当前位置: 仪器信息网 > 行业主题 > >

进行自动化

仪器信息网进行自动化专题为您整合进行自动化相关的最新文章,在进行自动化专题,您不仅可以免费浏览进行自动化的资讯, 同时您还可以浏览进行自动化的相关资料、解决方案,参与社区进行自动化话题讨论。

进行自动化相关的资讯

  • 2013 Tecan最新自动化检测技术专题讲座火热进行中
    2013 Tecan最新自动化检测技术专题讲座- 福州站火热进行中!专题巡讲会简介瑞士Tecan是全球领先的生命科学与生物制药、法医和临床诊断领域仪器及解决方案供应商。公司总部位于瑞士,分别在瑞士、北美和奥地利设有研发及生产基地,销售服务网络遍布世界52个国家,客户覆盖制药企业、生物技术公司、科研院所、法医、医院、血站系统和疾病控制中心(CDC)等。作为将四光栅技术引入酶标仪的发明者,Tecan四光栅产品辉煌走过了十二年。在此,Tecan诚邀您参加我们为您准备的新产品及应用技术讲座,无论您是从事基础科研,还是从事药物研发和筛选工作,我们都致力于为您提供更多的科研思路、学术方法和实验解决方案。热诚期待您的光临!日程安排时间:2013年3月26日(周二) 08:30-12:00地点:福州华庭大酒店(二楼)华福厅讲座内容:1多功能酶标仪在生命科学研究中的应用2高通量实验技术与自动化液体处理工作站请您立即将以下注册信息发邮件至infotecancn@tecan.com,我们向您发送会议具体信息,并为您预留座位与资料。参加讲座者免费获赠一份精美礼物,并有机会参与抽奖活动,更多好礼等您拿! 姓名:职务:联系电话:E-mail:研究方向:工作单位:通讯地址: 更多详情,欢迎您联系:帝肯(上海)贸易有限公司Libby ZhuTel: 021 2206 3206 / 010 8511 7823Fax:021 2206 5260 / 010 8511 8461infotecancn@tecan.comwww.tecan.com www.tecan.cn
  • 创新!利用涡流探伤仪进行高速自动化电导率测量
    HPI (High Performance Industrietechnik GmbH)总部位于奥地利兰斯霍芬,为轻金属行业开发、设计、制造和交付交钥匙设备。冶金制造商通常使用轻金属(如铝和镁)来生产轻型合金类产品。HPI为它的其中一个冶金客户创新并开发了一种用于无损材料检测的自动化电导率测量系统。HPI制造的电导率测量系统集成了我们的NORTEC™ 600涡流探伤仪,将我们的涡流探伤仪用于测量和测试以满足质量需求。制造一款以生产线速度验证电导率的系统HPI制造了一款系统来进行电导率测试,用于评估铝板的热处理状态。这些铝板最宽4,200 mm,最长33,000 mm,厚度范围为1 mm到210 mm 。这些铝板会被加工成铝镁合金半成品,供应给航空工业。这家冶金公司需要为其新的轧钢机组配备该系统,其中包括冷轧机、热轧机和板材热处理。其制造工艺要求采用内置的可靠NDT检验解决方案,在提高生产率的同时确保其材料符合国际公认的标准。HPI面临的挑战是开发这样一款系统:在保持一致的测试性能的同时,还需要实现高速测量铝板电导率。正在生产线辊道上运输的大型铝板为什么制造商需要测量金属电导率通过测量电导率能够确定材料允许电流通过的程度,即能够确定材料的电流传导性能。此测试使制造商能够收集有关物质成分的信息。通过这些测试数据,用户可以确定材料是否适合其预期用途。许多行业都在其质量控制和制造工艺中引入电导率测试。其目的是为了验证金属结构是否完整性,以便能够实现最终产品所需的耐用性和性能。必须测量飞机建造中使用的铝材电导率以了解其放电能力,从而确保铝材承受雷击等事件时的材料应力承受能力。电导率测试通过检测合金硬度的变化可以确认材料是否因热处理而受损,令其脆性增加。铝材的优点、缺点和典型缺陷铝材的密度低于其他常见金属。例如,钢材的密度大约比铝材高三分之一。由于重量轻、强度高,铝材是飞机制造的理想材料,一些统计数据估计,现代飞机制造中铝材占比为75–80%。因为主要由铝材制成,飞机可以承载更大的重量,并且更省燃油。铝合金的另一大优点是耐腐蚀性,这增加了飞机的耐用性。飞机经常受到恶劣天气和极端气候的影响,需要耐受从高空的冰冻温度到包括雪和暴雨在内的降水等因素。尽管铝材具有高度耐腐蚀性,但它也是一种化学活性金属,因此某些情况下也会发生腐蚀。铝制组件容易受到各种类型腐蚀,其中包括:表面点蚀晶间腐蚀剥离腐蚀应力腐蚀开裂(SCC)疲劳开裂微振磨损制造工艺(如机加工、成型、焊接或热处理)可能会在铝板(并因此在飞机零件上)留下应力。超过应力腐蚀阈值时,这种残余应力可能会在腐蚀性环境中导致开裂。涡流NDT技术在航空航天应用中的优势涡流无损检测(NDT)技术是一种非接触式金属零件检验方法。此技术广泛应用于航空和航天工业以及其他制造和维修环境中用于检验薄金属材料是否存在潜在的安全相关或质量相关问题。由于涡流检测(ECT)使用电磁耦合,不需要与零件直接接触,因此不需要耦合剂。EDT可用于执行以下检验:表面检验次表层检验(通常3-4 mm)涡流技术的优点:保留漆层和涂层进行检验(无需除漆)较少的表面处理(可以保留污垢进行检验)易于使用,只需较少的培训提供快速结果,适合高速检验和大型零件检验适用于任何导电材料,包括飞机上常用的金属,如铝、不锈钢和钢涡流检测设备的工作原理(A) 流入线圈的交流电产生磁场(蓝色)。(b) 当线圈置于导电材料附近时,会引发材料中产生涡流(红色)。(c) 零件中的缺陷会干扰涡流的路径。这种干扰可以用仪器测量。当交流电通过ECT探头总成中的一个或多个线圈,且探头靠近由导电材料制成的零件时,会产生交变磁场,将涡流引入零件。这个磁场会产生耦合效应。测试部件中的间断点或特性变化会改变涡流的流动,这会影响探头的工作感抗。探头可检测到材料厚度的变化或缺陷,如受检零件中的裂纹和腐蚀。这些变化以信号的相位和振幅反映在仪器屏幕上,然后由操作员进行解读。HPI的铝板电导率测量解决方案,时长04:48本视频展示了HPI解决方案的演示,该解决方案是用于铝板高速电导率测量的自动化系统。如您所见,NORTEC 600装置集成在扫描仪上的HPI系统中,该扫描仪在检测完轧辊将信息输入测量站之后将ECT探头在校准站和铝板上快速移动。(可参考国际公认标准ASTME 1004-02、MIL STD1537C、EN2004-1和AMS 2772F,以及航空航天行业的客户定制测试规范,为每个金属板预定义测量程序。”—《铝业时报》)集成NORTEC 600 ECT装置的铝板电导率测量系统HPI过去曾使用手动设备进行此类生产线测试;但随着速度和质量要求的提高,尤其是对于航空和航天行业,手动测试变得过时。 奥林巴斯的NORTEC 600涡流探伤仪通过与HPI的全自动检验系统相结合,以此提供了一个较为可靠并具有时间和成本效率的解决方案。HPI为此解决方案配置了自己的应用软件,基本上就是将NORTEC 600装置作为传感器集成到系统中。HPI之所以特别选择了NORTEC 600设备而不是其他涡流探伤仪,是因为该仪器提供了与可编程逻辑控制器(PLC)通信的接口。在电导率测量前后,系统会自动对每个金属板进行校准检查。由于其检测速度很快,手动测量需要花费数小时的数百个检测点仅需几分钟即可完成测量。HPI的客户使用其中两个系统,每个系统上配备两个NORTEC 600探伤仪。作为质量控制流程,电导率质量检查有助于改进HPI的热处理工艺和提高客户满意度。关于NORTEC 600涡流探伤仪NORTEC 600涡流探伤仪是一种便携式设备,采用了先进的数字电路。NORTEC 600装置可轻松无缝地集成到检验系统中。此装置的宗旨是让工业环境中的性能保持一致性。NORTEC 600规格和功能在设计时考虑到了HPI等集成商。设计满足IP66要求−10°C至50°C工作温度范围持续平衡滤波器带有扫频报警的带状图视图6 kHz测量速率通过NORTEC PC软件进行远程控制报警输出模拟输出数字输入质量控制用NDT设备HPI选择将奥林巴斯NORTEC 600涡流探伤仪集成到其自动化NDT解决方案中,是因为该探伤仪可以在不接触材料表面的情况下实现快速可靠的电导率测量。
  • 华运公司技术人员协助用户进行三聚氰胺自动化固相萃取
    在三聚氰胺事件中,许多奶制品、饲料生产厂家和检测单位都面临大量样品的检测问题,样品前处理的速度成了对三聚氰胺检测的瓶颈。应吉尔森固相萃取仪用户的要求,华运公司在各地的分公司已经派出技术人员到石家庄、内蒙、山西、天津等地,协助当地用户使用吉尔森全自动固相萃取系统对样品中的三聚氰胺进行分析前的自动化处理。各地吉尔森固相萃取系统的用户如果需要协助,请与就近的华运公司分公司联系。或直接联系华运公司样品前处理专家陈小华博士。邮件:sales@worldways.com.cn,手机:13802593916。
  • 以自动化分离技术进行筛选,攻克天然药物成分提取难题
    随着 21 世纪 “回归自然” 浪潮的兴起以及世界各地对药物毒副作用和耐药性的认知,在天然产物中寻找安全有效的药物这一课题已经引起国内外学者的高度重视,但如何在研发过程中实现这个目标? 今天就让我们一起探讨,并分享一下最新的解决方法。天然产物因其成分的多样性及其作用机制的复杂性,致使天然活性成分的筛选一直是药物研究的瓶颈。再加上传统的实验室仍主要依靠人力操作,分离纯化过程费时费力、容易出现人为错误,且生产成本高、效率低,因此各大制药企业和科研机构日益重视实验设备的自动化与智能化,以攻克天然药物成分提取的难题。全自动分离制备及薄层色谱系统助力中药粗提物快速分离随着天然产物与中药开发的快速发展,市场上对批量样品处理的需求日益提高,而传统的活性成分提取纯化方法除了费时费力,更会常常破坏活性成分的结构,影响实验效果,所以一些现代化、智能化的提取分离技术越来越显现出特有的优势,凭借这些技术进行高通量的活性成份筛选,有助加速研发。以糙苏为例,块根糙苏 (Phlomis tuberosa L.) 作为中草药,在亚洲国家被广泛应用于糖尿病、胃溃疡等病症的治疗,其作用机制与酶活性抑制相关,筛选确定其活性成分是深入研究的重中之重。✦块根糙苏早在 2015 年,上海中医药大学中药研究所的杨博士就以自动化技术实现对天然活性产物的快速分离,对 α-葡萄糖苷酶抑制活性实现快速筛查,并在 PLoS ONE 期刊发表了其研究成果[1][2]。研究当中通过 Sepiatec Sepbox 2D-2000 全自动分离制备系统对中草药粗提物进行快速分离,系统仅利用 20 小时的自动运转,便能快速得到 150个馏分,大大加快了药效物质的发现进程,证明了自动化技术助力天然产物的快速分离及制备的成效。活性化合物结构图为了进一步寻找活性成分,更利用薄层色谱生物自显影活性筛查模型,实现了对这 150 个馏分的超快速筛查,其中 15 个馏分对比阳性对照具有明显的抑制活性。再经过细分纯化工作,最终得到 20 个活性化合物。从粗提物到得到活性单体,工作周期不超过 5 个工作日!基于薄层生物自显影技术部分馏分 a-葡萄糖苷酶抑制活性筛查结果出众的分离成效归功于两大重要自动化技术天然药物相对于其他药物,成份更复杂,而且研发过程中涉及较多提取、分离、纯化等前处理操作。以上案例当中用到的技术 - Sepiatec Sepbox 2D-2000 全自动分离制备系统,由力扬企业从德国引入的,能够实现高通量的活性成份筛选,快速获得可重复且可靠的分离效果,加速纯化过程,而且单次粗提物样品处理量多达 2g,单样品制备时间不超过 24 小时,还能在实验过程中减少有机溶剂的消耗,免去了人手和研发设备的大量投资,极大地节省了时间和金钱,降低了生产成本。Sepiatec Sepbox 2D-2000 全自动分离制备系统薄层色谱分析方面,力扬全新引进的全自动数字薄层色谱系统 CAMAG HPTLC PRO 也有助完成快速的活性筛选,系统能够在无人干预的情况下完成在线全流程 (“点样 – 展开 – 衍生 – 检测 – 分析 – 报告” 等) 的自动化薄层样品分析及评价,尤其适用于复杂成分样品的分离及检测,更攻克了薄层色谱的重现性难题,大幅度降低研发和检测实验室的人力和时间成本消耗。通过全面的自动化能够高效地生产大量可靠数据,构建薄层色谱信息数据库,实现信息化和数字化管理,并建立实验室智能化的基础。在稳健而高效的实验设备辅助下,天然产物研究相信将迎来更进一步的发展。参考文献:[1] Baatar D, et al., Ethanol Extract of Phlomis Tuberosa L. Promotes Glucose Uptake in 3T3-L1 Preadipocytes via Insulin Signaling Pathway, The FASEB Journal, April 2017 31(9). doi: 10.1096/fj.1530-6860.[2] Yingbo Y, et al., Identification of α-Glucosidase Inhibitors from Phlomis tuberosa, PLoS ONE 10(2), February 6, 2015. doi: 10.1371/journal.pone.0116922.
  • 浅谈实验室自动化
    前言20世纪60年代,出现的第一台微处理器,给机械化的实验室带来了新的机会和机遇。20世纪80年代计算机和软件技术的快速发展推动了实验室自动化的大规模应用。直至现在科技依旧在不断发展。随着物联网技术、人工智能还有机器学习技术快速发展,实验室自动化也发展到了一个新的阶段,从单一的功能向着全实验室自动化方向发展。人们对实验室自动化的定义可以分为狭义和广义:狭义的实验室自动化指通过实验获取数据、数据处理和获得实验结果这一过程的自动化;广义的理解包括科学实验、仿真、图像处理、计算机辅助设计、自动测量、自动检查、实验设备的控制、文献专利情报的管理、各种数据库、自动翻译、专家系统等。回顾整个实验室自动化的发展历程,大体经历了3个主要阶段:无自动化(即所有仪器都作为独立机器存在)、部分实验自动化(实验室分析仪与分析前工作站互连并部分集成)以及全实验自动化(即主要的分析前和分析后的步骤在与分析仪物理连接的工作站上自动执行,并由软件程序有效地管理)三个发展阶段。现如今,激烈的市场竞争需要让企业在短时间内实现产业化,谁先将想法变成现实谁就在这个领域占据了主动权,因此让研发过程加速成为了大家的共识,对实验室自动化的需求也愈加强烈。面对强烈的市场需求,实验室自动化不仅在国内,乃至全球都是风口的存在。据调查数据显示,2022 年全球实验室自动化设备市场规模为 68.7 亿美元,预计以 6.64%的 CAGR于 2030 年稳步增至 114.9 亿美元,而我国的实验室自动化渗透率低,市场规模约为8亿美元,超千亿市场空间广阔,外资垄断格局亟待突破。当前实验室自动化设备主要分为三类:标准化产品、非标准化产品、定制化产品,这几类产品并不是纯粹的全面代替演进关系,而是根据成本需求、通量要求以及客户情况,匹配不同的产品形式。本文将对这三类产品的特点、主流厂商及产品和应用领域做一个简单梳理。标准化产品所谓标准化产品指的是单模块形式自动化。这种产品功能比较单一,往往只有一种或者两种功能可以使每一个模块都有独立的操作能力。比如自动化样本运输、自动化样本存储、自动化配液、自动化称量、自动化离心、自动化消解以及自动化测试等操作。国内相当多的实验室处于该实验室自动化的单模块自动化阶段。主流厂商有安捷伦、帝肯、哈美顿等。此部分列出在仪器信息网参展的部分标准化产品:Agilent Bravo 自动液体处理平台帝肯(Tecan) Cavro Omni Flex 机械臂非标准化产品非标准化产品指的是为了与某个仪器设备进行整合联用,为它单独研发的一种模块。主要是为了提高该仪器的使用效率,例如代谢组学样品前处理平台。由于非标准产品的利润空间有限,不仅占据了公司的研发精力,还不具有复制性,因此从事该产品的研发公司相对较少。此部分列出在仪器信息网参展的部分非标准化产品:Agilent Bravo 代谢组学样品前处理平台(专为血浆代谢组学设计) NEMO 适用生物安全柜的自动移液系统(专为生物安全柜、超净工作台、通风柜等有限空间环境设计)定制化产品而定制化产品则是定制化的为某一个实验室进行设计,通过自动化产品代替人工操作环节,衔接实验的各个环节,最终变成一个全方位、全覆盖的自动化实验室。该类产品不仅代替劳动力,而且还代替了一部分脑力劳动,具有机器学习、自动判断、自我决策能力,这类自动化实验室多用在研究型实验室领域,特别是解决多品种、小批量、多批次、高时效的检测需求,在全实验室自动化基础上,融入机器深度学习等人工智能,即实验室智能化操作和管理,通过对智能实验室机器人发出指令,进行所有的实验室操作,包括样品前处理、分析检测和实验数据的处理,并可以循环往复地进行。主流厂商主要有镁伽、汇像等。定制化产品效果图结语在中国,大多数实验室自动化的程度还主要停留在单模块形式上;只有个别领域实验室实现了定制化产品形式,其集成程度有限,在国内市场售价大都在百万人民币级别,客户包括药企、疾控中心、第三方检测中心等。未来实验室自动化将向着智能化的趋势发展,完全将人从实验室中抽离出来,实现更高层次的升维。
  • ELISA自动化再升级!
