当前位置: 仪器信息网 > 行业主题 > >

介电性质测量

仪器信息网介电性质测量专题为您整合介电性质测量相关的最新文章,在介电性质测量专题,您不仅可以免费浏览介电性质测量的资讯, 同时您还可以浏览介电性质测量的相关资料、解决方案,参与社区介电性质测量话题讨论。

介电性质测量相关的论坛

  • 【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    【原创大赛】2016国产磁测量好仪器系列之四:磁电输运性质测量系统ET-9000系列

    2016国产磁测量好仪器系列之四:磁电输运测量系统ET-9000原创:刘小军、刘卫滨、李鹏飞 工程师,北京东方晨景科技有限公司推荐:陆俊 工程师,中科院物理所磁学室2016年9月25日一句话推荐理由:从引进吸收到成功集成改良的磁测量好仪器。一、引言电阻是人们借助电传输能量与信息时必须面临的基本物理现象,它导致电损耗及发热,因而几乎所有的电学材料都有必要考察其电阻率。对于电阻或电阻率的测量比较陌生的读者可以看一篇相关通俗意义的介绍“电阻测量的光与影”。本文要介绍的是磁场下电输运测量,根据加载磁场与电流的方向可以分为纵向磁阻(或简称磁阻效应)与横向磁阻(或简称霍尔效应)。进行磁电输运测量的意义在于磁自由度引入,通过电阻率随磁场的变化规律不仅仅可以用来测量磁场的大小,而且让电阻能展现出更深层次物质结构的信息(比如因晶格或拓扑等因素带来的电子自旋相关的能带结构变化)。其中最吸引人的是电子能量结构的量子化过程,竟可以只是通过简单的通过加磁场测电阻的方法予以揭示,参考图1,如1985年的诺贝尔物理学奖颁发给Klaus von Klitzing的量子霍尔效应、1998年的诺贝尔物理学奖颁发给崔琦等三位物理学家的分数量子霍尔效应、2007年诺贝尔物理学奖颁发给Albert Fert与Peter Gruenberg的巨磁电阻效应以及不久前中国刚公布的“未来科学奖”颁发给清华大学薛其坤的量子反常霍尔效应等奇特量子效应(也有可能在不久的将来获得诺贝尔奖)。因而磁场下进行电输运测量成为凝聚态物理学研究中的家常便饭式的手段。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612654_1611921_3.png图1 磁电输运测量相关的诺贝尔奖级别工作图示二、背景磁电输运测量相关的仪器虽然很轻松就能实现,但要达到在证明被研究物质的奇特量子性质并不容易。其中涉及到的主要技术不仅仅是电压与电流的稳定测量,还包括磁场的稳定与测量,此外还可能涉及到低噪声的低温甚至光学配件等,因而其综合性导致其从头开始的研发周期较长。几十年来,磁电输运测量仪器主要来自于美国的量子设计公司与Lakeshore两家公司。北京东方晨景科技有限公司从20世纪末开始引进代理Lakeshore公司设备,经过十多年的消化吸收,逐步掌握了国外公司在输运测量、磁场电源、低温等系统集成方面的技术,不仅如此,还针对国外公司在应用过程中的让用户感到不便的软硬件问题,进行了自主的改良研制,逐步形成ET-9000测量系统,系统照片如图2所示,该系统从2010年正式推出至今,明显的增加了国内外磁电输运测量仪器系统的比例(约从20%上升到40%)。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612655_1611921_3.png图2 ET-9000 型磁电输运测量仪器照片三、简介ET-9000系列磁电输运性质测试系统是集霍尔效应、磁阻、变温电阻、I-V特性等测试于一体的全自动化测试系统,其总体原理框图如图3所示。系统全面地考虑了集成一体性、屏蔽防干扰能力和操作人性化等用户经常忽略的问题,选取了美国Keithley的电测量仪表,高精度高稳定性电磁铁平台,配备灵巧的测量样品杆和快速插拔样品卡,加上全自动化的专用测试软件,能让用户快速方便地进行电输运测试,并获得准确可靠的数据。http://ng1.17img.cn/bbsfiles/images/2016/09/201609291741_612657_1611921_3.png图3 ET-9000磁电输运测量仪器的测试原理框图ET-9000根据不同的材料不同的测试需求分为多种型号,综合各类型号,其主要技术指标列表如下:物理学参数迁移率1 ~ 1 × 106 cm2/vs载流子浓度6 × 108 ~ 6 × 1023 cm-3霍尔系数±1 × 10-5 ~ ±1 × 1010 cm3/C电阻率5 × 10-9 ~ 5 × 106 Ω·cm电学参数电阻100nΩ ~ 100GΩ电流源±0.1pA~±1A(±1.05A@±21V, ±105mA@±210V)电压源±5μV~±200V(±21V@±1.05A, ±210V@±105mA)电流测量±10fA~±1.05A(10pA为最小分辨率)电压测量±1nV~±200V(0.1μV为最小分辨率)磁场环境室温磁场2.6T@10mm间距变温磁场2T@低温恒温器温度(选件)单点液氮盒77K闭循环恒温器4K~325K(4K型),10K~325K(10K型)高温炉325K~1000K其他样品最大尺寸50mm*50mm*3mm样品数量2个(增加选件可扩展到4个)光学配件[

  • 如何测量土壤理化性质

    按照  鲍士旦.土壤农化分析.第3版.北京:中国农业出版社.2002请问如何测定土壤理化性质,包括土壤pH、CEC、总碳(有机物总量)、总N。我没有这本书!有这本书、或能借阅这本书的人士请用数码相机将有关以上知识点拍照传给我!谢谢[em61] [em61]

  • 低温介电测量装置

    低温介电测量装置

    最近搭建了基于labview的介电测试系统,用advance research system的闭循环控温,信号跳动非常大,请问是哪些原因造成的?仪器震动的比较厉害的话是否会对测量造成影响? 有没有在这方面有经验的,希望能够指点一二。附图是测试装置。http://ng1.17img.cn/bbsfiles/images/2014/01/201401081649_487147_2269306_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/01/201401081650_487148_2269306_3.jpg

