当前位置: 仪器信息网 > 行业主题 > >

经典非组蛋白

仪器信息网经典非组蛋白专题为您整合经典非组蛋白相关的最新文章,在经典非组蛋白专题,您不仅可以免费浏览经典非组蛋白的资讯, 同时您还可以浏览经典非组蛋白的相关资料、解决方案,参与社区经典非组蛋白话题讨论。

经典非组蛋白相关的资讯

  • 《Nature》在线发表重组蛋白新冠疫苗研究
    2020年7月29日,四川大学生物治疗国家重点实验室作为第一作者单位和通讯作者单位,在Nature 在线发表题为“A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity”的研究论文,这也是Nature杂志发表的首篇新冠疫苗研究论文。研发团队的研究目标是开发出一款通过重组蛋白候选新冠疫苗。在该研究中通过非人灵长类等动物模型的实验表明,这款疫苗能诱发强烈的针对新冠病毒SARS-CoV-2所产生的保护性免疫应答以及产生能够病毒中和抗体。S蛋白是存在于冠状病毒的一类很大的突刺糖蛋白,本研究中,科学家们使用S蛋白的多个不同部分制作了多款候选疫苗,经过测试和比较,他们最终确认,相比S蛋白的细胞外结构域蛋白(ECD)、S1亚基和S2亚基,RBD作为免疫原有最大的病毒中和活性。研究小组最终使用了RBD中编号为319-545的一段氨基酸序列,通过重组蛋白的方式制备新冠疫苗的抗原。研究人员利用了昆虫细胞和杆状病毒表达系统,从细胞培养液中分离提纯了该蛋白,并利用上海勤翔Clinx ChemiScope化学发光成像系统进行了鉴定。(通过Superdex 200凝胶分离柱上重组RBD蛋白的代表性洗脱色谱图。 插图显示洗脱的RBD样品的SDS-PAGE和蛋白质印迹分析)(小鼠或兔子血清对SARS-CoV-2假病毒感染的中和作用) A图: 将含有SARS-CoV-2假病毒的上清液与来自小鼠的血清预热,将其血清稀释2倍。 在37°C下温育1小时后,将混合物添加到ACE2转染的293T(293T / ACE2)细胞中以检测病毒的感染性。通过荧光显微镜和流式细胞仪确定感染细胞中绿色荧光蛋白(GFP)表达的数量。 三组图片分别是Sera/ RBD组(首次疫苗接种后第14天,用RBD疫苗免疫的5只小鼠的血清)和Sera / PBS组(用PBS作为对照的小鼠的血清),未治疗(感染SARS-CoV-2伪病毒而没有血清)。 B图:在首次免疫后14天,使用与A相同的方法,从兔子的血清中和SARS-CoV-2假病毒的感染。(诱导抗SARS-COV-2中和抗体在转基因hACE2小鼠和野生型小鼠中的活性)与单独用PBS组处理相比,在存在氢氧化铝的情况下,每只小鼠在50μl中用10μg重组RBD蛋白接种免疫转基因hACE2小鼠和野生型小鼠。第二次接种为14天后,从小鼠收集血清。为了评估SARS-COV-2感染的中和作用,将Vero E6细胞(5×10 4)预加载至96孔板中并生长过夜。将100 TCID50(50%组织培养感染剂量)的SARS-CoV-2与等体积的稀释血清预孵育,然后添加到细胞中。在37°C下温育1小时后,将混合物添加到Vero E6细胞中。在显微镜下记录细胞病变效应(CPE),并计算导致完全抑制的血清稀释液的中和滴度。该研究发现由S-RBD结构域319-545氨基酸残基构成的重组疫苗,可在接受单剂接种7或14天之后的小鼠、兔和非人灵长类动物(猕猴)中诱导有效的功能抗体应答。免疫动物的血清在体外阻断了RBD结合域与细胞表面ACE2受体的结合,并中和了SARS-CoV-2假病毒和SARS-CoV-2活病毒的感染。重要的是该疫苗还为受SARS-CoV-2病毒感染的非人类灵长类动物提供了保护,在受到SARS-CoV-2病毒感染的病人体内检测到特异性结合RBD的抗体含量的升高。 几种免疫途径和CD4tT淋巴细胞参与了疫苗抗体反应的诱导。在接种了疫苗的小鼠和猴子没有观察到抗体依赖性肺炎增强或加速出现肺炎的不良反应,因此重组RBD蛋白疫苗是重要的新冠疫苗选择之一。 参考资料:[1] Jingyun Yang et al., (2020) A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 背景:新冠肺炎疫情全球蔓延,对人类健康和社会秩序带来巨大挑战。截至目前(8月4日),据约翰霍普金斯大学发布的实时统计数据,全球累计新冠肺炎确诊病例超过1800万例,死亡人数达69万。目前对于新型冠状病毒所致疾病没有特异治疗方法,迫切需要有效的预防这种病毒的疫苗,通过对人群预防接种获得对新冠病毒的免疫力。虽然目前尚未有新冠疫苗正式上市,但在全球抗疫的大背景下,各国都在努力让疫情能够尽快过去。据世界卫生组织7月20日更新的数据显示,目前全球至少有24种新冠病毒疫苗已进入临床研究阶段,另有142种候选疫苗处于临床前研究阶段,为对抗新冠肺炎所作出积极贡献。
  • 国际首个!中科院微生物所新冠重组蛋白疫苗获紧急使用批准
    近日,中科院微生物所与合作企业联合研发的重组新型冠状病毒疫苗(CHO细胞)在国内紧急使用获得批准,成为国内第四款获批紧急使用的新冠病毒疫苗,也是国际上第一个获批临床使用的新冠病毒重组亚单位蛋白疫苗。  新冠肺炎疫情暴发以来,在高福院士的带领下,包括严景华、戴连攀等在内的科技攻关团队设计了针对β冠状病毒感染性疾病的通用疫苗构建策略。基于该基础研究突破,中科院微生物所第一时间与合作企业达成合作意向,联合研发新冠病毒重组亚单位蛋白疫苗。该疫苗通过基因工程方法,在体外制备病毒的S蛋白受体结合区域(RBD)二聚体,刺激人体产生抗体,是国务院应对新型冠状病毒感染肺炎疫情联防联控机制科研攻关组布局的5条技术路线之一。新冠重组蛋白疫苗产品样品  该疫苗已于2020年10月完成Ⅰ、Ⅱ期临床试验。结果显示,该疫苗全程接种后,无严重不良反应发生,符合亚单位疫苗不良反应小的特点,完成全部免疫程序后产生的中和抗体水平与目前国际上重组蛋白疫苗、mRNA新冠疫苗相当。疫苗于2020年11月起陆续在国内及乌兹别克斯坦、巴基斯坦、厄瓜多尔、印度尼西亚多国启动Ⅲ期临床试验,计划接种人数29000例。目前Ⅲ期临床试验进展顺利,特别是获得了首个试验启动国家乌兹别克斯坦的高度认可,并在该国获得紧急使用授权。  该疫苗生产采用工程化细胞生产重组蛋白,不需要高等级生物安全实验室生产车间,生产工艺稳定可靠,可以快速实现国内外大规模产业化生产,能够显著降低疫苗生产成本,且存储和运输便捷。这是国内首个进入临床试验的抗体药物,也是全球第一个完成非人灵长类动物实验后开展健康人群临床试验的新型肺炎治疗性抗体。
  • 【NIFDC经典文献系列赏析】融合蛋白电荷变异体表征先进技术
    蛋白新药的设计得益于重组DNA技术的发展。融合蛋白是指通过基因融合两个或更多蛋白质结构域来创造一个具有新功能的嵌合蛋白。每个融合体的功能通常分为一个载体结构域和一个效应结构域,前者有助于提高稳定性和药代动力学,后者具有从细胞毒性到识别和结合等不同的功能。截至2019年,已有11种Fc融合蛋白疗法被FDA批准。 生物制药的电荷变异体(电荷异质性)来自翻译后修饰,如磷酸化、糖基化和脱酰胺化,须在整个生产过程中密切监测,因为它可能影响产品的安全性和有效性。全柱成像毛细管等电聚焦(icIEF)已被证明有诸多良好检测性能特征,如高分辨率、自动化、定量准确、重现性好和易用性。凭借这些优势,它已成为生物制品,特别是单克隆抗体电荷变异体表征的主流技术。 与单克隆抗体等传统生物药相比,融合蛋白的电荷异质性差异更大,这使得表征融合蛋白成为一个挑战。建立一种适用于分析多种融合蛋白的平台方法可以方便方法开发并且简化生产流程。2021年,中国食品药品鉴定研究院(NIFDC)利用全柱成像毛细管等电聚焦电泳技术的双通道(紫外&自发荧光)表征9种融合蛋白药物的电荷异质性,其中6种蛋白为商业化蛋白。紫外吸收UV280nm是经典icIEF等电聚焦电泳检测通道。自发荧光(NIF:Native Fluorescence)是指利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现检测,无需添加染料。 结果表明,icIEF方法可用于重组蛋白类药物电荷异质性及等电点分析。