    在细胞株开发实验室中,ELISA是一个普遍有效的高通量筛选分析和验证实验,受到广大生物制药企业的喜爱。经典的ELISA工作流程需要多个长时间的孵育步骤,与几个清洗步骤交错进行,对人员人力和时间的消耗巨大,使其难以手动进行。由于这是一项需要频繁移液孵育清洗的工作,更容易受到人为错误的影响。随着AI和自动化概念的迸发以及自动化高通量设备的革新, 企业对于自动化需求日渐增长,对于灵活快速的ELISA自动化解决方案也愈发期待。贝克曼库尔特生命科学推出的最新ELISA自动化方案立志于使用最少的人工干预和尽可能高的自动化程度来提高实验速度和效率,减少人为误差,为药物开发助力。目前的ELISA实验挑战:●人员投入大●实验时间周期长●批次间和批次内的检测样品平行性难以控制●标曲制作线性差快查收来自小贝的快速升级方案:01 超快速——右滑开启自动化图一: 人工ELISA 实验步骤,右划开启自动化。02 超稳定运行03 结果保证图二:使用CygnusTM CHO HCP ELISA 试剂盒对于自动化再现性的验证。手工和自动化的标曲比较结果如图二A和B所示,对比R2的数值自动化动化结果更为突出。同样根据标曲的数据进行自动化和手工的比较(图二C),发现吸光度数值基本一致。图三:在Protein A ELISA实验中手工(图三A)和自动化(图三B)制作的标曲线性比较。其中手工实验的R2与自动化实验的R2基本一致。贝克曼库尔特生命科学提供专业的软件硬件支持,以及客户应用开发来满足大家对于生命科学自动化的需求。关于贝克曼库尔特生命科学自动化整合部门介绍:贝克曼库尔特生命科学自动化整合部门位于美国Indianapolis,该部门位于Beckman质量管理系统下,并经过ISO9001认证,部门配备整合实验室,完成整合设备的研发。整合部门人员包含机械、电子、软件、系统工程师,和工程师支持、项目管理人员。如有特殊功能开发,Beckman团队可协助客户在国内进行软硬件开发和测试。*以上内容涉及设备仅适用于科研和工业,不用于临床诊断。
  • 实验室自动化的发展历程
    如需查看原文献/补充资料 请关注曼森生物公众号编者按目前的各类实验室基本上都是属于非常消耗人力和时间的劳动密集型场所,而且还容易出现人工操作产生的差错。这种现状决定了需要由低通量的人工操作向高通量的自动化操作模式转变,实验室自动化无疑解决了这个问题。曼森生物是一家为生命科学领域实验室自动化建设提供高品质创新产品、技术支撑和全实验室自动化解决方案的高新技术企业,拥有自主知识产权和实力强大的技术研发团队,始终坚持将生命科学实验和AI及高通量自动化实验相结合,致力于为合成生物学、生物医药、医疗医学检测及食品安全检验检测实验室提供全方位全流程自动化和智能化综合解决方案,产品涵盖从食品安全、药品安全到生命科学领域智能机器人自动化工作站系统、全流程检验检测实验室自动化以及配套自动化和智能化仪器设备及相关耗材等。曼森无人化实验室局部实验室自动化发展史实验室自动化是通过“机器人换人”、“人工智能替代人类智能”的现代技术,对传统劳动密集型实验室进行技术改革,实现无人化、精准化和高效化的效果,其技术特点是自动化、智能化和云端化。实验室自动化的应用市场包括医药研发、生物学、医学检验、食品药品安全检验检测、环境和水质监测等领域,这些领域都是目前全世界各国关注的热点问题。实验室自动化和智能化正在成为一种趋势,就像工厂的自动流水线一样,实验室机器人会按照标准化的工作流程完成实验操作。未来我们把这类融合了自动化、实验室机器人、人工智能、大数据、物联网、云计算等信息技术以及现代化学和生物基础知识的实验室称为智慧实验室。实验室自动化发展大体上经历4个主要阶段。实验室自动化1.0阶段实验室自动化1.0是指单一设备自动化,属于设备自动化范畴,功能比较单一,一个自动化设备往往只有一种或一两种功能,需要人来操作使用,只解决了检测工艺流程中的一步或一两步。例如自动化配液,自动化称量,自动化离心,自动化消解以及自动化测试等操作,如乳品质量检测中使用的乳品分析仪(图1)、功能食品检测电子舌(图2)等,这些设备在乳品质量安全检测中执行比较单一的地特定功能检测。图1乳品分析仪图2功能食品检测电子舌这些单个设备零散分布在实验室的不同地方,人工操作单个设备仪器,功能单一,国内相当多的实验室处于该实验室自动化1.0阶段。实验室自动化2.0阶段实验室自动化2.0是指工作站形式的自动化,仍然属于设备自动化范畴。一台设备整合了多种功能,一个批次可以处理一定数量的样品,一个批次内可以做到无人值守,批次之间需要人工补料和下料。例如,液体处理工作站(图3)图3 液体处理工作站实验室自动化3.0阶段 实验室自动化3.0是指流水线形式的自动化,自动化设备与设备之间自动传输样品,实现了全实验室自动化,多以流水线形式呈现,类似于工业自动化,包括自动化样本运输、自动化开盖压盖、自动化离心、自动化混合、自动化过滤以及自动化上机检测等。流水线形式自动化应用最多的是医学检验,如生化检测自动化流水线、免疫检测自动化流水线、血液检测自动化流水线、微生物检测自动化流水线等(图4)。图4 生化免疫自动化流水线 实验室自动化3.0的出现大多是在医学检验和生物医药等领域,主要是由于这些特殊领域检验时效性要求和工作重复繁重特点,这种社会需求使该领域成为实验室自动化3.0的排头兵,目前国内在医学检验领域基本普遍采用该流水线自动化工作方式。实验室自动化4.0阶段实验室自动化4.0是指智能化自动化的实验室,属于流程自动化,在全实验室自动化3.0基础上,加入人工智能,实验室自动化4.0技术,不仅仅代替劳动力,而且还代替了一部分脑力劳动,具有机器学习、自动判断、自我决策能力,这里自动化实验室多用在研究型实验室领域,特别是解决多品种、小批量、多批次、高时效的检测需求,在全实验室自动化基础上,融入机器深度学习等人工智能,即实验室智能化操作和管理,通过对智能实验室机器人发出指令,进行所有的实验室操作,包括样品前处理、分析检测和实验数据的处理,并可以循环往复地进行,如利物浦大学的案例(图5)、伊利诺伊大学的案例、zymergen、ginkgo等公司的应用。曼森生物正在为合成生物学、医药、食品领域开发实验室自动化4.0的技术解决方案(图6、图7)。图5 人工智能机器人科学家图6 曼森生物合成生物学自动化实验室图7 曼森生物食品药品检验实验室 实验室自动化4.0已成为未来实验室建设的趋势,将引领现代化高效低碳实验室自动化建设的方向。云端实验室云端实验室是指科学家可以通过网络浏览器登录在线云实验室平台,在一张空白画板上,画出想要制造的分子化合物框架结构,平台使用机器学习来预测所需的成分和混合的顺序,然后将指令发送到远程实验室的机器人去执行。云端实验室结合有自动化仪器设备、实验室机器人、人工智能和云计算平台的集成化实验室,实验人员只需远程设定好实验步骤,远程实验室机器人就可以在云端实验室接受指令负责解决下游的实验操作过程,并将实验数据反馈给实验技术人员。在全球目前比较成规模的商业化云端实验室有Emerald Cloud Lab和Strateos等公司。国际商业机器公司IBM也建立了一个名为RoboRXN的云端制药实验室(图8),该实验室能使科学家足不出户就能设计并合成新分子。科学家只需在浏览器上登录便可进入实验室,在服务器上画出需要制造的分子骨架结构,平台会将指令发送给远程实验室里的机器人来执行这个过程,实验完成后平台就会将结果报告发送给科学家。图8 RoboRXN化学实验室机器人科学家文章来源:本文由上海曼森生物整理提供 内容审核:郝玉有博士 排版校对:刘娟娟编辑 END
  • 中国的实验室自动化,任重而道远
    p  strong仪器信息网讯 /strong近几年,尤其是最近五年,实验室自动化的话题、应用方案是越来越多,层出不穷,说明广大科研院所、医院、制药公司都希望能够将实验室操作自动化,提高效率,减少流程,提升精准性。有鉴于此,作为在自动化领域耕耘数载的老兵,也来谈谈国内实验室自动化的现状和与国外的差距。/pp  实验室自动化,顾名思义,就是指利用各种自动检测仪器和计算机等手段实现测量、实验和数据处理的自动化,借以减轻实验人员的手工操作,提高科研工作效率。笔者认为,根据自动化的规模及程度,现代实验室自动化可以分为三级。/pp  strong第一级,实验室自动化的初级阶段,主要目的是实验数据的自动测量。/strong涉及研究计划的制定、研究调查、实验设备的定向设计和整合、实验样品的准备、实验数据的搜集整理、数据库的建立等各项研究分析活动,从而为研究论文的发表、实验数据的快速精准输出打下基础。/pp  目前不少实验室已经走入这一步了,但是大家可以仔细看下,在生物科技几百个细分领域中,95%以上的细分领域实验仪器的前三名,都是外资。举例来说:在质谱仪、光谱仪、酶标仪、自动化冰箱、离心机、旋盖器等领域都是。极少数的有国内品牌进入前三甲,如在深低温冰箱,离心机,核酸提取仪等某些领域,国产品牌确实已经占据了不少份额,有的甚至超过50%。/pp  但正因为大多数的仪器都是外资占据,所以一旦老师们希望把仪器整合起来,更加便捷的操作时,首先想到的是向外资提出需求,因为这方面外资巨头在实验室自动化领域创新是有先天优势的。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/62ba3f3c-34e0-4026-9ea4-c9d2eb5d1b75.jpg" title="摄图网_400943832_智能机械工厂(企业商用)_副本.jpg" alt="摄图网_400943832_智能机械工厂(企业商用)_副本.jpg"//pp  纵观中大型实验室自动化,基本外资全包了。为什么会这样?其实理由很简单,仪器设备前五甲的外资巨头,早就成立了自动化整合部门,专门处理这类需求。而纵观大一些的中资仪器厂商,基本是没有这个部门的。那难道是中资没想到要成立这个部门吗?非也!成立类似的部门,要有客户基础,要有需求,更要有雄厚的资金支持。但是,又有多少实验室会向中资提出自动化需求呢?导致这样的现状,也是非常正常。/pp  我们的基础工业、加工工艺、加工精度、I/O接口整合、整体设计水平,离世界水平相差甚远。孔子曰: “知己知彼,百战不殆 不知彼而知己,一胜一负 不知彼,不知己,每战必殆”。举例来说:某医学转化中心要建设一套药物筛选平台,它要整合的机器包括自动移液工作站、洗板机、撕膜机、涡旋震荡器、条码扫描仪、微孔板离心机、细胞培养箱、多功能酶标仪、高内涵细胞成像分析系统、微孔板架、自动化机械臂,总共十一套产品,整合在一起,试问国内有哪家仪器厂商对十一台跨专业的机器都很了解?就算了解,如果平时没有整合的经验,敢于为客户整合所有机器吗?而外资巨头通过一系列的并购整合,对大多数的产品都已经了然于心,操作自然得心应手。所以这方面的差距,不是一点点,我们必须清醒的认识到。/pp  strong实验室自动化的第二级,是在第一级的基础上,增加了计算机辅助处理系统、运输自动化系统、无尘无菌控制系统。/strong/pp  strong实验室自动化的最高级,即实验室智能化操作和管理,是在第二级的基础上,采用了计算机设计专家系统,具有逻辑运算和推理功能。/strong能远程自我测量、自我检查、自我控制实验设备,对于文献专利情报的管理、各种数据云的检索、存储、翻译等,都能智能化,并且有智能机器人24小时辅助人类来管理实验室。/pp  到了实验室智能化时代,我们可以想象一下,不管是近距离,还是远程,我们都可以对智能机器人发出指令,进行所有的实验室操作 我们亦可以通过VR技术,身临其境的与机器人沟通,交流,指导他们做好实验,检验实验数据的合理性和准确性 我们将不再担心病毒的传染和实验数据的误差 我们将不需要在突发事件时的三班倒。这些,我们终将在不久的未来可以看到。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a9f2118d-b55c-435a-a163-cd6459690ecb.jpg" title="摄图网_400270517_人工智能(企业商用)_副本.jpg" alt="摄图网_400270517_人工智能(企业商用)_副本.jpg"//pp  strong举例说明:生物样本库自动化/strong/pp  通过工作流程对生物样本进行收集、存储、信息扫描、输入、进库、存档 需要取样的时候,在计算机输入指令检索、调取管理、取样分装或移液分装、自动化检测 检测结果又会传回信息系统进行结果分析及后处理。整个操作一气呵成,大幅减少人工参与。所涉及的仪器有自动化冰箱或自动化液氮罐、2D扫描仪、自动旋盖器、移液工作站、核酸提取仪、机械臂、样本库管理软件、成分分析软件等诸多自动化设备和软件。一般如果样本收集量在50万个/年,存储量保持200万的话,根据实验室自动化程度的高低,总体费用估计在500-5000万左右。在这方面,上海鑫蓝海自动化科技有限公司已经做了诸多有成效的方案。/pp  一个理想的实验室自动化,工作人员应结合实际工作流程进行设计,既能满足工作需要,又不在短期内过度增加实验室的运营成本。实验室自动化的建设是一项综合性的系统工程,涉及面广,部门众多。所以实验室应根据自身的实际情况和业务发展,结合投入经费、存储标本量、分析项目种类、科室工作流程、场地等具体情况进行总体规划,再分阶段逐步落实建设,还要注意系统的兼容与扩展,最终实现大规模的实验室自动化。分阶段实施有利于降低投资风险,并可在建设和发展过程中充分发现缺点和不足之处,从而在后阶段通过调整补充得以修改和完善。在这方面,国内的实验室从业者还有很长的路要走,任重而道远。/pp  作者:朱晓喆,上海鑫蓝海自动化科技有限公司,生物自动化部市场总监。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f3371348-03b3-4b8d-ac5a-4b42f4cffb00.jpg" title="4caaeb79-79bd-47f3-bdbc-ff1ff6701d4c_副本.jpg" alt="4caaeb79-79bd-47f3-bdbc-ff1ff6701d4c_副本.jpg"//pp  span style="color: rgb(255, 0, 0) "strong“化学分析实验室管理与自动化”专题火热征稿中,详情点击链接/strong/span:   a href="https://www.instrument.com.cn/zt/labmana" target="_blank" title="https://www.instrument.com.cn/zt/labmana" style="color: rgb(0, 176, 240) text-decoration: underline "strongspan style="color: rgb(0, 176, 240) "https://www.instrument.com.cn/zt/labmana/span/strong/a/p
  • 未来智造-XRF自动化系统
    导语 岛津最新推出X射线荧光光谱自动化系统SAM-2400,该自动化系统基于MXF-2400开发,是钢铁、水泥行业实现无人实验室的必备利器。 图1 MXF-2400自动化系统,即SAM-2400 MXF-2400是岛津经久耐用的多道X射线荧光光谱仪,当前,仍有二十多岁的高龄仪器在正常服役。因其分析速度快,精度高,操作容易等特点,迄今仍拥有广泛的用户群。基于这款稳定可靠的分析仪器,岛津引入了机械手、AI等先进技术,开发了SAM-2400,让经典仪器再次爆发朝气和活力。 安全卓越,稳定准确 可靠的分析仪器本身,耐用的部件和线缆,沉稳智能的控制软件系统,界面简洁却详实的监视系统,可以充分保障整套系统的运行稳定。 ★ 使用自动专用样品盒,可以降低粉末样品对真空室污染、对厚度不同的样品也可以保证X光到样品表面高度相同,从而保证分析精度★ 自动进行控样校正和标准化工作★ 运行状态监控、保证设备平稳运行和结果准确★ 数据可追溯、可导出、可上传 严谨求实,高效灵活 样品信息实时交互,整个分析过程严谨且快速,数据处理高效且灵活。 ★ 设置等待位、每个类型样品均可设置优先级别★ 多颗样品同时处理,提高分析效率★ 样品信息实时交互 强大谦和,友好贴心 多级权限,安全传感器,人机交互防护系统,分析周期内的异常警报机制、紧急停止后的数据保护措施等都让系统在充分保障人的操作安全的同时,也保障了设备以及数据的安全。 ★ 三级权限管理★ 可以手动插入紧急样品★ 安全优先机制★ 操作简便,轻松上手★ 选配包丰富、可定制功能
  • 沈阳自动化所在复杂曲面机器人自动化磨抛加工领域取得新进展
    近日,中国科学院沈阳自动化研究所在复杂曲面机器人自动化磨抛加工领域取得新进展,提出了一种基于六点定位原理的叶片坐标系自动标定方法,实现了航空发动机叶片磨抛加工过程中动态工件坐标系的自动标定。该研究成果于近期在线发表在计算机/制造领域期刊Robotics and Computer-Integrated Manufacturing。 基于六点定位原理的航空发动机叶片坐标系自动标定方法   作为航空装备的核心,航空发动机是一种结构高度复杂且精密的动力机械,被称为“现代工业皇冠上的璀璨明珠”。叶片是航空发动机中最为关键的零部件,其结构复杂,工况恶劣,对加工工艺的要求较高。目前航空叶片的磨抛主要形式是人工磨抛加工和专用磨床磨抛加工。随着工业机器人技术的不断发展,机器人自动化磨抛叶片类复杂曲面已经是一种必然趋势。然而,机器人系统中零件动态坐标系的自动化定位技术尚不成熟,实现航空发动机叶片的高自动化、高精度的磨抛加工具有很高的技术难度。   沈阳自动化所工艺装备与智能机器人研究室基于六点限位原理提出了航空发动机叶片的顺序标定策略,完成了机器人系统中动态坐标系的精准自动标定。结合建立的复杂曲面机器人自动化磨抛系统,研究团队开展了航空叶片的磨抛加工实验。实验结果表明,提出的标定策略可以实现较高精度的机器人系统动态坐标系的自动化标定,将标定精度由传统的人工精度0.2mm提高到了0.05mm,大大提高整体系统的稳定性。   该研究成果得到了国家自然科学基金的支持,并成功应用到了其他复杂曲面的自动化磨抛设备系统中。
  • 面对病毒,实验室自动化能做些什么?——病毒自动化检测