  • 误差有性质不等于误差有类别

    误差有性质不等于误差有类别

    ----该博文被科学网推为精选。[align=center]误差有性质不等于误差有类别[/align][align=center]武汉大学 叶晓明[/align] 现有测量理论是基于误差分类认识论而展开,但一直以来,几乎很少有人注意到这种误差分类学说存在概念逻辑自相矛盾。自作者在几个文献中明确提出以误差无类别哲学来解释测量误差理论以来,在测量学术界仍然遭到了反对的声音,当然,支持的声浪也不小。那么,今天就有针对性地对这些反对者的主要困惑点作一个解答。作为一个科学理论,最起码必须逻辑严密、必须和实践相吻合。任何一个自相矛盾或与事实不符的证据都将构成推翻或纠正理论的充分理由。作者用于推翻误差分类学说的案例很多,这里仅简单举一例。 2005年珠峰高程的测量结果是8844.43米,精度(标准偏差)±0.21米。按照测绘学测量平差的理论解释,精度是对随机误差的评价,那么珠峰高程结果的误差就当然是随机误差了;但按照误差的定义(测量结果与真值之差),珠峰高程结果的误差是一个恒定的偏差(因为珠峰高程的真值不可能处于随机不停的变化状态),一个恒定的偏差不是随机规律,当然应该属于系统误差。这就自相矛盾了。 说到这里,有些测量界学者通常很不服气:重新重复测量珠峰高程时一批测量结果不就离散了吗?误差不就随机变化起来了吗? 但是!殊不知,重新重复测量的误差就是其他的不同误差了,和当前的这个偏差就不是同一个东西了。如果用其他大量不同的误差证明当前一个偏差是随机误差的逻辑成立,那么这个世界上任何偏差都可以被证明为随机误差,根本就没有系统误差,那些我们过去所认为的系统误差都将成为随机误差! 一个值得玩味的话题是,对于珠峰高程,普通百姓一般都是把精度±0.21米理解成偏差的可能存在范围----这恰恰就是真正的不确定性概念的理解方式(我的论著中有详细推理),他们会认为测量学家们纠缠珠峰高程误差的类别问题和未来重复测量的发散性问题纯粹是莫名其妙(读者不妨调研一下身边的非专业朋友)。 类似的自相矛盾还有。再譬如,总说系统误差不会贡献发散,而实际的误差数据处理中却都是从离散的误差样本序列中把系统误差分离出来。 误差分类学说遭遇了逻辑悖论,仅凭这些自相矛盾和不合实际的事实而要求对其推翻或纠正当然是足够充分的了。[align=center] [img=,321,292]http://ng1.17img.cn/bbsfiles/images/2018/03/201803290858425919_9615_2101846_3.jpg!w321x292.jpg[/img][/align] 即使如此,我当然也知道有些学者们心里仍然不服:你如何解释测量序列的发散和偏离的事实?所有测量教科书都有的那个图(如图1)? 请稍安勿躁,尽管放心,这当然是新的测量理论必须讲清楚的事情。实际上,不仅这个图,新的测量理论要重新解释的概念还很多。 这个图不就是个原始观测值序列的离散和偏离现象吗?不就是因为重复测量条件的变化致使一些误差产生了系统性影响而另外一些误差产生了随机性影响吗? 但是请注意!我在这里要指出的哲学问题是:不能把误差的系统/随机影响性质和误差分类扯上关系!误差可以有不同的表现性质,但误差没有不同的类别之分!这里举一个最简单的例子来说明这个道理:水在不同温度气压条件下能表现出气化、液化和固化性质,您能把水按气化、液化和固化性质分成三种不同类型吗? 以测量人喜欢纠结的噪声误差为例:噪声误差是时间的随机函数,遵循正态分布,单传感器重复测量时因为时间条件在改变,自然对观测值序列产生随机性的影响;但如果设计一个多路传感器并行同步的观测方法,所有观测值都是在同一时刻点采样得到,被测电压中包含的噪声误差对这样的观测值序列自然是产生系统性的影响。 再譬如,测量人都熟悉的舍入(四舍五入)误差是量程的锯齿周期规律,也遵循矩形分布。若重复观测值是在同一量程点取得,舍入误差产生系统性影响;若重复观测值是在任意不同的量程点取得,舍入误差则产生随机性影响。 再譬如,测绘界都熟悉的测距仪周期误差是量程的正弦函数,也遵循U形分布。若重复观测值是在同一量程点取得,周期误差产生系统性影响;若重复观测值是在任意不同的量程点取得,周期误差则产生随机性影响。 这就是误差的影响性质实际是测量方法条件决定的道理,就如同水的性质是温度气压决定的道理一样。就是说,脱离了具体应用条件去讨论一个孤立的误差的类别是没有意义的,就如同前边讨论珠峰高程的误差,因为没有涉及珠峰高程值如何用于后续下游测量,也就不需要涉及其误差对未来什么测量会产生什么影响。 当然,如果把系统/随机误差概念仅仅解释为当前误差的系统/随机性影响(临时性类别)而不再赋予其他任何概念内涵,这本来也的确是没有问题的。而作者之所以坚持要干脆废弃误差分类概念实则是因为现有测量理论给误差分类概念赋予了太多的概念内涵。譬如,系统误差除了误差的系统性影响的含义外,还有数学期望与真值之差、不贡献发散而只贡献偏离、不遵循随机分布、没有方差、表达测量准确度、有规律的误差、可以改正的误差、已知的误差、只能用函数模型处理的误差、可以用函数模型把它从离散的误差群中分离出来等等;随机误差除了误差的随机性影响的含义外,还有结果与数学期望之差,只贡献发散而不贡献偏离、遵循随机分布、观测值序列的发散度、表达精度、随机规律的误差、不能改正、未知的误差、只能用随机模型处理、白噪声、时间的随机函数等等;甚至任何误差都必须要牵强附会地扣上一个终身性的类别帽子(如前边珠峰案例)。恰恰就是这些引伸出来的概念把现有测量理论的逻辑搅得一团糟,给人们灌输了诸多错误的观念。既然如此,废除误差分类概念、就事论事岂不更好? 重要的是,这个图1只是对原始观测值序列分布的描述,这个图的最大忽悠点就是它没有标注最终测量结果!而测量人都清楚的一个基本道理是,一个被测量只能提交一个测量结果,不可能把一批离散的原始观测值不经任何数据处理而直接作为测量结果提交,而一个测量结果则只有一个恒定的偏差[color=#333333]Δ(即使这个偏差含有来自噪声的贡献)。如图2。虽然这个偏差Δ可分解为结果与期望之差Δ[/color][sub]A[/sub][color=#333333]和期望与真值之差Δ[/color][sub]B[/sub][color=#333333],但偏差Δ[/color][sub]A[/sub][color=#333333]和Δ[/color][sub]B[/sub][color=#333333]都是恒定的偏差,实际也都有其各自的概率分布区间,根本没有性质差异。[/color]就是说,精度/准确度术语用于原始观测值序列还勉强可以(但概念逻辑跟误差规律性之间还不能有关系),而现有测量理论却居然把精度/准确度概念用到了最终唯一测量结果的单一偏差上,以至于把不确定度概念也污染得不伦不类。[align=center][img=,249,236]http://ng1.17img.cn/bbsfiles/images/2018/03/201803290857408539_7159_2101846_3.jpg!w249x236.jpg[/img][/align] 实际上,根据图2,总偏差:Δ=Δ[sub]A[/sub]+Δ[sub]B[/sub],总方差:σ[sup]2[/sup]=σ[sup]2[/sup](Δ[sub]A[/sub])+σ[sup]2[/sup](Δ[sub]B[/sub])。这个σ就是不确定度,根本没有精度、准确度的什么事。 新的测量理论要重新解释的问题还很多,有兴趣的朋友请看我的书吧。这里再提前作个预告:一篇完整论述误差规律性和影响特性的论文在历时1年多的审理后刚完成大修,以下是按大修要求提交的Highlights。[b]Highlights:[/b]●Error's regularity and randomness depend on the perspectives of observing error●Error cannot beclassified according its regularity and randomness●The influence characteristics of error depend on the method of repeated measurement●Error cannot beclassified according its influence characteristics●Both function model and random model can be used to process the same error 2018 3 21[align=center][img=,401,574]http://ng1.17img.cn/bbsfiles/images/2018/03/201803221024209666_4892_2101846_3.jpg!w401x574.jpg[/img][/align]