该方法快速、准确、重复性好,为保障融合蛋白类产品生产工艺的稳定性及质量控制提供了一种可靠的平台分析方法。9种融合蛋白9种融合蛋白治疗剂(在本研究中被命名为样品1-9),其中6种已商业化,包括:样品1:安进公司的依那西普;样品2:百时美施贵宝公司的阿巴泰普;样品3:再生元公司的阿夫利贝特;样品5:重组人肿瘤坏死因子-α受体II:海正药业的IgG Fc融合蛋白;样品6:嘉宏药业的康柏西肽;样品7:百时美施贵宝的贝拉塔塞普;三个样品正处于不同临床试验阶段,包括VEGFR-Fc融合蛋白样品4,血小板生成素模拟肽-Fc融合蛋白样品8和胰高血糖素样肽-1-Fc融合蛋白样品9。结果通用稳定剂SimpleSol 大多数融合蛋白在传统电聚焦凝胶电泳(IEF)分析过程中会聚集或沉淀,需要添加剂来保持稳定性。尿素已被证明可以减少蛋白质聚集,并提高IEF分析的重复性。因为本研究的目的是开发一个平台方法,所以需要确定一种能在多种融合蛋白中发挥作用的稳定剂。为此,研究人员比较了尿素和商业稳定剂SimpleSol(来自ProteinSimple)对三种不同的融合蛋白治疗剂(样品1-3)的影响。 在没有稳定剂的情况下,样品1在电泳分析过程中发生聚集,形成不可重复的峰型(图1)。在加入2M尿素的情况下,样品1的峰型重复性得到提升。然而,在有尿素的情况下,峰高明显降低,约为无尿素情况的25%。相比之下,当样品1在含50%的SimpleSol的体系下进行分析时,峰型变得可重复,而且峰高和分辨率都保持不变(图1)。因此,对于样品1,SimpleSol比尿素更适合作为icIEF分析的稳定剂。图1 对于样品2,在没有添加稳定剂的情况下也观察到了聚集现象,导致了峰型的不可重复(图2)。与样品1不同,加入2M尿素并没有改善峰型的分离。只有当加入4M尿素时,峰型才变得可重现。然而,在这两种条件下,峰高和分辨率也都明显降低。在SimpleSol的存在下,峰高和分辨率都得到了保持(图2),再次证明SimpleSol在稳定样品方面优于尿素。对于样品2,SimpleSol同样比尿素更适合作为icIEF分析的稳定剂。数据表明,SimpleSol可以作为一种通用的蛋白质稳定剂用于融合蛋白的icIEF分析方法。图2紫外吸收和自发荧光双通道检测 在紫外吸收检测模式下研究人员分析样品1,样品峰从嘈杂的基线中区分不明显(图3)。为了克服这一挑战,研究人员同时利用自发荧光通道检测。与紫外吸收检测相比,荧光检测的每个峰组都显示出更高的信号,并且荧光检测的基线噪音更小。图3与传统IEF方法对比 icIEF方法与平板凝胶IEF方法产生了相似的峰型(图4)。然而,icIEF方法的每个峰的分辨率均得到了改善。此外,icIEF方法的灵敏度明显高于IEF方法;在获得凝胶IEF结果时,每个泳道要上样大约20μg的蛋白质,而利用icIEF分析时,最终样品溶液进样浓度为0.225μg/μL至0.45μg/μL。每次进样量约为5μL。相当于2.25μg-4.5μg的蛋白质,极大节约了样品。图4. icIEF方法与平板IEF方法检测融合蛋白对比图总结 NIFDC利用ProteinSimple全柱成像毛细管等电聚焦电泳技术建立并证明了用于融合蛋白电荷异质性表征的方法平台。该平台有如下特点: 使用了通用的蛋白质稳定剂SimpleSol,可以有效避免融合蛋白发生聚集或沉淀。对于一些样品,无需任何添加剂就能获得可重复峰型,与没有稳定剂的相同蛋白质的峰型相比,添加这种稳定剂对蛋白质的峰型的不利影响很小。使得该方法可以广泛用于分析多种融合蛋白,而不需要根据不同的样品更换稳定剂。同时可通过紫外和自发荧光双通道来检测蛋白质。自发荧光检测模式利用芳香族氨基酸(色氨酸、酪氨酸、苯丙氨酸)的自发荧光来实现且无需染料,可以提高灵敏度,减少由载体两性电解质引起的背景噪音。通过icIEF分离得到的每个峰组分的峰面积百分比和表观pI值,重复性好。总共对9种融合蛋白药物进行表征,每个组分的峰面积百分比和表观PI值的定量分析都有极佳的重复性。扫描下方二维码,获取ProteinSimple融合蛋白表征解决方案参考文献:1. Wu, Gang et al. “A platform method for charge heterogeneity characterization of fusion proteins by icIEF.” Analytical biochemistry vol. 638 (2022): 114505.关于我们ProteinSimple是美国纳斯达克上市公司Bio-Techne集团(NASDAQ:TECH)旗下行业领先的蛋白质分析品牌。我们致力于研发和生产更精准、更快速、更灵敏的创新性蛋白质分析工具,包括蛋白质电荷表征、蛋白质纯度分析、蛋白质翻译后修饰定量检测、蛋白质免疫实验如Western和ELISA定量检测蛋白质表达等技术,帮助疫苗研发、生物制药、细胞治疗、基因治疗、生物医学和生命科学等领域科学家解决蛋白质分析问题,深度解析蛋白质和疾病相互关系。联系我们地址:上海市长宁路1193号来福士广场3幢1901室 电话:021-60276091热线:4000-863-973邮箱:PS-Marketing.CN@bio-techne.com网址:www.bio-techne.com
  • 上海生科院揭示组蛋白分子伴侣DAXX和染色质重塑蛋白ATRX相互作用模式
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylestyle type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近日,中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈勇研究组的最新研究成果,以emStructural basis for DAXX interaction with ATRX/em为题,发表在emProtein & Cell/em上,该成果揭示了组蛋白分子伴侣DAXX蛋白与染色质重塑蛋白ATRX相互作用的结构基础。/pp  ATRX蛋白是染色质重塑蛋白SNF2家族中的一员,与地中海贫血症、智力发育迟缓、癌症等疾病密切相关。DAXX蛋白(死亡结构域相关蛋白)作为组蛋白H3.3的分子伴侣,介导含H3.3组蛋白变体的核小体的组装,参与细胞核内基因转录、调控细胞周期等生理过程。此外,DAXX能与多种细胞因子、细胞蛋白和病毒蛋白相互作用,抑制病毒转录,具有内在的抗病毒防御作用。ATRX和DAXX蛋白对于H3.3组蛋白变体定位到异染色质位置均非常重要,但具体机制尚不清楚。/pp  陈勇研究组找到ATRX与DAXX蛋白相互作用的最小作用单元和关键的作用位点,解析了DAXXsubDHB/sub-ATRXsubDBM/sub蛋白复合物的结构,得到清晰全面的相互作用机制。进一步结构比较发现,DAXXsubDHB/sub是一个普适性的蛋白质结合模块,能通过保守的作用模式和多种底物蛋白质结合。该项研究为后续研究ATRX-DAXX复合物如何介导H3.3组蛋白变体在异染色质的堆积和组装打下坚实的基础。/pp  研究工作得到中科院战略性先导科技专项、国家科技部、国家自然科学基金委和上海科学技术委员会的资助。/ppbr//p
  • 快讯!MP 新冠病毒单抗系列又添新成员,并发布重组蛋白
