当前位置: 仪器信息网 > 行业主题 > >

截面薄片厚度

仪器信息网截面薄片厚度专题为您整合截面薄片厚度相关的最新文章,在截面薄片厚度专题,您不仅可以免费浏览截面薄片厚度的资讯, 同时您还可以浏览截面薄片厚度的相关资料、解决方案,参与社区截面薄片厚度话题讨论。

截面薄片厚度相关的资讯

  • PAS发布PAS CONCEPT 96 高通量薄片固相微萃取新品
    德国PAS Technology是一家集研发和销售自动样品处理的技术的公司,专注于无溶剂萃取技术,提供从采样到解析的一系列自动化解决方案。公司总部位于图林根州的马格达拉,可以为全球的客户提供优质的服务,并与微萃取领域的权威教授Janusz Pawliszyn及其研发团队合作,成功开发了CONCEPT 96及CONCEPT NT等产品。涉及的行业包括:医疗实验室、环境分析、食品分析、空气分析和饮用水分析系统。产品名称:CONCEPT 96——Coated Blade SPME System高通量薄片固相微萃取产品介绍:CONCEPT 96 高通量薄片固相微萃取有多种固定相介质可选,如C18、C8、C4、Pan-C18、Si、DEAE、C18-NH2-、C18-Diol-等多达20多种,96片萃取薄片可进行任意组合使用,用于样品筛选。该系统特别适合少量液体样品,组织培养液,体液等中的组分的富集萃取。尤其对于复杂基质的全血样品,可选用生物兼容性的专属萃取薄片,萃取时,血浆蛋白、血细胞不被吸附,而只萃取富集其中的小分子物质;经过活化后,可反复多次使用。产品特点:采用Coated Blade SPME,也称Thin thim SPME技术,涂层薄片微萃取技术,相较与传统的熔融石英材料的固相微萃取技术,已成为一种极具吸引力的样品制备技术。在TFME中,采用高表面积/体积比的平面薄片作为萃取相。在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得与其他微萃取方法相比,在无需延长采样时间的情况下提高了灵敏度。高通量薄片固相微萃取CONCEPT 96系统,此系统既满足了自动化的要求,也保证了高通量的需求(可同时平行处理96位样品)。 CONCEPT 96高通量薄片固相微萃取应用领域:用于药物代谢研究、蛋白质组学研究、药物筛选、人体体液分析、环境监测、食品中微生物毒素检测、法医毒化鉴定分析等领域。创新点:目前市面上微萃取技术有熔融石英材料的固相微萃取技术,相较于传统的SPME技术,因传统的SPME技术的涂层量有限约0.5微升(受涂层厚度,表面积,长度等因素影响),导致吸附的样品量受到限制。PAS CONCEPT 96高通量薄片固相微萃取,采用新型技术Coated Blade SPME,也称Thin thim SPME,涂层薄片微萃取技术,可以大大增加表面积从而增加吸附量。在TFME中,与圆柱型的萃取头相比,这种薄片式形状的萃取相采用高表面积/体积比的平面薄片,在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得无需延长采样时间的情况下提高了灵敏度。其次,该技术原理是将其吸附剂涂在扁平排列的薄片中,吸附剂可与样品直接接触,可减少溶剂带来的低回收率的影响,实现预处理、提取、清洗、解析等步骤。即使是非常复杂的样品(如均质后的动物或植物组织中的分析物),样品也会根据其亲和力进入萃取相。最后, CONCEPT 96自动化薄片固相微萃取系统,可直接在96孔板上同时萃取和解析样品,尽可能的减少大量的位移,有研究报道,平均每个样品分析时间不大于2.2min,体现了高通量和高效率,也满足了自动化的要求。相比于传统方法每个样品的分析时间需要30min左右,CONCEPT 96大大提高了分析效率。涂层薄片固定相介质类型选择多,如C18、C8、C4、Pan-C18、Si、DEAE、C18-NH2-、C18-Diol-等多达20多种,96片萃取薄片可进行任意组合使用,用于样品筛选。应用于特别适合少量液体样品,组织培养液,体液等中的组分的富集萃取。高通量薄片固相微萃取作为少溶剂微萃取领域中的新技术,在非挥发性有机物分析中能发挥重要作用。PAS CONCEPT 96 高通量薄片固相微萃取
  • 明察秋毫丨SPM带您揭秘抗菌黑科技石墨烯的片层厚度表征
    导读近年来,人们越来越关注健康防护类产品,比如,具有抗菌功能的高附加值纺织品等,越来越受到大众的青睐。最近小编在网上购物时发现,一些纺织品(如被子、衣服、口罩、手套等)宣称其面料中添加了石墨烯材料,自带抗菌功能。小编很是疑惑,经过一番查询,发现早在2010年,中国科学院上海应用物理研究所就报道了石墨烯材料的抗菌性能。石墨烯是一种片层的二维纳米粒子,不存在类似于高聚物的分子链,直接制备石墨烯存在一定的难度,因而在实际应用中多以氧化石墨烯为主。在氧化石墨烯的制备和研究中,其物理特性的精确表征技术和方法是关注的重点之一。不同氧化程度的氧化石墨烯的厚度不同,其性能也不同,因此厚度测量是表征氧化石墨烯的首要核心指标。石墨烯小科普石墨烯具有优异的光学、电学、力学特性,在材料学、能源、生物医学等方面具有重要的应用前景,被认为是一种未来革 命性的材料。石墨烯的抗菌机理之一是边缘切割理论,即石墨烯因片层结构而具有锋利的边缘,可对细菌进行物理切割,破坏细菌的细胞膜,降低膜电位或使电解质泄露从而抑制细菌生长。氧化石墨烯作为石墨烯的氧化物,其结构与石墨烯相似,都为单层原子层状结构。将活性含氧基团引入石墨烯上,经过处理后得到经过修饰的石墨烯薄片,这样可以增加活性反应位点,使得氧化石墨烯变得更容易进行表面改性,丰富了功能化的手段,可以有效提高改性氧化石墨烯与溶剂、聚合物的相容性,使其在有机以及无机复合材料领域有着更为广阔的应用。岛津SPM,助您从容应对科研难题目前,国内外对氧化石墨烯的厚度测量手段主要是原子力显微镜,将氧化石墨烯平铺在具有良好平整度的基底表面,借助原子力显微镜测量氧化石墨烯与基底间的高度差来确定氧化石墨烯的厚度。为了使氧化石墨烯的厚度测量方法规范化,国家标准化管理委员会发布了GB/T 40066-2021《纳米技术 氧化石墨烯厚度测量 原子力显微镜法》,这意味着氧化石墨烯厚度的主要测试手段——原子力显微镜开始逐步被标准化工作认可和接受。岛津扫描探针显微镜SPM具有快速响应的高速扫描器、独特的头部滑移结构以及丰富的测量模式,除了普通的形貌扫描,还可拓展电流、电势、磁力以及纳米力学测量等功能。氧化石墨烯厚度表征随机选取样品的两个区域,使用岛津扫描探针显微镜SPM-9700HT的动态模式对氧化石墨烯样品进行表面形貌扫描测试,获取了5 μm x 5 μm的两个区域的样品表面形貌,并在每个区域内随机选取3个样品进行剖面分析(见图1和图2),随机选取的剖面线分别为A-B、C-D和E-F。图1. 区域1内氧化石墨烯的表面形貌(左)和剖面分析(右)图2. 区域2内氧化石墨烯的表面形貌(左)和剖面分析(右)将获取的剖面线中的上、下台阶的各坐标进行线性拟合,得到两条拟合直线和对应的拟合参数:a1, b1, a2, b2。通过公式(1)计算上、下台阶的高度差H,即为上直线和下直线在xT点的距离(样品的厚度)。式中:H——样品厚度值,单位为纳米(nm);xT——两条拟合直线相邻端点中心位置的x坐标;a1, b1——上台阶拟合直线对应的参数值;a2, b2——下台阶拟合直线对应的参数值。注:拟合的两条直线应具有相同的长度和点数,长度不小于14 nm,点数不少于20个点,且这两条直线的b1和b2斜率应小于0.1,否则弃用该轮廓线。将上述形貌图中的选取的剖面线数据导入Origin软件中进行分段线性拟合,获取的上、下台阶拟合直线参数。以区域1中的剖面线A-B为例,上、下台阶拟合直线参数见图3。两个区域内的氧化石墨烯样品的厚度值见表1。图3. 氧化石墨烯样品的剖面线拟合图表1. 剖面线拟合计算的厚度值结语氧化石墨烯作为石墨烯的一类重要衍生物,具有优异的光学、电学、力学以及良好的生物相容性,被广泛应用于材料学、生物医学以及药物传递等诸多领域。岛津SPM可简单、快速地表征氧化石墨烯的表面形貌,并准确获取氧化石墨烯的厚度值,这也体现了岛津SPM具有精确表征纳米级及以下样品厚度的能力。本文内容非商业广告,仅供专业人士参考。
  • 第十一场研讨会 | 使用正切、反切和平面切割方式制备逻辑和存储器件的TEM薄片样品
    主题:Prepare Top-down, Inverted and Planar TEM lamella from Logic and Memory Devices演讲人:Lukas HladikLukas Hladik 是失效分析半导体研发实验室的FIB-SEM、表征和去层/电子探针解决方案的产品经理。Lukas毕业于捷克布尔诺理工大学,获得物理工程和纳米技术硕士学位。他于2012年加入TESCAN ORSAY HOLDING,担任Plasma FIB-SEM的应用专家,长期从事与全球半导体行业有关的工作。时间段1:5月12日,下午3:00–4:00 (北京时间)时间段2:5月13日,上午1:00–2:00 (北京时间)全球集成电路(IC)行业不仅面临着对电子器件需求的持续增长,而且还需要面对器件性能和能耗的提高——并且于此同时还要减少其占用空间。为了达到这一目的,TEM样品制备已成为失效分析过程中不可避免的一部分。当今3D结构的器件需要通过多个方位观察才能对缺陷进行定位。越来越精细的尺寸则决定了必须使用反切TEM薄片的方式才能获得10纳米以下的样品厚度。由于缺陷大小往往已达到纳米级别,就需要使用STEM(扫描透射电子探头)从平面方向上对TEM薄片进行观测。因此,TEM薄片提取过程可能需要多个操作步骤,甚至需要将样品室泄真空后再倒置或平面放置样品。TESCAN SOLARIS通过一种专利设置解决了这些问题,只需要一个简单的操作步骤,就可以将块状样品的薄片转移到TEM网格上,并且不需要样品室泄真空或重新放置样品。最重要的是,这种方法不需要安装任何额外的硬件。本次研讨会上,您可以深入了解TESCAN SOLARIS及其辅助系统如何在半导体失效分析实验室环境中半自动化、高质量、低束流损伤地完成样品制备。如您对本场研讨会感兴趣,点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。TESCAN FIB-SEM SOLARIS
  • 盛美半导体首台12英寸单晶圆薄片清洗设备提前获得验收
