当前位置: 仪器信息网 > 行业主题 > >

介孔材料

仪器信息网介孔材料专题为您整合介孔材料相关的最新文章,在介孔材料专题,您不仅可以免费浏览介孔材料的资讯, 同时您还可以浏览介孔材料的相关资料、解决方案,参与社区介孔材料话题讨论。

介孔材料相关的资讯

  • 介孔材料物理吸附表征应用的网络在线讲座将于10月29日午夜举行
    美国时间2014年10月29日下午1点30分(北京时间2014年10月30日凌晨1点30分)美国康塔仪器公司将在WEBINAR举行介孔材料物理吸附表征的应用的在线讲座,主讲人为美国康塔仪器公司首席科学家,应用技术支持经理Matthias Thommes博士。 在目前的应用领域以及一些新的领域中,纳米多孔材料的技术表征分析已日趋重要。各种纳米材料的应用例如分子筛,需要更深层次的孔结构表征分析。在催化领域,对孔结构的详细分析(例如孔径,孔径分布,孔容,以及孔结构的内部联系)尤为重要。 气体吸附是分析粉体材料和多孔材料的表征,孔径,孔径分布的最普遍的方法。尽管在过去的20年间,物理吸附表征已经取得了重大进展,但多孔纳米材料表征分析仍将会带来新的挑战。实际上,在最近几年的主要进展在介孔分子筛,它们表现出在微孔(孔隙宽度小于2 nm),介孔(2-50 nm)和大孔(大于50纳米)之间达到多级孔结构的适度平衡。 微介孔内部的互相连通方便了流体在主要分布在微孔中的活性部位之间的有效转移,这将会给催化剂应用带来成倍的效益。 我们很乐意与您一起分享介孔材料的吸附表征技术分析,我们将在WEBINAR上举行在线讲座,您只需点击以下链接,用邮箱注册获得初始密码之后即可登录。 https://attendee.gotowebinar.com/register/2090965813006139649 虽然时间已在午夜,欢迎有志者积极注册参加!
  • 网络研讨会本周开讲,多孔材料进行物理吸附分析的进阶方法
    物理吸附相关问题是麦克仪器客户很常见的问题之一。一般来说,材料可以分为微孔、介孔、大孔材料,很多物质并非单一孔类型,有些材料包含多种孔径。一般对于小于300 nm 的孔,我们会采用气体物理吸附方法,去分析孔的表面积和孔径分布。而其中的分析方法有多种,这些方法包括BET方法、BJH方法、t-plot方法、HK方法以及DFT方法等。此次研讨会我们将对上述方法的应用场景进行分享,帮助大家更好地掌握应用方式。本周五,新一期网络研讨会即将上线。如您对往期相关内容感兴趣,依然可以扫描注册,回看往期内容。我们诚邀您参与我们的网络研讨会!关于 Micromeritics品质、 专业、 可靠, 这就是 Micromeritics。Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创新力的知名企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 约稿|微孔材料孔径分析难点及解决方案
    近年来,多孔材料的开发和应用进展迅速,如多孔聚合物、多孔陶瓷、泡沫塑料、多孔金属材料等。这些材料具有一些共同的特点:密度小、孔隙率高、比表面积大,在化工、电化学、建筑、军工及航天等领域发挥着独特且重要的作用。与此同时,一些新兴领域也越来越多地应用多孔材料来解决相关问题,例如某新推出的电动汽车电池采用了多孔海绵状的纳米多孔硅,可抑制硅碳负极膨胀,从而大幅提高锂电池的容量,提升电动汽车的续航能力。多孔硅用于锂电池负极多孔材料孔结构的研究需要准确、简洁的表征技术。根据检测目的,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜观察法、压汞法、气泡法、离心力法、透过法、核磁共振法等。目前,表征材料比表面积和孔径最普遍的方法是气体吸附法,即气体分子(吸附质)在被测材料(吸附剂)表面因为范德华力产生的吸附,通过测量样品的吸附等温线,采用等效代换的方法计算出材料比表面积和孔径的特征。当前国内比表面积的测量仪器主要分为2种,动态色谱法和静态法容量法均可,但孔径的测量方法则是国际通用的静态容量法,此方法测量孔径的范围从0.35nm到100nm以上,其中IUPAC对孔径做了分类,见下图, 纳米孔纳米孔:包括微孔、介孔和大孔;大孔:孔宽大于50nm的孔;Fe3O4、硅藻土等材料含此类孔;介孔:宽度介于2nm到50nm之间的孔;大多数超细粉体是在这一范围内;微孔:孔宽小于2nm的孔;活性炭,分子筛,沸石,MOF等材料中大都含有微孔,后面对微孔又做了细分和补充;极微孔:孔宽大于0.7nm的较宽微孔;超微孔:孔宽小于0.7nm的较窄微孔。1、 微孔测试难点对于微孔材料的孔径和孔体积进行分析是很困难的,如下图所示,在微孔内相对的两个孔壁距离很近,孔壁产生的作用势重叠,对吸附质分子的作用力比中孔和大孔大,在液氮温度77K下的N2吸附是微孔和介孔分析最常用的吸附质,此时气体分子的扩散速度和吸附平衡都很慢,填充0.35nm~1nm的孔要在相对压力10-9<P/P0<10-5间才会发生,为了达到微孔填充所需的较低相对压力需要涡轮分子泵级别真空,即整个真空系统需达到很高真空。2、 静态法高性能仪器针对微孔,超微孔以及极微孔的测试难点,国仪精测推出了静态法高性能UltraSorb仪器。静态法高性能UltraSorb仪器如上图所示,为保证整个测试过程的高真空度,UltraSorb仪器从分子泵、真空管路到样品管全体系采用金属面密封,通过VCR金属垫片连接。该仪器没有采用常规仪器所使用的石英样品管,而是采用了一种新型样品管——不锈钢焊接石英管。此样品管特点是:上部不锈钢部分与高性能UltraSorb仪器之间通过金属垫片进行硬连接,进一步提高整个仪器的密封性能,不锈钢焊接石英玻璃管的下部石英玻璃部分发挥石英玻璃样品管低导热性能,在实验测试中能够降低冷却液(液氮)挥发,从而提高液氮使用时间。为获取测试微孔所需较低相对压力,高性能UltraSorb仪器在提高真空系统真空度方面包括以下关键几点:1) 采用两级机械泵叠加涡轮分子泵协同工作实现更高真空。真空泵抽取真空将仪器系统降低到一定真空度后开启涡轮分子泵,通过高速旋转的旋叶将扩散至分子泵中的气体分子排出,从而减少真空体系中的气体分子,进一步实现更高的真空度。2)改进高真空涡轮分子泵连接方式。由于波纹管和O型密封圈在低真空下存在自身放气问题,将涡轮分子泵的连接方式进行了改进,传统仪器采用ISO-K连接方式,分子泵和波纹管通过O型圈密封;高性能仪器连接方式改为CF刀口法兰,即通过铜垫片将涡轮分子泵和高真空微焊管路系统进行连接,这种连接方式可以将分子泵极限真空度提高2个数量级。