    继今年 2 月初,MP Biomedicals 发布两款潜在 SARS-CoV-2 Spike 蛋白单克隆抗体后,近日再次传来好消息,MP 单克隆抗体系列又添新成员--Anti-coronavirus (SARS-CoV-2) (B) Spike S2,其有别于 Anti-coronavirus (SARS-CoV-2) Spike S2,可识别 Spike 蛋白 S2 亚基的不同位点。单克隆抗体可适用于多种应用场景,包括 Western blot、免疫沉淀、ELISA 实验、快速测试和流式细胞分析等。SARS-CoV-2 (2019-nCoV) 的基本结构,相信大家已经不再陌生。其基因组编码四种结构蛋白,即 Spike (S 蛋白), Envelope (E 蛋白), Membrane (M 蛋白) 及 Nucleocapsid (N 蛋白)。Spike 蛋白是宿主中和抗体的重要作用位点,是疫苗设计的关键靶点。Spike 蛋白含有两个亚基,S1 和 S2。其中 S1 定义了宿主范围和病毒的特异性,从而识别并与受体宿主细胞的受体结合;S2 则含有膜融合过程所需的基本原件。图 1 新冠病毒 SARS-CoV-2 基本结构实验数据表明,在 65 ng 至 4.0625 ng 的系列稀释分析中,MP 公司针对 SARS-CoV-2 Spike 蛋白的单克隆抗体表现出高灵敏度和高亲和力。图 2 SARS-CoV-2 spike 蛋白(S1 + S2)与两种抗 SARS-CoV-2 抗体之间相互作用的 Slot-Blot 分析【单克隆抗体】【重组蛋白】自新冠疫情爆发后,MP 公司迅速做出反应并与时间赛跑,新加坡研发团队凭借长达 16 年对冠状病毒的研究经验,截止目前,除可提供上述三种对 SARS-CoV-2 Spike 蛋白有高度识别能力的鼠源单抗外,还可为广大科研工作者提供五种大肠杆菌和 HEK293 细胞表达的 SARS-CoV-2 重组蛋白。
  • 重组蛋白和单克隆抗体药物研发及生产讲座
    重组蛋白和单克隆抗体药物研发讲座由利穗科技(苏州)有限公司于2015年4月24日在上海张江高科技园区主办。届时将邀请100余名国内外生物医药领域的著名专家学者前来参观交流。 本次讲座特邀主讲嘉宾,Joachim K.Walter 博士是著名的生物制品行业的科学家和顾问,有26年 哺乳动物细胞培养的蛋白生产和研发经验 ,拥有17年在德国的勃林格殷格制药企业的工作经验。演讲就蛋白药物市场及研发、单克隆抗体生产为主题,共同探讨蛋白分离纯化方法。 利穗科技一直专注于药物研发和生产领域内新型仪器/设备的研发与制造。产品的定位是基于色谱分离技术的全自动分离纯化系统,公司产品分离纯化设备用于生物医药研发和生产过程中的分离纯化,是分离工艺和分离介质的运行设备,广泛应用于中草药、天然产物、多肽、单克隆抗体、重组蛋白、疫苗和血液制品等生物制药医药领域的分离纯化过程,是生物医药领域的关键技术和设备。 在此,利穗科技诚挚邀请您参加重组蛋白和单克隆抗体药物研发及生产讲座,进行产品技术交流。 主题:重组蛋白和单克隆抗体药物研发及生产讲座主办单位:利穗科技(苏州)有限公司会议时间:2015年4月24日(9:00-17:00)地点:上海张江高科技园蔡伦路781号上海张江医药谷人数:100人 会议日程安排如下:上午 9.00 — — 12 :001.导言? 市场概述及行业趋势介绍 2. 生物技术及蛋白药物基础介绍? 蛋白质的化学特性简述? 药物蛋白介绍 3. 蛋白药物研发和生产策略介绍? 工艺开发的复杂特性? 工艺技术的概述-上游 & 下游生产? 工艺设计? 工艺开发与生产的策略? 蛋白质分离纯化方法 — — 过滤和色谱法? 工艺开发的管理 4. 生物制药工艺设备解决方案 午餐: 12.00-13:00 下午 13:00 — — 16:005.单克隆抗体生产? 亲和层析的不同操作模式? 蛋白质降解路线? 蛋白酶解? 蛋白质结构的稳定性? 缓冲液的选择? 稳定性添加剂? 制剂缓冲液 6.生物仿制药的监管? 风险管理? 质量源于设计? PAT过程分析技术? 产品生命周期验证 7.一次性技术 技术咨询:16.00 — — 17:00? 15 分钟每个人或公司 (限于 4 组)。请提前预约并提交讨论问题。 演讲人简介: Dr. Joachim K. Walter, PhD Walter Biotech Consultancy公司创始人兼首席执行官目前为利穗科技(苏州)有限公司咨询顾问 生物制药行业知名学者,咨询顾问。具有超过27年生物药研发及生产经验。曾担任勃林格.英格翰公司新药研发及生产总监,参与75个不同规模的抗体及重组蛋白药物的工艺开发和放大,最大放大规模达12500L。曾担任GE Healthcare 膜过滤事业部全球副总裁,指导多个膜过滤产品及应用的开发。曾经在超过30个国际主流期刊上发表文章,作为Speaker被邀参加国际会议超过40个。目前主要致力于为制药企业进行工艺开发、放大,工艺验证及生产管理的咨询。客户包括华兰生物,Affimed AG, Medac GmbH, Innobiologics Sdn Bhd, Graffinity GmbH,等。 报名方式:姓名: 单位: 职务:手机:请将个人单位、姓名、职务、手机信息发送到市场部邮箱:caixin@lisui.net ,或可以直接电话报名:0512-69369998备注:本讲座免费(含午餐),人数有限,会议室99个固定座位,先到先得,交通住宿自理 会议联系人:蔡新 0512-69561800-8066 /18914086625 caixin@lisui.net 吴婷婷 0512-69369998 /18362618085 wutingting@lisui.net
  • 首个获批使用重组蛋白亚单位疫苗临床结果正式发布
    3月24日,世界著名医学期刊《柳叶刀-传染病》报道了中国科学院微生物研究所高福院士团队联合安徽智飞龙科马生物制药有限公司研发的重组蛋白亚单位疫苗(ZF2001)1 期和2期临床试验结果(Yang et al, 2021, Lancet Infectious diseases)。  试验结果表明,该疫苗安全性良好,没有与疫苗相关的严重不良事件,接种3剂次25μg疫苗的97% 入组者产生了可以阻断活病毒的中和抗体,中和抗体水平超过康复患者血清。  目前,全球已经有多种针对COVID-19的疫苗,但它们仍不能满足人们接种的需求(Dai and Gao, 2021, Nature Reviews Immunology)。因此,大范围、多元化地广泛开发疫苗才可能有效控制COVID-19在全球的传播。重组蛋白亚单位疫苗具有产量高、安全性高、易于存储和运输等优势,是预防和阻断COVID-19传播的重要选择之一。    ZF2001 疫苗基于以往MERS冠状病毒刺突蛋白(S)受体结合区(RBD)的二聚体理念(Dai et al, 2020, Cell),将新冠病毒RBD进行串联重复设计成二聚体(RBD-dimer)抗原,成功保留了疫苗的效力,且小鼠免疫后的中和抗体滴度高于单体免疫效果。  ZF2001 疫苗在国内的两期临床实验共招募950名、18至59岁的健康成年人,采用了随机、双盲和安慰剂对照的试验方案,试验在重庆医科大学第二附属医院、首都医科大学北京朝阳医院和湖南省湘潭疾控中心完成。试验对疫苗的安全性和免疫原性进行评估,包括不良事件和严重不良事件、抗体滴度、中和抗体滴度以及血清阳转率。  结果表明:该疫苗具有良好的耐受性和免疫原性。大多数入组者没有观察到不良反应或者为轻度或中度的不良反应,主要是红肿、注射部位疼痛、骚痒等,为重组蛋白疫苗接种后常见反应。没有疫苗相关的严重不良事件发生。接种2剂次疫苗后,76%的人可以产生中和抗体。接种3剂次疫苗后97% 的人可以产生中和抗体。抗体的几何平均滴度(GMT)达到102.5,超过89份新冠康复病人血清中和抗体水平(GMT, 51)(图1)。此外,疫苗能产生适度和平衡的Th1/Th2细胞免疫应答。  图1:新冠重组蛋白亚单位疫苗ZF2001在受试者身上产生超康复病人水平的中和抗体1期临床(A)结合抗体阳转率(B)结合抗体滴度(C)中和抗体阳转率(D)中和抗体滴度 2期临床(E)结合抗体阳转率(F)结合抗体滴度(G)中和抗体阳转率(H)中和抗体滴度。  此外,今年2月,中国疾病预防控制中心高福团队在bioRxiv发布正在国际开展3期临床试验的部分结果,显示国产重组蛋白亚单位新冠疫苗ZF2001对南非新变种(501Y.V2)的中和效果。  结果显示,虽然该疫苗接种者血清对南非新变种的中和效果稍有下降,但是依然保留大部分中和活性,提示该疫苗对南非新变种依然有保护效果(Huang et al, 2021, BioRxiv)。但是,由于动物源性冠状病毒的长期流行及相互重组 (Su et al, 2016, Trends in Microbiology),未来仍需要研制通用的冠状病毒疫苗。  目前,该疫苗正在乌兹别克斯坦、印尼、巴基斯坦和厄瓜多尔开展国际多中心3 期临床试验,且于2021年3月1日获得乌兹别克斯坦批准注册使用,是全球第一个获批使用的新冠重组蛋白疫苗。该疫苗亦于2021年3月10日获得中国紧急使用批准。  安徽智飞龙科马杨世龙,中国科学院微生物所李燕、戴连攀,中国食品药品检定研究院王剑峰、何鹏为论文共同第一作者。中国食品药品检定研究院孟淑芳,中国科学院微生物所严景华,中国食品药品检定研究院胡忠玉,湖南省疾病预防控制中心高立冬和中国科学院微生物研究所高福为论文共同通讯作者。此项目获得国家重点研发计划、国家科技部药物研发重点项目、中国科学院先导专项和安徽智飞龙科马生物制药公司的支持。