    盛美半导体官方消息显示,1月8日,盛美半导体首台应用于大功率半导体器件制造的新款12英寸单晶圆薄片清洗设备已通过厦门士兰集科量产要求,提前验收。该设备于2020年5月20日作为首批设备之一搬入工厂,从正式装机到应用于产品片生产,只用了18天的时间,原定一年的验证期仅用6个月即顺利完成验收。图片来源:盛美半导体设备图片来源:盛美半导体设备据悉,盛美新款12英寸单晶圆薄片清洗设备,是一款高产能的四腔体系统,用于超薄片的硅减薄湿法蚀刻工艺,以消除晶圆应力、并进行表面清洗等。该系统的传输及工艺模块为超薄硅片的搬送及工艺处理提供了有效的解决方案,基于伯努利效应,该系统在传输与工艺中,与晶圆表面完全无接触,消除由接触带来的机械损伤,提高器件的良率。通过不同的设定,该系统可适用于Taiko片、超薄片、键合片、深沟槽片等不同厚度的晶圆;通过采用不同的化学药液组合,该系统可拓展应用于清洗、光刻胶去除、薄膜去除和金属蚀刻等工艺。此前,盛美半导体设备董事长王晖曾表示:“为了争夺市场份额,功率设备制造商需扩大MOSFET 和IGBT的产能,包括增加晶圆减薄设备,同时兼顾利用有限的工厂面积。为此,我们开发了一个四腔系统,与目前市场上的一腔或两腔系统相比,它能提供更高的产能,降低成本(COO)、增加效益。此外,我们提供了一套专用的非接触式传输与工艺系统,以防止这些薄至50微米的易碎晶圆在背面减薄与清洗过程中受到损坏,从而提高器件良率。”此次盛美半导体12英寸单晶圆薄片清洗设备的快速投入量产使用并提前成功验收是盛美与国内量产客户团队的紧密合作成果。据了解,作为盛美半导体2020年推出的重要新产品之一,该设备的顺利验收对推动该设备在功率器件新兴市场的推广具有重要意义。盛美半导体设备公司主要从事半导体专用设备的研发、生产和销售,主要产品包括半导体清洗设备、半导体电镀设备和先进封装湿法设备等。公司坚持差异化竞争和创新的发展战略,通过自主研发的单片兆声波清洗技术、单片槽式组合清洗技术、电镀技术、无应力抛光技术和立式炉管技术等,向全球晶圆制造、先进封装及其他客户提供定制化的设备及工艺解决方案,有效提升客户的生产效率、提升产品良率并降低生产成本。
  • 等离子体显微镜载玻片“揭示”了癌细胞的颜色
    纳米载玻片为无染色细胞分析提供了一条清晰的途径。图1 一种新的显微镜载玻片可以转换介电常数的微妙变化,显示引人注目的颜色对比度澳大利亚的研究人员开发了一种显微镜载玻片,可以通过“揭示”癌细胞的颜色来改善癌症诊断。由澳大利亚的拉筹伯大学(La Trobe University )高级分子成像研究委员会卓越中心的布莱恩阿贝(Brian Abbey)教授及其同事首创的所谓纳米载玻片(NanoMslide),是一种等离子体活性的显微镜载玻片,可以将样品介电常数的细微变化转化为鲜明的颜色对比。阿贝和他的同事已经使用纳米载玻片在组织中辨别癌细胞,其灵敏度优于一些用于临界诊断的商业生物标志物。正如研究人员在《自然》(Nature)杂志上报道的那样:“这项技术的广泛应用以及它与标准实验室工作流程的结合,可能会证明其应用范围远远超出组织诊断。” 几十年来,研究人员已经知道,由于细胞内蛋白质分布和整体形状的差异等因素,癌细胞倾向于以不同于健康细胞的方式与光相互作用。虽然在生物成像过程中,通常会将染色剂和染料添加到透明的生物样品中,以生成彩色图像,但这些染料往往会改变样品的性质。考虑到这些点,阿贝和同事使用最新的纳米制作技术,来创建一个可以操纵光线和“添加”颜色的等离子体主动显微镜载玻片。图2载玻片在玻璃表面结合了几层精细印刷的金属,以操纵光与细胞的相互作用。结果是在显微镜下观察组织时,大大增强的对比度纳米制剂在墨尔本纳米制造中心(MCN)制作,该中心是澳大利亚国家制造设施(ANFF)的一部分。正如阿贝所强调的:“通过开发一种特殊的纳米涂层,我们改进了普通显微镜载玻片的表面,并将其转化为一个巨大的传感器。”他补充道:“真正引人注目的是,传感器的结构只有几百纳米宽,但在几十厘米或更大的范围内重复的精度惊人。”当样品放置在载玻片上,通过可见光激活载玻片时,就将介电常数转变为颜色对比度的变化。正如阿贝及其同事在《自然》杂志上所写:“非凡的光学对比度涉及光与金属表面自由电子集体振荡的共振相互作用,称为表面等离子体激元。”当透射光通过载玻片上的一组波长光阑时(载玻片与薄电介质试样接触),光谱发生了变化。当使用标准透射亮场显微镜对样品进行成像时,这会导致与局部样品厚度和/或介电常数相关的空间分辨颜色分布,从而产生显著的颜色对比效果。图3 使用纳米载玻片来观察未染色的癌组织。 [拉筹伯大学]根据阿贝的说法,这可能意味着很难通过等离子体增强的颜色对比度在可见光透射图像中清楚地看到光学透明样品中的特征。他说:“纳米载玻片使组织呈现出美丽的全彩对比,使得在一张玻片上更容易区分多种类型的细胞。”。研究人员利用小鼠模型和患者组织,与乳腺癌病理学家一起测试了他们的纳米载玻片。在小鼠模型中,研究人员确信从样本中看到的一些表明癌细胞的特定颜色。在对患者组织进行更复杂的病理学评估时,纳米载玻片也表现强劲,优于一些商业生物标记物,这些标记物被用作边界诊断的辅助手段。“这是我第一次看到癌细胞突然出现在我面前,”艾比的同事、彼得麦克卡勒姆癌症中心的贝琳达帕克(Belinda Parker)教授说。她补充道:“我们所做的只是取一段乳腺癌组织,放在载玻片上,在传统光学显微镜下观察。我们可以很容易地将癌细胞与周围的正常组织区分开来。”。“这张幻灯片还将乳腺癌与其他非癌性异常区分开来,这对早期癌症诊断有很大的希望。”研究人员现在也在测试他们的液体活组织切片载玻片,并希望扩大生产,这将使他们能够探索进一步的应用,并生产出进一步临床验证所需的载玻片数量。阿贝说:“这项技术也可能对不断增长的数字病理学空间产生巨大的好处,在那里,纳米载玻片产生的鲜艳色彩可以帮助开发下一代人工智能算法来识别疾病的迹象。”。该项研究发表在《自然》杂志上。符斌 供稿
  • FEI推出7nm厚TEM薄片试样制备双束系统
    11月2日,FEI宣布推出新型HeliosTM G4双束系统,该系统可以为先进半导体制造和失效分析应用,高通量制备超薄TEM分析用薄片。  新型双束系统包括FX和HX两种型号,在仪器的技术水平和使用易用性方面都有重大的飞跃。  新Phoenix聚焦离子束能够进行高精度的精细切割,使得超薄(小于10nm)TEM薄片试样的制备更加简单。  现在只需几分钟时间就可以获得图像,而不需要像以前一样花费几个小时甚至数天的时间在一台独立的S/TEM系统上获得图像。HX型号是专门用于高通量TEM薄片试样制备。它有一个自动QuickFlip样品杆,可以帮助减少样品制备时间。  FEI半导体业务副总裁兼总经理Rob Krueger 表示:“FEI是市场上第一个推出7nm厚TEM薄片试样制备解决方案的公司,能够满足正在研发新一代设备的用户需求。”  “此外,双束系统能够提供小于3埃的图像分辨率,这使得失效分析实验室能够大幅缩减数据采集的时间,而不会降低图像质量。另外,将高分辨率成像和样品制备集中到一台仪器上,有效的节省了实验室空间。”  失效分析对于芯片制造变得越来越重要。因此,相比于整体的半导体设备市场,失效分析设备市场需求增长十分强劲,这个市场有超过30家供应商。然而,最近VLSI发布的一份研究报告显示FEI依然是这个市场的领先供应商。
  • 《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》公开征求意见
    近日,国家标准计划《纳米技术 拉曼光谱法测量二硫化钼薄片的层数》进入公开征求意见阶段,反馈日期截止到2023年12月5日,如有任何建议或意见,请有关单位和专家填写征求意见表(详见附件)并反馈至邮箱:shaoyue @graphene-center.org 。本文件由TC279(全国纳米技术标准化技术委员会)归口,主管部门为中国科学院,起草单位为中国科学院半导体研究所、河北大学和泰州巨纳新能源有限公司。本文件规定了使用拉曼光谱法测量二硫化钼薄片的层数的方法。本文件适用于利用机械剥离法制备的、横向尺寸不小于 2 µm的 2H堆垛的二硫化钼薄片的层数测量。化学气相沉积法制备的 2H堆垛的二硫化钼薄片可参照本方法执行。二硫化钼薄片具有优异的电学、光学、力学、热学等性能,在学术届和工业届都引起了广泛的关注,已成为新一代高性能纳米光电子器件国际前沿研究的核心材料之一。二硫化钼薄片作为二维层状材料的代表,其层数或者厚度显著影响其光学和电学等性能。例如,单层二硫化钼薄片为直接带隙半导体,多层二硫化钼薄片为间接带隙半导体,且带隙随层数增加而逐渐降低,但场效应迁移率和电流密度会随之提高,进而通过调控二硫化钼薄片的层数实现与其相关的光电探测器、光电二极管、太阳能电池和电致发光器件的可控性能。所以,快速准确地表征二硫化钼薄片的层数对于其生产制备和相关产品开发具有重要的指导意义,也是深入研究二硫化钼薄片的物理和化学性质的基础和其开发应用的核心。拉曼光谱作为一种快速、无损和高灵敏度的光谱表征方法,已被广泛地应用于二硫化钼薄片的层数测量。比如,单层和多层二硫化钼薄片的拉曼光谱中,高频拉曼振动模——E12g 和A1g的峰位差值随二硫化钼薄片的层数而递增,两层及以上的二硫化钼薄片中低频拉曼振动模——呼吸(LB)模和剪切(S)模的峰位与二硫化钼薄片的层数具有确定的对应关系。同时,对于制备在氧化硅衬底上的二硫化钼薄片,二硫化钼下方硅衬底的拉曼峰的强度也与其上二硫化钼薄片的层数呈现单调变化的关系。因此,利用上述拉曼光谱参数特征,就可以准确地测量二硫化钼薄片的层数。由于不同方法制备的二硫化钼薄片在结晶性和微观结构上存在较大差异,现有任何一种表征方法均不是具有确定意义的通用手段。在实际应用中需要根据二硫化钼薄片的结晶性和微观结构特点来选择一种或多种合适的表征方法对其层数进行综合分析。附件:纳米技术 拉曼光谱法测量二硫化钼薄片的层数(征求意见稿) -- 征求意见表.doc纳米技术 拉曼光谱法测量二硫化钼薄片的层数(征求意见稿).pdf
  • 《纳米快报》:新型材料可研制纸张厚度的相机
    研究生雷斯东采用铜铟联硒化合物薄片研制了一个二维三像素相机,声称未来相机可以制造得像纸张一样薄。  腾讯科学讯 据国外媒体报道,目前,美国德克萨斯州莱斯大学科学家最新研制一种超薄成像设备,可使未来相机变得像纸张一样薄。他们采用仅原子厚度的铜铟联硒化合物(CIS)研制电荷耦合器,这是相机的一个重要组成部分。  该研究报告发表在近期出版的《纳米快报》上,这种二维三像素相机设备对光线探测具有独特的优势。  许多现代数码相机的图像传感器叫做电荷耦合器,这种手指甲盖大小的硅芯片包含着数百万个光敏二极管,它能够捕获像素进行拍摄。伴随着电荷耦合器尺寸逐渐缩小,未来可研制体积更小的相机。参与这项研究的研究生雷斯东(音译)说:&ldquo 传统电荷耦合器较厚、较硬,然而铜铟联硒化合物制成的电荷耦合器将超薄、透明、具有一定的弹性,是理想的2D成像设备组成部分。&rdquo   莱斯大学材料科学和纳米工程系资深研究员罗伯特-瓦塔尔(Robert Vajtai)博士称,铜铟联硒化合物对于光线具有较强的敏感性,这是因为捕获的电子消散得非常慢。有许多二维材料可以探测光线,但都不及铜铟联硒化合物如此高效。铜铟联硒化合物比之前我们所见的感光材料有效10倍。  雷斯东认为,未来在医学领域,铜铟联硒化合物可以结合其它2D电子技术应用于生物成像设备,起到实时监控的作用。
  • 《Science》大子刊:原位电子显微学用芯片厚度的重大突破!
