的散射体,例如球状散射体因其理论上的散射强度在不同q处就应该是均匀分布的,不存在稀释的问题,所以是不能盲目进行洛伦兹校正的.常用的SAXS数据处理软件有Fit2d[15],GNOM[16],SASfit[17],SasView[18],Scatter[19],ATSAS[20],McSAS[21],BioXTAS RAW[22]等,可实现二维SAXS散射图到各类一维散射曲线的转换,并且部分软件兼具简单的数据拟合功能. 各个软件有其特定的侧重点,需要根据自己的实际需求来选择. 此外,也可使用Matlab、Python等程序语言,自行编辑所应用的公式及选择相应拟合模型,对自己的体系进行个性化处理. 但值得注意的是,曲线拟合完美并不一定代表结果的真实可靠,在得出正式结论前一定要三思.3小角X射线应用实例在这一节中,首先介绍不依赖于具体微观结构模型的散射不变量Q的相关应用以及如何利用散射峰位置确定微观粒子的排列模式,之后再按照微观结构分类,分别给出对应结构的拟合公式及实际应用. 由于篇幅所限,本文选取了有限的应用实例而非面面俱到,对特定结构测定有兴趣的读者可参考文末所列的基本SAXS经典教科书[1~4,7~11].3.1散射不变量Q散射不变量Q,以两相结构体系为例,取决于样品体系内部各散射体间电子云密度差及各散射体的体积分数[4,7]:其中,ρ1和ρ2分别为两相的密度,v和(1−v)则分别代表两相的体积分数.从定义可知,Q只取决于样品本身的性质. 理论上,Q是散射强度在整个q空间的积分. 但在实际测量中,我们对探测器采集到的信号进行积分后得到的是与Q成一定比例关系的Q' :Q′会受到X射线强度、样品信号吸收和数据处理方式等影响,因此,在利用Q′代替Q对样品体系进行讨论时,需要考虑到上述条件的影响,并酌情对Q′值进行归一化处理[23,24].Q或Q′受到散射体间的密度差及体积分数的影响,也就是说Q可以用来反馈任何涉及到反差或构成变化的过程. 对于高分子体系而言,散射不变量的一种十分重要的应用就是判断体系内部空洞化的发展. 由于空洞-材料本体间的电子云密度差比晶区-非晶区之间的电子云密度差大2个数量级左右[25],体系中一旦出现空洞,Q值就会明显上升[26~31]. 此外,还可以根据不同方向积分散射强度的比值来判断空洞的平均取向程度. 如图2,潘鹏举团队为了比较PBAT/PLA共混物在不同方向的空洞化情况,分别沿不同方向积分计算空洞强度,平行拉伸方向的空洞强度记为IMR,垂直拉伸方向的空洞强度记为IEQ[25]. 对于PLA含量为0.3的共混物来说,IMR/IEQ的比值在形变量εH=0.5时到达峰值并随后逐渐减小. 峰值代表着空洞调整方向的起始点,随后这个值又降到了1,说明大部分的空洞已经重新沿拉伸方向排列.Fig. 2SAXS intensities of cavity signals of PBAT/PLA blends collected during stretching: (a) cavity intensity of PBAT/PLA-0.2 blend (Tc=80 °C,Td=25 °C) in the meridian and equator directions (b) cavity intensity of PBAT/PLA-0.2 blend (Tc=50 °C,Td=25 °C) in the meridian and equator directions (c) strain-dependentIMR/IEQ values of PBAT/PLA blends (Reprinted with permission from Ref.[ 25] Copyright (2020) Elsevier).除对体系内空洞的表征外,Q还能用来描述乳胶体系干燥、结晶熔化及相转变等过程[4,24,32~34].3.2有序微观结构周期性排列的微观结构会以特定比例形成较规整的散射峰,根据实验中测得的衍射峰峰位置的相对关系可以判断出体系内部相区的排列方式[12,35~40]. 表格1中给出了各种结构所对应散射峰峰位置间的比值[41].*LAM: lamellar, HCPC: hexagonally close packed cylinders, PC: primitive cubic, BCC: body-centered cubic, FCC: face-centered cubic, HCPS: hexagonally close packed spheres, DD: double diamond, Ia3¯3¯d, and Pm3¯3¯n cubic morphologies belonging to these space groups (Reprinted with permission from Ref.[41] Copyright (2002) Taylor& Francis).类比广角X射线衍射的原理,由散射峰峰位置q可算出相对应散射体的尺寸d[42~45]:但d所对应的尺寸的具体物理含义还需要根据体系内部的结构来判定[46~50].Hickey团队观测了聚苯乙烯-聚丁二烯嵌段共聚物/苯乙烯在反应过程中的实时相转变过程[51],如图3所示.图3(a-i)为样品初始散射信号,属于典型的片层结构的散射. 反应开始后,体系首先向无规状态转换,之后散射峰又变窄(图3(a-iii)). 随着反应的进行,图3(b)中出现了比例为1.14的2个散射峰,但此时体系相结构仍难以确定.图3(c)中出现了更高级的散射峰,峰位置之间的比例为1.14‍:‍2:2.64.Fig. 3In situ SAXS and oscillatory shear DMS measurements to determine the morphology evolution during polymerization-induced nanostructural transitions for a ϕPS‑PBD=60% PS-PBD/styrene mixture. (a) One-dimensional SAXS patterns forϕPS‑PBD=60% (i) initially at 25 °C before polymerization, (ii) directly after heating to 125 °C from 25 °C, and (iii) after 10 min once reaching 125 °C. Red arrows between scattering patterns indicate changes that occur during heating and polymerization. The blue traces indicate the presence of an ordered morphology, while red traces indicate disorder. (b) SAXS patterns showing the progression of the primary scattering peak,q*, over the first 90 min of polymerization until the first indication of higher-orderq-reflections. Scattering traces have been vertically shifted for clarity. (c) SAXS patterns showing the evolution of the structure from the first appearance of a second peak at 90-180 min. Scattering traces have been vertically shifted for clarity. (d) Isothermal time sweep for oscillatory shear DMS ofϕPS‑PBD=60% at 125 °C, strain amplitude of 0.5%, and frequency of 1 rad/s, showing a single disorder-to-order transition at ~10 min, as indicated by theG′ andG″ crossover (Reprinted with permission from Ref.[51] Copyright (2020) American Chemical Society).结合样品降温时的散射曲线以及振荡剪切动态力学谱的数据,最终得出聚苯乙烯-聚丁二烯嵌段共聚物/苯乙烯在整个过程中复杂的相结构转换,如图4所示. 材料最初为片层结构,升温后有序结构被破坏,通过反应变为六方和片层复合结构. 降温后材料会变为六方堆积结构,除去未反应的苯乙烯并将材料退火,这种六方堆积又可变为片层结构. 但若延长反应时间至21 h,即使降温和除去体系中未反应的苯乙烯,上述六方和片层的复合结构仍然可以得到保存.Fig. 4Morphology evolution during polymerization-induced nanostructural transitions for aϕPS‑PBD=60% PS-PBD/styrene mixture. At room temperature before polymerization, the LAM phase disorders at elevated temperatures (1), evolves from a disordered to a complex phase inferred to be a HPL phase over time (2), and then transitions to the HEX phase on cooling to room temperature if the polymerization is conducted for 3 h (3). The HEX phase will transition back to a LAM phase once the unreacted styrene is removed, and the sample is annealed (4). If the polymerization run for 21 h, then the high-temperature phase will persist at room temperature, and after unreacted styrene is removed (5) (Reprinted with permission from Ref.[51] Copyright (2020) American Chemical Society).3.3高分子片层结构3.3.1一维相关函数半结晶高分子通常由晶区非晶区交替组成,最简单的一种模型就是将体系简化为两相层状体系,其每层的面积无限大. 当这些片层的法向方向平行于z轴时,某特定位置的电子云密度只取决于其所处高度z. 此时相关函数可以简化为一维相关函数K(z):Strobl团队考虑到样品内部结构,讨论了体系所对应的一维相关函数特征,如图5所示[8,52]. 对于晶区和非晶区界限明显,且不考虑各区域的多分散性,样品的电子云密度及其所对应的一维相关函数应如图5(a)所示. 图中L代表样品的长周期,d为晶区和非晶区中较小区域的厚度. 若体系中结晶度小于50%,则d对应晶区厚度,反之亦然.Fig. 5Electron density distributionρ(z)and the related correlation functionK(z)for lamellar systems of different regularities: (a) Periodic two-phase system (b) Effect of long-spacing variations (c) Effect of additional thickness fluctuations (d) Effect of introduction of diffuse phase boundaries (Reprinted with permission from Ref.[52] Copyright (1980) Wiley).但实际体系和理想模型有一定差距,图5(b)~5(d)给出了理想模型向实际样品体系过渡时,体系内电子云密度分布特征及相关函数的演变.图5(b)考虑到了体系内片晶间距的多分散性,图5(c)在图5(b)的基础上考虑到了片晶厚度的多分散性,图5(d)则在图5(c)的基础上引入了晶区和非晶区间厚度为dtr的过渡层.图5(d)中长周期的值可由相关函数的第一个极大峰值位置确定,体系中较薄片区的厚度则可通过斜直线的延长线和基线的交点得出. 值得注意的是,这种方法最佳适用体系结晶度范围ϕ0.3或ϕ0.7,若结晶度不在此范围内,基线如图6所示,难以观察,此时就需要其他数据来辅助确定基线,从而判断晶区或非晶区的厚度.Fig. 6Experimental correlation function obtained for LDPE at room temperature (Reprinted with permission from Ref.[52] Copyright (1980) Wiley).利用相关函数算法计算片晶的长周期及片晶厚度十分简便,目前已得到广泛应用[53~61].3.3.2弦分布函数算法和界面分布函数算法相关函数算法最佳适用体系是理想两相片层体系,但实际上,半结晶高分子形成的片层结构并不十分规整. 对于晶区非晶区厚度分布较宽,且二者间分布差异明显的体系,相关函数及Bragg算法会由于散射峰的叠加偏移而引入较大误差[62],而使用界面分布函数(IDF)[63,64]则可以得到更加准确的数值.门永锋团队与Thurn-Albrecht团队合作利用其发展的IDF曲线拟合的方法揭示了聚丁烯晶型II向晶型I转变时的结构变化[65]. 界面分布函数由一系列的距离分布构成:其中,ha(z)和hc(z)分别代表非晶区(da)和晶区厚度(dc)的分布,hac(z)是长周期dac=da+dc的厚度分布,后面的项以此类推.Os为特征内表面,Δρ为晶区非晶区间的电子云密度差. 则各向同性的样品的散射强度与K' ' (z)的关系:其中s为散射矢量且s=q2π. 对于有明确边界的一维两相体系,I(s)通常在s-4附近振荡,并在大s区域与s-4成正比[66].lims→∞I(s)s4也就是Porod常数P.在利用上式计算前,首先要在较大s处进行Porod拟合I(s)≈Ps−4+c,确定P和体系热密度涨落带来的背景散射c,如图7上图所示. 之后对曲线进行平滑,拟合等操作,即可得出晶区非晶区厚度及厚度分布宽度等结构信息[67,68],图7给出了拟合过程中的一些曲线.Fig. 7Exemplary analysis of SAXS data for the sample crystallized at 60 ℃ in form II. (a) Original scattering curve measured directly after crystallization and the fit describing Porod behavior and contribution due to density fluctuations (b) The function 16π3[P-I(s)s4]Gas calculated fromI(s) after subtraction of the contribution due to density fluctuations (c) IDF as calculated from the original scattering data and from the fit. The first three contributions to the IDF,ha,hc, and -2hac are shown separately in addition. (Reprinted with permission from Ref.[ 65] Copyright (2020) Elsevier).随着SAXS技术的发展以及计算机领域的进步,利用Mering等提出的适用于随机形状体系的弦分布函数(CDF)[69]能够计算得出更多的结构信息,从而更加精准地描述体系的微观结构. CDF和IDF实际都是相关函数的二阶导数,其中前者可认为由一系列后者构成[70,71]. 因此,在实际利用CDF算法描述体系时,也经常会涉及到IDF的拟合.李许可等利用Stribeck发展的CDF算法衡量了不同硬段含量聚氨酯高温拉伸时的形变特征[71]. 在经线上CDF峰表明,沿拉伸方向体系中存在着由状态介于被破坏的硬段与被拉伸的软段之间的均质体组成的柱状微纤. 这些有较低硬段含量的聚氨酯微纤表现出侧向周期性排列模式. 基于Bonart纵向和横向投影,利用界面分布函数和弦长分布可以分别定量表征微区和微纤的排布.在计算前,首先需要将信号投影到某一特定方向上[72]. 在本工作中,Bonart的横向投影被用来分析赤道区的信号.从投影线{I}2(s12)可以得出两相体系的二维干涉函数G2(s12):其中AP2是投影后SAXS强度的Porod渐进值.IFl和σz用于描述真实体系的非理想特性.IFl是由电子密度波动产生的散射强度.σz是微区边界过渡区的宽度. 由G2(s12)可以得到微纤的二维弦长分布g2(r12):其中,J0和J2代表第一类Bessel函数的第零阶和第一阶.将散射强度投影在纤维轴上可以得到Bonart纵向投影:此时,弦会沿纤维轴交替穿过硬段和软段. 通过{I}1(S3)/V计算得来的g1(r12)可以定量描述硬弦和软弦的结果. IDF可以理解为是一系列硬弦和软弦的高度分布. 因此,可以通过拟合来得到参数信息[70,73].在完成投影后,为拟合数据,还需根据体系的特征选择合适的模型[70,73,74]. Stribeck详细总结了应用于描述微区堆叠的模型及其物理意义[75]. 在此工作中,测得的IDF由一个大的微区峰和小的周期峰构成. 这意味着有多个独立的硬区,且硬区间联系较弱. 因此,利用独立硬段及软硬段一维阶梯排列模型,对g1(r3)进行进一步拟合[70,76],可以计算出平均硬段高度H¯¯¯H,平均软段高度H¯¯¯S,以及硬段软段的相对偏差,独立和非独立硬段的权重等参数,由此更好地描述体系形变过程中微观结构的变化,图8为数据拟合过程示意图.Fig. 8Schematic diagram of data evaluation. 2D SAXS patternI(s12,s3) with 0.01 nm-1≤|s12,s3|≤0.49 nm-1 processed in mirror symmetry (a) and separated into meridional two-spot scattering pattern and equatorial scattering streak (b) with a mask function. CDF (c) with -40 nm≤ r12≤40 nm and -160 nm≤r3≤160 nm computed from the extrapolated 2D SAXS pattern is employed to present the domain topology. The subfigure (d) indicates the Bonart' s longitudinal projection from the separated meridional two-spot scattering pattern, transverse projection from the equatorial scattering streak, and their corresponding measured IDF/CLD and fitted IDF/CLD. (Reprinted with permission from Ref.[71] Copyright (2017) Elsevier).3.3.3Bragg公式除以上2种方式外,另一种更加简便的方式是根据体系的散射峰位置,当体系为结晶高分子并呈现片晶叠层结构时,利用Bragg方程直接确定体系的长周期[77~79],即除计算片晶厚度外,当体系为单轴取向体系时,可利用散射峰位置处的散射强度随方位角变化的分布计算片晶的侧向尺寸,根据倒易原理,该分布越窄则片晶侧向尺寸越大[80~82].3.4球状及球壳粒子溶液体系当体系中粒子浓度较高时,除了考虑单个粒子的散射,还需要考虑到粒子间的相互作用,此时探测器收集到的强度可表示为[10]:其中,P(q)为形状因子,与单个粒子的散射强度有关,S(q)为结构因子,与粒子间的相互作用有关.形状因子P(q)为散射振幅的平方. 半径为R的球体粒子,其散射振幅可表示为:对于乳胶体系而言,粒子的尺寸分布通常可用高斯函数来描述,即:其中,R0为粒子尺寸分布平均值,σR为标准差. 此时,体系的散射振幅可表示为:尺寸均一的核壳体系,散射振幅为:其中,R1为核壳粒子总半径,R2为核的半径,V1和V2分别为核壳粒子的总体积及核的体积,ρ1和ρ2分别为壳和核的电子密度. 考虑到尺寸的不均一性,核壳粒子体系散射振幅应为:其中,D(R1)和D(R2)分别为核壳粒子和核的尺寸高斯分布.以此类推,对于尺寸均一的多层核壳壳结构,其散射振幅为:考虑到尺寸的不均一性,则多层核壳壳结构体系的散射振幅为:根据Percus-Yevick提出的适用于球形粒子的硬球模型[83~85],结构因子S(q)可表达为其中其中,体积分数ϕ可表示为对于稀溶液体系而言,可认为S(q)=1,从而简化计算.图9中给出了门永锋团队利用上述公式拟合核壳壳结构水溶液的实例[13]. 粒子的核为聚苯乙烯,中层壳为聚甲基丙烯酸甲酯,外层是聚丙烯酸乙酯和聚丙烯酸丁酯的共聚物. 如图9所示,拟合结果与实际曲线吻合很好,在各层电子密度已知的情况下,精确计算出了核的平均半径为85.9 nm,核壳平均尺寸为100.7 nm,核壳总体的平均半径为138.0 nm.Fig. 9The fit results of (a) core, (b) core-shell and (c) core-shell-shell particles in colloidal dispersions and corresponding residuals[13].郭旭虹团队以接枝了聚丙烯酸的聚苯乙烯球壳粒子为模板,构建了径向电子云分布十分复杂的聚苯乙烯-二氧化硅-聚丙烯酸球壳粒子,并用SAXS技术表征了其微观结构[86]. 在不考虑结构因子时,体系的散射主要由三部分构成:其中I0(q)为单一粒子的散射强度,Ics(q)为整个核壳结构的贡献.Ishell(q)为壳的不均一性导致的散射,IPS(q)来源于PS核本身的电子云密度涨落(在本工作讨论中忽略).对于球状粒子而言,Ics(q)可由散射振幅B(q)得到,B(q)可表达为:其中b为汤普森散射长度,ρm溶剂的电子云密度,ρ(r)为粒子的径向电子云密度.ρ(r)可根据粒子内部电子云分布特性分解为多个函数[86~88],在此工作中,二氧化硅构成的壳被分为i=1~5层,聚丙烯酸分子链被分为j=6~7层,如图10所示. 则核壳结构贡献的散射强度可表示为:其中核不均一性导致的散射则可分解为二氧化硅壳的不均一性Iin(q)和聚丙烯酸分子链的热致密度涨落Ifluct(q),并且利用经验公式能够很好地描绘二者:其中,rg为粒子的均方回转半径,量级在10 nm,ξ是分子链的相关长度,量级在几纳米. 在实际操作中,Iin(0)和Ifluct(0)作为可调节的变量.图11体系散射曲线和按上述方式拟合的曲线,数据吻合度高.Fig. 10Double-shell fitting model of silica hybrid nano-particles. (a) Radial excess electron density [ρ(r)‍-‍ρm] distribution of the particle. Thex-axis is the radial distance r representing the distance from the center to local positions of silica hybrid nanoparticles. They-axis refers to the excess electron density of individual layers with respect to water. (b) Corresponding schematic illustration of the double-shell model. The colors yellow, dark blue, purple, and light blue refer to polystyrene core, silica shell, PAA shell, and water, respectively. (Reprinted with permission from Ref.[86] Copyright (2017) American Chemical Society).Fig. 11Decomposition of the scattering intensity of silica hybrid nanoparticles. The circles represent experimental data. Lines denote the fitting result (solid line), the spatial inhomogeneity of the silica shell (long dashed line), and the fluctuations of the PAA shell (short dashed line). The radial excess electron density profile is shown in the inset (Reprinted with permission from Ref.[86] Copyright (2017) American Chemical Society).3.5纤维状散射体的计算(Ruland方程)最初Ruland使用此种算法来描述取向纤维[89,90],目前这种算法已经被很好地推广到串晶、微纤以及空洞领域[82,91~93]. 下面以计算空洞长轴为例,简要介绍这种算法[93].首先,对取向明显的空洞散射信号进行如图12左侧所示的环形积分,并得到如图13右侧所示一系列强度曲线. 对于各个积分位置q都有与之对应的一维曲线且该曲线有着特定的积分面积A,可以得出积分宽度Bobs=A/q. 将一系列Bobs和q值代入Fig. 12Azimuthal intensity distribution of highly orientediPP at different scattering vectors (Reprinted with permission from Ref.[93] Copyright (2015) American Chemical Society).Fig. 13Relationship between the inverse scattering vectorq and the integral breadth Bobs (Reprinted with permission from Ref.[ 93] Copyright (2015) American Chemical Society).并对对应的数据点进行线性拟合,如图13所示,即可通过拟合曲线的斜率和截距得出散射体长度lc和散射体的取向误差BΦ.门永锋团队利用上述算法对等规聚丙烯拉伸过程中的大形变空洞化进行了追踪,定量计算了空洞长轴尺寸[93],结果如图14所示.Fig. 14Length of long axis and misorientation of cavities obtainedvia Ruland method as a function of strain for iPP250K (top) andiPP580K (bottom) stretched at different temperatures (Reprinted with permission from Ref.‍[93] Copyright (2015) American Chemical Society).3.6圆柱状散射体的计算(Fischer算法)为拟合聚丙烯样品中的空洞,Fischer等在前人的基础上提出了一种将空洞视为随机分布的且尺寸为对数正态分布圆柱体模型的算法[94]. 与Ruland算法拟合空洞相比,这种算法对空洞取向程度要求不高,更适合探究复杂空洞分布体系. 对于平行排列的圆柱体,其散射强度:若其中的圆柱体底面半径R和高度H不相关,则有其中D1(R)和D2(H)分别为底面半径和高度的尺寸分布函数,其大小遵循对数正态分布.门永锋团队在这个模型的基础上,引入了取向分布因子h(β)[29,95,96],散射强度变为:其中,β为圆柱体法相方向和拉伸方向(x轴)的夹角,γ是圆柱体法相方向在yz平面(垂直于拉伸方向)的投影和y轴的夹角.ϕ是圆柱体的法相方向和散射矢量的夹角. 这个公式的引入,拓宽了Fischer模型的适用范围,使其能够描述空洞沿任意方向排列的体系.3.7分形理论衡量自相似的随机结构分形理论可以用来描述具有一定自相似性的任意结构[97],这种结构中一个非常重要的参数,分形维数D,可以用SAXS技术有效地测量[7,98,99]. 简单来说,就是利用指数函数对小q处散射数据进行拟合,所得指数即为分形维数D.D可用于描述聚集体的形态特征,在q溶液中的高斯链,D=2;有粗糙表面的团聚物对应的D为3~4;而具有平滑表面的紧密微区对应的D为4.潘鹏举团队基于PNaAMPS网络,利用中性AM及阳离子单体构建了双网络结构,并利用分形理论探讨水凝胶的结构参数[99]. 阳离子为DAC, DBC, DMC,对应的名字为DN-A-x,DN-B-y,DN-M-z. 其中x,y,z代表第二网络内相应阳离子的摩尔浓度. 如图15,对于DN-A-x水凝胶的散射信号,没有明显的相关峰,这可能是由于第二网络的分子链穿插进入到了PNaAMPS的交联点,导致主网络中的相关关系模糊化. 这种DN-A-x水凝胶的信号可以用普适Ornstein-Zernike(GOZ)公式来描述:Fig. 15SAXS profiles of DN-A-x hydrogels (a) and (b), DN-B- y hydrogels (c), and DN-M- z hydrogels (d) in the swollen equilibrium state. The solid lines indicate the fits by generalized Ornstein-Zernike equation in the low- q region. Double-logarithmic coordinates are employed. (Reprinted with permission from Ref.[ 99] Copyright (2019) The Royal Society of Chemistry).其中IGOZ为当q趋近于0时强度的渐近值,ξ是水凝胶中不均一聚集体的特征相关长度,在这里正比于交联微区的平均半径,D是分形维数.通过拟合得到的ξ和D被收录到图16中. 在双网络中,第一个网络的紧密交联点作为不均一的聚集体和第二网络的松散交联链缠结. 这些聚集体的特征相关长度ξ可以用来衡量交联微区的尺寸.ξ随DAC的增加而增大,在超过离子平衡点后,随DAC的增加而减小. 当没有DAC时,第二网络的PAM链与PNaAMPS网络物理交联,使得ξ与基体网络的特征相关长度基本相等. 另一方面,添加DAC后,2个网络间形成了离子复合物,使得键合更加紧密. 除了物理缠结,离子的相互作用使得第二网络中更多的分子链穿插进入交联微区,增大了聚集体的特征相关长度. 随着DAC的增加,这种离子作用更强,ξ也逐渐到达峰值,超出平衡点后,ξ又变小. 这可能是由于第二网络中过剩的阳离子与交联微区随机作用,形成了有缺陷的离子复合物. 此外,P(DAC-co-AM)分子链和过剩的阳离子之间强大的静电互斥作用也能够使ξ变小. 分维数D的变化趋势与ξ一致.D先从2.06逐渐增加到4,超过离子平衡点后又逐渐减小,也就标志着在离子平衡点附近水凝胶形成了紧密的微区. 通过拟合样品的散射信号,可以很好地判断出水凝胶在各条件下的微区尺寸以及聚集体的形态特征.Fig. 16Effect of ion proportion on parameters,ξ (solid) and D (hollow), obtained by fitting the SAXS profiles of DN-A- x hydrogels (a), DN-B- y hydrogels (b), and DN-M- z hydrogels (c) with the GOZ equation in the low- q region (Reprinted with permission from Ref.[ 99] Copyright (2019) The Royal Society of Chemistry).4总结与展望本文从小角X射线散射技术的基本原理出发,介绍了实验操作中的相关经验,并给出了几种经过实践的适用于不同微观结构的散射模型及结构参数的计算方法. 希望使初学者简单理解小角X射线散射基本理论的同时,还能快速判断这种技术是否对自己的研究有所帮助. 也希望文中介绍的实验技巧能够增添初学者的经验并在初期实验时少走弯路.小角X射线散射技术操作简便,可与之搭配使用的小型装置多样化,适用于多种条件下材料的微观结构测试;此外,小角X射线散射技术属于无损测试,能得到样品体系内结构的统计平均信息,在高分子材料的表征中有着广泛的应用. 但是,由于分析散射图像需要结合相应理论模型,相对于其他结果直观的测试手段,这种技术常常令初学者望而却步. 随着近年来理论模型的丰富,以及批量数据处理软件的飞速发展,小角X射线散射技术的数据分析不再需要初学者具备深厚的数学功底,其处理程序变得简单明了,对用户越来越友好. 同时,随着同步辐射光源的升级,对材料在各种过程中的微观结构演变进行实时跟踪成为可能,因而小角X射线技术备受学术界和工业界的青睐.我们认为小角X射线技术的进一步发展主要依赖于三部分,一是仪器,尤其是探测器的进一步优化;二是理论模型的再次精炼;三是数据分析软件的优化. 在目前的实验中,为保护探测器或/及去除窗口散射信号,常常需要利用直通光挡板(beamstop)遮挡直通光,在此过程中可能会有些结构信息被一并掩盖. 虽然现在已有算法能够还原出beamstop处散射强度,但这种方法在一定程度上受到主观干扰,并不是很理想. 现有的理论模型还没有覆盖到全部高分子材料的微观结构. 此外,在部分模型中,理想化的参数较多,分析结构时同样可能会受到主观因素的干扰. 第三,也是决定小角X射线散射技术能否实现应用大飞跃的一步,即数据处理软件的发展. 现阶段虽然已经出现了部分数据批处理软件,但仍处于小众化阶段,而且操作不够简便. 随着人工智能大数据的发展,是否能出现更智能的一键数据分析软件呢?我们拭目以待.希望通过本文的介绍,能够激发初学者的学习兴趣,消除畏难心理,使得有需要的科研工作者可以更好地理解与应用小角X射线散射技术.参考文献1Glatter O,Kratky O.Small-Angle Scattering of X-Rays.New York:Acadenic Press,19822Guinier A.X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies.San Francisco: W. H.Freeman and Company,19633Guinier A,Fournet G.Small-Angle Scattering of X-Rays.New York:Wiley,19554Stribeck N.X-Ray Scattering of Soft Matter.Berlin:Springer,20075Lu Y.Molecular Weight and Chains Configuration Dependencies of Crystallization and Deformation in Polypropylene.Doctoral Dissertation of the University of Chinese Academy of Sciences,20156Vonk C G,Kortleve G.Kolloid Z,1967,220:19-24.doi:10.1007/bf020860527Zhu Yuping(朱育平).Small Angle X-ray Scattering-Theory, Measurment, Calculation and Application (小角X射线散射-理论、测试、计算及应用).Beijing(北京):Chemical Industry Press(化学工业出版社),20088Strobl G.The Physics of Polymers.Berlin:Springer,20079Lindner P, Zemb T. Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002.doi:10.12173/j.issn.1004-5511.2020.02.0610Roe R J.Methods of X-Ray and Neutron Scattering in Polymer Science.New York:Oxford University Press,200011Stein R S.Scattering and Birefringence Methods Applied to Polymer Texture(散射和双折射方法在高聚物织构研究中的应用).Beijing(北京):Science Press(科学出版社),1983.doi:10.1002/app.1983.07028041412Chu B,Hsiao B S.Chem Rev,2001,101:1727-1762.doi:10.1021/cr990037613Chen R.Application of Data Processing for Small-Angle X-ray Scattering in Polymer System.Doctoral Dissertation of the University of Chinese Academy of Sciences,201614Pauw B R.J Phys:Condens Matter,2013,25:383201.doi:10.1088/0953-8984/25/38/38320115Hammersley A.J Appl Crystallogr,2016,49:646-652.doi:10.1107/s160057671600045516Semenyuk A V,Svergun D I.J Appl Crystallogr,1991,24:537-540.doi:10.1107/s002188989100081x17Bressler I,Kohlbrecher J,Thunemann A F.J Appl Crystallogr,2015,48:1587-1598.doi:10.1107/s160057671500734718Boon N,Schurtenberger P.Phys Chem Chem Phys,2017,19:23740-23746.doi:10.1039/c7cp02434g19Forster S,Apostol L,Bras W.J Appl Crystallogr,2010,43:639-64620Konarev P V,Petoukhov M V,Volkov V V,Svergun D I.J Appl Crystallogr,2006,39:277-286.doi:10.1107/s002188980600469921Bressler I,Pauw B R,Thunemann A F.J Appl Crystallogr,2015,48:962-969.doi:10.1107/s160057671500734722Hopkins J B,Gillilan R E,Skou S.J Appl Crystallogr,2017,50:1545-1553.doi:10.1107/s160057671701143823Lyu D,Sun Y Y,Lu Y,Liu L Z,Chen R,Thompson G,Caton-Rose F,Coates P,Wang Y,Men Y F.Macromolecules,2020,53:4863-4873.doi:10.1021/acs.macromol.0c0000524Wang B H,He K Z,Lu Y G,Zhou Y F,Chen J L,Shen C Y,Chen J B,Men Y F,Zhang B.Macromolecules,2020,53:6476-6485.doi:10.1021/acs.macromol.0c0088525Zhou J,Zheng Y,Shan G R,Bao Y Z,Wang W J,Pan P J.Polymer,2020,188:122121.doi:10.1016/j.polymer.2019.12212126Lu Y,Lyu D,Tang Y J,Qian L,Qin Y N,Xiang M Y,Men Y F.Polymer,2020,210:123049.doi:10.1016/j.polymer.2020.12304927Lyu D,Tang Y J,Qian L,Chen R,Lu Y,Men Y F.Polymer,2019,167:146-153.doi:10.1016/j.polymer.2019.01.08128Jiang Z Y,Liao T,Chen R,Men Y F.Polymer,2019,185:121984.doi:10.1016/j.polymer.2019.12198429Lyu D,Chen R,Lu Y,Men Y F.Ind Eng Chem Res,2018,57:8927-8937.doi:10.1021/acs.iecr.8b0165030Lu Y,Men Y F.Chinese J Polym Sci,2018,36:1195-1199.doi:10.1007/s10118-018-2123-x31Lu Y,Men Y F.Macromol Mater Eng,2018,303:1800203.doi:10.1002/mame.20180020332Hu S S,Rieger J,Lai Y Q,Roth S V,Gehrke R,Men Y F.Macromolecules,2008,41:5073-5076.doi:10.1021/ma800451n33Shen J F,Zhou Y F,Lu Y G,Wang B H,Shen C Y,Chen J B,Zhang B.Macromolecules,2020,53:2136-2144.doi:10.1021/acs.macromol.9b0188034Lu Y G,Li H,Wei H X,Wang B H,Shen C Y,Zhang B,Chen J B.Polymer,2020,199:122562.doi:10.1016/j.polymer.2020.12256235Konko I,Guriyanova S,Boyko V,Sun L C,Liu D,Reck B,Men Y F.Langmuir,2019,35:6075-6088.doi:10.1021/acs.langmuir.8b0432736Lin Y F,Li X Y,Chen X W,An M F,Zhang Q L,Wang D L,Chen W,Yin P C,Meng L P,Li L B.Polymer,2019,178:121579.doi:10.1016/j.polymer.2019.12157937Lv C,Wang R Y,Gao J,Ding N,Dong S N,Nie J J,Xu J T,Du B Y.Polymer,2019,185:121982.doi:10.1016/j.polymer.2019.12198238Lu Y P,Chen T Q,Mei A X,Chen T Y,Ding Y W,Zhang X H,Xu J T,Fan Z Q,Du B Y.Phys Chem Chem Phys,2013,15:8276-8286.doi:10.1039/c3cp50376c39Yan J J,Tang R P,Zhang B,Zhu X Q,Xi F,Li Z C,Chen E Q.Macromolecules,2009,42:8451-8459.doi:10.1021/ma901494z40Liu X B,Zhao Y F,Chen E Q,Ye C,Shen Z H,Fan X H,Cheng S Z D,Zhou Q F.Macromolecules,2008,41:5223-5229.doi:10.1021/ma800517k41Hsiao B S,Chu B,Burger C.Synchrotron Radiat News,2002,15:20-34.doi:10.1080/0894088020860297442Xiang M Y,Lyu D,Qin Y N,Chen R,Liu L Z,Men Y F.Polymer,2020,210:123034.doi:10.1016/j.polymer.2020.12303443Ding S S,Fang C,Wang X H,Wang Z G.Polymer,2020,186:121993.doi:10.1016/j.polymer.2019.12199344Wang W,Wang X,Jiang F,Wang Z.Polym Chem,2018,9:3067-3079.doi:10.1039/c8py00375k45Wu Q W,Lv C,Zhang Z J,Li Y Q,Nie J J,Xu J T,Du B Y.Langmuir,2018,34:9203-9214.doi:10.1021/acs.langmuir.8b0157546Jiang H,Ye L,Wang Y H,Ma L,Cui D M,Tang T.Macromolecules,2020,53:3349-3357.doi:10.1021/acs.macromol.0c0015947Liu K,Yang C M,Yang B M,Zhang L,Huang W C,Ouyang X P,Qi F G,Zhao N,Bian F G.Chinese J Polym Sci,2020,38:92-99.doi:10.1007/s10118-019-2315-z48Bhaumik S,Ntetsikas K,Hadjichristidis N.Macromolecules,2020,53:6682-6689.doi:10.1021/acs.macromol.9b0232649Tap T D,Nguyen L,Hasegawa S,Sawada S,Luan L,Maekawa Y.J Appl Polym Sci,2020,137:e49029.doi:10.1002/app.4902950Zhang Q L,Li L F,Su F M,Ji Y X,Ali S,Zhao H Y,Meng L P,Li L B.Macromolecules,2018,51:4350-4362. 10.doi:10.1021/acs.macromol.8b0034651Zofchak E S,LaNasa J A,Torres V M,Hickey R J.Macromolecules,2020,53:835-843.doi:10.1021/acs.macromol.9b0169552Strobl G R,Schneider M.J Polym Sci,Part B:Polym Phys,1980,18:1343-1359.doi:10.1002/pol.1980.18018061453Yang S,Wei Q Y,Gao X R,Zhou L,Xu L,Tang J H,Zhong G J,Ji X,Li Z M.Polymer,2020,187:122099.doi:10.1016/j.polymer.2019.12209954Hu T,Hua W Q,Zhong G J,Wang Y D,Gao Y T,Hong C X,Li Z M,Bian F G,Xiao T Q.Macromolecules,2020,53:6498-6509.doi:10.1021/acs.macromol.0c0117755Zhu H,Lv Y,Shi D,Li Y G,Miao W J,Wang Z B.Chinese J Polym Sci,2020,38:1015-1024.doi:10.1007/s10118-020-2427-556Huang S Y,Li H F,Jiang S C.Polymer,2019,175:81-86.doi:10.1016/j.polymer.2019.05.02057Zhang W Y,Li J Q,Li H F,Jiang S C,An L J.Polymer,2018,143:309-315.doi:10.1016/j.polymer.2018.04.03058Li W Z,Gong P J,Huang Y J,Niu Y H,Li G X.Appl Surf Sci,2020,501:144251.doi:10.1016/j.apsusc.2019.14425159Li W Z,Niu Y H,Zhou C T,Luo H,Li G X.Chinese J Polym Sci,2017,35:1402-1414.doi:10.1007/s10118-017-1997-360Wang H,Wu C J,Cui D M,Men Y F.Macromolecules,2018,51:497-503.doi:10.1021/acs.macromol.7b0194361Chen R,Lu Y,Jiang Z Y,Men Y F.J Polym Sci,Part B:Polym Phys,2018,56:219-224.doi:10.1002/polb.2453662Cruz C S,Stribeck N,Zachmann H G,Calleja F J B.Macromolecules,1991,24:5980-5990.doi:10.1021/ma00022a01363Ruland W.Colloid Polym Sci,1977,255:417-427.doi:10.1007/bf0153645764Ruland W.Colloid Polym Sci,1978,256:932-936.doi:10.1007/bf0138358965Qiao Y N,Schulz M,Wang H,Chen R,Schafer M,Thurn-Albrecht T,Men Y F.Polymer,2020,195:122425.doi:10.1016/j.polymer.2020.12242566Porod G.Kolloid Z,1951,124:83-114.doi:10.1007/bf0151279267Albrecht T,Strobl G.Macromolecules,1995,28:5827-5833.doi:10.1021/ma00121a02068Albrecht T,Strobl G.Macromolecules,1995,28:5267-5273.doi:10.1021/ma00121a02069Tchoubar D,Mering J.J Appl Crystallogr,1969,2:128-138.doi:10.1107/s002188986900671670Stribeck N.Colloid Polym Sci,2002,280:254-259.doi:10.1007/s00396-001-0601-z71Li X K,Lu Y,Wang H,Poselt E,Eling B,Men Y F.Eur Polym J,2017,97:423-436.doi:10.1016/j.eurpolymj.2017.10.01472Bonart R.Kolloid Z,1966,211:14-33.doi:10.1007/bf0150020573Stribeck A,Li X,Zeinolebadi A,Pöselt E,Eling B,Funari S.Macromol Chem Phys,2015,216:2318-2330.doi:10.1002/macp.20150025574Li X K,Lu Y,Sun Y Y,Che Y H,Men Y F.Ind Eng Chem Res,2017,56:8535-8542.doi:10.1021/acs.iecr.7b0175775Stribeck A,Pöselt E,Eling B,Jokari-Sheshdeh F,Hoell A.Eur Polym J,2017,94:340-353.doi:10.1016/j.eurpolymj.2017.07.02076Stribeck N.Colloid Polym Sci,1993,271:1007-1023.doi:10.1007/bf0065929077Hu J,Wang J P,Gowd E B,Yuan Y,Zhang T P,Duan Y X,Hu W B,Zhang J M.Polymer,2019,167:122-129.doi:10.1016/j.polymer.2019.01.08878Wang Y,Zhao J,Qu M J,Guo J,Yang S G,Lei J,Xu J Z,Chen Y H,Li Z M,Hsiao B S.Polymer,2018,134:196-203.doi:10.1016/j.polymer.2017.11.04079Zhao H Y,Li L F,Zhang Q L,Xia Z J,Yang E J,Wang Y S,Chen W,Meng L P,Wang D L,Li L B.Biomacromolecules,2019,20:3895-3907.doi:10.1021/acs.biomac.9b0097580Lu Y,Thompson G,Lyu D,Caton-Rose P,Coates P,Men Y F.Soft Matter,2018,14:4413-4650.doi:10.1039/c7sm02446k81Tang Y J,Jiang Z Y,Men Y F,An L J,Enderle H F,Lilge D,Roth S V,Gehrke R,Rieger J.Polymer,2007,48:5125-5132.doi:10.1016/j.polymer.2007.06.05682Lei C H,Xu R J,Tian Z Q,Huang H H,Xie J Y,Zhu X Q.Macromolecules,2018,51:3433-3442.doi:10.1021/acs.macromol.7b0233583Percus J K,Yevick G J.Phys Rev,1958,110:1-13.doi:10.1103/physrev.110.184Ashcroft N W,Lekner J.Phys Rev,1966,145:83-90.doi:10.1103/physrev.145.8385Kinning D J,Thomas E L.Macromolecules,1984,17:1712-1718.doi:10.1021/ma00139a01386Han H Y,Li L,Wang W H,Tian Y C,Wang Y W,Wang J Y,von Klitzing R,Guo X H.Langmuir,2017,33:9857-9865.doi:10.1021/acs.langmuir.7b0223987Ye Z S,Li L,Zhao F,Tian Y C,Wang Y W,Yang Q S,Dai L H,Guo X H.J Polym Sci,Part B:Polym Phys,2019,57:738-747.doi:10.1002/polb.2482888Yang Q S,Li L,Zhao F,Han H Y,Wang W H,Tian Y C,Wang Y W,Ye Z S,Guo X H.J Mater Sci,2019,54:2552-2565.doi:10.1007/s10853-018-2996-789Ruland W.J Appl Phys,1967,38:3585-3589.doi:10.1063/1.171017690Ruland W.J Polym Sci Polym Symp,1969,28:143-151.doi:10.1002/polc.507028011391Liao T,Zhao X T,Yang X,Coates P,Whiteside B,Jiang Z Y,Men Y F.Polymer,2019,180:121698.doi:10.1016/j.polymer.2019.12169892Zhao J Y,Yang X,Sun Y Y,Men Y F.Ind Eng Chem Res,2018,57:4967-4977.doi:10.1021/acs.iecr.8b0019493Lu Y,Wang Y T,Chen R,Zhao J Y,Jiang Z Y,Men Y F.Macromolecules,2015,48:5799-5806.doi:10.1021/acs.macromol.5b0081894Fischer S,Diesner T,Rieger B,Marti O.J Appl Crystallogr,2010,43:603-610.doi:10.1107/s002188981000616395Chen R,Lu Y,Jiang Z Y,Men Y F.J Phys Chem B,2018,122:4159-4168.doi:10.1021/acs.jpcb.8b0006096Chen R,Lu Y,Zhao J Y,Jiang Z Y,Men Y F.J Polym Sci,Part B:Polym Phys,2016,54:2007-2014.doi:10.1002/polb.2410897Mildner D F R, Hall P L.J Phys D:Appl Phys,1986,19:1535-1545.doi:10.1088/0022-3727/19/8/02198Pizzorusso G,Fratini E,Eiblmeier J,Giorgi R,Chelazzi D,Chevalier A,Baglioni P.Langmuir,2012,28:3952-3961.doi:10.1021/la204461999Zhao X Y,Liang J,Shan G R,Pan P J.J Mater Chem B,2019,7:324-333.doi:10.1039/c8tb02803f原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20249&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20249
  • 电镜大咖齐聚|材料界面/表面分析与表征会议在深圳召开