  • 北大王初与芝加哥大学赵英明课题组合作开发深度组蛋白修饰鉴定分析方法
    近日,北京大学王初课题组与芝加哥大学Ben May癌症研究所赵英明课题组合作,在Science Advances杂志上发表题为“Identification of 113 new histone marks by CHiMA, a tailored database search strategy”的研究文章。在这项工作中,作者详细探索了传统数据分析方法应用于组蛋白修饰组鉴定修饰肽段存在的问题,并进行了针对性优化发展了一种名为“Comprehensive Histone Mark Analysis (CHiMA)”的数据分析方法。应用CHiMA对此前的组蛋白修饰组数据进行重分析发现了113个新的组蛋白修饰位点(histone mark)。  组蛋白翻译后修饰是细胞对DNA转录调控的重要手段之一。蛋白质组作为一种高通量全局性分析蛋白质翻译后修饰的技术,在组蛋白修饰的发现和功能研究中发挥了重要作用。如赵英明课题组在2019年利用蛋白质组手段首次鉴定到了组蛋白上来源于L型乳酸(L-lactate)的赖氨酸乳酰化修饰,并揭示了其在调控基因表达中的重要作用。组蛋白修饰组相对于全蛋白质组数据有着显著的区别,譬如:1)组蛋白修饰组中包含的肽段数目远少于全蛋白质组中的肽段数目 2) 组蛋白由于富含赖氨酸和精氨酸,经过胰蛋白酶切后,氨基酸数目小于或等于6个的短肽占比远超全蛋白质组中比例。尽管如此,目前还没有研究探索传统蛋白质组数据分析策略是否适用于组蛋白修饰组中修饰位点的鉴定,以及针对组蛋白修饰组优化开发的搜库方法。为了验证传统蛋白质组数据分析策略应用于组蛋白修饰位点鉴定是否会产生漏报的情况,作者首先准备了四组组蛋白乳酰化修饰组数据。这些数据使用同样色谱条件和质谱条件采集,因此同一条修饰肽段在四组数据中应在相似时间被色谱洗脱并送入质谱鉴定,从而可以利用在其他三组数据中的鉴定肽段来检查漏报。作者使用ProLuCID+DTASelect2.0作为搜库软件并使用传统分析策略进行搜库,发现在这四组数据中均存在着不同比例(12.5%-36.4%)的修饰位点漏报。为了验证这一结果不是由特定搜库引擎的算法所导致,作者使用另一种常用的搜库引擎Andromeda(内置于MaxQuant)进行了同样的测试并得到了相似的结果。  搜库分析首先将实验产生的二级谱图与蛋白质数据库中模拟酶切产生肽段的理论谱图进行比对,以得到每个二级谱图潜在的匹配肽段。随后需要对所有的肽段-谱图匹配(peptide-spectrum matches, PSMs)进行过滤以筛选出高置信度的鉴定结果。传统的搜库方法通常使用target-decoy策略来进行PSM筛选[3]。这一策略首先在蛋白质数据库中产生与正确蛋白质序列(target)同样数目的诱饵序列(decoy,通常为正确序列的反向序列)。诱饵序列不存在于细胞中,所以匹配于诱饵序列的鉴定结果均为假阳性。同时由于数据库中正确序列与诱饵序列数目相同,可以通过decoy PSMs的数目估算出同等打分筛选条件下的target PSMs数目,从而估算出假阳性率(false discovery rate, FDR)。由于组蛋白修饰组通常只含有数十条或最多上百条修饰肽段,作者猜测使用 target-decoy-based FDR进行PSM过滤会导致打分线完全取决于打分最高的1-2个decoy PSM,从而丧失统计效力。为了验证这一猜测,作者对数据A搜库过程每一步的结果进行了仔细检查,发现所有漏报的修饰肽段均被搜库软件正确匹配到了相应的二级谱上,而漏报确实产生于后续的PSM过滤过程。作者随后绘制了测试数据中target PSM和decoy PSM的打分分布曲线,发现两者也几乎完全重合,只有65个target PSMs的打分高于打分最高的decoy PSM,因此在该数据中打分线仅由这一个decoy PSM决定,导致其他正确修饰肽段被漏报。作者随后对搜库策略进行优化以解决这一问题。谱图匹配的质量是最重要的衡量肽段鉴定可靠性的标准。因此,对于组蛋白修饰组这样的小数据集来说,完全可以根据谱图质量来筛选高置信度的PSM。由于数据中仅含有少量阳性肽段,筛选出的鉴定结果可以在随后很方便地进行手动验证。通常来说,一个正确的PSM中肽段的碎片离子(fragment ion)应该尽可能多地被匹配到谱图中的离子。因而,我们选择碎片离子覆盖率(fragment ion coverage,FIC)作为筛选高质量PSM的标准。经过一系列的评测,作者证明基于FIC的筛选策略在测试数据集中显著优于基于FDR的筛选策略,而50% 的FIC可以在不引入过多假阳性鉴定的情况下鉴定到所有的正确修饰肽段。  作者随后对组蛋白修饰组数据更进一步探索发现组蛋白赖氨酸乙酰化(Kac)和一甲酰化(Kme1)和精氨酸一甲基化(Rme1)在测试数据集中被广泛发现共存于目标修饰的肽段上。这些赖氨酸和精氨酸上的背景修饰(尤其是Kac)可以导致酶切效率的降低,产生更长的含目标修饰的肽段,从而使得短肽上的修饰位点被鉴定到。因此考虑这些高丰度的背景修饰可以促进对目标修饰位点的鉴定,同时也有助于对组蛋白修饰crosstalk的研究。在两个测试数据集中,作者证明在搜库时考虑Kac,Kme1和Rme1帮助多鉴定到了45%和75%的组蛋白乳酰化修饰位点。基于以上对搜库分析流程的优化,作者建立了深度组蛋白修饰鉴定分析方法CHiMA (Comprehensive Histone Mark Analysis)。作者在两个测试数据集中对CHiMA进行详细地测试证明其相对传统搜库方法能够多鉴定到近一倍的组蛋白修饰位点。在以上方法开发过程中,所有鉴定结果作者均进行了手动验证以确保准确性。  作者最后使用CHiMA对组蛋白赖氨酸乳酰化、2 -羟基异丁酰化、巴豆酰化和苯甲酰化的数据进行重分析,发现了113个新的组蛋白修饰位点(histone mark),将此前的数目提高了几乎一倍。作者手动检查了所有新鉴定位点肽段的PSM质量,并将其分为了高置信度和中等置信度两类,其中后者的PSM可能有如下瑕疵:1) 肽段碎片离子的信号强度过低 2)谱图中高质核比区间(大于母离子质核比)有无法被解释的高强度离子。为了确保这些新鉴定的组蛋白修饰位点的可靠性,作者合成了所有中等置信度的乳酰化和巴豆酰化新鉴定位点的肽段。所有合成肽段的二级谱图均与鉴定肽段的谱图一致,证明了这些新鉴定位点的正确性。除了这些新鉴定位点之外,作者还总结了所有共存于同一条肽段上的修饰组合,并人工合成了其中部分肽段以验证其正确性。  综上所述,CHiMA提供了第一个专为组蛋白修饰鉴定量身定做的数据分析方法,为组蛋白修饰参与的表观遗传学研究提供了重要工具。在本工作中新发现的组蛋白修饰位点也将为未来表观遗传学的机制研究提供重要的基础。本文的通讯作者为芝加哥大学Ben May癌症研究所的赵英明教授和北京大学化学与分子工程学院、北大-清华生命联合中心、北京大学合成与功能生物分子中心的王初教授。赵英明课题组博士后高晋君(王初课题组2019届毕业生)为本文第一作者,明尼苏达大学陈悦教授、北京大学张迪教授、赵英明课题组盛心磊博士等合作者为本课题做出了贡献。该工作得到了国家自然科学基金委、科技部重点研发计划、北京市杰出青年科学家等项目的经费支持。  文章链接:https://www.science.org/doi/10.1126/sciadv.adf1416  原文引用:DOI: 10.1126/sciadv.adf1416
  • 新冠疫苗如何选?mRNA疫苗or腺病毒疫苗or重组蛋白疫苗?