    p  病毒,是一种没有细胞结构的特殊生物,个体微小,结构简单,但是有的时候人类在病毒面前反而变得的渺小。病毒和人类的关系一直是如影随形,病毒甚至比人类更早出现在地球上,天花病毒、埃博拉病毒、狂犬病病毒、非典病毒(Sars)、HIV病毒(艾滋病)、马尔堡病毒、甲型H1N1流感病毒、汉坦病毒、肝炎病毒、登革热病毒被称为为全球最恐怖的十大病毒,全球每一次病毒的爆发都会引发人类大量的死亡。/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center"tbodytr class="firstRow"td width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:15px font-family:宋体"事件/span/strong/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:15px font-family:宋体"时间周期/span/strong/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pstrongspan style="font-size:15px font-family:宋体"死亡人数/span/strong/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"雅典大瘟疫/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"公元前span430-/span前span427/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"1/4/spanspan style="font-size:15px font-family:宋体"的雅典人口/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"安东尼瘟疫span /span/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"公元span165/span年至span180/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"500/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"美洲大瘟疫(天花)/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"16/spanspan style="font-size:15px font-family:宋体"世纪span-17/span世纪/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"超过span2000/span万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"黑死病 /span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"1347/spanspan style="font-size:15px font-family:宋体"年至span1351/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"超过span7500/span万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"墨西哥天花/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1519/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1520/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"500/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万至span800/span万span /span/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"第三次霍乱/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1852/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1860/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"100/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"俄罗斯流感/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1889/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1890/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"100/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"第六次霍乱/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1899/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1923/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"80/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"西班牙大流感又称span1918/span年大流感(spanH1N1/span)/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1918/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1919/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"5000/spanspan style="font-size:15px font-family:宋体"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"亚洲流感/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1957/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1958/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"200/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"香港流感(spanH3N2/span)/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"1968/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至span1969/span年/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"100/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"万/span/p/td/trtrtd width="260" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体"新型冠状病毒/span/p/tdtd width="165" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"2019/spanspan style="font-size:15px font-family:宋体 color:#191919 background:white"年至今(span2020/span年span7/span月span1/span日)/span/p/tdtd width="134" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px "pspan style="font-size:15px font-family:宋体 color:#191919 background:white"超过span50/span万/span/p/td/tr/tbody/tablep  2019年12月突如其来的一场首先在武汉地区爆发的病毒疫情,引发对全球健康的关注。2020年1月30日,WHO宣布本次疫情为“国际关注的突发公共卫生事件”。2020年2月11日,世界卫生组织将这一新发传染病正式命名为新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19),同时国际病毒分类委员会将这一新型冠状病毒命名为SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2)。此次新型冠状病毒肺炎疫情是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/2cb4306a-d22a-4f3d-83ff-066709f8c586.jpg" title="自动化图片.jpg" alt="自动化图片.jpg"//pp  新型冠状病毒传播途径主要有呼吸道飞沫传播、接触传播、气溶胶传播,传染性极强,而且家庭聚集性病例发病明显,我国医务人员感染率甚至高达29%。所以在应对突发公共卫生事件时,需加强疫情信息监测、加快疑似病例的诊断等防控措施,迅速鉴别诊断出新型冠状病毒感染,避免交叉感染,控制疫情扩散,及时提供针对性救助和有效合理利用现有医疗资源。/pp  病毒检测采集样本包括鼻咽拭子、痰液、肺泡灌洗液及粪便等标本,采集、运送、存储和检测按二类高致病性病原微生物管理,按照《病原微生物实验室生物安全管理条例》及《可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定》(卫生部令第45号)及其他相关要求执行。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/8fc14ef9-33cd-45e8-ba07-cfa99fa6213c.jpg" title="自动化图片2.png" alt="自动化图片2.png"//pp  生物安全实验室是软件和硬件都达到生物安全要求的动物或生物实验室。管理措施则包含严格的管理制度和标准的操作程序及规程等构成的生物安全管理体系。试验的防护屏障分为两个级别:一级是指操作者和被操作对象之间的隔离,也就是生物安全柜和个人防护装备构成的防护屏障 二级是指实验室与外部环境之间的隔离,即实验室的通风系统和设施结构等所构成的防护屏障。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/72fa1d01-2f20-4ddb-bc96-9ec6da3a728c.jpg" title="pic(2)_副本.jpg" alt="pic(2)_副本.jpg"//pp  由于新型冠状病毒具有较强的传染性和致病力,对于检测病毒的实验室有相应的要求,实验室须合理划分清洁区、缓冲区和污染区,避免交叉污染,必须在生物安全二级以上的实验室内进行新型冠状病毒肺炎患者的常规血液检测、体液检测以及新型冠状病毒的核酸检测。需要接触新型冠状病毒标本的实验室人员应实施生物二级以上的个人防护。病毒采样后到达实验室的操作步骤包括以下几个:(1)对样本运送箱和包装消毒。(2)仔细核对样本和送样单信息并进行编号。(3)工作人员将样本分装后,按照规范进行30-45分钟56℃病毒感染性的灭活。(4)样本核酸抽提纯化。(5)新冠病毒靶基因扩增。(6)可疑结果复核。(7)数据记录和分析,出具结果报告。strong而病毒样本检测前处理在样本接收,开盖分装直至灭活前都是整个样本核酸检测最危险的步骤,对一级防护屏障和二级防护屏障的要求都很高。/strong/pp  新型冠状病毒检测也可能出现未检出或者假阳性,其原因大致有以下几个方面(1)样本采集时间、位置、采样量不合适 标本保存和运输条件不合适 (2)试剂盒灵敏度不高,最低检测下限过高,不同的质控品都将影响PCR的扩增效率,引起偏差 (2)患者自身病毒量在试剂盒最低检测限以下 (4)实验操作时核酸提取、体系构建、样本量、实验室室内质控标准流程执行不规范等。strong实验室规范化操作对实验结果起到了非常重要的作用。/strong/pp  那么,面对病毒,实验室自动化可以做些什么?/pp  strong一整套全自动化系统能代替人工操作,可以防止实验室操作人员的污染,避免实验室感染的存在,规范一致的操作也能尽可能减少假阴性和假阳性的可能性。/strong/pp  举例说明:上海汇像病毒自动化检测解决方案/pp  上海汇像病毒自动化检测解决方案基于AI的机器人控制技术以及人工智能算法,利用智能机器人操作,将所有核酸扩增实验步骤设计成全实验室自动操作,包括全自动样本前处理系统,核酸提取纯化系统,PCR反应体系构建系统,以及PCR反应,一键实现大通量无人化的病毒检测分析,真正实现新型冠状病毒测试全流程自动化和智能化 降低样品之间交叉污染,提高检测数据的可靠性及一致性 尽量减少人员操作感染,降低检测过程中容易对人形成的安全风险以及降低微生物细菌病毒的泄漏风险 节省实验室人力成本,将PCR实验室所需的试剂准备,标本准备和扩增三个独立区域整合在一个系统中,合理布局,提高实验室空间利用率和仪器利用率,使传染病核酸检测更简易更方便。/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "  供稿:上海汇像信息技术有限公司/span/p
  • 浅析我国实验室自动化发展现状
    实验室自动化,是一种可以极大程度提高现代实验室工作效率、减少流程、提升准确性的有效解决方案,近年来已经成为科研机构、产业领域、检验检测行业深受关注的热点技术。以2020年初爆发的新冠肺炎疫情为例,面对突然激增的检测样本数量,以及对样品检测效率和准确性的高要求,催生了大量的自动化仪器设备和集成化的手段,例如全自动移液工作站、全自动核酸检测仪器等。 本文旨在基于调研的基础上,对当前国内实验室自动化的普及广度及深度做一些初步的论述,探讨一下实验室自动化未来的发展方向及其重点。限于作者水平,文中观点可能有偏颇之处,欢迎读者批评指正。从单点到集成对于实验室自动化,到目前为止并没有一个普遍的定义,通常是指利用各种自动检测仪器、设备和计算机等手段实现测量、实验(包括样品制备、前处理等)和数据处理的自动化,借以减轻实验人员的手工操作,提高科研工作效率。一般来说,根据自动化的程度和规模,现代实验室自动化大致可分为以下四个层级:一、单模块形式自动化,也就是针对实验室某一操作或步骤进行自动化和智能化,例如自动化样本运输,自动化样本存储,自动化配液,自动化称量、自动化离心、自动化消解以及自动化测试等操作。二、工作站形式自动化,主要针对某些常用的流程,集成多个模块,以实现一序列连续的自动化,例如化学前处理流程自动化、病毒前处理流程自动化、微生物前处理流程自动化、核酸检测流程自动化等。三、流水线形式自动化,即针对大量的样品,集成多种样品前处理及测试分析仪器,实现全流程自动化,包括自动化样本运输、自动化开盖压盖、自动化离心、自动化混合、自动化过滤以及自动化上机检测等。四、机器人形式智能化,也就是实验室自动化的最高级别,即实验室智能化操作和管理,通过近距离或远程对智能机器人发出指令,进行所有的实验室操作,包括样品前处理、分析检测和实验数据的处理,并可以循环往复地进行。就中国目前的实验室自动化发展水平而言,有一种说法认为中国的实验室自动化发展水平相比欧美发达国家有大约20余年的时间差。据2020年7月8日Nature期刊封面报道,英国利物浦大学的研究人员建造了世界上第一台自主移动机器人科学家,可进行7×24小时连续工作并自行进行实验,从而首次实现了从实验设备自动化向操作人员‘自动化’的突跃。可移动的机器人科学家(图片来源:Nature)实验室自动化的另一个发展方向在于集成化。在这方面,Automated Science系列公众号曾报道,美国在生化领域已经有集成化云端实验室投入市场,科技工作者客户只负责设计具体的实验框架和各项参数,以及邮寄一些特别的原始材料,就可以由机器远程在云端实验室负责解决下游的所有实验过程,并反馈实验数据,帮助客户分析数据。可以说,欧美发达国家的实验室自动化已开始向智能形式机器人迈进,而在中国,大多数实验室自动化的程度还主要停留在单模块形式上。个别领域的实验室实现了工作站形式以及部分实现流水线形式自动化。国内排头兵——医学检验在国内,目前实验室自动化应用程度最高的是医院检验科,现阶段可以达到采血后放到机器,通过生化免疫流水线完成全部的前处理、检测、结果报告和后续样品存储等全检验过程自动化,极大程度地简化了工作流程,加强了质量管理,降低了人为误差和生物污染率等。流水线全称为全自动实验室轨道连接系统(Total laboratory automation,TLA),简称TLA,根据检测项目可分为生化免疫流水线、血球流水线、尿液流水线等。目前国内90%的用户群体为中大型医院检验科,当前国内保有量约为1500套。TLA是全方位的自动化实验室系统,由输入/输出、离心、脱盖、分杯、分析、加盖、存储及数据管理8大基本功能模块组成,具体环节主要包括:自动扫码、样本分拣、离心、脱盖、分析、加盖、存储、传输结果、确认和样本复检等,是检验实验室高度自动化的极致体现。目前中国TLA流水线基本为进口品牌所垄断,其中贝克曼和罗氏表现最为突出,国产品牌具备流水线平台研制能力的厂家主要有迈瑞、安图和迈克等,但终端用户对于国产品牌接受度尚不太理想。血液分析流水线(图片来源:网络)同时,其他与医学检验相关的大型实验室,如疾控、血站、大型药企、以及大型第三方医学检测实验室等的自动化程度也非常高,基本能够达到工作站形式自动化。例如,某血站机构近年引进的MDC-QIA全自动标本处理系统,借助轨道将各自动化功能模块衔接,可实现从血液试管标本接收、信息录入和数量核对、离心、冷藏、挑选、开盖、转移载架等的全自动化检测前过程。此外,国内多家医院和第三方检测平台(如华银)等也在近几年陆续引进BD Kiestra InoqulA全自动标本处理系统,通过该系统能实现自动识别标本类型、自动选择培养皿种类、自动贴标签、自动取样,并通过磁珠在磁场的作用下进行划线接种,甚至还包含了自动孵育系统和数字成像系统,实现了微生物检验全程自动监测。 