    原位电镜(in situ transmission electron microscopy)是一种在电子显微镜下实时高空间分辨率观察和记录材料或样品在不同条件下变化的技术,这种技术的应用涵盖了多个领域,包括材料科学、纳米科技、生物学等。特别是得益于气体和液体环境的引入,大大的拓展了原位电镜技术的应用范畴,如腐蚀科学和催化反应等。电子显微镜本身具有非常高的真空工作环境,因此,气相和液相反应介质通常被密封在一个非常小的纳米反应器里面。由于氮化硅(SiNx)具有易于微纳米制造且在一定厚度下仍有可靠的力学特性及适度的电子透明度等优点,被广泛应用于原位电镜中芯片用的密封膜材料。在过去20年,基于像差校正器、单色器及直接探测器等硬件技术的发展,电子显微镜本身的性能包括空间和能量分辨率都得到显著提升。但是原位电子显微学直到目前为止,在空间分辨率上并无显著突破。关键原因是作为密封的SiNx膜材料限制了电镜本身及原位实验的品质因子。目前商用的SiNx膜的厚度一般为50 nm,而气相和液相电子显微学一般需要用两个原位芯片,这样仅密封膜的厚度就高达100 nm。如此厚的密封膜会造成非常高的有害电子散射,大大降低了原位电子显微学实验中采集的各种数据的信噪比。在原位电子显微学领域,学者们都一直认为降低SiNx膜的厚度非常必要,但是直到目前仍很难实现,因为仅通过刻蚀降低SiNx膜厚度,会造成力学性能的显著恶化。针对此问题,美国西北大学的Xiaobing Hu和Vinayak Dravid教授研究团队从自然界蜂窝结构稳定性获得灵感,巧妙利用掺杂浓度对Si的刻蚀速率影响,在观察窗口区域引入了额外的微米尺度Si支撑图案,成功的将SiNx膜的厚度从50 nm降至10 nm以下。这种在窗口区域具有支撑图案的超薄原位芯片具有很多优点,如优异的力学性能、耐电子束辐照、充分大的可观察区域,保证了该超薄芯片在原位电子显微学上的广泛应用。基于Pd的储氢特性,作者系统了探索了超薄芯片对原位实验测量品质因子的影响,及Pd纳米颗粒的吸/析氢行为。图1. 超薄原位电镜用芯片的制备及其优异的力学稳定性和电子束耐辐照性能,插图A、C中标尺分别为10 mm, 100 μm图1A显示超薄芯片的制备过程,图1B显示了具有不同厚度的SiNx窗口的原位芯片。图1C的扫描透射模式下的暗场和明场像显示出超薄芯片窗口区域的蜂窝状特征。图1D显示出这种超薄芯片优异的力学特性,即使在5 nm厚的情况下,仍能承受1个大气压,完全满足绝大多数的气相原位实验。图1E显示出超薄芯片非常好的耐电子束辐照特性,当厚度从50 nm降到10 nm时,临界电子束剂量几乎没有改变。图1E为用光学方法和电子能量损失谱测量的不同厚度的SiNx膜数据。图2. 基于超薄原位芯片的气相电子显微学实验品质因数的显著提升图2A为理论模拟不同厚度的SiNx对Au纳米颗粒明场像信噪比的影响,对于超薄原位芯片而言,即使在电子剂量比较低的情况下,仍可以拥有很好的信噪比,成像质量比较高。图2B、C显示出在一个大气压的Ar环境不同SiNx膜厚度下的高分辨像对比。可以看出与常规50 nm厚的原位芯片相比,超薄芯片的应用不仅提高了图像的信噪比,分辨率也从2.3 Å提高到1.0 Å。图2C显示出了能谱对比结果,可以看出在一个大气压的Ar环境下,当原位芯片窗口区域膜厚度从50 nm 降低到10 nm时,Ar/Si峰值比从0.59%升到8.3%,提高了14倍以上。图2E-G数据显示了超薄原位芯片显著提高了电子能量损失谱分析的灵敏度。图3. 基于超薄原位芯片电子显微学在储氢材料中应用图3A、3B为在不同支撑载体下纳米Pd颗粒的电子衍射对比图,可以看出超薄芯片显著压制了膜材料本身的有害电子散射,提高的电子衍射的信噪比。而这也允许研究人员在原位气相实验中进行定量衍射分析。图3C-D的原位电子衍射,显示出Pd纳米颗粒在原位充氢、放氢过程中的相变行为。图3E的电子能量损失谱分析确认了相变产物PdHx的产生。基于气相超薄原位芯片的设计与探索实验,作者提出这种超薄芯片的设计策略可大规模推广到液相原位及其它基于SiNx的原位芯片上,大大提高原位电子显微学实验的品质因子,从而允许研究人员在原位实验过程中不单单观察形貌变化,可将其它先进电子显微学方法应用到原位实验上来。更进一步,这种超薄芯片也可拓展到原位X射线领域。可以说,超薄芯片的概念提出,将大大的影响整个原位实验领域。这一成果近期发表在Science Advances上,美国西北大学胡肖兵研究副教授,Vinayak Dravid讲席教授为文章的通讯作者,Kunmo Koo博士为文章的第一作者。
  • 扫描电镜测试法:我国首个光学功能薄膜微观结构厚度测试标准正式实施
    近日,由中国航天科技集团有限公司中国乐凯研究院起草的国家标准GB/T 42674-2023《光学功能薄膜 微结构厚度测试方法》正式实施。(文末附下载链接)该标准规定了通过扫描电子显微镜(SEM)检测光学功能薄膜横截面微结构厚度的方法,适用于微米、纳米级光学功能薄膜各功能层微观结构测试。这是我国首个覆盖光学功能薄膜全领域的微米-纳米级各功能层微观结构的测试标准。该标准的制定与实施,对于准确测定光学功能薄膜微结构厚度、规范行业测定方法、促进行业发展具有重要意义。GB/T 42674-2023《光学功能薄膜 微结构厚度测试方法》详细内容标准下载链接:https://www.instrument.com.cn/download/shtml/1198352.shtml
  • 安光所团队在气溶胶光学厚度反演方面取得进展
    近期,安光所光学遥感研究中心孙晓兵研究员团队为满足单角度多波段偏振气溶胶探测的需求,提出了一种多波段强度和偏振信息联合利用的最优化反演算法,相关成果发表在学术期刊《Remote Sensing》上。   大气气溶胶光学厚度(Aerosol optical depth, AOD)用来表征气溶胶对太阳辐射的消光作用,在遥感大气校正及细颗粒物污染评估中都具有重要作用。孙晓兵团队提出的反演算法主要利用短波红外波段的偏振信息,在不需要地面先验信息的情况下,对地面和大气信息进行分离,然后使用标量信息来获得最终结果。利用该方法进行地气解耦,避免了地表反射率数据库更新不及时造成的反演误差和时空匹配误差。   研究人员利用搭载在高光谱观测卫星(GF-5B)上的高精度偏振扫描仪(POSP)的观测数据对该算法进行了验证。与不同地区AEROENT站点的AOD产品比对结果表明,该算法能反演不同地表上空的AOD;与MODIS的AOD产品进行比对,验证了算法在不同污染条件下的有效性。   该研究得到了航天科技创新应用研究项目、中国高分辨率对地观测系统项目、中国资源卫星应用中心项目资助。图1 POSP的反演结果与AEROENT产品比对图2 POSP的AOD反演结果(a)与MODIS产品(b)对比(2022年5月4日)
  • ADVANCE RIKO发布聚合物薄膜厚度方向热电性能评价系统ZEM-d新品
    聚合物薄膜厚度方向热电性能评价系统ZEM-d日本ADVANCE RIKO公司塞贝克系数与电阻测量系统ZEM系列在全球销售量超过300台,广获全球科研及工业用户的赞誉,成为热电材料领域“标杆型”测试设备。2019年,在此前的成功基础上,ADVANCE RIKO公司推出了专门用于评价聚合物厚度方向上热电性能的全新设备ZEM-d。与之前ZEM系列产品(ZEM-3/ZEM-5)不同,新型号ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品最薄为10μm。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。ZEM-d测量原理现存测试方法ZEM-d(厚度方向测量)电阻率测量原理塞贝克系数测量原理ZEM-d技术参数测量参数 塞贝克系数,电阻率温度范围 最高200℃(样品表面)样品尺寸 截面:Φ20mm(Max),长度:0.01-20mm测量氛围 空气或惰性气体软件界面创新点:ZEM-d主要测量聚合物薄膜厚度方向上的塞贝克系数和电阻率,可以测量的样品最薄为10μ m。此外,ZEM-d与采用激光闪光法测量薄膜的热扩散率/导热系数测量方向一致,其测量结果可广泛应用于薄膜热电材料的性能评价。聚合物薄膜厚度方向热电性能评价系统ZEM-d
  • 高光谱成像技术在薄膜厚度检测中的应用
    研究背景在薄膜和涂层行业中,厚度是非常重要的质量参数,厚度和均匀性指标严重影响着薄膜的性能。目前,薄膜厚度检测常用的是X射线技术和光谱学技术,在线应用时,通常是将单点式光谱仪安装在横向扫描平台上,得到的是一个“之”字形的检测轨迹(如下图左),因此只能检测薄膜部分区域的厚度。SPECIM FX系列行扫描(推扫式成像)高光谱相机可以克服上述缺点。在每条线扫描数据中,光谱数据能覆盖薄膜的整个宽度(如上图右),并且有很高的空间分辨率。 实验过程 为了验证高光谱成像技术在膜厚度测量上的应用,芬兰Specim 公司使用高光谱相机SPECIM FX17(935nm-1700nm))测量了4 种薄膜样品的厚度,薄膜样品的标称厚度为17 μm,20 μm,20 μm和23 μm. 使用镜面几何的方法,并仔细检查干涉图形,根据相长干涉之间的光谱位置及距离,可以推导出薄膜的厚度值。通过镜面反射的方式测量得到的光谱干涉图,可以转化为厚度图使用 Matlab 将光谱干涉图转换为厚度热图,通过SPECIM FX17相机采集的光谱数据,计算的平均厚度为18.4 μm、20.05 μm、21.7 μm 和 23.9 μm,标准偏差分别为0.12 μm、0.076 μm、0.34 μm和0.183 μm。当测量薄膜时,没有拉伸薄膜,因此测量值略高于标称值。此外,在过程中同时检测到了薄膜上的缺陷,如下图所示,两个缺陷可能是外部压力造成的压痕。结论SPECIM FX17高光谱相机每秒可采集多达数千条线图像,同时可以对薄膜进行100%全覆盖在线检测,显著提高了台式检测系统的检测速度,提高质量的一致性并减少浪费。与单点式光谱仪相比,高光谱成像将显著提高薄膜效率和涂层质量控制系统,同时也无X射线辐射风险。 理论上,SPECIM FX10可以测量1.5 μm到30 μm的厚度,而SPECIM FX17则适用于4 μm 到90 μm的厚度。如需了解更多详情,请参考:工业高光谱相机-SPECIM FX:https://www.instrument.com.cn/netshow/C265811.htm
  • 河南卷烟工业烟草薄片有限公司计划采购离心机、密度折光仪等仪器设备!