    2022年5月26日,加州大学圣地亚哥分校的研究人员在国际顶尖学术期刊Cell发表了题为:Humoral and cellular immune memory to four COVID-19 vaccines的研究论文。该研究深入研究了4种新冠疫苗——mRNA-1273(Moderna开发的mRNA疫苗)、BNT162b2(辉瑞/BioNTech开发的mRNA疫苗)、Ad26.COV2.S(强生公司开发腺病毒疫苗)、NVX-CoV2373(Novavax开发重组蛋白疫苗)接种后6个月内 T 细胞、B 细胞、抗体水平的变化,这4种疫苗均针对新冠病毒的刺突蛋白(S蛋白)。这也是史上首次头对头比较三种不同疫苗平台(mRNA疫苗平台、腺病毒疫苗平台、重组蛋白疫苗平台)开发的疫苗针对同一种病原体的免疫反应。主要发现:抗体:六个月后,接种 Moderna 的 mRNA 疫苗的人的中和抗体水平最高,其次是接种辉瑞/BioNTech的 mRNA 疫苗和 Novavax 的重组蛋白疫苗。接种强生公司的腺病毒疫苗产生的中和抗体水平最低。B细胞:六个月后,接种强生公司的腺病毒疫苗的人记忆 B 细胞的百分比最高。CD4+T细胞:所有疫苗接种后都保留了相似百分比的记忆 CD4+“辅助”T 细胞来对抗病毒。CD8+T细胞:接种 Novavax 的重组蛋白疫苗后的 CD8+“杀手”T 细胞的水平最低。六个月后,只有60%到70%的疫苗接种者保留了记忆 CD8+T 细胞。这是首次对这四种不同疫苗的综合免疫学结果进行的头对头比较,这项研究证实,无论接种哪种新冠疫苗,大多数人都会对新冠病毒保持一定的免疫反应。这种免疫记忆可能无法预防感染,但似乎有助于防止感染后出现严重症状。即使疫苗接种后很难长期维持高水平的中和抗体,但细胞免疫能够稳定存在,这表明如果接种疫苗后出现病毒感染,免疫系统可以在几天内迅速重新激活。展望未来,研究团队表示将进一步研究新冠疫苗加强针注射后对长期免疫记忆的影响。还将密切关注免疫细胞对新冠突变株的反应,目前正在分析接种疫苗后发生突破性感染的人的免疫反应。此外,还有研究直接比较了两款 mRNA 疫苗在真实世界的效果,2022年5月2日,科学医疗保健组织 Optum Labs 的研究人员在 Nature Communications 期刊发表了题为:Comparative effectiveness over time of the mRNA-1273 (Moderna) vaccine and the BNT162b2 (Pfizer-BioNTech) vaccine 的研究论文。这项回顾性队列研究,在美国近400万接种两剂 mRNA-1273(Moderna开发)或 BNT162b2(辉瑞/BioNTech开发)的个体中调查了他们感染新冠和严重程度与疫苗接种时间的关系。该研究显示,这两款 mRNA 疫苗在真实世界中效果并不相同,在完全接种后,接种 mRNA-1273 疫苗的防感染效果略高于 BNT162b 疫苗。 但这两种疫苗在完全接种后 90 天内防重症(住院、ICU或死亡)方面,效果相当。论文链接:https://www.cell.com/cell/fulltext/S0092-8674(22)00653-5https://www.nature.com/articles/s41467-022-30059-3
  • 培训通知:生物制药产业技术系列职业培训—单抗及重组蛋白研发生产技术和工艺
    p  生物医药产业是高新科技产业,随着生物医药产业的快速发展,我国生物制药产业也进入了快速上升期,而单克隆抗体药物和细胞免疫治疗技术在整个产业中无疑是最为重要的组成部分。目前生物制药产业发展面临人才短缺的挑战,而我国高等专业教育尚不能满足生物制药产业发展的需求,大部分生物医药相关专业毕业生缺乏该产业急需知识和技能而面临就业难。在职职工专业教育是生物医药产业正常运营的基础保障,更是各国药政机构监管的重点。中国蛋白药物质量联盟将针对我国生物医药产业发展现状和国际产业技术的发展进步,特别是各国药政监管要求,推出生物制药产业技术系列职业培训。本期设为单抗及重组蛋白研发生产技术和工艺。/pp strong 单抗及重组蛋白研发生产技术和工艺/strong/pp  根据数据统计,2015年全球药品市场规模近 10700 亿美元,2016 年全球药品市场规模11080 亿美元,2017年全球药品市场规模约为 11290 亿美元。在未来五年内,全球药品支出将会上升30%,2018年将达到11700亿美元,2022 年可达约14400亿美元。2016年全球最畅销药物榜单中生物专利药占据主要地位,仅销量前10种药物年销售额超800亿美元。单抗及重组蛋白药物等生物药的市场需求巨大,形成鲜明对比的是,我国单抗及重组蛋白药物研发能力的薄弱,研发技术壁垒高,我国单克隆药物技术和国外先进水平有很大差距。单抗及重组蛋白的巨大市场需求和国内现阶段的技术发展水平,促使我们必须降低新药的研发风险,增强单抗及重组蛋白药物的研发生产技术能力。/pp  strong一、主办单位/strong/pp  中国蛋白药物质量联盟/pp  strong二、培训时间/strong/pp  时 间:2018年09月11日 PM 1:30-5:30/pp  地 点:北京兴基铂尔曼酒店,北京亦庄荣华南路12号(三楼巴黎厅)/pp  (晚餐:下午5:30-8:00 北京兴基铂尔曼酒店 一楼餐厅)/pp strong 三、培训目标人群/strong/pp  本次培训旨为生物医药产业的技术研发负责人、蛋白药物研发及生产业务骨干温故知新 为职场新人、在校大学生以及对单抗及重组蛋白研发生产技术和工艺感兴趣的相关人员夯实基础。/pp  strong四、培训主讲人及题目/strong/pp  1、strong李荣皓博士/strong,珠海恺瑞生物科技有限公司董事长兼创始人。李荣皓博士从1984年开始使用无血清细胞培养技术,曾涉足CHO细胞培养及重组蛋白生产工艺优化、多种原代细胞及干细胞等无血清细胞培养,在无血清细胞培养技术应用方面具有很深的造诣。此次培训班李博士将重点介绍其在美国Genentech等公司工作期间所积累的CHO细胞培养液开发以及其它细胞无血清培养技术的应用经验,并与听众互动,共同探讨听众有关重组蛋白表达细胞、干细胞、T细胞、疫苗生产细胞以及原代细胞等多种类型细胞的无血清培养技术问题。和大家一起分析和讨论技术细节。/pp  strong主讲题目:重组蛋白药研发及生产中的无血清细胞培养技术/strong/pp  2、strong史艳轻/strong,美国贝克曼库尔特有限公司,应用工程师。从事颗粒特性产品应用近六年,有丰富的样品颗粒分析和检测经验。/pp  strong主讲题目:颗粒分析技术在单抗药物研发和质控领域相关方案/strong/pp  3、strong滕希/strong,伯乐生命科学产品(上海)有限公司技术支持经理,毕业于中国农业科学院,专业是生物技术,曾在华大基因从事分子生物学方向应用相关研究现就职于美国Bio-Rad公司,在定量PCR、数字PCR等技术应用领域有着丰富的经验。