    仪器信息网讯 2023年7月8日,中国材料大会2022-2023在深圳国际会展中心开幕。本届中国材料大会系首次在深圳举办,大会聚焦前沿新材料科学与技术,设置77个关键战略材料及相关领域分会场,三天会期预计超1.9万名全国新材料行业产学研企代表将齐聚鹏城,出席大会。作为分会场之一,材料界面/表面分析与表征分会于7月8日下午开启两天半的专家报告日程。中国材料大会2022-2023开幕式暨大会报现场材料界面/表面分析与表征分会由香港城市大学陈福荣教授、太原理工大学许并社教授、北京工业大学/南方科技大学韩晓东教授、中科院金属研究所马秀良研究员、北京工业大学隋曼龄教授、太原理工大学郭俊杰教授等担任分会主席。分会采用主题报告、邀请报告、口头报告、快闪报告等形式,围绕材料界面/表面先进表征方法、功能材料调控与表征、结构材料界面/相变/位错与变形、纳米催化材料、半导体材料、能源电池材料、铁电功能材料等七大主题专场邀请60余位业界专家进行了逐一分享。以下是“材料界面/表面先进表征方法”主题专场报告花絮与摘要简介,以飨读者。“材料界面/表面先进表征方法”主题专场现场报告人:香港城市大学 陈福荣报告题目:脉冲电子显微镜对螺旋材料三维原子动态的研究 像差校正电子光学和数据采集方案的进步使TEM能够提供亚埃分辨率和单原子灵敏度的图像。然而, 辐射损伤、静态成像和二维几何投影三个瓶颈仍然挑战者原子级软材料的TEM成像。对于辐射损伤,电子束不仅可以在原子水平上改变形状和表面结构,而且还可以在纳米尺度的 化学反应中诱发辐射分解伪影。陈福荣在报告中分享了如何由脉冲电子控制低剂量到量子电子显微镜的零作用。并介绍了脉冲电子光源提供可控制的低剂量电子光源, 在高时间分辨率下探测3D原子分辨率动力学 方面的研究进展。报告人:南方科技大学 林君浩报告题目:新型二维材料的原子尺度精细缺陷表征与物性关联研究二维材料是目前研究的热点。由于层间耦合效应和量子效应的减弱,大量新奇的物理现象在二维材料中被发现。其中,二维材料中的缺陷对其性能有直接的影响。理解缺陷的原子结构和动态其演变过程对二维材料功能器件的改进与性能提供具有重要意义。然而,只有少数几种二维材料在单层极限下在大气环境中是稳定,大部分新型二维材料,如铁电性,铁磁性或超导的单层材料在大气环境下会迅速劣化,无法表征其缺陷的精细结构。林君浩分享了定量衬度分析技术在二维材料缺陷表征中的应用,以及其课题组在克服二维材料水氧敏感性的一些尝试。报告人:北京大学 赵晓续报告题目:旋转低维材料的原子结构解析与皮米尺度应力场分析理论预测旋转二维材料的超导机制及其他物理学特性与层间电子强关联效应息息相关,然而迄今为止旋转二维材料的摩尔原子结构及其应力场至今未被实验在原子尺度精确测量。鉴于此,赵晓续团队利用低压球差扫描透射电子显微镜对一系列旋转二维材料的原子摩尔结构及其应力场做了深入研究和分析,通过大量实验对比和验证,系统解析出了由于层间滑移所产生的五种不同相。相关工作第一次系统分析了旋转二维材料的精细结构及应力场,对进一步探索和挖 掘旋转材料体系奇异物性有着重要指导意义。 报告人:香港理工大学 朱叶报告题目:Resolving exotic superstructure ordering in emerging materials using advanced STEM新型功能材料的特点通常是在传统晶胞之外呈现有序性。这种复杂的排序,即使是集体发生的,通常也会遭受纳米级的波动,破坏传统的基于衍射的结构分析所需的长期周期性,对精确的结构确定提出了巨大的挑战。另一方面,成熟的像差校正TEM/STEM提供了一种替代的实空间方法,通过直接成像原子结构以皮米级精度来探测局部复杂有序。报告中,朱叶通过系列案例展示了先进的STEM在解决钙钛矿氧化物和二维材料中复杂的原子有序方面的能力。STEM中的iDPC技术帮助课题组能够解开复杂钙钛矿中与调制八面体倾斜相关的奇异极性结构。工作中的表征策略和能力为在原子尺度上探索新兴功能材料的结构-性能相互作用提供了有力的工具。报告人:中国科学院物理研究所 王立芬报告题目:晶体合成的原位电镜研究发展原位表征手段对决定晶核形成的初期进行高分辨探测表征是研究材料形核结晶微观动力学的关键。王立芬在报告中,分享了利用原位透射电子显微学方法,通过设计原位电镜液态池,实时观察了氯化钠这一经典成核结晶理论模型在石墨烯囊泡中的原子级分辨动力学结晶行为,实验发现了有别于传统认知的氯化钠以新型六角结构为暂稳相的非经典成核结晶路径,该原位实验数据为异相成核结晶理论的发展提供了新思路,也为通过衬底调控寻找新结构相提供了新的启发。通过发展原位冷冻电镜技术,研究了水在不同衬底表面的异质结晶过程,发现了单晶纯相的立方冰相较于六角冰的形核生长,展示水的气象异质形核的动力学特性。通过观察到的一系列新现象、新材料和新机制,展示了原位透射电子显微学技术在材料合成研究中的重要应用,因而为材料物理化学领域的研究和发展提供新的实验技术支持和储备。 报告人:北京工业大学材料与制造学部 隋曼龄报告题目:锂/钠离子电池层状正极材料的构效关系和抑制衰退策略 层状结构的碱金属过渡金属氧化物是多种二次电池中重要的一族正极材料体系,具有相近的晶体结构,且普遍具有能量密度高和可开发潜力大的优点,其在锂离子电池中已有广泛的应用,在钠离子电池等新兴储能领域也占据了重要地位。开发层状正极材料需要深入理解材料的构效关系和演变规律,以实现更精准的材料调控和性能优化。从原子角度去解析材料的性能结构关系、演变规律以及表界面物理化学过程,是透射电子显微学的突出优势,并且随着成像技术的发展以及越来越多的新原位表征技术的开发应用,已经实现了对电池材料进行高时空分辨的原子动态表征。隋曼龄报告中,研究内容以电子显微学的表征技术为特色,以锂 /钠离子电池材料层状正极材料为研究对象,揭示正极材料在循环过程中发生的体相衰退机制和表界面演变机理,并在此基础上提出抑制正极材料循环性能衰退的应对策略,展示先进电子显微学技术在电池材料的 基础科学研究和应用开发中可以发挥的重要作用。 报告人:浙江大学 王勇报告题目:环境电子显微学助力催化活性位点的原位设计多相催化剂被广泛用于能源、环境、化工等重要的工业领域。在实际应用中,催化剂上起到关键作用的通常是催化剂表/界面上的小部分位点,即催化剂的活性位点。自从上世纪20年代Hugh Taylor提出"活 性位点"的概念以来,在原子水平确定催化剂活性位点以及理解发生在活性位点上的分子反应机制已成为催化研究的重中之重;研究人员尝试用不同的方法来获取与表界面活性位点有关的各种信息,以实现从原 子水平上对催化剂进行合理设计。然而到目前为止,由于缺乏真实反应环境下活性位点原子尺度的直接信 息以及对其原子水平调控有效的手段,对表界面活性位点的原子水平原位设计仍然具有很大挑战。王勇报告介绍了其课题组利用环境透射电子显微学对催化剂表界面活性位点原位设计的初步探索进展。报告人:吉林大学 张伟报告题目:基于优化Fe-N交互作用的超稳定储能的探索 具有高安全性、低成本和环境友好性的水系电池是先进储能技术未来发展方向之一。然而,在电极材料中进行可逆嵌入/脱出,引发较大的体积膨胀仍然是一个严峻的挑战。六氰化铁(FeHCF)具 有制备简单,成本低,环境友好等特点,是水系电池中常用的正极材料之一。对于传统金属离子,嵌入晶格时引Fe离子价态降低,金属离子向Fe离子方向移动,两者相互排斥,引发晶体内氰键进一步弯曲, 长期循环中造成晶格坍塌。有别于传统的形貌和结构的控制,受工业合成氨和金属铁渗氮中前期Fe-N弱 相互作用的启发,基于电荷载体(NH4+)和电极材料间的相互作用。张伟报告中研究设计了一种与电荷载体相反作用力的Fe-N弱的交互作用,有效解决了体积膨胀问题。报告人:香港城市大学 薛又峻报告题目:高时空分辨零作用电子显微镜设计透射电镜能够以亚埃级的空间分辨率提供单原子灵敏度的图像,原子级的观测需要强烈的电子照射,这通常会造成材料的纳米结构产生改变,辐射损伤仍然是最重要的瓶颈问题。目前主要的手段是利用冷冻电镜在低温环境下降低电子辐射损伤,但样品在急速冷冻的过程中可能会发生形貌结构的改变,冷冻后无法观察到反应过程的动态信息。制造可实现探测电子和材料间无作用量测的量子电子显微镜,可以用来克服辐射损伤的瓶颈问题。薛又峻报告表示,香港城市大学深圳福田研究院在深圳市福田区的支持下,已开发了具有脉冲电子光源的紧凑型电子显微镜的关键零部件。团队在这个基础上,设计了搭配脉冲电子光源使用的量子谐振器,作为达成量子电子显微镜的关键部件。也设计了基于多极子场的电子谐振腔、配合量子谐振腔的其他关键部件等。基于脉冲电子光源的量子电子显微镜设计开发,可望解决辐射损伤的关键问题,成为纳米尺度下 研究软物质材料的新一代利器。 报告人:南京航空航天大学分析测试中心 王毅报告题目:基于直接电子探测成像的4D-STEM在功能材料的应用传统的扫描透射(STEM)成像,采用环形探头在每一个扫描点,记录一个单一数值/信号强度,构成 2维的强度信号。直接电子探测相机的高帧率使得在每一个扫描点,完整记录电子束斑穿透样品后的衍射 花样(CBED)成为可能,由此构成四维数据 (2维实空间和2维倒易空间),被称为4D-STEM (亦被称为扫描电子衍射成像)。通过四维数据的后期处理,不仅可以实现任意常规STEM图像的重构,比如明场像,环形明场像,环形暗场像等,不再受限于一次试验中可使用的STEM探头和相对收集角度的限制;而且也可以提取更多材料的信息,比如材料的结构、晶体的取向、应力、电场或磁场分布等, 而随着4D-STEM而产生的电子叠层衍射成像技术已被证明可进一步提高电镜的分辩率,能更有效利用电子束剂量,在对电子束敏感材料有着广大的应用空间。王毅在报告中以几种典型的功能材料为例,介绍了基于直接电子探测成像的4D-STEM和电子能量损失谱在实现原子分辨像和原子分辨元素分布研究方面的进展。 报告人:南方科技大学 王戊报告题目:DPC-STEM成像技术研究轻元素原子占位和电荷分布 新兴成像技术的发展和应用促进着材料微观结构的表征和解析,差分相位衬度-扫描透射电子显微成像技术(DPC-STEM)不仅能实现轻重原子同时成像,也能获取材料的电场和电荷分布信息。王戊分享了使用DPC-STEM成像技术,在低电子束剂量下,研究有机半导体氮化碳材料的轻元素原子占位。实现三嗪基氮化碳晶体的原子结构清晰成像,揭示三嗪基氮化碳晶体的蜂窝状结构、三嗪环的六元特征及插层Cl离子的位置所在,并发现框架腔内的三种Li/H构 型。进一步通过实验和模拟DPC-STEM图像相互印证,明确氮化碳材料中轻元素Li和H原子的占位。基于DPC-STEM的分段探头,计算由样品势场引起的电子束偏移,获得材料的本征电场和电荷信息。 基于DPC-STEM技术获得的原子尺度电场和电荷分布信息,进一步揭示原子之间电场的解耦效应,以及电子的转移和重新分布。报告人:上海微纳国际贸易有限公司 赵颉报告题目:Dectris混合像素直接电子探测器及其在4D-STEM中的应用由于提供了从样品中获取信息的新方式,4D-STEM技术在电子显微镜表征方法中越来越受到重视。在混合像素直接电子探测技术不断发展的情况下,混合像素直接电子探测器能够实现与传统STEM成像类似的采集速率进行4D-STEM数据采集,特别是能够事现驻留时间小于10µs。除了在给定的实验时间内扩展4D-STEM表征视场和数据收集,使用混合像素直接电子探测器可以更全面地记录相同电子剂量下的散射花样信息。赵颉介绍了Dectris混合像素直接电子探测器技术的最新发展,该技术现在允许4D-STEM实验,其设置与传统STEM成像类似,同时单像素采集时间低于10µs。同时介绍了虚拟STEM探测器成像和晶体相取向面分布分析的应用实例。
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱,周东山,胡文兵南京大学化学化工学院配位化学国家重点实验室机构 南京210023作者简介:胡文兵,男,1966年生.南京大学化学化工学院高分子系教授、博士生导师.1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系.分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究.2004年至今,在南京大学任教.2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APSFellow).主要研究方向为采用蒙特卡洛分子模拟和FlashDSC研究高分子结晶机理及材料热导率表征 通讯作者:胡文兵,E-mail:wbhu@nju.edu.cn摘要:示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点.近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究.温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容.闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能.本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望.本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词:高分子表征/示差扫描量热法/温度调制示差扫描量热法/闪速示差扫描量热法目录1.热分析基础1.1温度和热1.2热分析(thermalanalysis)2.示差扫描量热法2.1基本原理2.2实验技巧2.2.1仪器校准2.2.2样品制备2.2.3温度程序2.2.4保护气氛2.3应用举例2.3.1比热容2.3.2热转变温度2.3.3转变焓2.3.4DSC与其他技术连用3.温度调制示差扫描量热法3.1基本原理3.2实验技巧3.2.1样品质量3.2.2温度程序3.3应用举例3.3.1可逆热容和不可逆热容3.3.2等温可逆热容3.3.3玻璃化转变4.闪速示差扫描量热法4.1基本原理4.2实验技巧4.2.1样品制备4.2.2样品质量4.2.3临界条件4.3应用举例4.3.1等温总结晶动力学4.3.2不可逆熔融转变4.3.3与其他表征技术连用4.3.4玻璃化转变4.3.5热导率5.总结与展望参考文献1.热分析基础1.1温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度.热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量.热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度.值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度.然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小.例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的.通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标.1714年,Fahrenheit将水的冰点设为32°F,沸点为212°F,建立了华氏温度.1742年,Celsius将水的冰点设为0°C,沸点为100°C,建立了摄氏温度.到1779年为止,全世界并存有19种经验温标.然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致.此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系.例如,水银在−39°C发生固化,在357°C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间.1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标.相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15K.摄氏温度与热力学温度之间的关系为即,摄氏温度的0°C对应热力学温度的273.15K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索.早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的.一直到18世纪中叶以前,热质说(theoryofcaloric)盛行.18世纪后期,人们开始通过实验证明热是粒子内部的运动.19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C(JK−1)来表征,表示物体温度升高1K所吸收的热量(单位J),而单位质量(克,g)物体升高1K所吸收的热量为比热容cm(JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数,在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy).它与内能的关系为由此得到等容热容和等压热容的关系为1.2热分析(thermalanalysis)广义上来说,所有控制温度的测量过程都可以称为热分析.1999年,国际热分析和量热协会(InternationalConfederationforThermalAnalysisandCalorimetry,ICTAC)和美国材料与试验协会(AmericanSocietyforTestingandMaterials,ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术.(Agroupoftechniquesinwhichaphysicalpropertyofasubstanceismeasuredasafunctionoftemperatureortimewhilethesubstanceissubjectedtoacontrolled-temperatureprogram.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等.按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differentialthermalanalysis,DTA)、示差扫描量热法(differentialscanningcalorimetry,DSC)、热机械法(thermomechanicalanalysis,TMA)、热重分析法(thermogravimetricanalysis,TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术.它是目前应用最为广泛的一种热分析技术.随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展.其中一个主要的进展是在20世纪90年代出现的温度调制DSC(temperature-modulatedDSC,TMDSC).TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分.TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容.DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scanchip-calorimetry,FSC).FSC其商业化版本为FlashDSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2.示差扫描量热法2.1基本原理示差扫描量热法起源于19世纪中期.1887年,LeChatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线.1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA).然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8]改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关.对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流.这一发现最终导致了热流型DSC的诞生.热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源.1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率.此后,DSC技术不断发展并成为热分析领域的常规分析手段.目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heatfluxDSC)和功率补偿型示差扫描量热仪(powercompensationDSC)两类[11].热流型DSC的测试装置如图1所示.图1Figure1.Illustrationofheat-fluxDSC(Mettler-Toledoheat-fluxDSC)withtheheatingratecontrolledthroughthefurnacetemperature.TherearetwosetsofthermocouplesmeasuringtheheatflowbetweenthefurnaceandthepanforsampleandreferenceandtwocentralterminalsbringingtheaverageTsignalfromallthethermocouplesouttothecomputer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率.由热欧姆定律可知,由炉体流到试样坩埚的热流[MathProcessingError]ϕs以及由炉体流入参比坩埚的热流[MathProcessingError]ϕr分别为[12]其中,[MathProcessingError]Ts、[MathProcessingError]Tr和[MathProcessingError]Tc分别为试样温度、参比温度和炉体温度,[MathProcessingError]Rth为热阻.DSC检测信号[MathProcessingError]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[MathProcessingError]ϕ与试样和参比物之间的温差[MathProcessingError]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线.另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图2Figure2.Illustrationofpower-compensationDSCasinventedbyPerkinElmerwiththereferenceandthesampleseparatelyheatedbytwoplatinumresistancethermometersintwocalorimetersmountedinaconstanttemperatureblock.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快.为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2实验技巧2.2.1仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合.校准的内容主要包括DSC曲线上的温度值以及热流速率值.因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值.常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准.图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图3Figure3.Illustrationofthecalibrationoftemperatureandheat-flowratewiththestandardmaterialIndiumforDSCmeasurement.Thecurveischaracterizedbyitsbaselineandtheendothermicprocesswithsomecharacteristictemperaturesincludingthebeginningofmelting,Tb,theextrapolatedonsetofmelting,Tm,thepeaktemperature,Tp,andtheendofmeltingwherethebaselineisfinallyrecovered,Te.Generally,Tmisthemostreproduciblepointasanaccuratemeasureoftheequilibriumtemperaturewhichareusedforthetemperaturecalibration.Thepeakareabelowthebaselinecanbecomparedwiththeexpectedfusionheatofstandardmaterialsforthecalibrationoftheheatflowrate.2.2.2样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等.其中最常用的是铝坩埚,包括40μL标准铝坩埚和20μL轻质铝坩埚.带盖的40μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试.20μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试.称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性.此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量.一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度.然而样品质量过少会导致信号的灵敏度较低.因此,在称量样品时需要综合考虑两者的影响.通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10mg,无机样品的质量为10~50mg[12].称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量.称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方面.一是保证样品与坩埚之间具有良好的热接触,以提高信号的分辨率和测试结果的可重复性.这要求样品具有较平的底部,最好是细粉末状或者是平整的薄片.若样品底部不规则,可以用20μL的轻质铝坩埚的坩埚盖将样品压在坩埚底部,或者将样品研磨成粉末.二是注意不要污染坩埚.残留在坩埚表面的样品很有可能会污染传感器,导致一些信号假象,并且会使热传导变差.三是选样应具有代表性并保证样品的均匀性.装样完成之后盖上坩埚盖,并在盖子上钻一个大孔(1mm),或者多钻几个小孔.这样做的目的,一是形成一个自由扩散的气氛,二是防止样品在加热过程中因体积膨胀而掀翻盖子溅出坩埚,污染传感器[12].2.2.3温度程序在设计温度程序时需要选择合适的温度范围和升降温速率.在终点温度不超过样品的分解温度的前提下,扫描的温度范围应该足够宽,以保证能检测出所有目标热效应的热流信号,同时保证在热效应之前和之后的热流曲线具有较平稳的基线.升降温速率的快慢会影响测试曲线的峰形和转变温度等.较快的升温速率有利于提高测试灵敏度和效率,但会导致峰形变宽.而较慢的升温速率可提高测试的分辨率.传统DSC的升降温速率范围通常在0.1~250Kmin−1之内,使用不同的制冷机可得到不同的扫描速率范围,常用的升降温速率在10~20Kmin−1左右.设计温度程序时还需要在升降温片段的两端加上时间较短(2s)的等温片段,以保证样品在升降温扫描之前已经达到了稳态.通常需要将设计的温度程序重复试验几次,确保测试结果的可重复性[13].2.2.4保护气氛DSC测量需要往炉体内通入某一恒定流速的气体以形成特定的稳态气氛.气氛可以为惰性的、反应性的或者腐蚀性的,在不同的气氛条件下测量可获得不同的测试信息.通入惰性气体可以防止测试过程中发生水气凝结,污染物沉积,高温氧化等现象.常用的高纯度惰性气体有氮气、氦气和氩气等.氮气是最常用的保护气氛,它在约600°C以下都是惰性的,并且具有较好的热传导能力,能得到分辨率和灵敏度较好的实验结果.氩气常用于金属的高温测试.氦气的热传导性能最好,在DSC测试中常被用于提高信号时间常数以及低温区的测量.测试过程中调节减压阀,保证气体流速平稳,使实验结果具有较好的重现性.通常气体的流速为20~100mLmin−1,最常用的为50mLmin−1[14].当需要通入反应性或者腐蚀性气体时,应注意操作的规范性,减小气体对仪器的腐蚀和伤害,保证所有的安全措施都到位.在使用仪器的过程中需要开启制冷机,保证有稳定的冷源作为参考温度源,以提高信号曲线的可重复性.制冷机使用结束之后,需要进行除水操作,以免水分残留在仪器内,造成测试结果不稳定.2.3应用举例2.3.1比热容DSC一般采用三段法测量样品的比热容[15].以相同的扫描速率进行如下3次实验:(1)样品盘和参比盘上分别摆放一个空坩埚,进行空白实验,得到空白信号[MathProcessingError]φempty(T).(2)将标准物质蓝宝石放入试样盘的空坩埚中,参比盘保持原先空坩埚,测量得到参比信号[MathProcessingError]φsapphire(T).(3)将样品放入试样盘的空坩埚中,参比盘保持原先空坩埚,测量得到样品信号[MathProcessingError]φsample(T).图4是采用三段法测量比热容的热流曲线示意图.图4Figure4.HeatflowcurvesofstandardsapphireandunknownspecimenswhereDs(mW)istheverticaldisplacementbetweenthebaselineandthespecimenDSCthermalcurvesatagiventemperaturewhileDst(mW)isverticaldisplacementbetweenthebaselineandthesapphireDSCthermalcurvesatagiventemperature.由蓝宝石的比热容[MathProcessingError]cm,sapphire、样品和蓝宝石的质量[MathProcessingError]m可求出样品的比热容:更多的有关高分子标准热容数据可从ATHAS(AdvancedTHermalAnalysiS)[16]等数据库中查找.2.3.2热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点.玻璃化温度[MathProcessingError]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度.研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义.玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点.图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[MathProcessingError]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[MathProcessingError]Tb1和外推终止温度[MathProcessingError]Te1,这两点的中点即为玻璃化转变温度[MathProcessingError]Tg.图5Figure5.Theheat-flowrate(theuppercurveintheleftaxis)anditsderivative(thelowercurveintherightaxis)curvesintheglasstransitionregionwithsomecharacteristictemperaturesincludingthebeginningofglasstransitionTb,theextrapolatedonsettemperatureTb1,themidpointtemperatureTg,theinflectiontemperatureTi,theextrapolatedendtemperatureTe1andthetemperatureofreturn-to-baselineTeaslisted.TheglasstransitionisdeterminedbyTg(°C)—thepointonthethermalcurvecorrespondingtothehalfoftheheatflowdifferencebetweentheextrapolatedonsetandextrapolatedend.玻璃化转变温度与升降温速率、杂质、样品尺寸等有关.因此,测试结果应该标注测量时的升降温速率.小分子一般取熔融峰前端的延长线与基线的交点,即熔融起点作为熔点.然而高分子化合物具有较宽的片晶厚度分布,因而具有较宽的熔程,导致其熔点的测量方法与小分子化合物不同.一般取高分子熔融峰的峰顶点温度作为熔点.2.3.3转变焓DSC的一个重要用途就是测量聚合物的转变焓,包括熔融焓、结晶焓、反应焓等等.转变焓一般是通过对DSC热流曲线峰面积进行积分得到的.当转变峰曲线左右两边的基线水平时,可通过直接连接转变前后的基线进行面积积分.当聚合物的熔程较宽或者基线发生较大偏移时,简单的基线法无法较为准确地计算转变焓.此时,可根据相转变过程中吸收的熔融热的多少来确定基线的位置,也可简单地根据峰顶的位置将熔融峰分成左右两部分,两边使用各自的基线来加和计算[11].更多的定量计算可通过计算机程序[18]或者去卷积[19]计算得到.2.3.4DSC与其他技术连用随着红外光谱仪(infraredspectrometer,IR)、X射线衍射(X-raydiffraction,XRD)、色谱等常规技术的不断发展,DSC技术与常规技术的连用成为了目前高分子研究的方向之一.通过结合多种表征技术的优势,可以获得高分子样品在相转变以及反应过程中的形貌结构、组成成分、热性能、机械性能等多种信息,帮助研究者从多个角度、更深层次地理解高分子在热转变过程中的内在机理.DSC与X射线衍射、原子力显微镜(atomicforcemicroscopy,AFM)、拉曼光谱等技术的连用被广泛应用于研究高分子的相转变机理,包括晶体结构的相转变[20]、嵌段共聚物中的微相分离与结晶的相互作用[21],以及共混物中的分级结晶行为[22]等.高分子在实际加工过程中不仅要进行退火等热处理,通常还会在拉伸场和剪切场下进行取向.因此,将DSC与动态热机械分析(dynamicmechanicalanalysis,DMA)等技术连用有助于推进对高分子的聚集态结构在拉伸和取向状态下随温度变化的相关研究[23].3.温度调制示差扫描量热法3.1基本原理DSC样品的热流信号[MathProcessingError]ϕ可分为显热流[MathProcessingError]ϕsens和潜热流[MathProcessingError]ϕlat2个部分[24].其中,[MathProcessingError]mcpβ为显热流,对应于样品的比热容,它依赖于样品的升降温速率.[MathProcessingError]mΔhrdαdt为潜热流,对应于样品中的物理化学过程,如化学反应、结晶过程或蒸发过程等等,它依赖于远离平衡态的内部变量的变化,不具有很强的升降温速率依赖性.然而,潜热流所带来的样品组分变化会影响显热流所对应的比热容,传统DSC只能测定总热流随温度或时间的变化,无法有效地区分潜热流和显热流.另外,传统DSC也无法测量等温过程的比热容.为了解决上述问题,人们注意到显热流给出的是一个可逆信号,而潜热流大多反映不可逆热过程,于是在线性温度程序上叠加一个很小的调制温度,来区分可逆和不可逆热流信号,由此发明了温度调制示差扫描量热法(TMDSC).早在20世纪初,温度调制技术就被应用到了量热研究中.1910年,Corbino[25,26]发展了调制量热仪的理论,并首次采用3ω法(third-harmonicmethod)[27]测量了导电铁丝的热容.20世纪60年代,由于实验技术的进步,调制量热法取得了相当大的进展,Kraftmakher[28]、Sullivan和Seidel[29]开始提出AC量热法.1971年,Gobrecht[30]等采用DSC直接测量出无机聚合物在玻璃化转变处的频率依赖的复合热容,这可以被认为是首次TMDSC实验.直到1992年,Reading在第九届北美热分析会上正式提出温度调制示差扫描量热法[31~34],随后美国TA公司推出首个调制DSC的专利技术,称为MDSC.此后,随着计算机技术的进步,各家热分析供应商相继推出类似的温度调制程序专利技术,TMDSC成为热分析领域的标准工具并被广泛应用于聚合物分析表征研究.通过引入一个调制温度,TMDSC在较慢的线性升温速率的基础之上获得了一个瞬间的剧烈温度变化,从而得到兼具较高的灵敏度和分辨率的热流信号,能实现重叠热效应的有效分离以及准等温过程可逆热容的测量.目前最常用的TMDSC是正弦波模式温度调制,其温度程序为,其中,[MathProcessingError]T0为开始温度,[MathProcessingError]β0为基础升温速率,AT为温度振幅,[MathProcessingError]ω=2πtp为调制频率,[MathProcessingError]tp为调制温度周期.图6和图7分别展示了正弦波形TMDSC的温度程序以及实验测得的热流信号,该调制热流信号是对温度程序的正弦同步响应,其相对温度程序有相位差[MathProcessingError]φ的滞后.图6Figure6.TypicaltemperatureprofileofsinusoidalTMDSC(blueandsolidcurve)anditsunderlyingheatingratecurvewith[MathProcessingError]β0of1Kmin−1(redanddashedline).TheamplitudeofmodulationATis0.5K,theperiodofmodulation[MathProcessingError]tpis60s.(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)图7Figure7.Theheat-flowcurvemeasuredbythesinusoidaltemperature-modulatedDSC(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)对图7中热响应信号进行平均化计算得到总热流[MathProcessingError]⟨ϕ(t)⟩曲线如图8所示.总热流曲线相当于常规DSC曲线,由总热流可求出总热容.图8Figure8.Thetotalheat-flowcurveofasinusoidalTMDSCcurve.(ReprintedwithpermissionfromRef.[24] Copyright(2009)PolymerBulletin)进一步采用离散傅里叶变换对图7曲线去卷积分析,其中,[MathProcessingError]ϕc(t)是对加热速率无滞后的周期性热流分量,由[MathProcessingError]ϕc(t,ω)可计算可逆热流:由总热流减去可逆热流即可得到不可逆热流:另一种常见的TMDSC为锯齿形TMDSC,其温度程序为:图9展示了锯齿形DSC的温度程序图,其中,[MathProcessingError]T0=0∘C,[MathProcessingError]β0=1Kmin−1,[MathProcessingError]βmod=3Kmin−1,[MathProcessingError]tp=60s.图9Figure9.TypicaltemperatureprofileforsawtoothTMDSC(solidline)anditsdeconvolutedunderlyingheatingrate[MathProcessingError]β0of1Kmin−1andthereversingrateoftemperaturechangeof±3Kmin−1(dashedlines).T1andT2indicatethebeginningsandendsofthecycles,respectively.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)图10展示了由锯齿形TMDSC得到的线性即时响应的热流信号图.一般来说锯齿形TMDSC的升降温程序比较长,可提供足够的反应时间以保证样品在由升温转换为降温(或者由降温转换为升温)之前达到稳态.一般每个升温或降温片段都需要至少30s的仪器调整时间来达到热响应信号的稳定值,如图11所示.因此,在数值计算时,只需要取热流信号接近于上限或者下限的那部分数据,并将热流信号延长至升温或者降温片段的起始处,即可得到如图10所示的热流信号.可在锯齿形TMDSC程序中间隔插入等温程序,以检测体系是否达到稳态以及基线的平稳性.图10Figure10.Illustrationofthelinearthermalresponse(solidlines)forthetemperatureprofileofFig11.Thelightlydottedboxesandtheheavilydottedboxesseparatelyindicatetheunderlyingandthereversingresponses.Theheavylinerepresentstheheatflowrate[MathProcessingError]ϕ(t).Thepseudo-isothermallevel(Ps),thezerolevel(0)andthevalueofupperandlowerlimitsoftheheatflowrate[MathProcessingError]ϕhand[MathProcessingError]ϕcaremarked,respectively.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)图11Figure11.IllustrationofthenonlinearthermalresponseineachcyclemeasuredbysawtoothTMDSCwhereHFhandHFcseparatelyrepresenttheheatflowratemeasuredintheheatingandcoolinghalfcycles.首先对锯齿形TMDSC的响应信号进行平均化计算得到基本信号[MathProcessingError]⟨HF(t)⟩,由基本信号[MathProcessingError]⟨HF(t)⟩可以求出总的热容信号:锯齿形TMDSC的热流信号无需傅里叶转变,可直接由升降温的热流信号求出可逆热容,该结果能达到与标准DSC相同的准确度.由总热容减去可逆热容求出不可逆热容但是此处往往过高地估计了可逆热容,会导致不可逆信号成为负信号,采用常规正弦波调制时在高分子熔融峰温度范围内常常将其解读为熔融重结晶的信号,因此需要计算不平衡热容[MathProcessingError]Cp,imbalance来反映不可逆热容的真实趋势.[MathProcessingError]Cp,imbalance反映了不可逆热流在升降温中的差异,对于准确解读晶体熔融等复杂过程的不可逆热容部分有重要意义[35].3.2实验技巧3.2.1样品质量TMDSC的实验操作与常规DSC相同.TMDSC要求样品与坩埚的热传递良好,因此,样品质量和厚度越小越好.样品质量太大会导致热滞后效应加剧,响应周期延长,测量的有效频率和振幅范围减小.3.2.2温度程序正弦波模式温度调制得到的计算结果精度较高,但要求热响应信号呈线性且平稳变化,而通常实验得到的热信号会与仪器的热滞后信号耦合,影响测量的准确度.此外,正弦波模式的傅里叶变换仅仅计算了一次谐波项,导致在有些热效应中过高地估计了可逆热流.锯齿模式温度调制的数据处理过程更为简单可靠,测量结果可以达到普通DSC的精确度.锯齿模式温度调制无需进行傅里叶分析,因此可以直接在时间域中分析不可逆过程以及慢热过程,保证在测试过程中样品处于稳态,避免由于基线不稳定导致的分析误差[35].实际测试时需要根据测试要求选择不同的温度调制模式.TMDSC的参数有基础升温速率、调制频率以及调制振幅.TMDSC的基础升温速率较慢,通常在1~3Kmin−1,以保证热流信号具有较高的分辨率.而调制振幅和调制频率的设置更为复杂,需要保证在测试的热效应范围内出现4~5个振荡周期.通常温度振幅为0.5~2K,调制周期通常为30~120s.调制振幅和调制频率过高时,会超出仪器的响应周期.而当调制振幅和调制频率过低时,热流信号会受到基线漂移的影响,而且快速相转变过程中的有效调制周期数过少,信号分辨率下降.3.3应用举例3.3.1可逆热容和不可逆热容TMDSC的一个重要应用是区分可逆热容和不可逆热容信号.胡文兵等[35]采用锯齿形TMDSC研究PET在升温过程中发生的热效应,得到图12所示的比热容随温度变化的关系图.其中,黑点代表的是ATHAS数据库所提供的无定形PET在不同温度下的标准比热容数据.虚线为总比热信号,该曲线表明PET在升温过程中依次出现了玻璃化转变、冷结晶以及熔融.而实线代表了可逆比热信号,它包括了较低温度区域的玻璃化转变和较高温度区域的熔融峰.可逆比热曲线上的熔融峰与总比热曲线的熔融峰面积相近,说明计算得到的熔融可逆信号偏大.由总热流信号减去可逆热流信号,得到不可逆比热信号如图中短线-点-短线符号代表的曲线所示.除了冷结晶峰和熔融峰,不可逆比热曲线在500K左右出现了一个向下的放热峰,这似乎表明PET在高温区发生了熔融重结晶.进一步计算不平衡热容,得到图中细点组成的曲线.该曲线与不可逆热容曲线相比仅出现了向上的熔融峰,说明不可逆比热曲线上高温区的负信号并非熔融重结晶.上述结果表明,实际实验过程中的热流信号并非完全的线性和稳态,非线性热流信号与非稳态热流信号发生耦合,会导致可逆热容信号偏大,进一步将其从基线热容扣除会导致不可逆热容信号出现负值.而锯齿形TMDSC中的不平衡热容能够避免不可逆热容负值的出现,更为正确地反映不可逆热容的偏移方向.图12Figure12.Theheatcapacitycurvesofpoly(ethyleneterephthalate)(PET)measuredbysawtoothTMDSCwithtemperatureprofileofFig.11.TheheatflowdataisanalyzedwiththestandardDSCmethod:reversingheatcapacityfromEq.(26),totalheatcapacityfromEq.(25),non-reversingheatcapacityfromthedifferencebetweentotalandreversingheatcapacity,andimbalanceofheatcapacityfromEq.(28).AlsolistedaretheATHASdatabankdatafortheheatcapacityofamorphousPET.(ReprintedwithpermissionfromRef.[35] Copyright(2014)SpringerNature)3.3.2等温可逆热容TMDSC的另一个重要应用是测量等温可逆热容.传统DSC只能通过测量在一定温度梯度下的热流变化来测量热容,因此,传统DSC无法测量等温过程中的热容及其变化.而TMDSC可以在基础升温速率为零的条件下,给样品施加一个调制的微小扰动速率,对样品进行准等温TMDSC实验,测量样品在等温过程中的热容及其变化.图13是Wunderlich[36]对PET进行准等温TMDSC实验得到的比热容随温度变化的示意图.图中较粗的实线代表了准等温实验测量得到的可逆比热容,较细的实线表示采用普通DSC在10Kmin−1的速率下测量得到的表观比热容,虚线表示理论计算得到的完全可逆的分子热振动比热容.3条曲线在熔融峰区域以外的比热值基本一致.而在熔融峰区域内,可逆比热值远小于表观比热值,这是因为标准DSC测量结果还包括了熔融相变潜热的释放.另一方面,熔融峰区域的可逆比热仍高于基础热振动比热,这表明PET在熔程内出现了剩余热容,这部分剩余热容与半结晶高分子中大量存在的晶区与非晶区界面有关.进一步研究发现,当升温速率较快时,剩余可逆热容会被抑制,由此推测剩余热容与晶体界面区的可逆熔融有关[37,38].图13Figure13.TheapparentheatcapacitycurvesofPETduringtheheatingprocessaftercrystallizedbycoolingfromthemeltto44%crystallinity.ThestandardDSCcurveandTMDSCcurveareseparatelywithintermediateandheavythickness.Alsoplottedarethedata-bankinformation(thinline)andthecomputedheatcapacityforthesampleof44%crystallinePET(brokenline).(ReprintedwithpermissionfromRef.[36] Copyright(2014)Elsevier)胡文兵等[39]进一步采用准等温TMDSC研究了几种链滑移能力不同的高分子在熔融温度范围内可逆热容的变化.结果表明,链滑移能力较强的PE和PEO具有较大的可逆热容,而链滑移能力不强的PCL和PET测量得到的可逆热容较小,与熔体热容相近.这种差别说明,剩余可逆热容是由发生在高分子片晶折叠端表面的可逆熔融所导致的,这种可逆熔融过程与分子链的链滑移能力密切相关.作者由此提出了图14所示的折叠端表面的可逆熔化机制.图14Figure14.Illustrationofreversiblepremeltingonthefold-endsurfaceofpolymerlamellarcrystals.Thereexistsalocalforcebalancebetweentherecoverytendencyofthestretchedloopsandthethickeningtendencyofthelamellarcrystals(seearrows).(ReprintedwithpermissionfromRef.[39] Copyright(2014)AmericanChemicalSociety).在高温区,为了满足表面环圈和纤毛的构象熵增大的需求,片晶折叠端表面的一部分链茎杆将通过滑移的方式抽出片晶,导致片晶的减薄,部分晶体发生熔融.而在低温区,过冷度较高,结晶的热力学驱动力增强,在高温区部分熔融的片晶将通过链滑移进行晶区恢复,导致片晶增厚.因此,随着温度的周期性变化,片晶折叠端表面出现可逆的熔融潜热释放,TMDSC信号上表现出超出分子热振动热容显著的剩余可逆热容.江晓明等[40]采用TMDSC比较了α和β这2种不同晶型的iPP在高温下的可逆热容,并采用MonteCarlo分子模拟研究了上述调制过程.结果如图15所示,2种晶型的iPP的可逆热容均随着调制频率的升高而降低,其中,链滑移能力较高的β晶型iPP具有更高的可逆热容,从而证明了链滑移能力在片晶折叠端表面的可逆熔融过程中的重要作用.图15Figure15.(a)Theheat-flowratecurve(theblackcurveintherightaxis)ofthedopediPPasaresponsetothetemperature-modulationprogram(theredcurveintheleftaxis)withthefrequency12.5Hz,theamplitude±1Kandthebaselineannealingtemperature398K.(b)FrequencydependencesofspecificreversingheatcapacitiesofrawanddopediPPsamplesmeasuredbysawtoothTMDSC.ThedashedlinerepresentsthestandardspecificvibrationalheatcapacityforiPPmeltat398Kthatiscitedfromtheliterature[41].(ReprintedwithpermissionfromRef.[40] Copyright(2014)Elsevier)3.3.3玻璃化转变玻璃化转变常常与焓松弛、冷结晶等热效应重叠,TMDSC可以有效地区分玻璃化转变和其他热效应,从而准确测量玻璃化转变温度.图16是采用TMDSC测量PS在353.15K等温240min后的升温热流曲线,左边的图包括了原始调制热流信号以及相应的总热流信号、可逆热流信号和不可逆热流信号.将左图的纵坐标放大可得到右图,其中玻璃化转变为可逆热流信号,而焓松弛为不可逆热流信号,TMDSC可有效分离这2种热效应[42].图16Figure16.TMDSCmeasurementwiththeunderlyingheatingrate2Kmin−1,modulationperiod80.5s,andmodulationamplitude1.0KforPSafterannealingfor240minat353.15Kinordertoseparatethereversingandnon-reversingcontributionstotheapparentheatcapacityintheglasstransitiontemperatureregion.Leftfigure:Modulatedheatflow,theslidingaverages,andtheevaluatedreversingandnon-reversingheatcapacities Rightfigure:Expandedscaledrawingsofthethreeslidingaverages.(ReprintedwithpermissionfromRef.[42] Copyright(2014)Elsevier)玻璃化转变是一个动态变化过程,其热容变化具有频率依赖性.TMDSC能在2个时间尺度上测量玻璃化转变,包括较快的调制频率和较慢的平均升降温速率.其中,调制热流信号测得的玻璃化转变温度与其热历史(最大升降温速率、退火温度等)无关,而只与调制频率有关,因此,TMDSC可以准确测量玻璃化转变过程中的热容变化的频率依赖性.例如,图17是采用TMDSC测量PLA-H(含有16.4%D型旋光异构体的左旋聚乳酸PLLA)在不同调制频率下由373K降温至283K过程中的可逆比热容曲线.TMDSC的温度程序的参数为:基础降温速率为0.1Kmin−1,温度振幅AT为0.05~0.5K,调制周期p为10~100s.在测试过程中,保持最大降温速率ATω不变,ATω=π/100,改变调制频率,ω=0.01~0.1Hz,得到不同调制频率下的玻璃化转变温度,由此可计算出PLA-H在玻璃化转变区域的活化能[43].图17Figure17.SpecificreversingheatcapacitycurvesofPLA-Hcooledfrom373Kto283KinTMDSCatdifferentmodulationfrequencies.Theunderlyingcoolingrateis0.1Kmin−1,andthemaximumcoolingrateATωremainsatπ/100withthemodulationamplituderangingfrom0.05Kto0.5Kandthemodulationperiodrangingfrom10sto100sresultinginawiderangeofmodulationfrequencyfrom0.01Hzto100Hz.(ReprintedwithpermissionfromRef.[43] Copyright(2014)AmericanChemicalSociety)4.闪速示差扫描量热法4.1基本原理20世纪60年代以来,DSC就已经成为了高分子材料研究领域尤其是高分子结晶学研究领域常用的实验研究手段.然而,传统DSC的扫描速率比较小,一般在0.01~5Ks−1数量级范围内,阻碍了高分子结晶学领域研究的深入发展.一方面,常规DSC无法抑制结晶速率较快的半结晶高分子样品在降温过程中的结晶成核以及在升温过程中的结构重组,从而限制了在较低温度区域内对高分子结晶成核行为的研究.另一方面,由于实际生产加工过程中的降温速率极高,例如吹塑和注塑的降温速率可达到100~1000Ks−1,因此常规DSC无法模拟高分子在实际生产加工过程中的结晶环境[44,45].DSC的升降温速率以及温度控制的灵敏度亟待提高.然而,较快的升温速率会导致样品内部出现较大的温度梯度,热滞后影响了热流信号的可重复性和准确性,依照DSC的热流信号公式(29),在提高扫描速率q的基础之上减小样品质量m,既可以保证热流信号的灵敏度,同时也减轻了较大质量的样品在快速扫描过程中的热滞后效应.因此,DSC开始朝着微型化、高速化发展,闪速示差扫描量热仪(FSC)由此诞生.FSC采用氮化硅芯片传感器替代传统DSC的坩埚,将样品质量由原来的毫克级别减小到了纳克级别,有效避免了样品内部的热滞后,并能通过芯片传感器进行温度的控制和热量的补偿,实现了快速的升降温扫描,大大拓展了高分子表征的时间和空间灵敏度.FSC技术得益于20世纪90年代氮化硅薄膜和微机电系统(microelectromechanicalsystems,MEMS)技术的发展.1994年,Hellman等[46]首次制备出无定形氮化硅薄膜传感器,并基于该传感器研制出附加热容约为4×10−6JK−1的交流式薄膜微量热仪.微小的附加热容能有效避免热滞后,有利于扫描速率的提升.2004年,Allen等[47,48]基于氮化硅薄膜传感器研发出升温速率可达到105Ks−1的薄膜示差扫描量热法(thinfilmdifferentialscanningcalorimetry,TDSC).然而,TDSC采用了真空环境制备准绝热条件,导致仪器散热困难,无法实现快速的降温扫描.同年,Schick等[49,50]采用商用热导器件TCG-3880(XensorIntergrations,NL)优化功率补偿型薄膜芯片量热仪,使用氮气、氦气等气氛,将非绝热环境下可控的降温速率提高到106Ks−1.2005年,唐祯安[51]研发出加热速率可达2×105Ks−1的微量热仪.近年来,周东山设计出冷热台型高速扫描量热仪,可将高速扫描量热技术与显微红外光谱、拉曼光谱、X射线衍射以及原子力显微镜等微结构光学表征技术连用[52],能够捕捉结晶性高分子及液晶小分子的亚稳态结构,更准确地表征高分子多相结构转变、共混及共聚物中结晶相空间结构、以及纳微米受限态下高分子的成核结晶动力学[53~55].随着氮化硅薄膜技术的发展,商业化的快速扫描量热仪的研发也不断取得进展.从2003年起,Xensor、Anatech、SciTe三家公司开始合作研发商业化快速扫描量热仪,并在随后开发出XI-400型陶瓷基板芯片传感器(UFS1).2010年,瑞士Mettler-Toledo公司(国内称梅特勒公司)[56]基于UFS1芯片传感器技术成功开发出第一代商业化功率补偿型快速扫描量热仪FlashDSC1.图18是FlashDSC1设备的示意图.左上角展示了FlashDSC1的仪器主机及其配备的显微镜.该显微镜由德国莱卡公司生产,放大倍数为2000,主要用于辅助样品制备和观察芯片传感器的状况.右上角是该仪器配备的XI-400型陶瓷(UFS1)芯片传感器,传感器背部有16个接触位点,可与主机芯片装载台上的接线柱相连接,实现温度控制、热量补偿和数据控制,UFS1是FlashDSC1实现快速升降温速率以及精准控温的关键性设备[57].左下角的图片展示了安装好传感器并盖上盖板的装载台.右下角展示的是在光学显微镜下的样品池或参比池,其中黑色圆形是直径为500μm的有效加热区.该仪器配备了德国HuberTC100机械制冷机,可实现在−100~450°C温度范围内的快速升降温.FlashDSC1的升温速率范围在0.5~40000Ks−1,降温速率的范围在0.1~4000Ks−1.目前瑞士梅特勒公司已推出降温速率高一个数量级、升温范围高达1000°C的第二代设备FlashDSC2+.图18Figure18.ThephotographsofFlashDSC1apparatus.Topleft:FlashDSC1 Topright:theunloadedchipsensorUFS1 Bottomleft:thesampletransfer Bottomright:themembraneofthesampleorreferencecellonsensor.(ReprintedwithpermissionfromMETTLER-TOLEDOCompany)近年来,随着商业FlashDSC设备的不断完善和发展,FSC在PCL[58,59]、iPP[60~62]以及iPB[63]等多种高分子材料的结晶、成核以及熔融动力学等表征中得到了越来越广泛的应用.与传统DSC相比,FSC的时间常数由秒降到了毫秒级别,大大缩短了实验的观测窗口,可在纳米尺度上考察分子链的运动过程,大大促进了对高分子亚稳态结构相转变动力学行为的研究.同时,FSC将样品量由原来的毫克减小到了纳克级别,将DSC技术的研究范围拓展到了微纳米高分子材料体系[64].4.2实验技巧4.2.1样品制备FSC中的样品制备过程与传统DSC有较大的区别.通常FlashDSC的样品质量为5ng到几微克.较少的样品量有利于提高样品与传感器之间的热接触,减小热滞后效应,得到更尖锐的信号峰和更准确的测量结果.然而,样品过少会导致热流信号灵敏度过低,还可能带来尺寸效应.因此,可以根据温度程序的扫描速率选择合适的样品量.当扫描速率大于1000Ks−1时,样品质量小于100ng;当扫描速率低于20Ks−1时,为了保证热流信号的灵敏度,样品质量可取几百纳克[65].实验过程中样品直接放置在FSC的传感器上.可以将芯片传感器取下来在外部进行样品制备,例如旋涂、蒸发沉积等前处理,也可以借助仪器自身配备的显微镜直接切割样品.当初始样品是薄膜、挤出粒子、粉末颗粒这类体积较大的物质时,在显微镜下用手术刀将初始样品切割成厚度小于10μm的薄片,然后将样品转移到干净的载玻片上,进一步将样品切割成面积为50μm×50μm的薄片,然后用自然带有尖端的细毛提取样品将其转移至位于芯片样品池中央的圆形加热区[65].以1Ks−1的速率对样品进行预熔,使样品与芯片表面具有良好的热接触,同时降低样品对芯片传感器的机械应力.