  • 【网络会议】:利用原子力显微镜在力谱测量方法介绍及其在纳米机械性质表征的应用

    【网络会议】:利用原子力显微镜在力谱测量方法介绍及其在纳米机械性质表征的应用

    【网络会议】:利用原子力显微镜在力谱测量方法介绍及其在纳米机械性质表征的应用【讲座时间】:2015年09月11日 10:00【主讲人】:仇登利布鲁克纳米表面仪器部应用科学家。2004年毕业于吉林大学化学学院高分子化学与物理专业,获得理学博士学位。博士期间主要利用原子力显微镜(AFM)研究有机界面聚集体的聚集形态。毕业后,留学加拿大和美国多年,继续利用AFM研究半导体、数据存储和材料表面工程。于2009年加入维易科(VEECO)公司主要从事AFM相关的应用技术支持;具有十多年的AFM技术经验。【会议介绍】 原子力显微镜除了对样品进行形貌的表征以外,还可以利用其力学测量模式用于研究探针与样品之间的相互作用。 这里我们主要介绍利用探针进行力学测量时的主要参数、相关模型以及对样品表面纳米机械性质表征的应用等。 -------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月11日 09:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14555、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 煤的物理性质和工艺性质

    煤的物理性质 主要包括煤的密度、表面性质(湿润性、表面积、孔隙度)、光学性质(折射率、反射率)、电性质(电导率、介电常数)、磁性质、热性质(比热容、热导率、热稳定性)和机械性质(硬质、脆度、可磨性)。煤的工艺性质 ①粘结性。指烟煤在受热时本体粘结或与外加惰性物质粘结的能力,它是评价工业用煤特别是炼焦煤的主要指标。实验室测定方法有粘结指数、坩埚膨胀序数、罗加指数等。②结焦性。指在模拟工业焦炉条件下,或在半工业性试验焦炉内,煤结成焦炭时的性能,实验室测定方法有奥亚膨胀度、胶质层指数、葛金焦型等。③发热量。指单位质量的煤在完全燃烧时放出的热量。它是评价燃料煤的主要指标。根据计算时燃烧产物中水的状态不同,有高位发热量与低位发热量之分,包含燃烧生成的水蒸气冷凝潜热的,称为高位发热量,不包括水蒸气冷凝潜热的,称为低位发热量。④反应性。又称活性,是指在一定温度下,煤与不同气体介质如二氧化碳、水蒸气、氧气、氢气作用的气化反应能力。⑤热稳定性。指气化、燃烧用煤在加热时块度变化的性质。⑥焦油产率。是评价煤和油页岩炼油适宜性的指标,通常采用铝甑低温干馏法测定。⑦可选性。是反映煤在洗选过程中,除去其中矿物质的难易程度。它是将各级粒度的煤在不同密度的液体中经浮沉试验而确定的。⑧灰熔点和熔融灰的粘度。将煤灰制成三角锥体,放在高温炉中,在一定气氛下加热,观察灰锥形状的变化,从而测定变形温度T1、软化温度T2和流动温度T3,其中T2表示煤灰熔点。熔融灰的粘度用高温粘度计测量。再想详细问老皮去,我是不懂的

  • 【分享】影响涂层测厚仪测量值精度的因素

    1.影响因素的有关说明   a 基体金属磁性质   b 基体金属电性质基体金属的电导率对测量有影响,而基体金属的电导率与其材料成分及热处理方法有关。使用与试件基体金属具有相同性质的标准片对仪器进行校准。   c 基体金属厚度  每一种仪器都有一个基体金属的临界厚度。大于这个厚度,测量就不受基体金属厚度的影响。本仪器的临界厚度值见附表1。   d 边缘效应   本仪器对试件表面形状的陡变敏感。因此在靠近试件边缘或内转角处进行测量是不可靠的。   e 曲率试件的曲率对测量有影响。这种影响总是随着曲率半径的减少明显地增大。因此,在弯曲试件的表面上测量是不可靠的。   f 试件的变形测头会使软覆盖层试件变形,因此在这些试件上测出可靠的数据。   g 表面粗糙度   基体金属和覆盖层的表面粗糙程度对测量有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测量时,在不同位置上应增加测量的次数,以克服这种偶然误差。如果基体金属粗糙,还必须在未涂覆的粗糙度相类似的基体金属试件上取几个位置校对仪器的零点;或用对基体金属没有腐蚀的溶液溶解除去覆盖层后,再校对仪器的零点。   g 磁场   周围各种电气设备所产生的强磁场,会严重地干扰磁性法测厚工作。   h 附着物质   本仪器对那些妨碍测头与覆盖层表面紧密接触的附着物质敏感,因此,必须清除附着物质,以保证仪器测头和被测试件表面直接接触。   i 测头压力   测头置于试件上所施加的压力大小会影响测量的读数,因此,要保持压力恒定。   j 测头的取向   测头的放置方式对测量有影响。在测量中,应当使测头与试样表面保持垂直。 2.使用仪器时应当遵守的规定   a 基体金属特性   对于磁性方法,标准片的基体金属的磁性和表面粗糙度,应当与试件基体金属的磁性和表面粗糙度相似。   对于涡流方法,标准片基体金属的电性质,应当与试件基体金属的电性质相似。   b 基体金属厚度   检查基体金属厚度是否超过临界厚度,如果没有,可采用3.3中的某种方法进行校准。   c 边缘效应   不应在紧靠试件的突变处,如边缘、洞和内转角等处进行测量。   d 曲率   不应在试件的弯曲表面上测量。   e 读数次数   通常由于仪器的每次读数并不完全相同,因此必须在每一测量面积内取几个读数。覆盖层厚度的局部差异,也要求在任一给定的面积内进行多次测量,表面粗造时更应如此。   f 表面清洁度 测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀产物等,但不要除去任何覆盖层物质