    一、招标条件本招标项目2021年薄片公司仪器仪表采购项目一、四标段(二次),招标人为河南卷烟工业烟草薄片有限公司,资金来自企业自筹,项目出资比例100%。该项目现已具备招标条件,现委托中建联勘测规划设计有限公司对该项目进行国内公开招标,欢迎符合要求的投标人前来参加投标。二、项目概况及招标范围2.1项目名称:2021年薄片公司仪器仪表采购项目一、四标段(二次)。2.2招标编号:ZJLZHB-2021-1021。2.3标段划分:本项目分为二个标段。标段号仪器仪表名称拟采购数量1高压均质机1台高浓磨浆机1台离心机1台纤维解离器1台实验室切丝机1套4密度折光仪1台2.4招标范围:仪器仪表类货物的生产(采购)、运输、安装、调试及售后服务等全过程服务,具体数量及要求详见招标文件第五章。2.5资金来源:自筹,已落实。2.6质量要求:符合国家、行业标准以及招标文件要求。2.7交货期:接到招标人通知之日起60日历天内。2.8质保期:自设备验收合格之日起12个月。2.9交货地点:河南卷烟工业烟草薄片有限公司指定地点。三、投标人资格要求3.1资格要求:3.1.1投标人须为在中华人民共和国境内依法注册,能够独立承担民事责任;3.1.2投标人须提供具有企业统一社会信用代码的营业执照;3.1.3投标人若为经销商,须提供所投设备生产制造厂家或者代理商的授权;提供代理商授权的,应同时提供生产制造厂家对该代理商的授权。3.2财务要求:3.2.1具有良好的商业信誉和健全的财务会计制度,财务状况良好,财务没有处于被接管、冻结、破产状态,在投标文件中提供近三年2018-2020年度经具备资格要求的会计师事务所出具的审计报告,若公司成立满一年不足三年的,提供自成立后至2020年的审计报告,若公司成立不足一年的,须提供开户银行出具的资信证明;3.2.2有依法缴纳税收和社会保障资金的良好记录;3.2.3投标人须为能够开具增值税专用发票的一般纳税人。3.3信誉要求:3.3.1遵守国家有关的法律、法规和政策,最近三年内(以发布招标公告之日起,往前推36个月,成立年限不足的从成立之日起计算)在经营活动中没有重大违法记录;被列入招标人或招标人主管单位的存在行贿行为供应商名单的企业不得参加本项目投标;被列入招标人或招标人主管单位的存在行贿行为供应商名单的企业的法定代表人、主要负责人和行贿人,同时担任法定代表人、主要负责人(主要是指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人)或实际控制人(主要是指控股人员)的其他企业不得参加本项目投标;中标后没有转包代工行为。(以上提供承诺书,格式后附);3.3.2投标人须提供中国裁判文书网查询截图,包括企业、法定代表人无行贿犯罪(行为)记录,将查询结果网页打印并加盖公章,投标人自2018年1月1日以来有行贿犯罪(行为)记录的将被取消投标资格;查询指南:进入网站首页注册登录-点击高级搜索-打开案由-选择刑事案由-贪污受贿罪-选择“单位行贿罪”、“对单位行贿罪”,在“当事人”一栏输入单位全称分别进行查询,选择“行贿罪”,在“当事人”一栏输入法定代表人姓名进行查询;(如查询记录中存在重名或名称信息披露,请同时提供被查询主体无行贿记录的承诺函,承诺函格式自拟,评标中或评标后如果发现存在有行贿记录,则视为弄虚作假)3.3.3投标人信用良好,须提供“信用中国”网站查询截图,包括企业、法定代表人将查询结果网页打印并加盖公章。投标人被列入失信被执行人、重大税收违法案件当事人和政府采购不良行为记录名单的,法定代表人被列入失信被执行人名单的不得参与本项目投标;查询指南:进入网站首页-打开“信用服务”-点击相应的“失信被执行人、重大税收违法案件当事人和政府采购不良行为记录”输入单位全称进行查询,打开“个人信用”-点击相应的“失信被执行人名单查询”输入法定代表人姓名及身份证号进行查询;3.3.4法定代表人为同一人或者存在控股、管理关系的不同单位,不得参加同一招标项目同一标段的投标,提供“国家企业信用信息公示系统”单位基础信息及股东组成网页查询打印件,并加盖公章;没有股权信息的,提供从“天眼查”系统打印的股东股权信息查询结果。3.4本项目不接受联合体投标,不得转包和违规分包。本项目采用资格后审,获取招标文件成功不代表通过资格审查,投标人资格条件以评委会审核结果为准。四、招标文件的获取4.1获取招标文件时间:2022年3月23日—2022年3月29日,每天上午9:00—11:30,下午14:00—17:30(北京时间,节假日除外)。4.2获取招标文件须提供的资料(应符合投标人资格要求):(1)法定代表人身份证明及身份证或法定代表人授权委托书及被委托人身份证;(2)具有企业统一社会信用代码的营业执照;提供近六个月依法缴纳税收和社会保障资金的证明材料;银行开户许可证或基本户银行开户证明;授权书(经销商提供);财务审计报告或银行资信证明;(3)一般纳税人资格证明材料(税务局出具的一般纳税人认定表或税务局认定为一般纳税人的通知或税务局网站一般纳税人网页查询结果或已开具的增值税专用发票一份(代开的除外));(4)“中国裁判文书网”网站查询结果的网页截图;查询主体无行贿记录的承诺函(若需要);“信用中国”网站查询结果的网页截图;“国家企业信用信息公示系统”网站查询结果的网页截图;“天眼查”系统查询结果(若需要);(5)提供符合承诺书格式要求的《无重大违法记录声明书》、《无不良行为记录声明书》;(6)投标人资格要求的其它材料。(注:请各投标人将符合“投标人资格要求”材料加盖投标人公章的扫描件以及投标项目的基本情况表(基本情况表包括:拟投标项目名称,投标单位名称、联系人、联系电话、电子信箱及日期),发至招标代理机构电子邮箱(zjlzbdl@126.com)。投标单位发送邮件后请与招标代理机构电话确认。资料符合招标资格要求且交纳招标文件费后,招标代理机构会将招标文件电子版发送至投标人电子信箱,请各投标人注意查看电子邮件。)本项目采用资格后审,按以上要求获取了招标文件并不视为通过资格审查,投标人资格条件以评委会审核结果为准,未通过资格审查的投标将视为无效投标,投标单位应自负风险费用,提供虚假材料的将进一步追究其责任。4.4招标文件售价500元/每标段,逾期不售,售后不退。五、投标文件递交截止时间和地点5.1投标文件递交的截止时间(开标时间):2022年4月13日10时整(北京时间)。5.2投标文件递交地点:郑州东湖宾馆七楼明德厅(郑州市郑东新区农业南路与七里河南路交叉口向南30米路西)5.3逾期送达的或者未送达指定地点的投标文件,招标人不予受理。六、公告发布媒介本次招标公告同时在《中国招标投标公共服务平台》、《河南省电子招标投标公共服务平台》、《国家烟草专卖局网(公司)外网》、《河南卷烟工业烟草薄片有限公司内网》上发布。七、联系方式招标人:河南卷烟工业烟草薄片有限公司地址:河南省许昌市建安区金叶大道666号联系人:李女士电话:0374-2569528监督部门:采购管理办公室联系电话:0374-2569570/2569678招标代理机构:中建联勘测规划设计有限公司地址:河南自贸试验区郑州片区(郑东)正光北街9号南1单元12、13层联系人:冯女士王先生电话:0371-63865888邮箱:zjlzbdl@126.com日期:2022年3月22日承诺书格式一:无重大违法记录声明书致:河南卷烟工业烟草薄片有限公司我单位近三年内,在经营活动中无重大违法记录,没有违反有关国家法律、法规、规章、国务院文件及烟草行业主管部门的禁止或者限制性规定,无串标围标、买卖资质、行贿行为等有关违法、违规行为,中标后未有违法转包,违规分包行为,无行业处罚、惩戒等不良执业记录及不良反映,符合本项目招标文件规定的供应商投标资格条件,特此声明。若招标采购单位在本项目采购过程中发现我单位近三年内,在经营活动中有重大违法记录,我单位将无条件地退出本项目的投标,自愿放弃中标资格,并承担因此引起的一切后果。声明人:(投标人公章)年月日承诺书格式二:无不良行为记录声明书致:河南卷烟工业烟草薄片有限公司我单位具有良好的商业信誉和健全的财务会计制度,具有履行合同所须的专业技术能力,财务没有处于被接管、冻结、破产状态,有依法缴纳税收和社会保障资金的良好记录;具有履行合同所必需的设备和专业技术能力、完善的售后服务体系,并在人员、设备、资金等方面具有相应的专业能力,在国家、地方人民政府及烟草行业主管部门规定的供应商不良行为记录公告平台未有不良行为记录。我单位无“被列入招标人或招标人主管单位的存在行贿行为供应商名单的企业不得参加本项目投标;被列入招标人或招标人主管单位的存在行贿行为供应商名单的企业的法定代表人、主要负责人和行贿人,同时担任法定代表人、主要负责人(主要是指单位法定代表人或者法律、行政法规规定代表单位行使职权的主要负责人)或实际控制人(主要是指控股人员)的其他企业不得参加本项目投标。”所述情形,中标后没有转包代工行为,符合本项目招标文件规定的供应商投标资格条件,特此声明。若招标采购单位在本项目采购过程中发现我单位有以上不良行为记录,我单位将无条件地退出本项目的投标,自愿放弃中标资格,并承担因此引起的一切后果。特此声明!声明人:(投标人公章)年月日
  • 第七场研讨会 | 创新的FIB/SEM薄片提取解决方案,满足更高要求的TEM样品制备需求
    主题:Innovative FIB/SEM Lift-out Solutions for Advanced TEM Lamella Preparation Requirements演讲人:Martin SlamaMartin Sláma 是TESCAN 公司材料科学和生命科学的FIB- SEM产品经理,有多年使用TESCAN等离子体FIB和镓离子 FIB- SEM进行TEM样品制备的经验。在加入TESCAN公司之前,Martin曾在布尔诺理工大学、中欧技术研究所和阿斯顿大学从事新材料开发和表征的工作。时间段1:4月14日, 下午3:00– 4:00(北京时间)时间段2:4月15日, 上午1:00– 2:00(北京时间)透射电子显微镜(TEM)能否对样品进行分析往往取决于样品制备的质量是否符合要求。当分析需要达到原子级分辨率,或者特征区域更小或更复杂时,对样品制备的要求就会趋向更严格。使用聚焦离子束(FIB)是制备TEM样品并保证其质量的最佳方法。当今新型材料日新月异,我们需要更先进的TEM样品制备方法才能保证真正观察到这些材料的细节。对于这些新型材料,样品厚度并不是必须考虑的唯一参数。FIB-SEM结合多种技术来实现特定位置的样品制备,这些技术有助于在样品上定位感兴趣的特征点或确定结构的方向。在一些情况下,样品将需要根据特定的几何形状来制备薄片,这就需要使用提取(lift-out)技术。在本次网络研讨会中,您将了解到纳米机械手在FIB/SEM样品室中的特殊位置将如何有助于创新的提取方法和提取特殊的几何形状,这为TEM样品制备提供了新的可能性,也为进一步的研究提供了新的机会。如您对本场研讨会感兴趣,点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。TESCAN FIB-SEM