当样品与传感器的热接触效果不好时,在不影响测试结果的前提下,可在上样之前在传感器表面涂一薄层硅油作为热接触媒介.除了提高热接触,硅油还可用于降低样品的机械应力,测试初次升温扫描的结果,防止样品在升温过程中弹出加热区,提高芯片传感器的重复利用次数等.4.2.2样品质量FSC的样品量过小,无法采用天平直接测量样品的质量,通常需要根据样品的性质进行估算.较为粗糙的方法是根据样品的尺寸和密度进行估算[66].较为准确的方法是利用样品的热性质,包括热容[67]、熔融焓[68]以及玻璃化转变台阶的热容差[69]来计算样品质量,可根据样品的特点选择不同的热性质进行质量测量.例如,依照样品在熔融状态下的热容计算样品质量的公式为其中,[MathProcessingError]Cp,FSC是采用FlashDSC1测量得到的样品在某一温度范围内的平均表观热容.[MathProcessingError]cm是样品的比热容,可通过常规DSC准确测量一定质量的样品在该温度范围内的热容,由热容与质量的比值得到该样品的比热容,也可以通过数据库查找标准比热容值.同理可得到熔融焓法计算样品的公式其中,[MathProcessingError]ΔHFSC是FlashDSC1测量得到的样品的熔融焓.[MathProcessingError]Δh为单位质量样品的熔融焓,一般采用传统DSC对具有相同结晶条件的样品进行测量得到.利用样品的玻璃化转变台阶计算样品质量的公式为其中,[MathProcessingError]ΔCp,FSC是采用FlashDSC快速降温得到的完全无定形态非晶样品的玻璃化转变台阶处的热容变化值.采用浸入液氮等外部方法制备无定形态样品,然后放入常规DSC中测量,即可得到该样品在玻璃化转变处的比热容变化值[MathProcessingError]Δcm,DSC.4.2.3临界条件FSC技术的一大优势是通过调节降温速度获得不同相态结构的化合物,包括无定形态、介晶态以及结晶态.因此,在进行温度程序设计之前需要了解制备不同相态结构样品的临界升降温速率,包括消除热历史的临界温度以及临界扫描速率的测试.消除热历史实验指的是将样品升温至足够高的温度等温一段时间以消除熔体中残留的晶体或晶核,避免记忆效应.消除热历史的温度一般在熔点和分解温度之间,温度过高会导致样品发生热降解.C66是82%(摩尔分数)PA6与18%的PA66组成的无规共聚物.采用FlashDSC1测定C66样品消除热历史所需的临界温度时,先将样品加热至不同的温度等温0.2s消除热历史,然后以−10Ks−1的速率冷却至−100°C,最后以3000Ks−1的速率升温至250°C,得到如图19所示的加热曲线.当消除热历史温度高于170°C时,熔融峰相互重叠,表明高温等温已经完全消除了样品中的热历史,得到C66样品消除热历史的临界温度为170°C.由于均聚物PA6的平衡熔点为250°C,实验中可选择270°C等温0.2s作为消除热历史的温度程序.图19Figure19.ApparentheatcapacitycurvesofC66samplesobtainedonheatingat3000Ks−1aftercooledat−10Ks−1fromastayof0.2satdifferenterasingtemperaturesrangingfrom180℃to210℃(ReprintedwithpermissionfromRef.[70] Copyright(2014)Elsevier)临界扫描速率包括临界升温速率和临界降温速率,它是结晶动力学研究的一个重要临界条件.临界降温速率指的是恰好能够抑制样品在降温过程中发生结晶的临界速率.图20是iPP样品(V30G)在消除热历史之后以不同的速率降温得到的降温过程中的热容曲线.当降温速率超过500Ks−1时,结晶峰消失,说明样品的临界降温速率为500Ks−1.图20Figure20.ApparentheatcapacitycurvesofV30Gsampleobtainedoncoolingatvariousratesaslabeled(ReprintedwithpermissionfromRef.[60] Copyright(2014)SpringerNature).临界升温速率指的是恰好能够抑制样品在升温过程中出现冷结晶的临界速率.将上述V30G样品以超过临界降温速率冷却至玻璃化转变温度以下,然后以不同速率升温至熔点以上,得到如图21所示的升温过程中的表观热容曲线.随着升温速率逐渐增大,升温曲线上的冷结晶峰和熔融峰变得越来越微弱.当升温速率达到30000Ks−1时,冷结晶峰消失,表明V30G样品的临界升温速率为30000Ks−1.图21Figure21.ApparentheatcapacitycurvesofV30Gsampleobtainedonheatingatvariousratesaslabeled(ReprintedwithpermissionfromRef.[60] Copyright(2014)SpringerNature)得到上述临界条件之后就可以进一步对高分子相转变动力学行为进行研究,包括测量样品的总结晶动力学、结晶成核动力学、晶体熔化动力学、晶体退火动力学等.4.3应用举例4.3.1等温总结晶动力学高分子结晶动力学行为是影响高分子产品的生产效率和产品性能的重要因素.高分子总结晶动力学由晶体初级成核所控制.根据经典成核理论,在高温区,高分子成核速率主要由临界成核自由能位垒所控制,而在低温区则由分子短程扩散活化能位垒所主导.由于临界成核自由能位垒随着温度的升高而升高,而扩散活化能位垒随着温度的升高而降低,因此,高分子结晶速率对结晶温度的依赖性关系曲线呈抛物线形,其最快的结晶速率在玻璃化转变温度和熔点之间.对于结晶速率较快的高分子,传统DSC的降温速率无法抑制它在高温区的结晶,从而对较低温度范围内的结晶动力学研究产生影响.因此,传统DSC的结晶动力学研究只能局限在低过冷度的高温结晶区域.而FlashDSC能抑制除了PTFE和PE以外大多数高分子在整个温度范围内的结晶,大大推进了对于低温区高分子结晶动力学行为的研究[71,72].何裕成等[73]采用FlashDSC1对热力学条件相近的尼龙6(PA6)和聚酮(PK)在全温度范围内的结晶动力学行为进行了对比,得到如图22所示的结晶动力学曲线.在低温区,PA的分子层之间较强的氢键作用及其较高的玻璃化转变温度,削弱了PA的分子链运动能力,导致其结晶速率较慢.而在高温区,PA中层状分布的氢键作用大大降低了层间的表面自由能,使得成核自由能位垒降低,大大加快了PA的结晶速率.图22Figure22.Comparisonoftemperaturedependenceofcrystallizationhalf-timesofPAandPKduringisothermalcrystallizationprocessatvariouscrystallizationtemperatures(ReprintedwithpermissionfromRef.[73] Copyright(2014)JohnWileyandSons)上述结果表明,氢键结构对聚酰胺的结晶动力学行为具有重要影响.此外,聚酰胺的氢键结构与蛋白质的二级结构β折叠十分相似,对聚酰胺的氢键结构的研究有助于理解蛋白质β折叠的微观机制[74].因此,李小恒等[75]进一步采用FlashDSC1比较了6种聚酰胺(PA46,PA66,PA610,PA612,PA1012,PA12)在整个温度范围内的等温结晶动力学行为.图23展示了不同聚酰胺样品的结晶动力学曲线.其中,PA46的高氢键密度有利于提高高温区的热力学驱动力,加快结晶速率.而PA10和PA12的低氢键密度有利于加快低温区的短程扩散,导致其较快的结晶速率.此外,聚酰胺的半结晶时间-等温温度曲线呈现双峰型分布,表明了聚酰胺的成核方式由高温区的异相成核转变为低温区的均相成核,且该转变温度随氢键密度的改变而改变.图23Figure23.Summaryoftemperaturedependenceofcrystallizationhalf-timesofPA46,PA66,PA610,PA612,PA1012andPA12duringisothermalcrystallizationprocessesatvarioustemperatures(ReprintedwithpermissionfromRef.[75] Copyright(2014)Elsevier)4.3.2不可逆熔融转变高分子片晶在熔化的过程中伴随着熔融重结晶等结构重组优化过程的竞争,也就是所谓的非零熵熔融(non-zero-entropy-producingmelting,non-ZEPmelting).当升温速率足够快时,所有的退火行为都将被抑制,此时观察到的熔融行为就反映了原始晶体自身的熔融行为,被称为零熵熔融(zero-entropy-producingmelting,ZEPmelting).采用FlashDSC对高分子样品进行快速升温可以在某种程度上抑制亚稳态晶体在熔化过程中的结构优化,表征发生在高分子晶体侧表面的不可逆熔化动力学.Toda等[76,77]研究了PET、iPP和PCL的片晶熔化动力学,首次发现了过热度Tm−Tc与升温速率R之间存在指数标度关系.进一步研究发现这种特征的标度关系可能与晶体不可逆熔化的动力学机制有关.高欢欢等[78]结合FlashDSC1和MonteCarlo分子模拟研究了由α晶型和β晶型iPP这2种化学结构相同但链滑移能力不同的高分子晶体在较宽的动态扫描速率范围内的过热度与升温速率的标度关系.结果图24所示,该指数标度关系与iPP分子链在不同尺度上的分子链滑移以及分子内成核和片晶侧表面的粗糙化生长有关.图24Figure24.(a,b)FSCmeasurementofpowerlawrelationshipsbetweenapparentsuperheatingTm,onset−Tcandheatingrateshforα-crystalsandβ-crystalsofiPPpreparedatthreecrystallizationtemperaturesTcaslabeled.(c)MoteCarlosimulationsofpowerlawrelationshipbetweenapparentsuperheatingTm,onset−TcandheatingrateshforlamellariPPcrystalswithdifferentchainmobilitycharacterizedbyEf/EcanddifferentcrystallizationtemperaturesTcaslabeled(ReprintedwithpermissionfromRef.[78] Copyright(2014)Elsevier)此外,采用FSC对聚合物进行快速升温,可避免聚合物的熔化和降解,从而得以研究高分子亚稳态结构的动力学变化过程.Monnier等[79]采用FSC以10000Ks−1的速率加热吸附在固体表面的聚合物层,在较小的时间窗口内避免了样品的降解,直接观察到聚合物熔体在固体表面的解吸附现象.实验结果表明,解吸附焓变与退火温度无关,吸附/解吸附是类似于结晶/熔融的一级热力学转变.4.3.3与其他表征技术连用前面已经介绍到FSC技术可与其他表征技术连用来表征高分子材料[52~55].FSC技术还可与X射线衍射[80],原子力显微镜[81~83]、偏光显微镜(polarizedlightopticalmicroscopy,POM)[84]等多种分析仪器实时连用,进一步获得晶体的形态及微观结构的变化信息.吕瑞华等[85]结合了FSC以及AFM研究了左旋聚乳酸(PLLA)的α' -α晶型转变机理.图25(a)是左旋聚乳酸在152°C等温退火不同时间的熔融曲线图.红色曲线代表了α' 晶,蓝色曲线为α晶.由图可知,随着退火时间的增加,左旋聚乳酸晶体中出现了连续的晶体完善与不连续的熔融重结晶过程的竞争.图25(b)和25(c)分别为初始结晶晶体和高温退火后的晶体的AFM图.相较于初始结晶晶体,退火后的球晶尺寸更大,且晶核数量减少.因此,PLLA在高温处的α' -α晶型转变机理是非连续的熔融重结晶过程.图25Figure25.(a)HeatflowcurvesofPLLAcrystalsafterannealingat152°Cforvariousperiodsfrom0sto600s (b)AFMheightimageofnascentPLLAcrystals (c)AFMheightimageofPLLAafterannealedat152°Cfor1000s(ReprintedwithpermissionfromRef.[85] Copyright(2014)Elsevier)4.3.4玻璃化转变FSC具有极宽的动态扫描速率范围,可用于制备各种不同的玻璃态结构.Schawe等[86]采用FlashDSC2+以不同降温速率将金属玻璃Au49Ag5.5Pd2.3Cu26.9Si16.3由熔体淬火至玻璃化温度以下,得到了2种不同的玻璃态结构:在中等降温速率下形成的自掺杂玻璃态结构(Self-dopedglass,SDG)以及在较高降温速率下形成的化学均质玻璃态结构(chemicallyhomogeneousglass,CHG).对这2种新型玻璃态结构的研究有助于检验现有玻璃化转变理论的普适性,优化金属玻璃的生产加工条件.FSC还可用于研究玻璃化转变在微纳米尺度上的受限效应.Monnier等[87]采用FSC以0.1~1000Ks−1的不同降温速率将聚(对叔丁基苯乙烯)(poly-(4-tert-butylstyrene),PtBS)冷却至玻璃化转变温度以下,研究样品尺寸和降温速率对玻璃态结构的影响.结果如图26所示,随着降温速率以及样品尺寸的降低,虚拟温度减小到远远低于本体的玻璃化温度,样品松弛到平衡态所需的时间也随之大大缩短.图26Figure26.Reciprocalsoftherelaxationtime(leftaxis,pentagons)andcoolingrate(rightaxis,stars)asfunctionsoftheinverseoftemperatureandfictivetemperatureforPtBssamplesatdifferentlengthscales.ThesolidlinesareVFTfitsfortherelationshipbetweenrelaxationtime(orcoolingrate)andfictivetemperature.Theconfinement-lengthdependenceoffictivetemperatureatdifferentcoolingratesispresentedintheinsetwherethedashedandsolidlinesarelinearfitsofthelength-scale-dependentfictivetemperaturemeasuredathighandlowcoolingrates,respectively.(ReprintedwithpermissionfromRef.[87] Copyright(2014)AmericanPhysicalSociety)4.3.5热导率随着5G时代的来临,电子器件对材料的散热能力要求也越来越高,准确测量材料的热导率对于工业产品质量控制有重要意义.胡文兵课题组利用FSC技术的优势发展了一种测试微米尺度厚度薄膜材料热导率的新方法[88].在薄膜样品上方和参比池上方分别放置一颗铟,然后采用FlashDSC以不同的速率加热样品,通过位于样品上方和参比池上方的铟的熔点之差反映样品上下表面的温差.根据傅里叶热传导定律可知,样品上下表面的温差与垂直于薄膜表面方向的加热速率成正比,由比例系数可求算样品的热导率.胡文兵课题组[89,90]采用该方法测量了聚乙烯薄膜样品以及系列尼龙样品的热导率,测得的热导率数值与其采用其他方法测得的文献报道值较为接近,证明了此方法的有效性.图27为采用该方法表征尼龙610样品热导率得到的熔融曲线.采用FlashDSC表征材料的热导率具有测试温度和扫描速率范围广、样品量少等优点,该方法还可以表征黏滞液体、取向材料等的导热性能,具有较广阔的应用前景.图27Figure27.(a)Top:Illustrationoftwoindiumparticlesseparatelyplacedonthetopofaregular-shapedsampleandonthesurfaceofthereferencecell.Bottom:thephotographsofthesamplecellandthereferencecell.(b)Temperatureprofileforisothermalcrystallizationandsubsequentmeltingofthesamples.(c)ApparentheatcapacitycurvesofNylon46atvariousheatingratesaslabeledandtheexothermalpeakandendothermalpeakindicateseparatelythemeltingoftheindiumonthereferencecellandonthetopofsampleNylon46.(d)MeltingpointdifferencesoftwoindiumparticlesatvariousheatingratesforthreeNylonsamples(ReprintedwithpermissionfromRef.[90] Copyright(2014)Elsevier)5.总结与展望本文综述了示差扫描量热法在高分子表征领域的主要进展,旨在帮助大家进一步理解DSC技术的实验原理和方法技巧,探索DSC技术在高分子表征领域的更多应用.自20世纪60年代以来DSC已经成为了表征材料结构和性能的一种常规研究手段,其在高分子表征领域已经获得了广泛的应用,主要包括在较宽温度范围内测量样品的转变温度和相应的转变焓以及表征玻璃化转变等热容或者潜热发生改变的物理过程,具有操作简便,成本低廉等优点.TMDSC在线性升温速率的基础上叠加了周期性变温速率,保证样品在较长的时间尺度上以一个缓慢的速率升温,同时还能获得一个极快的瞬间温度变化,使得热流信号兼具较高的灵敏度和分辨率,实现了对于微弱转变信号的检测,并能有效区分样品中可逆和不可逆过程的热流信号,甚至准等温过程热容的测量,准确阐明各种转变的本质,为传统DSC的测量结果补充了更多的有效信息.FSC采用氮化硅薄膜传感器取代传统坩埚,将试样量减小到了纳克级别,有效地降低了样品内部的热滞后效应,并实现了106Ks−1的超快扫描速率.FSC的高扫描速率能抑制高分子在升降温过程中的结构重组,大大推进了对高分子结晶、熔融等相转变过程中非平衡态结构的动力学研究.同时,FSC将时间窗口缩短到了毫秒级别,能与实际高分子加工过程中的结晶动力学窗口相匹配,有利于加深对高分子加工过程的理解.此外,FSC将样品体系缩小到微纳米尺度,具有采样损坏小的优点,促进了对纳米空间分辨率的高分子材料内部结构及其性能变化的研究.总之,DSC已经成为了高分子热分析领域的一项常规表征工具,由其发展出来的FSC技术将其温度扫描速率范围扩展到横跨7个数量级,实现了对从热力学领域的静态热量传递到动力学过程的热量流动速率的一系列表征,有力地推动了高分子基础理论以及加工应用研究的发展.目前,DSC正朝着更高的扫描速率和更小的样品尺度不断改进和发展,并与其他表征方法更为紧密地连用起来.如图28所示,分子模拟的时间尺度从纳秒级别自下向上推进,进行理论证明;FSC的时间尺度则自上而下进入到微秒级别进行实验验证,两者的时间窗口在微秒尺度上发生重叠,对应了高分子片晶生长和退火熔融过程的时间尺度.因此,FSC技术与分子模拟的结合拓宽了其在高分子微观结构表征方面的应用,使人们得以从微观和宏观2个角度研究高分子片晶生长动力学行为.同时,DSC与其他实验表征手段,如X射线衍射、流变仪、拉曼光谱、偏光显微镜等连用,可以获得在物质的性质发生变化的过程中样品的形貌结构以及机械性能等的变化信息,实现对高分子相转变过程中热力学和动力学现象的多角度深入研究.图28Figure28.Illustrationoftimescalesoffast-scanchip-calorimetrymeasurementandMonteCarlosimulationtowardstheidenticaltimewindowofpolymercrystallizationandmelting(ReprintedwithpermissionfromRef.[91] Copyright(2014)SpringerNature)参考文献[1]RuppR(丽贝卡鲁普).Water,Gas,FireandEarth-HistoryofElementDiscovery(水气火土—元素发现史话).Beijing(北京):TheCommercialPress(商务印书馆),2008.1−74[2]ICTACNomenclatureCommittee.Draft-03b.doc07.03.RecommendationsforNamesandDefinitionsinThermalAnalysisandCalorimetry.[3]ASTME473-07b,StandardTerminologyRelatingtoThermalAnalysisandRheology,ASTMInternational,WestConshohocken,PA,2007,http://www.astm.org[4]ASTME2161-01,StandardTerminologyRelatingtoPerformanceValidationinThermalAnalysis,ASTMInternational,WestConshohocken,PA,2001,http://www.astm.org[5]LeChatelierH.ZPhysChem,1887,1:296[6]LeChatelierH.BullSocFrancMineralCryst,1887,10:204−211[7]Roberts-AustenWC.ProcInstMechEng,1899,1:35−102[8]BoersmaSL.JAmerCeramSoc,1955,38:281−284doi:10.1111/j.1151-2916.1955.tb14945.x[9]O’NeillMJ.AnalChem,1964,36:1238−1245doi:10.1021/ac60213a020[10]WatsonES,O’NeillMJ,JustinJ,BrennerN.AnalChem,1964,36:1233−1237doi:10.1021/ac60213a019[11]WunderlichB.ThermalAnalysisofPolymericMaterials[M].Springer:Berlin,2005.329−355[12]LiuZhenhai(刘振海),LuLiming(陆立明),TanYuanwang(唐远望).ABriefTutorialonThermalAnalysis(热分析简明教程).Beijing(北京):SciencePress(科学出版社),2012.83−104[13]DingYanwei(丁延伟).FundamentalsofThermalAnalysis(热分析基础).Hefei(合肥):UniversityofScienceandtechnologyofChinaPress(中国科学技术大学出版社),2020.188−231[14]LuLiming(陆立明).BasicsofThermalAnalysisApplication(热分析应用基础).Shanghai(上海):DonghuaUniversityPress(东华大学出版社),2010.34−43[15]ASTME1269-11(2018),StandardTestMethodforDeterminingSpecificHeatCapacitybyDifferentialScanningCalorimetry,ASTMInternational,WestConshohocken,PA,2018,http://www.astm.org[16]GaurU,WunderlichB.Advancedthermalanalysisaystem(ATHAS)polymerheatcapacitydatabank.In:ComputerApplicationsinAppliedPolymerScience.NewYork:AmericanChemicalSociety,1982.355−366[17]ASTME1356-08(2014),StandardTestMethodforAssignmentoftheGlassTransitionTemperaturesbyDifferentialScanningCalorimetry,ASTMInternational,WestConshohocken,PA,2014,http://www.astm.org[18]HöneG,HemmingerWF,FlammersheimHJ.DifferentialScanningCalorimetry.Berlin:Springer,2003.126−140[19]LauSF,SuzukiH,WunderlichB.JPolymerSci:PolymerPhysEd,1984,22:379−405doi:10.1002/pol.1984.180220305[20]HuangMM,DongX,WangLL,ZhengLC,LiuGM,GaoX,LiCC,MüllerAJ,WangDJ.Macromolecules,2018,51(3):1100−1109doi:10.1021/acs.macromol.7b01779[21]WangZF,DongX,CavalloD,MüllerAJ,WangDJ.Macromolecules,2018,51(15):6037−6046doi:10.1021/acs.macromol.8b01313[22]WangZF,DongX,LiuGM,XingQ,CavalloD,JiangQH,MüllerAJ,WangDJ.Polymer,2018,138:396−406doi:10.1016/j.polymer.2018.01.078[23]DongSiyuan(董思远),ZhuPing(朱平),LiuJiguang(刘继广),WangDujing(王笃金),DongXia(董侠).ActaPolymericaSinica(高分子学报),2019,50(2):189−198doi:10.11777/j.issn1000-3304.2018.18198[24]LuLiming(陆立明).PolymerBulletin(高分子通报),2009,(3):62−74[25]CorbinoOM.PhysikZ,1910,11:413−417[26]CorbinoOM.PhysikZ,1911,12:292−295[27]BirgeNO,NagelSR.PhysRevLett,1985,54:2674−2677doi:10.1103/PhysRevLett.54.2674[28]KraftmakherYA.ZPrikladnojMechTechFiz,1962,5:176−180[29]SullivanP,SeidelG.AnnAcadSciFennicaeAVI,1966,210:58−62[30]GobrechtH,HamannK,WillersG.JPhysE:SciInstrum,1971,4:21−23doi:10.1088/0022-3735/4/1/004[31]GillPS,SauerbrunnSR,ReadingM.JThermAnal,1993,40:931−939doi:10.1007/bf02546852[32]ReadingM,ElliottD,HillVL.JThermalAnal,1993,40:949doi:10.1007/BF02546854[33]ReadingM,LugetA,WilsonR.ThermochimActa,1994,238:295−307doi:10.1016/S0040-6031(94)85215-4[34]ReadingM,HourstonDJ.ModulatedTemperatureDifferentialScanningCalorimetry:TheoreticalandPracticalApplicationsinPolymerCharacterization.Berlin:Springer,2006.1−80[35]HuWB,WunderlichB.JThermAnalCalorim,2001,66:677−697doi:10.1023/A:1013106118660[36]WunderlichB.ProgPolymSci,2003,28:383−450doi:10.1016/S0079-6700(02)00085-0[37]SchickC,WurmA,MohammedA.ThermochimActa,2003,396:119−132doi:10.1016/S0040-6031(02)00526-9[38]SchickC.AnalBioanalChem,2009,395:1589−1611doi:10.1007/s00216-009-3169-y[39]HuWB,AlbrechtT,StroblG.Macromolecules,1999,32:7548−7554doi:10.1021/ma9908649[40]JiangXM,LiZL,WangJ,GaoHH,ZhouDS,TangYW,HuWB.ThermochimActa,2015,603:79−84doi:10.1016/j.tca.2014.04.002[41]GaurU,WunderlichB.JPhysChemRefData,1981,10:1051−1064doi:10.1063/1.555650[42]BollerA,SchickC,WunderlichB.ThermochimActa,1995,266:97−111doi:10.1016/0040-6031(95)02552-9[43]PydaM,WunderlichB.Macromolecules,2005,38(25):10472−10479doi:10.1021/ma051611k[44]SchickC,MathotVBF.FastScanningCalorimetry[M].Springer:Switzerland,2016.V−VII[45]LiZhaolei(李照磊),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPolymericaSinica(高分子学报),2016,(9):1179−1195doi:10.11777/j.issn1000-3304.2016.16058[46]DenlingerDW,AbarraEN,AllenK,RooneyPW,MesserMT,WatsonSK,HellmanF.RevSciInstrum,1994,65(4):946−958doi:10.1063/1.1144925[47]AllenLH,RamanathG,LaiSL,MaZ,LeeS,AllmanDDJ,FuchsKP.ApplPhysLett,1994,64(4):417−419doi:10.1063/1.111116[48]EfremovMYu,OlsonEA,ZhangM,SchiettekatteF,ZhangZS,AllenLH.RevSciInstrum,2004,75(1):179−191doi:10.1063/1.1633000[49]AdamovskyS,MinakovAA,SchickC.ThermochimActa,2003,403(1):55−63doi:10.1016/S0040-6031(03)00182-5[50]AdamovskyS,SchickC.ThermochimActa,2004,415(1-2):1−7doi:10.1016/j.tca.2003.07.015[51]YuJ,TangZA,ZhangFT,WeiGF,WangLD.ChinPhysLett,2005,22(9):2429−2432doi:10.1088/0256-307X/22/9/080[52]JiangJ,WeiL,ZhouD.IntegrationofFastScanningCalorimetry(FSC)withmicrostructuralanalysistechniques.In:SchickC,MathotVBF,ed.FastScanningCalorimetry,Switzerland:Springer,2016.361−379[53]ChenMZ,DuMT,JiangJ,LiDW,JiangW,ZhuravlevE,ZhouDS,SchickC,XueG.ThermochimActa,2011,526(1-2):58−64doi:10.1016/j.tca.2011.08.020[54]JiangJ,ZhuravlevE,HuangZ,WeiL,XuQ,ShanM,XueG,ZhouD,SchickC,JiangW.SoftMatter,2013,9(5):1488−1491doi:10.1039/C2SM27012A[55]WeiL,JiangJ,ShanM,ChenW,DengY,XueG,ZhouD.RevSciInstrum,2014,85(7):074901−074907doi:10.1063/1.4889882[56]vanHerwaardenaS.ProcediaEng,2010,5:464−467doi:10.1016/j.proeng.2010.09.147[57]SchickC,MathotVBF.MaterialCharacterizationbyFastScanningCalorimetry:PracticeandApplications.InFastScanningCalorimetry.Switzerland:Springer,2016.3−299[58]WangJ,LiZL,PerezRA,MüllerAJ,ZhangBY,GraysonSM,HuWB.Polymer,2015,63:34−40doi:10.1016/j.polymer.2015.02.039[59]ZhuravlevE,SchmelzerJWP,WunderlichB,SchickC.Polymer,2011,52:1983−1997doi:10.1016/j.polymer.2011.03.013[60]KalapatD,TangQY,ZhangXH,HuWB.JThermAnalCalorim,2017,128:1859−1866doi:10.1007/s10973-017-6095-9[61]SantisFD,AdamovskyS,TitomanlioG,SchickC.Macromolecules,2006,39:2562−2567doi:10.1021/ma052525n[62]SantisFD,AdamovskyS,TitomanlioG,SchickC.Macromolecules,2007,40:9026−9031doi:10.1021/ma071491b[63]StolteI,AndroschR,DiLorenzoML,SchickC.JPhysChemB,2013,117(48):15196−15203doi:10.1021/jp4093404[64]ShickC,AndroschR.Newinsightsintopolymercrystallizaitonbyfastscanningchipcalorimetry.In:FastScanningCalorimetry.Switzerland:Springer,2016.463−537[65]HeYucheng(何裕成),XieKefeng(谢科锋),WangYouhao(王优浩),ZhouDongshan(周东山),HuWenbing(胡文兵).ActaPhysico-ChimicaSinica(物理化学学报),2020,36(6):1905081−1905092doi:10.3866/PKU.WHXB201905081[66]ZhuravlevE,SchickC.ThermochimActa,2010,505(1-2):1−13doi:10.1016/j.tca.2010.03.019[67]MollovaA,AndroschR,MilevaD,GahleitnerM,FunariSS.EurPolymJ,2013,49(5):1057−1065doi:10.1016/j.eurpolymj.2013.01.015[68]IervolinoE,vanHerwaardenAW,vanHerwaardenFG,vandeKerkhofE,vanGrinsvenPPW,LeenaersACHI,MathotVBF,SarroPM.ThermochimActa,2011,522(1-2):53−59doi:10.1016/j.tca.2011.01.023[69]CebeP,PartlowBP,KaplanDL,WurmA,ZhuravlevE,SchickC.ThermochimActa,2015,615:8−14doi:10.1016/j.tca.2015.07.009[70]WangT,LiXH,LuoRQ,HeYC,MaedaS,ShenQD,HuWB.ThermochimActa,2020,690:178667−178672doi:10.1016/j.tca.2020.178667[71]HuWenbing(胡文兵).PrinciplesofPolymerCrystallization(高分子结晶学原理).Beijing(北京):ChemicalIndustryPress(化学工业出版社),2013.114−163[72]HuWenbing(胡文兵).IntroductiontoPolymerPhysics(高分子物理导论).Beijing(北京):SciencePress(科学出版社),2011.146−173[73]HeYC,LuoRQ,LiZL,LvRH,ZhouDS,LimS,RenXN,GaoHX,HuWB.MacromolChemPhys,2018,219:1700385−1700390doi:10.1002/macp.201700385[74]HuWB.PhysRep,2018,747:1−50doi:10.1016/j.physrep.2018.04.004[75]LiXH,HeYC,DongX,RenXN,GaoHX,HuWB.Polymer,2020,189:122165−122173doi:10.1016/j.polymer.2020.122165[76]TodaA,MikosakaM,YamadaK.Polymer,2002,43:1667−1679doi:10.1016/S0032-3861(01)00733-9[77]TodaA,KojimaI,HikosakaM.Macromolecules,2008,41:120−127doi:10.1021/ma702162m[78]GaoHH,WangJ,SchickC,TodaA,ZhouDS,HuWB.Polymer,2014,55(16):4307−4312doi:10.1016/j.polymer.2014.06.048[79]MonnierX,NapolitanoS,CangialosiD.NatCommun,2020,11:4354−4360doi:10.1038/s41467-020-18216-y[80]HuangZJ,JiangJ,XueG,ZhouDS.ChineseJPolymSci,2019,37:94−100doi:10.1007/s10118-019-2177-4[81]LuoSC,WeiL,Jiang,J,ShaY,XueG,WangXL,ZhouDS.JPolymSci,PartB:PolymPhys,2017,55:1357−1364doi:10.1002/polb.24378[82]LuoSC,KuiX,XingER,WangXL,XueG,SchickC,HuWB,ZhuravlevE,ZhouDS.Macromolecules,2018,51(14):5209−5218doi:10.1021/acs.macromol.8b00692[83]LuoSC,WangTY,OchejeMU,ZhangS,XuJ,QianZY,GuXD,XueG,Rondeau-GagnéS,JiangJ,HuWB,ZhuravlevE,ZhouDS.Macromolecules,2020,53(11):4480−4489doi:10.1021/acs.macromol.9b02738[84]JiangJ,ZhuravlevE,HuWB,SchickC,ZhouDS.ChineseJPolymSci,2017,35(8):1009−1019doi:10.1007/s10118-017-1942-5[85]LvRH,HeYC,WangJP,WangJ,HuJ,ZhangJM,HuWB.Polymer,2019,174:123−129doi:10.1016/j.polymer.2019.04.061[86]SchaweJürgenEK,LöfflerJörgF.NatCommun,2019,10(1):1337−1346doi:10.1038/s41467-018-07930-3[87]MonnierX,CangialosiD.PhysRevLett,2018,121:137801−137806doi:10.1103/PhysRevLett.121.137801[88]ZhangJianjun(张建军).ActaPhysico-ChimicaSinica(物理化学学报),2020,36(6):1907048−1907049doi:10.3866/PKU.WHXB201907048[89]HeYC,LiXH,GeL,QianQY,HuWB.ThermochimActa,2019,677:21−25doi:10.1016/j.tca.2019.01.003[90]XieKF,HeYC,CaiJ,HuWB.ThermochimActa,2020,683:178445−178449doi:10.1016/j.tca.2019.178445[91]JiangXM,LiZL,GaoHH.Combiningfast-scanchipcalorimetrywithmolecularsimulationtoinvestigatepolymercrystalmelting.In:SchickC,MathotVBF,ed.FastScanningCalorimetry.Springer:Switzerland,2016.379−403
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程:l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性Ø 无水多晶型体i. 构建相图和解析相图ii. 如何寻找最佳晶型(稳定和亚稳态晶型)iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例iv. 亚稳态晶型在制药业中的应用条件v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物i. 识别和表征水合物及溶剂合物ii. 水合物和溶剂合物在原料药中的应用及如何保存iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程Ø 药物多晶型的稳定性及其热动力学研究Ø 怎样生产并保持你所需要的晶型Ø 实例分析i. 混合晶型系统ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺iv. 如何应对临床后期出现的晶型转化主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容:Ø 何时和为何要保护多晶型的知识产权Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准Ø 如何开发仿制药的多晶型主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物Ø 为什么要开发盐类药物Ø 如何形成盐类药物主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容:Ø 什么是共晶体Ø 共晶体药物在制药中的基本应用Ø 共晶体的稳定性Ø 如何筛选药物共晶体及其放大工艺Ø 在制药产业中形成共晶体的现象及其产生的影响主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD)Ø 拉曼光谱Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度Ø pKa值的确定Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六 题目: 手性药物的结晶拆分(1小时) 内容:Ø 手性药物结晶拆分的原理及工艺研发的流程和策略Ø 手性药物结晶拆分在原料药生长中的重要性Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况主讲人: 陈敏华博士 培训安排:时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋学员人数:20-50人日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会 3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执):电话:4008210778 传真:021-33678466邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233电话:4008210778 ;传真:021-33678466电子邮箱:helen.jiang@dksh.com
  • 高分子表征技术专题——小角中子散射技术及其在大分子结构表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角中子散射技术及其在大分子结构表征中的应用The Basic Principle of Small Angle Neutron Scattering and Its Application in Macromolecules作者:左太森,马长利,韩泽华,李雨晴,李明涛,程贺作者机构:中国科学院高能物理研究所 中国散裂中子源 2.散裂中子源科学中心,东莞,523803 中国科学院大学,北京,100049作者简介:程贺,男,1978年生. 中国科学院高能物理研究所东莞研究部研究员. 1996年考取中国科学技术大学,2006年在吴奇教授课题组获得博士学位. 随后赴中国科学院化学研究所韩志超研究员课题组工作,建设我国第一台SANS(2012年国家验收). 2014年加入中国散裂中子源,中国科学院高能物理研究所东莞研究部,现正在主持建设世界上第二台基于散裂中子源的VSANS. 致力于使用和发展散射方法,研究软物质多相多尺度结构和动态学行为.摘要小角中子散射(SANS)是一种表征从纳米到微米尺寸物质特征结构的有力工具,配合中子的强穿透性和同位素辨识等特性,在软物质大分子结构表征方面发挥着独特的作用. 随着中国散裂中子源(CSNS)在2018年正式对外接受机时申请,国内SANS用户群逐年扩大. 本文首先简要介绍小角中子散射技术的基本原理、谱仪结构和实验技巧,然后紧扣小角谱仪的特点和方法学方面的最新进展,介绍小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子等研究领域的结构表征方面的典型应用. 小角中子散射和其他表征手段,如小角X射线散射(SAXS)相互紧密配合和补充,成为连接大分子内部多相多尺度的微观结构和宏观性的桥梁.AbstractSmall angle neutron scattering (SANS) is a powerful tool to characterize multi-scale structures in macromolecules. Deep penetration and H/D isotope labeling make it a unique scattering method. To make it more familiar to the users, basic principle of SANS, instrumentation and experimental skills were firstly demonstrated. Then typical applications in the fields of polymer solution, polymer blends, nanocomposites, crystallization, gels, porous materials and biomacromolecules were introduced. As for the data analysis of complex systems, such as biomacromolecules, in addition to the traditional data analysis methods, advanced methods such as the ab initial analysis and Reverse Monte-Carlo (RMC) simulations provide more detailed information. Combine with small angle X-ray scattering (SAXS), static light scattering (SLS), electron microscope (EM)et al., SANS enables us to solve the structure and interaction of more complicated systems such as interaction of biomacromolecues and solvation of polymers in mixed solutions. As the China Spallation Neutron Source (CSNS) was officially opened to the users around the world in 2018 and SANS instruments equipped with various sample environments are being built, more opportunities are opened to the SANS communities domestically and abroad.关键词小角中子散射  大分子  多相多尺度  结构表征  中国散裂中子源KeywordsSmall angle neutron scattering  Macromolecules  Multi-scale and multi-phase  Structure characterization  China spallation neutron source 小角散射,通常包括小角光散射(SLS)、小角X射线散射(SAXS)和小角中子散射(SANS),都是表征物质纳米到微米的多尺度特征结构的有力手段[1,2]. 它们的基本原理[3]和数据处理分析方法[4]十分类似,三者可以互补和互相验证. 3种散射方法有两点主要不同之处:一是光源与样品的作用机理不同,所以使用不同散射方法时样品的衬度不同;二是波长不同,所以研究的特征尺度范围不同. 首先,衬度直接决定了散射实验的可行性. 光散射衬度来自样品的微分折光指数;X射线与核外电子相互作用,衬度来自于电子云密度,所以原子序数高的元素衬度高;对于中子,由于中子直接作用于原子核,与核的性质有关而与原子序数无关,反而同一元素的各种同位素的中子衬度有很大不同. 小角中子散射的衬度等于样品与分散剂的相干散射长度密度之差,这里的相干散射长度密度(ρcoh,单位:Å-2)是散射体中所有的元素或同位素的相干散射长度(bcoh, 单位:Fermi,1 Fermi = 10-15 m)的加权平均与散射体的摩尔体积之比;同位素的散射截面相当于原子核与中子相互作用被散射的概率( σσ,单位barn, 1 barn = 10-24 cm 2),正比于散射长度的平方. 中子与原子核相互作用,除了被散射外,还会有一定的概率被吸收. 常见天然元素和同位素对于1.8 Å中子的相干散射长度、相干和非相干散射截面以及吸收截面的数据如表1所示[5]. 设计SANS实验的第一步需要估算样品的中子衬度和透光率,前者决定了SANS实验的可行性,后者决定了数据分析的可行性. 根据表1,已知大分子体系的元素、同位素组成和密度,可以计算中子衬度,溶液体系衬度为溶质和溶剂的中子相干散射长度密度差,二元共混体系衬度为二元组分大分子的中子相干散射长度密度差. 衬度低的样品无法进行SANS实验(比如一般的非晶碳氢化合物样品,化学组成一般为CH2,根据表1,bc+2bH≈0bc+2bH≈0,在不进行氘代的情况下无法进行SANS实验);而样品对中子的透过率可以通过式(1)所示的朗伯-比尔定律计算.其中:d为样品厚度.nini为样品中第ii种元素的原子比例,pij、σij(λ)σij(λ)和ρijρij分别为第i种元素的第j种同位素的丰度、全截面和数密度. 其中全截面包含相干、非相干和吸收截面,同位素截面相关数据可以参考ENDF数据库[6]. 传统的散射基本理论是建立在单次散射的基础上的,如果样品太厚,透光率较低,可能在实验中引入多次散射,造成数据无法用常规分析方法解析,所以一般的SANS实验要求 Ttrans85%,如果是溶液样品,尽量采用氘代溶剂.Table 1Coherent scattering length and coherent, incoherent and adsorption scattering cross section of common elements in macromolecules and commonly used isotopes in SANS experiments[5].一些吸收截面非常大的天然元素或者同位素通常用于中子吸收材料,如表1中的B-10,在实验样品中要尽量避免这类对热中子具有强吸收的同位素,除B-10外,还有Cd-113、Gd-155、Gd-157、Sm-149、Eu-151等同位素.对于结构表征的各类技术,能够覆盖的尺寸范围很大程度上决定了这一技术的应用范围. 用于光散射的激光波长在可见光范围,所以小角激光光散射观察尺度在微米的数量级,而静态激光散射的观察尺度在20~300 nm;由于X射线和中子的波长在埃的数量级,所以常规的SAXS和SANS可以测量1~300 nm的特征尺度.表2总结了3种小角散射方法的一些基本特征,可以看到每种方法都有其特点和不足. 小角光散射波长较长,需要样品透明并且容易受到灰尘的影响;小角X射线散射的优势是亮度非常高,特别是同步辐射X射线小角,缺点是穿透能力一般,容易被吸收(当然共振散射赋予了它另外的特点);小角中子散射的特点是穿透能力强,可以加载各类样品环境,同时还能够识别同位素,可以得到样品的绝对散射强度,缺点是中子源亮度太低. 所以实际使用中,用户需要依据自身样品的特点和需要观察的特征尺度范围,选择合适的散射手段,互相验证和补充.Table 2Comparison between SLS, SAXS and SANS.随着小角中子散射方法的应用越来越广泛,谱仪和方法学上出现了2种趋势,一方面通过中子束的聚焦或准直向更小散射矢量方向扩展1~2个量级,研究特征尺度更大的体系,典型的就是发展微小角(VSANS)[7]甚至超小角(USANS)中子散射谱仪[8];另一方面利用波长更短的中子的散射将散射矢量扩展到50 Å-1以上,研究无序体系在原子尺度上的结构,即所谓的无序大分子中子全散射方法[9]. 谱仪技术发展的驱动力在于实现通过一次散射实验来表征样品从原子到分子,再到组装体,甚至相区的多相多尺度结构的梦想. 虽然这些谱仪的设计思路和物理结构千差万别,但是它们的基本散射原理完全相同. 下文将着重介绍SANS谱仪.1小角中子散射谱仪、基本原理、实验技术和方法小角中子散射谱仪通常分为两类,一类是基于反应堆的固定波长小角谱仪[10],国内有绵阳研究堆的狻猊谱仪和中国先进研究堆的小角中子散射谱仪;另一类是基于强流脉冲中子源的飞行时间小角谱仪[11],国内有CSNS的小角中子散射谱仪. 固定波长小角谱仪,利用速度选择器将中子单色化后进行散射实验;而飞行时间小角谱仪则采用白光中子进行散射实验,利用脉冲中子从中子源运动到探测器的飞行时间标定中子波长. 两类SANS的基本原理完全一样,准直系统通常为如图1所示的小孔几何,源光阑和样品光阑用于中子准直,1个或者多个探测器接收散射中子[7].Fig. 1(a) Schematic diagram of the SANS instrument (b) The relationship between the characteristic length scaled and the scattering vector q⇀q⃑ (Bragg's Law). 运动的中子从量子力学的观点可以看成一种物质波,其波长λ = h/(mnv)(其中h为普朗克常数,mn为中子质量,v为中子速度),入射中子的波矢量记作k⇀i,其绝对值为2π/λ,中子被样品散射后,散射波矢量记作k⇀s,如果是弹性散射,中子波长不变,其绝对值仍为2π/λ.散射前后,入射波矢量和散射波矢量的差值k⇀s−k⇀i定义为散射矢量q⇀.图1是CSNS的VSANS谱仪在小角模式下的示意简图. 根据如图 1所示的几何关系和矢量加减规则得到布拉格公式:其中θ为散射角. 如果样品的特征长度为d,根据如图1几何关系和布拉格方程,两束被样品散射的中子的波程差为2dsin(θ/2),当波程差等于波长λ的整数倍时,散射中子相干增强,即:当n取1时,由公式(4)可知,正空间的样品特征长度与散射矢量q是倒易关系,即1/q是正空间的尺子,在计划实验时,需要对样品的特征尺寸范围有一个预判. 根据香农采样定理[12]:如果谱仪q范围为0.001~0.3 Å-1,其可表征的样品特征尺寸范围为300~1 nm. 如果能将中子聚焦,或者放弃一个方向的分辨率,将最小q向低q方向推进1~2个量级,从而能够表征的样品的特征尺度将增加1~2个量级. 我们将这类谱仪称为微小角中子散射谱仪(qmin=10-4 Å -1)[7]和超小角中子散射谱仪(qmin=10-5 Å -1)[13].考察一个由N个大分子链组成的链间有相互作用的体系,假设每根链聚合度为n,并粗粒化单体作为基本的散射单元. 为了方便表示,如图2所示,考察体系中的链α和链β. 链α和链β的质心距离坐标原点分别为Rα和Rβ,链α和第i个单体距离链α的质心为Sαi,链β的第j个单体距离链β的质心为Sβj,链α和链β之间的距离为Rαβ,i,j距离原点分别为rαi和rβj. 根据散射基本原理,中子入射到单个单体后形成球面波,其散射振幅:Fig. 2Schematic draw of the polymer chain and the vectors between atoms and polymers.一条链的散射振幅:考虑大分子与周围介质的散射长度密度差为Δρ,大分子单体的体积为υ,体系总体积为V.α和β遍历体系中的每一根链,i,j遍历链的每一个单体,得到体系的宏观散射截面可表示为公式(8).公式(8)右边第2项可以近似为倒易2根链的质心相互作用的相干散射得到公式(9).根据如图2所示的几何关系,代入(9)得到:其中F(q)为形状因子的散射振幅,定义单粒子的形状因子P(q),注意,这里的i,j位于同一个散射体或者同一条链上.散射体可近似视为连续介质,P(q)可改写为:其中,Vpart为散射体的体积,ρpart(r)为散射体内部的密度空间分布.定义散射体之间的结构因子SI(q),式(11)适用于所有散射体系对于密度分布均匀的散射体,∣∣F(q)2∣∣=|F(q)|2,而这里的dΣ(q)dΩ是散射矢量为q时的绝对散射强度(单位为cm-1). 小角中子散射实验中,经过样品散射进入立体角为ΔΩ的探测器的中子计数Is(q)(单位为count/s)与q的关系为:其中T(λ)为样品透过率,d为样品厚度,定义入射中子强度I0(λ):Φ(λ)为入射中子波长分布,ε(λ)为探测器效率,A为样品光阑面积,t为数据采集时间.所以对于典型的小角散射实验,如果实验的q值范围已经覆盖了样品的多相多尺度结构,通过一次SANS实验,可以得到Δρ(衬度),n(分子量),P(q) (基本形状)和SI(q) (相互作用),但需要注意的是SANS用了一个粗粒化的模型,所能观察的最小尺度是π/qmax,一般不小于1 nm.2小角中子散射实验一个完整的小角中子散射实验过程包括(1)计划实验:根据科学目标准备合适大小和数量的样品;(2)确定实验方案,并采集小角中子散射数据;(3)对散射数据进行处理和分析.2.1样品准备和要求在样品准备阶段需要注意几个问题,第一,衬度:样品中散射体与周围介质的散射长度密度的差异是否足够. 一般而言,如果衬度Δρ≥1×10-6 Å -2就完全没有问题,否则就需要与谱仪科学家进行沟通,依据谱仪本身的信噪比进行调整. 如果衬度不够就可能需要对溶剂或者散射体进行氘代. 