/pp  strong主讲题目:质量控制检测PCR技术介绍/strong/pp  4、strong刘彬/strong,Bio-rad资深应用解决方案专家。毕业于大连理工大学,先后从事与北京韩美、北京诺和诺德,目前就职与Bio-Rad公司,有着十多年蛋白质纯化经验。/pp  strong主讲题目:NGC下一代层析系统介绍及蛋白残留的验证/strong/pp  5、strong孙乐/strong,博士,北京千人计划专家、北京师范大学兼职教授以及北京AbMax生物科技公司创始人。孙博士具有超过30年的抗体研究及抗体药研发经验,早在1989年即赴美以博士后身份与曾经同Jennifer Mather博士共同开创近代无血清细胞培养技术的David Barnes博士开展合作科学研究,积累了丰富的无血清细胞培养、胚胎干细胞以及表皮生长因子信息传递等领域的研究经验。孙博士后成为美国Upstate Biotech公司的研发总监,负责开发生物科技热门研究领域包括癌症研究的研发试剂,以每年推出200多款产品的高速帮助公司迅速成长为行业知名生物试剂公司。2000年孙博士离开Upstate Biotech,并先后于2000年在美国巴尔的摩市创办A& G Pharmactuticals公司、2004年在北京创办Welson Pharmaceuticals 以及2006年创办AbMax公共并担任公司董事长及CEO至今。AbMax利用独有的抗体产生技术开发低免疫原性及高稳定型抗体,为客户提供新一代抗体药研发服务,成为抗体新药研发技术领域提供了一个重要的发展方向。/pp  strong五、会议议程/strong/pp style="text-align: center "strongimg title="微信图片_20180830095700.png" alt="微信图片_20180830095700.png" src="https://img1.17img.cn/17img/images/201808/uepic/6395b3b0-bb4b-464d-ac62-23323ef93d4d.jpg"//strong/ppstrong  六、注册事宜/strong/pp  培训说明:本次培训免费,中国蛋白药物质量联盟证书(自愿)500元/人。获取更多资讯,敬请联系中国蛋白药物质量联盟秘书处:/pp  联系人:/pp style="text-align: left " 蒋老师/pp style="text-align: left "  手 机:+86-15900209767 邮 箱:jiangxiaowan@126.com/pp style="text-align: left "  李老师/pp style="text-align: left "  手 机:+86-18322696168 邮 箱:a href="mailto:781494221@qq.com"781494221@qq.com/a/pp style="text-align: center "img title="微信图片_20180830095820.png" alt="微信图片_20180830095820.png" src="https://img1.17img.cn/17img/images/201808/uepic/5fd3b98f-92d8-418e-ae25-a74ef4bcb54f.jpg"//pp  /pp /p
  • 重大进展!中国生物二代重组蛋白新冠疫苗获批临床
    2022年4月3日,国药集团中国生物二代重组蛋白新冠疫苗获得国家药品监督管理局颁发的临床试验批准文件。该疫苗由国药中生生物技术研究院/新型疫苗国家工程研究中心(以下简称中国生物研究院)研发,具有独立自主知识产权。这是国药集团中国生物继灭活疫苗技术路线上两款新冠疫苗获批上市后,在重组疫苗技术路线上获得的重大进展。▲中国生物研究院第二代重组新冠疫苗二代重组新冠疫苗(NVSI-06-08)是中国生物研究院基于自主建立的计算结构疫苗学技术平台,在第一代重组新冠疫苗(NVSI-06-07)的基础上,通过对流行株突变位点的进化规律和免疫逃逸能力进行计算分析,设计研发的第二代广谱新冠疫苗(突变集成三聚化RBD)。2021年底,国药集团中国生物已统筹研发机构中国生物研究院与生产企业兰州生物制品研究所、北京生物制品研究所携手推进,完成技术转移。兰州生物制品研究所、北京生物制品研究所均已建成GMP生产车间,具备连续生产能力。目前,已完成生产8000万剂,海外供应超2000万剂,产能可满足国内外需求。
  • 贝克曼库尔特 | 高通量筛选大肠杆菌重组蛋白生产用酵母营养素
    随着重组DNA技术的迅猛发展,外源基因在不同宿主中的表达使得各种重组蛋白的工业生物生产成为可能。选择合适的宿主是生物工艺设计中的关键步骤之一,具体取决于:1.上游培养效率2.易于基因编辑和分子工具的可用性3.翻译后修饰的能力,如糖基化4.蛋白质(用于下游加工和作为生物制药成分等)的分泌能力目前,多种生物已被应用于重组蛋白的生产,尤其是大肠杆菌,易于基因改造,具有在酵母水解物等多种基质上快速生长并产生高蛋白滴度的优势。已成为迄今为止业界追捧的主力军。典型的生物工艺优化通常需要进行一些初步试验,以发现适用于宿主菌株并提高目的重组蛋白表达的培养基成分(特别是氮基营养素)。对于此类应用需求,能够提高实验效率和参数准确度的高通量筛选平台成为热门工具。贝克曼库尔特BioLector通过在线测量关键培养参数提供可放大的高通量分析。本案例为通过BioLector对多种酵母营养素就生物量生长和重组蛋白的形成进行评估和比较,筛选出了适合大肠杆菌重组蛋白生产和诱导时间的理想培养基。方法培养菌株:大肠杆菌BL21(DE3)pET-28a(+)EcFbFP。培养基:以标准TB培养基(Carl Roth)为参照物,对多个TB 样(Terrific 液)培养基进行比较。不同的TB 样培养基使用不同的酵母提取物。BioLector培养条件:在接种至微孔板之前,先在250 mL摇瓶中进行预培养, 37°C培养6小时。然后使用48孔梅花板(MTP-BOH2)在 BioLector中进行培养。温度 37°C ,振摇速度:1400 rpm。分别在每个培养孔中填充800μL培养液用于非诱导实验,填充790μL用于诱导实验。诱导实验中,在诱导时间点上添加 10μL 50μM 的 IPTG。环境氧气浓度保持在35%,避免培养物缺氧。BioLector在线测量:培养过程中对生物量、EcFbFP(黄素荧光蛋白)、pH以及 DO进行在线测量。结果不同TB样培养基的生物量生长情况:培养实验中,不同酵母营养素的培养基中生物量的生长情况如上图所示:培养基不同,最终的光密度和生长速率也会不同。ProCel 6 中的大肠杆菌OD最高,培养基 ProCel 3 中的大肠杆菌的OD低。ProCel 6为本特定工艺的最高生长速率。上图为培养过程的DO值。培养基 ProCel 3 和 ProCel 4 中的培养物未达到0%的氧饱和度,这表明由于耗氧量有限,该培养基中的菌株代谢活性较低。相反,其他培养物包括TB标准培养基,均在短时间内达到0%的氧饱和度,表明菌株代谢活性高。