其他领域——上升空间大虽然说当前国内体外诊断领域的自动化程度已经走在了前列,但其他领域的实验室自动化水平仍然相对较低。对于大多数普通实验室来说,尽管有众多的分析检测仪器可以实现自动化的检测,但是前端的样品处理方面,自动化程度相对而言依然非常低,需要消耗大量的人工,以及不可避免许多重复性繁琐性的工作。譬如,在液体处理方面,虽然市场上也推出了一些标准化的自动移液系统,但是这类设备一般只集中在移液配液方面,综合性处理不够,针对生物领域的96孔板操作较多,而对于像384孔板、1536孔板等更精细样品的操作则相对较少。此外,实验室中粉末及固体颗粒的称量也基本是通过人工操作完成,在样本量比较大的情况下,就很繁琐,急需要自动化的称量,如果与后续样品溶解转移相结合的话,就还需要称量校准和样品处理的集成。另外,在合成领域自动化程度也相对较低,合成涉及的样品条件比较复杂,需要更加复杂的集成能力。据了解,目前国内对于实验室自动化集成技术的需求主要集中在生物医药、化工合成、食品安全和环境监测等领域,具体应用包括液体处理、样品处理(包括存储、拿取)、化合物筛选、样品检测和自动包装等方面。例如,生物医药领域中用于HPLC、LCMS、GC、GCMS和NMR的自动化样品制备,用于预筛选和多晶型物筛选研究的自动化液体和粉末处理平台,用于制药行业全面质量管理的GMP认证过程的自动化以及用于检测合成代谢剂、麻醉剂、抗雌激素物质、大麻素和兴奋剂的样品制备用自动化液体处理平台等;食品安全领域食品污染物分析中自动化高通量的固相萃取,农药残留分析中QuEChERS样品制备过程的完全自动化,3-MCPD样品制备自动化/食品及油中污染物分析的样品制备等;化工合成领域中用于ICP分析的润滑油样品制备自动化平台,自动化固相或液相合成的化合物合成平台,自动化肽合成以及惰性条件下自动化的催化剂合成,催化剂样品制备的造粒、研磨和筛分工具等。未来之路——任重而道远与工业自动化不同,实验室自动化更灵活,具有多品种、小批量、多批次,一个机器人干多种事情或多个机器人协同做多件事,变化的动作流程,个性化需求与共性化技术相结合等特点,需要有强大的控制和调度软件/大脑,融入“专家规则”,即知识体系,其中专家规则是重中之重,需要长期积累。那么,一个理想的实验室自动化系统应当具备哪些特性呢?根据相关调研反馈,未来的实验室自动化系统主要需要在以下几个方面实现突破:a、开放性,并不局限于本厂家仪器的连接,而是可以与其他任何厂家的分析仪器进行连接;b、完整性,具有完整的“分析前-分析中-分析后”硬件及软件支持,信息系统完整;c、灵活性,整个系统可以根据场地要求,进行多种摆放方式;d、独立性,各个单元既相互协作又相对独立,各单元均可独立运作;e、完备性,具有冷藏储存后处理自动化的系统。实验室自动化系统是一个多专业、多技术综合的密集型系统工程,强调的是多科学均衡,成熟、稳定的技术集成,需要多专业、多学科的技术人员紧密配合,更需要有长期稳定的团队建设和资金投入,以不断地进行探索、改进与发展。因此,国内能够做好这类系统产品的厂商还不太多。除此之外,实验室自动化虽然在解放人力、提高工作效率和检测溯源性等方面的优势非常明显,但其在众多国内实验室的应用推广上仍受到不少的限制,主要的限制因素包括:A、经费有限,难以购买自动化平台或无法维持后续使用成本;B、样本数量不够,没有必要使用自动化;C、对实验室自动化的认识存在误区,很多科研人员对自动化的认识还简单地停留在“比人工快”的认知水平上,实际上自动化的意义更多地在于实验结果的高度可重复性,降低人为操作的出错几率,实现无人值守,将实验人员从机械性重复性的低技术含量劳动中解放出来,将有限的时间投入到更高价值的劳动中去。实验室自动化的建设是一项综合性的系统工程,涉及面广,部门众多。所以,各实验室应根据自身的实际情况和业务发展,结合投入经费、存储标本量、分析项目种类、科室工作流程、场地等具体情况进行总体规划,再分阶段逐步落实建设,还要注意系统的兼容与扩展,最终实现大规模的实验室自动化。结束语随着科学技术的不断创新和变革,药物研究和医学检验检测的不断进步,市场对于自动化、智能型实验室解决方案的需求日渐增长,实验室自动化的发展趋势也是稳步向前。与此同时,一些企业已放眼在未来的智能实验室上,将实验室自动化、新兴通讯科技(如5G技术)和大数据技术等相结合,从而实现对实验过程和结果的自动优化。根据相关机构估测,国内智能化实验室市场规模可能高达万亿级,譬如,上海规划三年内建设100+智能工厂,而智能实验室则是智能工厂的重要组成部分。此外,未来几年内我国生物安全P2、P3实验室建设热潮或将实现上万个规模实验室的投入建设,对于实验室自动化、智能化厂家而言,其中的商机也必将是巨大的。参考文献[1] 范文成, 刘洋, 江玲, 等. 全自动标本处理系统在血站检测全过程的应用效果分析. 中国输血杂志, 2020, 33(2): 158-160.[2] 邓穗燕, 郭旭光, 李莹, 等. BD Kiestra InoqulA全自动标本处理系统在临床微生物检验中的应用研究. 重庆医学. http://kns.cnki,net/kcms/detail/50.1097.R.20201218.1153.002.html 致谢:本文在撰写过程中,也参考了部分相关实验室自动化厂家(例如:上海汇像信息技术有限公司、上海曼森生物科技有限公司、上海鑫蓝海自动化科技有限公司等)的公开技术资料,在此表示感谢!扫二维码加入“绿仪社”,查看更多科学仪器行业专业评论!
  • 自动化,临床质谱发展的拦路虎?
    临床检验技术的发展可谓日新月异,作为检验技术的代表之一,质谱检测平台因其快速、准确、特异的优点,受到越来越多的重视。同时,不断出台的政策也导向了LDT试点、POCT质谱、多组学、呼气检测、国产质谱仪器等关注度迅速上升,临床质谱市场热度持续,上自诊断试剂、设备厂商、仪器新秀、第三方医学检验实验室等产业多方密切关注质谱在临床更大范围应用的机会。但同时,中国临床质谱行业发展也面临着多方面的挑战,这些挑战不仅来自于技术层面,也来自于市场和产业环境。基于此,仪器信息网通过深入访谈、策划主题研讨会等活动,试图找到中国临床质谱行业发展方向的答案。(点击了解详细内容)6月13日仪器信息网举办的“第三届临床质谱技术与应用进展”主题网络会议,聚焦临床质谱科学研究以及临床质谱检测技术应用进展两大主题,邀请了近10位行业专家进行精彩的报告分享。(点击收看会议精彩报告回放)在临床质谱检测技术进展的专场中,仪器信息网特别邀请了临床质谱代表企业湖南德米特仪器有限公司医学科技首席科学家王峰,在报告中他点出临床质谱当前面临的一大难题——自动化发展,并就临床质谱自动化缺陷、自动化核心问题、自动化缺失根源以及自动化技术落地等角度分享了精彩的报告,本文将报告内容进行了梳理,以飨读者。质谱究竟能否成为临床检验设备?质谱技术在临床检验中具有多物质检测能力、灵敏度高等优点,使其在治疗药物监测、胆汁酸、氨基酸等多种激素检测方面展现出巨大潜力。然而,质谱技术在临床检验中的应用仍面临一些挑战: 相关仪器技术(LC-MS、ICP-MS、MALDI-TOF)灵敏度相对不足: 对于内源性物质,尤其是颅内产生的激素,质谱灵敏度往往不够,需要样品浓缩和净化,这会降低检测的准确性和效率。自动化程度不足: 与免疫学技术相比,质谱技术在自动化方面仍有较大差距,需要人工进行样品处理、仪器维护、数据分析等工作,难以满足临床检验快速、高效的需求。标准化程度不足: 质谱技术在临床检验中的应用缺乏统一的标准和方法,不同仪器和方法的差异导致检测结果难以比较和互认。质谱自动化的“缺陷”要实现临床质谱自动化,需要克服以下挑战:样品前处理自动化: 样品前处理是质谱分析的重要环节,目前常用的固相萃取、液液萃取等方法难以实现完全自动化,需要开发新的样品前处理技术。仪器维护自动化: 质谱仪器需要定期维护,包括清洗离子源、更换色谱柱等,这些工作需要专业人员进行,难以实现自动化。数据分析自动化: 质谱数据分析复杂,需要人工进行峰识别、积分、定性定量等工作,难以实现自动化。标准化和规范: 质谱技术在临床检验中的应用需要建立统一的标准和方法,包括样品前处理、仪器维护、数据分析等方面,以确保检测结果的准确性和可比性。临床质谱自动化的未来发展趋势尽管面临诸多挑战,临床质谱自动化仍然具有广阔的发展前景。未来,临床质谱自动化将朝临床质谱自动化发展方向包括:样品前处理自动化技术的突破: 开发新型样品前处理技术,例如自动化固相萃取、液液萃取等,以实现样品前处理的自动化;仪器维护自动化技术的突破: 开发新型仪器维护技术,例如自动清洗离子源、自动更换色谱柱等,以实现仪器维护的自动化;数据分析自动化技术的突破: 开发新型数据分析技术,例如人工智能算法,以实现数据分析的自动化;标准化和规范化体系的建立: 建立统一的质谱技术在临床检验中的应用标准和方法,以确保检测结果的准确性和可比性。总的来说,临床质谱自动化是未来质谱技术在临床检验中应用的重要发展方向。通过克服样品前处理、仪器维护、数据分析等方面的挑战,并建立标准化和规范化体系,临床质谱自动化将能够更好地服务于临床诊疗,为患者提供更加精准、高效的检测服务。
  • 一文了解|实验室自动化发展史
    实验室自动化是通过“机器人换人”、“人工智能替代人类智能”的现代技术,对传统劳动密集型实验室进行技术革命,实现无人化、精准化和高效化的效果,其技术特点是自动化、智能化和云端化。实验室自动化的应用市场包括医药研发、生物学、医学检验、食品药品安全检验检测、环境和水质监测等领域,这些领域都是目前全世界各国关注的热点问题。实验室自动化和智能化正在成为一种趋势,就像工厂的自动流水线一样,实验室机器人会按照标准化的工作流程完成实验操作。未来我们把这类融合了自动化、实验室机器人、人工智能、大数据、物联网、云计算等信息技术以及现代化学和生物基础知识的实验室称为智慧实验室。实验室自动化发展大体上经历4个主要阶段。实验室自动化1.0阶段实验室自动化1.0是指单一设备自动化,属于设备自动化范畴,功能比较单一,一个自动化设备往往只有一种或一两种功能,需要人来操作使用,只解决了检测工艺流程中的一步或一两步。例如自动化配液,自动化称量,自动化离心,自动化消解以及自动化测试等操作,如乳品质量检测中使用的乳品分析仪(图1)、功能食品检测电子舌(图2)等,这些设备在乳品质量安全检测中执行比较单一的地特定功能检测。图1 乳品分析仪图2 功能食品检测电子舌这些单个设备零散分布在实验室的不同地方,人工操作单个设备仪器,功能单一,国内相当多的实验室处于该实验室自动化1.0阶段。实验室自动化2.0阶段实验室自动化2.0是指工作站形式的自动化,仍然属于设备自动化范畴。一台设备整合了多种功能,一个批次可以处理一定数量的样品,一个批次内可以做到无人值守,批次之间需要人工补料和下料。例如,液体处理工作站(图3)图3 液体处理工作站实验室自动化3.0阶段实验室自动化3.0是指流水线形式的自动化,自动化设备与设备之间自动传输样品,实现了全实验室自动化,多以流水线形式呈现,类似于工业自动化,包括自动化样本运输、自动化开盖压盖、自动化离心、自动化混合、自动化过滤以及自动化上机检测等。流水线形式自动化应用最多的是医学检验,如生化检测自动化流水线、免疫检测自动化流水线、血液检测自动化流水线、微生物检测自动化流水线等(图4)。图4 生化免疫自动化流水线实验室自动化3.0的出现大多是在医学检验和生物医药等领域,主要是由于这些特殊领域检验时效性要求和工作重复繁重特点,这种社会需求使该领域成为实验室自动化3.0的排头兵,目前国内在医学检验领域基本普遍采用该流水线自动化工作方式。实验室自动化4.0阶段实验室自动化4.0是指智能化自动化的实验室,属于流程自动化,在全实验室自动化3.0基础上,加入人工智能,实验室自动化4.0技术,不仅仅代替劳动力,而且还代替了一部分脑力劳动,具有机器学习、自动判断、自我决策能力,这里自动化实验室多用在研究型实验室领域,特别是解决多品种、小批量、多批次、高时效的检测需求,在全实验室自动化基础上,融入机器深度学习等人工智能,即实验室智能化操作和管理,通过对智能实验室机器人发出指令,进行所有的实验室操作,包括样品前处理、分析检测和实验数据的处理,并可以循环往复地进行,如利物浦大学的案例(图5)、伊利诺伊大学的案例、zymergen、ginkgo等公司的应用。曼森生物正在为合成生物学、医药、食品领域开发实验室自动化4.0的技术解决方案(图6、图7)。图5 人工智能机器人科学家图6 曼森生物合成生物学自动化实验室图7 曼森生物食品药品检验实验室实验室自动化4.0已成为未来实验室建设的趋势,将引领现代化高效低碳实验室自动化建设的方向。云端实验室云端实验室是指科学家可以通过网络浏览器登录在线云实验室平台,在一张空白画板上,画出想要制造的分子化合物框架结构,平台使用机器学习来预测所需的成分和混合的顺序,然后将指令发送到远程实验室的机器人去执行。云端实验室结合有自动化仪器设备、实验室机器人、人工智能和云计算平台的集成化实验室,实验人员只需远程设定好实验步骤,远程实验室机器人就可以在云端实验室接受指令负责解决下游的实验操作过程,并将实验数据反馈给实验技术人员。在全球目前比较成规模的商业化云端实验室有Emerald Cloud Lab和Strateos等公司。国际商业机器公司IBM也建立了一个名为RoboRXN的云端制药实验室(图8),该实验室能使科学家足不出户就能设计并合成新分子。科学家只需在浏览器上登录便可进入实验室,在服务器上画出需要制造的分子骨架结构,平台会将指令发送给远程实验室里的机器人来执行这个过程,实验完成后平台就会将结果报告发送给科学家。图8 RoboRXN化学实验室机器人科学家关于曼森生物:曼森生物是一家为生命科学领域实验室自动化建设提供高品质创新产品、技术支撑和全实验室自动化解决方案的高新技术企业,拥有自主知识产权和实力强大的技术研发团队,始终坚持将生命科学实验和AI及高通量自动化实验相结合,致力于为合成生物学、生物医药、医疗医学检测及食品安全检验检测实验室提供全方位全流程自动化和智能化综合解决方案,产品涵盖从食品安全、药品安全到生命科学领域智能机器人自动化工作站系统、全流程检验检测实验室自动化以及配套自动化和智能化仪器设备及相关耗材等。文章来源:本文由上海曼森生物整理提供内容审核:郝玉有博士排版校对:刘娟娟编辑
  • 实验室自动化系统赋能中医药研究
    目前中医药研究正在发生范式的转变,从以往以发现单一靶点、单一机制、药物单体为导向的中医药学研究,逐步向建立符合中医药学规律的研究模式和方法学体系的方向发展。这种中药现代化研究方法的建立面临诸多挑战。中医药成分复杂性,中药和人体都是复杂体系,两者之间相互作用更加复杂,研究难度大。同时,中医药作用方式以低亲和性、弱相互作用关系为特点,发现相互之间的作用关联难,往往需要对提取物的上千种成分进行有效成分的确认和有效组合的分析,研究难度比一般的化学小分子药物筛选或生物大分子药物研究要大的多。这就使得新技术、新方法的引入,以及实验室自动化建设变得非常重要。中医科学院医学实验中心致力于建立以大型科学仪器设备和高端科学技术手段为基础的中医药实验技术支持体系和共享平台。实验中心联合镁伽科技,以探索和建立自动化、智能化中医药研究实验室,加速中医药科学研究和新药研发为目标,进行了很多尝试和突破。下面我们请中国中医科学院医学实验中心的陈鹏博士来介绍一下这次合作问目前镁伽科技和中医科学院联合做了哪些实验室自动化系统落地?答2021年7月中国中医科学院医学实验中心与镁伽科技签订协议,共建“中医药机器人智能实验室”。这是中医药领域首个以机器“智能”为研究核心的示范实验室,实验室建立的初心是以自动化、智能化加速中医药科学研究和新药研发,围绕中医药领域实验技术智能升级、中成药复杂作用解析、中药新药筛选三个目标发力。经过近一年的研发攻关,目前共建实验室已经实现部分常规实验技术的自动化替代,形成了可对外的技术服务能力;我们提出了蛋白质热稳定性芯片的概念,该方法可与自动化的系统连接,实现非标记复杂组分的体外药物和靶点筛选,非常适用于中医药研发的场景,相关的专利、科学文章已经在申请、发表过程中。另外,双方科学家也开展了多项技术合作,例如针对阿霉素心脏毒性的活性分子高通量筛选、合作开展中医药前沿技术论坛、双方科研人员联合参加了首届全国博士后创新创业大赛,并获得金奖。这些成果的取得体现了智能自动化在中医药领域应用的巨大潜力。问中医药机器人智能实验室给您的研究带来了哪些意义?答 中医药研发与生命科学、药学研究有共同的地方,都高度依赖于化学、生物学、药理学等基础学科的交叉应用,同时中医药成分又更加复杂,分析、筛选工作量更大,我们科研人员和学生需要花费大量时间去进行实验条件摸索,人工实验的精度和可重复性一直是困扰我们的痛点,之前我们也进行了一些自动化的尝试,例如自动化工作站、核酸提取仪的使用,但是这些仪器都是单流程的高通量,他们之间的串联仍然需要人工介入,无法实现全流程自动化工作。共建实验室在中医药机器智能领域迈出了关键的第一步,镁伽科技开发了普适性很强的智能自动化整合平台,帮助我们进行了个性化的全流程的实验体系整合,基于该平台我们部分常规实验操作已经实现了全流程无人化的工作,这样就节省了我们用在重复性实验上的时间,可以有更多的精力去查阅文献和思考科学问题。机器人自动化平台一期建设,利用镁伽自主开发的实验室自动化平台MegaFluent、智能机械臂系统将实验中心高通量工作站、酶标仪、洗板机等整合为自动化实验平台,实现了由单一流程自动化到系统实验的全流程自动。目前已经能够完成组分配伍、核酸提取、ELISA、多因子检测、基于体外靶点的药物筛选等多项自动化实验。 实验室自动化平台 MegaFluent 智能机械臂系统问一期自动化实验室平台与以前的手动模式相比,具体有哪些优势?答第一,自动化平台严格按照实验方案和流程设置进行,减少了人员在大量重复操作中可能导致的失误,同时实验过程能够精确追溯,实验结果可靠性更高,提高了人力、物力、时间的利用率。第二,自动化平台的移液精度,时间控制都比人工精确,通过对ELISA实验、PCR实验、BCA曲线测定等实验的实际测算,实验结果的CV值显著低于人工。以上两点确立了自动化平台在实验精度和可重复性上的优势。第三,自动化平台的效率更高。以ELISA实验为例,人工检测,每增加一块板,实验精度就降低一点,5块板以上,就很容易产生批间差异。但自动化平台可以最大限度地减少批间差异,同时能保证日检测量至少40块以上。问未来还会做哪些进一步的自动化联合的动作?答目前双方正在积极协商推进实验室的二期建设,二期建设将以中药特色基因文库、中药靶点以及新药高通量筛选等技术为基础打造中药新药发现与复杂作用智能解析平台,从智能自动化角度为解读中医药学原理作出贡献。镁伽将持续与中医科学院医学实验中心合作开发更多实验室自动化解决方案,以高通量的分子检测,助力中医药研究的自动化、智能化。
  • 敢问生物实验室自动化的未来之路在何方?