3)涡轮分子泵进气口采用轴向直连设置方式。较大的口径更便于气体分子的扩散,为了发挥涡轮分子泵的优势,设置分子泵轴向进气CF法兰连接方式,将工作口径优化到最大,且将涡轮分子泵和高真空微焊管路系统腔体采用CF刀口法兰直接连接的方式,可进一步提高整个系统真空度。4)优化气体管路,充分发挥分子泵优势。所有管路均为高真空微焊管路系统,全系统内管壁电抛光处理,管路之间采用金属面密封的VCR接口配件连接,克服O型圈密封在低真空下自身放气问题,确保高真空下漏气率达到1*10-11Pa.m3/S要求。5)配套的VCR接口气动阀门,消除电磁阀局部发热引入的测量误差。除此之外,高性能仪器还应用了高精度数字化压力测量以及数据采集系统,多量程压力传感器分段测量,工业标准RS485或RS232通讯模式,以及油浴控温腔,同位预处理方式等措施确保微孔测试数据的准确性。3、 总结静态法高性能UltraSorb仪器测试微孔标样测试结果见下图所示,相对压力P/P0最低可达到10-7,位于微孔分析相对压力区间,测试微孔的中值孔径为0.84nm,符合微孔标样的标准值,证明仪器在温度77K下氮气测试微孔完全可以满足要求。(国仪精测 供稿)
  • 多孔材料的孔分析技术讲座
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb-1-C系列。美国康塔,一直走在粉体及多孔物质分析技术的前列。为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司与华东理工大学化工学院将于2010年12月16日在华东理工大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。日 期:2010年12月16日(星期四)时 间:下午1: 30 ~ 下午5: 00地 点:华东理工大学联反所报告厅内 容:多孔材料的孔分析技术进展Ÿ 背景知识Ÿ 吸附理论Ÿ 气体吸附法测量比表面和孔径大小Ÿ 如何正确应用BET理论计算比表面Ÿ 非定域密度函数理论在孔径分析中的应用Ÿ 压汞法测孔技术Ÿ NOVA系列全自动比表面和孔径分析仪测试技术培训主讲人:杨正红 (美国康塔仪器公司 首席代表、中国区经理) 联系方式:华东理工大学联反所陈庆军 博士电 话:13636454811 E-mail: chenqingjunsh@163.com
  • 美国康塔举办多孔材料孔分析技术讲座
    美国康塔仪器公司在2008年第四季度分别在北京,浙江和上海举行了"多孔材料的孔分析技术"的系列巡回培训讲座,超过260个用户,学者和研究生出席并得到热烈反响.  主讲人杨正红首席代表在大学从教十年,有着丰富的教学经验.他把非常枯燥的理论问题深入浅出地讲解出来,并结合实践中经常遇到的问题,使多年困惑与会者的问题找到了答案. 一些实验和分析中经常被忽视的问题引起了大家的重视.  上海的一个用户说: "我多次听过杨老师的讲座,但每次听都有新意.希望能得到杨老师或其它专家的多次指导,以发挥出康塔仪器的潜在功能."  康塔公司将采纳用户意见,近期将开通网上论坛,以便在线交流,得到最快捷的信息支持.  下图为在上海复旦大学举办的讲座会场:
  • 康塔将在广州举办多孔材料分析技术讲座
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......,至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb-1-C系列。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司与中山大学理工学院环境材料研究所将于2009年5月27日在中山大学举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。 日期:2009年5月27日(星期三) 时间:上午9:00 – 下午4:30 地点:中山大学理工学院讲学厅 广州市新港西路135号内容:多孔材料的孔分析技术---- 大孔,介孔和微孔 • 背景知识 • 压汞法测孔技术 • 吸附理论 • 气体吸附法测量孔隙度 • 样品分析 • 数据处理 • 异常吸附等温线原因分析 • 案例分析:对BET结果的影响因素为了便于会务安排,请将回执与5月25号前传真、邮寄或发电子邮件至美国康塔仪器公司广州办事处或中山大学环境材料研究所。联系方式:美国康塔仪器公司广州办事处 广州市水荫路2号华信大厦东座1707室(510075) 梁小姐 TEL:020-37605538 FAX:020-37604183 Email: ksbchen@21cn.com 中山大学理工学院环境材料研究所 肖敏博士 电话/传真:020-84115506 Email:stsxm@mail.sysu.edu.cn
  • 第六届“国际多孔材料表征:从埃到毫米”研讨会成功举行
    拥有超过15年历史、由著名的Rutgers University的 Alexander Neimark教授担任主席的 &ldquo 国际多孔材料表征:从埃到毫米&rdquo 研讨会(CPM)在新泽西成功举办5次之后,首次在南佛州美国康塔仪器公司总部所在地举办。 本次研讨会由美国康塔仪器公司承办,由著名的Rutgers University的 Alexander Neimark教授和美国康塔仪器公司应用总监Dr. Matthias Thommes担任主席,于4月30日至5月2日在著名的Delary Beach举办。研讨会共有8个大会邀请报告、37个口头报告和90余板报,一百多名来自世界各地的科学工作者齐聚一堂探讨多孔材料结构表征、流体传质、材料功能化中的理论、计算及实验问题。 该研讨会为业内科研工作者提供了专业高效的交流平台,详情请见 http://cpm6.rutgers.edu/forum.html. 会后,70余名资深专家应邀参观了位于Boynton Beach的美国康塔仪器公司总部。通过与公司研发、应用相关部门的交流增进了对仪器生产、研发的了解,Alexander Neimark教授等人盛赞美国康塔仪器公司在精确表征物理吸附、化学吸附方面做出的努力,为严谨的科学研究提供了有力保证。
  • 美国康塔最新培训--多孔材料的孔分析技术