第二,样品的特征尺寸是否在谱仪的测量范围内,通常谱仪的测量范围在π/qmax到π/qmin内;第三,做一些前置实验,如小角X射线散射、电镜等确定合成的样品状态是否由于聚集、结晶等过程的发生而改变. 此外,还需要注意样品的使用量和样品厚度. 根据样品内散射体的尺寸和与周围介质之间的衬度,样品量从300~1500 mg不等,样品厚度根据散射强度选择,通常为1和2 mm. 对于强散射样品,如果样品太厚会产生多重散射;对于溶液样品需要注意样品的结构与浓度有关,稀、亚浓和浓溶液结构会随着样品间相互作用而改变,为区分‍P(q)和‍SI(q)对‍I(q)的影响,除硬球体系之外,一般需要在稀溶液中先确定样品P(q),这时也许需要在0.1 wt%~5 wt%之间做多个样品,从而外推到无限稀溶液的情况.2.2实验数据处理实验数据处理是通过对原始实验数据进行一系列的物理校准和校正,最终得到与实验仪器和样品厚度等无关的,体现样品本质特征的绝对散射强度(dΣ(q)dΩ,cm-1)随着散射矢量(q,Å-1)变化的信息. 一个完整的实验通常包括5组数据的采集:空样品池透过率数据Tc(λ)、空样品池散射数据Iexpcb(q)、样品加样品池透过率数据Tsc(λ)、样品加样品池散射数据Iexpscb(q)、空背底测量Ibackground(下标s表示样品,下标c表示样品池,下标b表示背底). 小角中子散射实验中,散射信号Iexpscb(q)有以下来源:样品、样品池和各种背底(如天然背底、空气散射和电子学噪声等).各种散射信号之间的关系可以用式(1)和式(2)表示,其中I0(λ)代表零散射角度的散射强度. 扣除样品池的散射和其他各种背底,最终计算得到dΣ(q)dΩ. 式(1)和式(2)只是简化和近似,真实SANS数据处理还需要考虑探测器效率、死时间和入射中子波长分布等因素[14].2.3实验数据分析SANS数据分析方法多种多样. 一般来说,可分为不依赖于模型的分析方法和依赖于模型的分析方法. 不依赖于模型的分析方法植根于数学,是数据分析的起点. 具体来说,包括吉尼尔(Guiner)、Porod、Kratky等分析方法. Guiner分析方法是样品的散射强度的自然对数对散射矢量的平方作图,即1n(I(q))对q2作图,在qRgPorod分析方法是主要用于分析散射体尺寸的局部结构信息,要求qRg1. Porod作图即是将散射强度对散射矢量作图,即1g(I(q))对lgq作图,其斜率即为散射体的Porod因子n. 高q的散射数据通常可表示为或者对于长棒形散射体,n=1;对于二维光滑散射体,n=2;如果三维散射体拥有光滑表面,n=4; 否则,n为3~4之间. 对于大分子链,Porod因子与排斥体积参数ν有关,即n=1/v,对于稀溶液中的有排斥体积高斯链n=5/3(或者1/0.588),对于稀溶液中没有排斥体积的高斯链n=2,对于完全蹋缩的大分子链n=3.n为2~3之间可能是枝状大分子或者是形成网络结构.图3为半径为R=50 nm的硬球的散射模型,可以用贝塞尔方程拟合. 对曲线低q区域(qRg≤1)进行Guinier拟合,如图3中的小插图所示,得到均方旋转半径为38.94 nm,与理论值500 × (3/5)0.5 = 38.73 nm相符. 需要注意的是在得到 Rg之后需要进行一次验证,验证拟合区间确实满足qRg≤1.Fig. 3Guinier and Porod fit of the form factor of the hard sphere with a radius of 50 nm.对高q区域(qRg1)进行Porod拟合,得到斜率为-4.0,符合光滑球体表面分形维数. 更详细的关于Guiner、Porod和Kratky作图的图文解释和示例,读者可以参考Hammouda的SANS TOOLBox的第15章[15].常用的依赖于模型的分析方法是借助已知的样品信息,以有限多个初始参数建立正空间中散射体的几何模型,并根据公式(13)计算与之对应的倒空间的数学曲线,采用最小二乘法,不断迭代输入参数,直到模型的计算散射曲线与实验曲线的偏差在可接受范围内. 常用的分析软件有Igor[16]和SASView[17]等. Svergun和McGreevy等发展了新从头算起(ab initio)和逆蒙特卡罗模拟的分析方法[18~21],可以将正空间三维结构的傅里叶变换与散射曲线进行比较.对依赖模型的分析方法,初始模型的设计至关重要. 所以在SANS实验之前,需要进行一系列的前置散射、光谱或者成像实验,估计样品的初始结构. 根据不依赖于模型的Guinier和Porod等方法对一维散射曲线的分析结果,验证初始模型的选择是否正确. 需要注意的是,拟合参数或者基本假设越少,分析结果的准确性越高. 拟合参数多的方程可以拟合大多数SANS曲线,但必须通过结合其他研究手段固定大部分的参数.3大分子相关领域典型应用小角中子散射在物理学、化学、材料、生命科学和工业界等均有大量应用. 本文主要聚焦于大分子领域,即合成高分子、生物大分子和大分子材料领域的典型应用. 为方便讨论,依据样品的特点进行分类,分为高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料、生物大分子. 以下就这些方面的一些经典案例和最新发现进行讨论. 由于小角中子散射应用领域众多,并且各个领域之间还会出现交叉和重叠,所以以下分类讨论并不一定严格和全面,本文只是抛砖引玉,旨在说明小角中子散射的特点和在各领域的典型应用.3.1高分子溶液体系大多数用户使用SANS研究溶液体系是为了得到溶质的多尺度形貌,所以高分子溶液体系的样品处理,实验方法,数据处理与分析具有普适性[22,23]. 大分子在溶液中的基本构象(confor-mation)的确定需要使用SANS进行证明,一般在稀溶液测定. 1974年,Cotton等使用SANS研究了线形聚苯乙烯(PS)在二硫化碳(良溶剂)和环乙烷(θ溶剂)中的构象,验证了高分子在良溶剂中是有排斥体系的高斯链,分形维数5/3,在θ溶剂中是无扰高斯链,分形维数是2[24]. 随着高分子化学的进步,科学家们合成了不同几何形状的单分散大分子. 2014年,Goossen等使用SANS研究了环形PS在氘代甲苯(良溶剂),氘代环乙烷(θ溶剂)和氘代线形PS(类θ本体)中的构象,如图4所示[25]. 环形PS在良溶剂中,Porod区间的表观分形维数1.56,小于线形PS在良溶剂中的5/3,作者解释是由于第2维利系数(A2)的影响,通过扣除A2,得到没有端基的环形PS在良溶剂中的分形维数;环形PS在θ溶剂和相同分子量的PS本体中,分形维数为2. 我们需要着重指出两点:一是对θ溶剂体系,或者高分子本体体系,图4的拟合区间在0.006~0.2 Å-1,对于低q区间,0.002 Å-1qP(q)的基本定义(公式(13))进行计算[15].Fig. 4Scattering functions and representative slopes for the overall and internal structure of ring polystyrene in good andθ solvents at different length scales. The linear polymeric matrix in the ring/linear blend is congruent with the θ‍-solvent. (Reprinted with permission from Ref.‍[25] Copyright (2015) American Chemical Society).相分离过程的研究是高分子溶液研究领域的重点之一. 大多数情形下,基于平均场理论的Ornstein-Zernike方程可以描述溶液中相分离过程的浓度涨落的变化[26,27]. Jia等使用SANS,研究了聚(N,N′-二乙基丙烯酰胺)(PDEA)在氧化三甲胺(TMAO)水溶液中的相分离发生前浓度涨落(concentration fluctuation)的变化,如图5所示[28]. 浓度涨落的强度和幅度都随温度升高而增大,随TMAO含量的增高而增大;通过外推零散射角度散射强度的倒数随着温度的倒数曲线,得到浓度涨落趋近无穷时的温度,就可以得到该共混体系的旋节线相图. 同样,这里需要注意两点:一是SANS是唯一的直接测量旋节线相图的研究手段,其他研究手段,例如浊度法,测量的都是双节线相图;二是越靠近相边界,浓度涨落的尺度越大(图5),这与温敏性高分子靠近最低共溶温度(LCST)时体积收缩[29]并不矛盾:由于图5的SANS实验的衬度来源于浓度涨落的微区,而不是单链高分子. 如果需要看到PDEA单分子链的LCST塌缩(就像使用动静态激光光散射观察PDEA极稀水溶液一样),需要使用衬度匹配技术. 典型的例子可以参考Hammouda等的实验,使用氘代和氢化聚(N-异丙基丙烯酰胺)(PNIPAM)在衬度匹配的重水/水混合溶剂中,用SANS观察PNIPAM单链的塌缩过程[30].Fig. 5SANS profiles of 4% mass fraction PDEA in TMAO-d9/D2O mixtures. (a) Temperature dependence of PDEA atcTMAO = 0.28 mol/L the arrow is used to guide the eye, indicating the increase of concentration fluctuations with temperature. (b) TMAO concentration dependence at 15 °C when TMAO concentrations are 0, 0.1, 0.28, 0.44, 0.58, 0.76, 0.90, 1.13 and 1.25 mol/L, respectively. (Reprinted with permission from Ref.[ 28] Copyright (2017) American Chemical Society).随着大分子在溶液中的浓度增加,分子之间相互作用(SI(q))逐渐变强,这时相互作用在散射曲线上将会表现为最小散射矢量附近的散射强度相对无相互作用时变小,中间q区间的散射强度相对无相互作用时变强. 如果体系中存在复杂的相互作用,如氢键相互作用、静电相互作用、憎水相互作用、π-π堆叠作用[31]等,在溶液中将形成亚稳的并且能够响应外界刺激的微相自组装结构,在污水净化、废油回收、药物输送等方面有着广泛的应用[32]. 小角中子散射是研究这类体系的非常有效的方法,既可以研究大分子或组装体在溶液中的结构(P(q))的变化[33],又可以研究组装体的结构在溶液中的相互作用(SI(q)).大分子组装结构是小角中子散射研究的一个热点. Sternhagen等合成了一系列的两亲性离子类肽嵌段共聚物,这些共聚物唯一不同的是肽链序列的离子单体的位置不同. SANS研究表明,这些肽嵌段共聚物组装成星形胶束结构,并且离子单体的位置越靠近星形胶束中心,胶束的均方旋转半径越小,并且二者呈现一定的指数关系[34]. 此项研究为利用肽键氨基酸序列调控组装胶束结构开辟了新的道路.3.2高分子共混物和复合材料通过将高分子共混、复合,石油化工工业只需要生产常见的几十种高分子材料,如聚乙烯、聚丙烯、聚酰胺等,就可以大致满足人们日常生活对高分子材料的硬度、弹性、机械强度、疲劳强度、导电性、透光性、耐热性、阻燃性、吸水性、耐酶性等多方面的需求. 这表明高分子共混物和复合材料的多相多尺度微观结构及其演化过程与宏观性能密切相关. 小角中子散射适用于实时追踪这类体系的微观结构的变化.通常非晶高分子本体或者共混物中,由于要观察的目标大分子与其周围环境的化学结构大致相同,对大部分研究手段而言衬度几乎都为0,无法看到单一高分子链或者选择性观察某一相高分子. 少部分的观察手段,包括单分子荧光或者核磁虽然有选择性地观察能力,但是前者引入了大尺寸的荧光基团,有可能影响体系的动力学和动态学行为;后者直接观察的是能量空间. 只有SANS可以通过衬度匹配具有选择性地观察单链结构的能力[35].高分子共混物在双节线相区,初级成核过程究竟是如何发生的?到现在仍然是一个非常具有挑战性的课题. Balsara课题组曾进行了深入的研究[36]. 他们使用时间分辨SANS,研究了氘代聚乙基丁烯(dPE)、聚甲基丁烯(PM)和聚(甲基乙烯-b-乙基丁烯)的三元共混物相分离初期的成核过程,如图6所示. SANS的中子束流强度低,需要较长时间(通常大于3 min,依赖于不同中子源或者SANS谱仪)才能得到满足统计误差的散射谱图. 嵌段共聚物hPM-hPE的加入是为了增强dPE/hPM的相容性,降低相分离温度并延长相分离时间,从而满足SANS采样所需时间.图6(a)表明,相分离未发生时,体系为均相,相对散射强度不随散射矢量q变化;随着相分离发生,低q散射曲线随相分离时间增长,不断向上倾斜,这说明有相分离成核的尺寸逐渐增大,零散射矢量处散射强度随之增长. 使用不依赖具体模型的Guinier方程对SANS数据进行拟合(图6(b)),可以得到零散射矢量处散射强度(In)随其均方旋转半径(Rg)变化的标度关系,分形维数1/0.54,说明初级成核也许并不是Gibbs成核过程(分形维数3),而是浓度涨落诱导过程(分形维数2).Fig. 6(a) Dependence of SANS profiles on time during the early stage of the sample with 50 vol% block copolymer. The solid lines in represent fits to the Guinier model. (b) A lg-lg plot ofRg at a given time versus In(In = I(Q=0,t)/I(Q=0,t=0)) at that time. The solid line represents the best power law fit. (Reprinted with permission from Ref.‍[36] Copyright (1996) The American Physical Society).复合大分子材料在工业界有着十分广泛的应用. Liu等利用小角中子散射和电子显微镜研究纳米二氧化硅球(20 nm左右)和橡胶复合体系,发现SiO2会形成24~97个硅球的聚集体,聚集体尺寸随着SiO2球体积分数增加线性变小,最佳的二氧化硅的体积分数在40%~50%之间[37,38].具有刺激响应的智能大分子材料,如自愈(self-healing)复合材料是目前研究的热点. Staropoli 等利用小角中子散射和流变实验研究靠氢键结合而成的瞬态枝化梳状大分子在熔融状态下的氢键形成机理[39]. 结果表明,瞬态链合结构对此类材料至关重要.3.3高分子结晶高分子结晶过程极为复杂,尽管科学家们进行了多年不间断地研究,一些基础性的问题仍有疑问. 1977年,Sadler等使用SANS研究了氘代聚乙烯经过溶液和熔融结晶生成的晶体内部的单链构象[40],在一系列假设下(氘代和氢化聚乙烯无相分离、同时结晶),证明了高分子单链在溶液中优先按照近邻折叠模型结晶;在熔融过程中,优先按照插线板模型结晶. 这个结果争议不大,已经写入了高分子物理的教科书. 而串晶(shish-kebab)中shish的生成机理则至今仍争议不休:究竟是高分子链的拉伸、缠结网络变形或者是壁滑导致了shish的产生?Kimata等的SANS研究使shish成核理论的研究向前迈出了关键的一步[41]. 实验观察结晶过程中分子链结构变化的关键难点还在于衬度:如何能够在shish的狭小范围内看到高分子链的结构. 如之前表2所示,X射线的衬度来源于电子云密度的差别,因此SAXS可以看到二维的大分子片晶结晶区与非晶区片层之间的电子云密度差别,从而得到片晶厚度,但是SAXS看不到一根结晶大分子链与其周围链段之间的任何差别;而常规的SANS均聚物氘代和氢化二元共混同样存在问题,它虽然提供了氘代分子与周围分子之间的衬度差别,但是也引入了结晶的氘代大分子与非晶的氘代大分子之间的衬度差别. 所以Kimata之前,科学家们没有设计出合适的可以在shish中提取分子链结构的实验方法. Kimata等使用了氘代短链(S),中等链(M)和长链(L)等规丙烯(iPP)与多分散非氘带iPP进行共混,在不同温度下进行剪切实验,用SANS观察散射图样的变化,如图7所示.图7(a)中S链的各向异性散射更加显著,温度升高到168 ℃时shish开始熔化,各向异性开始逐渐消失. Kimata等用166 ℃ 时shish刚刚开始取向的散射图样减去168 ℃或者180 ℃完全熔融的背景散射,如图7(b)所示,成功得到了d-iPP链在shish中的取向信息.图7证明了长链在shish中只起引发作用,但扩散较慢,不是shish的主体.Fig. 7(a) Temperature dependence of SANS profiles of deuterium labeled iPP during heating from 25 °C to 180 °C. The labeled fraction is denoted by S, M, and L for short D, medium D, and long D, respectively. (b) The change in SANS scattering intensity between 166 and 180 °‍C (left) and between 168 and 180 °‍C (right) for each of the three deuterium-labeled blends. (Reprinted with permission from Ref.[41] Copyright (2007) American Association for the Advancement of Science).3.4凝胶溶胶或者溶液中的胶体粒子或者大分子在合适条件下相互连接,形成空间网络结构,最后失去流动性,整个体系变成一种外观均匀,并保持一定形态的弹性半固体,这种弹性半固体称为凝胶. 凝胶在有机体的组成中占重要地位,人体内的肌肉、皮肤、细胞膜、血管壁,以及毛发、指甲、软骨等都可看作是凝胶. 相对于稀溶液,凝胶体系中的结构和相互作用更加复杂,小角中子散射方法,可用于研究此类体系的微观结构[42,43]、凝胶相的形成过程[44]和形成机理等[45].Endo等利用SANS研究不同浓度的间规聚丙烯(sPP)在氘代十氢萘溶剂中形成的物理凝胶的结构[46],散射曲线如图8(a)所示. 散射曲线在某一q范围的斜率表示在相应正空间尺度上散射体的分形维数. 浓度最低的sPP十氢萘溶液(2 wt%)的散射曲线低q区间分形维数1,说明在交联点之间有棒状结构,中等q值范围内分形维数4,类似光滑球形外表面. 所以假设sPP纳米晶为球形结构(用贝塞尔方程拟合),纳米晶之间存在的非晶sPP链形成的网络结构(用Ornstein-Zernike方程拟合),纳米晶球之间进行Percus-Yevick近似,就可以得到交联点形状、尺寸随sPP浓度和温度变化的定量关系(图8(b)).Fig. 8(a) SANS profiles of the nitrogen quenched gel with differentsPP concentrations (symbols) and corresponding fitting results (solid lines). The profiles are vertically shifted to avoid the overlap. (b) Schematic illustration of hierarchical structures in gel LN suggested by the SANS profiles. (Reprinted with permission from Ref.‍[46] Copyright (2019) The Royal Society of Chemistry)3.5多孔材料中子直接作用于原子核,具有很强的穿透性,可以轻松穿透较厚的多孔材料,从而在1~100 nm范围内研究其内部孔隙的孔隙率、尺寸分布、各向异性、孔的连接性和比表面积,并且可以追踪这些参数对其容纳和吸附性能的影响.Yang等利用小角中子散射研究我国四川盆地龙马溪页岩的多孔结构[47,48]. 用多分散球形孔模型和Porod方法分析中子散射数据得到的比表面积和孔隙率,都大于压汞法得到的结果,说明样品中存在盲孔. 随着样品埋藏深度的增加,盲孔数量也随之增加,并且与有机碳含量存在相关性. 这个例子需要注意样品多重散射对散射曲线的影响,通常页岩样品厚度在200 μm的情况下可以保证单次散射;具体实验中需要测量不同厚度样品散射曲线来避免多重散射.碳纤维是重要的工业材料,小角中子散射可以对碳纤维内的孔隙缺陷进行精确的表征. Jafta等利用小角中子和小角X射线对多孔碳纤维内的孔隙率和比表面积进行了精确的分析[49]. 同时还用弦长分布函数分析了体系中孔隙的空间分布,发现孔的分布相对无序. 如果多孔材料的孔隙分布比较窄,就可以用于研究液体在空间受限行为、各种气体在孔隙内的吸附和脱吸附. Melgar等利用多金属氧酸盐为水分子提供含有不同配体的孔隙,研究水分子在孔隙内的分布情况[50],研究表明,当孔隙小于1.1 nm,水分子将不能进入孔隙从而去润湿. Bahadur等利用小角中子散射研究二氧化碳在多孔碳材料内的高压吸附行为[51]. 观察到二氧化碳在微孔内随着压强的非线性吸附,微孔尺寸从约5 Å增加到7 Å. 但氩气在同样压强作用下的吸附并没有引起孔隙尺寸的变化. 说明吸附二氧化碳后,孔隙内的压强大于外界压强,推测孔内存在很强的吸附引起的溶解压.3.6生物大分子生物大分子种类丰富,多尺度结构复杂,其内部结构和作用原理的解析对解开生命的奥秘、开发新型药物等意义重大. Shi和Li对小角X射线在该领域的研究进展和一般分析方法进行了详细的阐释[52],介绍的分析方法和研究方向与本小节介绍的内容有一些类似和重叠,有兴趣的读者可以自行查阅. 中子凭借其特性和与X射线的互补在生物大分子方面的应用前景也十分广阔[53].生物大分子的小角中子散射表征难度相对较高,第一,氘代样品的制备难度大,需要利用氘水和氘带碳源培养特定的细菌,粉碎后再纯化需要的氘带样品;第二,小角中子散射是一种低空间分辨率的表征手段,对于复杂体系的散射,人们通常将小角中子散射与其他实验手段和分析方法如透射电镜、X射线晶体衍射、核磁共振以及模拟方法等结合起来对散射数据进行分析,如图9所示. David等综述了利用小角散射研究生物大分子[54]. 在生物大分子方面小角中子散射的研究内容包括但不限于:(1)肽链、核酸、蛋白质[55]、双层磷脂膜、淀粉、纤维素等生物大分子在不同环境下的结构;(2)肽链、核酸、蛋白质和双层磷脂膜等的相互作用和组合结构;(3)病毒、细胞器等.Fig. 9A scheme of an SAS experiment, structural tasks addressed and the joint use with other methods. The nominal resolution of the scattering data is indicated asd = 2 p/s. (Reprinted with permission from Ref.[56] Copyright (2007) Elsevier Ltd.).对于生物大分子这类复杂体系,在能够达成科学目标的前提下,模型设计需要尽可能地简单,将变量维持在可接受范围内. 如果散射体非常复杂,由多个具有不同结构、功能的部分组成,需要使用氘代对各个部分进行衬度匹配. 数据分析方面,第一步,对散射数据做定性或半定量的分析,例如稀溶液,可以通过Guinier作图分析散射体均方旋转半径,Porod作图分析体系拓扑结构或者分形维度;第二步,依据已知数据建立模型,分析数据. 数据分析模型通常有以下2种:第一种是依赖于散射数据的可迭代优化模型,依据模型的计算曲线和实验曲线的均方差对模型的一些变量进行迭代优化,如规则几何模型拟合、逆蒙特-卡洛(RMC)方法[21,57]、从头计算(ab initio)方法[20]等;第二种是不依赖于散射数据的独立模型(强烈依赖于所用力场),例如独立的分子动力学或者蒙特-卡洛模型,独立模型的计算SANS曲线可以与实验曲线对比,或者依据实验曲线与模型得到的可能结构进行筛选[58].限于篇幅,以下举几个有代表性的实例. 如图10为天冬氨酰-tRNA合成酶(Aspartyl-tRNA synthetase complexed)与tRNA复合物结构的小角X射线和小角中子散射联合研究图示[59]. Petoukhov和Svergun分别利用ab initial的串球模型分析复合体系的低分辨结构,如图10(A)和10(B)所示,然后利用复合物各个部分的X射线晶体学结构和刚体建模方法拟合X射线和中子散射数据,得到体系在溶液中的高分辨结构模型.Fig. 10(A) Aspartyl-tRNA synthetase complexed with tRNA. (a, b) Comparisons of the crystal structure with the ab initio bead models generated by the program MONSA. In the high resolution model, the protein and tRNA are shown as blue and magenta backbones, in the bead model corresponding phases are presented in gray and yellow, respectively. (c) Best rigid body model generated by SASREF. (d) A SASREF model with different orientations of tRNA. Right view is rotated by 90° about horizontal axis. (B) Scattering profiles from the Aspartyl-tRNA synthetase complex with tRNA. The simulated data are shown by dots, the fits obtained by the program MONSA and the program SASREF are displayed as red solid and blue dashed lines, respectively. 1 and 2 are X-ray scattering curves of the dimeric protein and the entire complex, respectively. 3-7 are neutron scattering patterns at 0, 40%, 55%, 70% and 100% D2O, respectively. The patterns are displaced in logarithmic scale for better visualization. (Reprinted with permission from Ref.[59] Copyright (2006) Springer European Biophysics Journal).同步辐射和X射线晶体学是研究生物大分子结构的利器,在得到蛋白质的晶体结构后,利用刚体建模方法,或者分子动力学模拟,结合小角X射线和小角中子散射,可以研究各类蛋白在溶液中的结构和相互作用. Shrestha等利用小角中子散射、小角X射线散和分子动力学模拟研究天然无规蛋白(intrinsically disordered protein)结构[60],发现Flory指数为0.54,介于理想链的0.5和自避行走链的0.588之间.4总结小角中子散射技术在基础、应用、产业化的各个领域中都有广泛的应用. 由于篇幅所限,本文只是首先从原理和实践两个方面对这一技术进行了简要的介绍,然后列举了小角中子散射在高分子溶液、高分子共混物和复合材料、高分子结晶、凝胶、多孔材料和生物大分子等体系结构表征方面的一些典型应用,希望能够进一步扩展我国的SANS用户群体. 如果需要更深一步了解SANS或者中子散射技术在高分子科学中的应用,可以参考一些专业书籍[12,61,62].参考文献1Borsali R,Pecora R.Soft-Mattter Characterization.Springer,2008.377-9522Cebe P,Hsiao B S,Lohse D J.Scattering from Polymers Characterization by X-rays, Neutrons, and Light.Washington DC:American Chemistry Society,2000.1-1163Roe R J.Methods of X-ray and Neutron Scattering in Polymer Science.Oxford:Oxford University Press,2000.1-804Feigin L A,Svergun D I.Structure Analysis by Small-Angle X-Ray and Neutron Scattering.New York and London:Plenum Press,1987.275-320.doi:10.1007/978-1-4757-6624-0_95Dianoux A J,Lander G.Neutron Data Booklet Second Edition (July 2003).2020-10-25.https://www.ill.eu/fileadmin/user_upload/ILL/1_About_ILL/Documentation/NeutronDataBooklet.pdf6National Nuclear Data Center.Evaluated Nuclear Data File (ENDF).2020-10-25.https://www.nndc.bnl.gov/exfor/endf00.jsp.doi:10.2172/9818137Zuo T S,Cheng H,Chen Y B,Wang F W.Chinese Phys C,2016,40(7):76204.doi:10.1088/1674-1137/40/7/0762048Carpenter J M, Agamalian M.J Phys:Conference Series,2010,251:012056.doi:10.1088/1742-6596/251/1/0120569Han Z,Zuo T,Ma C,Cheng H.Instrum Sci Technol,2019,47:448-465.doi:10.1080/10739149.2019.159773310Zhang H,Cheng H,Yuan G,Han C C,Zhang L,Li T,Wang H,Liu Y T,Chen D.Nucl Instrum Meth A2014,735:490-495.doi:10.1016/j.nima.2013.09.06511Anderson K.Reactor & Spallation Neutron Sources.Oxford:Oxford School of Neutron Scattering,2013.55-7612Higgins J S,Benoît H C.Polymers and Neutron Scattering.Oxford:Clarendon Press,1994.86-9513Rehm C,Barker J,Bouwman W G,Pynn R.J Appl Crystallogr,2013,46(2):354-364.doi:10.1107/s002188981205002914Du R,Tian H L,Zuo T S,Tang M,Yan L,Zhang J R.Instrum Sci Technol,2017,45(5):541-557.doi:10.1080/10739149.2016.127822915Hammouda B.Probing Nanoscale Structures-The SANS Toolbox.Gaithersburg:National Institute of Standards and Technology Center for Neutron Research,2010.31-19116Kline S.J Appl Crystallogr,2006,39(6):895-900.doi:10.1107/s002188980603505917Butler P,Doucet M,Jackson A,King S.SasView for Small Angle Scattering Analysis (July 2020).2020-10-25.https://www.sasview.org/18Konarev P V,Svergun D I.IUCrJ,2018,5(Pt 4):402-409.doi:10.1107/s205225251800590019Petoukhov M V,Svergun D I.Acta Crystallogr D Biol Crystallogr,2015,71(Pt 5):1051-1058.doi:10.1107/s139900471500257620Volkov V,Svergun D.J Appl Crystallogr,2003,36:860-864.doi:10.1107/s002188980300026821Gereben O,Pusztai L,McGreevy R L.J Phys Condens Matter,2010,22(40):404216.doi:10.1088/0953-8984/22/40/40421622Li Z,Cheng H,Li J,Hao J,Zhang L,Hammouda B,Han C C.J Phys Chem B,2011,115(24):7887-7895.doi:10.1021/jp203777g23Hu W T,Yang H,He C,Hu H Q.Chinese J Polym Sci,2017,35(9):1156-1164.doi:10.1007/s10118-017-1969-724Cotton J P,Decker D,Benoit H,Farnoux B,Higgins J,Jannink G,Ober R,Picot C,des Cloizeaux J.Macromolecules,1974,7(6):863-872.doi:10.1021/ma60042a03325Goossen S,Bras A R,Pyckhout-Hintzen W,Wischnewski A,Richter D,Rubinstein M,Roovers J,Lutz P J,Jeong Y,Chang T,Vlassopoulos D.Macromolecules,2015,48(5):1598-1605.doi:10.1021/ma502518p26Hao J,Cheng H,Butler P,Zhang L,Han C C.J Chem Phys,2010,132(15):154902.doi:10.1063/1.338117727Hore M J A,Hammouda B,Li Y,Cheng H.Macromolecules,2013,46(19):7894-7901.doi:10.1021/ma401665h28Jia D,Muthukumar M,Cheng H,Han C C,Hammouda B.Macromolecules,2017,50(18):7291-7298.doi:10.1021/acs.macromol.7b0150229Cheng H,Wu C,Winnik M A.Macromolecules,2004,37(13):5127-5129.doi:10.1021/ma049620130Hammouda B,Jia D,Cheng H. OAJoST,2015,3:101152.doi:10.11131/2015/10115231Datta S,Kato Y,Higashiharaguchi S,Aratsu K,Isobe A,Saito T,Prabhu D D,Kitamoto Y,Hollamby M J,Smith A J,Dagleish R,Mahmoudi N,Pesce L,Perego C,Pavan G M,Yagai S.Nature,2020,583(7816):400-405.doi:10.1038/s41586-020-2445-z32Zhang H V,Polzer F,Haider M J,Tian Y,Villegas J A,Kiick K L,Pochan D J,Saven J G.Sci Adv,2016,2(9):e1600307.doi:10.1126/sciadv.160030733Wang Z,Faraone A,Yin P,Porcar L,Liu Y,Do C,Hong K,Chen W R.ACS Macro Lett,2019,8(11):1467-1473.doi:10.1021/acsmacrolett.9b0061734Sternhagen G L,Gupta S,Zhang Y,John V,Schneider G J,Zhang D.J Am Chem Soc,2018,140(11):4100-4109.doi:10.1021/jacs.8b0046135Zuo T,Ma C,Jiao G,Han Z,Xiao S,Liang H,Hong L,Bowron D,Soper A,Han C C,Cheng H.Macromolecules,2019,52(2):457-464.doi:10.1021/acs.macromol.8b0219636Balsara N P,Lin C,Hammouda B.Phys Rev Lett,1996,77(18):3847-3850.doi:10.1103/physrevlett.77.384737Liu D,Song L,Song H,Chen J,Tian Q,Chen L,Sun L,Lu A,Huang C,Sun G.Compos Sci Technol,2018,165:373-379.doi:10.1016/j.compscitech.2018.07.02438Liu D,Chen J,Song L,Lu A,Wang Y,Sun G.Polymer,2017,120:155-163.doi:10.1016/j.polymer.2017.05.06439Staropoli M,Raba A,Hövelmann C H,Krutyeva M,Allgaier J,Appavou M S,Keiderling U,Stadler F J,Pyckhout-Hintzen W,Wischnewski A,Richter D.Macromolecules,2016,49(15):5692-5703.doi:10.1021/acs.macromol.6b0097840Sadler D M,Keller A.Macromolecules,1977,10(5):1128-1140.doi:10.1021/ma60059a04541Kimata S,Sakurai T,Nozue Y,Kasahara T,Yamaguchi N,Karino T,Shibayama M,Kornfield J A.Science,2007,316(5827):1014.doi:10.1126/science.114013242Shibayama M,Li X,Sakai T.Colloid Polym Sci,2018,297:1-12.doi:10.1007/s00396-018-4423-743Gao J,Tang C,Elsawy M A,Smith A M,Miller A F,Saiani A.Biomacromolecules,2017,18(3):826-834.doi:10.1021/acs.biomac.6b0169344Srivastava S,Andreev M,Levi A E,Goldfeld D J,Mao J,Heller W T,Prabhu V M,de Pablo J J,Tirrell M V.Nat Commun,2017,8:14131.doi:10.1038/ncomms1413145Nishi K,Fujii K,Katsumoto Y,Sakai T,Shibayama M.Macromolecules,2014,47(10):3274-3281.doi:10.1021/ma500662j46Endo F,Kurokawa N,Tanimoto K,Iwase H,Maeda T,Hotta A.Soft Matter,2019,15(27):5521-5528.doi:10.1039/c9sm00582j47Yang R,He S,Hu Q,Sun M,Hu D,Yi J.Fuel,2017,197:91-99.doi:10.1016/j.fuel.2017.02.00548Sun M,Yu B,Hu Q,Zhang Y,Li B,Yang R,Melnichenko Y B,Cheng G.Int J Coal Geology,2017,171:61-68.doi:10.1016/j.coal.2016.12.00449Jafta C J,Petzold A,Risse S,Clemens D,Wallacher D,Goerigk G,Ballauff M.Carbon,2017,123:440-447.doi:10.1016/j.carbon.2017.07.04650Melgar D,Zhou Q,Chakraborty S,Porcar L,Weinstock I A,Ávalos J B,Wu B,Bo C,Yin P.J Phys Chem C,2020,124(18):10201-10208.doi:10.1021/acs.jpcc.0c0101951Bahadur J,Melnichenko Y B,He L,Contescu C I,Gallego N C,Carmichael J R.Carbon,2015,95:535-544.doi:10.1016/j.carbon.2015.08.01052Shi Ce(史册),Li Yunqi(李云琦).Acta Polymerica Sinica(高分子学报),2015, (8):871-883.doi:10.11777/j.issn1000-3304.2015.1504853Fitter J,Gutberlet T,Katsaras J.Neutron Scattering in Biology: Techniques and Applications.Berlin Heidelberg and New York:Springer,2006.doi:10.1007/3-540-29111-354Jacques D A,Trewhella J.Protein Sci,2010,19(4):642-657.doi:10.1002/pro.35155Koruza K,Lafumat B,ÁVégvári,Knecht W,Fisher S Z.Arch Biochem Biophys,2018,645:26-33.doi:10.1016/j.abb.2018.03.00856Petoukhov M V,Svergun D I.Curr Opin Struct Biol,2007,17(5):562-571.doi:10.1016/j.sbi.2007.06.00957Ma Chang-li(马长利),Cheng He(程贺),Zuo Taisen(左太森),Jiao Guisheng(焦贵省),Han Zehua(韩泽华),Qin Hong(秦虹).Chinese Journal of Chemical Physics(化学物理学报),2020,33(6s):727-732.doi:10.1063/1674-0068/cjcp200507758Jiao G,Zuo T,Ma C,Han Z,Zhang J,Chen Y,Zhao J,Cheng H,Han C C.Macromolecules,2020,53(13):5140-5146.doi:10.1021/acs.macromol.0c0078859Petoukhov M V,Svergun D I.Eur Biophys J,2006,35(7):567-576.doi:10.1007/s00249-006-0063-960Shrestha U R,Juneja P,Zhang Q,Gurumoorthy V,Borreguero J M,Urban V,Cheng X,Pingali S V,Smith J C,O’Neill H M,Petridis L.Proc Natl Acad Sci,2019,116(41):20446-20452.doi:10.1073/pnas.190725111661Han C C,Akcasu A Z.Scattering and Dynamics of Polymers: Seeking Order in Disordered Systems.Singapore:John Wiley & Sons (Asia) Pte Ltd,2011.1-98.doi:10.1002/978047082484962Zemb T,NeutronLindner P.X-rays and Light.Scattering Methods Applied to Soft Condensed Matter.Amsterdam:Elsevier,2002.1-552.doi:10.1107/s0021889803001808原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20242&lang=zhDOI:10.11777/j.issn1000-3304.2020.20242《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性
    课程主题:【小贝开讲】粒度表征常用方法、优缺点及高分辨粒度表征的重要性课程时间:2021-4-9 14:00课程简介:随着科技的发展,关于颗粒粒度的表征方法已从最初简单的筛分,发展到各种原理的检测方法,包括静态激光衍射法、动态激光散射法、离心沉降法、光阻法、电阻感应法、拍照图像法等,这些方法各有优缺点和适用性,对这些方法的了解有助于我们使用合适的工具对我们的产品或中间产物或原料进行有效的研究和质控。 高分辨的粒度表征技术是科学与产品不断发展的必然要求。因为研发人员需要依靠粒度数据做出决策,QC需要及时发现批次间细微的差异。只有高分辨粒度表征技术,才能帮助客户发现关键细节,实现精准表征,获得更加真实的粒度信息。然而,当前很多时候我们都是第一时间使用激光粒度仪,而这其中有时会面临着测试结果遗漏了关键细节的风险。 此次研讨会将对以上内容一一向您做介绍。姚金龙 贝克曼库尔特生命科学研究生毕业后先后在中科院上海有机所,上海高等研究院和某著名颗粒分析厂家工作,2019年正式加入贝克曼库尔特公司。在激光粒度仪,纳米粒度和Zeta电位分析仪、颗粒图像分析仪、纳米可视追踪分析仪和粉体颗粒流变仪等具有5-10年的操作应用经验,负责全国粒度相关产品售前、售后应用技术支持。
  • 瑞士华嘉与晶云药物联合将为中国制药界用户提供药物固态表征领域的一系列高端讲座
    晶云药物科技有限公司(简称晶云)已与华嘉(香港)有限公司—隶属大昌华嘉 (简称华嘉)签订合作协议,将会为华嘉在中国的广大制药界客户,提供药物固态表征领域的一系列高端讲座和培训,以共同推进中国制药界对固态表征仪器在制药界应用和其在药物研发过程中的重要性的了解。华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。其中固态表征领域的产品就包括粒度仪,密度计,旋光计,接触角测量仪,BET比表面积测量仪等各种高端进口仪器。 “中国政府正在大力增加制药行业的投资力度,以提高中国在药物研发领域的能力和国际竞争力”,晶云首席执行官陈敏华博士说,“在药物的高级研发方面,中国制药业尚处于起步阶段。导致这个现象的部分原因是国内制药行业在对原料药和制剂的研发认知上,与美国和欧洲的制药行业尚有不小差距。虽然不少中国制药公司有能力购买昂贵的固态表征和其它分析仪器,但他们并不一定懂得如何正确的使用这些仪器,合理的阐释实验数据,并深刻理解其所提供的信息和对药物研发的作用。”苏州晶云药物科技有限公司是中国首家并且也是目前唯一一家专注于药物晶型研究和提供药物固态信息领域研发方案的技术服务公司。晶云的科研人员拥有丰富的原料药和制剂的研发经验。无论是以研发创新药物为主的全球各大制药公司,还是以生产仿制药(包括原料药和制剂)为主的国内各制药公司,晶云都可以成为其在药物固态研发领域的紧密合作伙伴,为其提供药物固态研发领域的各种解决方案,其中包括药物晶型研究,盐型/多晶型/共晶型筛选,单晶的生长和结构鉴定,结晶工艺的优化,手性药物的结晶提纯,临床前制剂的研发,无定形药物制剂的研发等各个方向。晶云不局限于简单的为客户操作实验和提供实验结果,更重要的是给客户提供一个适合其需求并完全满意的全套研发方案。 晶云技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。晶云即将为华嘉客户提供的讲座和培训不仅包含了药物固态表征技术的基本理论,还将集中讨论如何利用这些仪器解决药物研发生产中碰到的实际问题,并辅以大量的制药行业中的案例分析。晶云和华嘉的一个共同使命就是帮助广大中国制药公司在新药研发领域迅速赶上欧美制药公司水平。相信由两家公司联合举办的讲座和培训将为成为实现这一使命的重要平台。 晶云药物科技有限公司 晶云药物科技有限公司(Crystal Pharmatech)总部设立在苏州工业园区内的生物纳米科技园,在美国新泽西州建有分部。核心团队由中美科学家及管理人员共同组成,拥有在全球前三大制药公司数十年的丰富研发和生产经验。团队利用掌握的核心技术开发出中国在药物晶型研究及提供药物固态信息研发方案的首个高新技术平台,并通过该平台为全球制药公司提供该领域的高级技术研发服务。公司拥有的享有自主知识产权的高新技术和高新仪器,结合团队目前已经完全掌握的该专业领域的核心技术,将保证技术平台不仅可以填补国内在该领域的空白,而且使技术平台处于国际领先地位。公司的业务集中在以药物的固态信息为中心的专业领域,主要包括原料药及其中间体的成盐,共晶和多晶的筛选,原料药和制剂的表征和评估,晶型药物结晶工艺流程的优化和放大,临床前药物制剂的研发,以及上述相关领域内自主知识产权技术和产品的开发,高级技术咨询及其培训等。 想了解更多信息,敬请登陆: http://www.crystalpharmatech.com/华嘉(香港)有限公司——隶属大昌华嘉大昌华嘉是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。"科技的市场智慧”是对华嘉公司形象的准确概括。高品质的产品,专业的应用及完善的售后服务,对各种客户文化背景的深刻理解以及娴熟的市场贸易技巧使得客户获得的不仅是经济上的利益,而且是技术上的进步。华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 想了解更多信息,敬请登陆:http://www.dksh-instrument.cn/
  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃图1. 每分钟10℃加热速率下药物材料的DSC测试结果图2. 熔融峰放大后在111℃显示出肩峰图1所示为每分钟10°C常规加热速率下药物材料的DSC测试结果。样品显示出单一的熔融吸热峰,起始熔融温度为107.4°C,没有显示出明显的多晶现象。对熔融峰进一步观察,可以在高温侧发现一个很小的肩峰。对这一熔融转变进行放大,如图2所示,该药物样品在111°C附近确实存在肩峰,这是存在多晶型现象的有力标志。利用晶型转变的时间特性,能够对可能存在的多晶型现象进行检验;改变DSC加热速率 (含时间依赖性或速率),可以识别可能存在的多晶型。图3. 每分钟3℃加热速率下药物材料的DSC测试结果以每分钟3℃的低加热速率对该特定样品进行分析,DSC测试结果如图3所示,该药物样品明确显示出多晶型现象。样品在107.2℃发生熔融后随即进行结晶,如109℃ 的放热峰所示。要对紧随多晶熔融转变的结晶峰进行检测和分辨,确实需要如珀金埃尔默DSC 8500这样的具有很高分辨率的功率补偿型DSC仪器。作为对比,本实验也采用了高性能的热流型DSC仪器对该药物多晶型样品进行分析,即便在低加热速率下也无法检测到这三个转变过程 (不稳定晶型熔融、结晶、稳定晶型熔融) 的存在。主要原因是热流型DSC的炉体质量较大 (150g),响应速率远低于功率补偿型DSC。如本研究结果所示,对于很多药物材料来说,具有极高分辨率的DSC仪器是成功且完整地检测到多晶型现象的必要条件。实验2卡马西平多晶型DSC测试测试条件升温速率:10/50/100/150/200/250℃min-1;样品质量:~5mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:100℃~240℃在检测到多晶型存在的情况下,需要对各晶型成分进行定量。使用DSC方法对晶型进行定量的逻辑是:通过将测量得到的晶型熔融峰面积与100%纯净的晶型熔融焓值比较,计算对应晶型在样品中的百分比。实际测试中,由于低温晶型熔融后可能存在重结晶现象,易对高温的熔融峰归属判定产生误导。同时,由于结晶峰与熔融峰相近,会干扰熔融峰面积的计算,难以确定真实的熔融焓值。卡马西平(Carbamazepine)是治疗癫痫病和神经性疼痛的药物,存在多个晶型。某卡马西平样品在常规测试条件(10℃/min)下,其DSC曲线如图4所示。可以看出,低温晶型(晶型III)在熔融后(红色虚框内吸热峰),出现了放热峰(蓝色虚框),该峰对应于熔融部分的重结晶。在更高的温度区间,可观察到晶型I的熔融峰(绿色虚框)。在高温区间检测到的晶型I熔融峰可能来源于原始样品,也可能来源于晶型III熔融后重结晶,亦或是两者都有。因此,在当前的常规测试条件下,难以进行归属。另外,由于晶型III的熔融和重结晶峰部分重叠,也无法准确计算晶型III的熔融焓值。图4 每分钟10℃加热速率下卡马西平的DSC测试结果按照结晶的理论,重结晶是一个动力学控制的过程,重结晶程度与结晶时间关系很大。因此,如果能够通过改变测试条件,缩短熔点不同的两个晶型间的时间跨度,就可以抑制低温晶型熔融后的重结晶。功率补偿型DSC的小炉体设计,使得快速地升降温成为可能,从而为这类体系的分析提供了技术保证。在本例中,使用不同的快速升温速率进行同一种类样品的考察,结果如图5所示。可以看到,随着升温速率的提高,DSC曲线中晶型I的熔融峰面积逐渐减小;在250℃/min的升温速率下,晶型I熔融峰完全消失,这意味着:1在前述慢速升温下得到的DSC曲线中,晶型I完全来自于低温晶型III熔融后的重结晶,原始样品中并没有晶型I的存在;2晶型I的熔融峰消失,表明在当前测试条件下,晶型III没有重结晶,此时量测到的熔融峰完全不受晶型III重结晶放热的干扰,从而可以准确计算纯净的晶型III熔融焓值(109.5J/g)。图5 不同升温速率下卡马西平DSC测试结果基于以上测试结果,继续在快速升温抑制重结晶的条件下测试真实的混合晶型样品,就可以通过前面得到的晶型III熔融焓值,准确计算晶型III和晶型I的比例,如图6所示。图6 卡马西平混合晶型样品在每分钟250℃加热速率下DSC测试结果总结珀金埃尔默功率补偿型DSC 8500既可以提供许多药物材料的多晶型检测所需要的极高灵敏度,又可以提供非常卓越的分辨率。对于新药研发行业来说,多晶型检测非常重要,因为多晶型现象对于药物有效成分进入血液循环的速率有很大的影响,也会影响到药物的储存期。功率补偿型DSC的小炉体设计具有很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在上述研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC仪器则无法检测到该样品的多晶型现象 (结晶过程)。另外,通过功率补偿型DSC实现的快速升温测试,可以抑制药物分子低温晶型重结晶,从而更可靠地判断样品的晶型情况,进而准确计算各晶型相对含量。扫描下方二维码即刻获取相关资料
  • 基于MEMS芯片的气相原位透射电镜(TEM)表征技术
    近日,中国科学院上海微系统与信息技术研究所研究员李昕欣团队采用基于MEMS芯片的气相原位透射电镜(TEM)表征技术,探究了Pd-Ag合金纳米颗粒催化剂在MEMS氢气传感器工况条件下的失效机制。4月13日,相关研究成果作为Supplementary Cover论文,以In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors为题,发表在Nano Letters上。 采用MEMS芯片气相原位TEM技术揭示氢气传感器失效机制的示意图随着低碳经济的快速发展,氢能作为理想的清洁能源应用于各个领域,如氢燃料电池汽车。为了确保氢气的安全使用,迫切需要开发具有高灵敏度、高选择性、高稳定性且低功耗的氢气传感器。李昕欣/许鹏程研究团队在国家重点研发计划“硅基气体敏感薄膜兼容制造及产业化平台关键技术研究”的支持下,开展了MEMS低功耗氢气传感器的研究工作。在半导体敏感材料表面修饰贵金属催化剂是提升氢气传感器性能(如灵敏度)的有效方法。然而,半导体气体传感器的工作温度高达数百摄氏度。在长期的高温工作环境下,金属催化剂的活性易衰减,引起半导体气体传感器的性能下降甚至失效,阻碍了该类传感器的实用化。传统的材料表征方法通常只能分析敏感材料失活前后微观形貌、结构及成分等的变化,缺乏在工况条件尤其是气氛条件下原位表征敏感材料的能力,难以分析半导体气体传感器的失效机制。该研究使用气相原位TEM实验,在工况条件下观测到Pd-Ag合金纳米颗粒催化剂的形貌和物相演变全过程,揭示了该合金纳米催化剂在不同工作温度下的失活机制,并据此对MEMS氢气传感器进行优化,有效推进了氢气传感器的实用化。原位TEM实验结果表明,当半导体氢气传感器在300 ℃工作时,相邻近的Pd-Ag合金纳米颗粒易发生融合、颗粒长大现象,且颗粒的结晶性提高。Pd-Ag合金纳米颗粒催化剂的粒径增大、缺陷减少,使其催化活性降低,引起氢气传感器的灵敏度出现衰减。当氢气传感器在更高温度(500 ℃)下工作时,Pd-Ag合金纳米颗粒进一步发生相偏析,Ag元素从合金相中析出,同时生成了PdO相,导致催化剂丧失了协同增强效应,使氢气传感器的灵敏度大幅下降甚至失效。原位TEM实验实时记录合金催化剂的融合过程在上述失效机制的指导下,科研团队进一步优化了Pd-Ag合金催化剂的元素组成、负载量及工作温度,并使用实验室独立研发的集成式低功耗MEMS传感芯片,研制出新一代的氢气传感器。该氢气传感器具有灵敏度高(检测下限优于1 ppm)、长期稳定性好(在300 ℃下连续工作一个月后,对100 ppm H2的响应值衰减小于1%)、功耗低(300 ℃下持续工作,功耗仅为22 mW)。该研究采用气相原位TEM技术来探讨气体传感器的失效机制,为气体传感器的理论研究与实用化提供了新的研究方式。目前,该MEMS氢气传感器已在汽车加氢站等领域试应用,相关应用工作正在积极推进。研究工作得到国家重点研发计划、国家自然科学基金及中科院仪器研制项目等的支持。论文链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c05018
  • 电镜等表征技术助力吉大团队在月壤样本中首次发现少层石墨烯
    近日,吉林大学邹猛教授、张伟教授、李秀娟正高级工程师及中国科学院金属研究所任文才研究员等,通过对嫦娥五号钻采岩屑月壤(No. CE5Z0806YJYX004)的观察分析,首次发现天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。研究成果以“Discovery of Natural Few-Layer Graphene on the Moon”为题,于6月17日发表在National Science Review期刊上。 CE-5月壤样品中天然石墨烯的先进电子显微结构表征和谱学分析。(图片来源:吉林大学)过往报道指出,通过观测月球的全球碳离子通量,科研人员认为月球上存在原生碳,利用月球样品的表征研究来揭示原生碳相的晶体结构是可行的。石墨烯以其新奇的物理现象和非凡的特性,在包括行星和空间科学在内的广泛领域发挥着越来越重要的作用。据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定,因此天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。少层石墨烯在月球上可能形成过程。(图片来源:吉林大学)在该项研究中,科研团队采用电镜—拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯(2—7层),并提出少层石墨烯和石墨碳的形成可能源于太阳风和月球早期的火山喷发共同诱导的矿物催化进程。
  • 在扫描电镜下衬度较低的二维材料,如何准确表征?