    1、第一阶段:自动化——从凌晨四点的星辰到实验室自动化需求实验室科学家会说,“我们守过凌晨1234点钟的星星月亮,待到56点钟的旭日东升。”;“没有半夜23点钟起床去实验室关仪器的经历,人生是不完整的”;“没有夜半被美梦惊醒的,梦见流动相已经抽空的,不是真正的实验人。”… … 对于科学家们而言,这些令人“头秃”的“趣味并无奈着”的生活已经是日常了。聪明的人开始挖掘生命科学实验室场景下科学家们的多样需求,突出解决实验室科学家们的痛点,让科学家们只需要安心做科研,不必担心“实验室中大量重复工作,一个环节错了又得重新开始”的“魔咒”。随着实验规模扩大,实验室诸多阻碍越来越明显,如实验室管理合规风险;实验室人员工作稳定性和发展路径不明;数据非标准化管理和处理;以及大量人力重复性劳动带来的流程不可控、效率低等问题。于是乎,出现了以液体处理自动化工作站为代表的实验室科研工具,能够帮助科学家们提高科研效率,缩短科研成果产出周期;出现了以ELN\SDMS\LIMS等实验室管理软件,能够帮助科学家对实验数据管理的科学化、标准化、合规化。随着创新药企、检验检测等机构的不断涌现,实验室基础建设的逐渐完善,国内实验室开始向数字化、智能化迭代升级,逐渐从野蛮生长向精耕细作进化,从劳动密集型向脑力密集型转变。于是乎,对实验室自动化提出了更高的要求......2、第二阶段:智能化——综合性、系统性、灵活性、开放性缺一不可实验室自动化是指将工业自动化技术融入到实验室流程中,以实现特定实验步骤乃至整个工作流自动化运行的产品。最基础的实验室自动化模块能够实现简单的样品转移、加样、分装、稀释等操作。在此基础上进一步融合协作机械臂、AGV小车、滑轨等自动化硬件以及实验室仪器设备,并通过自动化总控软件进行控制,即能够完成既定的复杂实验室流程。但,实验室自动化与工业自动化又有诸多不同,实验室自动化更灵活,具有多品种、小批量、多批次,一个机器人干多种事情或多个机器人协同做多件事,变化的动作流程,个性化需求与共性化技术相结合等特点,需要有强大的控制和调度软件。(来自于:上海汉赞迪生命科技有限公司高通量蛋白药物发现和筛选自动化解决方案KOL客户场景图)那么,一个理想的实验室自动化智能化系统应当具备哪些特性呢?根据笔者的相关调研反馈以及深度思考,未来的实验室自动化智能化系统必须在以下几个方面实现突破:① 综合性:并不局限于自家仪器设备的连接,而且可以与其他任何厂家的分析仪器以及相关设备进行连接;这不仅仅是仪器与仪器之间通过机器人的物理连接,更重要的是软件与软件、软件与硬件之间的对话和链接。借助自有设备和市面上已有的仪器设备,可以完成几乎所有常见的生物实验操作:移液、离心、孵育、细胞培养、PCR、菌落挑选、分液、贴标、扫码、酶标仪读板、高内涵、震荡、开关盖、撕膜、封膜、凝胶电泳、流式细胞、核酸提取、孔板搬运等等。以汉赞迪的“全自动化超高通量病毒核酸检测系统”为例,这一全自动化工作站采用机械臂及智能化管理软件,整合了核酸提取仪、自动快速分液器、qPCR扩增分析仪等设备。该系统能够实现从开盖分杯到核酸提取,PCR体系构建,再到封膜和qPCR检测的全流程自动化。同时该系统内置HEPA过滤系统和紫外消毒系统,并配有传递窗,实施严格的PCR前后分区,保证生物安全的同时也符合相关法律法规的要求。(图片来自于:上海汉赞迪生命科技有限公司全自动化超高通量病毒核酸检测系统)② 系统性:能够将实验室硬件、软件和耗材整合于统一平台之中,实现了多样性场景下从入口到出口的全流程智能协调;实现“分析前-分析中-分析后”硬件及软件支持,信息系统完整;真正实现从“样本进”到“结果出”的闭环管理。③ 灵活性:整个系统可以根据实验室场地要求,进行多种摆放方式以及组合方式;④ 开放性:各个单元系统或者仪器设备既相互协作又相对独立,各单元系统均可独立运作;表面上看“开放性”和“综合性”有矛盾之处,但这未尝不是生物实验室自动化智能化的探索之路。3. 寄语当下的“我”——“敢问路在何方,路在脚下......”对于众多普通的实验室,尽管有众多的分析仪器可以实现自动化的检测,但是前期的样品处理方面,运用自动化系统程度非常低,分析之前的样品前处理是需要消耗大量的人工,而且很多重复性繁琐性的工作,需要低质量重复性的操作,处理时间长,人工成本高,实验结果重复性差,因此样品处理是需要自动化的,一方面,目前市面上也推出一些标准化的自动移液系统,但是这类设备一般只集中在移液配液方面。然而,实验室中粉末及固体颗粒的称量也是人工操作完成,在样本量比较大的情况下,就很繁琐,急需自动化的称量,如果与后续样品溶解转移相结合的话,就更需要称量校准和液体处理工作站的集成。另外,在合成领域自动化程度也较低,合成涉及的样品、条件比较复杂,需要更加复杂的集成能力。实验室自动化智能化系统是一个多专业、多技术综合的密集型系统工程;要能够用生命科学语言对话科学家,精准地翻译和转化生命科学的需求;强调的是多科学均衡、成熟、稳定的技术集成;需要多专业、多学科的技术人员紧密配合;更需要有长期稳定的团队建设和资金投入;以不断地进行探索、改进与发展。因此,国内能够做好这类系统产品的厂商还不太多。吾辈当自强......4. 寄语当下的“你”——落地实验室智能化建设,没那么简单实验室自动化虽然在解放人力、提高工作效率和检测溯源性等方面的优势非常明显,但其在众多国内实验室的应用推广上仍受到不少的限制,主要的限制因素除了“经费有限”、“样本数量不够”之外,对实验室自动化的认识存在误区,很多科研人员对自动化的认识还简单地停留在“比人工快”的认知水平上,实际上自动化的意义更多地在于实验结果的高度可重复性,降低人为操作的出错几率,实现无人值守,将实验人员从机械性重复性的低技术含量劳动中解放出来,将有限的时间投入到更高价值的劳动中去。实验室自动化的建设是一项综合性的系统工程,涉及面广,部门众多。所以,各实验室应根据自身的实际情况和业务发展,结合投入经费、存储标本量、分析项目种类、科室工作流程、场地等具体情况进行总体规划,再分阶段分流程逐步落实建设,还要注意系统的兼容与扩展,最终实现大规模的实验室自动化智能化。(本文编辑:刘立东)相关推荐:这场疫情后,生命科学仪器行业的未来趋势在哪里?——汉赞迪生命科技副总裁程小卫生物制药市场高速增长下,批量细胞系构建实验室的自动化探索【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)
  • 南开团队实现“自动化操作”克隆技术
    南开新闻网讯(通讯员 刘曜玮 记者 乔仁铭)2022年3月31日,由一头普通的“代孕”母猪怀孕110天,诞下了7头克隆纯种小长白猪,这是自动化操作完成克隆全流程获得的克隆动物——南开大学科研团队实现全流程机器人自动化“孕育”克隆猪,为世界首次。南开大学赵新教授科研团队联合天津市农业科学院畜牧兽医研究所针对人工克隆技术存在的相关问题,对自动化操作克隆技术进行了研究,成功实现突破。该团队亦成为世界上唯一实现机器人操作及自动化操作克隆全流程的团队。团队从机器人操作到自动化操作,进一步扩大了我国克隆技术在世界范围内领先优势。种业是农业的基石,我国种猪产业由于优良原种猪资源不足同样面临着“卡脖子”问题。发达国家对我国引进曾祖辈的原种猪进行封锁,我国只能引进退化快的祖父辈原种猪,通常经3年左右繁殖即退化,正经历着原种猪“引进、退化、再引进、再退化”的恶性循环。用克隆技术大量扩增祖父辈原种猪,是解决种猪育种问题的有效方案。但是,人工克隆操作步骤多、难度大、效率低,胜任克隆操作的人员极度短缺,不能真正解决生产祖父辈原种猪大量需求的难题,这使得大范围推广克隆技术用于种猪育种存在瓶颈。为此,在国家重点研发计划项目支持下,南开大学人工智能学院赵新教授科研团队联合天津市农业科学院畜牧兽医研究所针对人工克隆技术存在的相关问题,对自动化操作克隆技术进行了研究。自动化操作克隆技术利用显微视觉建立了最大厘米级、最小亚微米级分辨率的全局视野,提高操作效率实现了克隆操作批量化;通过细胞受力分析,实现了基于最小力的克隆操作自动化;通过细胞内应变评估,降低了克隆操作过程对卵母细胞的损伤,提高了克隆操作后胚胎发育率,实现了克隆操作精准化。采用自动化操作克隆技术,将标志克隆成功的囊胚率,从人工操作的10%提高到自动化操作的27.5%,囊胚率提升2.75倍。团队相关工作结果显示,单胎代孕母猪产仔数,从人工克隆猪的平均不足5头,提升到机器人化、自动化克隆猪两批3胎共24头,平均单胎产仔8头,提升了60%以上。此外,该团队第一批机器人操作的克隆猪已用于育种生产,13头健康克隆猪有9头留种,留种率69%,与普通种猪留种率35%相比翻了一番。自动化操作克隆技术为大量扩增祖父辈原种猪、大范围推广克隆技术用于种猪育种和实际生产应用提供了途径,这为我国解决大量快速“复制”优良动物品种,解决种猪育种“卡脖子”问题提供了方案。据了解,我国种猪需求量巨大,每年种母猪更新量1300万头,种公猪更新量30万头以上。为适应育种规模化需求,赵新科研团队长期以来致力进一步提升克隆全流程机器人操作水平,在批量化、自动化、精准化、规模化上下功夫,研究工厂化的自动化动物克隆育种技术体系,旨在为解决种业“卡脖子”问题不断提供科学的自动化方案。
  • 1957年清华大学自动化班寻找老学员
    1957年清华大学自动化进修班老师和学员们:  你们好!  根据中国仪器仪表学会和中国仪器仪表行业协会“仪学秘字[2011]028号”文 - 关于征集中国仪表和自动化技术、应用和产业发展60年史料的联合通知(见附件一),决定于2012年10月29日(星期一)在北京召开“1957年清华大学自动化班史料征集专题座谈会”,特邀请您参加会议。  仪学秘字[2011]028号文中写道:“为了彰显仪表和自动化技术在我国社会经济发展中的重要作用,使我国仪表和自动化技术更上一层楼,我们应挖掘史料,记录史实,承前启后,开创未来。我们要把仪表和自动化前辈的知识、经验和历程记录下来,特别是广泛征集有关仪表和自动化学科发展的三亲(亲历、亲见、亲闻)史料,在此基础上进行精心汇编成册,并在适当时候出版。希望这项工程能真实地记录当年仪表和自动化学科艰难创业,并取得长足发展的历程,为后人留下弥足珍贵的历史记录,为今后教育和研究提供丰富的第一手史料,起到留存历史的作用。  当年开创仪表和自动化学科的前辈们不少已是年过八旬,这让我们深深感到这项工作已经迫在眉睫。为此,中国仪器仪表学会、中国仪器仪表行业协会经协商决定联合起来,充分整合各自的社会资源,一致建议共同组织动员仪表和自动化前辈、同仁,一起来完成此项艰巨的任务,具有历史意义,这也是时代赋与我们的光荣责职。  我们衷心希望仪表和自动化界的前辈、专家、同仁,企业家,各级干部,都能积极参与其中,或口述历史,或亲自执笔,将自己丰富的阅历记录下来,给后人留下宝贵的经验和资料。”  1957年清华大学自动化班被称为我国自动化行业的“黄埔军校”,是我国自动化事业发展的重要举措,为我国自动化事业的发展起到“种子”作用,特别希望各位将己丰富的阅历记录下来,给后人留下宝贵的经验和资料。  会议的具体安排如下:  1.作为中国仪器仪表学会和中国仪器仪表行业协会主办的“第五届中国在线分析仪器应用及发展国际论坛暨展览会”(CIAOE)(见附件二)的一个专题内容,与该会同时进行。  2.本专题安排在2012年9月29日(星期一)进行,初步安排如下:  9:00参加CIAOE开幕式 9:30-10:00 浏览在线分析仪器展览  10:00-12:00 自动化班史料座谈会  12:00-13:20 午餐,留影拍照,史料征集座谈会结束  3.参与1957年自动化班的各位年事已高,此次会议以邀请在北京的自动化班的前辈们为主,也欢迎其他地方身体健康的前辈们参加。请乘出祖车到会,费用由会议报销。凭此邀请信报到,不需交注册费。  4.会议地点:北京国际会议中心, 北京北四环路安慧桥西  (详见附件二:CIOAE第三轮通知)  5.对次此座谈会有何建议,可与以下自动化班学员联系:  袁璞(电话:13910673567,email:puyuan2001@yahoo.com.cn)  万学达(电话:13439461763, e-mail:wanxueda@hqcec.com)  丘光谛(电话:62319189)  6.对会议的具体组织工作有何疑问,请与大会工作组联系:  北京雄鹰国际展览有限公司  联系地址与电话请见附件二:CIOAE第三轮通知。  中国仪器仪表学会和中国仪器仪表行业协会主办:  第五届中国在线分析仪器应用及发展国际论坛暨展览会  大会工作组:北京雄鹰国际展览有限公司  2012年10月11日