    报告名称:多孔材料的孔分析技术 时间:2008年10月31日 下午2:00 地点:北京科技大学机电楼912 报告人简介: 杨正红,研究员,硕士,曾担任天然药物及仿生药物国家重点实验室仪器组组长。主要从事自由基生命科学研究,涉及粒度测定、纳米技术与纳米科学、吸附理论及氢吸附等研究领域,先后发表论文60余篇,获得国家教委科技进步二等奖一项、北京市卫生局科技进步二等奖一项。 2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。现任美国康塔仪器公司 中国大区首席代表。报告内容简介: 报告对多孔材料,如催化剂、吸氢材料、分子筛等的孔分析技术进行详细介绍,并探讨其在各个领域的应用
  • 从实验室到产业化,我国材料产业仪器装备从有向领先迈进——访贝意克董事长孔令杰
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了安徽贝意克设备技术有限公司(以下简称“贝意克”)的董事长孔令杰。采访中,孔总介绍了公司的核心产品、应用市场概况,回顾了过去一年的市场表现,剖析了贝意克相关技术及产品的发展趋势,以及贝意克未来的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大学?参会感受如何?孔令杰:这次是我们公司连续十三届参加材料大会,这次的参会感觉就是比往届会议规模更大,参会者也更多,一届比一届更好。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?孔令杰:主要是针对科研以及科研产业化带来一些新的仪器和装备,也是这几年研发的新品。第一款是一个连续进出料的PA-CVD系统,这款设备主要是针对粉体的包覆和生长,应用领域包括新能源的硅碳负极、硅包碳或者碳包硅,还有一些做碳基的复合材料,以及粉体的CVD包覆,这款设备也是从实验室到产业化的全系列产品都研发出来了。未来在产业化方面有很大的推动作用。第二款是去年公司新研发的单壁碳纳米管生长设备-CVD流化床设备,这款设备也是今年第一次展出,应该也是国内第一款能够批量生产单壁碳纳米管的设备。第三款是针对科研市场痛点的一款新研发的多通道集成管式炉,现在随着科研节奏变快,对设备的需求效率提升也越来越高,对科研场地要求越来越小,所以这款设备是一个集成化的设备,只有原有设备1/10的空间,整个制备效率也提升了将近10倍到20倍。原来可能需要半年所做的实验,在这台设备上只需要10天或两周就可以完成,所以大大的提升了科研效率。此外,从安全性的角度来讲,集成化的设备整个监控、保护都做得非常好,所以对于科研人员的安全也有一定的保障作用。第四款是针对科研和产业化市场的衔接,因为现在总说科研是第一生产力,科研是新质生产力,科研最终的走向是产业化。因此我们公司推出了一款做OLED发光材料的,也就是现在手机上显示的面板材料。从实验室到产业化的无缝对接,同时把实验室中试产业化的设备全部研发成功,也完全替代了进口,解决了现有的问题。还带来了一款薄膜生长设备,主要是针对薄模型复合材料的制备,主要应用于军工。比如在钨的表面去生长碳化硅、在碳纳米管的表面去生长碳化硅,或者在碳纤维的表面去做氮化硼的复合材料。这是一款连续性、可产业化的生产设备,虽然带来现场的只是单丝的周转设备,但是我们公司已经研制了10丝和50丝的连续生产设备,它在线材和膜材的复合材料上制备上解决了从实验室到产业化的问题,也有利于军工产品的国产化和产业化的进程。仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?孔令杰:现在新能源很热,新能源汽车无处不在,我们公司就针对大功率的新能源电池,研发了单壁碳纳米管生长设备。这款设备以前一直是国家的痛点,曾经头部的电池公司要悬赏40个亿解决单壁碳纳米管问题。我们公司也针对这一领域持续了六七年的开发,也和很多材料公司一起合作开发了一款单壁碳纳米管生长设备,有效地采用了等离子增强催化单原子材料,从而作为催化剂而生长出这种单壁管的材料,算是国际上最先进的制备技术,对整个新能源行业有巨大的推动作用。未来的新能源汽车、充电里程、续航能力也会得到大大的提升,这个也是我们贵司未来在新能源领域的一个持续计划。另外一个就是针对半导体领域的半导体前驱体材料,因为我国在高纯半导体材料方面一直都受制于进口,甚至被国外卡脖子。这几年国内也在大力发展半导体前驱材料,材料的纯度从5个9提升到现在的11个9,已经达到了国际的先进水平。在设备制备方面,我们公司从实验室到产业化已经解决了部分问题,设备制备出来的材料已经导入半导体厂商。未来的几年,将持续加大这方面的研发,争取能够很快的解决受国外卡脖子的问题,也使我们国家在半导体领域能再上一个台阶。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?孔令杰:我们公司一直针对前沿技术的研发,我们国家随着整个科技产业的发展,是从有到优的转变。未来,我个人的看法是从拥有到领先的过程发展。未来在对于材料产业装备的研发的角度来讲,不只是说去学习先进国家的装备,而是要在这个基础上做成全球领先的设备。我们公司研发制定的目标主要是针对半导体光电显示和新能源等材料装备的研发。在研发的过程中,原来可能是属于追赶的角度,有一些需要参考的点,但未来要成为领先者的话,需要做的工作会更多,包括工艺的验证等。因为没有标准,未来做的东西就是标准,针对这一块的话,会加大投入基础的、完善的标准的制定,以及引领行业标准的前沿技术的探讨,需要跟更多的公司、更多的科研工作者去探讨未来的方向,所以这一点上贝意克一直保持着很open的状态,也希望能和更多的企业、科研工作者一起协同发展。我觉得这不仅仅是贝意克的使命,也是所有中国人的使命。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?孔令杰:这两年总体经济是一个不太好的状态,但是贝意克去年依然有着33%的增长速率,这个得益于新品的不断推出,有新的增长点。贝意克一直在准备IPO的过程中,未来希望尽快的成为一家上市公司。
  • 美国麦克仪器公司亮相第一届国际有机多孔材料学术研讨会(POPs 2017)
    2017年9月2日至6日,第一届国际有机多孔材料学术研讨会(The First International Symposium on Porous Organic Polymers, POPs 2017)在湖南省张家界市大城山水国际大酒店成功举办。作为有机多孔材料表征仪器领域的领导者,美国麦克仪器公司受邀参与了此次盛会,受到与会者欢迎。美国麦克仪器公司展位会议期间,200余位来自国内众多知名高校与研究所以及美国、德国、英国、新加坡、瑞典、韩国等国的教授和学者通过精彩纷呈的报告与墙报进行了深入交流,与会者均表示此次专业会议是理想的交流平台,并对大会报告和墙报赞不绝口。报告现场座无虚席会议同期还召开了学术与组织委员会会议,讨论了有机多孔材料领域的最新进展,展望了未来的发展方向,提议大家相互交流合作;并对国际多孔材料学会的发展和学会网站的建设与维护献计献策。POPs 2017参会者合影(转自孔道微信公众号) 美国麦克仪器公司拥有诸多有机多孔材料表征仪器的忠实用户,涉及的材料包含沸石,介孔二氧化硅,金属有机骨架(MOFs) 和微孔碳等,这些材料被广泛应用于吸附剂、催化剂、离子交换剂、载体、医药、生物材料、膜、超级电容器、电池等行业。