    以石墨烯、BN、MoS2为代表的二维材料因其特殊的性能成为现在科研领域的新宠。现在,除了石墨烯和MoS2等热度较高的二维材料之外,很多其他类型的二维材料也相继被开发出来。然而真正的二维材料因为厚度极薄,在扫描电镜下衬度较低;而且因为X射线在深度方向的穿透,EDS对二维材料上的分析也无能为力。而目前的二维材料除了用到SEM之外,拉曼光谱也是极其重要的表征手段,而将两者完全一体化的电镜-拉曼系统在二维材料的表征上有着得天独厚的优势。生长的石墨烯片层很多科研工作者都会通过扫描电镜进行石墨烯的形貌观察,然而观察到的究竟是否是石墨烯?石墨烯质量、厚度如何?这些问题却不是仅用SEM能够知道的。而扫描电镜-拉曼联用技术给出了很好的解决方案,确实成为石墨烯研究最强大的“神器”。在电镜-拉曼一体化系统中,当用SEM观察的同时可以直接进行拉曼光谱的面扫描,可以通过D峰、G峰、2D峰之间的关系直接得到石墨烯的质量、厚度等信息。如下图,在SEM观察到的区域再进行拉曼光谱面扫描,发现扫描区域存在三种不同的光谱。厚度约薄的2D峰强度越高,厚度增加2D峰减弱但G峰升高。因此电镜-拉曼一体化系统的SEM和Raman混合图像上不仅有形貌信息,也有石墨烯的质量厚度信息。在SEM观察形貌的同时进行拉曼面扫描通过拉曼特征峰获得石墨烯质量、厚度信息 目前,有关石墨烯质量和厚度的测试方法还没有明确的国家标准,行业上比较认可的方法有光学对比度法、原子力显微镜法和拉曼光谱法。在拉曼光谱中通常也用G峰和2D峰的比值来衡量石墨烯的厚度,比值越小,膜厚也约小。如下图,在硅衬底上用CVD法生长的石墨烯。我们通过电镜-拉曼一体化系统得到G峰和2D峰的面分布图,不过仅有G峰和2D峰的分布情况并不能完全帮助我们进行明确的厚度分布分析。在硅衬底上用CVD法生长的石墨烯石墨烯样品的G峰和2D峰拉曼面分布图而电镜-拉曼一体化系统的面分布能力非常强大,除了利用正常峰的强度、半高宽、位移等物理性质进行Mapping外,还可生成2D峰/G峰强度的面分布图。 通过电镜-拉曼一体化系统得到石墨烯样品的2D峰/G峰强度的面分布图通过2D/G峰强度的分布图有助于我们更加准确的进行石墨烯厚度分布的分析,最终获得不同膜厚区域的特征光谱,以及其分布图。石墨烯样品不同膜厚区域的拉曼特征光谱 石墨烯样品不同膜厚区域分布图石墨烯的质量控制与鉴别石墨烯是一个非常热门的新兴领域,不过也正因为如此,石墨烯的研究和制备也存在着良莠不齐的现象。很多研究的时候,在电镜下观察到明显的明暗衬度的膜层就认为是石墨烯,甚至一些文献中也出现了这样的情况。科研工作者也会借助AFM、普通拉曼光谱等来配合电镜进行石墨烯的表征,但是拉曼光谱、AFM的数据和SEM的数据基本不在同一处,不能很好的进行严密的论证。所以从表征的角度来看,不在同一处的不同仪器的数据,有时并不能充分说明问题,至少表征还不够严密。比如在上述例子中,在花状的石墨烯外面,电镜图像上认为的空白处,经过电镜-拉曼一体化系统扫描后,该区域的拉曼光谱依然反应出石墨烯的存在。 再比如下图,在电镜中观察到类似石墨烯的膜层状结构,然而试样是否真是石墨烯?质量、厚度又是如何?这还需要借助其他手段进行综合判断。在电镜中观察到类似石墨烯的膜层状结构 在利用电镜-拉曼一体化系统对该区域进行拉曼光谱面分布分析后,发现该区域的D峰、G峰强度较高,而2D峰很弱,说明了该区域的膜厚比较高,已经算不上是石墨烯,而且缺陷也很多,石墨烯的质量并不是非常理想,此外该区域还存在较多的拥有荧光峰的杂质。进行拉曼光谱面分布分析该区域石墨烯厚度 该区域存在较多拥有荧光峰的杂质 此外,很多客户在电镜下观察到的石墨烯,经过电镜-拉曼一体化系统分析后,也发现均是质量不好的石墨烯,或者是石墨薄片,甚至是非晶碳,如下图。质量不好的石墨烯、石墨薄片、非晶碳等的SEM图像质量不好的石墨烯、石墨薄片、非晶碳等的拉曼特征峰表现 由此可见,电镜-拉曼联用技术对于石墨烯的观察和原位的质量鉴别及分析有着非常强大的优势。石墨烯复合材料现在热门的不仅仅是石墨烯本身,很多石墨烯转移材料,或者把石墨烯作为添加剂的新材料和器件也成为研究热门,希望利用石墨烯特殊的热力光电磁性能来改变材料的性能。那么石墨烯在新复合材料中的分布、状态及本身质量就成为新材料性能能否提升及提升多少的重要因素。因此在石墨烯复合材料中,能够准确的进行传统电镜形貌、元素的测试,及石墨烯的详细表征就成为了表征环节的重中之重,而这是电镜-拉曼联用技术的最大优势所在。 如下图,金属合金材料中复合石墨烯,用以增强新材料的力学性能。在电镜下确实观察到了衬度偏暗的区域,能谱分析出的确是富含碳。但该区域是否真是石墨烯?只能求助于电镜-拉曼联用技术。通过电镜-拉曼一体化系统分析,结果表明偏暗区域的确是石墨烯的存在,不过缺陷相对较多,膜层层数也较多,这些信息对复合材料性能的研究有着置换重要的作用。 金属合金材料的SEM图像,衬度偏暗的区域可能是复合石墨烯通过能谱分析,SEM图像中衬度偏暗的区域富含碳 通过电镜-拉曼分析技术,确认为石墨烯,且该区域缺陷和膜层层数相对较多 再比如下图,试样为表面包覆石墨烯的锌粉。要想通过截面制备或者侧面直接观察出石墨烯的厚度和层数,无论扫描电镜的分辨率有多好,都是不可能完成的任务。就算真的观察到类似层状的结构,也不是我们所理解的石墨烯每一层层数,只是很多层堆叠在一起后的分层而已。而在电镜-拉曼一体化系统中可以直接进行拉曼面扫的分析。观察到在整个扫描区域内,都有明显的G峰和2D峰分布。由此我们可以知道该锌粉外层的确有质量较好的石墨烯包覆,而且层数很少。 表面包覆石墨烯的锌粉 通过电镜-拉曼一体化系统,观察到整个区域内G峰和2D峰的分布MoS2的研究除了石墨烯外,过渡金属二硫化物也是二维材料的一个大类,如MoS2也是因为其特殊性能在电子器件领域广受关注。电镜和能谱对二维的MoS2的表征除了稍有形貌信息外,再无其他分析能力了。但是MoS2却有非常强的拉曼特征峰。如下图,通过拉曼峰我们可以分析出MoS2的孪晶。MoS2的SEM图像MoS2 的SEM-Raman叠加图像通过拉曼特征峰表征MoS2的孪晶通过对MoS2的拉曼面扫描,我们发现MoS2的特征峰在不同的区域呈现出不同的分裂。由此我们可以对其做出更详细的分析,另外通过特征峰分裂后的波数差值,也可以大致得到MoS2的层数。而这都是常规电镜无法得出的信息。MoS2的拉曼面扫描分析MoS2的特征峰在不同的区域呈现出不同的分裂其他二维材料满足结构有序、在二维平面生长、在第三维度超薄这三个条件都算是二维材料,现在除了石墨烯和MoS2等热度较高的二维材料之外,很多其他类型的二维材料也相继被开发出来。比如和C元素相邻的B、Si、P、Ge、Sn等元素的单原子层材料,即X烯,如硅烯、磷烯、硼烯;还有二维有机材料,如二维MOF或COF;还有超薄氮化物,如BN等。这些二维材料都有着很强的拉曼特征谱峰,所以利用电镜-拉曼一体化系统对二维材料的分析表征将会成为不可或缺的重要手段。关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注TESCAN新微信“TESCAN公司”,更多精彩资讯
  • 直播预告!先进高分子材料主题网络会议之高分子表征测试技术专场
    仪器信息网联合《高分子学报》将于2022年11月10-11日合作举办“先进高分子材料”主题网络研讨会(2022),本届会议报告将聚焦于高分子材料研究与表征测试技术,邀请国内高分子领域的知名专家和国内外科学仪器厂商代表分享研究成果和前沿技术,致力于为国内高分子材料研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。主办单位:仪器信息网&《高分子学报》会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/本届先进高分子材料主题网络研讨会共设置了4个主题会场 ,分别是:高分子材料研究、大科学装置在高分子研究中的应用、高分子表征测试技术(上)、高分子表征测试技术(下)。高分子表征测试技术专场报告嘉宾简介:南京大学教授 胡文兵 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系,随后留校任讲师。1998-2003年 先后留学德国、美国和荷兰从事博士后研究,2004年任南京大学化学化工学院高分子系教授。主要从事高分子结晶相关的分子理论模拟和超快热分析研究。2005年入选教育部新世纪优秀人才培养计划,2008年获得国家自然科学基金委员会杰出青年科学基金资助,2020年获美国物理学会会士荣誉称号。目前担任Springer Nature 出版集团“软物质和生物物质”系列丛书高级编辑,《高分子学报》副主编,《功能高分子学报》、Chinese Journal of Polymer Science、Polymer Crystallization、Polymer International 和Molecular Simulation 期刊编委。本报告介绍最新发展起来的高速扫描量热技术及其Flash DSC设备,利用高速热流的准直性和样品的小尺度,根据傅里叶热导定律,可较为准确地测量微米厚度高分子薄膜的跨膜热导率。该方法具有材质普适性好和微尺度表征等优点,适应当前热管理系统微型化对高分子材料热导率表征的技术需求。报告题目:Flash DSC表征高分子薄膜材料热导率青岛科技大学教授 闫寿科1985年毕业于曲阜师范学院获学士学位,同年考入中国科学院长春应用化学研究所攻读硕士学位,1988年获理学硕士学位后在中国科学院长春应用化学研究所从事研究工作。1993-1996年在德国多特蒙德大学(Dortmund University)攻读中科院长春应用化学研究所和德国多特蒙德大学联合培养博士学位,获得博士学位后在德国多特蒙德大学化工系以固定研究人员身份从事研究工作。2000年获中国科学院百人计划,于2001年回中国科学院化学研究所工作任研究员、博士生导师。现在北京化工大学材料科学与工程学院/青岛科技大学高分子科学与工程学院从事教学和科研工作,任教授、博士生导师。主要研究方向是聚合物不同层次结构与性能。作为项目负责人承担和完成国家自然科学基金重大仪器、重点、面上、杰出青年以及山东省重大基础等科学基金项目。在Nat. Rev. Mater., Prog. Mater. Sci., Angew. Chem. Int. Ed., J. Am. Chem. Soc., Adv. Mater., Adv. Funct. Mater., Adv. Sci, Nano Energy, Macromolecules 等学术期刊发表论文400余篇、出版专论3章,申请发明专利10项。曾获山东省自然科学二等奖(2016)和云南省科技进步二等奖(2015)。准确揭示调控聚合物不同层次结构形成机制与精准调控技术具有重要学术价值和实际意义,得到广泛关注。透射电镜在聚合物不同层次结构研究发挥了重要作用,本文在简要介绍工作原理的基础上,以科研实例详细介绍其在聚合物晶体结构、形态结构等不同层次结构研究中的应用。报告题目:透射电镜在聚合物不同层次结构研究中的应用吉林大学教授 张文科吉林大学超分子结构与材料国家重点实验室、化学学院教授。分别于1997年和2002年在吉林大学化学学院获学士和博士学位。2001年4月至2002年3月,在德国慕尼黑大学应用物理系博士联合培养。2003年3月至2007年5月先后在英国诺丁汉大学药学院及化学学院从事博士后研究。2007年6月加入吉林大学超分子结构与材料国家重点实验室,并被聘为教授。2015年获得国家杰出青年科学基金资助,2018年入选国家万人计划领军人才。目前主要研究方向为:1)单分子力谱方法学;2)高分子结晶与形变;3)超分子及共价键力化学;4)纳米药物递送。担任中国化学会生物物理化学专业委员会委员。担任Giant, Chinese Journal of Polymer Science, Langmuir及 ACS Macro Letters杂志编委。本次报告将介绍我们研究组近年来在利用基于原子力显微镜技术的单分子力谱以及单分子磁镊方法研究聚合物纳米尺度力学性质以及聚合物高级结构动态演化方面的进展。报告题目:聚合物链的单分子操纵 - 从纳米力学性质到动态结构演变 赛默飞世尔科技(中国)有限公司高级应用工程师 邝江濛邝江濛,博士毕业于英国University of Birmingham地理地质及环境科学系,主要研究方向为利用质谱技术分析环境中的痕量污染物。本科及硕士毕业于清华大学环境学院。2021年加入赛默飞世尔科技(中国)有限公司,负责环境化工领域液相色谱质谱仪的应用支持工作,于质谱分析特别是高分辨质谱分析有着丰富的经验。化工材料, 尤其是高分子聚合材料由于其复杂的分子组成给其表征带来了很大的困难。赛默飞Orbitrap静电场轨道阱超高分辨质谱仪拥有超高的分辨率、准确的质量测定和稳定的质量轴,使得复杂材料的元素组成信息纤毫毕见,是材料表征的有力工具。本报告将简要介绍Orbitrap质谱仪的独特优势及其在材料分析领域的应用。报告题目:赛默飞Orbitrap静电场轨道阱超高分辨质谱在材料分析中的应用 中国科学院长春应用化学研究所研究员 门永锋门永锋,中国科学院长春应用化学研究所研究员,博士生导师。1995年7月毕业于东南大学,获学士学位 1998年7月毕业于中国科学院长春应用化学研究所,获硕士学位;2001年10月毕业于德国弗赖堡大学,获博士学位。2001年10月至2002年3月在弗莱堡大学物理系做研究助理,2002年4月至2004年3月在德国BASF公司做博士后,2004年4月起任职BASF公司Physicist。2005年3月起在长春应用化学研究所工作,现任高分子物理与化学国家重点实验室主任,高分子结构物理课题组组长,主要应用散射(X射线及中子)技术从事高分子结构演化及其与性能关系领域的研究,在高分子结晶机理、晶型选择及转变、力学形变破坏机理等方面取得系列成果。作为课题负责人先后承担了国家自然科学基金重点、杰青、面上等项目、国家重点研发计划项目、企业委托项目多项。发表论文140多篇,申请专利8项,其中授权6项。专业方向为“高分子物理”。曾任Macromolecules及Polymer Crystallization杂志顾问编委、现任Polymer Science杂志编委,中国晶体学会小角散射专业委员会主任、IUPAC Polymer Division Titular Member及其商用聚合物结构与性能委员会主席、中国化学会应用化学学科委员会委员。2014年入选科技部中青年科技创新领军人才,2015年获得国家自然科学杰出青年基金及英国皇家学会牛顿高级学者基金,2016年入选第二批万人计划科技创新领军人才,享受2018年度国务院政府特殊津贴。快速扫描芯片量热仪(FSC)是近年来发展起来的热分析技术,其快速的扫描速率可有效抑制材料升降温过程中的结晶、焓松弛、冷结晶、重结晶等行为,为动力学研究带来极大便利。本报告介绍应用FSC研究热塑性聚氨酯在不同温度下丰富的相分离、结晶及焓松弛等行为。报告题目:热塑性聚氨酯的快速扫描芯片量热仪研究 中国科学技术大学教授级高级工程师 丁延伟丁延伟,博士、中国科学技术大学教授级高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国材料与试验团体标准委员会科学试验领域委员会委员等。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项。以第一作者或唯一作者身份出版《热分析基础》、《热分析实验方案设计与曲线解析概论》、《热重分析 —方法、实验方案设计与曲线解析》等热分析相关著作5部。热分析技术是高分子表征的常规手段之一,作为热分析中最常用的一种分析技术,热重分析技术在与高分子相关的热稳定性、组成分析、热力学和动力学性质研究中发挥着十分重要的作用。在实际应用中,完美的实验方案和科学、规范、准确、合理、全面的曲线解析是决定热重实验成败的关键因素。本报告结合报告人从事热分析的工作经历,对于如何充分发挥热重分析技术在材料分析表征中的作用、拓宽应用范围和数据质量等方面提出了一些建议。报告题目:热重分析技术在高分子科学中应用的常见问题分析西南大学教授 郭鸣明郭鸣明,教授,博士生导师,国家特聘专家,俄罗斯自然科学院美籍院士,南京大学化学系获学士(1982),硕士学位(1985)。复旦大学材料系获博士学位(1987)。先后在德国汉堡大学高分子科学研究所(洪堡学者。1990-1992)、美国纽约大学(1992-1994)从事高分子研究工作,曾任美国阿克伦大学高分子科学和工程学院核磁共振中心主任(1994-2013),中石化北京化工研究院首席专家,中石化高级专家(2013-2018)。现任西南大学化学化工学院教授,博士生导师,(2018至今), 俄罗斯自然科学院院士(2021至今)。发表专利20篇.在国内外学术刊物上发表SCI收录论文140篇, 包括论著章节6篇,综述 7篇。研究方向:高分子化学,高分子物理,核磁共振,碳量子点,新型水溶性非共轭发光聚合物,金属纳米材料,碳纳米材料。新型石墨烯高分子纳米复合物。报告题目:原位核磁共振研究单体和高分子反应动力学和机理 清华大学副系主任/副教授 徐军徐军,博士,长聘副教授,博士生导师。1997 年清华大学化工系本科毕业,2002 年清华大学化工系博士毕业。2002 年毕业后留在清华大学化工系工作,聘为助理研究员。2006 年晋升为副教授。2011年到德国弗莱堡大学物理系Günter Reiter教授研究组进行洪堡学者访问研究。主要研究兴趣包括高分子结晶、生物降解高分子、动态共价高分子等。2011年入选洪堡学者,2012年入选教育部“新世纪优秀人才”,同年获得冯新德高分子奖(Polymer 刊物年度中国最佳文章提名)。理论和实验相结合,揭示了环带球晶的形成机理,测得了几种高分子结晶的次级临界核尺寸。生物降解聚二元酸二元醇酯研究成果在企业实现了万吨级产业化和广泛应用。本报告将介绍普通偏光显微镜、拥有可变偏振方向的PolScope系统以及Müller矩阵显微镜的基本工作原理。并结合具体案例,针对手性高分子环带球晶的形成机理问题,采用几种光学显微镜和原子力显微镜,确证了片晶连续扭转的微观机理。运用Müller矩阵显微镜,揭示了片晶扭转对固体薄膜旋光手性的影响。报告题目:运用先进光学方法研究高分子环带球晶的形成机理 北京大学教授 梁德海1994年获南开大学环境科学系学士学位,同年进入南开大学化学系攻读硕士。2001年在美国纽约州立大学石溪分校获得理学博士学位,并留任博士后。2006年加入北京大学化学与分子工程学院高分子科学与工程系,任副教授;2012年提升为教授。2011年得到教育部新世纪优秀人才计划的支持,2015年Elsevier第九届冯新德高分子奖最佳文章奖获得者。主要研究方向包括:基于生物大分子的非平衡态原始细胞模型的构筑及动态行为研究;多肽诱导脂质体膜内吞及外吐机理研究;大分子拥挤及限制作用的定量化研究;体内自调控的肺靶向siRNA传递载体研究。光散射技术是高分子领域中重要的表征手段之一,能够测得重均分子量、回转半径、第二维里系数、流体力学半径等重要的物理量。除合成高分子外,光散射技术同样适用于研究生物大分子、微生物、胶体、纳米粒子、病毒、囊泡等在溶液或悬浮液中的行为。本报告重点介绍光散射的基本理论、实验技巧以及应用中要注意的事项。报告题目:光散射在高分子溶液表征中的应用 郑州大学教授 张彬张彬,郑州大学材料学院教授,博士生导师。2004年本科毕业于郑州大学计算机信息管理专业,2010年于郑州大学获得材料加工工程专业硕士学位,2014年在德国弗莱堡大学化学系获得博士学位 (施陶丁格大分子研究所荣誉毕业)。2015年3月入职郑州大学,2020年6月受聘为郑州大学学科特聘教授。主要研究方向为高分子薄膜结晶,高分子成型加工中的物理问题,高分子相转变的微观机制。近年来,发表第一作者或通讯作者论文三十余篇(包括13篇Macromolecules,7篇Polymer,1篇高分子学报特约专论和1篇高分子学报特约综述)。原子力显微镜是一种在纳米尺度表征材料相变过程、微观形貌结构与性能的有效工具,在高分子科学领域具有广泛应用。超薄膜中单层片晶可为研究高分子结晶提供合适的模型体系,与原子力显微镜相结合,不但可以在原位、实空间、高分辨的研究高分子成核与片晶生长过程,还有利于研究多晶型高分子复杂的结晶与熔融行为。报告题目:原子力显微镜研究高分子超薄膜结晶会议日程及报名链接:https://www.instrument.com.cn/webinar/meetings/polymer2022/
  • 南京大学胡文兵教授课题组Polymer:应力松弛在聚合物取向结晶过程中的作用
    在纤维纺丝、薄膜拉伸和塑料注塑成型加工过程中,聚合物结晶一般都发生在高速取向变形过程中,这一过程还伴随着聚合物的应力松弛。因此聚合物结晶、取向和松弛这三种非平衡动力学过程相互竞争,对应的调控因素例如加工温度、应变速率和拉伸应力就共同决定着聚合物材料制品最终的半结晶织态结构及其综合性能。在国家自然科学基金委的项目支持下,南京大学胡文兵课题组在采用动态蒙特卡洛分子模拟研究应变诱导聚合物结晶微观机理方面近年来取得了一系列的进展。分子模拟结果揭示了应变诱导结晶成核阶段所存在的分子内链折叠成核和分子间缨状微束成核之间的竞争关系(Polymer, 2013, 54, 3402)以及结晶成核、晶体生长和后生长三个阶段不同的链折叠变化趋势及其微观机理(Polymer, 2014, 55, 1267);研究还推广到双链长分布聚合物(Chin. J. Polym. Sci., 2014, 32, 1218),无规共聚物(Soft Matter, 2014, 10, 343 Eur. Polym. J., 2016, 81, 34 Polymer, 2016, 98, 282),溶液聚合物(J. Phys. Chem. B, 2016, 120, 6890),结晶/非晶共混物(J. Phys. Chem. B, 2016, 120, 12988),外消旋共混物(J. Phys. Chem. B, 2018, 122, 10928)和短链支化聚合物(Polym. Int., 2019, 68, 225)等复杂多组分体系。最近,他们将麦克斯韦应力松弛模型引入到每条高分子链中。分子模拟结果揭示了非晶聚合物应力松弛的熵势垒微观机制(Chin. J. Polym. Sci., 2021, 39, 906)以及聚合物重复单元结构间各种局部相互作用对链扩散势垒的贡献(Polymer, 2021, 224, 123740),他们甚至还发现了低温区非晶聚合物非线性粘弹性的微观发生机制(Chin. J. Polym. Sci., 2021, 39, 1496)。他们进一步对比了引入和不引入应力松弛的聚合物拉伸结晶过程,如图1所示,发现应力松弛在结晶成核、晶体生长和后生长阶段三个阶段都发挥了独特的作用。图1:没有应力松弛(Strain-induced)和引入应力松弛(Stress-induced)的聚合物应变诱导结晶对比示意图。在结晶成核阶段,聚合物的取向变形减小了构象熵,提升了聚合物的平衡熔点,导致结晶成核的过冷度,即热力学驱动力增强,于是结晶的起始应变随温度升高而变大。增大应变速率,聚合物链内调整这一动力学效应将推迟结晶成核的发生,结晶的起始应变也相应变大。一开始他们合理地猜想应力松弛将削弱聚合物的取向变形程度,给热力学上带来不利于结晶成核的作用。由于在高速拉伸过程中应力松弛的时间窗口很小,对聚合物取向变形程度的影响较为有限,实际的模拟结果显示这一热力学效应并不明显。实际上引入应力松弛对结晶起始应变的影响与增大应变速率的效果相似,即在高温区都不改变结晶的起始应变,说明聚合物来得及链内调整;在低温区都增大了结晶的起始应变,说明应力松弛对结晶主要起到了动力学阻滞效应,而不是预期的热力学削弱效应。在晶体生长阶段,由于折叠链片晶生长动力学主要由链内次级成核机理所控制,应力松弛同样在动力学上阻滞晶体生长。于是,应力松弛显著减缓了拉伸过程中结晶度随应变增大而提高的动力学过程,导致在相同应变程度下,引入应力松弛的结晶过程所能达到的结晶度相对较低。在后生长阶段,聚合物晶体发生应变诱导的熔融重结晶过程。在这一过程中晶体的折叠链被迫打开转变为伸直链,片晶转化为纤维晶,对应于半结晶聚合物冷拉的细颈化过程。分子模拟观察到熔融重结晶带来显著的应力松弛加速现象,证明外力做功迫使折叠链晶体熔化,然后以重结晶生成伸直链纤维晶的形式将外界冲击能转化为热能耗散到周边的环境中去,从而使得半结晶聚合物表现出优异的韧性特点,不同于金属和陶瓷材料。这一阶段应力松弛与增大应变速率对结晶形态的影响有所不同:在其它条件相同时,应力松弛显著减少晶粒的数目,而增大应变速率显著减小晶粒的尺寸,如图2所示。图2:不同拉伸速率下应变诱导与应力诱导结晶的晶区形貌快照,20000对应于相对慢速的拉伸应变过程,5000对应于中速应变。这项工作揭示了聚合物应力松弛、拉伸变形和结晶这三个非平衡过程之间在聚合物取向结晶过程中的微观相互竞争机理,有助于更好地理解实际聚合物高速取向加工成型过程中的高分子结晶行为以及各种加工因素对半结晶聚合物制品内部结构和性能的调控机制。相关成果发表在Polymer(2021, 235, 124306)。论文的第一作者是博士生罗文。文章链接:https://doi.org/10.1016/j.polymer.2021.124306
  • 【AAV热点应用】Zetasizer精准表征rAAV颗粒粒径及衣壳滴度
    rAAV腺相关病毒载体表征腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一。其直径约为20-26nm,含有4.7kb左右的线状单链DNA。重组腺相关病毒载体(recombination AAV, rAAV)则是在非致病的野生型AAV基础上改造而成的,因其具有:安全性高、免疫原性低;宿主细胞范围广(对分裂细胞和非分裂细胞均具有感染能力);体内表达时间长;血清型众多,且具有组织特异性等特点被广泛用于基因治疗、疫苗等研究、应用领域[1]。在rAAV的生产工艺中,有无团聚体(aggregate),以及衣壳滴度(titer)的高低是重点考察的关键质量属性(CQAs)[2],Zetasizer纳米粒度仪通过对rAAV颗粒的粒径及衣壳滴度的表征,快速实现该CQAs的鉴定。纳米粒度电位仪马尔文帕纳科 Zetasizer Ultra01材料和方法将两种不同生产批次的rAAV分别用缓冲液稀释至合适的浓度,利用Zetasizer Ultra-Red (Malvern Panalytical Ltd.)以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定[3]。样品测试体积为20 µL,rAAV折射率、吸收率分别设置为1.45和0.001,缓冲液的散射光强度测定为80 kcps。02结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们分别对两种批次的rAAV粒度大小及分布进行表征(图1、3)。可以看到,批次1的rAAV只有一个粒径分布峰,其值大小为28.2 nm,说明体系中没有团聚体产生,而批次2的rAAV则呈现出3个粒径分布峰,分别位于28.2、150.9以及430.6 nm,这说明体系中除了rAAV单体,还有团聚体产生。此外,基于MADLS技术得到的颗粒的准确粒径分布图,我们还能得到对应尺寸的衣壳滴度(图2、4)。图1,批次1 rAA的光强粒径分布图图2,批次1的衣壳滴度图3,批次2 rAA的光强粒径分布图图4,批次2的衣壳滴度参考文献1. Mendell J R, Al-Zaidy S A, Rodino-Klapac L R, et al. Current Clinical Applications of in vivo Gene Therapy with AAVs. Molecular Therapy, 2021, 29 (2), 464-488.2. Gimpel A L, Katsikis G, Sha S, et al. Analytical Methods for Process and Product Characterization of Recombinant Adeno-Associated Virus-based Gene Therapies. Molecular Therapy — Methods & Clinical Development, 2021, 20, 740-754.3. Cole L, Fernandes D, Hussain M T, et al. Characterization of Recombinant Adeno-Associated Viruses (rAAVs) for Gene Therapy Using Orthogonal Techniques. Pharmaceutics, 2021, 13, 586.