  • 幕墙玻璃厚度检测仪研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="123"p style="line-height: 2em "成果名称/p/tdtd width="525" colspan="3"p style="line-height: 2em "幕墙玻璃厚度检测仪/p/td/trtrtd width="123"p style="line-height: 2em "单位名称/p/tdtd width="525" colspan="3"p style="line-height: 2em "中国建材检验认证集团股份有限公司/p/td/trtrtd width="123"p style="line-height: 2em "联系人/p/tdtd width="177"p style="line-height: 2em "艾福强/p/tdtd width="161"p style="line-height: 2em "联系邮箱/p/tdtd width="187"p style="line-height: 2em "afq@ctc.ac.cn/p/td/trtrtd width="123"p style="line-height: 2em "成果成熟度/p/tdtd width="525" colspan="3"p style="line-height: 2em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="123"p style="line-height: 2em "合作方式/p/tdtd width="525" colspan="3"p style="line-height: 2em "□技术转让□技术入股□合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 2em "strong成果简介: /strongbr//pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/64e1b730-057a-4fac-9850-b46e628b289c.jpg" title="厚度检测仪.jpg" width="350" height="224" border="0" hspace="0" vspace="0" style="width: 350px height: 224px "//pp style="line-height: 2em " /pp style="line-height: 2em "span style="line-height: 2em " 幕墙玻璃厚度检测仪利用激光测距技术,通过计算光程差来获得所测玻璃的厚度,厚度检测仪不仅可以测量单层玻璃的厚度,还可以测量中空玻璃三层厚度(包括:玻璃厚度、空气层厚度),采用数字化技术,将所测结果直观的显示在液晶显示屏上,可以快速、直观的获得所需结果,并设有内部存储功能可以存储9次测量结果,方便用户使用,该仪器操作简单,携带方便,测试结果快速、准确特别适合于现场检测。 /span/pp style="line-height: 2em " 主要特点 br/ 操作简单:只需将仪器放在待测玻璃上按测量键即可完成测量。 br/ 测量精度高:该仪器测量精度达到微米级。 br/ 测试速度快:测试时间1-2秒。 br/ 便于携带:该仪器尺寸合适重量轻。 br/ 稳定性好:多次测量结果无偏差。 br/ 具有存储功能:可以存储9次的测量结果并查看。 br/ 可同时测量玻璃厚度、空气层厚度。 br/ 技术参数: br/ 测量精度:微米级 br/ 物理尺寸:130*70*30br/ 开关频率:1-2秒 br/ 采样频率:10Hzbr/ 供电电压:9vbr/ 重量:200gbr/ 使用温度:-20℃- 40℃ br/ 机体重量:约1Kg/p/td/trtrtd width="648" colspan="4"p style="line-height: 2em "strong应用前景: /strongbr/ 该仪器操作简单,携带方便,测试结果快速、准确特别适合于玻璃幕墙的现场检测,同时也适合于工厂、建筑工程质量检测站、产品质量检测站、科研院校等玻璃的生产检测、和开发研究等领域。/p/td/tr/tbody/tablepbr//p
  • 澳大利亚科学家发明纳米载玻片,无需染色肉眼即可识别早期癌症
    在生物和医学研究中,癌变组织和正常组织样品不进行特殊处理时,在标准光学显微镜下无法直接区分,通常被研究的生物材料需要被染色以揭示其秘密,但这样可能会改变样本的特性导致误诊。  最近,澳大利亚拉筹伯大学的Belinda S. Parker副教授和Brian Abbey教授及其团队开发出一种新的显微镜载玻片,避开了这个问题,他们用这种新型载玻片成功区分了正常的上皮组织、癌前组织和乳腺癌组织。这一发明无疑是为医生提供了一把“照妖镜”,让癌变组织无所遁形。  相关研究结果发表在2021年10月7日的Nature期刊上,论文标题为“Colorimetric histology using plasmonically active microscope slides”。  近几年,拉筹伯大学的Abbey教授和Eugeniu Balaur博士共同开发并研究了这项技术。正如Abbey所说,“现在一般通过对生物组织/细胞的染色标记使其在显微镜下可以更好的观察。然而,如果要在组织中检测癌细胞,只有染色标记是远远不够的,这也是癌症早期不易发现而被误诊的原因。近几年纳米生物技术飞速发展,我们可以通过控制生物组织与光的相互作用,把这种相互作用的差异转变成不同的颜色来区别健康和不健康的组织。纳米载玻片技术让组织观察变得想观看彩色电视一样,而以前,只能是黑白电视。”  在大自然的漫长的进化过程中,出现了各种色彩的有趣的生物,比如颜色靓丽的蝴蝶、善于伪装的章鱼等等。这是因为它们体壁上有极薄的蜡层、刻点、沟缝或鳞片等细微结构,使光波发生折射、漫反射、衍射或干涉而产生的各种颜色。  典型的自然生物光子纳米结构:(A)芙蓉和郁金香属物种中的一维光栅30 (B)昆虫、鸟类、鱼类、植物叶、浆果、藻类等存在的一维周期性多层膜 (C)在蝶和某些闪光的植物叶子 (D)一些夜间昆虫带有2D光栅,抗反射和自我清洁 (E)某些海洋生物的彩虹色的毛发 (F)昆虫表面的的球体的固体材料产生的彩虹色 (G)逆蛋白石类似的纳米结构生成的蝴蝶的彩虹色。  图注:以自然为师,通过仿生结构,在实验中改变微观结构的周期性的排列距离和偏振角就得到了得到不同的列阵颜色。  在此基础上,Abbey教授和他的团队设计出了一种用于生物组织呈像的纳米载玻片。这种纳米载玻片包括了普通载玻片基底、纳米涂层以及超薄保护层。其中,纳米涂层具有470-550 nm可见光范围内的列阵结构。超薄保护层是为了保护整个纳米载玻片,以免受到环境的侵袭使其呈像功能更加稳定。当样本组织放在这种载玻片上时,样品局部厚度以及介电常数的改变会导致透射光通过与载玻片微观孔阵列时的光谱的变化。  简单来说,样品可以改变纳米载玻片的微观结构从而导致透过的光谱的差异。在观察纳米载玻片上的样品时就产生了明显的色差效应,最终使我们观察到了不同的颜色。  图注:概念设计及基本原理。由于介电常数的突变,样品表面出现了不连续现象。树脂覆盖了图像的底部三分之二,标记为“样品”,而图像的顶部是裸露的,标记为“空气” 红色虚线表示两者之间的边界。下面,SPP谐振模式的波长对局部介电常数非常敏感。  “照妖镜”有了,那它的效果是否会如研发团队所愿,还要看看实际应用的效果。研发团队为了能清晰地观察到乳腺癌发生发展的各个不同阶段,它们选择了一种自发性乳腺癌的动物模型MMTV-PyMT小鼠,这是研究早期乳腺癌中的细胞变化的最佳选择。正如所愿,在实验中,这种纳米载玻片成功地通过颜色差异对健康组织和非健康组织做出区别,这种区别与传统染色标记法的结果一致而且更加优秀。  图注:健康(上)和癌变(下)组织的特征以及不同位置的光谱强度的变化。  (图注:通过组织病理学评估的区域绘制成亮度与色调的函数)  在应用过程中,研究团队还发现了一个重要的现象。在同一个体中,健康细胞与癌变细胞的交界并不明显,存在一个互相重叠的区域。也就是说,同一个体的健康细胞具有癌变的趋势,最终基本上会发展成侵袭前和侵袭性肿瘤。而这些状况与对照样本(正常小鼠)的组织基本不重叠。通俗来说,这种纳米载玻片具有癌症早期的预测诊断能力。  研究者们制作了连续切片并使用细胞角蛋白5/6(CK5/6)和雌激素受体(ER)作为标记物来对比纳米载玻片和传统染色技术对UDH和DCIS的区分效果。实验结果显示,对比UDH,DICS纳米载玻片样本中的颜色明显增加,纳米载玻片与CK5/6和ER对组织的呈像变化趋势的变化是一致的,然而,纳米载玻片样本中的对比度明显更强,颜色也更深。这体现了纳米载玻片的可靠性和对传统技术的提升。  图注:纳米玻片和常规染色图像对健康(左)、浸润性(右)乳腺癌组织的显像对比。比较不同组织使用四种不同的技术处理对比:纳米玻片、H&E染色、CK 5/6和ER染色(下)。  图注:DCIS病变中纳米玻片染色增加,与CK 5/6和ER表达的变化相一致。  纳米载玻片技术是生物组织呈像的一次技术革新,使医生和研究者摆脱了不清楚的黑白呈像图片,拥有了彩色呈像技术且可以更有效地观察到潜在癌变细胞,这大大提高了早期癌症治疗的效率。有朝一日,让医生人手一面“照妖镜”,把潜伏的“妖怪”全都揪出来!就算孙大圣来了,估计也会佩服。这就是科学的力量!
  • 珍珠珠层厚度无损检测研究有重大突破
    从广西质量技术监督局获悉,2009年3月15日,该局承担的“X射线和近红外光珍珠珠层厚度无损检测仪研究与应用”科技成果项目鉴定验收会在广西产品质量监督检验院召开。此次项目验收鉴定会由广西科技厅组织,全国有关方面的权威专家对项目进行了审定。  据了解,该课题技术在珍珠检测领域具有较高的创新性。 一是国内首创微焦斑(Φ=8μm)X射线透射技术和CCD光电成像技术相结合,实时整体成像;二是珠层图像自动甄别采集,根据灰度级差原理,自动由外向内搜索(图像由白到黑)之最大梯度处视为珍珠核与珍珠层边缘;三是用测量误差理论最小二乘法圆度拟合,自动获取最接近珠核与珠层平均圆,实现准确和快速自动检测;四是用计算机技术实现尺寸自动匹配,以消除点光源引起不同尺寸珍珠的投影与其真正直径测量偏差的问题;五是研究出仪器的校准标准,建立量传溯源体系,确保测量准确度;六是实现珍珠球体多截面测量;七是控制测量误差,实现仪器测量准确度≤0.02mm。  参会专家一致认为:该课题在全国率先开展采用X射线和近红外光学相干层析成像技术对珍珠进行无损检测综合对比研究,并取得突破性进展,成功研制出两种珍珠无损检测高精度新仪器,把先进的测量理论成功转化为具有广泛应用意义的技术创新成果和测量仪器,属于国内首创,技术水平达到国内领先,国际先进水平。  目前该项目所研究的两种无损检测方法已被纳入国家技术标准在全国推广应用。对提高珍珠产品质量,促进广西珍珠产业的发展将具有深远的社会效益和经济效益。
  • 线上讲座:全表面薄膜测量和缺陷检测
    本次网上研讨会着重介绍Lumina Instruments激光扫描仪的功能和应用实例。这个创新性的设备可以用作激光扫描椭偏仪来全表面测量样品上的薄膜厚度分布,又可以扫描各种表面缺陷,比如颗粒,划痕,陷坑,和鼓包等等。更让大家感兴趣的是它能一次扫描检测透明基底上下表面以及基底内部缺陷。主讲人简介:陈博士有近30年的半导体制程控制和光学检测经验。他曾带领开发化学机械研磨设备以及制程终点控制设备。在加盟Lumina Instruments之前他负责Filmetrics全部设备和部分KLA 设备的全球市场开发。会议时间:2021/01/21 11:00-12:00 (北京时间)报名入口:点击进入 会议密码:12121手机一键拨号入会+8675536550000,,501587457#(中国大陆)+85230018898,,,2,501587457#(中国香港)根据您的位置拨号+8675536550000(中国大陆)+85230018898(中国香港)欢迎大家前来收听~~~
  • 卡尔蔡司AXIO Scan.Z1全自动数字玻片扫描系统
    灵活、全自动地获取明场和荧光样本图像  2012年12月17日 德国斯图加特,耶拿/旧金山,美国  今年在旧金山举行的美国细胞生物学学会年会上,卡尔蔡司显微镜事业部发布了一款数字玻片扫描系统——Axio Scan.Z1。 这款自动化的显微系统,可帮助研究人员对固定组织切片和细胞样本进行全自动的高速明场和荧光扫描。  归功于样品夹的“托盘”设计理念Axio Scan.Z1能够做到扫描载玻片上的全部标本区域——包括玻片的边缘部分。仅需几分钟的时间,自动校正切片扫描仪系统便可获得高质量的数字虚拟玻片图像。该系统一次性可扫描100张玻片。在拍摄荧光样品时,高速滤片转轮仅需短短50毫秒即可实现切换。高灵敏度的科研级相机结合高精度校准的光路设计可获取最优品质的图像。系统搭载了Colibri.2 UV-free LED荧光光源,利用斜照明查找焦平面的装置,环形光阑照明方式(Ring Aperture Contrast),确保对样本提供最大限度的保护。  “蔡司数字切片扫描系统支持科学家反复进行大型样本图像的获取工作,例如老年痴呆症与癌症研究中的组织学分析。该领域的应用范围可以从基础研究延伸至医药产业项目”,卡尔蔡司Axio Scan.Z1的产品经理Thorsten Heupel博士说。  Axio Scan.Z1是由卡尔蔡司的ZEN成像软件操作的,ZEN既允许用户使用预定义的设置参数自动工作,又允许用户在不同步骤时对单个参数独立设置。用户界面的设计是专为研究领域的工作流程而设计的。  虚拟玻片数据被安放在一个可连接网络的数据库:ZEN Browser。除系统本身的电脑可进行操作以外,用户可以访问、查看、并可与同事在线共享他们的图像与数据或者组织整个项目——甚至在外出时也可方便实现以上功能。也有一个适用于Iphone和Ipad的免费应用软件来实现上述功能。  用户可以在最开始决定用多少显微镜玻片、哪种检测方式和他们最希望使用的相机类型,并且随着课题的发展,Axio Scan.Z1可非常简便地进行升级.