  • 影响涂层测厚仪测量精度的一些因素

    影响[url=http://www.dscr.com.cn/show.asp?id=175]涂层测厚仪[/url]测量精度的一些因素  a基体金属磁性质  磁性法测厚受基体金属磁性变化的影响(在实际应用中,低碳钢磁性的变化可以认为是轻微的),为了避免热处理和冷加工因素的影响,应使用与试件基体金属具有相同性质的标准片对仪器进行校准 亦可用待涂覆试件进行校准。  b基体金属电性质  基体金属的电导率对测量有影响,而基体金属的电导率与其材料成分及热处理方法有关。使用与试件基体金属具有相同性质的标准片对仪器进行校准。  c 基体金属厚度  每一种仪器都有一个基体金属的临界厚度。大于这个厚度,测量就不受基体金属厚度的影响。  d 边缘效应  本仪器对试件表面形状的陡变敏感。因此在靠近试件边缘或内转角处进行测量是不可靠的。  e 曲率  试件的曲率对测量有影响。这种影响总是随着曲率半径的减少明显地增大。因此,在弯曲试件的表面上测量是不可靠的。  f 试件的变形  测头会使软覆盖层试件变形,因此在这些试件上测出可靠的数据。  g 表面粗糙度  基体金属和覆盖层的表面粗糙程度对测量有影响。粗糙程度增大,影响增大。粗糙表面会引起系统误差和偶然误差,每次测量时,在不同位置上应增加测量的次数,以克服这种偶然误差。如果基体金属粗糙,还必须在未涂覆的粗糙度相类似的基体金属试件上取几个位置校对仪器的零点 或用对基体金属没有腐蚀的溶液溶解除去覆盖层后,再校对仪器的零点。  g 磁场  周围各种电气设备所产生的强磁场,会严重地干扰磁性法测厚工作。  h 附着物质  本仪器对那些妨碍测头与覆盖层表面紧密接触的附着物质敏感,因此,必须清除附着物质,以保证仪器测头和被测试件表面直接接触。  i 测头压力  测头置于试件上所施加的压力大小会影响测量的读数,因此,要保持压力恒定。  j 测头的取向  测头的放置方式对测量有影响。在测量中,应当使测头与试样表面保持垂直。  2.使用仪器时应当遵守的规定  a 基体金属特性  对于磁性方法,标准片的基体金属的磁性和表面粗糙度,应当与试件基体金属的磁性和表面粗糙度相似。  对于涡流方法,标准片基体金属的电性质,应当与试件基体金属的电性质相似。  b 基体金属厚度  检查基体金属厚度是否超过临界厚度,如果没有,可采用3.3中的某种方法进行校准。  c 边缘效应  不应在紧靠试件的突变处,如边缘、洞和内转角等处进行测量。  d 曲率  不应在试件的弯曲表面上测量。  e 读数次数  通常由于仪器的每次读数并不完全相同,因此必须在每一测量面积内取几个读数。覆盖层厚度的局部差异,也要求在任一给定的面积内进行多次测量,表面粗造时更应如此。  f 表面清洁度  测量前,应清除表面上的任何附着物质,如尘土、油脂及腐蚀产物等,但不要除去任何覆盖层物质  磁性法测厚受基体金属磁性变化的影响(在实际应用中,低碳钢磁性的变化可以认为是轻微的),为了避免热处理和冷加工因素的影响,应使用与试件基体金属具有相同性质的标准片对仪器进行校准 亦可用待涂覆试件进行校准。

  • 介电谱仪哪里有

    我想测纳米二氧化钛粉体的介电常数,因为我是做改性的,所以改性后的样品不可能通过查资料查到的,毕竟我的实验条件跟别人的不同,所以想通过实验测定。了解了下,介电谱仪或阻抗谱仪可以测出来。所以问下那个学校有这个仪器。最好是先进点的,因为我改性前后的介电性质可能差异不太大,误差太大的话看不出来变化了,而且以后准备发文章用的,所以需要好些的仪器。谢谢各位啦

  • 【求助】请教溶解氧测定仪测量原理问题

    溶解氧测定仪测定的是氧浓度还是氧分压? 有仪器生产商告诉我,溶氧仪直接测定的是水溶液中氧气的分压,而溶解氧溶度是通过C=H*P换算得到的(H为Henry系数,受溶液性质影响很大)。 又因为“平衡时,氧气在空气和在水中的分压相等,即脱离和进入溶液的氧气分子数相同”,藉此可以理解溶氧仪利用饱和水蒸气法标定时,输入的标准值却是对应温度下水溶液的饱和溶氧值(如20度)。实际上,此时空气中氧气溶度和溶液中氧气溶度差30倍左右。 也就是说,在某一温度下达到平衡时,水中和空气中氧气分压都是相同的,即使是含盐水或污水也一样。而不同条件下产生溶解氧浓度不同的取决于H系数。对于已知盐浓度的,可以进行盐度补偿,通过H的修正准确测量溶解氧溶度。但是对于污水等成分特别复杂的水溶液,H很难修正得到,那么此时是不是就无法准确测量污水的溶解氧值?如果是这样的话,溶氧仪在环保局大量使用的意义又是什么呢?如果知道H值了,自己就能理论计算出溶解氧浓度了,还需要溶氧仪干什么呢? 所以从这点上,我更偏信溶氧仪直接测量的是水中溶解氧的浓度,可是这个观点却一直无法解释溶氧仪的校准方法。被溶氧仪的原理给绕晕了,百思不得其解,只能请各位大侠帮忙了:)

  • 噪声测量布点

    厂界噪声三类,西边要取中间点测量还是取声源最大位置测量[img=,690,920]https://ng1.17img.cn/bbsfiles/images/2022/09/202209042323478620_324_5154290_3.png[/img]