  • 培安公司携ISCO柱塞泵应邀参加第二届聚合物发泡与多孔材料高峰论坛
    2021年11月20日,由SAMPE中国大陆总会聚合物发泡与多孔材料专业委员会主办的第二届聚合物发泡与多孔材料高峰论坛(PFPM)在江苏南京溧水新时代/开元名都大酒店顺利举行,吸引了许多专家及各大公司的知名品牌仪器和新产品参展。聚合物发泡与多孔材料不仅广泛应用于包装建材、冷藏运输、电子电器、鞋服纺织、化学化工等传统行业,而且快速扩展应用于只能传感、生物医药、环境能源、航空航天等高端领域。聚合物发泡与多孔材料制备及成型加工新理论技术即将迎来高速高质的蓬勃发展之机。会议现场 培安公司如期应邀参加了“第二届聚合物发泡与多孔材料高峰论坛(PFPM)”。培安公司作为ISCO柱塞泵独/家代理,携带ISCO柱塞泵亮相参会,培安展台吸引了众多与会专家及客户驻足,并就仪器的原理和性能等与培安工作人员进行详谈。培安展位 会议期间,与会代表参观了南京创博机械设备有限公司,在超临界二氧化碳发泡材料制备的生产现场,各位代表对ISCO柱塞泵都极为关注,纷纷上前咨询仪器的相关信息,培安公司销售人员对大家提出的问题均给予了详细解答。南京创博机械设备有限公司生产现场
  • 培安公司携ISCO柱塞泵应邀参加第二届聚合物发泡与多孔材料高峰论坛
    2021年11月20日,由SAMPE中国大陆总会聚合物发泡与多孔材料专业委员会主办的第二届聚合物发泡与多孔材料高峰论坛(PFPM)在江苏南京溧水新时代开元名都大酒店顺利举行,吸引了许多专家及各大公司的知名品牌仪器和新产品参展。聚合物发泡与多孔材料不仅广泛应用于包装建材、冷藏运输、电子电器、鞋服纺织、化学化工等传统行业,而且快速扩展应用于只能传感、生物医药、环境能源、航空航天等高端领域。聚合物发泡与多孔材料制备及成型加工新理论技术即将迎来高速高质的蓬勃发展之机。会议现场培安公司如期应邀参加了“第二届聚合物发泡与多孔材料高峰论坛(PFPM)”。培安公司作为ISCO柱塞泵独家代理,携带ISCO柱塞泵亮相参会,培安展台吸引了众多与会专家及客户驻足,并就仪器的原理和性能等与培安工作人员进行详谈。培安展位会议期间,与会代表参观了南京创博机械设备有限公司,在超临界二氧化碳发泡材料制备的生产现场,各位代表对ISCO柱塞泵都极为关注,纷纷上前咨询仪器的相关信息,培安公司销售人员对大家提出的问题均给予了详细解答。南京创博机械设备有限公司生产现场
  • 多孔材料表征分析技术研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年9 月15日在哈尔滨市黑龙江大学举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2011 年9 月15 日(星期四) 时 间:9:30 ~ 16:00 地 点:黑龙江省哈尔滨市黑龙江大学化工学院2楼报告厅 内 容: 你的孔径分析结果准确吗?--多孔材料的孔分析技术进展 背景知识 吸附理论 气体吸附法测量比表面和孔径大小 如何正确应用BET 理论计算微孔样品比表面 孔分析模型及非定域密度函数理论在孔径分析中的应用 化学吸附的应用以及对仪器的要求 新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析(NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表)诚邀相关领域的专家、同行莅临交流! 联系报名方式: 黑龙江大学化工学院 吴伟教授 13936133828 美国康塔仪器公司北京代表处 宋绪东先生 18611382329 邮箱: songxudong@quantachrome-china.com杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 催化剂及多孔材料的孔结构表征技术研讨会将在浙江举行
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,并使之服务于科研、检测,为广大用户提供精确、严谨的数据。 美国康塔仪器公司将于2012年7月24日下午13:30-14:30分在浙江工业大学化工楼三楼学术报告厅举办研讨会,与广大中国相关领域的科研工作者共同探讨物理吸附、传质等领域的学术问题,并着力将最新的科研成果用于相关的应用领域。 期待您的光临指导!主讲人:Dr. Matthias Thommes Dr. Matthias Thommes是德国柏林科技大学博士, 现任美国康塔仪器公司首席科学家,。加入美国康塔公司之前,Dr. Matthias Thommes在柏林科技大学、美国马里兰大学等著名研究机构从事临界吸附行为、孔道中液体临界现象等研究,是欧洲宇航局(ESA)无人运载火箭计划(EURECA mission)临界吸附行为的微重力实验项目指导科学家。 自1998年加入美国康塔仪器公司,Dr. Matthias Thommes延续了他在该领域权威的研究工作,有着活跃的学术表现,迄今发表超过80篇论文及邀请综述、专著,超过100次学术会议大会报告、大学特聘专题课程,并在众多国际会议中担任分会主席。同时,他还是多个国际会议的顾问,如在法国举行的" Macro/Mesopore Analysis: Mercury Porosimetry and Alternative Liquid Penetration Techniques&rdquo 、在美国罗格斯大学举行的"5th International Workshop on the Characterization of Porous Materials : From Angstroem to Millimeters",在日本举行的10th International Conference on Fundamentals of Adsorption等。 目前,Dr. Matthias Thommes是国际吸附学会(IAS)理事,国际介孔材料学会(IMMA)执行委员,Particle & Particle Systems Characterization等杂志顾问,国际标准组织(ISO)比表面积及孔隙度工作组 (ISO TC24/SC4, WG3)召集人,美国材料试验学会(ASTM)陶瓷物性组(C28.03)主席,美国化学工程师学会(AIChE)分离部吸附剂表征组主席,国际纯粹和应用化学会(IUPAC)液体侵入法表征大孔固体委员会成员。