  • 传承钱学森精神 共谱自动化新篇章
    由中国自动化学会主办,中国科学院自动化所承办,清华大学、北京理工大学、西安交通大学、北京交通大学协办的&ldquo 2011中国自动化大会暨钱学森诞辰一百周年及中国自动化学会五十周年会庆&rdquo 于2011年11月27-29日在北京国际会议中心隆重举行。全国人大副委员长路甬祥、中科院党组副书记方新、中国科协副主席冯长根等领导出席大会并致辞,全国人大常委会原副委员长成思危作主题报告。来自中国自动化各领域的专家学者、工程技术人员、企业代表近千人出席了此次盛会。 今年是我国人民科学家、中国自动化学会的创始人、第一、二届学会理事长钱学森先生诞辰100周年。为缅怀钱学森先生,追思他作为新中国自动化事业的奠基者,为中国自动化事业的发展所做出的卓越贡献,弘扬钱老的科学精神和光辉思想,本次大会特邀钱学森先生的秘书、中国人民解放军总装备部研究员涂元季将军做题为《纪念钱学森百年诞辰 弘扬钱老科学精神》的报告,并邀请钱老的女儿钱永真及其先生出席会议。 本次大会,邀请了海内外的十位著名学者进行了精彩的大会主题报告,包括原全国人大副委员长成思危的《从虚拟工厂到虚拟企业》、隆德大学自动化控制系Karl Johan Å strö m教授的《The Future of Control》、University of Illinois at Urbana-Champaign Tamer Basar教授的《Multi-Agent Networked Systems: Efficiency through Coordination and Control》、中科院数学与系统科学研究院顾基发研究员的《钱学森从工程控制论到系统工程再到系统科学的历程》等。此外,大会还安排了7个专题分会场将近80个专题报告,分别报告各分支和交叉前沿领域的研究成果和进展。 作为中国自动化领域民族企业的代表之一,北京安控科技股份有限公司应邀参加了本次活动。安控科技的卢铭总工程师在会上做了《坚持自主创新,助力自动化产业的发展》的大会主题报告,与大会代表分享了安控科技十余年来坚持不断自主创新,为促进我国自动化产业发展所取得的成就和经验。 此次大会期间,大会主办方还安排组织了自动化新技术展,展示了半个世纪以来自动化领域最新研发成果和应用实践成就。北京安控科技股份有限公司携RTU拳头产品及数字化油田、城市燃气和环境在线监测行业解决方案向与会的专家、学者进行了系统的展示和解答,再一次的展现了安控科技雄厚的技术实力与优秀的品牌文化。 五十年峥嵘岁月,一代又一代中国自动化人孜孜不倦地为推进中国自动化与信息、智能科学技术事业的学术发展和技术创新,贡献了积极的力量。值此中国自动化学会建会五十周年之际,大会还为学会建设做出突出贡献的科技工作者以及一批优秀学会工作者和先进集体进行了表彰和奖励,同时颁发了首届中国自动化学会科学技术奖和第二届中国自动化学会杨嘉墀科技奖。北京安控科技股份有限公司董事长兼总经理俞凌作为中国自动化学会的理事、中国自动化学会专家咨询工作委员会的副主任委员被授予了&ldquo 中国自动化学会优秀学会工作者&rdquo 的称号。 经过半个多世纪的发展,自动化已经成为保障和促进现代社会发展和生产力提高的核心科学技术之一。自动化程度已经成为衡量一个国家发展水平和现代化程度的重要标志。传承钱学森精神,共拓自动化未来,在国家大力推行科技创新、绿色节能、社会可持续发展之际,安控科技将以国家&ldquo 十二五&rdquo 发展规划为指导,为我国工业自动化的普及、提高和持续性发展做出更大的贡献。 背景介绍: 安控科技是专业从事工业级RTU(远程控制终端)产品的研发、生产、销售和系统集成业务的高新技术企业,拥有完善的RTU产品链,产品被广泛应用于石油天然气、煤层气、页岩气的开采、处理、管输、储配等各个环节以及环境在线监测、城市燃气、供水供热等管网监控领域,并已远销美国、加拿大、墨西哥、土耳其、哈萨克斯坦、土库曼斯坦、伊拉克、伊朗、韩国、泰国、马来西亚等国家。历经十多年发展,安控科技已成为行业领先的工业级RTU产品供应商和系统集成服务商,产品品质已经达到国际先进水平。
  • HTR 机械手全自动流变仪让你的工作真正实现自动化
    来自安东帕的HTR 机械手全自动流变仪----让你的工作真正实现自动化安东帕公司通过不断创新推出了新型的高效机械手全自动流变仪(HTR),它能够实现测量程序完全自动化。在保持着和MCR301高精确度的同时,节省了客户大量的工作时间。重现性、经济性、高处理量和可操作性是仪器测量不可或缺的关键技术,安东帕公司研发生产的高效流变仪HTR一次性解决了以上所有问题,具有科技革新的划时代意义:自动扫描处理样品的现代化技术与MCR301完美融合,自动实现所有流变测量。MCR301仍保持模块化和智能型设计,不同的是它能帮助自动实现所有的测量程序。标准设置中,它可以一次性处理96个样品,持续工作24小时,节省了实验室工作人员大量时间。样品准备的一致性是确保测量可重复性的关键因素-也就是说它是完全避免操作错误的关键因素。HTR能够防止类似情况发生。测量参数和样品数据被传输到检测数据库,所有相关程序被定义并且储存到工作目录后,HTR开始工作。样品通过各样品杯底部datamatrix二维码识别-这些数据也可用于样品自动填充程序。Toolmaster测量系统可靠的配置,确保了最佳测量精确度。Rheoplus软件界面友好,客户可以根据自己的需要配置不同的应用软件系统。测量可以通过同轴圆筒、椎板或平行板实现测量自动化-是自动化流变的一种新型技术。样品制备和清洁设备具备适用于不同应用的特殊需求。另外,MCR流变仪可以配置不同的环境控制系统。因此可以广泛应用于多种领域,例如:乳剂、涂料、凝胶剂、聚合物熔体、乃至固体聚合物等等。测量数据和分析结果能够被传输到检测数据库。所有Rheoplus软件分析方法都是有效的。由于不会为了清洗而停止程序,样品的处理量可以达到最大化:2个平行测量系统允许其中一个进行测量而另一个进行清洗。安东帕公司推出的高效机械手全自动流变仪听起来像未来科技-实际上它确实如此。在设计上不仅满足连续作业要求,而且持久耐用,性能稳定。screen.width-300)this.width=screen.width-300"
  • 晶泰科技自动化高通量实验筛选应用报告
    在有机化学领域,实验条件的筛选对于实现高效、高产率和高选择性的化学反应至关重要。传统的实验条件筛选方法通常依赖于化学家的经验和直觉,这种方法往往耗时且效率低下。随着科学技术的快速发展,自动化实验筛选技术应运而生,为有机化学条件的筛选带来了变革。自动化实验筛选技术利用高通量实验、自动进行反应监测等先进技术,实现了对大量实验条件的快速筛选和优化。这种方法可以在短时间内对大量化学反应条件进行评估,从而为化学家提供更多的信息和数据支持,帮助他们更快地找到最佳的实验条件。此外,自动化实验筛选技术还可以减少人为误差,提高实验结果的可靠性和准确性。通过对一个药物中间体的合成反应(如图1)探究,对其催化剂,溶剂,碱等条件进行筛选,从而得出最佳的实验反应条件。传统的实验条件筛选方法需要大量的人力、物力和时间投入,而且实验结果受到人为因素的影响较大。通过一个初始人工实验的筛选结果,得到初步的结论:&bull 反应需要 2 步,且最终的目标产物产率只有 34%&bull 反应需要 20 mmol% 催化剂用量&bull 反应中间体有恶臭,难以分离且保存困难图1 药物中间体合成反应然而,晶泰科技的智能合成工作站(如图2)能够进行模块化的配置,根据实验流程进行不同模块化的组合,从而去满足不同的化学场景需求。此外,晶泰科技还有大规模的工站调度集群(如图3)可以满足更大规模的自动化实验场景。图2(上),图3(下)运用晶泰科技的自动化实验工站进行实验,对上述反应进行了 3 轮反应条件的筛选,第一轮筛选了反应的催化剂和溶剂,通过 1 天时间进行了 65 个反应,分别对 5 种催化剂和 13 种溶剂进行筛选,得出了最佳催化剂为 Pd(dppf)Cl₂ &bull DCM,最佳溶剂为 DCE(图4)。图4 催化剂及反应溶剂条件筛选第二轮用 0.5 天时间进行了 6 个反应,对碱进行筛选,实验数据得出最佳反应碱为 K₂ CO₃ (图5)。图5 碱条件筛选第三轮用 0.5 天时间进行了 12 个反应,对反应试剂比例,溶剂体积以及反应时间进行筛选,得出了此反应的最佳条件(图6)。图6 最佳反应条件利用自动化工站高通量的实验筛选,在短时间内高效的筛选出了该药物分子中间体的最佳反应条件,为后续的合成提供有效的帮助。并且与优化前的反应相比。&bull 反应只需 1 步完成,且产率高达 66%&bull 反应催化剂的用量降低至 2 mmol%&bull 反应成功放大至 20g自动化实验为有机化学条件的筛选带来了巨大的潜力和机遇。通过利用高通量实验、自动检测分析等先进技术,化学家可以更快地找到最佳的实验条件,从而实现高效、高产率和高选择性的化学反应。随着科学技术的不断发展,自动化实验将在药物合成、材料科学和生物技术等领域发挥越来越重要的作用。更多产品信息、电子版应用报告可发送需求至bd@xtalpi.com获取。
  • 推进自动化应用进程|广州市越秀区疾控中心与睿科集团携手共建自动化检验应用联合实验室
    2022年8月19日是第五个中国医师节,在这个特殊的日子里,广州市越秀区疾病预防控制中心与睿科集团携手举行了“自动化检验应用联合实验室”揭牌仪式暨技术交流会。广州市疾病预防控制中心理化检验部负责人彭荣飞,越秀区疾病预防控制中心副主任实验室技术负责人姚伯宁、理化检验科科主任谢承恩、理化检验科全体检验人员,睿科集团华南大区经理李维、市场部经理胡琳慧、应用工程师许诗婷,以及南方医科大学、广东药科大学、广东医科大学的实习生代表参加了揭牌仪式并开展了实验室技术交流。会议由广州市越秀区疾病预防控制中心理化检验科科主任谢承恩主持。此次联合实验室的成立,是睿科集团与越秀疾控携手探索多元化的新型合作模式。双方将以联合实验室为载体,聚焦关键核心技术领域,深化成果转化、人才培养、课题申报等多方面合作。打通前沿技术研发端与产业应用端通路,共同推进自动化检测新技术及解决方案的突破与应用。谢承恩科主任主持会议姚伯宁副主任致辞姚伯宁副主任代表越秀疾控对与会嘉宾的到来表示欢迎和感谢,并介绍了中心根据《广州市卫生健康委员会关于进一步加强疾控体系能力建设的通知》精神,建设广州市区域新发传染病和食源性疾病专项检验中心的阶段性成果。姚伯宁副主任表示联合实验室的建设,是中心有效利用社会资源,为实现疾病预防控制体系实验室检验检测能力提升目标,探索发展新模式、创新工作新机制,进一步拓展服务能力深度和广度的新举措。李维经理致辞李维经理介绍了睿科集团深耕自动化科学仪器设备的研发成果和发展方向,以及对联合实验室的展望。他表示“自动化检验应用联合实验室”的建立离不开越秀疾控对于检验工作的高度重视,睿科集团和越秀疾控在长期的合作研究中取得了一些数据成果和应用方面的经验,联合实验室的建立,是双方在自动化检测应用领域的深化合作与积极探索。彭荣飞主任致辞彭荣飞主任进行了技术指导,对“自动化检验应用联合实验室”建设表示祝贺,肯定了共建合作的创新性和前瞻性,祝愿双方的合作能为疾控体系能力建设早日产出成果。简洁而隆重的揭牌仪式后,参会嘉宾一起参观了实验室。其后,各方代表在实验室的多个功能间观摩了仪器设备操作演示,深入开展了检验检测技术交流。揭牌仪式与会嘉宾合影此次联合实验室揭牌暨技术交流会的顺利开展,既是双方推动协同创新和深化全面合作的具体实践,也是实现资源共享、优势互补的有益探索,有利于推动高层次复合型人才培养、高水平科技攻关、高质量科研成果培育。相信此次成立联合实验室必将结出更加丰硕的成果,实现双方共赢,助力健康中国!