  • 铁电-压电-介电测试系统

    铁电-压电-介电测试系统

    [img=,690,1054]http://ng1.17img.cn/bbsfiles/images/2018/07/201807061458013131_4398_3339420_3.jpg!w690x1054.jpg[/img][b]针对铁电-压电-介电材料可搭建以下测试系统:[color=#333333]*[/color]电滞回线及高压介电击穿强度测试系统;[color=#333333]*[/color]压电材料在高压下的形变(蝴蝶曲线)测试系统;[color=#333333]*[/color]电容充放电测试系统;[color=#333333]*[/color]介温测试系统;[color=#333333]*[/color]宽频介质光谱测试系统;*高压直流偏置下的介电常数电容测量介温测试系统;*TSDC,高压泄露电流和热释电测试系统;[color=#333333]*[/color]超低电流变温高压测试系统。[/b]

  • 【原创】薄膜物性测量中的假象分析(1)-难分难解的介电“弛豫”::Artifacts in films' characterizations(1)-fake relaxations

    【原创】薄膜物性测量中的假象分析(1)-难分难解的介电“弛豫”::Artifacts in films' characterizations(1)-fake relaxations

    [img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220054_94510_1611921_3.jpg[/img]图1 薄膜介电谱实验假象及拟合[color=#00008b]本篇主要讨论薄膜材料的介电性测量容易出现的假象及避免方法,用实验结果和等效电路分析说明薄膜的电极到instruments的contact制作是非常关键的,通常被大家采用的针尖碰触薄膜上的点电极的做法是非常不足取的方法,应该制备牢固的contact并设法使用赝四点法实现测量。[/color]作为引言,从本人的一段经历说起,几年前,我开始研究某种材料的薄膜制备和磁、电性能的测量,因为比较急躁,一开始就想看看电性能受磁场的影响到底怎样,受设备的限制,因为磁场和介电测量在两家外单位做,不可能进行原位的观察,只能先进行强磁场处理,将样品拿出磁场后再进行介电性能测量,结果发现磁场处理前后的介电谱差别非常大,主要差别如图1所示,介电常数原来在高频下出现跌落,但是磁场处理后发现跌落频率大幅度减小,重复做了一个新样品结果还是这样,于是查阅文献找到一个可能的解释:记忆巨磁电容效应。文章都写好了,但我没有发表,因为不肯定结论,不过这个现象作为谜一直在我的脑海里,期待有一天能弄清楚。。。。如今我有机会进入一个条件非常好的实验室,能够实现原位的磁场和介电性能的耦合实验,一进新的实验室我就着手弄清我心中的谜,但结果没有被重复,即室温下薄膜在磁场下进行长时间加载和原位跟踪,没有发现以前看到的介电常数频谱的巨大变化,不仅如此,我也做了低温下零场冷却和有场冷却的变温磁电容实验,均未发现明显的磁电容效应。。。。很明显以前的实验结果并非来自材料本身,而是来自非本征的测量环境实验假象。问题可能出在哪呢,不烦比较下现在的实验和以前的测量过程:[color=#dc143c]1、薄膜上的电极点.[/color]现在的样品和以前的样品是一样的,可能有做薄膜的朋友希望了解多些,虽然这里不是本文重点,也多介绍一下:标准的制备方法是光刻法,本人尝试过,结果如图2所示,但其过程比较繁琐,推荐本人使用的一种非常简单而有效的制备方法,只需要一卷透明胶、一根缝衣针和一个酒精灯即可很快完成掩模过程,过程如图3所示,结果如图4所示,注意电极点的面积的量化通过金相的分析得到,实际上使用photoshop对电极区域进行涂黑并用image-histogram功能即可得到面积信息。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220353_94513_1611921_3.jpg[/img]图2光刻法制备的薄膜电极[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220358_94514_1611921_3.jpg[/img]图3薄膜电极点的简易制作方法图示[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220359_94515_1611921_3.jpg[/img]图4薄膜电极点简易制作效果图片[color=#dc143c]2、电极引线.[/color]从薄膜电极点到测量仪器,以前采用探针触碰,现在使用银浆连接引线,如图5所示。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220404_94516_1611921_3.jpg[/img]图5薄膜引线制作图示[color=#dc143c]3、以前采用两点法测量阻抗,现在使用4点法测量阻抗.[/color]同样如图5所示,同时从样品的出引线到设备的BNC线缆尽可能短,如图6所示。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220407_94517_1611921_3.jpg[/img]图6设备引线照片[color=#dc143c]4、交流驱动电压幅值.[/color]以前测量因为仪器4294的原因,幅值为0.5V,而现在的电压在兼顾信噪比的情况下尽可能小,典型使用0.1V。现在能够肯定以前的介电实验结果是实验假象,然而来自什么原因呢?为了分析其原因,对以前的实验做等效电路模拟,等效电路简单使用3个并联RC串联电路,拟合效果见图1,而拟合结果如图7所示,不难看出,以前的磁场处理前后的介电谱表征可以看成是不同次测量,而不同次测量的主要差别在于其中一个并联RC,而另2个并联RC没有变化,即可以看到表示薄膜本征和薄膜电极接触的等效电路元件在不同次测量中几乎没有差别。[img]http://ng1.17img.cn/bbsfiles/images/2008/06/200806220410_94518_1611921_3.jpg[/img]图7介电谱等效电路分析结果到这里,问题变得很明朗了,以前实验,薄膜到测量设备的连接是探针接触,而非现在的稳定接触,这个探针接触(contact)可能并非欧姆接触,而是具有RC属性的势垒。因此,正反方面的验证的结果说明以前观察到的记忆巨磁电容效应是实验假象,介电常数频谱的变化并非由磁场加载引入,而是测量中样品到频谱仪的不当连接造成,探针碰触的连接在薄膜测量中应该予以避免。顺便提一下:前面提到的第三、四个实验条件也存在差异,但主要分别在1MHz以后和1Hz以下,不能作为“弛豫”假象的主要原因。[color=#dc143c]总结:薄膜介电性测量需要注意三点1)稳固可重复的引线;2)四点法测量;3)小驱动电压。[/color]测量假象分析系列下一个专题:[url=http://www.instrument.com.cn/bbs/shtml/20080728/1377915/]【原创】薄膜物性测量中的假象分析(2)-想说铁电很容易吗?[/url]