  • 用于工业废气处理的新型硅基微孔材料研制成功
    近日,中科院大连化学物理研究所研究员朱向学和研究员李秀杰团队在脱除不同分子尺寸的挥发性有机化合物(VOCs)吸附材料的研究方面取得了新进展。团队制备了富含开放微孔的新型硅基材料,可以用于VOCs的高效脱除,相关成果发表在《化学工程杂志》上。VOCs治理是大气污染治理的重要组成部分,是我国改善空气质量、打赢蓝天保卫战的重要抓手。吸附脱除或吸附脱除与燃烧法组合工艺是目前工业VOCs 废气处理最常用方法,其核心和关键在于高效吸附材料,尤其是在高湿气氛、多组分复杂工况条件下高效大容量吸附材料的开发。针对常用沸石吸附材料孔道结构单一,难以实现高湿气氛下多组分VOCs高效吸附的问题,团队提出了沸石晶化前驱体液可控水解和自组装的合成策略。通过对水解过程(模板剂类型及含量、碱度等)和自组装过程(干燥条件等)的调控,制备得到了具有丰富开放微孔结构的新型硅基吸附材料(MIS),并实现了MIS材料孔结构的灵活调变。在优选条件下,团队制备得到的MIS材料的微孔孔容约0.28cm3/g,且微孔分布较宽(0.5至2.0 nm),具有吸附不同分子尺寸VOCs的能力。进一步研究发现,在高湿度条件下间二甲苯吸附过程中,MIS材料表现出较MCM-41、Silicalite-2、硅胶、SBA-15和多级孔ZSM-5等传统吸附剂更优异的吸附性能,同时在多次循环吸附—脱附实验中未见吸附量降低;在丙酮、异丙醇、甲苯、苯乙烯、间二甲苯和三甲苯等不同分子尺寸VOCs的吸附中均表现出优异的吸附性能。该工作为相关新型吸附材料的开发提供了新思路。相关论文信息:https://doi.org/10.1016/j.cej.2022.140077
  • 多孔材料表征分析技术研讨会将在广州举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附  比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪 1978年首次将连续扫描注汞技术应用到压汞仪中 1982年发明世界第一台多站自动比表面和孔隙度分析仪...... 至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪—Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪——Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。  为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年5 月25日在广州市华南理工大学举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。   日 期:2011 年5 月25 日(星期三)   时 间:9:30 ~ 16:00   地 点:广东省广州市华五山路南理工大学五山校区材料学院(25号楼3楼会议室)   内 容: 你的孔径分析结果准确吗?  --多孔材料的孔分析技术进展  l 背景知识  l 吸附理论  l 气体吸附法测量比表面和孔径大小  l 如何正确应用BET 理论计算微孔样品比表面  l 孔分析模型及非定域密度函数理论在孔径分析中的应用  l 化学吸附的应用以及对仪器的要求  l 2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统  l 比表面和孔径分析操作中应特别注意的问题及曲线分析 (NOVAe 系列测试技术培训)  主讲人:杨正红(美国康塔仪器公司 中国区首席代表)  诚邀相关领域的专家、同行莅临交流!  联系报名方式:  美国康塔仪器公司北京代表处 陈小姐 010-64401522 800-810-0515 E-mail: chenliwen@quantachrome-china.com  美国康塔仪器公司上海办事处 朱小姐 021- 021-5282 8278 E-mail: zhuleina@quantachrome-china.com  美国康塔仪器公司广州办事处 蔡先生 18602045808 E-mail: caidabin@quantachrome-china.com  u 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理  毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。  1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。  2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。  虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。  乘车路线:公交20,41短,78,197,218,405,B10华工站下车(华工正门), 地铁3号线五山地铁站下车。
  • 大孔容材料测试绝密技巧在线分享
    大孔容材料测试绝密技巧在线分享专注于氧化铝/氧化硅/碳纳米管/石墨烯材料发展方向的小伙伴,在进行物理吸附测试的时候都会产生以下疑问: 我的材料是不是大孔容材料,通过什么标准判断呢?如何正确规范地完成大孔容材料物理吸附测试?大孔容样品在测试时应该关注哪些数值?测试材料的结果能说明什么问题?̷..本次课程能提供什么? 本次公开课是专门为需要了解大孔容样品物理吸附相关流程的小伙伴精心设计的,通过认真聆听课程内容,并及时与老师进行互动,可在最短时间内搞清楚样品的孔容孔径测试流程,及常见问题的解决方法。本次公开课将于6月9号(周二)进行线上直播,主讲人:北京精微高博科学技术有限公司高级工程师—赵丙倩。课堂内容将会围绕以下3个主题展开分享和讨论:01 燃情六月, 全面剖析大孔容材料的物理吸附特征1.介绍常见的大孔容材料类型(如,氧化铝、氧化硅等),帮助用户了解自己的样品2.详述大孔容材料的物理吸附特征02大孔容样品物理吸附的关注指标,及对性能的影响1.列举大孔容样品物理吸附的关注指标2.深度分析材料的物理吸附实验数据03 解读大孔容材料物理吸附测试问题及解决方案1. 剖析大孔容材料在测试中遇到的常见问题2.指导用户获取正确的大孔容材料分析解决方案 赵丙倩精微高博公司资深应用工程师在多孔材料的表征方面具有丰富的理论和实践经验。专注于大孔容材料的测试研究,尤其是氧化铝、氧化硅、碳纳米管、石墨烯等大孔容材料的比表面积、孔容孔径的分析测试。精微高博(JWGB)成立于2004年,推出中国第一台静态容量法氮吸附仪JW-RB,被誉为“中国氮吸附仪的开拓者”。15年来已发展为集研发、制造、销售、服务于一体的国家级高新技术企业,专业从事比表面积及孔径分析仪、化学吸附仪、竞争性吸附仪、蒸汽吸附仪、真密度仪等物性分析设备的研究,是中国材料表征仪器的领先制造商,产品销售全球十几个国家和地区,致力于向全球客户提供高质量、高易用性、高性价比的产品和服务解决方案。