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • 全球实验自动化程度最高的领域TOP6
    市场研究公司Markets and Markets研究认为:每年化合物研究量将以6.7%的速度速率增长,预计2020年,全球实验自动化产业值将增至51.06亿美元。卡洛拉马(Kalorama)研究公司则认为该估计过于保守,因为仅2014年一年,临床实验仪器总销售额就已经达到54亿美元。  不过两家研究公司都认为,自动化产业增长的原因主要有以下几点:设备小型化,样品量变大,药物研究、临床诊断进步,实验重现性、准确性提高,供需差距仍然存在。而产业增长的根本原因在于:增加工作量的同时提高效率、降低成本。以下为自动化程度最高的六个方面。  液体处理  药物研发过程中,候选药物数量可达上百万种,而液体处理一直是该领域非常重要的一个环节。采用自动化技术处理液体,体积可固定、也可调节,从4,6,8,12,96,384到1536份不等,效率大大提高。除此之外,流水线操作可确保过程的连续性和可靠性,避免人为错误。人们对降低成本和提高效率的追求极大推动了此技术的发展。  样品检测  样品自动检测可在不增加成本的同时增加检测样品的数量。实验人员往往会因为贴错标签、装样量不准确、容器选择不当造成实验结果不准确。在阅读样品信息、确定样品是否适合检测时,同样会出错。如果能够尽早发现错误,更换样品或是对其进行处理,可将损失将至最低。  包装  生物医药行业在逐渐全自动化。现有的半自动化包装技术仍可能带来很大误差。如果采用全自动包装技术,一家跨国疫苗生产公司预计:包装成功率将由62%提升至99%。自动化技术可平均降低35%的劳动成本。  样品处理(包括储藏、拿取)  在以前,样品处理、储藏、拿取都是依照相关规定、人工完成的。自动化以后,整个操作过程将分为两个部分:根据样品处理过程设计的仪器,完成自动化过程的系统。下列因素推动下,样品处理自动化的发展迅速:检测量平均每年增加10%~15%,人口老龄化、检测手段创新、防止样品污染的要求、需要检测多种耐药微生物、技术人员数量有限、流行病要求检测时间缩短。  实验数据记录  许多实验都依靠仪器,比如DNA序列检测、复制。那么做实验、记录实验数据这些事情是不是也能自动化呢?过去三年,一些初创企业的努力下,这一切正在变为现实。研究人员将实验顺序排好,通过电脑远程控制,机器人将指导相关仪器完成实验。软件与机器人也在实验数据储存方面作出不小贡献。  化合物筛选  生物医药领域需要进行高通量药物筛选,这一技术的发展关键在机器人、检测器和软件。10年前,一家公司一个星期可筛选化合物数量由100~200种上升至2000~5000种。不过截至2011年,超高通量筛选法一天可检测100000种药物。
  • 聚合酶链式反应自动化
    聚合酶链式反应 (The polymerase chain reaction ,PCR) 彻底改变了 DNA 分析和扩增的方式。自 20 世纪 80 年代推出以来,PCR 已发展成为分子生物学中最重要的技术之一。它是一种快速、定向扩增特定 DNA 序列的方法,基于 DNA 变性、引物杂交和耐热 DNA 聚合酶合成 DNA 的原理。PCR 在科学和医学领域有着广泛的应用。在基因表达分析中,它可用于量化特定基因的表达并研究其调控。在基因分型中,PCR 能够识别基因变异并将基因型分配给特定性状或疾病。在法医 DNA 分析中,PCR 还可用于放大 DNA 的微小痕迹,并利用它们来识别嫌疑人或分析亲属关系。PCR也用于传染病的诊断。这样可以快速、准确地检测病毒或细菌等病原体,从而实现早期诊断和针对性治疗。在产前诊断中,PCR 还用于识别未出生婴儿的遗传异常或染色体疾病。PCR 基础知识PCR 由几个步骤组成。在第一步变性中,双链 DNA 通过加热分离,形成单链。当溶液冷却时,短的合成 DNA 引物特异性结合两条单链并标记要扩增的区域(退火)。在随后的延伸过程中,DNA 聚合酶与标记位点结合并沿着模板合成新的 DNA 链。该酶通过添加核苷酸(DNA 的组成部分)来激活。通过重复变性、退火和延伸步骤,复制的 DNA 片段数量可以呈指数增长。因此,经过多次PCR循环后,原始DNA序列可以被扩增成数千或数百万个拷贝。PCR 可以通过多种方式进行修改,以适应特定的应用,例如,通过使用特定的酶或标记。PCR 具有许多优点,使其成为现代分子生物学中不可或缺的工具。这里首先要提到的是高灵敏度和低材料要求。PCR 可以扩增最少量的 DNA 或 RNA,从而可以非常灵敏地检测病原体或特定序列。为此只需要少量的 DNA 或 RNA,这简化了采样和样品制备,并减少了所需起始材料的数量。通过使用与精确定义的 DNA 或 RNA 序列结合的特异性引物,PCR 可以非常具有特异性并选择性地扩增目标材料。快速获得结果;扩增过程通常可在数小时内完成。自动化 PCRPCR 的最大优势之一是其自动化能力,可以更轻松地检查大量样本并减少相关工作量。自动化 PCR 包括自动化系统和仪器执行的所有经典子步骤。所需试剂(DNA 模板、引物、DNA 聚合酶、核苷酸和缓冲溶液)的精确配量和添加是在受控环境中进行的,以最大程度地减少污染。热循环仪用于精确控制温度循环,包括变性(将 DNA 分离成单链)、退火(引物与目标 DNA 结合)和延伸(由引物合成互补 DNA 链)的步骤。 DNA 聚合酶)。现代自动化 PCR 系统可以实时检测和评估 PCR 结果。这可以使用与特定 DNA 序列反应的荧光探针或染料来完成。该系统在 PCR 过程中检测荧光信号,以确定目标 DNA 的存在和定量。使用特殊软件分析从自动 PCR 获得的数据。该软件可以解释 PCR 结果、计算扩增曲线、确定阈值以及对目标 DNA 进行定量。市场上有各种各样的自动化 PCR 仪器,每种仪器都提供不同的功能和功能。Thermo Fisher Scientific(美国沃尔瑟姆)是提供各种自动化 PCR 系统的领先供应商之一,其中包括 Veriti Dx 96 孔热循环仪以及 Applied Biosystems QuantStudio 3 和 5 实时 PCR 系统。这些系统具有从实时 PCR 到数字 PCR 的各种功能,可用于研究实验室和临床环境。Bio-Rad(美国赫拉克勒斯)也是著名的实验室仪器制造商,提供自动化 PCR 系统,例如 CFX Opus 实时 PCR 检测系统和 QX200 微滴式数字 PCR 系统。除此之外,这些系统能够实时或以数字液滴格式进行精确的 DNA 扩增和检测。Roche Diagnostics(瑞士巴塞尔)提供用于实时 PCR 的 LightCycler 仪器。这些仪器可快速扩增和检测 DNA 序列,广泛应用于分子诊断。Illumina(美国圣地亚哥)是新一代测序 (NGS) 领域的领先公司,其产品组合中拥有自动化 PCR 系统。MiseqDx 仪器是一款自动测序仪,可在一个集成系统中实现基于 PCR 的扩增和 DNA 测序。为了进一步提高自动化程度,可以通过提取、清洗和选择性片段化来制备 DNA。Maxwell 仪器(Promega,麦迪逊,美国)等适合此目的,因为它能够自动提取和纯化可用于 PCR 的核酸。QIAcube 自动化系统(Quiagen,希尔登,德国)还可以自动纯化 DNA 样品。还有许多其他制造商提供自动化 PCR 系统。该领域的市场正在迅速发展。因此,在选择系统时,建议考虑具体要求、所需功能以及与计划应用程序的兼容性。自动化 PCR 系统应具有几个重要特性,以实现高效可靠的 PCR 结果。这首先包括精确的温度控制。它对于正确实施 PCR 各个步骤(变性、退火和延伸)至关重要。该系统应提供对温度循环的精确控制并保持严格的耐受温度范围。自动化 PCR 系统必须提供可靠的检测技术来测量 PCR 结果。这可以通过荧光探针、染料或其他检测方法来实现。检测的高灵敏度、特异性和重现性对于准确的 PCR 结果至关重要。质量保证和污染控制机制还应结合起来,以确保结果的准确性和可靠性。这可以通过使用阴性对照、自动移液、封闭反应管或其他方式来实现。其他要求包括灵活性和适应性。该系统应支持不同的 PCR 格式(例如实时 PCR、数字 PCR 或等温 PCR),并提供设置和定制不同 PCR 反应和方案的可能性。根据应用,必须保证与常用试剂和耗材的适当兼容性。与不同 PCR 试剂盒制造商和试剂的兼容性是能够使用各种测定和方案的优势。自动化 PCR 系统还应该具有可扩展性,以适应 PCR 反应的通量以满足要求。它们应该提供并行处理大量样品以实现高通量的可能性。用户友好的软件具有直观的用户界面,是易于操作的标准配置。该软件应该能够对 PCR 方案进行编程、监测反应进度并分析数据。通常内置用于量化、阈值和分析扩增曲线的强大数据分析功能。与手动实施相比,自动 PCR 具有多种优势。通过使用热循环仪和 PCR 机器人等自动化系统可以提高 PCR 的准确性和重现性。温度循环的精确控制和试剂的准确剂量可以提高效率并减少错误和污染。此外,自动化允许同时进行多个 PCR 反应,从而节省大量时间。自动化还可以实现复杂的 PCR 方案,例如多重 PCR [1] 和巢式 PCR [2],广泛应用于研究和诊断。图 1:自动 PCRPCR 技术的最新发展 尽管 PCR 是分子生物学中的一项成熟技术,但它仍在不断得到进一步发展,以提高效率、灵敏度和应用领域。与经典 PCR 相比,等温 PCR 保持恒定温度,这使得过程更容易、更快 [3]。环介导等温扩增 (LAMP) 等等温 PCR 技术无需热循环仪即可扩增 DNA。这些方法用于快速诊断传染病和遗传性疾病。此外,数字PCR(dPCR)的发展进一步扩大了PCR的可能性[4]。DNA 不是在单个反应中扩增,而是被分解为数千或数百万个单独的反应。对结果进行统计分析可以精确确定 DNA 拷贝的绝对数量。dPCR 可用于检测癌症中的微小残留病、测定基因拷贝数以及准确测定病毒载量等应用。数字液滴 PCR (ddPCR) 是数字 PCR 的一种变体,其中 PCR 反应分为数千或数百万个水滴 [5]。每个液滴都含有一个或几个 DNA 拷贝。通过分析阳性和阴性液滴可以精确确定DNA拷贝的绝对数量。ddPCR 具有高灵敏度、精确度和重现性,可用于非侵入性产前诊断和癌症液体活检等应用。小型便携式 PCR 系统的开发使得 PCR 可以在实验室外使用。即时 PCR 设备用于医疗诊断,特别是在偏远地区或快速诊断传染病。这些系统易于使用,不需要复杂的基础设施,并能在短时间内提供可靠的结果。PCR 和 NGS 技术的结合彻底改变了 DNA 测序 [6]。通过使用基于PCR的方法,例如测序前的PCR扩增,可以有针对性地扩增和分析特定的DNA序列。这样可以识别突变、遗传变异,并对 DNA 序列进行详细研究。参考文献[1] Hasan, M. R., Kalikiri, M. K. R., Mirza, F. (2021). Real-Time SARS-CoV-2 Genotyping by High-Throughput Multiplex PCR Reveals the Epidemiology of the Variants of Concern in Qatar. International Journal of Infectiuos Diseases. 112, pp. 52-54. DOI: 10.1016/j.ijid.2021.09.006.[2] Green, M.R. (2019). Nested Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols. DOI:10.1101/pdb.prot095182.[3] Asielle, P. J., Baeumer, A. J. (2012). Miniaturized isothermal nucleic acid amplification, a review. Lab Chip, 11, pp. 1420-1430, DOI:10.1039/C0LC00666A.[4] Morley, A. A. (2014). Digital PCR: A brief history, Biomolecular Detection and Quantification, 1(1), pp. 1-2, DOI: 10.1016/j.procbio.2012.11.007.[5] Kojabad, A. A., Farzanepour, M. Galeh, H. E. G. et al. (2021). Droplet digital PCR for viral DNA/RNA, current progress, challenges, and future perspectives. Journal of Medical Virology, DOI: 10.1016/j.bdq.2014.06.001.[6] Ladetto, M., Brüggemann, M., Monitillo, L. et al. (2013). Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders, Leukemia, 28, 1299-1307, DOI: 10.1038/leu.2013.375.关于作者Kerstin ThurowCenter for Life Science Automation, Universität Rostock, Rostock, DeutschlandRostock, Germany教授、博士、工程师。于 1995 年在慕尼黑路德维希马克西米利安大学获得博士学位。1999 年,她取得了测量与控制工程的资格。同年,她被任命为罗斯托克大学工程学院“实验室自动化”教授。自 2004 年以来,她一直担任罗斯托克大学“自动化技术/生命科学自动化”系主任,并担任罗斯托克大学生命科学自动化中心主任。她的研究主题包括生命科学过程的自动化、机器人技术、移动机器人技术以及系统集成和系统工程。原文:Automation of Polymerase Chain Reaction (PCR),Wiley Analytical Science newsletter,8 February 2024供稿:符 斌
  • 山东科大与西门子共建自动化实验室
    2009年12月,由山东科技大学和西门子自动化与驱动技术集团合作的“山东科技大学-西门子工业自动化与驱动技术集团自动化技术实验中心”二期工程顺利完工。早在2008年11月,上海西门子工业自动化有限公司就在山东科技大学举办的公开招标活动中一举夺魁,获得了该项目的承建权。  “山东科技大学-西门子工业自动化与驱动技术集团自动化技术实验中心”采用了西门子最先进控制技术,融合了西门子全集成自动化(TIA)的理念,是西门子全集成自动化系统的缩影。实验室配备的具体西门子自动化控制设备有:小型控制系统S7-200及中型安全控制系统S7-300F、先进过程自动化控制系统PCS7BOX、先进运动控制系统T-CPU和S120、高级冗余控制系统S7-400H及标准变频控制系统MM4。这些设备中的每一套控制系统均具备开放的结构体系,可以灵活地提供满足学校教学要求的控制体系配置方案。  山东科技大学是一所以工为主、矿业见长,多学科相互渗透、协调发展、特色鲜明的省属重点大学。西门子和山东科技大学合作实验室一期工程的顺利完工,已经在山东省地区特别是泰安市地区的自动化技术行业领域内产生了巨大的示范性作用,并吸引了大量周边同类学校及工矿企业前往该实验中心进行参观或培训,为在山东地区推广西门子的产品和技术以及西门子教育合作项目(SCE)起到了不可估量的作用。预计西门子和山东科技大学将会进一步合作,在该地区建设更多相似类型的西门子实验室。  能够促成与山东科技大学合作成功,离不开西门子工业自动化与技术驱动集团对SCE项目给予的大力支持,也离不开我们整个SCE团队的努力和先进工作方法。在每个项目的前期跟踪、技术交流、合同签订、项目执行以及到后期的项目培训等,均有专门的团队成员负责并且各成员之间始终保持互相协作的工作精神,再加上西门子工业自动化与技术驱动集团内部各业务部门的巨大支持,因此西门子工业自动化有限公司才能在中国教育领域获得现在的巨大成功。
  • 实验室自动化的兴起——发展还是死亡?