  • 【分享】部分物质的性质

    [B]磷 酸 锂(95.0%-98.0%)[/B]LITHIUM PHOSPHATE化学式:Li3PO4 相对分子质量: 115.84性质:白色结晶粉末,难溶于水 溶于稀酸,比重2.41.用途:催化剂及彩色荧光粉等.[B]醋 酸 锂(AR99.0%,CP98.0%,企标99.0%)LITHIUM ACETATE [/B]化学式:CH3CO2Li 相对分子质量:84.02性质:无色结晶.有潮解性.溶于水和醇,防潮密封保存.用途:饱和和不饱和的脂肪酸的分离.制药工业用于制备利尿剂,锂离子电池用原料.[B]碘 化 铯(99.99%,99.999%)CESIUM IODIDE [/B]化学式:CsI 相对分子质量:259.81性质:立方形结晶或粉末,易溶于水和醇,比重4.5,熔点621℃,易潮解,避光充氮气保存.用途:用于X-射线图像增强管、碘化铯钠、碘化铯铊闪烁晶体材料、特种电光源添加剂、特种光学玻璃医药及分析试剂等.

  • 【分享】分子结构、性质与活性

    分子结构、性质与活性[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15188]分子结构、性质与活性[/url][color=#dc143c]原始附件目前失效,不过某人发现可以到资料中心下载,只需一分: --handsomeland [/color]http://www.instrument.com.cn/download/shtml/022123.shtml王连生,化学工业出版社,1998目录第一章结构、性质与活性1.1结构-性质研究发展过程1.2化学键模型与分子结构的表示1.3结构对物理化学性质的影响1.4结构-性质相关预测水中溶解度1.5分子连接性指数与硝基芳烃理化参数的相关性1.6结构-怀质相关估算土壤-沉积物吸附系数1.7应用结构-性质相关研究有机物的亨利常数1.8摩尔体积与理论参数相关性1.9结构与活性第二章量子化学在定量结构-性质-活性相关研究中的应用2.1分子轨道理论方法2.2MOPAC软件及其计算方法2.3应用量子化学参数预测有机污染物的理化性质2.4应用量子化学参数预测有机污染物的生的活性2.5量子化学在有机污染物定量结构-性质-活性相关研究中的展望第三章典型有机物毒理学机理3.1典型有机物毒性反应类型3.2典型有机物的分子毒性机制3.3典型有机物遗传毒理学原理3.4典型有机物毒性作用的生命替代性机制第四章人工神经网络技术在结构-性质-活性关系研究中的应用4.1人工神经网络的构造和功能4.2人工神经网络在结构-性质-活性研究中的应用实例4.3一个BP型神经网络计算程序示例第五章拓扑学方法在结构-性质-活性相关研究中的应用5.1结构-性质-活性相关研究中的拓扑学方法5.2分子连接性指数方法在结构-性质-活性相关研究中的应用5.3Am指数在结构-性质-活性相关研究中的应用5.4自相关拓扑指数的计算方法及其改进5.5拓扑指数与有机物理化学性质的相关性5.6自相关拓扑指数与含氯有机化合物遗传毒性的相关性5.7自相关拓扑指数与有机物对水生生物急性毒性的定量关系第六章基团贡献法预测有机物理化性质6.1ASOG模型6.2UNIFAC法6.3其他基团贡献法第七章一种新的Lewis酸碱性判别指数及其应用7.1Lewis酸碱强度研究概述7.2原理7.3Lewis酸碱性指数的定量化7.4酸碱性指数的应用第八章反相液相色谱保留在定量结构-性质-活性相关研究中的应用8.1概述8.2反相液相色谱保留与分子连接性指数的关系8.3反相液色谱保留在定量结构-性质相关(QSPR)、定量结构-活性相关(QSAR)研究中的应用第九章有机污染物理化性质测定与估算方法9.1分配系数的测定与估算9.2溶解度的测定与估算9.3萘在水溶液中的光化学氧化9.4对硝基苯甲腈水解速率常数的测定9.5苯和间二甲苯挥发速率的测定9.6有机化合物在自然沉积物上吸附与解吸动力学数快速测定9.7有机物饱和蒸气压测定方法9.8分子连接性指数计算9.9分子表面积计算方法9.10EXAMS模式用于研究湖泊中污染物的迁移转化规律第十章生物活性测定与预测10.1有机物对水蚤的急性毒性10.2应用光发菌测定有机化合物的毒性10.3有机物对酵母菌毒性的测定方法10.4鼠伤寒沙门氏菌/哺乳动物肝微粒体致突变性10.5哺乳动物经口急性毒性试验10.6哺乳动物骨髓细胞微核试验10.7利用前线分子轨道能预测氯代芳烃化合物生物毒性的方法10.8典型有机物对鱼毒性的预测10.9典型有机物对藻类毒性的预测10.10典型有机物对小鼠毒性的预测10.11取代芳烃对蝌蚪毒性及其预测10.12毒物风险评价外推法参考文献

  • 测量误差和测量不确定度的10点区别

    1、定义误差:表明测量结果偏离参考量值,是一个确定的值。不确定度:表明被测量之值的分散性,是一个区间。 2、分类误差:按出现于测量结果中的规律分为随机误差和系统误差。不确定度:按是否用统计学方法求得,分为A类评定和B类评定,在评定时一般不区分其性质。若需要区分,应表述为“由随机(或系统)效应引入的不确定度分量”。 3、可操作性误差:由于参考量值未知,往往无法得到测量误差的值。不确定度:通过对实验、资料、经验等信息进行评定,可定量确定。 4、数值符号误差:非正即负。不确定度:不用正负号表示无符号,恒为正值。 5、合成方法 误差:各误差分量的代数和。不确定度:当各分量不相关时,用方和根法合成,否则应考虑加入相关项。 6、结果修正误差:已知系统误差的估计值时,可对测量结果进行修正。修正值等于负的系统误差。不确定度:为一个区间,因此无法用不确定度对结果进行修正;对已修正结果进行不确定度评定时,应考虑修正不完善引入的不确定度分量。 7、结果说明误差:误差客观存在,属于给定的测量结果,相同的测量结果具有相同的误差。不确定度:在相同条件下进行测量时,合理赋予被测量的任何值均具有相同的测量不确定度,即测量不确定度仅与测量过程有关。 8、实验标准偏差误差:来源于给定的测量结果。它不表示被测量估计值的随机误差。不确定度:来源于合理赋予的被测量之值,表示同一观测列中,任一个估计值的标准不确定度。 9、自由度 误差:不存在。不确定度:可作为不确定度评定可靠程度的指标。 10、包含概率 误差:不存在。不确定度:当了解分布时,可按包含概率给出包含区间。