  • PAS固相微萃取系统荣获仪器信息网2019年度“*新品”奖
    “科学仪器*新品”评选活动于线上隆重发布,德国PAS CONCEPT 96高通量薄膜固相微萃取获得了各位专家评审和各界同仁的认可,从700多款仪器中脱颖而出,荣获2019年度科学仪器“*新品”奖!德祥产品总经理-金莹瑛女士代表领奖,并发表获奖致词,她首先感谢了平台对于德祥产品的支持,接着向观众介绍了近30年来德祥在仪器行业深耕及发展,详细阐述PAS高通量薄膜固相微萃取产品的创新之处。德祥承诺将会始终如一的为广大客户提供更多*的进口实验室设备及贴心的服务。2019年度科学仪器*新品德祥产品总经理-金莹瑛女士致词德国PAS Technology是一家集研发和销售自动样品处理的技术的公司,专注于无溶剂萃取技术,提供从采样到解析的一系列自动化解决方案。公司总部位于图林根州的马格达拉,可以为全球的客户提供*的服务,并与微萃取领域的权威教授Janusz Pawliszyn及其研发团队合作,成功开发了CONCEPT 96及CONCEPT NT等产品。涉及的行业包括:医疗实验室、环境分析、食品分析、空气分析和饮用水分析系统。继固相微萃取技术Solid Phase Microextration,简称“SPME”自1989年发明于加拿大皇家学院Janusz Pawliszyn教授,面世30年以来,目前该技术成熟,已受到市场广泛认可后,又推出了薄膜固相微萃取技术TFME(Thin Film Solid Phase Microextration),也称Coated Blade SPME。德国PAS CONCEPT 96高通量薄膜固相微萃取系统是首台将TFME薄膜固相微萃取在LC/LC-MS中的应用商业化的设备。在TFME中,与圆柱型的萃取头相比,这种薄片式形状的萃取相采用高表面积/体积比的平面薄片,在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得无需延长采样时间的情况下提高了灵敏度。德国PAS CONCEPT 96 高通量薄片固相微萃取(1)高灵敏度高表面积/体积比的平面薄片结构,萃取相表面积增加,灵敏度大大提高。(2)高萃取效率可同时自动化处理96个样品,平均每个样品萃取时间<3min(3)可用于复杂样品的前处理涂层薄片可直接浸入提取非常复杂的样品,例如生物流体、组织均质体等,减少溶剂带来低回收率,柱床易堵塞的影响CBD:涂层薄片装置 (4)步骤简单,绿色化学集预处理、提取、清洗、解析于一体,绿色环保(5)应用范围广可用于代谢组学、污染物、药物及其代谢物等领域,适用于生物医学、毒品检测、食品药物残留、环境水药物残留等行业目前已有很多不同应用的外文文献,如:《固相微萃取分析鸡肉组织中的多兽药残留》、《固相微萃取兴奋剂检测》、《固相微萃取分析生物体液中的脂肪酸》▼ *产品点击速递PAS CONCEPT 96 高通量薄片固相微萃取
  • 220万!深圳国际量子研究院桌面薄膜分析仪采购项目
    一、项目基本情况项目编号:3324-DH2333H4004(FTDL2023000007)项目名称:桌面薄膜分析仪采购项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:(1)标的名称:桌面薄膜分析仪采购项目(2)标的数量:1台。(3)简要技术需求或服务要求:详细内容请参阅招标文件第二章《招标项目需求》。合同履行期限:详见招标文件本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年02月01日 至 2023年02月08日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:深圳市罗湖区太宁路2号百仕达大厦27B方式:现场投标报名或网上投标报名(报名资料均需加盖单位公章)售价:¥500.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2023年02月13日 14点30分(北京时间)开标时间:2023年02月13日 14点30分(北京时间)地点:深圳市福田区福田保税区槟榔道10号深圳国际量子研究院604四、公告期限自本公告发布之日起5个工作日。无、其他补充事宜项目相关公告发布网站:中国政府采购网:www.ccgp.gov.cn深圳公共资源交易网:www.szggzy.com深圳市东海国际招标有限公司网:www.szdhit.com六、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:深圳国际量子研究院地址:深圳市福田区福田保税区槟榔道10号联系方式:沈老师 0755-239914152.采购代理机构信息名称:深圳市东海国际招标有限公司地址:深圳市罗湖区太宁路2号百仕达大厦27B联系方式:邹先生?135103436013.项目联系方式项目联系人:常女士、杨女士电话:0755-86959378或86959778转8002/8024
  • 奥林巴斯全新测厚解决方案:使用交互式自定义模板标准化厚度检测
    从创造日常用品到开发尖端技术,制造工业几乎在每个领域都发挥着关键作用。确保产品质量和合规性是这项工作的关键,而工件检测有助于维持这些高标准。为了简化检测过程并优化质量控制工作,我们的工程师开发了一种新的厚度测量功能:交互式自定义模板。72DL PLUS超声测厚仪上提供的交互式自定义模板可在工件图像上显示清晰标注的检测位置,从而为用户进行常规厚度测量提供有用的可视化工具。此文将探究这种交互式自定义模板如何在从标准化厚度检测过程到改进质量控制和促进数据分析等方面为制造工业提供支持。标准化制造工业的厚度检测过程交互式自定义模板使用清晰标注的检测位置提供被检工件的视觉参考标记。管理员可以使用PC界面应用程序,通过几个简单的步骤创建模板:上传工件图像标记要检测的具体位置为检测位置添加自定义名称(可选)选择用于指示厚度测量状态和质量的颜色创建自定义模板后,管理员就可以轻松地将模板发送到生产车间的一台或多台72DL PLUS测厚仪上。通过在多台设备上实施标准化,消除了歧义,让所有检测员都可以遵循相同的流程,对工件进行一致的评估,而不受地点或当班时间的限制。通过PC界面应用程序上的工件创建工作流程,管理员可以在上传的工件图像上添加厚度测量位置(TML),并选择用于指示TML状态的颜色。厚度检测过程的效率和准确性当检测员在72DL PLUS测厚仪上调用工件设置时,仪器会显示待测工件的图像,并清楚标明检测位置。检测员可以使用触摸屏缩放和平移模板,以确认他们正在检测工件上的正确位置。自定义模板的交互特性可在检测过程中提供实时反馈。在记录测量值时,测厚仪会根据厚度测量位置(TML)的状态更新模板的颜色,从而为检测员提供即时的视觉反馈。通过这种交互式功能,检测员可以快速识别潜在的厚度变化或缺陷,从而缩短检测时间,迅速纠正问题。72DL PLUS测厚仪上显示汽车工件图像的交互式自定义模板。相应颜色的TML为生产车间的检测员提供实时反馈。厚度检测培训和支持交互式自定义模板还有益于培训新的检测员,因为模板明确了需要检测的具体位置。在检测数据文件(IDF)中,管理员和检测员等人员都可以轻松复核每个TML的测量值、轴向扫描、报警状态和其他信息,包括其在模板上的检测状态。这些数据可以直接在仪器上或通过PC界面应用程序进行复核。这种设置可促进检测做法的一致性,并方便新检测员遵守既定的检测标准。在PC界面应用程序上复核包含每个TML测量值的检测数据文件,并可在波形视图和工件图视图之间切换。促进厚度检测的数据管理和分析交互式自定义模板还有助于数据管理和分析。测量数据可轻松记录并与模板上的具体位置相关联。数据分析师可以回顾传输到PC界面应用程序的检测数据文件。他们可以研究工件每个TML的厚度趋势,并将这些信息用于质量控制文档、工艺改进和合规目的。PC界面应用程序显示多层测量工件的TML厚度趋势赋能制造工业数据驱动决策通过PC界面应用程序中的报告生成器,数据分析师可以利用一系列检测数据为利益相关方生成报告:工件设置信息检测数据文件统计厚度趋势带TML的工件图像通过这些支持数据驱动决策的全面报告,利益相关方可以根据可靠、全面的数据做出明智的选择。通过使用交互式自定义模板标准化检测、提高效率和准确性、改进培训和促进数据分析,制造商可以优化质量控制工作。我们期待看到这一功能给制造业带来的不断进步和影响。
  • Filmetrics在台湾和慕尼黑成立薄膜厚度测量实验室
    加利福尼亚州圣地亚哥--(美国商业资讯)--Filmetrics 宣布在台湾台南和德国慕尼黑成立薄膜厚度测量实验室。该实验室不仅为亚洲和欧洲提供薄膜厚度支持中心,而且都并网到 Filmetrics 全球支持网来及时为我们的客户提供网络上和电话上的支持。新增设的两个实验室完成了我们的二十四小时全世界支持网来实现实时视频,远程诊断,以及在线“动手”服务。 这在实时支持薄膜厚度测量用户上标志着一个重要进展。  新的实验室将会支持所有的F20应用,包括半导体,太阳能,显示器,以及生物医学工业。Filmetrics 总裁查斯特博士说,“从现在起我们欧洲和亚洲的客户可以享有我们在美国的客户所享有的高水平的支持。并且,我们新的24小时支持网就好像Filmetrics应用工程师每天任何时候都坐在他们旁边。“  Filmetrics仪器用白色光照射薄膜,再根据测量光谱反射来确定薄膜厚度。波长范围可在220到1700纳米之间选择。Filmetrics软件分析收集到的光谱数据,从而确定厚度,光学常数,和其他用户选择的参数。  公司网站 http://cn.filmetrics.com  Filmetrics公司介绍  凭借多年薄膜厚度测量的经验和遍布全球的技术支持中心,Filmetrics提供了简单易用的仪器和无可比拟的支持。总部位于加利福尼亚州圣地亚哥,Filmetrics拥有全系列薄膜厚度测量系统,并不断开发更有效的薄膜测量新产品和技术。Filmetrics成立于1995年,并迅速奠定了台式薄膜测量行业的领导地位。  联系方式:  查斯特博士, Filmetrics, Inc., +1-858-573-9300  电邮:chalmers@filmetrics.com
  • 实验室技能小课堂--显微镜玻片的制作
    导读显微镜玻片做不好,哎呀,心痛!怎么办?实验技能小课堂开课了!!✨今天小编给大家总结了显微镜玻片的不同制作方法,希望能和大家一起渡过难关。 01涂片法 涂片材料有单细胞生物、小型藻类、血液、细菌培养液、动植物的疏松组织等。涂片时应注意:(1)载玻片要持平。(2)涂层须均匀且薄。(3)固定,可用化学固定剂或干燥法(细菌)固定。(4)染色,染色液要盖住全部涂面。(5)冲洗,用吸水纸吸干或烤干。(6)封片。 02压片法 将生物材料置于载玻片和盖片之间,施加一定压力,将组织细胞压散的一种制片方法,一般过程:(1)取材。(2)固定:取材后立即压片观察,可不作单独固定处理;取材后不立即视察,可将材料用固定液固定。(3)离析:对细胞团用水解分离液处理。(4)染色。(5)压片:将材料放在载玻片上,加一滴清水或染液,盖上盖玻片用拇指轻轻压片。(6)观察。 03切片法 观察机体各部的微细结构时常用,其中以石蜡切片最为常见。其制备程序大致如下:(1)取材与固定:取得新鲜材料后,切成适当的小块立即投入固定剂中进行固定。(2)脱水、透明与包埋:把固定好的材料的水分脱掉,经透明处理后,再浸入已融化的石蜡中进行浸透、包埋。(3)切片与染色:用切片机切成薄片,贴于载玻片上。脱蜡后进行染色。(4)封固:滴加中性树胶和盖片进行封固备用。
  • 探伤仪软件WeldSight更新!自动分析腐蚀,厚度C扫描可导出!