  • 多孔材料表征分析技术研讨会将在青岛举行
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012 年06 月08日在青岛山孚大酒店举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2012 年06 月08日(星期五) 举行技术研讨会 时 间:9:00 ~ 16:00 地 点:青岛山孚大酒店第三、四会议室青岛市南区香港中路96号 内 容: 你的孔径分析结果准确吗?--多孔材料的孔分析技术进展 背景知识 吸附理论 气体吸附法测量比表面和孔径大小 如何正确应用BET 理论计算微孔样品比表面 孔分析模型及非定域密度函数理论在孔径分析中的应用 化学吸附的应用以及对仪器的要求 2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统 比表面和孔径分析操作中应特别注意的问题及曲线分析 (NOVAe 系列测试技术培训) 主讲人:杨正红(美国康塔仪器公司 中国区首席代表)诚邀相关领域的专家、同行莅临交流! 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理毕业于今天的北京大学药学院,之后,留校任教并完成硕士学业。主要从事自由基生命科学研究,先后发表及合作发表论文三十余篇,获得国家教委科技进步二等奖及北京市卫生局科技进步二等奖各一项。在校任教期间,担任天然药物及仿生药物国家重点实验室仪器组组长,负责仪器的验收、维护、开发、服务及科研。1993年10月,加入美国Bio-Rad公司在北京的子公司,负责分析仪器的销售及技术支持。1997年4月,被聘为瑞士华嘉公司分析仪器部产品专家,销售经理,负责颗粒特性分析仪器的技术支持及销售,在推广英国马尔文粒度分析仪和美国康塔仪器公司比表面及孔隙度分析仪等方面取得了突出成绩。凭借对用户高度负责的敬业精神在用户中有极佳的口碑,也受到了厂家的赞誉。2004年起,杨正红先后被英国马尔文仪器公司聘为市场部经理,北方区经理,并同时担任美国康塔仪器的中国区经理。2008年1月,美国康塔仪器公司北京代表处进行迁址、并独立开展在华的全部业务,杨正红辞去在马尔文公司的职务,专注于新代表处的业务开拓工作。虽然离开学校讲坛十余年,但杨正红始终没有中断学术研究。这期间,先后发表或合作发表涉及粒度测定,纳米技术与纳米科学,吸附理论及氢吸附的论文10余篇,多次被邀请作为国家标准审查专家组成员。2007年11月,被中国化学会催化分会邀请为特聘教授,从事吸附理论及其应用的讲授。2008年被选为北京市粉体技术协会的理事。
  • 武汉理工大学苏宝连课题组发表等级孔材料应用文章
    等级孔材料是指具有两种或者两种以上不同孔径的孔道结构,并且每一级别的孔道结构由低一级别的孔道结构构成,并产生新的等级属性。等级孔材料除具有每一级别单一孔道的属性之外,同时具有等级孔道的属性,使得等级孔材料成为多孔材料研究的热点领域,近年来引起了研究工作者的广泛关注。等级孔材料通常按照等级孔道结构分为微孔-介孔、微孔-大孔、介孔-大孔和微孔-介孔-大孔等。随着等级孔材料研究领域与学科间交叉于渗透的日益加强与深化,研究方法与现代实验技术的进步与精化,大大推动了等级孔材料的类型与品种的不断扩充与发展,也进一步拓宽了等级孔材料的应用领域。 近日,武汉理工大学苏宝连研究组撰写关于等级孔材料应用方面的综述性文章,总结了等级孔材料在能源储存与转换、有机催化、光催化、吸附分离、传感及生物医药等领域的应用。此外,该综述详细阐述了等级孔材料的结构及其性能之间的关系。 苏宝连教授是与麦克仪器公司有多年的合作关系,其实验室有asap 2020全自动多功能气体吸附仪、tristar ii 3020高性能多通道全自动比表面与孔隙度分析仪、autochem ii 2920高性能全自动化学吸附仪、autopore全自动压汞法孔径分析仪、accupyc ii全自动氦气置换法真密度仪等多款麦克经典仪器,为多孔材料设计、合成及应用提供了强有力的支持。原文链接:http://pubs.rsc.org/en/content/articlelanding/2016/cs/c6cs00135a—部分内容转自x-mol资讯
  • 美国麦克仪器公司多孔材料高级研讨会圆满结束
    2012年8月22号-23号,美国麦克仪器德国分公司和瑞士ETH Zurich联合举办题为多孔材料高级研讨会,会议期间,来自美国、荷兰、法国、德国、瑞士的多位专家和大家分享了在多孔材料研究领域的研究成果,讨论的内容主要包含实验室理论和材料进展、先进的材料表征分析技术,涉及的材料包含沸石,介孔二氧化硅,金属有机骨架(MOFs) 和微孔碳等,这些材料被广泛应用于吸附剂、催化剂、离子交换剂、载体、医药、生物材料、膜、超级电容器、电池等行业。 此次会议为广大的研发人员提供了一个交流和学习的平台,开拓了大家的思路,受到广大与会者的高度赞扬,美国麦克仪器公司将秉承支持多孔材料研究的一贯理念,继续为大家提供这种交流机会。请大家关注我们的网站http://www.micromeritics.com.cn,www.micromeritics.com,我们会定期在网上发布公司的最新活动信息。
  • 纳米材料形貌可人为控制