  • 【原创】一步步教你进行变温微波介电测量::T-dependent GHz dielectric measurement: principles and practice

    【原创】一步步教你进行变温微波介电测量::T-dependent GHz dielectric measurement: principles and practice

    [img]https://ng1.17img.cn/bbsfiles/images/2008/04/200804271830_86922_1611921_3.jpg[/img] 材料在GHz频段的性能是材料中的微观粒子在ns级别的行为的反映,ns对于电子、声子的动力学时间算是相当长,但对于空间电荷又是相当快,因此一般认为GHz频段的性能可以反映材料本征的电性能,即电子结构和声子结构对电性能的贡献,避免了小于1MHz的低频下测量由于受材料内部和表面的非均质性带来的影响而造成的假象;另一方面目前信息产品中的关键部件大多工作在GHz频段附近,GHz频段的材料属性测量是信息材料的研发和应用的一项重要手段。在某些情形下,由于材料非均质的各个组分性能比较特殊,以至于GHz下的性能依然不完全是本征得电子和声子的贡献,乃至大部分是Maxwell-Wagner等非本征的机制引起,如CCTO及其改性的材料体系,室温下在1GHz的介电常数高达1000比较常见,但红外频段的介电性能即本征的介电常数约等于100,而且低温下如30K的介电常数也约为100左右。为了认识材料和器件的GHz性能的本征性,寻找真正优良的信息材料,前面也提到两种方法,一种是增加测试频率到太赫兹甚至千太赫兹的红外频段,另一种是变温测量GHz下的性能。红外和远红外频段的介电测量目前仍然存在的问题是不精确,无论是KK变换还是傅立叶变换的原理均需要引入一定的人为假定或对材料的经验性认识,吸收/反射系数和相位目前无法同时通过测量得出,因此变温GHz测量无疑是精密判断材料介电性能是否真正优良的关键技术。其原理简单来说是利用本征的电子和声子结构对介电性能贡献随温度变化很微弱,至少在10K以上是如此,而非本征的非均质性带来的效应随温度变化比较剧烈,在一定温度以下可以被完全冻结。 上面简单介绍了变温微波介电测量的重要性,接下来说说变温微波测量中存在的问题。我们知道,在微波频段的测量大多基于S参数理论而建立起来的,其中涉及到复杂的传输/反射参数理论,但被运用在测量上的原理,简单来说是将被测样品和标准的50欧姆的S参数进行对照,通过样品加入之后的复数S参数,如S11对应反射系数,和标准的50欧姆之间的偏离计算得到样品的复阻抗,从而计算出样品的介电常数、交流电导和损耗等等。进行单一的室温下的微波测量很简单,按照标准的校准步骤就可以精密的得到样品的介电属性,但温度变化时我们就会遇到这样的问题:是否每次测量都要进行一次50欧姆的校准?这在人体能接受的0度以上温度尚可以,对于更低的温度就显得非常的不现实。于是自然而然的理想方法是能否对室温进行一次50欧姆标准的校准,低温下只测量放入样品的S系数,而按照这个室温的标准计算低温下的介电性能。这里涉及到一个关键的技术:尽可能让低温下的设想的50欧姆标准的条件和室温一致。Peter的做法是尽可能减少同轴线在低温区域的长度,具体请参考J. Appl. Phys. 65, 901(1989),使测量同轴线大部分一直处在室温下,只有一小部分在处于低温的cold head中,从我下面贴出的图可以看出同轴线圆柱和cold head圆柱垂直交叉的奥妙就在这!尽管这种做法并没有完全解决低温下的50欧姆标准和室温一致,但可以近似的认为它们相差在5%以下,实际上用这种方法对大多材料的测量都没问题。 这里,为了达到精密测量的要求,除了校准操作做好以外,还需要进行样品的补偿compensation操作,compensation操作对200MHz以下影响不大,但对于1GHz的性能影响不容忽视,如果没有compensation高频数据甚至是假象主导的,因为低频下电感效应不明显,而高频下电感对祖抗的贡献不容忽视。补偿实际上是做一个和样品一模一样尺寸的金属片,在进行补偿操作时,我们告诉仪器:现在给你的是一个没有电阻的纯电感元件,请你在样品测试的阻抗虚部中把补偿操作中测量的电感部分贡献减去。于是,最终实验测得的阻抗主要来自于样品内部的匀强电场,即本征贡献。补偿原理简单理解为:当样品放入内外导体之间进行测试时,样品周围电场的分布主要有两个部分,一个是需要测量的类似平行板电容器的样品中,近似为匀强电场,另外一部分是样品和内外导体之间存在电感而直接从电极指向测量夹具,该电场分布在低频下可以忽略但高频下必须予以扣除。short扣除的原理也很简单,当尺寸和样品完全一样的导体放入夹具中测试的时候,夹具中的电场分布可以认为只有刚才提到的因为电感引起的第二项。在变温测量中,室温下short的compensation可以被低温下使用是因为补偿的电感的大小随温度变化不是很大,因为普通材料相对尺寸收缩不大,而且制约电感大小的磁导率随温度变化不大(顺磁)。 综上所述,变温微波测量实现的原理关键在于尽可能缩短同轴线在低温区域内的长度比例,二是做好补偿。理解以上原理之后,具体操作实际上比较简单,列数如下:1、平板样品的contact制作,用银浆或者蒸100nm的金;2、用铜或铝制备和样品形状、尺寸完全一样short;3、测量之前对附件和short进行抛光和清洁;4、stimulating设置,选择标准的7mm calibration kit;5、按照步骤依次calibration: open, short, load(50 Ohm), low-loss 6、让设备处于完全Open状态,观察频谱,看电容平台,一般在72-82 fF之间,读取后输入compensation kit中作为std capancitance;7、一次compensate: open, short;8、装载样品进行室温和变温测量。[img]https://ng1.17img.cn/bbsfiles/images/2008/04/200804210524_86047_1611921_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2008/04/200804210525_86048_1611921_3.jpg[/img]