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用ApplicationsofTransmissionElectronMicroscopyinStudyofMultiscaleStructuresofPolymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科作者机构:青岛科技大学橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生.青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教.获“国家青年科学基金”资助.主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能.因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域.本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractTheperformanceandfunctionalityofpolymericmaterialsdependstronglyonthemultiscalestructures.Whilethechemicalstructureofapolymerdeterminesitsbasicpropertyandfunctionality,thestructuresatdifferentscalesinsolidstatecanchangetheperformanceandevenenablethepolymerspecialfunctions.Forexample,themodulusofhighlyorientedultrahighmolecularweightpolyethyleneisthreeordersofmagnitudehigherthanthatofitsnon-orientedcounterpart.Forthepolymorphicpoly(vinylidenefluoride),specialpiezoelectricandferroelectricfunctionscanbeendowedbycrystallizingitintheβandγcrystalmodifications.Therefore,itisofgreatsignificancetodisclosethestructureformationmechanismofpolymersatalllevels,torealizethepreciseregulationofthemandtocorrelatethemwiththeirperformance.Thisleadstothestudyofpolymerstructureatvariedscalesandtherelatedstructure-propertyrelationshipaveryimportantresearchfieldofpolymerphysics.Hereinthispaper,wewillfocusontheapplicationoftransmissionelectronmicroscopyinthestudyofdifferenthierarchstructuresofpolymers,includingabriefintroductionoftheworkingprincipleoftransmissionelectronmicroscopy,specialtechniquesusedforsamplepreparationandforinstrumentoperationtogethigh-qualityexperimentaldata,analysisoftheresultsandcorrelationofthemtodifferentstructures.关键词聚合物  透射电子显微镜  样品制备  仪器操作  结构解释KeywordsPolymer  Transmissionelectronmicroscopy  Samplepreparation  Instrumentoperation  Structureexplanation 聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性.首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能.例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5].对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能.以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90MPa和10MPa,分子链高度取向后,模量增加到90GPa,增幅为3个数量级,强度(3GPa)也增加了近300%[6].另外,有机光电材料的性能也与分子链排列方式密切相关[7~12].对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20].由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关.因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据.经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势.如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等.相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42].当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59].例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775nm)和c-轴(0.777nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54].透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60].例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献.然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术.实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察.为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜.如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积.基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰.另外,考虑到人眼的分辨本领大概为0.1mm,而光学显微镜的极限分辨率为0.2μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2μm放大到人眼能分辨的0.1mm.由此可见,要观察更细微结构需要提高显微镜的分辨率.根据瑞利准则,光学显微镜的分辨本领可表示为:Fig.1Sketchillustratingtheworkingprincipleofopticalmicroscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA=nsinα.可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26×V−−√式表示,根据该公式,100kV和200kV电压加速电子束的波长分别为0.00387nm和0.00274nm,经相对论修正后变为0.0037nm和0.00251nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发.如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objectivelens)以及投影镜(projectionlens)均由磁透镜替代了光学显微镜的玻璃透镜.另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜.例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig.2Sketchillustratingtheworkingprincipleofelectronmicroscope.Fig.3Sketchshowsdifferentelectronsgeneratedafterinteractionoftheincidentelectronswiththeatomsinthesample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1µm的水.因此,要求电镜观察用样品非常薄,在200nm以内,最好控制在30~50nm.用于高分辨成像的样品需更薄,最好为10nm左右.因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性.一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构.另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品.基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法.下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的.支撑膜的厚度一般为10nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现.如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60℃干燥后便可投入使用.根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5wt%~1.5wt%范围内.对有经验的学者而言,滤纸捞膜法更简洁.如图4(b)所示,用浓度为0.5wt%~1.5wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig.4Sketchillustratingthewaysforpreparingnitrocellulose(NC)supportingmembraneusedinelectronmicroscopyexperiments.(a)SedimentationoftheNCmembraneoncoppergrids.(b)FilterpaperfishingofcoppergridssupportedbytheNCmembrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得.如图5(a)所示,将沉浸于0.1wt%~0.2wt%PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig.5AdiagramillustratingthepreparationofPVFsupportfilmthroughdippingacleanglassslideintoitschloroformsolution(a)andthenfloatingthethinPVFlayerontothesurfaceofdistilledwater(b).2.1.3无定型碳支撑膜制备上述硝化纤维素和聚乙烯醇缩甲醛支撑膜的制备方法无需专用设备,但在后续的聚合物样品制备过程中会有困难.例如:需要高温处理的样品,高温处理过程会破坏支撑膜,即便是常温下聚合物溶液的沉积过程中,若所用溶剂为共溶剂,支撑膜也会被破坏.因此,最理想、最常用的支撑膜是无定型碳膜,它具有耐高温、耐溶剂、高模量等优点.用无定型碳固定聚合物薄膜的最简单办法是直接对要观察的聚合物样品表面真空沉积薄层碳,以确保聚合物样品在电子束下稳定.需要指出的是,由此获得的聚合物样品不适用于需进一步处理样品,原因是直接表面沉积的碳膜对聚合物的结构有固定能力,如表面沉积碳膜的取向聚合物薄膜熔融重结晶仍保持原有取向结构[64~67].实际上,制备碳支撑膜的简单方法是在硝化纤维素和聚乙烯醇缩甲醛支撑膜表面真空沉积薄层碳,以此获得支撑膜可直接使用,也可以溶解除去硝化纤维素和聚乙烯醇缩甲醛后使用.当然,无定型碳支撑膜的传统制法是在光洁的载玻片或新剥离的云母表面真空沉积无定型碳,获得连续的无定型碳膜后,用刀片将其分割成3mm×3mm的小片,通过图5(b)所示的方式漂浮转移到蒸馏水表面,然后用镊子夹住铜网自下而上捞起即可用作支撑膜.2.2聚合物样品制备2.2.1微粒材料的电镜样品制备方法用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a)悬浮法.对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b)微量喷雾法.用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集.为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上.微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c)干撒法.对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(d)空中沉积法.将浮游性好的微粒材料置于真空罩的放气阀处,通过注入大气使其猛烈飞溅而雾化,这样微粒便能缓慢、均匀地沉降到预先放在底部带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.(e)硝化纤维素包埋法.将适量的微粒混合在1.5wt%的硝化纤维素溶液中,使其分散均匀,然后浇注在蒸馏水表面,当溶液向周围展开时,颗粒也随之分布于膜层内,所成膜转移到铜网上便可用于电镜观察.(f)糊状法.对处于油脂等介质中的微粒,可以取其少许糊状物轻涂于有支持膜的铜网上,用适当的溶剂逐渐清洗糊状物,将含适量糊状物的铜网干燥后用于电镜观察.2.2.2块状材料的电镜样品制备方法在加工条件-形态结构-性能关系的研究中,对块状高分子制品材料微观结构的电镜观察通常是借助超薄切片获得电子束能够穿透的薄片样品,颗粒状样品也可以通过环氧树脂包埋后进行超薄切片.对块状高分子材料表面微观结构的研究还可以采用复型法制备样品,包括一次和二次复型法.如图6(a)所示,一次复型是首先对需观察的块状样品表面进行重金属投影,然后真空蒸涂一层15~25nm厚的碳膜,再将聚丙烯酸的水溶液涂在碳膜上,待聚丙烯酸的水溶液干燥后,将聚丙烯酸膜从样品表面剥离并反向(即与样品的接触面朝上)置于蒸馏水表面,反复几次更换蒸馏水将聚丙烯酸完全溶解掉后,捞在铜网上即可用电镜观察.二次复型,如图6(b)所示,是在刻蚀处理过的块状样品表面滴上适量的丙酮溶剂,使其均匀铺开并及时将略大于样品的醋酸纤维素(AC)薄膜粘贴到样品表面,借助溶剂使AC薄膜软化,轻压AC薄膜记录样品的微细结构,待溶剂完全挥发后,将AC薄膜剥离样品,在印痕面投影重金属和蒸涂碳膜,然后用丁酮将AC薄膜完全溶除,即可得到与样品表面结构完全一致的碳复型膜.Fig.6Sketchesshowingthesingle(a)anddouble(b)duplicationprocessesforrecordingsurfacemicrostructuresofbigblockmaterialsusedinelectronmicroscopyexperiments.2.2.3高分子薄膜的直接制备方法可溶性高分子材料,特别是样品拥有量很少时,可采用稀溶液制样.其中,稀溶液结晶是获得高分子单晶的常用方法,通常是高温配置聚合物的极稀溶液(~0.1wt%),降至适合温度静置结晶,然后用铜网在溶液中捞取单晶进行观察.为高效获取聚合物单晶,人们经常采用自晶种(self-seeding)技术[68,69],即将高温配置的聚合物极稀溶液降至室温,获得大量聚合物晶体,再次加热到适当温度溶解大部分晶体后降至适合温度静置,这样借助残留晶核诱导结晶能够获得大尺寸高分子单晶.聚合物超薄膜可用溶液浇铸(solutioncastfilm)或甩膜(spincoating)等方法直接获得,即将浓度合适的聚合物稀溶液滴在液面(如甘油或磷酸),静止或快速转动基体表面(如载玻片或新剥离的云母)蒸发成膜.甩膜法是最常用制样方法,广为人知,此处不再赘述.溶液浇铸制样的过程如下,使用甘油或磷酸浴,加热至合适温度,将盛满洁净甘油或磷酸的烧杯置于高温浴中,待温度平衡后,将聚合物液滴滴在烧杯中的甘油或磷酸表面成膜,用滤纸沿烧杯壁插入甘油或磷酸中,缓慢倾斜提起聚合物膜,然后将捞取聚合物薄膜的滤纸平放在蒸馏水表面冲洗净甘油或磷酸,由此获得的聚合物薄膜转移至铜网后即可用于电镜观察.以此获得聚合物膜的厚度由溶液浓度控制,聚合物稀溶液的浓度通常在0.3wt%~0.5wt%范围内.成膜质量及聚合物的形态结构与成膜温度和溶剂性质及其挥发速度有关.确定最佳温度的最有效方法是先将甘油或磷酸浴加热到一定温度,在停止加热的缓慢冷却过程中,不断重复上述的浇注过程,直至获得理想的聚合物薄膜,此时的油浴温度即是最佳成膜温度.实验表明,全同聚丙烯(iPP)的最佳成膜条件为0.3wt%二甲苯稀溶液在110℃左右的甘油表面浇注成膜[70].高分子的取向薄膜可以通过熔体拉伸(melt-drawtechnique)[71]、摩擦成膜(frictiontransfertechnique)[72,73]或固相拉伸[74]等方法获得.如图7(a)所示,熔体拉伸法是将聚合物溶液均匀浇注在预热的玻璃板上,待溶剂挥发后,用转动的滚筒将玻璃板上的聚合物熔体拉起,图7(a)下侧是由此获得的高取向聚乙烯(PE)的电镜明场像和电子衍射图,薄膜厚度取决于溶液浓度和拉伸速率,取向程度及结构由拉伸速率和温度控制.摩擦成膜法是一定压力下将块状聚合物材料在预热的玻璃板上快速滑动(图7(b)),在玻璃表面留下高取向聚合物超薄膜,由此制得的聚合物膜可直接采用2.2.2节中描述的聚丙烯酸脱膜法从玻璃表面脱落,转移到铜网上进行电镜观察.图7(b)中给出了聚四氟乙烯(PTFE)摩擦高取向膜的电镜明场像和电子衍射图,其优点是无需溶剂,缺点是需要样品量比较大.固相拉伸方法是将聚合物溶液浇注在韧性好的聚合物载体上,待溶剂挥发后,拉伸聚合物载体至一定延伸率后,溶去载体聚合物即可得到取向的聚合物薄膜.另外,我们发展了聚丙烯酸辅助的聚合物超薄膜拉伸技术,具体操作是在聚合物超薄膜表面浇注聚丙烯酸水溶液,待聚丙烯酸水溶液凝固到能够拉伸的程度进行不同程度的拉伸.以高取向见同聚丙烯(sPP)超薄膜(50~60nm)的拉伸形变过程电镜跟踪研究为例[74,75],研究表明sPP存在多种晶型,如图8(a)和8(b)所示的晶型I和晶型Ⅲ,固相拉伸导致晶型I向晶型Ⅲ转变,高温(~100℃)退火则可实现晶型Ⅲ向晶型I的转变‍.利用我们发明的方法,成功实现了sPP超薄膜拉伸过程晶型I-Ⅲ转变的电镜跟踪研究.结果表明,拉伸50%时(图8(c))部分晶型I转变为晶型Ⅲ,进一步拉伸至100%时,晶型I和Ⅲ依然共存(图8(d)),但晶型Ⅱ的含量明显高于晶型I,在拉伸150%时,晶型I的衍射点消失(图8(e)),说明应变λ为2.5时,sPP完成晶型I-Ⅲ转变.Fig.7Sketchesillustratingthemelt-draw(a)andfriction-transfer(b)techniquesforpreparinghighlyorientedpolymerultrathinfilms,andthecorrespondingBFimagesandelectrondiffractionpatternsoftheresultantPEthinfilms.Thewhitearrowsindicatethedrawandslidingdirectionsduringfilmpreparation.Fig.8ElectrondiffractionpatternsofhighlyorientedformI(a)andformⅢ(b)syndiotacticpolypropyleneultrathinfilms(50-60nminthickness).ThebottompanelshowsitsI-Ⅲphasetransitionduringstretchingoftheultrathinfilmwiththehelpofincompletelysolidifiedpoly(acrylicacid)todifferentdrawratiosof(c)1.5,(d)2.0,and(e)2.5.Thewhitearrowindicatesthestretchingdirection.(ReprintedwithpermissionfromRef.‍[74] Copyright(2001)KluwerAcademicPublishers).2.2.4高分子薄膜热处理方法尽管上述方法制备的聚合物薄膜能够直接用于电镜实验,许多研究还需对所获膜做进一步处理,如研究结晶温度对聚合物形态结构影响时,需将聚合物薄膜在不同温度熔融重结晶.对聚合物薄膜熔融处理的一种简单、实用方法是对新剥离的云母片表面真空蒸涂薄层碳膜,将聚合物膜置于碳膜上进行相应处理,然后将云母边缘剪除,用图5(b)的方式漂膜后,转移到铜网表面用于电镜观察.图9是碳膜表面间同聚丁烯-1(sPB-1)膜60℃熔融15min30℃等温结晶几周后获得单晶的明场和电子衍射图[76].Fig.9BFelectronmicrograph(a)andcorrespondingelectrondiffractionpattern(b)ofansPB-1filmpreparedbycastingofa0.1wt%xylenesolutiononacarbon-coatedmicasurface,whichwasheat-treatedafterevaporationofthesolventat60℃for15minandthenisothermallycrystallizedat30℃forseveralweeks.(ReprintedwithpermissionfromRef.‍[76] Copyright(2001)AmericanChemicalSociety).2.2.5增加高分子薄膜衬度的方法透射电镜利用透过样品的弹性及非弹性散射电子成像,图像的衬度(又称反差)取决于试样对入射电子的散射过程.根据波动理论,入射电子波(也即电子束)经过试样后产生透过电子波和散射电子波,依靠波函数的振幅和相位传递样品的结构信息,因此能产生振幅衬度和相位衬度.在样品厚度大于10nm时,振幅衬度成像起主要作用.振幅衬度又分衍射衬度和质量厚度衬度,其中衍射衬度也称为Bragg衬度,只存在于晶体样品,是指当某晶面与入射电子束间夹角满足Bragg条件时,由于衍射现象使经过样品并通过物镜光阑的电子束强度降低而产生的反差.衍射衬度受限于聚合物晶体的辐照寿命,如图10所示,高取向PE薄膜晶体破坏前存在衍射反差(图10(a)),但晶体有序结构被电子束破坏后,全部衍射反差消失(图10(b)).质量厚度衬度也叫吸收衬度,起因是试样不同部位的质量厚度(即电子密度乘以样品厚度)差异,造成电子束通过物镜光阑到达像平面的强度不同,因此产生像的明暗差别.如图10所示,PE片晶区因质量厚度大而暗,质量厚度小的非晶区较片晶区明亮.Fig.10BFelectronmicrographsofhighlyorientedPEthinfilmbefore(a)andafter(b)destructionofthecrystals.Therectanglesdemonstratethesameplaceoftherecordedimages,whiletheellipsesillustratethedisappearanceofthediffractioncontrastafterdestructionofthecrystals.相位衬度是透过样品的散射与未散射电子波间的相位差在成像过程中的体现,当样品厚度小于10nm且被观察的结构细节小于2nm时,如高分辨电子显微成像,电子束经过样品后的振幅变化不大,相位衬度对成像起主要作用.由于肉眼对相位衬度完全不敏感,通常是将相位反差转变为振幅反差,实现肉眼辨别,这会在电镜观察技巧处详细介绍.从上述描述可以看到,电镜的成像衬度主要来自经样品后的振幅变化,聚合物材料的电子密度差异很小,致使聚合物样品的电镜明场像反差不够强,因此发展了一些增加聚合物样品衬度的方法,如染色和重金属投影等.染色是将电子密度高的重金属原子引入聚合物的某些区域,使这些区域的电子密度大幅度提高来增大衬度,在对生物大分子的电镜研究中经常使用.常用染色剂有四氧化锇(OsO4)和四氧化钌(RuO4)2种,其作用机制分别为化学反应和物理渗透.如图11(a)所示,四氧化锇染色是利用其与―C=C―双键、―OH以及―NH2基团间的化学反应,使被染色的聚合物材料中含有重金属锇,使样品的明场成像衬度明显提高.图11(b)是经四氧化锇染色的高抗冲聚苯乙烯(HIPS)样品的电镜明场像,基于四氧化锇与HIPS中接枝丁二烯链的反应,使重金属饿键接到丁二烯链上,因而清晰地区分了聚苯乙烯基体、分散的聚丁二烯微区以及聚丁二烯微区中的聚苯乙烯微区,呈现了蜂窝状的相中相结构,说分散在聚苯乙烯基体中的聚丁二烯微区中同样包含了聚苯乙烯更小微区.四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透能力,使不同聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高.图11(c)和11(d)给出了iPP超薄膜四氧化钌染色前(图11(c))、后(图11(d))的电镜明场像[70],因为四氧化钌渗入iPP非晶区的能力强,导致染色前后iPP片晶结构的衬度反转,即染色前的iPP黑色片晶,染色后变为白色线条.Fig.11(a)thereactionbetween―C=C―doublebondsandOsO4.(b)AnelectronmicrographofHIPSthinfilmstainedbyOsO4,whichshowsthehoneycombstructuresofpolybutadienedomainsdispersedinthepolystyrenematrix.TheBFelectronmicrographsofiPPthinfilmbefore(c)andafter(d)RuO4staining.(Part(c)isreprintedwithpermissionfromRef.‍[70] Copyright(2013)ElsevierScienceLtd.).重金属投影在复型法制备聚合物样品时必须使用(2.2.2节),目的也是增加反差.其原理如图12(a)所示,利用样品的表面起伏,通过小角度(15°~30°)溅射铂金(Pt)或金(Au),使样品凸起部位的电子密度显著增加,而处于凹陷部位的阴影区电子密度保持不变,以此突显样品的微细结构.图12(b)和12(c)分别是Pt投影和非投影间同丙烯-丁烯-1共聚物(sPPBu)单晶的电镜明场像[77,78],显然Pt投影的图像更清晰,除平躺(flat-on)单晶外,还展示了一些侧立(edge-on)微细片晶结构.Fig.12AsketchshowsthePtorAushadowingprocess(a)andtheBFelectronmicrographsofsPPBusinglecrystalswith(b)andwithout(c)Ptshadowing(Part(c)isreprintedwithpermissionfromRef.‍[77] Copyright(2002)AmericanChemicalSociety).3电镜观察技术电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.本节将简要介绍电镜观察聚合物样品的一些常用技巧.3.1明暗场观察与成像电镜能够结合明场像、暗场像和电子衍射结果诠释聚合物结构.其中,电子衍射与X-射线衍射原理完全一致,只是所用的电子束光源波长(100kV加速电压时为0.0037nm,200kV加速电压时为0.00251nm)比X-射线的波长(0.154nm)短很多,感兴趣的读者可参阅该系列专辑的X-射线衍射一文[79].明、暗场像利用不同的透过光成像获取,如图13(a)所示,直接利用透过样品的弹性和非弹性散射电子成像即可获得明场像.暗场像只能通过选取满足某晶面衍射的特定光成像而获得,常用的操作方法如下:在衍射模式下,获取样品的电子衍射图,确定想了解的某个晶面结构信息后,加入物镜光阑,通过偏移物镜光阑到只能观察到感兴趣的晶面衍射点时(图13(b)),退出衍射光阑,即可获得相应晶面的暗场像.在保持物镜光阑居中的情况下,也可以通过倾斜入射电子束,使感兴趣晶面的衍射点呈现在物镜光阑的中心位置(图13(c)),退出衍射光阑获得相应晶面的暗场像.对设有特殊物镜光阑的电镜设备,通过狭缝物镜光阑选择拟观察的晶面衍射点或衍射环(图13(d)),能够在不倾斜入射光和偏置物镜光阑的前提下直接获得暗场像.无论采取何种方式暗场观察,设置成像条件后,移动样品寻找到理想的位置迅速取图便可得到高质量的暗场像.Fig.13SketchesshowingBFimaging(a)andDFimagingbyoffsetobjectiveaperture(b),tiltingofincidentlight(c),oruseofspecialobjectiveaperture(d).3.2防止样品抖动及破碎电镜观察聚合物样品的最大挑战是聚合物超薄膜的稳定性差,如高压电子束轰击造成的样品抖动及破碎、晶体结构破坏等,因此使用电镜观察聚合物样品需要一些特殊技术.避免样品破碎的办法是使用支撑膜,2.1节描述的所有支撑膜对防止聚合物超薄膜破碎均有很好效果,但防止样品抖动最好采用高模量无定型碳支撑膜.在无支撑膜的条件下,选择大目数四方孔铜网制备样品,观察铜网角落部位的样品区域也能够一定程度的降低抖动和避免破碎.3.3邻位聚焦技术聚合物晶体在电子束下的存活寿命非常短,通常只有几秒钟,也给记录聚合物晶态样品的真实形态结构带来困难,解决这一问题的常用方法是低剂量电子束下观察.正常条件下观察时,人们发展了邻位聚焦技术.操作程序是先在低放大倍数、低光照剂量下选择适合观察的样品区域,然后在所需放大倍率、正常光照条件进行聚焦,尽管聚焦过程破坏了样品的原有结构(图14(a)),将样品移动到邻近的位置,并迅速拍摄图像即可清晰记录样品的固有结构,如图14(b)所示.图14(c)给出了取向聚乙烯薄膜横跨聚焦区及其临近区域的电子显微镜暗场像,由于晶体结构在聚焦过程被破坏,聚焦区未显示任何结构信息,邻近区域却很好展示了平行排列的取向片晶结构.Fig.14BFelectronmicrographsofasolutioncastiPPthinfilmrecordedattheareausedforfocusing(a)andanadjacentfresharea(b).(c)ADFelectronmicrographofamelt-drawnPEorientedthinfilmtakenattheboundarybetweentheareausedforfocusingandanadjacentfresharea.3.4欠焦成像技术因聚合物样品的成像衬度很低,发展了染色和重金属投影增加聚合物样品衬度的方法,但2种方法均有存在一些问题.例如:重金属投影需要相应设备,且使样品制备过程繁琐,而染色剂对人体有害,因此建议慎用.实际上,在电镜观察聚合物样品时,也有提高聚合物样品成像衬度的技巧,也就是此处要阐述的欠焦成像技术.2.2.5节提到,电子显微像的衬度包括振幅衬度和相位衬度,但肉眼对相位衬度不敏感,需要将相位反差转变为振幅反差才能实现肉眼辨别,这种由相位变化引起的振幅反差称为“位相反差”(简称相差),在电镜观察过程中,相差可通过欠焦成像技术实现.图15给出了取向PE薄膜同一位置在不同聚焦程度下拍摄的明场电子显微像.由图15可以看到,正焦条件拍摄的图像(图15(a))最不清晰,离焦(欠焦:图15(b),过焦:图15(c))状态成像的反差反而好,且适当欠焦时图像(图15(b))清晰度最好.造成这一现象的原因是离焦状态在样品质量密度突变区域的周围会出现费涅耳环(Fresnelring),如图15的右下角样品空缺处所示,费涅耳环在欠焦和过焦时分别以亮、暗线勾画区域边缘,使图像更加清晰,因此欠焦成像提高反差的技术被有效利用.采用欠焦而非过焦成像的原因是:(1)基于人眼睛的马赫效应,即生理上的反差抑制习惯,费涅耳亮环可使图像更清晰;(2)过焦成像可能会产生假象,如图16所示.图16实际上给出是微纤样品不同聚焦程度的明场电子显微像,很明显,正焦时(图16(a))结构相对模糊,欠焦时(图16(b))结构变得清晰,虽然过焦时(图16(c))结构也很清晰,但因过焦量太大使真实的微纤结构变为管状结构,造成失真.在欠焦成像操作过程中,首先通过电镜的聚焦辅助功能(如摇摆聚焦功能)获得正交状态,然后逆时针旋转聚焦钮至所需的欠焦状态,并在此状态下进行图像记录.最佳欠焦程度取决于样品的结构尺寸,根据像传递理论,离焦量ρz产生的相差结构约为:d~(2λρz)1/2,也就是说,最佳欠焦量为ρz~d2/2λ,其中:d为样品结构空间距离,λ为电子束波长,由此确定的欠焦量通常为十几个微米.实际操作过程中,可选择合适的参照目标进行聚焦,如图15中的样品空白边缘和图16中箭头所指的杂质等,所选参照目标最清晰时即为最佳欠焦状态.Fig.15BFelectronmicrographsofahighlyorientedPEthinfilmtakeninthesameareaunder(a)focus,(b)defocus,and(c)overfocusconditions.Fig.16BFelectronmicrographsofmicrofibrilstakeninthesameareaasdemonstratedbythearrowsunder(a)focus,(b)defocus,and(c)overfocusconditions.透射电子显微镜不仅能通过明场和暗场像直观展示聚合物材料的微观结构,而且能结合电子衍射关联微细结构与相应的晶体结构与取向行为等.这一节扼要阐述利用透射电子显微镜能够获得的一些结构信息.4.1晶型分析大部分聚合物存在多种晶型,不同类型晶体具有不同的结晶习性,产生不同的形态结构,从而结合明场观察到的形态结构和电子衍射确定的晶体类型被广泛用于不同晶体的结晶行为研究.另外,聚合物的不同晶型间可以发生相转变,有时仅靠明场像无法获取晶体种类的信息.以iPB-1为例[80~91],它存在六方晶型I和I' ,四方晶型Ⅱ和正交晶型Ⅲ,正常情况下结晶首先形成亚稳态晶型Ⅱ,然后室温自发、缓慢地固相转变为晶型I.由于固相转变过程不改变形态结构,电镜明场像在任何时间均给出相似的微观结构,然而电子衍射跟踪不同时刻样品的晶体结构表明,晶型Ⅱ-I固相转变在不断发生.对95℃等温结晶iPB样品的电子衍射研究发现,其晶型Ⅱ-I固相转变可持续近3个月,因此能够获得晶型Ⅱ和I共存的电子衍射图(参见文献[89]的图2(a)).通过对相应电子衍射图的分析发现,转变前后晶型Ⅱ与晶型I拥有相同的(110)衍射方向,说明iPB的相转变沿晶型Ⅱ的(110)晶面发生,从而分子水平揭示了晶型Ⅱ-I转变机理,也为晶型Ⅱ单晶转变晶型I孪晶提供了合理解释.另外,明场观察到的晶型Ⅱ板条状结构和超薄膜高温结晶直接获得的晶型I的六边形结构很好说明了iPB-1晶型Ⅱ和I因晶格对称性不同造成的不同结晶习性.4.2晶体暴露面分析在获取聚合物形态和晶体结构信息的基础上,如需知道聚合物晶体最快生长轴以及聚合物间的特殊相互作用面,还要确定聚合物晶态薄膜的暴露面,即薄膜样品表面对应的晶面.如图17所示,以正交晶型为例,如果所有晶体的结晶学b-和c-轴在膜平面内,a-轴则垂直于bc面,在这种情况下,晶态聚合物薄膜具有固定暴露面,即为(100)晶面(图17(a)).假如所有晶体的结晶学b-或c-轴垂直于膜平面,则可确定其(010)或(001)为固定暴露面(见图17(b)和17(c)).由于聚合物薄膜通常由大量微晶聚集构成,存在每个微晶的结晶学a-、b-和c-轴指向不同的现象.例如:聚合物纤维,其分子链(即结晶学c-轴)沿纤维轴高度取向,但结晶学a-或b-轴在垂直于c-轴的平面任意取向,聚合物薄膜的类似结构(图17(d))说明其没有固定暴露面.聚合物晶态薄膜的暴露面可通过对相应电子衍射结果分析来获取[88],具体做法如图18所示,在相应的电子衍射图中,任意选取2个不应出现在同一方向的衍射点,用2个衍射点的米勒指数(Millerindex),即h、k和l,构成一个三维矩阵,矩阵的第一行为h、k和l,第二、三行分别为两个衍射点对应的h、k和l值,用h1、k1、l1和h2、k2、l2表示,移除该矩阵的第一行(即h、k、l行)以及h(或k或l)对应的列后产生3个独立的二维矩阵,这些二维矩阵的绝对值约化后便是暴露面的h(或k或l)值,即暴露面米勒指数.以溶液浇注iPP薄膜为例,图19是其明场和电子衍射图[92],从明场图可观察到支化的片晶结构,而电子衍射图出现了(001)、(101)和(200)衍射点,这3个衍射点不会出现在同一方向,均可用来确定其晶体的暴露面,根据图18描述的过程,选择任意2个衍射点都会得到暴露面为(010)晶面,也就是说其a-和c-轴在膜平面内,b-轴垂直于膜平面.考虑到聚合物超薄膜结晶,结晶学c-轴和其最快生长轴通常在膜平面内,由此得出iPP最快生长轴为a-轴的结论.对具有诱导附生结晶能力的聚合物体系,根据暴露面分析结果,能够确定2种聚合物的实际接触面[93,94].如iPP与全同聚苯乙烯(iPS)附生结晶的有利相互作用面分别是iPP的(100)和iPS的(110)晶面[95].Fig.17Diagramillustraxposurelatticeplaneofpolymercrystalsinthinfilmsample.Fig.18Diagramillustratingthedeterminationprocessofexposureplaneofpolymerthinfilms.Fig.19Aphasecontrastbrightfieldtransmissionelectronmicrograph(a),itscorrespondingelectrondiffractionpattern(b)andasketchofitwithindexingofthereflectionspots(c)ofasolutioncastiPPthinfilm(ReprintedwithpermissionfromRef.‍[92] Copyright(2013)ChineseChemicalSociety).4.3晶体取向分析电子衍射能够提供聚合物晶体取向的准确信息[95~99].图20(a)和20(b)分别给出了表面蒸涂碳膜的熔体拉伸PE膜及其150℃熔融15min后128℃重结晶2h的明场像和电子衍射图,从明场像可以看到热处理前后并未改变平行排列的、高度取向的片晶结构,热处理前后的电子衍射图却非常不同,用4.2节描述确定晶体暴露面的方法分析图20(a)和20(b)中的衍射图发现,热处理前,选择图20(a)中所标注的不同衍射点会得出的不同结论.例如:(002)和(110)衍射点确定的暴露面为(110),(002)和(200)衍射点确定的暴露面为(100),(002)和(200)衍射点给出的暴露面是(010)晶面.然而,热处理后,选择图20(b)中任何2个标定的衍射点得到的暴露面均为(100)晶面.上述结果似乎难以理解,但实际上它准确给出了热处理前后PE熔体拉伸膜的不同晶体取向结构.热处理前的衍射结果说明熔体拉伸制备的PE膜为单轴取向结构(又称为纤维取向结构),分子链(c-轴)沿拉伸方向取向,但a-轴和b-轴在垂直于c-轴的平面内无规取向.热处理后的衍射结果证明表面蒸涂碳膜固定了熔体拉伸PE膜的原有分子链取向,但熔融重结晶过程中其最快生长轴(b-轴)落于膜平面内,从而产生c-轴和b-轴均在膜平面内且c-轴沿拉伸方向排列的双轴取向结构.Fig.20ElectronmicrographsandcorrespondingelectrondiffractionpatternsofvacuumcarboncoatedPEmelt-drawnfilms(a)aspreparedand(b)aftermeltingat150℃for15minandthenrecrystallizedat128℃for2h.Arrowsindicatethedrawingdirectionduringfilmpreparation.为精准确定晶体取向结构,有时需要通过单轴或双轴倾斜样品获取转轴电子衍射图[100,101].样品倾转首先需要确定绕那个轴旋转,并使旋转轴沿样品杆轴取向.例如:欲绕c-轴旋转,需将c-轴调整到与样品杆轴平行状态,然后单轴旋转样品杆即可改变a-和b-轴的取向,使不同晶面满足Bragg衍射条件,从而产生衍射,如b-轴在膜平面时出现相应的(0kl),而a-轴在膜平面时出现相应的(h0l).同理,双轴倾转需要先经单轴倾斜调整好垂直于样品杆轴另一个方向的旋转轴后才能进行另一个方向倾转,使要观察的晶面满足Bragg衍射条件.由于大尺寸聚合物单晶不易获得,且晶体在电子束轰击稳定性极差,获取聚合物转轴电子衍射比较困难,特别是双轴倾转,需要很强的操作技巧.4.4晶体缺陷分析图21给出了sPP和sPB-1不同晶型的晶胞结构示意图,可以看出sPP晶型I属于面心晶胞结构(图21(a)),而sPB-1晶型I为体心晶胞结构(图21(d)),sPP晶型Ⅱ具有与sPB-1晶型I类似的体心晶胞结构(图21(b)),sPB-1晶型I' 则采取与sPP晶型I类似的堆砌方式(图21(c)).由于晶体中sPP与sPB-1的分子链均呈反式-反式-旁式-旁式(ttgg)螺旋链构象结构,sPP和sPB-1能够共晶,即sPP和sPB-1分子链均可排入对方的晶胞中.因此,我们对sPP、sPB-1和及其共聚物sPPBu的单晶结构进行了研究.结果发现,如图22所示,纯sPP(图22(a))[77]和sPB-1(图22(f))[76,102]单晶均为其相应的晶型I结构.sPPBu共聚物的单晶结构取决于2个组分的共聚比[77,78],含少量丁烯-1组分(sPPBu具有与sPP完全相同的堆砌结构(图22(b)),当丁烯-1组分含量为9.9mol%时,sPPBu单晶的衍射与sPP单晶类似(图22(c)),但在h20衍射层(相对于sPB-1为h10层)出现衍射条带,该衍射条带在丁烯-1组分含量为34.7mol%时更加明显(图22(d)),在丁烯-1组分超过90mol%后,sPPBu采取与sPB-1相同的结晶方式堆砌(图22(e)).衍射条带的出现说明sPPBu单晶有结构缺陷[103],根据其出现位置(sPP的h20衍射层或sPB-1的h10层)能够明确缺陷的存在形式和给出合理解释[104].如图23所示,图中分别用A、B、C、D描绘了sPP的晶型I、Ⅱ以及sPBu的晶型I' 和I晶胞结构,富含丙烯的sPPBu结晶倾向于形成sPP的晶型I结构(A),但其某一排分子链沿b-轴方向的b/4位移后产生sPP的晶型Ⅱ结构(B)或sPBu的晶型I结构(C).对富含丁烯的sPPBu而言,易于形成sPBu的晶型I结构(C),此时的b-轴方向b/2位移则导致sPP的晶型I结构(A)或sPBu的晶型I' 结构(D)的产生.在同一个单晶中上述不同晶体结构类型的存在表现为单晶的缺陷,使其电子衍射出现条带结构.Fig.21ChainpackingmodelsofformIsPP(a),formⅡsPP(b),formI' sPB-1(c)andformIsPB-1(d).Inpart(c),thesymbolR/LindicatestheexistenceofstructuredisorderinformI' sPB-1withright(R)andleft(L)handedhelices,thatis,therightandlefthandedchainscanbefoundwiththesameprobabilityineachsiteofunitcell.(ReprintedwithpermissionfromRef.[78] Copyright(2010)AmericanChemicalSociety).Fig.22ElectrondiffractionpatternsofsPPBusinglecrystalscontaining0mol%(a),2.6mol%(b),9.9mol%(c),34.7mol%(d),98.6mol%(e)and100mol%1-butenecomponent(f)(ReprintedwithpermissionfromRefs.[77,78] Copyright(2002,2010)AmericanChemicalSociety).Fig.23sPPBuchainpackingmodelsasafunctionofbutane-1concentration.TheunitcellsoftheB-centeredformIofsPP(A),theC-centeredisochiralformⅡofsPP(B),theC-centeredisochiralformIofsPB-1(C)andB-centeredformI' ofsPB-1(D)areindicated.Forpropene-richcopolymersb/4shiftdefectsproducelocalarrangementofchainsasintheC-centeredformⅡofsPP(B)orformIsPB-1(C)inaprevailingmodeofpackingoftheB-centeredformIofsPP(A).Athighbutenecontent,b/4shiftdefectsproducelocalarrangementofchainsasintheB-centeredformI(A)ofsPPandformI' ofsPB-1(D)inaprevailingmodeofpackingoftheC-centeredformIofsPB-1(C)andformⅡofsPP(B).(ReprintedwithpermissionfromRef.‍[78] Copyright(2010)AmericanChemicalSociety).5总结与展望透射电子显微镜集明、暗场观察以及电子衍射技术于一体,能直观展示样品的微细结构与形态,并准确关联晶态结构和晶体取向,是材料微观结构表征不可或缺的仪器设备.由于电子束的弱穿透能力,只能观察厚度在几十纳米的样品,聚合物超薄膜因电子束轰击下不稳定和非常低的结构反差给电镜研究聚合物样品带来很大困难.因此,经长期的研究探索与发展,开发了系列电镜用于聚合物结构研究的技术手段,包括制样方法、观察技巧等.针对聚合物超薄膜电子束轰击抖动和破碎等不稳定问题,人们发掘了用硝化纤维素、聚乙烯醇缩甲醛和真空蒸涂无定型碳等薄膜支撑样品的方法,特别是在样品表面直接真空沉积的高模量无定型碳膜能够确保样品不抖动、不破碎,但该方法不能用于需进一步处理样品的固定.当然,在不使用支撑膜的条件下,采用大目数四方孔铜网制备样品,选择铜网角落部位的样品观察,对降低样品抖动和避免样品破碎也有较好效果.针对电子束轰击聚合物超薄膜真实结构破坏问题,如聚合物晶体在电子束下的寿命仅有几秒钟,常用的解决方法是低剂量电子束下观察.在正常条件观察时,人们巧妙地发展了邻位聚焦技巧.即在需观察部位的邻近处完成聚焦、亮度和成像时间等的调整,然后移至观察部位迅速记录图像.针对聚合物材料非常低的结构反差,人们在制样方面发明了钌酸和锇酸染色以及铂金或金重金属投影等提高聚合物样品衬度的办法,在观察技巧方面发展了欠焦成像技术.上述各种特殊技术的发展,使电镜在聚合物微观结构研究中得到了广泛应用.电镜除能直观展示聚合物的微细结构外,结合暗场和电子衍射技术能够准确关联相关微观结构中晶体结构、晶体取向以及晶体缺陷存在方式等,已经对高分子科学领域的发展做出了重要贡献,如聚乙烯单晶的电镜研究结果为高分子结晶折叠链模型的建立提供了坚实依据,推动了高分子结晶理论的快速发展.基于电镜在聚合物微观结构研究中的重要作用,电镜仪器本身也得到了不断发展,如超低温样品室和低剂量辐照模式的使用为聚合物材料的高分辨成像提供了条件[105,106],样品倾转和三维结构重构技术的结合拓展了电镜在聚合物三维微观结构研究方面的应用[107,108].聚合物电子显微术在其本身低辐照损伤、高精度原位观察以及与其他技术联用(如光谱技术)等方面的进一步发展无疑会对高分子科学领域的快速发展做出更大的贡献.作者简介:闫寿科,男,1963年生.1996年中国科学院长春应用化学研究所获得博士学位.1997~2001年德国多特蒙德大学从事科研工作.2001~2008年中国科学院化学研究所,研究员.2008年至今北京化工大学,教授.2018年至今青岛科技大学,教授.曾获“中国科学院百人计划”、“国家杰出青年科学基金”资助.主要研究方向是高分子材料多层次结构和结构调控及其结构-性能关系.参考文献1LiuY,LiC,RenZ,YanS,BryceMR.NatRevMater,2018,3(4):18020.doi:10.1038/natrevmats.2018.202MemonWA,LiJ,FangQ,RenZ,YanS,SunX.JPhysChemB,2019,123(33):7233-7239.doi:10.1021/acs.jpcb.9b035223WangJ,LiuY,HuaL,WangT,DongH,LiH,SunX,RenZ,YanS.ACSApplPolymMater,2021,3(4):2098-2108.doi:10.1021/acsapm.1c001444Deng,LF,ZhangXX,ZhouD,TangJH,LeiJ,LiJF,LiZM.ChineseJPolymSci,2020,38(7):715-729.doi:10.1007/s10118-020-2397-75HuaLei(华磊),YanShouke(闫寿科),RenZhongjie(任忠杰).ActaPolymericaSinica(高分子学报),2020,51(5):457-468.doi:10.11777/j.issn1000-3304.2020.192246SmithP,LemstraPJ.MaterSci,1980,15(2):505-514.doi:10.1007/bf023968027LovingerAJ.Science,1983,220(4602):1115-1121.doi:10.1126/science.220.4602.11158DongH,LiH,WangE,YanS,ZhangJ,YangC,TakahashiI,NakashimaH,TorimitsuK,HuW.JPhysChemB,2009,113(13):4176-4180.doi:10.1021/jp811374h9DongH,LiH,WangE,WeiZ,XuW,HuW,YanS.Langmuir,2008,24(23):13241-13244.doi:10.1021/la802609410LiuL,RenZ,XiaoC,DongD,YanS,HuW,WangZ.OrgElectron,2016,35:186-192.doi:10.1016/j.orgel.2016.05.01711LiuL,RenZ,XiaoC,HeB,DongH,YanS,HuW,WangZ.ChemCommun,2016,52(27):4902-4905.doi:10.1039/c6cc01148a12SunD,LiY,RenZ,BryceMR,LiH,YanS.ChemSci,2014,5(8):3240-3245.doi:10.1039/c4sc01068j13ZhaoC,HongY,ChuX,DongY,HuZ,SunX,YanS.MaterTodayEnergy,2021,20(2):100678.doi:10.1016/j.mtener.2021.10067814WangM,WangS,HuJ,LiH,RenZ,SunX,WangH,YanS.Macromolecules,2020,53(14):5971-5979.doi:10.1021/acs.macromol.0c0110615LiuJ,ZhaoQ,DongY,SunX,HuZ,DongH,HuW,YanS.ACSApplMaterInterfaces,2020:12(26):29818-29825.doi:10.1021/acsami.0c0680916TangZ,YangS,WangH,SunX,RenZ,LiH,YanS.Polymer,2020,194(24):122409.doi:10.1016/j.polymer.2020.12240917SongT,WangS,WangH,SunX,LiH,YanS.IndEngChemRes,2020,59(8):3438-3445.doi:10.1021/acs.iecr.9b0643218MiC,GaoN,LiH,LiuJ,SunX,YanS.ACSApplPolymMater,2019,1(8):1971-1978.doi:10.1021/acsapm.9b0006019MiC,RenZ,LiH,YanS,SunX.IndEngChemRes,2019,58(17):7389-7396.doi:10.1021/acs.iecr.8b0554520ElyashevichGK,KuryndinIS,DmitrievIY,LavrentyevVK,SaprykinaNN,BukošekV.ChineseJPolymSci,2019,37(12):1283-1289.doi:10.1007/s10118-019-2284-221MenY,RiegerJ,HomeyerJ.Macromolecules,2004,37(25):9481-9488.doi:10.1021/ma048274k22DuanY,ZhangJ,ShenD,YanS.Macromolecules,2003,36(13):4874-4879.doi:10.1021/ma034008f23ZhangY,LuY,DuanY,ZhangJ,YanS,ShenD.JPolymSciPhysEd,2004,42(24):4440-4447.doi:10.1002/polb.2030624ZhangJ,DuanY,ShenD,YanS,NodaI,OzakiY.Macromolecules,2004,37(9):3292-3298.doi:10.1021/ma049910h25SunX,PiF,ZhangJ,TakahashiI,Wang,F,YanS,OzakiY.JPhysChemB,2011,115(9):1950-1957.doi:10.1021/jp110003m26HuJ,HanL,ZhangT,DuanY,ZhangJ.ChineseJPolymSci,2019,37(3):253-257.doi:10.1007/s10118-019-2184-527LiH,HouL,WuP.ChineseJPolymSci,2021,39(8):975-983.doi:10.1007/s10118-021-2571-628LiH,RussellT,WangD.ChineseJPolymSci,2021,39(6):651-658.doi:10.1007/s10118-021-2567-229WangY,JiangZ,FuL,LuY,MenY.Macromolecules,2013,46(19):7874-7879.doi:10.1021/ma401326g30LinY,LiX,MengL,ChenX,LvF,ZhangQ,ZhangR,LiL.Macromolecules,2018,51(7):2690-2705.doi:10.1021/acs.macromol.8b0025531WanR,SunX,RenZ,LiH,YanS.Materials,2020,13(24):5655.doi:10.3390/ma1324565532SunX,GuoL,SatoH,OzakiY,YanS,TakahashiI.Polymer,2011,52(17):3865-3870.doi:10.1016/j.polymer.2011.06.02433SuR,WangK,ZhaoP,ZhangQ,DuR,FuQ,LiL,LiL.Polymer,2007,48(15):4529-4536.doi:10.1016/j.polymer.2007.06.00134ZhuH,LvY,ShiD,LiYG,MiaoWJ,WangZB.ChineseJPolymSci,2020,38(9):1015-1024.doi:10.1007/s10118-020-2427-535KangXW,LiuD,ZhangP,KangM,ChenF,YuanQX,ZhaoXL,SongYZ,SongLX.ChineseJPolymSci,2020,38(9):1006-1014.doi:10.1007/s10118-020-2402-136ChenP,ZhaoH,XiaZ,ZhangQ,WangD,MengL,ChenW.ChineseJPolymSci,2021,39(1):102-112.doi:10.1007/s10118-020-2458-y37AleksandrovAI,AleksandrovIA,ShevchenkoVG,OzerinAN.ChineseJPolymSci,2021,39(5):601-609.doi:10.1007/s10118-021-2511-538GaoM,RenZ,YanS,SunJ,ChenX.JPhysChemB,2012,116(32):9832-9837.doi:10.1021/jp304137839LiL,ZhangS,XueM,SunX,RenZ,LiH,HuangQ,YanS.Langmuir,2019,35(34):11167-11174.doi:10.1021/acs.langmuir.9b0181440HuJ,XinR,HouC,YanS,LiuJ.ChineseJPolymSci,2019,37(7):693-699.doi:10.1007/s10118-019-2226-z41SunX,LiH,ZhangX,WangD,SchultzJM,YanS.Macromolecules,2010,43(1):561-564.doi:10.1021/ma901978442StockerW,SchumacherM,GraffS,LangJ,WittmannJC,LovingerAJ,LotzB.Macromolecules,1994,27(23):6948-6955.doi:10.1021/ma00101a03643JiangS,DuanY,LiL,YanD,YanS.Polymer,2004,45(18):6365-6374.doi:http://202.98.16.49/handle/322003/1510944LiH,LiuD,BuX,ZhouZ,RenZ,SunX,ReiterR,YanS,ReiterG.Macromolecules,2020,53(1):346-354.doi:10.1021/acs.macromol.9b0202145LiL,HuJ,LiY,HuangQ,SunX,YanS.Macromolecules,2020,53(5):1745-1751.doi:10.1021/acs.macromol.9b0259846WangH,SchultzJM,YanS.Polymer,2007,48(12):3530-3539.doi:10.1016/j.polymer.2007.03.07947LiL,XinR,LiH,SunX,RenZ,HuangQ,YanS.Macromolecules,2020,53(19):8487-8493.doi:10.1021/acs.macromol.0c0145648HouC,WanR,SunX,RenZ,LiH,YanS.PolymCryst,2020,3(5):e10157.doi:10.1002/pcr2.1015749LiH,SunX,YanS,SchultzJM.Macromolecules,2008,41(13):5062-5064.doi:10.1021/ma702725g50ZhangLL,MiaoWK,RenLJ,YanYK,WangW.ChineseJPolymSci,2021,39(6):716-724.doi:10.1007/s10118-021-2520-451NieY,GaoH,YuM,HuZ,ReiterG,HuW.Polymer,54(13):2013,3402-340752LiJ,LiH,YanS,SunX.ACSApplMaterInterfaces,2021,13(2):2944-2951.doi:10.1021/acsami.0c1919953DuanY,LiuJ,SatoH,ZhangJ,TsujiH,OzakiY,YanS.Biomacromolecules,2006,7(10):2728-2735.doi:10.1021/bm060043t54ZhouH,JiangS,YanS.JPhysChemB,2011,115(46):13449-13454.doi:10.1021/jp205755r55ChangH,ZhangJ,LiL,WangZ,YangC,TakahashiI,OzakiY,YanS.Macromolecules,2010,43(1):362-366.doi:10.1021/ma902235f56XinR,WangS,ZengC,JiA,ZhangJ,RenZ,JiangW,WangZ,YanS.ACSOmega,2020,5(1):843-850.doi:10.1021/acsomega.9b0367557JiangT,WanP,RenZ,YanS.ACSApplMaterInterfaces,2019,11(41):38169-38176.doi:10.1021/acsami.9b1333658LiuJ,WangJ,LiH,ShenD,ZhangJ,OzakiY,YanS.JPhysChemB,2006,110(2):738-742.doi:10.1021/jp053369p59ChuXiao(初笑),YanShouke(闫寿科),SunXiaoli(孙晓丽).ActaPolymericaSinica(高分子学报),2021,52(6):634-646.doi:10.11777/j.issn1000-3304.2021.2103660ZhouW,WengX,JinS,RastogiS,LovingerAJ,LotzB,ChengSZD.Macromolecules,2003,36(25):9485-9491.doi:10.1021/ma030312x61KellerA.PhilosophicalMagazine,1957,2(21):1171-1175.doi:10.1080/1478643570824274662FischerEWZ.Naturforsch,1957,12a:753-754.doi:10.1021/ac60131a71063TillPHJ.JPolymSci,1957,24(106):301-306.doi:10.1002/pol.1957.120241061664YanS.Macromolecules,2003,36(2):339-345.doi:10.1021/ma021387o65MaL,ZhouZ,ZhangJ,SunX,LiH,ZhangJ,YanS.Macromolecules,2017,50(9):3582-3589.doi:10.1021/acs.macromol.7b0029966MaL,ZhangJ,MemonMA,SunX,LiH,YanS.PolymChem,2015,6(43):7524-7532.doi:10.1039/c5py01083g67YanS,PetermannJ.Polymer,2000,41(17):6679-668163.doi:10.1016/s0032-3861(00)00109-968LiuX,WeiQS,ChaiLG,ZhouJJ,HuoH,YanDD,YanSK,XuJ,LiL.ChineseJPolymSci,2017,35(1):78-86.doi:10.1007/s10118-017-1872-269ChaiLG,LiuX,SunXL,LiL,YanSK.PolymChem,2016,7(10):1892-1898.doi:10.1039/c5py02037a70LiuQ,SunX,LiH,YanS.Polymer,2013,54(17):4404-4421.doi:10.1016/j.polymer.2013.04.06671HuJ,XinR,HouC,YanS.MacromolChemPhys,2019,220(5):1800478.doi:10.1002/macp.20180047872WittmannJC,SmithP.Nature,1991,352(6334):414-417.doi:10.1038/352414a073ChaiL,ZhouH,SunX,LiH,YanS.ChineseJPolymSci,2016,34(4):513-522.doi:10.1007/s10118-016-1770-z74BonnetM,YanS,PetermannJ,ZhangB,YangD.JMaterSci,2001,36(2):635-641.doi:10.1023/a:100486832028775LoosJ,SchauwienoldAM,YanS,PetermannJ.PolymBull,1997,38(2):185-189.doi:10.1007/s00289005003676ZhangB,YangD,DeRosaC,YanS.PetermannJ.Macromolecules,2001,34(15):5221-5223.doi:10.1021/ma010036r77ZhangB,YangD,DeRosaC,YanS.Macromolecules,2002,35(12):4646-4652.doi:10.1021/ma011975m78JiangS,LiH,DeRosaC,AuriemmaF,YanS.Macromolecules,2010,43(3):1449-1454.doi:10.1021/ma902389479HuJian(扈健),WangMengfan(王梦梵),WuJinghua(吴婧华).ActaPolymericaSinica(高分子学报),2021,52(10):1390-1405.doi:10.11777/j.issn1000-3304.2020.2025880QiaoY,MenY.Macromolecules,2017,50(14):5490-5497.doi:10.1021/acs.macromol.7b0077181QiaoY,WangQ,MenY.Macromolecules,2016,49(14):5126-5136.doi:10.1021/acs.macromol.6b0086282QiaoY,WangH,MenY.Macromolecules,2018,51(6):2232-2239.doi:10.1021/acs.macromol.7b0248183LiuP,MenY.Macromolecules,2021,54(2):858-865.doi:10.1021/acs.macromol.0c0217184XinR,WangS,GuoZ,LiY,HuJ,SunX,XueM,ZhangJ,YanS.Macromolecules,2020,53(8):3090-3096.doi:10.1021/acs.macromol.0c0041485XinR,GuoZ,LiY,SunX,XueM,ZhangJ,YanS.Macromolecules,2019,52(19):7175-7182.doi:10.1021/acs.macromol.9b0157486XinR,ZhangJ,SunX,LiH,RenZ,YanS.Polymers,2018,10(5):556.doi:10.3390/polym1005055687SuF,LiX,ZhouW,ZhuS,JiY,WangZ,QiZ,LiL.Macromolecules,2013,46(18):7399-7405.doi:10.1021/ma400952r88ZhangB,YangD,YanS.JPolymSciPhysEd,2002,40(23):2641-2645.doi:10.1002/polb.1032789QiuX,AzharU,LiJ,HuangD,JiangS.ChineseJPolymSci,2019,37(7):633-636.doi:10.1007/s10118-019-2273-590MaYP,ZhengWP,LiuCG,ShaoHF,NieHR,HeAH.ChineseJPolymSci,2020,38(2):164-173.doi:10.1007/s10118-020-2337-691ZhangZ,ChenX,ZhangC,Liu,CT,WangZ,LiuYP.ChineseJPolymSci,2020,38(8):888-897.doi:10.1007/s10118-020-2409-792WuJ,ZhouH,LiuQ,YanS.ChineseJPolymSci,2013,31(6):841-852.doi:10.1007/s10118-013-1269-993WangJ,LiuY,ZouD,RenZ,LinJ,LiuX,YanS.Macromolecules,2021,54(9):4342-4350.doi:10.1021/acs.macromol.0c0281594LiY,GuoZ,XueM,YanS.Macromolecules,2019,52(11):4232-4239.doi:10.1021/acs.macromol.9b0062795GuoZ,YuanC,SongC,XinR,HouC,HuJ,LiH,SunX,RenZ,YanS.Macromolecules,2021,54(16):7564-7571.doi:10.1021/acs.macromol.1c0142996WangJ,LiuY,LiH,YanS,SunX,TuD,GuoX,RenZ.MaterChemFront,2020,4(2):661-668.doi:10.1039/c9qm00684b97GuoZ,XinR,HuJ,LiY,SunX,YanS.Macromolecules,2019,52(24):9657-9664.doi:10.1021/acs.macromol.9b0202398LiJ,XueM,XueN,LiH,ZhangL,RenZ,YanS,SunX.Langmuir,2019,35(24):7841-7847.doi:10.1021/acs.langmuir.9b0040299GuoZ,LiS,LiuX,ZhangJ,LiH,SunX,RenZ,YanS.JPhysChemB,2018,122(40):9425-9433.doi:10.1021/acs.jpcb.8b08193100LotzB.Macromolecules,2014,47(21):7612-7624.doi:10.1021/ma5009868101LiC,JinS,WengX,GeJ,ZhangD,BaiF,HarrisF,ChengS,YanD,HeT,LotzB,ChienL.Macromolecules,2002,35(14):5475-5482.doi:10.1021/ma0204453102GuanG,ZhangJ,SunX,LiH,YanS,LotzB.MacromolRapidCommun,2018,39(20):1800353.doi:10.1002/marc.201800353103LovingerAJ,DavisDD,LotzB.Macromolecules,1991,24(2):552-560.doi:10.1021/ma00002a033104LovingerAJ.JApplPhys,1981,52(10):5934-5938.doi:10.1063/1.328522105BrinkmannM,RannouP.Macromolecules,2009,42(4):1125-1130.doi:10.6342/NTU.2009.02410106TosakaM,KamijoT,TsujiM,KohjiyaS,OgawaT,IsodaS,KobayashiT.Macromolecules,2000,33(26):9666-9672.doi:10.1021/ma001495f107JinnaiH,SpontakRJ,NishiT.Macromolecules,2010,43(4):1675-1688.doi:10.1021/ma902035p108JinnaiH,NishikawaY,IkeharaT,ToshioN.AdvPolymSci,2004,170:115-167.doi:10.1007/12_2006_102原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21251&lang=zh《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2021.21251
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用ApplicationofAtomicForceMicroscopy(AFM)-basedSingle-moleculeForceSpectroscopy(SMFS)inPolymerCharacterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生.分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为HermannE.Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究.2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授.2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助.以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomicforcemicroscopy,AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一.本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理.介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展.AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomicforcemicroscopy(AFM)-basedsingle-moleculeforcespectroscopy(SMFS)hasbeenusedwidelyintheinvestigationofmolecularforcesbecauseofitsfriendlyuserinterface(e.g.,easytooperateandcanworkinliquid,airandhighvacuumphase)andworldwidecommercialization.ThisreviewisaimedtointroducetheprincipleandprotocolofAFM-basedSMFSincludingthesetup,theworkingprinciple,typicalcurves,thechoiceofAFMtipandsubstrate,immobilizationofsamples,manipulationofthedevice,empiricalcriteriaforsingle-moleculestretchinganddataanalysis.RecentprogressesontheapplicationofAFM-basedSMFSinthecharacterizationofsyntheticpolymersandbiopolymerswerereviewed.Forsyntheticpolymers,theeffectsofprimarychemicalcompositions,sidegroups,tacticityandsolventsonthesinglechainelasticitieswerediscussed.TheapplicationsofAFM-SMFSindisclosingthestructureofunknownmolecule,polymer-interfaceinteractionsandpolymerinteractionsinpolymerassemblies(e.g.,polymersinglecrystal)wereintroduced.Inaddition,thenatureofmechanochemicalreactionsandcharacterizationofsupramolecularpolymerswererealizedviathistechnic.Forbiopolymers,theeffectsofbase-pairnumber,theforce-loadingmode(unzippingorshearing)onthestabilityofshortdouble-strandedDNA(dsDNA)werereviewed.Accordingtothisknowledge,thesingle-moleculecut-and-pastebasedDNAassemblywasthendiscussed.ThetypicalforcefingerprintsoflongdsDNA,proteinsandpolysaccharidesaswellastheforce-fingerprint-basedinvestigationofmolecularinteractionswereillustrated.Finally,theapplicationofAFM-SMFSinrevealingtheintermolecularinteractionsandthemechanismofvirusdisassemblyaswellastheantivirusmechanismoftanninintobaccomosaicviruswerereviewed.Therefore,AFM-basedSMFSisessentialforrevealingtherelationshipbetweentheconformation/compositionofpolymerchainsandmicro/macro-mechanicalpropertiesofpolymermaterialsaswellascorrelatingthemolecularstructure/interactionofbiopolymerswiththeirbiofunctions.关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomicforcemicroscopy-basedsingle-moleculeforcespectroscopy  Syntheticpolymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用.其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2].因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系,对高分子材料的理性设计至关重要.然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息.此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取.因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5].利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9].该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12].同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要.因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20].相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25].后3种技术的应用较为广泛.光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4s,被广泛应用于蛋白质折叠及解折叠等研究.但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决.磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等[22].因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中.该技术可以检测低至10-3pN的力值,也被应用于一些极微小力的测量.该技术还能同时对多个磁球进行操纵,实现高通量测试.由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10-2s以上.在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟[1~5,9,26,27].该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子.该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究.综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究.为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一.因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29].对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围.光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上.当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化.据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig.1TheschematicdiagramofAFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底.随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)).如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态.探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3).在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构.随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值.探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5).最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29].每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig.2(a)SchematicillustrationofthebasicworkingprincipleofAFM-SMFS (b)Originalvolt-piezodisplacementcurves (c)Typicalforce-extensioncurves.Fig.3ElectronmicroscopyimagesofacommercialSi3N4AFMprobe.Fig.4Molecularimmobilizationbasedon(I)physicalabsorption,(‍Ⅱ)specificbinding,(‍Ⅲ)gold-thiolchemistry,(‍Ⅳ)silanizationandenzymaticbiosynthesis.Fig.5Immobilizationofthiol-labeledDNAbasedonsilanizationandbifunctionalPEG.Fig.6Typicalcurvesobtainedinconstantvelocity(a)andforce-clampmode(b),respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29].将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出.样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得.至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21].逼近力曲线上B区域的形状可以给出样品模量等信息.例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角.对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29].其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3).针尖通常是四面体形状,最尖端的曲率半径(tipradius)为几个到几十纳米,高度(tipheight)通长为3~28µm.微悬臂有矩形和三角形2种,长度为7~500µm,厚度为0.5~7µm.其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针.对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针.值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32].此外,一些公司也生产了许多功能化的AFM探针.例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等.然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33].为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针).如需增加时间分辨率,可以选用超短探针[34].但超短探针的弹性系数通常较大.科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35].然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动.为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移.为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端.仪器调试完毕,让整个系统平衡10~30min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移.如在同一个样品上进行力谱探测的时间较长,且实验前期及后期微悬臂反射到光电检测器中的激光强度(sum值)有较大变化,可以在实验开始及结束时分别校正微悬臂的光学灵敏度及弹性系数.如数值差异较大,则实验前期与后期所得数据分别用初期及实验结束时的校正参数进行转换分析,防止由悬臂弯曲等因素导致激光点位置偏移,进而影响测试结果.AFM单分子力谱实验中常用基底(样品固定用)主要有石英、玻璃、硅片、云母及镀金片等[1,4,9,21,29].硅片较为平整,容易通过物理或化学修饰固定样品,最为常用.玻璃和石英片的平整度不如硅片,但其较好的透光性可以同时进行光学成像和单分子力谱实验.同时,透明基片有助于减小由较大的激光光斑或较小的微悬臂所产生的干涉现象.对于细胞类样品,也可直接在接种了细胞的聚苯乙烯培养皿上进行单分子力谱实验,以弥补玻璃基底细胞黏附率低的不足.含有巯基的样品分子可以选择表面有金镀层的基底.但金镀层反射率较强,当微悬臂较小时,漏到金片表面的激光较多,容易产生干涉现象.除了前述4种消除干涉的策略,还可以通过差减拉伸力曲线与松弛力曲线的方法来扣除干涉条纹[36].总之,要根据体系选择合适的基底.2.2样品固定与偶联成功进行单分子力谱实验的关键环节是样品分子在AFM针尖与基底之间的有效偶联,形成桥联结构,即样品分子的固定.根据相互作用本质的不同,样品固定方式可以分为物理吸附,特异性相互作用以及化学偶联(图4)[1,20].物理吸附主要利用样品分子与基底或针尖间的物理相互作用,例如范德华力、氢键、静电相互作用以及疏水作用力等,吸附样品分子(图4,Ⅰ)[9,21,26,27].通常将待测样品配成稀溶液,滴加到固体基片表面,吸附一定时间后,润洗掉游离及吸附不牢固的分子即可.为了增加单分子探测的几率并减小多分子信号的干扰,可以降低样品溶液浓度、减少吸附时间,以降低样品分子的吸附密度[2,28].对于吸附能力强且分子在溶液中易发生聚集的样品体系,需要配制极稀溶液来实现单分子拉伸探测[41].基于物理吸附的样品,制备虽然操作简便、快速,但由于探针在目标分子上的接触位置无法控制,导致拉伸长度及断裂力值随机分布.其次,物理吸附的作用力通常较弱且不可控,不适用于强作用力体系的研究.但在有些样品体系中,例如:拉伸多糖分子时,物理吸附也可以达到较高的断裂力(如1nN左右)[1,37~41].该现象主要源于样品分子在基底及AFM探针表面的多点物理吸附[1,37,41].此外,当探针以较大的下压力(例如2nN)接触样品分子时,在力诱导下样品分子有可能与AFM探针发生力化学反应,形成共价键,从而增大断裂力[1,37,42].特异性相互作用也经常用于固定样品分子(图4,Ⅱ).该方法专一性强、结合强度确定.其中生物素-链霉亲和素(biotin-streptavidin)系统(亲和常数高达1015mol/L)是最常用的分子对[9,21,26,27,43].此外,谷胱甘肽-谷胱甘肽S转移酶[44]以及镍离子(Ni2+)-氮川三乙酸(NTA)-组氨酸标签(His-tag)[45]的配位作用等也可以用于目标分子的固定.特异性分子对可以通过简单的化学反应被修饰在样品分子的末端或AFM探针、基底的表面,也可以通过基因工程方法被构建在蛋白质类样品的末端.上述分子对的相互作用强度通常在100pN左右,断裂力值高于该数值的体系不能采用特异性相互作用固定样品分子.样品分子还可以通过化学修饰直接固定在AFM探针或基底上(图4,Ⅲ与Ⅳ).化学修饰通过形成共价键固定样品分子.其修饰过程比物理吸附复杂,但形成的共价键较为牢固,断裂力可达纳牛顿(nN)级别,适用的力值测量范围较大.基于金-硫(Au-S)相互作用的化学偶联是常用的化学修饰方法之一(图4,Ⅲ)[21,26,27].该体系需要向待测样品中引入巯基.蛋白质类样品可以通过基因工程方法引入侧链含有巯基的半胱氨酸;核酸或高分子样品,可以通过化学方法在样品合成时直接引入巯基.随后,选用镀金的探针或基底,即可通过Au-S相互作用固定样品.研究表明金表面的氧化还原状态、溶剂的种类(水或乙醇)、反应环境的pH值以及反应时间等均影响目标分子在金表面偶联的稳定性[46].硅烷化是另一种常用的化学偶联方法(图4,Ⅳ)[9,21,26,27].该方法首先利用食人鱼(Piranha)洗液(V(98%H2SO4)∶V(30%H2O2)=7∶3)或者紫外臭氧等方法处理AFM探针或基底,使其表面羟基化.随后利用末端修饰有活性基团(例如氨基、羧基、巯基、环氧基等)的硅烷偶联剂与上述羟基反应形成硅氧键.最后,使探针或基底引入的活性基团与样品分子中相应的官能团反应形成共价键,从而固定样品分子.含有3个可水解基团的硅烷化试剂(例如三甲氧基或三乙氧基硅烷)与羟基反应效率较高.但在少量水存在时,该试剂可以发生分子间缩合,生成低聚硅氧烷,不仅对力谱实验产生干扰,还会增加样品分子的修饰密度,产生多分子信号.为了避免上述现象,可以选用只含有一个可水解基团的硅烷化试剂[46].末端含有氨基的硅烷化试剂在单分子力谱实验中的应用较为广泛.该氨基可以与含有琥珀酰亚胺羟基酯(NHS)的双功能偶联剂进一步反应固定目标分子(图5)[47],也可以在EDC(DCC)/NHS的催化下与羧基反应形成酰胺键来实现偶联.近年来,研究人员将硅烷化反应与基于酶催化反应的化学偶联结合,固定蛋白质类样品(图4,Ⅳ)[48].该方法利用氨基硅烷化试剂修饰探针或基底,再利用氨基巯基交联剂引入末端含有巯基的桥联蛋白(例如半胱氨酸).桥联蛋白的另一端含有甘氨酸-亮氨酸(GL),利用可快速催化GL与天冬酰胺-甘氨酸-亮氨酸(NGL)间连接反应的OaAEP1酶,就可将末端含有NGL的蛋白样品固定在基底或探针上.半胱氨酸、GL以及NGL均可以通过基因工程方法引入桥联蛋白及目的蛋白末端.通过共价键固定的样品体系,可以将双官能团偶联剂与惰性(单官能团)分子偶联剂(例如另一个末端是甲基的硅烷化试剂或者硫醇分子)共同修饰到基片表面(图5)[1,49].惰性偶联剂不含与样品分子反应的活性基团,无法连接样品分子,因此可以稀释样品分子,增加单分子信号[3].研究相互作用力的体系,例如受体与配体相互作用,柔性的PEG连接分子通常被引入样品分子与探针或基底之间(图4,Ⅱ)[9,21,27].连接分子主要有以下几种作用:(1)减小样品分子在探针或基底的非特异性吸附;(2)使样品分子构象自由、取向灵活,在相互作用的过程中结合得更加充分;(3)将断裂信号平移到更长的断裂长度,减小非特异性相互作用对目标力信号的干扰.图5给出了基于硅烷偶联剂和带有双官能团PEG的单股DNA共价固定方法.样品分子与AFM针尖的偶联方式决定了实验过程中一些实验参数的设置.依靠物理吸附的体系,探针接触样品表面时需要施加较大的下压力(例如1nN)和较长的停留时间,以增大样品分子在针尖表面吸附的概率及稳定性.利用特异性相互作用或化学反应的偶联,探针接触基底时则需采用尽可能小的下压力和较短的停留时间,避免破坏针尖表面修饰的有限数量的功能基团.此外,对于化学修饰的AFM探针,其表面的功能基团可能随拉伸次数的增加而变化,影响实验效率,因此需要适时更换探针.此外,如果力谱实验中多分子信号频繁出现,可以采取如下策略补救:(1)降低探针作用在样品上的下压力及停留时间,减小样品分子与探针间的作用力;(2)探针远离基底时,首先使探针在z方向小范围移动,使较短的分子率先被拉伸,随后逐渐增加探针的移动范围,使较短的分子先从探针上脱落,在探针与基底间保留单个、较长的分子;(3)采用“飞鱼”模式来获取单分子信号[1],即控制探针在基底上方一定距离内程序性地靠近-远离基底,而不直接接触,当探针接触到一端固定在基底而另一端自由运动的样品分子并成功偶联后,再对该分子进行拉伸.2.3恒速与恒力模式恒速模式是AFM单分子力谱常用的测量模式(图6(a))[9,21,26,27,29].该模式下,压电陶瓷管控制AFM探针以恒定的速率对样品分子进行拉伸操纵,可以直接探测分子内或分子间作用力的强度、分子链长度等信息.获得的典型力学信号通常有单峰、锯齿峰或平台等.如果样品分子与探针及固体基片间的桥联结构足够稳定,还可以对同一个样品分子进行往复拉伸-松弛操纵,获得分子内或分子间的相互作用以及相应结构的动态破坏与形成过程[50].对于非平衡体系,还可以获得不同拉伸速率下,体系内力的强度随力加载速率变化的相关信息,获得体系解离速率常数及能量转换路径的信息[51].在恒速模式的基础上还发展了ForceMapping方法,即在样品表面选定范围内的不同位点进行恒速拉伸[9,21,27].该方法可以探测样品表面不同区域的黏附力情况,也可以研究细胞膜表面蛋白质的分布情况等.AFM单分子力谱另一种常用模式是恒力模式,也称力钳(force-clamp)模式(图6(b))[52~54].该模式通过力反馈系统精确控制压电陶瓷管的位移,使施加在样品分子上的作用力保持恒定,记录分子链长度随时间的变化过程,被广泛应用于蛋白质解折叠等领域[34].以多聚串联蛋白质解折叠实验为例[34],先将蛋白质快速拉伸到接近其解折叠力的力值附近,保持外力恒定,一段等待时间后,一个折叠结构在外力作用下打开,释放出一定的长度.此时,探针施加在蛋白质上的力快速下降,仪器反馈系统快速响应,压电陶瓷管再次拉伸蛋白分子到设定力值,维持恒力模式.该过程表现在长度-时间曲线上是长度的突然增加,代表蛋白解折叠所释放的长度.拉伸长度在下一个解折叠事件前保持恒定.随后,其余折叠结构依次打开,最终得到台阶状的长度-时间曲线(图6(b)).从上述曲线中可以获得解折叠路径(包括中间态)及折叠结构寿命的信息(相邻台阶出现的时间间隔).恒力模式还可以研究蛋白质解折叠的逆过程,即折叠过程.将施加在解折叠蛋白分子上的外力突然减小到较低的力值(如十几个皮牛)并保持恒定,就可以原位跟踪蛋白质的动态折叠过程.值得指出的是,为了准确跟踪检测蛋白解折叠等动态结构变化信息,真实描述相关过程,仪器的力学反馈系统需要足够快.2.4单分子信号的指认AFM单分子力谱实验的核心目标是获得单个分子的拉伸信号.因此,指认单分子信号、规避或消除体系中的多分子信号至关重要.单分子信号的指认是一个有挑战性的任务,人们总结了一些半经验性的标准用于单分子信号的指认[1].首先,可以统计体系的信号率,如果信号率较高(10%),则预示体系内可能存在着一定比例的多分子拉伸[1].随后,可以观察单条力曲线上力信号的个数、形状及力值.通常,单分子拉伸只对应力-拉伸长度曲线上一个单独的峰.如果力曲线上出现多个连续、大小不一的峰或平台,则可能对应着多分子拉伸[49].其次,可以对数据归一化处理[1].同一实验体系中,相同结构与性质的分子受到的拉伸力与被拉伸的长度成正比.据此可以对不同拉伸长度的曲线进行归一化处理(拉伸长度除以完全伸展长度).如果归一化曲线能完好的重合,则证明该批数据均来自单个分子的拉伸操纵.此外,往复拉伸实验中,如果分子链内部不存在高级结构及强相互作用,即使经过多次的拉伸、松弛操纵,单分子的拉伸及松弛力曲线依然可以重合.除了上述方式,还可以利用一些模型拟合力曲线,比较拟合参数(如库恩长度,相关长度或者链段弹性系数等)来甄别单分子数据[1].如果拟合参数相差较大,则证明存在多分子拉伸信号.常用的模型主要有蠕虫链模型(WLC)与自由连接链模型(FJC)[1,2].WLC模型主要用于描述刚性及半刚性高分子.FJC模型中高分子弹性的变化主要来自熵的贡献,主要用于柔性高分子以及刚性高分子低力值区域的单分子力谱数据的拟合.例如:研究人员将相互作用的MUC1多肽与scFv抗体通过PEG连接分子分别修饰在探针与基底上,进行单分子操纵.利用FJC模型拟合数据后,可以准确地区分出1~6个分子对被拉伸时分别对应的力曲线[3,55].此外,已知聚合物的力学指纹谱也可以被用来指认单分子拉伸信号[46].PEG、羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂.为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49].需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig.7Basicstrategytoisolate/identifysinglechain/moleculepairstretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息.为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1].常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1].近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56].例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC).该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为.为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57].在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响.为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型.上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状.因此,可以在较大力加载速率范围内,观察上述非平衡体系的力强度变化,获得动态力学谱[1].之后采用诸如Bell-Evans模型等对其进行拟合,分别可以得到沿着受力方向的结合状态与过渡状态间的距离(xβ)以及体系没有外力作用下的解离常数(Koff).3AFM单分子力谱的典型应用3.1合成高分子体系3.1.1聚合物单链弹性聚合物主链结构对其单分子弹性性质具有重要影响.研究人员利用AFM单分子力谱详细地研究了导电高分子聚苯胺(PANI)在氧化、还原及掺杂状态下的单链弹性性质(图8)[58].实验结果显示这些聚苯胺的力曲线呈现出类似变化规律:力值随着拉伸长度的增加呈单调上升.利用FJC模型拟合上述力曲线,结果表明聚苯胺分子氧化态时刚性最大,掺杂状态时最为柔软.这是不同状态的聚苯胺分子中芳香胺与醌二亚胺的含量不同所导致的.Fig.8Normalizedforce-extensioncurvesofPANIindoped(red),oxidized(blue),andreduced(black)states,respectively(ReprintedwithpermissionfromRef.‍[58] Copyright(2009)AmericanChemicalSociety).除了主链的氧化还原态外,聚合物主链的立构规整性对其弹性也有重要影响(图9)[1,9].在甲苯溶液中拉伸反式-及顺式-聚异戊二烯时,前者在低力值区体现出较大刚性,而后者则表现出明显的熵弹性.FJC模型的拟合也验证了顺式聚异戊二烯较高的熵弹性.这是由于反式聚异戊二烯以伸展的构型存在,而顺式聚异戊二烯则是扭曲构型.相同外力作用下,顺式聚异戊二烯构象数变化较大,熵弹性较大.该研究表明即使反式聚异戊二烯处于溶液中这种高弹态,其熵弹性仍然不如顺式聚异戊二烯强.Fig.9Normalizedforce-extensioncurvesofcis-andtrans-poly(isoprene)intoluene(ReprintedwithpermissionfromRef.[1] Copyright(2003)ElsevierLtd.).AFM单分子力谱还被用于探究高分子侧链结构对其弹性行为的影响[1,2,9,59].聚丙烯酰胺(PAAM)与聚N-异丙基丙烯酰胺(PNIPAM)主链结构一样,前者重复单元侧链只含有2个氢原子,而后者则含有异丙基与氢原子.这种分子结构的差异导致2种高分子的水合能力不同.水溶液中,PAAM在低力值区域表现出明显的熵弹性.PNIPAM由于侧链异丙基体积较大,更加伸展,熵弹性没有PAAM显著,但在高力值区域表现出明显的焓弹性,如图10所示[1,59].Fig.10Normalizedforce-extensioncurvesofPNIPAMandPAAMinwater(ReprintedwithpermissionfromRef.[1] Copyright(2003)ElsevierLtd.).人们又在单分子水平研究了侧链树枝代数对主链重复单元为苯乙烯与马来酸酐的聚合物GnMA-g-BA(n=1,2,3)弹性的影响[60].在四氢呋喃中拉伸时,G2MA-g-BA分子的刚性大于G1MA-g-BA,表明侧链树枝代数的增加使高分子体积变大,导致其刚性增强.然而,侧链树枝代数增加的同时也导致主链周围空间效应的增大,从而减小酰胺侧基与溶剂间的氢键相互作用.因此,在三氯甲烷中实验时,G2MA-g-BA的刚性反而弱于G1MA-g-BA.故考察聚合物侧基对单链弹性的影响时需要注意考虑溶剂化效应.除了聚合物链本身的组成结构会影响其弹性性质外,聚合物所处的环境(如溶剂)也会影响高分子弹性.例如:高分子在良溶剂中通常以无规线团形式存在,而在不良溶剂中则塌缩成小球[6,61,62].研究人员利用AFM单分子力谱研究了聚苯乙烯(PS)链段在不同溶剂中的弹性行为.在环戊烷中拉伸PS分子时,由于环戊烷破坏了间隔苯环之间的π-π堆积,PS本征弹性能够得以体现[63].然而,在不良溶剂中拉伸形成塌缩小球的PS时,则得到了带有平台与单峰的力曲线(图11(a)与11(b)).平台对应着塌缩结构在外力诱导下逐渐被打开的过程,单峰则对应着伸展后的PS分子在外力拉伸下的弹性行为.利用WLC模型模拟上述单峰信号.假设塌缩小球内部的高分子链段是松弛的,则拟合曲线的上部面积代表从塌缩结构变成伸展状态的过程中高分子与溶剂的界面能的增加,即PS的疏水塌缩过程由界面能支配(图11(c))[61].随后,PS纳米粒子的疏水水合自由能与自身尺度间的关联也被深入探究[64].当PS纳米粒子的尺寸1nm时,水分子在其表面重排,体系发生焓变,水合自由能则与其表面积呈线性关系.Fig.11(a)IllustrationofAFM-SMFSstudyoftheglobule-to-coiltransitionofPSinwater (b)Theforce-extensioncurve(red)ofPSwithentropicelasticstretchingportionfitbytheWLCmodel(blue) (c)Thermodynamicrelationshipsbetweenpolymersandfreemonomersinvariousconformationalstates(ReprintedwithpermissionfromRef.[61] Copyright(2012)AmericanChemicalSociety).通过AFM单分子力谱获得的样品弹性性质还可以用于推测其结构,因此研究人员尝试利用该技术探索未知分子.例如:无定形红磷的分子结构无法通过传统的研究方法获得,其结构一直未知.因此,研究人员将红磷吸附在玻璃基底上,利用AFM探针在乙醇中拉伸红磷分子[65].如图12所示,实验获得的力曲线与拉伸链状高分子类似,表明红磷为线性高分子,并且其平均表观链长约为106nm.利用QM-WLC模型进行理论计算后发现,实验获得的红磷拉伸的力曲线与一种“之字形”梯状的拟合曲线高度重合.因此,无定形红磷可能为“之字形”梯状的线形高分子.Fig.12Theforce-extensioncurveofa-redP(solidblackcurve)andtheQM-WLCfittingcurves(dottedlines)ofitspossiblestructures(inset),respectively(ReproducedwithpermissionfromRef.[65] Copyright(2019)ofWiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2高分子-界面相互作用高分子在界面的吸附形态对于很多领域(例如界面黏附调控以及层层组装膜构筑等)非常重要,但通常难于表征.AFM单分子力谱被成功用于研究高分子在界面处的吸附形态及解吸附力[1,9].研究表明,高分子在界面处的吸附形态影响着力曲线的形态(图13(a)).例如:通过共价键被修饰在硅基底上的聚二甲基硅氧烷(PDMS)分子,解吸附时产生了带有单峰的力曲线.这表明该分子是以大的“环状”结构(bigloop)或“尾部”结构(tailstructure)吸附在基底.聚四乙烯基吡啶(PVP)在甲醇溶液中通过氢键吸附在氨基修饰的基底上,解吸附时得到了带有锯齿形力信号的力曲线.这意味着PVP分子是以不规则的小的“环状”结构(loopstructure)吸附在基底上,吸附位点较多,力曲线上每一个锯齿峰均对应着环状结构依次从基底上解吸附的过程.然而,当聚乙烯甲酰胺(PVAm)分子通过静电作用力吸附在基底,其解吸附的过程则获得了带有长平台的力曲线.这表明PVAm是以“平躺”形态(train-likestructure)吸附在基底.上述结果表明AFM单分子力谱是研究高分子界面吸附的有效方法.Fig.13(a)Force-extensioncurvepatterns(toprow)andthecorrespondingadsorptionconformations(bottomrow)(ReproducedfromRef.[1]withpermissionofElsevierLtd.) (b)SchematicdrawingofthebreakageofAu-AubondsmeasuredbyAFM-basedSMFS (c)Thestrengthofthiol-goldcontactsonoxidizedandreducedAusurface(ReprintedwithpermissionfromRef.[46] Copyright(2014)NaturePublishingGroup).AFM单分子力谱还被用于研究末端含有巯基的聚合物与金表面的相互作用(图13(b))[46].首先,巯基通过PEG连接分子被固定在AFM探针上,然后接近金基底.Au-S键形成后,再控制探针远离基底.在还原金表面实验获得的断裂力的最可几值约为0.6nN.为了验证该力值是来源于Au-S键的断裂还是Au原子被从基底拉出所导致的Au-Au键断裂,研究人员将上述实验中得到的修饰有金原子的AFM探针继续在修饰有巯基的基底上进行实验,结果得到了类似的断裂力值.这证明,施加外力时,Au-S结合位点处的Au-Au键发生断裂,Au原子被拉出.结合XPS与拉曼光谱技术,人们发现巯基与金相互作用过程中首先形成配位键,而后转变为共价键.同时,氧化金表面及较长的反应时间能增强巯基与金形成的结合位点的力学稳定性(图13(c))[46].为了研究金与其他硫族元素相互作用的规律,研究人员分别合成了含有不同硫族元素的嵌段聚合物(PEG-PUX-PEG(X=S,Se,Te)),研究了该聚合物链在金表面的吸附形态及强度[10].结果显示该种嵌段聚合物以规律的小的“环状”结构(loopstructure)吸附在基底上,且结合位点较多,因此实验得到带有规则锯齿形力信号的力曲线.4nm的锯齿间距与聚合物链中相邻硫族元素间的链段长度相一致.对断裂力值的分析表明Au-Te键的强度最强,Au-Se键次之,Au-S键最弱[10].这证明相对原子质量大的硫族元素与金形成的键强度较大.此外,人们还利用AFM单分子力谱研究了聚多巴胺与氧化钛基底的相互作用[66],以及高分子在固液界面的摩擦行为的本质[67].3.1.3高分子组装体中分子间相互作用半结晶性高分子广泛存在,其在高分子材料中占据非常大的比例.高分子结晶相的结构对材料的力学及光电性质等诸多性质具有重要影响.从单分子水平研究高分子链结构对结晶过程、晶体结构以及材料力学性质等的影响规律,对于进一步揭示结晶机制、建立链结构与材料性能之间的联系、设计发展高性能高分子材料具有重要意义.然而相关研究充满挑战,通过将原子力显微镜(AFM)成像与单分子力谱技术有机结合,并辅以合适的样品制备及偶联方法,研究人员成功地将单条高分子链从聚氧乙烯(PEO)晶体中提拉出来,定量测量了晶体中高分子链间作用力的大小(图14(a)与14(b))[13].Fig.14(a)SchematicillustrationofAFM-basedSMFSstudyonaPEOsinglecrystal (b)TypicalforcecurvesrecordedintheAFM-basedSMFSexperimentonagold-nanoparticle-labeledPEOsinglecrystal(ReprintedwithpermissionfromRef.[13] Copyright(2011)AmericanChemicalSociety) (c)SchematicillustrationofthehydrogenbondchangeinPA66singlecrystalwhenslippingonerepeatunitalongthepullingdirection (d)TheforcecurvesofPA66obtainedduringtheunfoldingofafoldedstructure(ReprintedwithpermissionfromRef.[32] Copyright(2018)AmericanChemicalSociety).在此基础上,研究人员进一步克服样品制备等难题,将其发展成一种普适性的研究方法,成功地将该方法应用到聚乙烯(PE)、尼龙66(PA66)、尼龙6(PA6)、聚乳酸(PLLA)和聚己内酯(PCL)等众多高分子晶体体系当中,结合聚合物单分子力谱和受控分子动力学模拟,系统考察了晶体中聚合物链构象(螺旋、平面锯齿和非平面锯齿)链组成及外界环境等对纳米力学性质的影响规律:(1)发现晶体中高分子链运动模式的纳米力学特征,螺旋链在受力拉伸时采取螺旋运动模式,力值变化较平稳、波动较小,而锯齿链会发生黏滑运动(stick-slip)导致力值出现锯齿状波动[68,69];同时首次通过单分子实验观测到PA66及PA6晶体中高分子链在受力形变过程中多重氢键的动态断裂与重新形成的粘滑运动过程[32](图14(c)与14(d));发现高分子链在晶体中滑动过程中进行高速旋转直至氢键重新形成;结果还显示,stick-slip运动既受主链结构及链折叠模式的影响,也受力加载装置的弹性系数、无定形区域的链长度等因素的影响;例如:弹性系数较大的探针在松弛过程中储能释放速度较快,链上的残余应力较小,因此在链段滑移后有利于氢键再次形成,表现为力曲线上锯齿峰的数量较多(图14(c)).基于上述具有指纹特征的力谱,研究人员成功地发展了高分子晶体中链折叠模式的定量化研究方法,该方法无需对样品进行标记,具有很好的普适性,研究结果显示溶液相制备的高分子晶体中近邻规整折叠模式所占比例很高(≥91%),表明分子内相互作用对结晶过程起到了关键作用[70].除了晶体,层层组装膜中聚电解质分子间的相互作用及其结合/解离的动力学性质也受到了关注.为此,聚阴离子电解质形成的薄膜被固定在基底表面,聚阳离子电解质PM2VP249被修饰在AFM探针上,进行单分子力谱实验(图15)[14].结果显示,电荷相反的电解质有2种结合模式:一种是在膜的表面发生表面沉积(图15,I),另一种是进入到膜的内部进行内部包埋(图15,Ⅱ).内部包埋模式受到盐离子浓度的影响较大.Fig.15Schematicdescriptionofthestrengthmeasurementofionicbondsandthetypicalforcecurvesrecordedduringthedisruptionofazipperofionicbonds(I:oneatatime Ⅱ:simultaneousdisruptionofcooperativecomplexeswithmultiplebonds)(ReprintedwithpermissionfromRef.[14] Copyright(2012)AmericanChemicalSociety).3.1.4力诱导化学反应近年来,力响应功能基团(亦即力色团),即受到外界刺激时能够发生特定键断裂的功能基团,受到人们的关注[71~78].这些力色团可以赋予材料更高的韧性、自修复性等,并可用于材料体系内部应力损伤的探测.定量研究高分子中的化学键在外力作用下的断裂及转变,对于揭示力化学反应的本质、开发新型力色团继而实现高分子材料的增强增韧以及内部应力大小的可视化呈现具有重要意义[11,31].人们利用AFM单分子力谱揭示了一系列含有力响应基团的高分子在外力诱导下的化学反应的本质与特点[72,79~92].例如带有多个重复四元环功能基团的肉桂酸类高分子被共价桥联在AFM探针与基底之间进行拉伸操纵(图16)[11],获得了带有锯齿峰平台的力曲线.每个小锯齿的峰间距约为2.4nm,与打开一个和四元环相连的冠醚分子所增加的2.46nm的长度极其相似(图16).因此,力曲线上每一个小锯齿峰都代表着一个四元环开环以及与之相连的冠醚分子链的应力释放过程.锯齿峰的高度则对应着四元环开环反应所需要的力值.实验中获得了力值约为1nN(粉色区域)与2nN(蓝色区域)的2种锯齿峰,分别对应顺式及反式四元环开环所需外力的大小(图16).该结果表明,即使是同样的力色团,其在主链上的不同连接方式也可以导致其力学性质的不同,为材料力学性质的调控提供了新思路[11].Fig.16Arepresentativeforce-extensioncurveofcopolymerP2(ReprintedwithpermissionfromRef.[11] Copyright(2017)NaturePublishingGroup).马来酰亚胺-巯基的化学反应常常被用于蛋白质的偶联或修饰中.然而,由于反米歇尔加成反应及巯基交换的原因,马来酰亚胺-巯基交联产物的稳定性很差.但如果上述交联产物能够水解开环,其稳定性将被大幅度提高.因此人们在单分子水平探索了机械力对马来酰亚胺-巯基键稳定性的影响[31].结果表明,在水溶液中断裂马来酰亚胺巯基键(S―C键)需要大约1nN的作用力,而在乙腈中只需要0.4nN.这是由于外力作用下,马来酸硫醚在水溶液中发生水解开环与反米歇尔加成反应,而在乙腈中只发生后一种反应.不受力的情况下,马来酸硫醚的水解开环反应速率很慢,半衰期约为100h.而在外力诱导下,其水溶液中的开环反应速率被提高至1s左右.因此,通过外力诱导引起开环反应而提高了马来酰亚胺-巯基键的稳定性.该项研究提供了一种通过施加外力来稳定马来酰亚胺-巯基键的方法.3.2超分子聚合物3.2.1超分子聚合物的表征超分子聚合物的非共价连接和动态性在赋予其独特性质的同时,也使其分子量等表征变得十分困难.AFM单分子力谱被成功用于具有一定稳定性的长链超分子聚合物的表征[93,94].