    自上世纪30年代起,异质结构的半导体器件就在人们的生活中发挥着越来越重要的作用。在人们的现代生活中,以半导体异质结构为基础的发光二极管、场效应晶体管、太阳能电池等都得到了广泛的应用。因此,发展纳米材料的合成技术,制备具有纳米尺寸的“半导体—半导体异质结构”材料不仅是合成化学所面临的挑战,同时也是发展新型功能纳米材料的一个重要途径。  中国科学院化学研究所高明远课题组在具有特殊结构和形貌的纳米材料的合成方面开展了一系列研究工作,取得了突破性进展。该小组采用高温热分解和分步注射的方法,成功地制备了纳米“火柴”、不对称形貌的纳米“泪滴”等异质结纳米晶体以及In2S3纳米“铅笔”。  最近,该课题组在系统研究工作基础上,利用粒径不同的Cu1.94S的纳米颗粒作为催化剂,并在反应体系中加入硫醇作为表面配体。他们证明了导体 Cu1.94S纳米颗粒可以催化硫化铟纳米晶体的生长,形成具有“半导体—半导体异质结构”的纳米材料,而类似的催化作用之前只在金属类纳米颗粒中被观察发现。研究还表明在In2S3纳米晶体的形成过程中,由铜、铟前体化合物与反应介质十二硫醇的相互作用所导致的凝胶化现象可直接影响纳米材料的晶体生长动力学。据此,通过对凝胶化过程的控制,他们成功地实现了具有异质结构的火柴形及泪滴形的Cu2S-In2S3纳米材料以及铅笔形In2S3纳米材料的制备。  中国科学院汪明博士说,论文的重要意义在于揭示了异质结构纳米晶的形成的过程及其机理,表面配体与金属离子的配位作用所导致的凝胶化对纳米材料的生长,及得到的纳米材料的结构与形貌进行控制具有重要的普适意义。
  • 城市环境所在废弃生物质多孔碳电容脱盐电极材料研究中取得进展
    近日,中国科学院城市环境研究所郑煜铭团队(污染防治材料与技术研究组)在废弃生物质多孔碳应用于电容脱盐方面取得新进展。该研究揭示了提高碳电极材料石墨氮含量对增强电容脱盐性能的内在机制。 碳材料因储量丰富、环境相容性高,成为电容去离子(Capacitive deionization,CDI)电极材料研究的热点。然而,制备良好亲水性、高比表面积、适合孔径分布、高导电性、稳定电化学性能的碳电极材料颇具挑战性。因此,亟需发展一种绿色、低成本的方法来制备具有特定形态或孔隙结构的杂原子掺杂碳电极材料。近年来,杂原子掺杂工程为制备高性能CDI电极材料提供了新思路。基于此,中国科学院城市环境研究所郑煜铭团队以溶解有废弃蚕茧的汰头废水为氮和碳源,运用ZnCl2活化-碳化工艺制备了氮掺杂分级多孔碳(NPC),并将其作为电极材料用于CDI脱盐,实现废弃物资源化(如图)。研究发现:提高石墨氮含量可有效降低电极材料本征电阻,减小脱盐能耗;同时可增加电极材料内部缺陷形成赝电容吸附位点,进一步增大脱盐容量。优化后的NPC-1.5电极材料的电吸附容量可达22.19 mg g-1,平均脱盐速率为1.1 mg g-1 min-1,优于已报道的活性炭和其他多孔碳电极材料;经过50次循环利用后,NPC-1.5仍能保持初始电吸附容量的97%,表明该材料在海水淡化方面具有应用潜力。 相关研究成果以Silkworm cocoon waste-derived nitrogen-doped hierarchical porous carbon as robust electrode materials for efficient capacitive desalination为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到国家自然科学基金面上项目和中国科学院青年创新促进会等的支持。  NPC的制备及其CDI脱盐示意图
  • 我国发现宏量合成多孔掺杂 碳纳米材料制备新途径
    p style="text-indent: 2em "记者从中国科学技术大学获悉,该校俞书宏教授和梁海伟教授研究团队找到了一种过渡金属盐催化有机小分子碳化的合成新途径,实现了在分子层面可控的宏量合成多孔掺杂碳纳米材料。研究成果发表在7月27日出版的《科学进展》上。/pp style="text-indent: 2em "碳纳米材料因具备高的导电性、优异的化学稳定性、独特的微观结构等物理性质,在环境、能源、催化、电子器件和聚合物等领域有着广泛的应用。特别是拥有高的比表面积、多孔结构、理想的杂原子掺杂等特征的碳纳米材料,更受青睐。但开发简单、廉价、可控的方法宏量制备碳纳米材料依然面临巨大挑战。/pp style="text-indent: 2em "有机小分子因其广泛存在、种类多样、元素丰富,是一种理想的制备碳纳米材料的前驱体。但在高温下有机小分子的高挥发性使得其作为原料制备碳纳米材料必须使用复杂方法和设备,如化学气相沉积和高压密闭合成。/pp style="text-indent: 2em "针对上述挑战,研究人员提出一种过渡金属辅助有机分子碳化的方法,通过使用过渡金属盐辅助热解有机小分子来制备碳纳米材料。在高温热解过程中,过渡金属盐不仅能提高小分子的热稳定,还能催化其聚合优先形成相应的聚合物中间体,避免有机小分子在高温热解中挥发,从而最终形成碳纳米材料。研究表明,运用这种方法制备的碳材料具有三种微观结构:竹节状的多壁纳米管、微米尺度的片和无规则的颗粒。该研究为高效制备碳纳米材料提供了一种普适的合成路线。/p
  • 多孔材料的比表面和孔分析理论及颗粒表征技术进展研讨会
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。 为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012年11月29日在武汉市武昌区湖滨花园酒店举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。 日 期:2012 年11 月29日 时 间:9:00 ~ 17:00 地 点:湖滨花园酒店(武汉市武昌洪山区珞瑜路115号) 内 容:多孔材料的比表面和孔分析理论及颗粒表征技术进展背景知识、吸附理论气体吸附法测量比表面和孔径大小如何正确应用BET 理论计算微孔样品比表面孔分析模型及非定域密度函数理论在孔径分析中的应用新一代颗粒、形貌表征技术&mdash &mdash Occhio粒度粒形分析仪技术及应用 如有不详之处,敬请联系美国康塔仪器公司上海代表处 朱蕾娜:021-52828278, zhuleina@quantachrome-china.com
  • 2012国际纳米孔碳材料专题研讨会将在韩国首尔举行
    经过半年多的筹备,关注多孔材料研究的科学家期待已久的科学盛会――2012国际纳米孔碳材料专题研讨会将于2012年3月12日在韩国首尔举行!这个盛会提供了一个少有的机会来讨论纳米孔碳材料的综合表征(例如:结构,孔径/孔隙)以及它们的应用。中国科学家在多孔碳材料研究方面卓有成效,希望更多的中国学者加入其中。会议期间,美国康塔仪器公司首席科学家及应用经理将进行演讲,主要内容包括理论以及最为先进的数据处理方法。 更多详情请访问:http://www.atikorea.com/pop/html/intro/index.php?lang=en期待您的报名与参加! 在线注册1. 登录www.atikorea.com2. 单击International Workshop.3. 填写并提交申请。位置