不同酵母营养素TB样培养基的产物生成:通过将IPTG 添加到培养物中来诱导 T7 聚合酶的表达促进黄素荧光蛋白的生成。BioLector使用梅花板为48个培养物提供了独立的培养空间,因此可测试不同的诱导时间点。使用自动化工作站整合BioLector后的 RoboLector 系统还可以自动进行培养诱导。首先选择一个固定的诱导时间点。分别为培养启动后的3小时、3.75小时和4.5小时。下图所示为每种TB样培养基在诱导时间下所测荧光的平均值。荧光动力学清晰地表明不同培养基有不同的EcFbFP(黄素荧光蛋白)表达水平。表现出最强荧光信号的两个样本为:ProCel 2,诱导点为3.75小时;ProCel 5,诱导点为 3 小时。经过 7.7 小时的培养,ProCel 5 的荧光值达到102.94a.u.,而ProCel 2 的荧光值达到 101.82 a.u.。本方法的不足之处在于未比较不同样本的生物量对蛋白质产量的影响。经过3小时的培养,一些培养物的OD已达到6,而其他培养物仅达到3。当诱导具有不同光密度的培养物时,可能会对在每种酵母营养素上生长的实验大肠杆菌的蛋白质生产性能造成误解。鉴于此,我们采用了一种新方法,将诱导点与生物量信号耦合。使用BioLector的信号驱动RoboLector,依赖于特定生物量的诱导对于每个单独的孔都是可行的。为自动化工作站设置3、6或8的OD目标值,以根据孔内培养物的生长动力学自动添加IPTG以诱导蛋白质生产。如下图所示,ProCel 2表现最佳,最终值为 146.23 a.u.,培养时间是 12.3 小时;ProCel 5表现次之,最终值为138.1 a.u.。与之前进行的一系列实验相比,本实验中的排名与在特定时间点进行诱导的实验不同。这一观察证明了最佳工艺条件的重要性,并使这些条件具有可比性。此处数据表明:与之前的实验相比,本实验中的荧光值更高。正如该领域诸多论文中所强调的那样,诱导时间确实是一个关键参数。同样,在优化大肠杆菌重组蛋白生产的过程中,也必须评估诱导剂的浓度。另外,与对照TB培养基相比,这里测试的一些酵母氮源产生了更高的重组蛋白产量。这些结果凸显了选择培养基成分的重要性,这些成分能够在特定的生物工艺中实现高而稳定的产量。结论通过BioLector系统,贝克曼库尔特可为用户提供适用于各种应用领域的高通量筛选平台。其独特的梅花形微孔板尤其适用于好氧培养,如同实验室生物反应器,BioLector系统通过非侵入式传感器使客户能够获取更多的在线测量参数。正如本应用,通过BioLector系统可轻松实现培养基的筛选,整合自动化工作站的RoboLector,还可实现更多功能。补料、pH调控以及文中所述的诱导功能,所有这些均可在小规模实验中实现,帮助客户同时兼顾成本和效率。RoboLector高通量自动化微型生物培养平台欲了解该应用详情,请扫描下方二维码下载应用指南《利用BioLector进行大肠杆菌重组蛋白生产用酵母营养素的筛选》
  • 郝海平/叶慧团队联合王南溪揭示人类蛋白组乳酰化修饰
    细胞中的信号转导在很大程度上依赖于蛋白质氨基酸侧链的翻译后修饰状态。当翻译后修饰发生在不同位点、占据不同比例和产生多样的修饰组合,这会使得同一个底物蛋白被“装扮”成了构象、功能、结合伴侣、定位存在巨大差异的蛋白质变体。这激发了研究者们研究蛋白质翻译后修饰的热情。近年来,人们对经典的翻译后修饰如磷酸化、糖基化、乙酰化、泛素化、甲基化等已经有了深入了解。然而,有趣的是在赖氨酸残基上仍旧不断有新的酰化修饰如巴豆酰化、丁酰化、丙二酰化、琥珀酰化被发现。同样在赖氨酸残基上,2019年芝加哥大学赵英明教授课题组首次报道了在组蛋白上发现了乳酰化,并且证明组蛋白乳酰化修饰是由乳酸衍生而来的,该修饰在不同的生物学场景中具有和组蛋白乙酰化不重叠的转录调控功能。这无疑是解答了细胞是如何感知代谢变化、启动转录调节机制的一项重要发现。但是有趣的问题尚待解答:乳酰化是一种广泛存在于人类细胞、组织中的翻译后修饰吗?乳酰化可能发生在人类非组蛋白的赖氨酸残基上吗?非组蛋白的乳酰化修饰水平如何,是否具有生物学调控作用?为了解答这些问题,中国药科大学郝海平/叶慧团队联合南京中医药大学王南溪教授进行了探索。他们的最新研究成果Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome于2022年6月27日发表在Nature Methods。该工作首次鉴定并确证了携带乳酰化修饰赖氨酸的多肽所产生的特征环状亚胺离子,应用该离子从现有的非富集、大规模的人类蛋白质组数据资源中挖掘出全新的乳酰化修饰底物蛋白和位点的信息,并通过向代谢酶定点引入乳酰化修饰,初步确证了乳酰化发生在人类的非组蛋白底物上同样具有重要的调控功能。该研究的灵感来自于对蛋白组翻译后修饰研究的规律总结:磷酸化、乙酰化等翻译后修饰均可产生具有诊断意义的特征离子。乳酰化修饰是否也会产生诊断离子?为了验证此猜想,该团队提出在共享的海量人类蛋白质组数据库中探究乳酰化修饰是否存在新的底物。然而,从非富集的蛋白质组数据中检索修饰位点的假阳性率极高,若能发现修饰特异性的特征离子则能通过谱图筛选,显著降低赖氨酸位点存在修饰的假阳性率,揭示真实的修饰靶标,指导后续的生物学功能探索。基于此需求,该团队通过合成和研究模型乳酰化肽段的谱图,首次发现了携带乳酰化修饰赖氨酸的多肽在质谱碰撞室中经过二级断裂会形成链状亚胺离子,该离子经过脱氨环化再形成次生碎片——环状亚胺离子。该团队通过分析化学修饰和生物样本中富集出的阳性乳酰化肽段,再以近十万条人类蛋白质组的非修饰合成肽段谱图作为阴性对照,确证了环状亚胺离子指征乳酰化修饰的灵敏度和特异性,能作为判定数据库搜索获得的乳酰化修饰新位点的金标准。基于该诊断离子策略,研究者从现有的非富集、大规模人类蛋白质组数据资源中挖掘了大量全新的乳酰化修饰底物蛋白及其位点的信息,特别是从2020年Nature Methods[7]发表的多种人类细胞系的蛋白质组热稳定性Meltome Atlas数据资源里发现乳酰化修饰高度富集在糖酵解通路代谢酶这一现象。其中,乳酰化修饰的代谢酶ALDOA在多种人类肿瘤细胞系中具有保守性且修饰占位比高,引发了乳酰化修饰能调节代谢酶活性等功能,进而调控糖酵解通路的猜想。郝海平、叶慧团队进一步联合王南溪课题组,利用先进的化学生物学技术——基因密码子扩展技术,首次实现向靶蛋白ALDOA定点引入乳酰化修饰,发现修饰后酶活性显著降低,揭示了乳酸蓄积后,通过共价修饰糖酵解通路中上游代谢酶,抑制糖酵解活跃度的反馈调节机制,对生物化学领域现有的“终产物抑制”的调控模式进行了补充。综上,该研究表明乳酰化是广泛存在于人类组织、细胞中的一种非组蛋白特异性的翻译后修饰,对非组蛋白的底物蛋白也具有调控功能。该分析策略可为揭示乳酸更多的共价修饰靶标,阐释乳酰化修饰的动态变化与乳酸紊乱在炎症、肿瘤等重大慢性疾病发生发展中的重要作用之间的因果关系,进而发现新的疾病治疗靶点提供线索。2019级博士研究生皖宁和2018级硕士研究生王念为本论文的共同第一作者,叶慧研究员、郝海平教授、王南溪教授为本文的共同通讯作者。