例如:研究人员曾利用2-脲基-4-嘧啶酮基团(UPy)修饰AFM探针与基底,然后向体系中加入UPy-UPy溶液,依靠超分子组装在探针与基底之间形成超分子聚合物的桥联结构.根据拉伸曲线上的断裂长度以及单个Upy的长度,可以计算出超分子聚合物的聚合度信息(断裂长度/Upy单元长度)(图17(a))[95].除了用于这种基于多重氢键的超分子聚合物体系外,AFM单分子力谱技术还被成功用于客体增强的超分子聚合物体系的研究.该实验中科研人员利用溴化吡啶衍生物DADV分子间的电荷转移相互作用,再结合葫芦脲CB对该复合物的主体增强相互作用,使CB加载DADA,形成超分子聚合物(图17(b))[96].在对该超分子聚合物的拉伸操纵过程中得到了带有一个单峰或者平台状力信号的力曲线(图17(c)).平台力信号对应着超分子聚合物从基片表面的解吸附过程.统计结果显示,该超分子聚合物的最可几分子长度为60nm.此外,人们还合成了首尾均含有蒽的单体,利用π-π相互作用形成超分子聚合物.单分子操纵实验显示,链段长度为23.9nm.以上结果表明AFM单分子力谱技术是表征超分子聚合物的有效手段.当然,如果超分子聚合物的力学稳定性过低,将导致该聚合物链被完全拉伸之前就已经发生断裂,则无法给出聚合物的信息.Fig.17(a)Arepresentativeforce-extensioncurveofUPybasedsupramolecularpolymers(ReprintedwithpermissionfromRef.[95] Copyright(2005)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim) (b)Illustrationofthesupramolecularpolymerformationbasedonmultiplehost-stabilizedcharge-transferinteractions (c)Force-extensioncurvescorrespondingtothedesorptionofsupramolecularpolymerchainsfromthesubstrateinthesolutionofDADV-2CB[8]andthehistogramofthelengthofplateausontheforcecurves(ReprintedwithpermissionfromRef.‍[96] Copyright(2010)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.2.2动态力学性质研究近年来,超分子聚合物的动态力学性质成为了研究的热点,因为该性质与材料的刺激响应性以及自修复等性质直接相关.AFM单分子力谱已被成功用于研究聚[2]索烃中索烃大环的受力运动规律(图18(a))[97].实验获得了带有锯齿峰的力曲线,对应着氢键锁定基元的连续打开过程.对同一条聚合物链进行往复拉伸过程中,拉伸与松弛曲线上都可以获得锯齿状的力信号,这证明索烃分子间的氢键作用在受力解离之后仍可以恢复至原来的结合状态,体现出超分子相互作用的可逆性.通过对不同拉伸/松弛速率下的断裂(或成键)作用力进行统计分析,绘制出了该索烃体系解离及形成的能量路径.该聚合物交联后制备的功能化水凝胶的宏观力学性质,体现出了与单分子力学性质的直接关联(图18(a)).Fig.18(a)SchematicdescriptionoftheAFM-basedSMFSexperimentonpoly[2]catenaneandthepropertiesofcorrespondinghydrogels(ReproducedwithpermissionfromRef.[97] Copyright(2019)ChineseChemicalSociety) (b)Nanomechanicalpropertiesofasupramolecularhelix.Highdynamicflexibilityobtainedduringstretching(top)andlowstaticflexibilityasobtainedbythermalshape-fluctuationanalysis(bottom)(ReprintedwithpermissionfromRef.[100] Copyright(2020)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).轮烷分子独特的超分子互锁结构使其成为了分子开关和分子马达等相关研究的模型分子.AFM单分子力谱被成功用于研究开启该分子马达所需要的外力大小以及动态解离与结合过程[98].实验过程中,轮烷分子的“轴”被固定在基底上,轮状分子则通过PEO桥联在AFM探针上.结果显示,轮烷分子主要依靠氢键来维持其结构稳定.在运动过程中,能量在轮状分子内氢键与PEO链和AFM微悬臂构成的串联体系的弹性势能间转换.研究人员又设计合成了通过机械互锁结构间相互作用形成类似蛋白质折叠结构的寡聚轮烷分子[98].在拉伸操纵寡聚轮烷分子的过程中,人们发现寡聚轮烷分子具有类似蛋白质的折叠性能,并且其折叠速率可以与蛋白质折叠速度相媲美.类似体系还包括基于多重氢键的UPy二聚体的力学蛋白模拟体系[99].此外AFM单分子力谱方法还被成功地用于由纯的超分子相互作用(π-π及疏水效应)所形成的超分子螺旋的纳米力学性质研究,研究发现该螺旋具有很低的静态柔性及很高的动态柔性(图18(b))[100].3.3生物大分子的纳米力学性质及动态结构研究3.3.1脱氧核糖核酸(DNA)DNA是生物体内重要的遗传物质,携带有转录RNA及合成蛋白质的重要信息.双链DNA独特的双螺旋结构对遗传信息的稳定存在及准确传递至关重要.在一些生理活动中,例如复制或转录等,双螺旋DNA经常受到外力作用发生一定程度的形变.因此,充分了解DNA的力学性质有助于深入理解一些重要的生理过程.近年来,随着DNA纳米技术的不断发展,各种基于DNA的纳米组装体被成功构筑,研究DNA互补链之间的结合强度对于功能组装体的构建及组装体的结构与性能调控具有重要意义[101].人们首先利用AFM单分子力谱研究了短双链DNA(10、20以及30个碱基对)的力学性质(图19(a))[30].结果显示,其断裂力值随着碱基数与力加载速率的增加而增加(图19(b)).此外,其断裂力值也受断裂方式的影响,即剪切断裂模式(2条链的5′端同时受力)所需的力值大于解拉链模式(2条链同一侧的5′端与3′端同时受力)[30].因此,短链核酸受力模式(剪切与解拉链)影响着其表观作用强度.Fig.19(a)Atypicalforce-piezodisplacementcurveofadsDNA (b)TheunbindingforcedependenceonthestretchingvelocityofdsDNA(10,20and30bp)(ReprintedwithpermissionfromRef.[30] Copyright(1999)NationalAcademyofSciences,U.S.A.).基于上述规律,研究人员将短双链DNA用作力学传感器[102].不同碱基对数量的短双链DNA被分别固定在PDMS模板和玻璃基底上,通过一段65碱基的带有荧光基团的单链DNA桥联.当模板与玻璃基底分离时,带有荧光基团的单链DNA会保留在碱基对数量较多的双链DNA一侧.该设计可以在碱基对数目相同的DNA中精确地区分出少至一个碱基对的错配.基于短双链DNA的力学稳定性,研究人员进一步将AFM单分子力谱与荧光显微镜结合,在单分子水平对短链DNA进行纳米组装[103].待搬运DNA的一端首先与存储区域基片表面固定的单股DNA形成双链结构,另一端则与针尖上固定的单链DNA互补形成桥联结构,针尖垂直运动过程中待搬运DNA以解拉链方式从基片表面断裂并留在针尖表面,从而被针尖从存储区域搬走.当该探针转移至目标样品区域时,被搬运DNA能够与该处基底固定的单股DNA形成一段新的双链DNA.此时,被搬运DNA与基片表面单链DNA形成的互补结构的长度大于其与针尖上的DNA形成的互补链的长度.当探针远离该区域时,串联结构中的两段双链DNA均处于剪切受力模式.由于被搬运DNA与目标区域基底固定的DNA形成的双链片段更长,稳定性更强,因此被搬运DNA与探针表面DNA解链,留在目标区域.利用上述原理,核酸分子可被连续搬运组装几百次,再结合荧光分子、量子点、蛋白质,可以实现多种物质在基片表面的图案化组装.通过将长链dsDNA桥联于AFM针尖及固体基片之间进行拉伸操纵,研究人员获得了具有指纹特征的长链dsDNA单分子力谱[9,104].在拉伸初期,DNA由无规卷曲变为伸展状态,对应力曲线的低力值区域.随着外力增加,DNA达到完全伸展长度后被进一步拉伸时,其构象由天然B-DNA变为过度拉伸的OS-DNA,导致力曲线出现高度约为65pN(F1)的长平台(B-OS转变,图20(a)).上述平台力值没有拉伸速率依赖性,具有指纹图谱特性.往复拉伸实验中,施加的外力等于或低于65pN时,松弛曲线可以与拉伸曲线重合.因此,B-OS转变是一个可逆过程.B-OS转变后继续拉伸,DNA将熔融解链,对应着力曲线高力值处的短平台(F2,图20(a)).该短平台力值受拉伸速率影响,属于非平衡过程.Fig.20(a)Atypicalforce-extensioncurveobtainedduringthestretchingofadsDNA(ReprintedwithpermissionfromRef.‍[9] Copyright(2012)EditorialOfficeofChemicalJournalofChineseUniversities) (b)AprobablemodeloftelomericDNAtopologyafterforce-inducedmelting.DifferentconditionsintherenaturationprocesseventuallyinducetelomericdsDNAtoformdifferenttopologies(ReprintedwithpermissionfromRef.[16] Copyright(2020)OxfordUniversityPress).长双链DNA的力学指纹谱可被用于探究长双链端粒序列在外力诱导下解链,及动态形成G-四链体(G4,由G链形成)及i-motif的过程(C4,由与G链互补的C链形成)[16].首先,研究人员开发了EM-PCR方法,合成了具有串联重复序列的长双链端粒DNA.随后,通过两段双链DNA把手序列以及金/巯基、生物素/链霉亲和素相互作用,将端粒DNA桥联于AFM探针与金基底之间.双链端粒DNA受力解链后,G-四链体和C-四链体的形成与双链DNA的复性相互竞争.单价K+、酸性条件、稳定i-motif结构或G-四链体结构的配体(如SWCNT和TMPyP4)均能够将平衡向抑制双链复性、促进高级结构形成的方向移动.只有当G-四链体和C-四链体同时形成时,双链结构的复性才会被完全抑制(图20(b)).DNA指纹图谱还能揭示小分子结合试剂对其力学稳定性的影响[9].例如:DNA小沟结合试剂纺锤菌素可以增加DNA的结构稳定性,表现为B-OS转变平台力值的增高,而另一种小沟结合剂偏端霉素A则导致平台力值降低.DNA大沟结合试剂α-helical肽及310-helical肽则使B-OS转变平台与DNA熔融解链所对应的平台融为一体.同时,高浓度的嵌入剂,例如溴化乙锭、道诺霉素、YO和普罗黄素等,使DNA链伸展,双螺旋结构消失,双链的力学稳定性增加,阻止外力诱导下的熔融解链,表现为B-OS转变平台的消失.共价交联剂顺式-二氨基二氯化铂通过交联DNA链中鸟嘌呤也能阻止外力诱导的熔融解链.上述结果表明,利用DNA指纹谱来探索DNA与小分子物质相互作用的研究,从单分子水平提供了小分子药物在体内的作用机理,为药物的筛选及研发提供了理论依据.长双链DNA的力学指纹谱还可用作DNA与DNA结合试剂(如DNA结合蛋白)相互作用的“指示剂”(图21).例如:上述DNA的B-OS转变过程,一直争议不断.一种观点认为,该过程中DNA的空间结构被破坏,双螺旋结构转变为梯形结构,但保持双链.另一种观点则认为,DNA发生了熔融解链.人们通过长双链DNA的指纹图谱及其与单链DNA结合蛋白(SSB)的相互作用验证上述2种观点[105].拉伸操纵DNA的过程中,SSB蛋白被加入(图21(a)).结果显示,该条件下的往复拉伸/松弛力曲线不能重合,出现了明显的滞后现象(图21(b)).表明B-OS转变过程中,部分双链DNA出现了熔融解链,并与SSB蛋白结合;松弛过程中,SSB蛋白阻碍单链DNA复性,表现为松弛曲线的滞后现象.根据滞后程度可以判断单股DNA结合试剂与其结合的程度及强度.Fig.21(a)SchematicillustrationofB-OStransitionofdsDNAandSSB-ssDNAinteraction (b)Typicalforce-extensioncurvesobtainedduringtherepeatedlymanipulatingofadsDNAinthepresenceofSSBproteins(ReprintedwithpermissionfromRef.‍[105] Copyright(2010)AmericanChemicalSociety) (c)SchematicillustrationoftheeffectofDnaDproteinondsDNA (d)Typicalforce-extensioncurvesobtainedbystretchingthesamedsDNAinthepresenceofDnaDprotein(ReprintedwithpermissionfromRef.[21] Copyright(2008)ElsevierLtd.).类似的方法还被用于探索双链DNA结合蛋白(例如DnaD蛋白)与双链DNA的相互作用[21].较高浓度的DnaD蛋白可以使双链DNA环化,形成圆盘样结构(图21(c)).因此,在该蛋白存在下拉伸双链DNA,力曲线上首先出现锯齿样力信号,对应圆盘结构被破坏的过程(图21(d)).此后,该蛋白会促进双链DNA解螺旋,导致其完全伸展长度变长,表现为力曲线上对应B-OS转变平台的变短及右移(图21(d)).3.3.2多糖(船式-椅式转变)多聚糖是重要的能源物质,其糖环结构、连接方式及分子内氢键使其具有独特的单分子力学性质[1,9,29,106].多聚糖中连接吡喃糖环的键的取向与糖环长轴的相对关系决定了力曲线的形态.二者相互取向垂直时,会在力曲线上产生“肩式”平台,对应糖环船式-椅式结构的转变.这种糖环构象转变对应的“肩式”平台高度恒定,具有指纹图谱特征,可以用于共价键等强相互作用体系研究的单分子信号指示剂.例如:人们曾用羧甲基化淀粉作间隔基团,以其构象转变的指纹图谱作“指示剂”,测量了单个Au―S(Au―Au)键、Si―C键、组氨酸与Ni2+及NTA之间的络合作用的强度等等[40,107].有些多糖分子在溶液中能形成螺旋结构,被拉伸操纵时会获得带有长平台的力信号[2,108].以淀粉分子为例,拉伸操纵的初期,淀粉链由无规卷曲变为伸展状态,对应力曲线上力值接近基线的部分;随后,淀粉链内氢键断裂,空间结构解螺旋,出现长平台样力信号;外力逐渐增大,淀粉链内糖环的构象由椅式转变为船式,高力值区域出现“肩式”平台(图22)[2,108].Fig.22Force-extensioncurvesobtainedduringthestretchingofasingleamylosechaininbutanol(ReprintedwithpermissionfromRef.[108] Copyright(2006)AmericanChemicalSociety).3.3.3蛋白质蛋白质的空间结构对其性质与功能有重要影响.单分子力谱是研究蛋白质折叠结构及动态解折叠与折叠过程的有效手段[9,29,109,110].相关研究始于对机械力极其敏感的肌联蛋白作为研究对象[110,111].多聚肌联蛋白被固定在探针与基底之间,在探针远离基底的过程中,类似免疫球蛋白的结构域在外力作用下依次解折叠,产生了锯齿形力信号.锯齿峰间的距离约为25~28nm,这与解折叠结构域的完全伸展长度(31nm)非常近似.因此,锯齿峰对应着肌联蛋白中免疫球蛋白样结构域的解折叠过程.此后,在拉伸具有确定数目的免疫球蛋白样串联结构域(Ig4或Ig8)时,得到了最多含有4或8个连续锯齿峰的力信号,再次验证锯齿峰对应着结构域的解折叠.此外,拉伸后松弛,蛋白质可以再次折叠.这也证明,外力诱导下,一些蛋白质的折叠及解折叠过程是可逆的.同时,蛋白质的解折叠指纹谱可以作为“指示剂”,探究自身的错误折叠及其他蛋白质的折叠与解折叠过程[109,112,113].蛋白质的力学指纹谱还能用于研究蛋白质与蛋白质或其他物质的相互作用,直接探索参与相互作用的结构域等.例如:人们将重组蛋白(NuG2)8固定在探针与基底之间,在拉伸过程中,加入相互作用的hFc蛋白[114].结果显示(NuG2)8解折叠力曲线上锯齿峰的力值显著增加.这证明hFc的结合增加了(NuG2)8结构的稳定性.利用AFM单分子力谱获得了蛋白质的微观力学性质后,人员尝试利用这些信息预测宏观材料的力学性能并指导新型材料的设计[17].例如:GB1蛋白在解折叠后能够快速地重新折叠,节肢弹性蛋白(resilin,R)能表现出显著的熵弹性.因此,研究人员预测上述2种蛋白组成的融合蛋白将展现良好的韧性与弹性.通过将GB1蛋白与节肢弹性蛋白进行交联,得到了水凝胶样的宏观材料.低应变条件下,该材料在节肢弹性蛋白的贡献下展现出很好的形变恢复能力;而在较高应变情况下,GB1的存在使该材料具有能量耗散性能,显著提高了材料的力学性能.该研究有效建立了生物大分子微观力学性能与材料宏观力学性能之间的联系.3.3.4真实生物体系-天然病毒从单个分子水平探测活体细胞中生物大分子间的相互作用对于理解这些大分子参与的生命过程的机制,继而实现对相关过程的调控具有重要意义,然而相关研究充满挑战.病毒是介于生物大分子与活体细胞的一个中间状态,其结构相对简单.研究人员选取烟草花叶病毒为模型体系,利用AFM单分子力谱探测了该病毒中RNA与蛋白质外壳的相互作用及解组装过程(图23)[115].首先利用金-巯基相互作用将病毒颗粒“垂直”地固定在金基底.当探针与病毒颗粒接触时,病毒RNA通过物理作用吸附在探针上.当AFM探针远离基底时,RNA在探针的牵引下从蛋白质外壳上解组装(图23(a)与图23(b)).上述过程获得了带有锯齿的平台状力信号,平台的力值大小依赖于RNA的拉伸速率,对应着RNA与蛋白质外壳间相互作用的强度.此外,力曲线上相邻2个锯齿峰间的距离与病毒RNA中“AAG”序列(与蛋白质外壳作用最强的序列)间的距离相似,表明“锯齿”状力信号对应不同序列的RNA从蛋白质外壳上的解组装(图23(c)).在此基础上,通过系统研究溶液pH值、钙离子浓度等对RNA解组装过程的影响规律,揭示了该病毒从外界进入植物细胞后边解组装边复制的分子机理[51].Fig.23(a)TMVStructure (b)SchematicillustrationoftheRNAmanipulationonTMV (c)Comparisonofthedistancebetweenadjacentsawtooth-likepeaksinstretchingcurvesandtheoreticaldistancebetweenadjacentAAGsintheTMVRNAsequence(ReprintedwithpermissionfromRef.[115] Copyright(2010)AmericanChemicalSociety) (d)Force-extensioncurvesobtainedduringthepullingofRNAoutofTMVintheabsence(blue)andpresence(red)oftannin(ReprintedwithpermissionfromRef.‍[116] Copyright(2019)TheRoyalSocietyofChemistry).随后,研究人员探究了单宁酸及其衍生物对烟草花叶病毒RNA与其蛋白质外壳相互作用的影响,揭示抗病毒药物的作用机理[116].结果显示,加入单宁酸后将RNA从TMV病毒上解组装所需外力显著增大(图23(d)),即单宁酸能显著增加病毒RNA(尤其是AAG序列)与蛋白质外壳的相互作用,阻碍病毒在生物体内的解组装.这是由于单宁酸上的棓酰基与蛋白质、核酸的活性基团之间形成了较多非共价键,例如疏水相互作用和氢键等.同时,当RNA被拉伸出病毒颗粒后,单宁酸迅速占据蛋白外壳内的RNA结合位点,导致RNA无法有序地重新组装.该项工作从单分子水平深化了人们对单宁酸的抗病毒机制的认识,有助于指导设计新型的抗病毒药物.4结语及展望随着AFM技术及相关仪器的不断进步,以及相关实验经验的积累,AFM单分子力谱的适用对象已经从简单的孤立大分子体系拓展到复杂、真实体系[13,115,116].同时,为了降低流体力学阻力,在接近材料真实使用环境中研究高分子链的行为,AFM单分子力谱的探测微环境从液相被拓展到空气相[117].通过优化环境湿度、探针的弹性系数及疏水性来克服黏附力影响,研究人员成功地在空气相中探索了PEO单晶的力致熔融机制.为减小环境介质对大分子本征性质的干扰,AFM单分子力谱的工作微环境又被拓展到真空,并精确测量了PS分子中π-π作用[57,63].为了观察一些快速的动力学过程及捕捉存在时间极短的中间态,AFM探针被进一步优化,具有了更快的响应速度.微悬臂的探测速率与其共振频率相关,通过减小微悬臂的尺寸(尤其是长度)可以增加其弹性系数,进而增加共振频率,由于流体力学阻力也随之减小,该探针的探测速率最终被提高至3870µm/s[34].利用该微型探针,人们获得了肌肉纤维中肌联蛋白(Titin)在高速拉伸时的解折叠信息,结合分子动力学模拟(通常在更高的拉伸速率下进行),有助于深入理解其折叠与解折叠机制.此外,研究人员还利用聚焦离子束改变微悬臂的形状与尺寸,通过降低其流体力学阻力与硬度来提高力精度与力稳定性[35].加工后,微悬臂的共振频率几乎没有变化,但流体力学系数及弹性系数显著降低,噪音被控制在sub-pN范围.AFM技术与其他光谱技术结合,在获得力学及长度信息的同时还能获得化学组成信息,将有助于更好地建立材料结构与性能之间的联系.例如:基于AFM探针的针尖增强拉曼光谱(TERS),可以同时获得材料的表面形貌及表面物种的光谱信息[118];AFM与红外光谱联用的纳米红外系统,能够将样品的形貌、性能和化学结构等信息很好地统一(图24)[119].同样,AFM单分子力谱技术与其他光谱技术的原位结合将使得人们对于单分子的力学、光学及电学等的原位研究成为可能,将为功能材料的开发奠定重要基础.Fig.24(a)SchematicdiagramofAFM-IR (b)TheAFMprobeoscillationinresponsetoIRabsorptionofthesample (c)ThemeasurementoftheAFMprobeoscillationasafunctionofwavenumber(ReprintedwithpermissionfromRef.[119] Copyright(2017)AmericanChemicalSociety).参考文献1ZhangWK,ZhangX.ProgPolymSci,2003,28(8):1271-1295.doi:10.1016/s0079-6700(03)00046-72ZhangX,LiuCJ,WangZQ.Polymer,2008,49(16):3353-3361.doi:10.1016/j.polymer.2008.04.0563NoyA.CurrOpinChemBiol,2011,15(5):710-718.doi:10.1016/j.cbpa.2011.07.0204JanshoffA,NeitzertM,OberdörferY,FuchsH.AngewChemIntEd,2000,39(18):3212-3237.doi:3.0.co 2-x%22\t%22http://www.gfzxb.org/thesisDetails%22\l%2210.11777/_blank"10.1002/1521-3773(20000915)39:183.0.co 2-x5ButtHJ,CappellaB,KapplM.SurfSciRep,2005,59(1-6):1-152.doi:10.1016/j.surfrep.2005.08.0036GunariN,BalazsAC,WalkerGC.JAmChemSoc,2007,129(33):10046-10047.doi:10.1021/ja068652w7MarszalekPE,LiH,OberhauserAF,FernandezJM.ProcNatlAcadSciUSA,2002,99(7):4278-4283.doi:10.1073/pnas.0724356998PangXX,CuiSX.Langmuir,2013,29(39):12176-12182.doi:10.1021/la403132e9ZhangW,KouXL,ZhangWK.ChemJChineseU,2012,33(5):861-87510XiangWT,LiZD,XuCQ,LiJ,ZhangWK,XuHP.ChemAsianJ,2019,14(9):1481-1486.doi:10.1002/asia.20190033211ZhangH,LiX,LinYG,GaoF,TangZ,SuPF,ZhangWK,XuYZ,WengWG,BoulatovR.NatCommun,2017,8:1147.doi:10.1038/s41467-017-01412-812RajG,BalnoisE,BaleyC,GrohensY.JScannProbeMicrosc,2009,4(2):1-7.doi:10.1166/jspm.2009.101013LiuK,SongY,FengW,LiuNN,ZhangWK,ZhangX.JAmChemSoc,2011,133(10):3226-3229.doi:10.1021/ja108022h14SpruijtE,vandenBergSA,CohenStuartMA,vanderGuchtJ.ACSNano,2012,6(6):5297-5303.doi:10.1021/nn301097y15EubelenM,BostailleN,CabochetteP,GauquierA,TebabiP,DumitruAC,KoehlerM,GutP,AlsteensD,StainierDYR,Garcia-PinoA,VanhollebekeB.Science,2018,361(6403):eaat1178.doi:10.1126/science.aat117816ZhangXN,ZhangYQ,ZhangWK.NucleicAcidsRes,2020,48(12):6458-6470.doi:10.1093/nar/gkaa47917LvSS,DudekDM,CaoY,BalamuraliMM,GoslineJ,LiHB.Nature,2010,465(7294):69-73.doi:10.1038/nature0902418SchonfelderJ,Perez-JimenezR,MunozV.NatCommun,2016,7:11777.doi:10.1038/ncomms1177719LiuNN,ZhangWK.ChemPhysChem,2012,13(9):2238-2256.doi:10.1002/cphc.20120015420ZhangW,LuXJ,ZhangWK,ShenJC.Langmuir,2011,27(24):15008-15015.doi:10.1021/la203752y21ZhangWK,MachonC,OrtaA,PhillipsN,RobertsCJ,AllenS,SoultanasP.JMolBiol,2008,377(3):706-714.doi:10.1016/j.jmb.2008.01.06722LiuJY,FengW,ZhangWK.Nanoscale,2020,12(6):4159-4166.doi:10.1039/c9nr09054a23ZlatanovaJ,LeubaSH.JMuscleResCellMotil,2002,23(5-6):377-395.doi:10.1023/a:102349812045824ZlatanovaJ,LeubaSH.JMolBiol,2003,331(1):1-19.doi:10.1016/s0022-2836(03)00691-025ZhangWenke(张文科).ActaPolymencaSinica(高分子学报),2011,(9):913-922.doi:10.3979/j.issn.1673-825X.2011.04.00726KimY,KimW,ParkJW.BullKoreanChemSoc,2016,37(12):1895-1907.doi:10.1002/bkcs.1102227FriedsamC,GaubHE,NetzRR.Biointerphases,2006,1(1):MR1-MR21.doi:10.1116/1.217199628LiuY,JuliusVancsoG.ProgPolymSci,2020,104:101232.doi:10.1016/j.progpolymsci.2020.10123229ZhangWK,WangC,ZhangX.ChineseSciBull,2003,48(11):1113-1126.doi:10.1360/02wd040930StrunzT,OroszlanK,SchaferR,GuntherodtHJ.ProcNatlAcadSciUSA,1999,96(20):11277-11282.doi:10.1073/pnas.96.20.1127731HuangW,WuX,GaoX,YuY,LeiH,ZhuZ,ShiY,ChenY,QinM,WangW,CaoY.NatChem,2019,11(4):310-319.doi:10.1038/s41557-018-0209-232LyuXJ,SongY,FengW,ZhangWK.ACSMacroLett,2018,7(6):762-766.doi:10.1021/acsmacrolett.8b0035533EdwardsDT,PerkinsTT.JStructBiol,2017,197(1):13-25.doi:10.1016/j.jsb.2016.01.00934RicoF,GonzalezL,CasusoI,Puig-VidalM,ScheuringS.Science,2013,342(6159):741-753.doi:10.1126/science.123976435FaulkJK,EdwardsDT,BullMS,PerkinsTT.MethodsEnzymol,2017,582:321-351.doi:10.1016/bs.mie.2016.08.00736YuH,SiewnyMGW,EdwardsDT,SandersAW,PerkinsTT.Science,2017,355(6328):945-950.doi:10.1126/science.aah712437LiHB,RiefM,OesterheltF,GaubHE.AdvMater,1998,10(4):316-319.doi:3.0.co 2-a%22\t%22http://www.gfzxb.org/thesisDetails%22\l%2210.11777/_blank"10.1002/(sici)1521-4095(199803)10:43.0.co 2-a38MarszalekPE,OberhauserAF,PangYP,FernandezJM.Nature,1998,396(6712):661-664.doi:10.1038/2532239RiefM,OesterheltF,HeymannB,GaubHE.Science,1997,275(5304):1295.doi:10.1126/science.275.5304.129540GrandboisM,BeyerM,RiefM,Clausen-SchaumannH,GaubHE.Science,1999,283(5408):1727.doi:10.1126/science.283.5408.172741LiHB,RiefM,OesterheltF,GaubHE,ZhangX,ShenJC.ChemPhysLett,1999,305(3-4):197-201.doi:10.1016/s0009-2614(99)00389-942ZhangB,ShiR,DuanW,LuoZ,LuZY,CuiS.RSCAdv,2017,7(54):33883-33889.doi:10.1039/c7ra05779b43FlorinEL,MoyVT,GaubHE.Science,1994,264(5157):415-417.doi:10.1126/science.815362844SikoraAE,SmithJR,CampbellSA,FirmanK.SoftMatter,2012,8(23):6358-6363.doi:10.1039/c2sm07213k45HinterdorferP,DufreneYF.NatMethods,2006,3(5):347-355.doi:10.1038/nmeth87146XueYR,LiX,LiHB,ZhangWK.NatCommun,2014,5:4348.doi:10.1038/ncomms534847ZhangWK.Nano-mechanicalDetectionofSingleMolecules.DoctoralDissertationofJilinUniversity,200248DengYB,WuT,WangMD,ShiSC,YuanGD,LiX,ChongHC,WuB,ZhengP.NatCommun,2019,10:2775.doi:10.1038/s41467-019-10696-x49JohnsonKC,ThomasWE.BiophysJ,2018,114(9):2032-2039.doi:10.1016/j.bpj.2018.04.00250LiZD,SongY,LiAS,XuWQ,ZhangWK.Nanoscale,2018,10(39):18586-18596.doi:10.1039/c8nr06150e51LiuNN,ChenY,PengB,LinY,WangQ,SuZH,ZhangWK,LiHB,ShenJC.BiophysJ,2013,105(12):2790-2800.doi:10.1016/j.bpj.2013.10.00552CaoY,LiHB.Langmuir,2011,27(4):1440-1447.doi:10.1021/la104130n53PopaI,KosuriP,Alegre-CebolladaJ,Garcia-ManyesS,FernandezJM.NatProtoc,2013,8(7):1261-1276.doi:10.1038/nprot.2013.05654OberhauserAF,HansmaPK,Carrion-VazquezM,FernandezJM.ProcNatlAcadSciUSA,2001,98(2):468-472.doi:10.1073/pnas.98.2.46855SulchekT,FriddleRW,NoyA.BiophysJ,2006,90(12):4686-4691.doi:10.1529/biophysj.105.08029156WeiHZ,vandeVenTGM.ApplSpectroscRev,2008,43(2):111-133.doi:10.1080/0570492070183125457BaoY,LuoZL,CuiSX.ChemSocRev,2020,49(9):2799-2827.doi:10.1039/c9cs00855a58YuY,ZhangYH,JiangZH,ZhangX,ZhangHM,WangXH.Langmuir,2009,25(17):10002-10006.doi:10.1021/la901169p59ZhangWK,ZouS,WangC,ZhangX.JPhysChemB,2000,104(44):10258-10264.doi:10.1021/jp000459f60ShiWQ,ZhangYH,LiuCJ,WangZQ,ZhangX,ZhangYH,ChenYM.Polymer,2006,47(7):2499-2504.doi:10.1016/j.polymer.2005.12.08961LiIT,WalkerGC.AccChemRes,2012,45(11):2011-2021.doi:10.1021/ar200285h62LiIT,WalkerGC.JAmChemSoc,2010,132(18):6530-6540.doi:10.1021/ja101155h63CaiWH,XuD,QianL,WeiJH,XiaoC,QianLM,LuZY,CuiSX.JAmChemSoc,2019,141(24):9500-9503.doi:10.1021/jacs.9b0349064DiWS,GaoX,HuangWM,SunY,LeiH,LiuY,LiWF,LiYR,WangX,QinM,ZhuZS,CaoY,WangW.PhysRevLett,2019,122(4):047801-047806.doi:10.1103/physrevlett.122.04780165ZhangS,QianHJ,LiuZH,JuHY,LuZY,ZhangHM,ChiLF,CuiSX.AngewChemIntEd,2019,58(6):1659-1663.doi:10.1002/anie.20181115266DelparastanP,MalollariKG,LeeH,MessersmithPB.AngewChemIntEd,2019,58(4):1077-1082.doi:10.1002/anie.20181176367BalzerBN,GalleiM,HaufMV,StallhoferM,WieglebL,HolleitnerA,RehahnM,HugelT.AngewChemIntEd,2013,52(25):6541-6544.doi:10.1002/anie.20130125568FengW,WangZG,ZhangWK.Langmuir,2017,33(8):1826-1833.doi:10.1021/acs.langmuir.6b0445769SongY,MaZW,YangP,ZhangXY,LyuXJ,JiangK,ZhangWK.Macromolecules,2019,52(3):1327-1333.doi:10.1021/acs.macromol.8b0270270MaZW,YangP,ZhangXY,JiangK,SongY,ZhangWK.ACSMacroLett,2019,8(9):1194-1199.doi:10.1021/acsmacrolett.9b0060771LiJ,NagamaniC,MooreJS.AccChemRes,2015,48(8):2181-2190.doi:10.1021/acs.accounts.5b0018472CraigSL.Nature,2012,487(7406):176-177.doi:10.1038/487176a73ChenZX,MercerJAM,ZhuXL,RomaniukJAH,PfattnerR,CegelskiL,MartinezTJ,BurnsNZ,XiaY.Science,2017,357(6350):475-479.doi:10.1126/science.aan279774KeanZS,NiuZB,HewageGB,RheingoldAL,CraigSL.JAmChemSoc,2013,135(36):13598-13604.doi:10.1021/ja407599775GossweilerGR,KouznetsovaTB,CraigSL.JAmChemSoc,2015,137(19):6148-6151.doi:10.1021/jacs.5b0249276WangJP,KouznetsovaTB,NiuZB,OngMT,KlukovichHM,RheingoldAL,MartinezTJ,CraigSL.NatChem,2015,7(4):323-327.doi:10.1038/nchem.218577DavisDA,HamiltonA,YangJL,CremarLD,vanGoughD,PotisekSL,OngMT,BraunPV,MartinezTJ,WhiteSR,MooreJS,SottosNR.Nature,2009,459(7243):68-72.doi:10.1038/nature0797078HickenbothCR,MooreJS,WhiteSR,SottosNR,BaudryJ,WilsonSR.Nature,2007,446(7134):423-427.doi:10.1038/nature0568179WangJP,KouznetsovaTB,CraigSL.JAmChemSoc,2015,137(36):11554-11557.doi:10.1021/jacs.5b0616880RobbMJ,KimTA,HalmesAJ,WhiteSR,SottosNR,MooreJS.JAmChemSoc,2016,138(38):12328-12331.doi:10.1021/jacs.6b0761081KouznetsovaTB,WangJP,CraigSL.ChemPhysChem,2017,18(11):1486-1489.doi:10.1002/cphc.20160046382KlukovichHM,KeanZS,BlackRamirezAL,LenhardtJM,LinJX,HuXQ,CraigSL.JAmChemSoc,2012,134(23):9577-9580.doi:10.1021/ja302996n83KlukovichHM,KeanZS,IaconoST,CraigSL.JAmChemSoc,2011,133(44):17882-17888.doi:10.1021/ja207451784KeanZS,BlackRamirezAL,YanYF,CraigSL.JAmChemSoc,2012,134(31):12939-12942.doi:10.1021/ja306366685KrygerMJ,MunarettoAM,MooreJS.JAmChemSoc,2011,133(46):18992-18998.doi:10.1021/ja208672886WangJP,OngMT,KouznetsovaTB,LenhardtJM,MartinezTJ,CraigSL.JOrgChem,2015,80(23):11773-11778.doi:10.1021/acs.joc.5b0149387CarusoMM,DavisDA,ShenQ,OdomSA,SottosNR,WhiteSR,MooreJS.ChemRev,2009,109(11):5755-5798.doi:10.1021/cr900135388PotisekSL,DavisDA,SottosNR,WhiteSR,MooreJS.JAmChemSoc,2007,129(45):13808-13809.doi:10.1021/ja076189x89WuD,LenhardtJM,BlackAL,AkhremitchevBB,CraigSL.JAmChemSoc,2010,132(45):15936-15938.doi:10.1021/ja108429h90SerpeMJ,KerseyFR,WhiteheadJR,WilsonSM,ClarkRL,CraigSL.JPhysChemC,2008,112(49):19163-19167.doi:10.1021/jp806649a91LenhardtJM,BlackAL,CraigSL.JAmChemSoc,2009,131(31):10818-10819.doi:10.1021/ja903654892PotisekSL,DavisDA,SottosNR,WhiteSR,MooreJS.JAmChemSoc,2007,129(45):13808-13809.doi:10.1021/ja076189x93ChengB,CuiSX.TopCurrChem,2015,369:97-134.doi:10.1007/128_2015_62894LiuYL,WangZQ,ZhangX.ChemSocRev,2012,41(18):5922-5932.doi:10.1039/c2cs35084j95ZouS,SchönherrH,VancsoGJ.AngewChemIntEd,2005,44(6):956-959.doi:10.1002/anie.20046096396LiuYL,YuY,GaoJ,WangZQ,ZhangX.AngewChemIntEd,2010,49(37):6576-6579.doi:10.1002/anie.20100241597XingH,LiZD,WangWB,LiuPR,LiuJK,SongY,WuZL,ZhangWK,HuangFH.CCSChem,2019,1:513-523.doi:10.31635/ccschem.019.2019004398SluysmansD,HubertS,BrunsCJ,ZhuZX,StoddartJF,DuwezAS.NatNanotechnol,2018,13(3):209-213.doi:10.1038/s41565-017-0033-799ChungJ,KushnerAM,WeismanAC,GuanZ.NatMater,2014,13(11):1055-1062.doi:10.1038/nmat4090100WangHJ,ShenBW,SongY,LeeMS,ZhangWK.MacromolRapidCommun,2020,41(24):2000453.doi:10.1002/marc.202000453101RothemundPWK.Nature,2006,440(7082):297-302.doi:10.1038/nature04586102AlbrechtC,BlankK,Lalic-MülthalerM,HirlerS,MaiT,GilbertI,SchiffmannS,BayerT,Clausen-SchaumannH,GaubHE.Science,2003,301(5631):367-370.doi:10.1126/science.1084713103KuferSK,PuchnerEM,GumppH,LiedlT,GaubHE.Science,2008,319(5863):594-596.doi:10.1126/science.1151424104RiefM,Clausen-SchaumannH,GaubHE.NatStructBiol,1999,6(4):346-349.doi:10.1038/7582105LiuNN,BuTJ,SongY,ZhangW,LiJJ,ZhangWK,ShenJC,LiHB.Langmuir,2010,26(12):9491-9496.doi:10.1021/la100037z106MarszalekPE,PangYP,LiHB,YazalJE,OberhauserAF,FernandezJM.ProcNatlAcadSciUSA,1999,96(14):7894-7898.doi:10.1073/pnas.96.14.7894107ContiM,FaliniG,SamorìB.AngewChemIntEd,2000,39(1):215-218.doi:3.0.co 2-r%22\t%22http://www.gfzxb.org/thesisDetails%22\l%2210.11777/_blank"10.1002/(sici)1521-3773(20000103)39:13.0.co 2-r108ZhangQM,LuZY,HuH,YangWT,MarszalekPE.JAmChemSoc,2006,128(29):9387-9393.doi:10.1021/ja057693+109MarszalekPE,DufreneYF.ChemSocRev,2012,41(9):3523-3534.doi:10.1039/c2cs15329g110FisherTE,OberhauserAF,Carrion-VazquezM,MarszalekPE,FernandezJM.TrendsBiochemSci,1999,24(10):379-384.doi:10.1016/s0968-0004(99)01453-x111RiefM,GautelM,OesterheltF,FernandezJM,GaubHE.Science,1997,276(5315):1109-1112.doi:10.1126/science.276.5315.1109112OberhauserAF,MarszalekPE,Carrion-VazquezM,FernandezJM.NatStructBiol,1999,6(11):1025-1028.doi:10.1038/14907113DelRioA,Perez-JimenezR,LiuRC,Roca-CusachsP,FernandezJM,SheetzMP.Science,2009,323(5914):638-641.doi:10.1126/science.1162912114CaoY,BalamuraliMM,SharmaD,LiH.ProcNatlAcadSciUSA,2007,104(40):15677-15681.doi:10.1073/pnas.0705367104115LiuNN,PengB,LinY,SuZH,NiuZW,WangQ,ZhangWK,LiHB,ShenJC.JAmChemSoc,2010,132(32):11036-11038.doi:10.1021/ja1052544116WangHJ,ChenY,ZhangWK.Nanoscale,2019,11(35):16368-16376.doi:10.1039/c9nr05410c117YangP,SongY,FengW,ZhangWK.Macromolecules,2018,51(18):7052-7060.doi:10.1021/acs.macromol.8b01544118Deckert-GaudigT,TaguchiA,KawataS,DeckertV.ChemSocRev,2017,46(13):4077-4110.doi:10.1039/c7cs00209b119DazziA,PraterCB.ChemRev,2017,117(7):5146-5173.doi:10.1021/acs.chemrev.6b00448原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2020.20266&lang=zhDOI:10.11777/j.issn1000-3304.2020.20266《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 新型蛋白质表征仪器系统使生物治疗分析得到改观
    p style="text-indent: 2em "RedShift™ BioAnalytics公司推出了一款新型蛋白质表征平台——AQS3® PRO,这一平台结合了强大的、高度集成的自动化生物分析软件,为生物医疗行业带来了高灵敏度的光谱分析。/pp style="text-indent: 2em "用户通过这一平台可以观察浓度范围在0.1至200 mg/mL的蛋白质二级结构变化,并能进行集成性、可量化、稳定的结构检测和相似性检测,为用药的安全性和有效性提供重要支撑。它能够提供多种属性的测量,减少甚至消除了使用不同工具进行各种单一属性测量的需要。此外,AQS3pro还具有先进的自动化多样本分析功能,大大简化了生物医疗产业的分析工作流程。/pp style="text-indent: 2em "RedShift™ BioAnalytics公司的首席技术官Eugene Ma表示:“ AQS3prois是生物物理表征领域的一项重大进展——将红外光谱应用在生物医疗领域的诊断分析上。这一平台是我们内部一流研发团队与大量行业专家、学术专家倾力合作的结晶。其检测的准确性、重复性和重现性已在数百个样本中得到验证,这些样本包含有数千种尺寸量度的蛋白质。有力的数据支撑和合作伙伴的热情增强了我们对AQS3Pro的信心,我们相信这一成果具有相当大的产业化价值。”/pp style="text-indent: 2em "AQS3Pro新系统使用了RedShift™ BioAnalytics公司的微流控调制光谱学(MMS)专利技术,这一技术将针对微流体的中红外激光光谱分析与先进的信号处理相结合,对蛋白质的二级结构进行测量。它能够在0.01至200mg/mL的浓度范围内对蛋白质直接进行无需标记的测量,在生物医药研发和制造过程经常遇到的各种条件下,无需样品稀释,就可以进行样品表征。其检测是高度自动化的,其多样品检测功能、便捷化操作设置和最先进的生物分析软件进一步提升了检测流程的效率。创新而灵活的分析套件也使得光谱数据的常规分析高度自动化,其先进的检测分析工具能够方便地获得样品的结构性变化,并对这些变化的影响进行深入分析。/pp style="text-indent: 2em "“我与RedShift™ BioAnalytics一直在AQS3PRO的验证性测试中合作。”美国特拉华大学的Christopher Roberts教授说, “这一平台将MMS和红外光谱应用在蛋白质溶液的分析中,让我们能够对多种样本、多种浓度范围蛋白质的二次结构性变化,进行同时的原位量化测量。无论是对从事蛋白质基础性研究的科学家,还是负责生物产品开发的工程师,AQS3PRO都将带来极大的助益。”/p
  • 【热点应用】是时候表演真正的技术了 ,破解乳膏剂颗粒表征难题!
    乳膏剂颗粒表征重点与难点乳膏剂是一种常用于湿疹、皮炎、疱疹等局部皮肤病治疗的外用半固体制剂,其基质一般由水相和油相两相组成,药物则以溶解或混悬状态分布于基质中,因此被认为是典型的“大简至繁”的复杂制剂,即处方组成简单,但微观结构复杂且工艺难点多,包括药物晶型、混悬的药物颗粒大小和形貌、油水两相之间的界面张力、液滴粒径分布与稳定性、流变学特性等等,其中api和液滴颗粒的粒度分布对生物利用度和制剂物理稳定性的影响最为关键,因此是乳膏剂产品开发和质量控制中的重点和难点。药物研发中常用的粒径测定技术有多种,包括激光粒度仪、动态光散射、电镜、光学显微镜等,但由于乳膏剂的半固体制剂形态,对其进行颗粒表征的特殊挑战在于[1]:① 在样品制备时,不能因为稀释、蒸发或其他操作导致api/液滴颗粒大小发生变化;② 要具有足够高的对比度,能够对api/液滴进行准确计数和分析,因此光学显微镜成为了乳膏剂颗粒粒度和形貌分析的最简单直接的工具。用光学显微镜对乳膏剂进行观察时,通常采用“三明治”制样法,即取少量样品于载玻片上,盖上盖玻片后轻轻按压使样品延展铺开成为薄薄的一层,这样尽可能保证api颗粒的微环境和制剂的微观结果不被破坏,避免了采用其他粒径测定技术时导致乳膏中api颗粒溶解、析出、重结晶或乳滴颗粒因剪切力而变形、破裂等问题。普通光学显微镜传统方法的困境常用于乳膏剂分析的普通光学显微镜包括亮视野显微镜和偏光显微镜(plm),亮视野显微镜用于观察乳膏剂中的液滴颗粒,plm则用于混悬api晶体颗粒的分析,但这两种手动模式的显微镜观察法都存在明显弊端:① 颗粒代表性不足的问题。普通显微镜观察样品,通常只能获得少数视野中几十到至多几百个颗粒的信息,而视野之外还有海量颗粒样本被遗漏,所以很难通过观察有限个数的颗粒样本得到有统计代表性和可重复的粒度分布信息。而根据iso13322-1: 粒度分析— 静态图像分析法[2]:“当采用图像分析法测定粒度时,必须要统计一定数目的颗粒才能得到有意义的粒度结果… … 例如对几何标准偏差为1.6的粉末颗粒,误差5%以内以及概率为95%时,得到粉末的质量中位径,需要大约61000个颗粒。“ 即使乳膏剂的粒度分布相对较窄,未必需要观察数以万计的颗粒,但是如何确保颗粒样本数量足够和粒度统计信息具有代表性,仍然是普通显微镜观察法面临的最大难题。② 分析人员主观性偏差。普通显微镜观察依赖于操作者挑选观察视野和辨识颗粒,存在较强的主观偏向性 ,有可能不同的操作者因为判断标准不一致或长时间观察的疲劳导致结果出现较大的偏差,所以最好是由经验丰富的、专门的分析人员进行观察和分析。由于存在代表性不足、主观误差大且效率低下等先天不足,使采用普通显微镜测定乳膏剂颗粒粒径成为了一门“玄学“,显然无法满足fda外用半固体制剂仿制药指导原则中所要求的对乳膏剂的微观结构特性(q3)进行准确表征以与参比制剂进行相似性评价的要求[3]。全自动颗粒图像分析仪变“玄学”为科学随着计算机技术和高精度微定位控制技术的发展,全自动显微镜成为了颗粒图像表征领域的game changer。与普通手动显微镜相比,全自动显微镜具有相同的高分辨率和成像质量,并且能够对全视野进行自动扫描、计数和成像,不仅解决了传统显微镜法统计代表性不足问题,还将分析效率提升了数百倍,更好的满足了药物研发对于数据准确度、重复性以及时间效率的高要求。morphologi 4是马尔文帕纳科公司的最新一代全自动颗粒图像分析系统,符合静态图像分析国际技术标准iso13322-1, 可对0.5μm到几个毫米范围内的颗粒进行自动扫描和快速成像,自动统计颗粒数目和获得颗粒高清图像,分析颗粒大小和形貌特征,一次扫描的颗粒数目可从数千个到几十万个以确保充分的代表性,并给出具有统计意义的颗粒粒度分布和形貌分布信息。morphologi 4 适用于不同类型的药物样品,除乳膏剂、混悬剂等剂型可以通过“三明治法”制样进行分析以外,还带有自动干粉分散装置,可对原料药、辅料和胶囊等干粉样品进行全自动分散和扫描,是对原辅料和制剂进行基于图像法的量化分析和质量控制的利器。morphologi 4 分析乳膏剂应用案例该案例中的样品为主药呈混悬状态的半固体制剂,按照药审中心《皮肤外用化学仿制药研究技术指导原则》的要求[4],混悬的药物粒径对其在皮肤局部的溶解度和释放速率有关键影响,而液滴粒径可反映处方工艺的合理性,并会影响药物的释放性能和透皮性能,因此要求对仿制药的粒径指标进行研究和控制,作为评价生物等效性的依据。 采用“三明治”制样法,通过morphologi 4自动扫描分析,二十分钟之内即可获得api颗粒和液滴颗粒的粒径分布结果,以及api的晶癖和液滴颗粒的圆度值等形貌因子的分布值。混悬型乳膏剂morphologi 4 自动扫描乳膏剂样品morphologi 4 乳膏剂粒度粒形分析结果参考文献:[1]. d. w. osborne, k. dahl, h. parikh. determination of particle size and microstructure in topical. aaps advances in the pharmaceutical sciences series 36[2]. iso13322-1: particle size analysis — image analysis methods part 1: static image analysis methods.[3]. 邵鹏, 郑金琪, 潘芳芳等. 外用半固体制剂的体外释放试验和等效性评价[j]. 中国现代应用药学, 2021, 38(20): 2481-2487。[4]. 新注册分类的皮肤外用仿制药的技术评价要求,药品审评中心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制