    我最近读了一篇来自The Robot Report 的精彩文章,这篇文章将工业机器人的表现与人类的表现进行了对比。该报告的要点如下。这篇文章强调了机器人比人类表现更好的五个领域:RobotHuman01a)处理单调乏味的事情;b)极端的感知能力;c)力量和速度;d)坚定的专注力;e)完美、客观的记忆。这篇文章还强调了人类仍然优于机器人的三个方面:HumanRobot02a)同理心;b)灵活性;c)可接受性和信任。令我印象深刻的是,在实验室环境中考虑这些要点,我们可能没有充分利用机器人技术的积极方面,或者确实在努力解决消极方面。在考虑样品制备和样品操作时尤其如此。对于大多数要分析很多样品的实验室工作人员而言,他们会熟悉制备样品的日常流程、设置设备、测试系统的适用性、进行目的性检查,然后在晚上下班前开始“批量”样品的日常分析工作。现代仪器大大减少了回家路上祈祷好运的次数,以及第二天早上进入实验室查看“运行是否成功”时的期待感,但这些焦虑感并没有完全消失。自动化机器人有能力改变这种模式,以“准时化”的方式准备样本,这样分析就可以在一天开始时进行,而且当我们留出允许的工作准备和分析时间时,大部分工作都会完成。如果需要,我们甚至可以收集足够的样本在一夜之间做同样的事情,从而提高我们的通量。注:准时化(Just In Time)起源于日本丰田汽车公司,本质是保持材料流和信息流在生产过程中的同步化,以实现在必要的时候、以必要的数量、生产或供应必要的产品/服务。当然,我们需要非常强大和可靠的自动化解决方案,这也许是行业需要发展的地方,以确保我们的分析工程被优化到不需要再考虑易错性的程度。同样,我们大多数人都熟悉这样的情况:由于样品瓶没有被正确地抓住或拿起,或者一个样品瓶的容限导致自动采样器拒绝接受一个特定的样品,甚至简单地丢弃小瓶,导致分析活动在一夜之间停止。在这里,仪器的灵活性和“学习”方面的发展可以得到改善。如果被拒绝的小瓶不处于危险或阻碍的位置,机器人应该能够移动到下一个操作,只需在批次报告中标记故障即可,当然,这样处理的前提是这个样品不是关键的系统适用性测试样品或QC样品,否则会导致其余的分析无效。利物浦大学研究改造的机器人化学家,不分昼夜的“实验民工”在许多情况下,机器人可以用于高效液相色谱(HPLC)的样品制备,并将产生比人类实验室工作人员更好的结果。样品稀释(包括连续稀释)、过滤、衍生化等操作均可。有可以处理称重、混合甚至离心的样品机器人,但我没有看到很多 HPLC实验室采用这些解决方案,我想知道为什么?我可以肯定地说,如果经过适当的“训练”,机器人将比人类更精确地遵循样品制备或提取方案。每次也会遵循标准操作程序(SOP)。我们能诚实地说我们所做的每一个样品制备都是按照SOP进行的吗?始终在精确的时间内振荡样品,使用相同的搅拌方法,在超声浴中使用相同的位置,使用完全正确的技术称重或移液——这些可以继续!机器人在记忆和可重复性方面是绝对可靠的,而我们不是。虽然 HPLC 中的许多样品制备或提取方案相对简单,但也有一些并不那么简单,例如固相萃取(SPE)或更复杂的液液萃取(LLE)方案。方法开发是一项耗时且成本高昂的活动,涉及对变量的系统探索,目的是为稳健的方法找到最佳条件集,从而产生具有适当质量和成本的数据。在方法开发中,以逐步方式自动改变所研究的参数并紧密固定所有其他参数至关重要,这样改变目标参数的效果就不会被其他地方的随机变化所掩盖。手动样品制备是不必要变化的重要来源,而自动化样品制备使方法开发成为一个更直接和可预测的过程,并节省了大量时间。随着越来越多的分析人员采用实验设计(DoE)方法进行方法开发(其中以系统的方式同时调整多个参数),自动化样品制备是减少这些不必要的变化的合理合作伙伴,但同样,我没有看到广泛的应用,这真的让我感到困惑。全自动移液机器人助力医学实验室,图片来源于网络是不是我们认为HPLC的样品制备太简单了?不值得自动化,因为它可以在样品制备实验室内快速轻松地实现?问问你自己,有多少批次失败或实验室调查与样品制备问题有关?你会注意到,到目前为止,我一直集中在液相色谱的讨论。我认为气相色谱(GC)市场可能略有不同,甚至更加先进。有几家制造商生产先进的机器人系统,用于在GC分析之前制备和操作样品,而且这些系统的复杂性比我通常看到的与HPLC仪器相关的系统要先进得多。此外,这些系统是完全集成的,可以将样品注入GC系统,具有即时样品制备功能。这些系统配备了许多工具,可实现称重、混合、摇动、加热、离心、溶剂蒸发和许多其他选项。这使得样品稀释、添加内标、衍生化、LLE、固相微萃取(SPME)、SPE 和其他微萃取技术等操作实现了自动化。即使在传统上使用大样本量的情况下,例如环境分析,由于质谱检测技术和灵敏度的进步,自动化也成为可能,这可以通过使用三重四极杆(QQQ)和四极杆飞行时间(QTOF)仪器等作为探测器来实现。本质上,检测器灵敏度的提高可以在不影响检测限或定量限的情况下处理更小体积的样品。当然,样品体积的减少也意味着这些技术的自动化版本不仅更环保(有机萃取溶剂的量更少),而且是在色谱运行时间内实现,使除最复杂的制备或提取协议外的所有样品处理都能实现“准时化”模式。也许后一点突出了HPLC与机器人自动采样程序接口的潜在问题。随着超高压液相色谱(UHPLC)的出现,色谱运行时间通常非常短,而冗长的样品制备方案将与分离相的时间框架不匹配,并且可能会延长整体分析时间。在生物分析(前面提到过)中使用多头探针的“批量准备”机器人可能具有优势,因为整体运行时间可能会减少。然而,当考虑到提高保真度、可重复性和无人操作(来自完全集成的机器人解决方案)的好处时,即使一次只处理一个样品的方法在HPLC分析中仍可能有相当大的好处。当使用现代自动化系统和优化的处理工作流时,小型化样品制备方案确实可以非常快速。那么,是什么阻碍了机器人解决方案在GC实验室的进一步实施,或在HPLC实验室更广泛地采用机器人方法?下面,我列出了自动化普及率低的典型原因,特别是关于色谱分析的样品制备,以及对每个原因的简短回应。Q对于自动化没有充足的预算?A:在你进行投资回报率(ROI)计算时,是否包括了在正确的第一时间减少溶剂使用以及通风橱用电量方面的改进?如果这些是你当前样品制备流程的一部分。Q之前尝试过自动化,但它没有带来预期的好处?A: 您是否与机器人系统制造商合作,充分探索节省时间、材料和成本的方法?Q我的流程无法自动化A:我很少遇到这样的情况,即无法使用现代实验室系统实现自动化的样品制备程序。正如我上面所说,SPE、LLE、称重、超声、离心、加热、振荡、稀释、解吸、蒸发、重构和许多其他任务都可以使用自动化系统完成。Q我的样品制备非常简单,我无法证明用在自动化如此简单的事情上的花费是值得的A: 您是否与机器人系统制造商合作,充分探索时间、材料和成本节约? 您是否考虑过分析化学家或技术人员在不进行样品制备时可以做什么?Q自动化方法无法满足我在灵敏度方面的要求A:当考虑到现代质谱和其他探测器的灵敏度,以及优化的工作流,使得足够小的样品体积就可以产生稳健的探测器响应时,情况总是并非如此。Q我不信任自动化;它增加了更多的复杂性和脆弱性A:没有什么比人类更复杂或更容易受影响了。用于样品制备的现代机器人系统的重复性、准确性和相对无懈可击的性能可能值得怀疑,但我发现很难质疑它们的脆弱性。我可能将自动化最重要的新兴驱动因素放在最后,即环境、可持续性和治理(ESG)原则。作为一个社会,我们的心态正在变得“更环保”,虽然我们可能认为绿色议程中的主要商业胜利存在于实验室之外,但相信我,这些举措很快就会出现在你身边的实验室里。使用自动化平台时,功耗、溶剂量以及分析人员接触潜在有害溶剂和试剂的减少是显而易见的。它们完全符合ESG原则,让我们清楚地表明我们非常重视地球的未来!有几种可用的分析“绿色”计算器,但我特别喜欢的一个是来自一个合作小组,其中包括该方法的样品制备影响,可以在以下链接中找到:https://mostwiedzy.pl/pl/wojciech-wojnowski,174235-1/agreeprep回到这篇文章的标题,我们需要发展还是死亡?当然,这是地球上每个物种都面临的事实。色谱应用样品制备自动化的真实性如何?好吧,我喜欢用一个令人震惊的标题来吸引读者,但是现代自动化系统的灵活性和它们可以完成的任务范围已经发生了革命性的变化,即使在过去的10年里也是如此。它们经得起考验的准确性和可重复性得到证明,而且它们能够减少工人接触单调和危险的试剂或操作的能力也得到了清楚的证明。那么我们只是害怕“机器人的崛起”吗?这当然不会在我们的现代社会发生,并且,我鼓励你进一步研究自动化的好处,希望我能够在这篇文章中指出这一点。
  • 重庆成立自动化与仪器仪表协会
    分散的行业研发和生产资源进行聚合,将让重庆市自动化与仪器仪表产业的市场竞争力得到明显提升。10月25日,重庆市正式成立自动化与仪器仪表协会。   据悉,该协会由重庆市科学技术研究院等重庆市18家自动化和仪器仪表相关机构和企业共同发起成立,目前已与90家自动化与仪器仪表行业相关企业、机构达成入会协定。  据协会有关负责人表示,通过收集行业技术需求,协会将围绕自动控制系统、装备制造自动化、节能减排等领域帮助企业寻找技术研发项目,推动重庆市自动化与仪器仪表产业的技术革新。此外,协会还将成为政府与企业沟通的桥梁,通过收集产业数据,协助政府制定和调整产业发展规划,助推我重庆自动化与仪器仪表产业快速健康发展。
  • 仪器自动化市场现状及未来前景浅析
    节能降耗、减少排放和低碳经济成为长期发展趋势带动了一批高速发展的新产业。例如,风力发电、核能发电、智能电网、高速列车和轨道交通等,这些产业对仪器提出了新的要求。虽然许多仪器供应商的产品不能直接产生低碳效益,但是供应商本身却可以提供先进的仪器,以提高用户的生产效率,提升产品质量,监控排放,为低碳经济作出贡献。   2012年自动化市场是挑战与机遇并存的一年,当制造业需求下滑、出口萎缩,OEM市场以低位运行,项目型市场投资持续谨慎,却不乏亮点:石化、化工行业2012年投资依然保持强劲,节能环保市场持续创造新兴自动化需求。在这样的背景下,工控市场研究业务总监胡焜与驱动及动态市场研究中心总监陈然分别与参会者分享和探讨了2012年过程自动化市场运行分析及发展趋势,以及2012行业自动化市场发展趋势分析。  从主流自动化厂商的发展趋势来看,随着存量市场的增长,服务业务已成为主流厂商增长的方向。与此同时,胡焜先生与大家分享了在石化、煤化工、节能环保等领域,仪器仪表的市场机会及发展方向。值得一提的是,在过程自动化领域,人们不仅只关注过程安全产品及系统,也要注意安全操作及实行安全防护措施。  在下半场的演讲中,陈然通过一系列数据向参会者分析了2012年Q1与Q2自动化市场的现状。二季度自动化市场同比萎缩11%,环比增长2.3%,二季度总体市场工控指数120,其中OEM行业工控指数143,项目型市场工控指数106。从今年市场表现来看,二季度自动化市场并不是经济的低潮期,三季度市场将有可能处于探底期。这并不意味着所有的行业都处于萎缩状态,OEM市场中的矿业机械、医疗设备、建筑机械、食品等仍处于稳健增长态势 从工业行业市场分析来看水电处于上升趋势,造纸、机械、建材、印刷、火电、风电短期之内看不到回暖现象。  自动化厂商如何破解市场冷局?不同的企业根据自身的条件从销售策略进行大胆创新,转变思路 可以将市场延伸至我国中小型制造企业,帮助他们完成制作生产的转型升级等等。这些都是自动化厂商的机遇所在。
  • 贝克曼库尔特生命科学事业部与纽英伦生物技术公司合作进行二代测序应用程序的自动化开发
    印第安纳波利斯- (2014年10月20日)- 通过与纽英伦生物技术?公司(NEB?)的合作,贝克曼库尔特生命科学事业部提出通过开发自动化的方法来改善二代测序(简称为“NGS”)样品制备的过程及通量。根据协议,贝克曼库尔特将运用其在 NGS 样品制备自动化领域的丰富经验为 NEB 的 NEBNext? 样品制备试剂盒的自动化提供开发、销售和支持服务,而NEB 则提供试剂、化学和操作流程方面的技术支持。 NEB 公司二代测序的产品市场部经理菲奥纳斯图尔特(Fiona Stewart)表示:“我们非常高兴能够与贝克曼库尔特生命科学事业部形成这种富有成效的伙伴关系。NEBNext 试剂盒快速及简化的工作流程需要较少的成分和步骤,是适合进行自动化开发的理想产品。结合贝克曼公司可信赖的自动化解决方案,即使面对低量和棘手样品的处理,NEBNext 试剂仍可实现其强大的性能。” NEBNext 试剂盒的优化方法建立于久经考验的贝克曼库尔特 Biomek 液体处理平台,且每一个解决方案都包含一组独特的 Biomek方法,可用于解决特定的 NEBNext 试剂盒方案。为了能改善整个工作流程,这些方法包括了应用DNA纯化的贝克曼库尔特 AMPure XP 试剂盒,进行高通量DNA片段分选的SPRIselect 试剂盒,以及qPCR体系构建和浓度归一化流程的自动化方法。 “贝克曼库尔特的关注点在于为我们的 NGS 客户提供一流的自动化样品制备解决方案组合,这使我们与 NEB —— 全球领先的为分子生物学研究提供高品质试剂系统的供应商的合作关系成为天作之合,”贝克曼自动化基因组学解决方案的高级市场经理艾丽莎杰克逊(Alisa Jackson)说道,“我们的联合协作有科学研究人员的参与,并引领了高质量方法的开发,可对一些最棘手的样本,提高处理的效率、通量和结果。” 我们与来自欧洲分子生物学实验室(简称为“EMBL”)、达特茅斯盖泽尔医学院的基因组学和分子生物学共享资源(简称为“GMBSR”)以及诺里斯癌症中心等多个研究机构的科学家们进行了合作实验,在 Biomek 4000 及包含96通道和8通道双机械臂的Biomek FXp平台上使用 NGS 的配置开发了第一批 NEBNext 自动化方法。这些方法创建出96个即用的文库,可在Illumina? 和Ion Torrent? 测序平台上产生优质的结果。 “如今我们为 EMBL 及其欧洲网络中超过 400 名科学家提供 NGS 服务。他们期望得到快速且优质的实验结果。方案务必稳健,能解决低量或棘手的样品类型,” 来自德国海德尔堡EMBL研究分部GeneCore实验室的高级自动化工程师Jürgen Zimmermann博士如是说,“我们依靠与一流企业贝克曼和 NEB 合作开发的自动化解决方案,为我们的客户创建高质量的 DNA和RNA文库。” GeneCore 实验室的负责人弗拉基米尔贝内斯(Vladimir Benes)博士表示:“我们共同开发的全自动化方法将在保证稳定质量的基础上大大提升生产力,同时为我们的研究小组赢得时间以专注于棘手的样品并建立新的方法。” 达特茅斯盖泽尔医学院的基因组学和分子生物学共享资源(简称为“GMBSR”)以及达特茅斯大学的希区柯诺里斯癌症中心的联席主任乔安娜汉密尔顿(Joanna Hamilton)博士表示:“通过Biomek 4000 上自动化的NEBNext文库制备方法,与手动操作相比我们能够产生重复性更好的文库,这不仅节约了我们的劳动力成本,同时也能为利用我们的核心设施进行 NGS 项目的客户带来更快的周转时间。” 现有的 NEBNext 方法包括 Ultra Directional RNA、Ultra DNA(适用于Illumina的平台),以及 Fast DNA Fragmentation & Library Prep(快速 DNA 片段及文库制备)(适用于 Ion Torrent 系统)。在今年晚些时候,NEB 还将推出其它 NEBNext 方法,包括核糖体 RNA 去除和Small RNA 试剂盒。 贝克曼库尔特生命科学事业部拥有一个不断发展的 NGS 样品制备自动化方法的文库。请登录 www.BeckmanNGS.com 以获取更多资讯和现有方法清单。NEB 公司生产的用于文库制备的NEBNext 试剂包括 DNA和RNA 试剂盒,其中包括Small RNA,并可同时用于 Illumina 和 Ion Torrent 的 NGS 平台。请登录 www.NEBNext.com 以获取更多资讯。 *Biomek 4000仅用于科研,不用于临床诊断。 贝克曼库尔特生命科学事业部的Biomek 4000 关于贝克曼库尔特生命科学事业部贝克曼库尔特生命科学事业部致力于在全球范围内改善人类的健康问题。公司的全球领导力以及世界级的服务和支持,为学术和商业实验室的生命科学研究人员提供了精细的仪器系统、试剂和服务,从而促成基于生物学的研究和开发。作为离心和流式细胞术的领头羊,长期以来贝克曼库尔特生命科学事业部在毛细管电泳、颗粒特性和实验室自动化领域都是一名创新者,其产品被用于基因组学和蛋白质组学的研究中重要的前沿领域,请登录 www.BeckmanCoulter.com 以获取更多资讯。 关于纽英伦生物技术公司(New England Biolabs)纽英伦生物技术股份有限公司(New England Biolabs, Inc.)创立于 20 世纪 70 年代中期,为分子生物学应用进行酶的发现和生产,是该行业的领导者。公司还为基因组研究提供最齐全的重组酶和天然酶。NEB 不断地将其产品供应拓展至PCR、基因表达、二代测序样品制备、细胞学分析、表观遗传学和 RNA 分析等领域。另外,NEB专注于联盟的强化,从而帮助新技术进入包括分子诊断开发在内的重要市场领域。纽英伦生物技术股份有限公司(New England Biolabs, Inc.)是一家私人持股公司,总部位于英国MA邮政区的伊普斯威奇市,通过由独家经销商、代理商以及位于加拿大、中国、法国、德国、日本、新加坡和英国的七个子公司构成的经销网络广泛地将产品销往世界各地。请登录 www.neb.com 获取更多有关纽英伦生物技术股份有限公司(New England Biolabs, Inc.)的资讯。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制