    什么是WeldSight?WeldSight是Tomoview和FocusPC的继任者,用于Focus PX和未来的Olympus PA采集装置。同时,WeldSight也是一个焊接检验专家,包含符合ISO、API、ASME和类似制造规范和工作程序的工具和特性,WeldSight和Focus PX专为工厂或大批量工作场所(包括机器人和集成系统)的重复焊接检查而设计。 FocusPC,一种强大的数据采集和分析软件程序;两个软件开发包(SDK):FocusControl和FocusData,可使用户基于自己的应用自行定制软件界面,并通过FocusPC控制检测过程,实现全自动检测操作。 WeldSight的重要功能 3D显示板材、管道、容器等进行体积合并后,可一键实现含PA数据的三维构件图像。组件设计和探头偏移在ESBT中管理,对于支持的配置,在WeldSight中无需配置即可实现。管道极坐标视图管道的一键式B扫描极坐标视图允许在多探头体积合并和单独跳跃中实现深度校正长度尺寸缺陷可视化。管道设计和探头偏移在ESBT中进行管理,并在weldsight实现配置。WeldSight本次升级核心自动腐蚀分析在腐蚀管理器下,设定需要分析的最大厚度以及缺陷在扫查轴和步进轴上的最小长度,点击run。操作界面:软件自动框选符合条件的缺陷并排序,在缺陷列表,可自动得出位置,长度,面积等信息。厚度C扫描在分析-corrosion下,可显示厚度C扫描,调节调色板,改变C扫的颜色。 C扫描导出:可在Export功能下,点击Cscan,可获取两种格式的数据:Excel,CSV,以下是Excel中视图的还原:生产力及便利性历史上,PA检查的许多技能和专业知识都是在复杂的软件导航和复杂的工作流程中完成的。而奥林巴斯的WeldSight软件,通过ESBT 设置扫查计划,且具有简单直观的用户界面和工作流程,非但可以显著的提升工作效率,同时也为高级焊接检验提供短期培训增添了更多可能性。WeldSight 软件集成Eclipse Scientific Beam Tool,集成了ESBT的所有探头、楔块、结构、校准试块、声束设置;简化设置复杂性和缩短创建时间,可一键创建扫查计划. 使用ESBT可减少培训和经验跟踪,并简化设置、获取和分析工作流程。WeldSight TCG带来了市场上非常好的校准速度和可重复性,包括同时或连续点创建、12位振幅分辨率和400%饱和极限。
  • 厚度33微米,科学家研发出高性能电磁屏蔽材料
    在日常生活和工作中,电子设备运行时会产生电磁辐射,可能会给人们的健康带来不良影响,各设备间的电磁干扰也会严重影响电子设备的性能及其正常运行。因此,发展新型电磁屏蔽材料,尤其是高性能电磁屏蔽材料是解决电磁污染的关键。  如今,各种电子设备越来越多地应用于人们的生活和工作中,但是电子设备在运行过程中会产生电磁辐射,可能会给人们的健康带来不良影响,各设备间的电磁干扰也会造成信号被拦截、数据丢失等,严重影响电子设备的性能及其正常运行。特别是随着物联网、自动驾驶、可穿戴设备的发展,电子设备越来越复杂、体积越来越小、精度要求越来越高,要保证这些高度集成、高功率的电子设备正常运行,电磁干扰屏蔽至关重要。  发展新型电磁屏蔽材料是解决电磁污染的关键,特别是超薄、轻质并具有优异力学强度和可靠性的高性能电磁屏蔽材料。日前,北京航空航天大学化学学院研究员衡利苹团队研发了一种具有超润滑界面的还原氧化石墨烯/液态金属(S-rGO/LM)异质层状纳米复合材料,可用于高性能稳定的电磁屏蔽。相关研究成果发表在国际学术期刊《美国化学学会纳米》上。  用石墨烯研发高性能柔性电磁屏蔽材料  电磁屏蔽材料是能够通过吸收、反射等方式来衰减电磁波能量传播,以有效抑制电磁干扰和污染的功能材料。  人们希望,电子设备在工作时,既不被外界电磁波干扰,又不辐射出电磁波干扰其他设备或危害人体健康,因此电子设备运行时,自身产生的电磁波需要被吸收,而外界入射的电磁波需要被反射或吸收。铜、铝等金属是常用的电磁屏蔽材料,但它们容易被腐蚀、密度大、重量重,并以反射电磁波为主,会造成二次电磁污染。特别是传统的金属材料不具备柔性,难以被应用在柔性电磁屏蔽领域。  镓基液态金属(LM)是目前柔性电子制造应用最广泛的材料,这主要归因于其具有低熔点、低黏度、高电导率和热导率等物理特性。衡利苹说,随着对具备室温流动性的镓金属、镓基合金液态金属材料研究的逐步深入,其在柔性电磁屏蔽材料领域已表现出相当大的潜力。  但是现有的镓基液态金属电磁屏蔽材料普遍需要与绝缘的聚合物基材共混,以得到具备一定机械强度、可实际应用的电磁屏蔽材料。而材料的导电性和导磁性越好,对电磁的屏蔽效能就越高,镓基液态金属电磁屏蔽材料与绝缘的聚合物基材共混,会损失镓基液态金属的导电性能,使电磁屏蔽性能无法达到最佳水平。使用一种本身也具备超高电导率的基材来构建液态金属柔性复合材料,成为提升液态金属柔性电磁屏蔽复合材料性能的关键。于是,石墨烯进入了衡利苹团队的视线。  石墨烯具有优异的光学、电学、力学特性,本身就可以保持很好的导电性。氧化石墨烯(GO)对镓基液态金属还起到了良好的桥接作用,因此,在S-rGO/LM材料内部,可形成连续完整的导电网络。材料厚度仅需33微米,就可屏蔽99%的入射电磁波,且对X波段的电磁屏蔽效率较高。  可作为抗结冰、除冰功能材料使用  聚二甲基硅氧烷(PDMS)具有耐热性、耐寒性、防水性、导热性以及良好的化学稳定性,电绝缘性和疏水性能好,可在-50℃—200℃下长期使用。目前,PDMS已广泛用于绝缘润滑、防震、防油尘和热载体等。  该团队先将S-rGO/LM材料在稀释后的PDMS溶液中浸涂,随后再对其旋转涂抹硅油,使其获得超润滑特性。衡利苹说,得益于材料本身的稳定性和超润滑界面的协同保护,S-rGO/LM材料在极限工作温度中,严重机械磨损后,依然能保持良好的电磁屏蔽能力。  除了具有出色的电磁屏蔽性能外,S-rGO/LM材料还具备优秀的热管理性能。实验显示,在1个太阳光照功率(100毫瓦/平方厘米)照射下,S-rGO/LM材料的表面温度在40秒内就可达到47.5℃。这表明,在低温地区,S-rGO/LM还可以作为具有抗结冰、除冰功能的材料来使用。
  • 蔡司推出新一代全自动数字玻片扫描系统
    蔡司Axioscan 7兼顾扫描性能和应用自由度 德国耶拿|2021年4月7日|蔡司研究显微镜解决方案 蔡司发布了新一代全自动数字玻片扫描系统Axioscan 7,用于显微镜样品的自动数字化成像。蔡司Axioscan 7继承了前一代产品 Axio Scan.Z1的优越性能,又几乎在各个方面都进行了重大改进:新型采集引擎,可实现更高的扫描速度;更广泛的成像模式,可提供更大的应用灵活性;拓展了高级荧光成像的性能;以及大大改善了用户体验。 在生命科学研究实验室,公共成像平台和药物研究中,自动而可靠对玻片进行高质量数字显微成像的需求不断增长。蔡司Axioscan 7通过将持续的高速扫描和简单的操作与针对不同应用领域的个性化选项相结合,满足多种应用领域对可靠的长时间扫描性能以及高品质成像质量的需求。 全新明场反差成像方法更全面的展现样品特征 蔡司Axioscan 7能够在不同的明场成像模式之间自动切换,以适应不同应用的要求,同时保持最佳的扫描性能。完全支持圆偏光和线偏光成像,从而开辟了一系列新的实验和成像模式组合。TIE是一种新的用于在透明样品中产生对比度的方法,增加了相位和浮雕反差,丰富了成像模式。TIE可以在常规明场模式下检测到几乎没有对比度的透明组织,因此可以保护样品免于漂白,并以非常快的聚焦速度加速荧光成像过程,从而有利于使用敏感的荧光染料进行实验。 高效荧光成像 当涉及多色荧光成像时,速度,温和处理和最佳波长至关重要。蔡司Axioscan 7采用快速且可重现的LED照明,快速滤光轮和多色的荧光滤块,可有效分离各种荧光通道。两种光源——超快7色LED光源蔡司Colibri 7和白光LED光源X-Cite Xylis ——为选择合适波长提供了灵活性。新设计的用于多色荧光成像的荧光滤块可实现清晰的光谱区分,分离多色荧光。 高级相机提高图像质量 新的玻片扫描系统配备了蔡司Axiocam产品组合中最高级别的Peltier制冷相机,以先进的成像性能支持明场和荧光应用。蔡司Axiocam 705 color相机具有每秒55帧的采集速度和广阔的视野范围,可以快速完成明场和偏振成像任务。蔡司Axiocam 712 mono相机像素尺寸小(3.45 µm),可以充分利用高数值孔径物镜的分辨率潜力,并具有非常低的读出噪声,这使其成为高级荧光成像应用的首选。 有价值的投资对高通量和批量筛选能力的需求推动了自动化仪器的发展。蔡司Axioscan 7可以在不牺牲灵活性或高质量图像的情况下实现自动化,为公共成像平台吸引大量客户。这种新型玻片扫描系统能够满足从组织切片中多色荧光染色到岩石切片中偏光等多种多样的应用需求,吸引了生命科学和地质学等领域的用户。蔡司Axioscan 7产品设计强大,适合的用户群体广泛,在机时利用率方面表现出色,因此可迅速收回成本。 蔡司全自动数字玻片扫描系统 Axioscan 7,配置蔡司Colibri 7用于荧光成像 蔡司Axioscan 7可一次性对100张相似样品或混合多种应用的样品进行数字化采集 适合生命科学应用的蔡司Axioscan 7
  • 高阻隔材料测试中厚度对渗透率的影响
    当天气变冷时,我们马上就知道多穿几层衣服会让我们更暖和。简单地说,如果你想要更多的保护,你就增加更多的厚度。同样的原理也适用于气体透过率测试。经验法则是,如果你将材料的厚度增加一倍,阻隔水平也会增加一倍,相应的透过率将减少一半。厚度对渗透率的影响有多大?很少有人去了解的是,较厚的样品渗透达到平衡所需的测试时间。典型的假设是,厚度加倍就需要测试时间加倍。这是不正确的。通常情况下,每次材料厚度增加一倍,渗透率达到平衡需要4倍的时间。下面是厚度1mil和5mil PET薄膜及其渗透率水平的比较。选择这些薄膜是因为它们在短时间内WVTR达到平衡。在此示例中,1mil PET薄膜的水蒸气透过率 (WVTR) 为10.1 g/(m2 x day)。达到该值95%所需的时间不到30分钟。5mil PET薄膜的WVTR为2.17 g/(m2 x day),需要近450分钟才能达到最终值的95%。我们通常看到,对于厚样品特别是在测量更高阻隔材料时,最后5%~10%的渗透率平衡可能需要相对较长的时间。通过测试得出结论当测试较厚材料的阻隔时,整体渗透率会成比例下降。材料厚度增加5倍,测得的WVTR从10.1 g/(m2 x day)下降至 2.17 g/(m2 x day)。 随着材料厚度的增加,需要更多的时间(超过5倍)来测试样品以达到平衡。如图所示,渗透率水平和达到平衡的时间都受到材料厚度的影响。当您优化测试条件(例如WVTR和CO2TR的流速)和测试持续时间以确保平衡值时,需要牢记这一点。适用于薄样品的标准测试设置可能会为厚样品产生不准确或过早的结果。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。循环后的PEO和β-Li3PS4/S界面层的特征由SEM描述,如图6所示。图6a-6h显示了循环后PEO界面层的SEM图像,其中图6a-6d显示了平视形态,图6e-6h显示了横断面形态。图6a显示了循环后带有PEO界面层的Li7P3S11板材。片材的中间部分与Li-BP-DME接触以产生SEI,而片材的边缘部分是涂在Li7P3S11片材上的原始PEO薄膜,没有与Li-BP-DME接触。PEO界面层与Li-BP-DME反应的部分的形态与Li7P3S11片材的未反应区域明显不同。图6c显示了未反应区域的PEO层的放大SEM图像,它是光滑、平坦和致密的。图6b和6d显示了SEI区域的放大SEM图像,它也是致密的,而不是裸Li7P3S11片材的充满裂纹的片材(图1k和1l)。SEI表面是凹凸不平的鱼鳞层,说明靠近Li-BP-DME的SEI表面是以有机物为主体。图6e-6h显示了PEO界面层的横截面形态。循环前的SEM图像为图6e和6g,显示了3.56μm的PEO界面层的致密和平整。图6f和6h显示了循环后PEO界面的SEM图像,其厚度为3.29μm,与循环前相比,其厚度略有减少。然而,它仍然是致密和相对平坦的,没有裂缝。在PEO界面层下的Li7P3S11薄片也得到了很好的保护和致密,没有出现裸Li7P3S11的分层(图1n)。从这两个角度来看,PEO界面层可以有效地阻止液态金属锂-BP-DME对硫化物SE Li7P3S11的侵蚀。β-Li3PS4/S界面层也通过SEM进行了表征,如图6i-6p所示。图6i和图6k是循环前的β-Li3PS4/S界面层的平视形态图。结果显示,界面层的边缘是平坦而致密的,但在界面层的较厚部分存在一些裂缝。图6j和图6l显示了循环后的界面层的平视形态。