  • 几种测量气体露点的仪器及方法

    1.电介法露点仪的测量原理 利用五氧化二磷等材料吸湿后分解成极性分子,从而在电极上积累电荷的特性,设计出建立在绝对含湿量单位制上的电解法微水份仪。目前国际上最高精度达到±1.0℃(露点温度),一般精度可达到±3℃以内。2.电式露点仪的测量原理采用亲水性材料或憎水性材料作为介质,构成露点仪电容或电阻,在含水份的气体流经后,介电常数或电导率发生相应变化,测出当时的电容值或电阻值,就能知道当时的气体水份含量。建立在露点单位制上设计的该类传感器,构成了电传感器式露点仪。目前国际上最高精度达到±1.0℃(露点温度),一般精度可达到±3℃以内。3. 镜面式露点仪测量原理不同水份含量的气体在不同温度下的镜面上会结露。采用光电检测技术,检测出露层并测量结露时的温度,直接显示露点。镜面露点仪制冷的方法有:半导体制冷、液氮制冷和高压空气制冷。镜面式露点仪采用的是直接测量方法,在保证检露准确、镜面制冷高效率和精密测量结露温度前提下,该种露点仪可作为标准露点仪使用。目前国际上最高精度达到±0.1℃(露点温度),一般精度可达到±0.5℃以内。4.晶体振荡式露点仪的测量原理利用晶体沾湿后振荡频率改变的特性,可以设计晶体振荡式露点仪。这是一项较新的技术,目前尚处于不十分成熟的阶段。国外有相关产品,但精度较差且成本很高。5.半导体传感器露点仪的测量原理每个水分子都具有其自然振动频率,当它进入半导体晶格的空隙时,就和受到充电激励的晶格产生共振,其共振频率与水的摩尔数成正比。水分子的共振能使半导体结放出自由电子,从而使晶格的导电率增大,阻抗减小。利用这一特性设计的半导体露点仪可测到-100℃露点的微量水份。6.红外露点仪 的测量原理利用气体中的水份对红外光谱吸收的特性,可以设计红外式露点仪。目前该仪器很难测到低露点,主要是红外探测器的峰值探测率还不能达到微量水吸收的量级,还有气体中其他成份含量对红外光谱吸收的干扰。但这是一项很新的技术,对于环境气体水份含量的非接触式在线监测具有重要的意义。

  • 【分享:哈工大】物理性质的检验

    物理性质的检验1. 水温2. 颜色3. 臭4. 残渣5.电导率6. 浊度7. 透明度(1)水温 水温测量应在现场进行,常用水温计法和颠倒温度计法,前者用于浅层水温的测量,后者用于深层水温的测量。 (1) 铂钴标准比色法  该方法适用于较清洁的、带有黄色色调的天然水和饮用水的测定。  该方法用氯铂酸钾与氯化钴配成标准色列,再与水样进行目视比色确定水样的色度。(2) 稀释倍数法 该方法适用于受工业废水污染的地表水和工业废水颜色的测定。用稀释倍数表示水样颜色的深浅,单位为倍。 (3)臭 测定臭的方法一般用定性描述法。测定要点:取100mL水样于250mL锥形瓶中,检验人员依靠自己的嗅觉,分别在20℃和煮沸稍冷后闻其臭,用适当的词语描述其臭特征,并按表5.7划分的等级报告臭强度. 。 等级强度说 明0无无任何气味1微弱一般饮用者难于察觉,嗅觉敏感者可以察觉2弱一般饮用者刚能察觉3明显已能明显察觉,不加处理,不能饮用4强有很明显的臭味5很强有强烈的恶臭(4)残渣   残渣分为总残渣、总可滤残渣和总不可滤残渣三种。总残渣是水或废水在一定温度下蒸发、烘干后残留在器皿中的物质。总可滤残渣也称溶解性总固体,系指通过滤器并在103~105℃烘干至恒重的固体。总不可滤残渣指水样经过滤后留在过滤器上的固体物质,于103~105℃烘干至恒重得到的固体质量。它们是表征水中溶解性物质、不溶性物质含量的指标。

  • 【原创】各种湿度露点测量方法及其优缺点(一)

    各种湿度露点测量方法及其优缺点仪器测量原理湿度测量仪器从原理上可分为冷镜式、完全吸收电解式、Al2O3电容式、薄膜电容式、电阻式、干湿球、机械式。其中完全吸收电解式微水仪、Al2O3电容式露点仪一般用于低湿范围的测量,而电阻式、干湿球、机械式湿度计只能用于相对湿度的测量,冷镜式、薄膜电容式(Vaisala公司的专利)湿度计则不仅能用于低湿的测量,还能用于中高湿,即相对湿度的测量。上述各种原理的仪器各有其优缺点。其中冷镜式露点仪是最准确、最可靠、最基本的测量方法,被广泛地用于标准传递,但其缺点是价格比较昂贵,并需要有经验的人操作及保养。1.1冷镜式露点仪1.1.1 测量原理被测湿气进入露点测量室时掠过冷镜面,当镜面温度高于湿气的露点温度时,镜面呈干燥状态,此时光电检露装置中光源发出的光照在镜面上,几乎完全反射,由光电传感器感应到并输出光电信号,经控制回路比较、放大、驱动热电泵,对镜面致冷。当镜面温度降至湿气露点温度时,镜面上开始结露(霜),光照在镜面上出现漫反射,光电传感器感应到的反射信号随之减弱,此变化经控制回路比较、放大后调节热电泵激励,使其制冷功率适当减小,最后,镜面温度保持在样气露点温度上。镜面温度由一紧贴在冷镜面下方的铂电阻温度传感器感应,并显示在显示窗上。 目前世界上生产冷镜式露点仪的公司,例如美国的GE、Edgetech、瑞士的MBW等公司均是采用这一原理,英国的MICHELL则是采用双光路检测系统,即同时对反射光及散射光进行检测,芬兰Vaisala则是利用声波作检测系统。在测量过程中,随着温度的降低,被测气体中的水汽接近饱和状态,由于引力作用,水分子吸附在镜面上形成一层薄薄的水膜。这是形成露的第一阶段。当镜面温度继续下降时,水膜的厚度逐渐增加,这是形成露的第二阶段。在这一阶段内,自由表面对水分子的引力与水膜的表面张力之间的力量对比开始发生变化,后者的影响逐渐起支配作用。此时冷却表面上的任何不稳定的因素,例如镜面上的微小伤痕等,都会使水膜缩聚成液滴。随着镜面温度的进一步下降,露滴开始出现,通过显微镜可以看到孤立生长而且分布不规则的露滴,然后露层以很快的速度在表面上扩散,此时可以认为液-汽平衡开始,即达到露点。1.1.2 结构1.1.2.1 镜面  镜面应憎水,具有良好的导热性,还要耐磨、耐腐蚀,光学性能好。在过去曾使用金做镜面,目前则主要使用铑做镜面。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制