  • 多孔材料表征分析技术研讨会于天津成功举行
    为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术、更准确地使用物理吸附方法对材料性质进行表征,美国康塔仪器公司于2012 年06月15日在天津大学天南联合大厦报告厅成功举办&ldquo 多孔材料表征分析技术研讨会&rdquo 。 主持此次会议的是美国康塔仪器公司中国区应用专家张哲泠老师。张老师详细讲述了多孔材料比表面积和孔径分析技术原理及最新的科研进展, 并结合仪器原理系统分析了如何测好样品,包括参数的意义和分析过程中的注意事项以及高端应用,同时通过详细的理论分析解答了科研工作者在数据分析中的困惑。与会学者对此做出了极高评价。 美国康塔仪器公司是著名的当代颗粒技术开创者。致力于粉体及多孔物质的测试分析技术四十余年,康塔公司将继续本着恪尽职责、服务于客户的理念,推动材料分析技术的发展。
  • 2011广州多孔材料表征分析技术研讨会圆满举行
    2011年5月25日,由美国康塔仪器公司主办,华南理工大学承办“2011多孔材料表征分析技术研讨会”在广州华南理工大学五山校区顺利召开,近八十位业内人士参加了此次大会。  本次大会围绕“吸附理论”、“气体吸附法测量比表面与孔径大小” 、“如何正确应用BET理论计算比表面”、“非定域密度函数理论在孔径分析中的应用”、“化学吸附仪器在催化剂活性表征中的应用”、“压汞法在孔径分析中的应用”等议题展开培训和讨论,旨在为积极应对材料发展的各种挑战献计献策,尤其是新能源材料。  与会者对报告反响热烈,认为研讨会涉及内容正是他们迫切需要的,解决了他们在科研中长期困惑的问题,为今后把握正确分析方法指明了方向。研讨会延长至晚上6时余才得以结束。
  • 多孔材料表征分析技术研讨会将在天津举办
    美国康塔仪器公司(Quantachrome Instruments),是国际著名的材料特性分析仪器专业制造商,在四十多年的发展历程中,始终致力于粉体及多孔物质测量技术的创新,硕果累累:1972年研制出世界第一台动态气体吸附比表面分析仪,同年又研制出世界第一台商用气体膨胀法真密度分析仪;1978年首次将连续扫描注汞技术应用到压汞仪中;1982年发明世界第一台多站自动比表面和孔隙度分析仪......;至2005年,研制出最新一代、也是目前唯一一台可以进行静态和动态、物理和化学吸附、具有微孔分析能力的全自动比表面和孔隙度分析仪&mdash Autosorb系列。2010年3月1日,正式推出了至今最先进的双站微孔分析仪&mdash &mdash Autosorb-iQ。美国康塔,一直走在粉体及多孔物质分析技术的前列。为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2012 年06月15日在天南联合大厦A座四层报告厅举办&ldquo 粉体和多孔材料表征分析技术研讨会&rdquo ,欢迎光临指导。  日 期:2012年6月15日(星期五) 举行技术研讨会 时 间:8:30 ~ 12:00 地 点:天南联合大厦A座4楼会议室 内 容: 你的孔径分析结果准确吗?--多孔材料的孔分析技术进展 背景知识 吸附理论 如何判定实验结果是否准确? 如何更好地设定分析条件? 如何解读等温线? 如何扩展实验方法? 化学吸附的应用以及交流 主讲人:张哲泠(美国康塔仪器公司 中国区应用专家)
  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 临界点干燥仪在纳米多孔材料中的应用
    纳米多孔材料的定义主要基于它们的孔隙大小,这些孔隙通常在纳米尺度范围内,即小于100纳米。根据国际纯粹与应用化学联合会(IUPAC)的分类,孔隙可以根据直径分为微孔(小于2纳米)、介孔或中孔(2至50纳米)和大孔(大于50纳米)。纳米多孔材料的孔隙结构提供了巨大的比表面积,这使得它们在吸附、催化、电子材料、光收集、能量传递以及分子传感等领域具有显著的应用前景。在能源存储领域,例如锂电池技术中,纳米多孔结构被用于提高电极材料的性能。这些材料可以通过不同的制备方法,如硬模板法,来制造具有特定孔隙结构的电极材料,从而提高电池的储能能力和循环稳定性。所以在常规干燥过程中,随着溶剂的蒸发,表面张力会在孔隙中产生压力,这可能导致孔壁塌陷,尤其是在孔径较小的情况下。这种塌陷会改变材料的孔隙结构,从而影响其性能,毛细管力也会在干燥过程中对纳米多孔材料造成损害。当液体从孔隙中被抽出时,产生的毛细管力可能会导致材料的收缩或结构变形。为了克服这些难点,研究人员采用了超临界干燥技术。这种技术涉及将温度和压力提升到超临界点,使得液体和气体的相界消失,因此在去除溶剂时不会受到表面张力的影响。超临界干燥可以有效保持纳米多孔材料的原始结构和形态,是制备这类材料的重要技术之一。临界点干燥技术在纳米多孔材料的应用有以下几点制备纳米颗粒:超临界流体干燥技术在水难溶性药物纳米颗粒的制备中得到了应用。这种技术可以根据药物在超临界流体中的溶解性,通过溶剂法和反溶剂法来制备纳米颗粒。利用超临界流体干燥技术制备的纳米颗粒具有粒径小、有机溶剂残留少、形貌可控性高等优点。结合溶胶-凝胶法:超临界干燥技术可以与溶胶-凝胶法结合使用,以制备纳米多孔材料。这种方法可以避免在普通干燥条件下由于表面张力造成的骨架坍缩,从而在维持骨架结构的前提下完成湿凝胶向气凝胶的转变。制备多孔材料:有研究提出了两种新型的超临界干燥技术用于制备多孔材料。这些材料因其良好的吸附性能、催化性能以及稳定性和耐用性,在催化、环保、能源等领域有着广泛的应用。热防护材料:在新一代航天飞行器的轻质、高效隔热需求中,酚醛树脂基纳米多孔材料(PNM)被视为新型热防护材料。其传统制备方法中通常需要使用超临界干燥技术,尽管这种方法的制备周期长、成本高。纳米多孔材料在干燥过程中面临的最大挑战是保持其微观结构的稳定性,而超临界干燥技术提供了一种有效的解决方案。通过这种先进的干燥方法,可以在不损害材料性能的前提下,实现纳米多孔材料的干燥。华纳创新是美国Tousimis临界点干燥仪的中国总代理和技术服务伙伴,负责Tousimis临界点干燥仪在国内的销售和售后服务,Tousimis专注于临界点干燥仪60余年,在临界点干燥领域处于领先地位,客户遍布全球各个领域。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制