界面层表面存在裂缝,球形的有机物在裂缝处聚集/生长,而没有裂缝的地方则是平坦而密集的。图6m-6p显示了界面层的横截面形态,其中循环前的界面层光滑、致密、平整,厚度为2.05μm(图6m和图6o)。循环后的界面层厚度约为0.67μm(如果包括上面的凹凸不平的有机层,则1μm),但裂缝出现并增长,使β-Li3PS4/S界面层爆裂(图6n和图6p)。因此,β-Li3PS4/S界面层失败的原因不是它与Li-BP-DME的反应,而是由于其不均匀的厚度所引起的裂缝。Li-BP-DME溶液通过这些裂缝与硫化SE Li7P3S11反应,导致Li7P3S11和β-Li3PS4/S之间的界面反应产物的增长,使界面层破裂。在形成更多的裂缝后,当β-Li3PS4/S界面层被破坏时,对称电池就会失效。为了了解PEO-LiTFSI界面层与硫化物SE Li7P3S11/有机LE Li-BP-DME兼容,以便在室温下实现良好的Li+传导,通过TOF-SIMS技术测量了循环后的PEO@Li7P3S11片。结果显示,大量的无机和有机界面反应产物积累。无机产物包括LiF(F-,Li2F+,Li3F2+),Li2CO3(Li3CO3+),Li2NO3(NO2-,NO3-),Li3P(P-),Li2S(S-),LiH(Li2H+),LiCx(C-,C2-,C4-,C6-,Li3C3+),Li2O(O-),Li3PO4(PO2-,Li3P2O2、Li3P2O3-, Li2PO2+, Li4POH4+),Li2SO3(Li3SO+),LiSH(Li2SH+),LiOH(Li2OH+),微量硫化物SE Li7P3S11的一些分解产物(PS2-,PSO-),以及由微量杂质元素产生的LiCl(Cl-)。有机产品包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H3+,C2H5+,C3H7+,C4H7+),烯基化合物(C3H5+),甲酸锂HCOOLi(CHO2-)、乙酰化锂HCCOLi(C2HO-),LiTFSI的有机分解产物(OFH3-、CH2OF-、C2O2F-、CNO-)和残留的乙腈(ACN)小分子(CN-)。从负离子(图7a和补充图6)和正离子(图7b)模式的映射图像可以看出,除了C-和Li+的分布相对均匀外,无机和有机二级离子片段的分布并不均匀。这些二次离子碎片的聚集分布与循环后PEO界面层的SEM图像(图6d和图6h)的粗糙表面一致。根据负离子和正离子模式的深度曲线(图7c-7f),S-、SH-和Li+二次离子碎片的信号强度随着深度的增加而增强,这表明SEI层中越来越多的Li2S(S-)、LiSH(SH-)无机物。一些无机离子碎片(如F-、PSO-、PS2-、PO2-、P-、Li3P2O2-、Li2+、Li2OH+、Li2F+、Li3F2+和Li3O+)的信号强度随着深度的增加先减后增,说明这些无机物在SEI表面或深层的分布较多,而在SEI表层的分布较少。其中,无机物LiF(F-、Li2F+、Li3F2+)、LiOH(Li2OH+)、Li3PO4(Li3P2O2-)、Li2O(Li3O+)都是有利于Li+传导的成分。其他无机二次离子碎片如NO2-、NO3-、Li3CO3+、Li2H+、Li3C3+和Li4POH4+的信号强度随着深度的增加而降低,说明Li2NO3(NO2-、NO3-)、Li2CO3(Li3CO3+)、LiH(Li2H+)、LiC(Li3C3+)等无机物更多地分布在SEI层的表面,在SEI层内部分布很少。CN-、CH2OF-、CH-和C2H-的信号强度很强,但随着深度的增加而降低,表明这些有机物主要分布在靠近SEI的表面。CN-的存在表明小的乙腈分子仍然存在,而CH2OF-是LiTFSI的分解产物。其他有机离子碎片C7H5-, C2HO-, CHO2-, OFH3-, C2O2F-, CNO-, CH3+, C2H3+, C2H5+, C3H5+, C3H7+, C4H7+, C3H6O+, CH2OLi+的信号强度随深度增加而明显下降,说明这些有机物只分布在SEI的表面。这些离子碎片的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图7g)。基于TOF-SIMS的表征结果表明,当温度高于玻璃状态时,PEO-LiTFSI界面层中Li+的传导模式不再是PEO分子链运动引起的Li+的跳跃性传导、而是在PEO界面层中产生了大量的无机锂导体(LiF、Li2CO3、Li2NO3、Li3P、Li2S、LiH、LiCx、Li2O、Li3PO4、Li2SO3、LiSH、LiOH)。一般认为,单一的化合物不能实现理想的SEI膜的理想功能,因为当不同的化合物成分共存于SEI中时,它们可以相互合作,形成异质结构,从而改善阳极面的离子导电性和电子绝缘性能。此外,氰基和甲氟烷的作用进一步改变了Li+在PEO层中的传输模式,因为氟具有很强的电子汲取能力,可以削弱含氟有机物(OFH3-、CH2OF-(甲基氟醚))与Li+的相互作用。此外,含氟有机物可以与含氟阴离子(TFSI-)相互作用,抑制阴离子的运输,从而减少浓度极化。作为增塑剂的小乙腈分子和液体锂金属Li-BP-DME的残留物也可以促进Li+在电解质中的迁移。在无机锂盐、甲醚和增塑剂的共同作用下,界面层可以有效地运输Li+。Li-BP-DME溶液作为一种活性电子间接转移引发剂,可以引发环氧乙烷的阴离子活性聚合,生成PEO。因此,高分子量的PEO与Li-BP-DME具有良好的化学稳定性。因此,该界面层具有化学/电化学稳定性、高Li+导电性和电子绝缘性。由于TOF-SIMS的检测限制,测试深度只能达到500nm,这与SEM显示的2.6μm的界面层厚度不同(图6f和图6h)。因此,TOF-SIMS只测试SEI的表面层和SEI内层的一部分。根据这部分信息,无机产物的信号强度随着深度的增加而增加,而有机化合物的信号强度则随着深度的增加而减少。可以推测,在靠近硫化物SE的一侧积累了更多的无机产物,而在靠近Li-BP-DME的一侧存在更多的有机产物。β-Li3PS4/S能够作为硫化物SE和有机LE电池系统的界面层的机制是由于β-Li3PS4/S与醚基液体电解质反应的唯一产物是DME溶解的Li3PS4,它不溶于各种有机极性溶剂,从而阻止了β-Li3PS4/S的进一步溶解,从而阻止了硫化物SE Li7P3S11被有机LE Li-BP-DME侵蚀的现象。为了了解β-Li3PS4/S界面层如何有效地工作,通过TOF-SIMS技术测量了循环后的β-Li3PS4/S@ Li7P3S11片层。β-Li3PS4/S表面的SEI带负电和正电的片段的质谱显示在补充图8。可以看出,在界面上产生了一些无机和有机产物。无机物有Li2CO3(Li3CO3+), Li2NO3(NO2-), Li3P(P-), Li2S(S-), LiH(Li2H+), LiCx(C-), Li2O(O-), Li3PO4(PO2-, Li4POH4+)、 LiSH(SH-),LiOH(OH-),硫化物SE Li7P3S11(PS2-,PSO-)的分解产物,以及由杂质元素氟产生的LiF。有机化合物包括乙炔化合物(CH-,C2H-),烷基化合物(CH3+,C2H5+,C3H7+,C4H7+),烯基化合物(C2H3+,C3H5+),甲酸锂HCOOLi(CHO2-),乙酰锂HCCOLi(C2HO-)和其他有机化合物。从负离子(图8a)和正离子(图8b)模式的映射图像可以看出,各种界面产物均匀分布。有机物质CH-、C2H-、C-、O-和无机物质Li2OH+的信号强度很强,说明SEI表面基本上是由有机物质和少量无机LiOH组成。根据负离子和正离子模式的深度曲线(图8c-8f),Li2H+、Li3CO3+、Li4POH4+和Li2F+(杂质碎片离子)的信号强度随深度增加而降低,说明SEI层表面存在Li2H(Li2H+)、Li2CO3(Li3CO3+)、Li3PO4(Li4POH4+)和LiF(Li2F+)。其他无机离子片段,如S-、S2-、SH-、P-、PS-、PS2-、PSO-、Li2+、Li2S+、Li3S+、Li3O+和Li2OH+的信号强度随着深度的增加而增加,表明Li2O(Li3O+)、Li3P(P-)、LiSx(Li2S+, Li3S+)、 LiOH(Li2OH+)、LiSH(SH-)和与Li7P3S11有关的离子性物种PSx-(P-、PS-、PS2-、PSO-是PSx-的氧化产物)在SEI层的分布相对较多,在SEI表层的分布较少。与无机物的信号强度相比,大多数有机物(CHO2-, C2HO-, CH3+, C2H3+, C2H5+, C3H3+, C3H5+, C3H7+, C4H7+)的信号强度较弱,并随着深度的增加而降低,说明它们只分布在SEI表面。相反,CH-和C2H-信号强度较强,并随深度的增加而减少,表明SEI中的有机物质。这些二级离子片段的信号强度随深度变化的信息在三维分布图中得到了更直观的体现(图8g)。从上述数据中,可以得到一个相对清晰的SEI结构。β- Li3PS4/S界面层被分为两层。靠近Li-BP-DME的一层是溶解的β-Li3PS4/S,因为在这层中同时存在着与Li3PS4有关的离子物种PSx-和与DME有关的有机离子物种CH-, C2H-, CHO2-, C2HO-。此外,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH也存在于该层中,它们相互配合,提高了Li+的导电性和负极端的电子绝缘性。另一层是靠近硫化物SE Li7P3S11的致密的β-Li3PS4/S层。受TOF-SIMS测量范围的限制,SEI的深度为500nm,小于SEM显示的SEI层厚度的1μm(图6n和图6p)。然而,根据有机和无机物质随深度增加而变化的趋势,可以推断出SEI具有上述的双层结构。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。【结论】总之,通过一系列系统的表征,明确了硫化物SE Li7P3S11与有机LE Li-BP-DME之间的界面反应机制。在此基础上,设计并探索了硫化物SE (Li7P3S11)与有机LE (Li-BP-DME)之间稳定的界面层材料,从而突破了硫化物SE与有机LE之间长期存在的固-液界面相容性难题。事实证明,PEO-LiTFSI聚合物界面层和β-Li3PS4/S界面层在近1100h和1000h的长期稳定循环中是有效的。此外,对这两种界面层进行了详细的描述,以深入了解其保护机制。该工作为解决硫化物固体电解质与有机液体电极之间的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【作者及团队介绍】 第一作者:彭健,男,博士毕业于中科院物理所。研究方向为新型电极材料、新型硫化物固态电解质材料及电池研究。伍登旭,男,本科毕业于北京理工大学化学与化工学院,现为中科院物理所E01组研究生。主要研究方向为硫化物固态电解质及其界面问题。姜智文,男,本科毕业于南京工业大学,现为英国南安普顿大学研究生。主要研究方向为硫化物固态电解质及其界面问题。 合作作者:陈立泉:中科院物理所博士生导师。中国工程院院士。北京星恒电源股份有限公司技术总监。曾任亚洲固体离子学会副主席,中国材料研究学会副理事长,2004年至今任中国硅酸盐学会副理事长。主要从事锂电池及相关材料研究,在中国首先研制成功锂离子电池,解决了锂离子电池规模化生产的科学、技术与工程问题,实现了锂离子电池的产业化。近年来,开展了全固态锂电池、锂硫电池、锂空气电池、室温钠离子电池等研究,为开发下一代动力电池和储能电池奠定了基础。曾获国家自然科学奖一等奖、中科院科技进步奖特等奖和二等奖,2007年获国际电池材料协会终身成就奖。2001年当选为中国工程院院士。合作作者:李泓:中国科学院物理研究所研究员,博士生导师。主要研究方向为高能量密度鲤离子电池、固态鲤电池、电池失效分析、固态离子学。提出和发展了高容量纳米硅碳负极材料,基于原位固态化技术的混合固液电解质高能量密度鲤离子电池及全固态电池等。发表了470余篇学术论文,引用47000次,授权70余项发明专利,H因子115。国家重大人才工程B类专家,荣获国家杰出青年科学基金资助。目前是科技部和工信部+四五储能和智能电网重点专项实施方案与指南编写组的总体组组长,国家新能源汽车创新中心学术委员会委员。国际固态离子学会、国际鲤电池会议、国际储能联盟科学执委会成员。围绕固态电池,推动孵化成立了多家企业。 通讯作者:吴凡:中科院物理所博士生导师、共青团常州市委副书记。入选国家级人才计划、中科院人才计划、江苏省杰出青年基金。获全国青年岗位能手(共青团中央)、全国未来储能技术挑战赛一等奖、全国先进储能技术创新挑战赛二等奖(国家工信部)、江苏青年五四奖章等荣誉。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制