该工作获得了王广基院士和江苏省药物代谢动力学重点实验室以及谭仁祥教授和中药品质与效能国家重点实验室(培育)的大力支持。示意图 环状亚胺离子示踪技术揭示保守的乳酰化修饰人醛缩酶,该修饰具有酶活抑制作用作者简介:郝海平教授主要从事代谢调控与靶标发现/确证研究、中药及天然药物体内过程及作用机理研究。提出了“反向药代动力学”、代谢处置导向的作用靶标与机理研究的学术思想;在胆汁酸、色氨酸等内源活性代谢调控研究中取得重要研究成果。在Cell Metab, Nat Commun, Trends Pharmacol Sci等发表代表性工作。叶慧研究员致力于组学技术驱动的小分子靶标发现研究。旨在通过发现疾病状态下紊乱的内源性代谢物的结合靶标蛋白,阐明其调控模式,发现具有转化价值的治疗靶点。代表性工作发表于APSB, Redox Biol, Anal Chem, Mol Cell Proteomics等。王南溪教授的研究兴趣集中在通过基因密码子扩展等技术开发新的蛋白质研究工具,从而探索生命过程和开发生物技术药物。代表性工作发表于JACS, Angew等。郝海平/叶慧团队长期招收具有生物信息学、代谢调控、靶标发现等背景的博士生/硕士生,简历投递邮箱:haipinghao@cpu.edu.cn和cpuyehui@cpu.edu.cn;欢迎报考王南溪教授的博士生/硕士生,简历投递邮箱:nanxi.wang@njucm.edu.cn。文章发表链接: https://www.nature.com/articles/s41592-022-01523-1
  • 靶点蛋白研发公司恺佧生物完成近2亿元B轮融资
    近日,恺佧生物完成近两亿元人民币的B轮融资交易,本轮融资由联新资本领投,临港蓝湾资本、国方资本和某著名跨国生命科学产业集团跟投。  恺佧生物科技(上海)有限公司(Kactus Biosystems)成立于2018年3月,是一家以研发为驱动的创新型靶点蛋白和GMP原料酶高科技公司,主要专注于抗体药发现和细胞基因治疗市场。恺佧生物专属的高活性蛋白酶类研发生产平台SAMS,提供基于结构设计的功能靶点蛋白和用于细胞和基因治疗以及mRNA疫苗需要的GMP蛋白酶原料。  恺佧生物创始人兼CEO王刚先生表示:“我们深感荣幸,恺佧生物能在这个行业调整期得到知名基金的参与和认可,帮助我们加速建立在全球生物药上游产业链的核心竞争力。自从2018年成立以来,恺佧生物一直致力于打造产品的差异化和核心竞争力,解决日新月异的生物药上游产业未被满足的需求。在本轮融资的资源加持下,我们将再接再励保持战略耐性,聚焦在蛋白酶赛道,在深度洞察客户需求的基础上加大研发投入和生产质量体系升级,穿越产业周期,把恺佧打造成世界级的生命科学产品品牌。”  联新资本合伙人蔡磊先生表示:作为国内重组蛋白与CGT酶的引领品牌,恺佧生物团队拥有行业内领先的研发技术实力与生产能力,充分理解行业所需,搭建了丰富的产品阵列,成立仅仅四年多来就已经在高难重组蛋白与CGT酶领域建立起卓越的口碑,积累了一大批知名的下游客户群体。我们期待恺佧生物以国内生命科学上游原料头部供应商的身份,在未来持续打造下游亟需的优质产品,突破部分上游原料领域的“卡脖子”垄断,为中国生物医药产业的蓬勃发展保驾护航。  临港蓝湾资本总经理曲霞女士表示:恺佧生物具备创新的重组蛋白酶研发能力以及快速反馈、快速迭代的客户服务能力,种类丰富的蛋白酶产品解决了生物医药产业供应链本土化的关键问题,同时恺佧生物积极拓展海外市场,打造具有国际影响力的生命科学产品品牌。恺佧生物在临港新片区生命蓝湾建立了符合GMP要求和完善的数字化质量管理生产体系。临港蓝湾资本专注于包括生物技术与制药、医疗器械、医疗服务、生物医药人工智能(AI)等细分领域,将为恺佧生物进一步提供全方位支持和服务。  国方资本管理合伙人孙忞先生表示:生物医药行业发展催动对上游蛋白原料的需求,尤其近年来随着CGT、核酸药物行业的发展,对上游蛋白原料品类、质控的要求不断增加,监管审核的门槛也在提高。技术能力扎实,能不断开发新产品、好产品的公司会脱颖而出。恺佧生物团队技术实力强,围绕创新生物科技领域进行前瞻布局,团队执行力突出。我们相信恺佧生物是一家能源源不断开发出好蛋白产品的公司,国方资本希望能陪伴企业一路成长,做大做强。  恺佧生物是一家靶点蛋白研发平台,专注于免疫治疗和诊断技术市场的蛋白工具,独有创新型功能重组蛋白和抗体研发生产平台Structure Aided design and Multiplex Screening SAMSTM,聚焦于全球创新药研发企业客户,提供基于结构设计的功能靶点蛋白特别是膜蛋白类CRO服务和目录产品。近日恺佧生物宣布完成近2亿元的B轮融资交易,本轮融资由联新资本领投,临港蓝湾资本、国方资本和某著名跨国生命科学产业集团跟投。
  • 小贝开讲”之贝克曼库尔特在抗体、重组蛋白相关领域解决方案
    时间:2018年11月22日 14:00 - 15:00内容简介:随着应用的需求和技术的发展,抗体和重组蛋白药物已成为药物研究中最有前景的领域之一。而优质的抗体和重组蛋白药物都依托于细胞培养技术,研发和生产中如何准确检测、监测培养的细胞?如何快速监测细胞的生长环境?对于成品注射制剂如何保证完全符合法规?这些都是避不开的话题。本讲座将为您全面展现贝克曼库尔特在这些方面的解决方案。主讲人简介:史艳轻Product Specialist 贝克曼库尔特生命科学市场部 史艳轻,贝克曼库尔特颗粒特性和计数产品专员,从事颗粒特性产品应用近六年,有着丰富的样品颗粒分析和检测经验。
  • 各种蛋白互作检测方法优缺点分析
    聚焦蛋白质互作研究进展与实验方法研究蛋白-蛋白相互作用是理解生命活动的基础。蛋白质—蛋白质互作网络是生物信息调控的主要实现方式,是决定细胞命运的关键因素。检测蛋白质间相互作用的实验方法有哪些?这些检测方法各有什么优缺点?总结如下。1. 生化方法●共纯化、共沉淀,在不同基质上进行色谱层析(需要补充)●蛋白质亲和色谱 基本原理是将一种蛋白质固定于某种基质上(如Sepharose),当细胞抽提液经过改基质时,可与改固定蛋白相互作用的配体蛋白被吸附,而没有吸附的非目标蛋白则随洗脱液流出。被吸附的蛋白可以通过改变洗脱液或者洗脱条件而回收下来。GST pull down技术:为了更有效的利用蛋白质亲和色谱,可以将待纯话的蛋白以融合蛋白的形式表达,即将”诱饵“蛋白与一种易于纯化的配体蛋白融合。例如与GST融合的蛋白再经过GSH的色谱柱时,就可以通过GST和GSH的相互作用而被吸附。当载有细胞抽提物经过柱时,就可以得到能够与“诱饵”蛋白相互作用的目标蛋白了。Epitope-tag技术:表位附加标记技术 就是将附加的抗原 融合到目的蛋白以检测目的蛋白的表达,同时还可以通过亲和层析法来纯化目的蛋白。 缺点:表位附加标记可能会使融合蛋白不稳定,改变或使融合蛋白功能丧失。以上两种方法都要共同的缺点:假阳性。实验所检测到的相互作用可能时由蛋白质所带电荷引起的,并不是生理性的相互作用 蛋白的相互作用可能并不是直接的,可是由第三者作为中介的 有时会检测到两种在细胞中不可能相遇却有极强亲和力的蛋白。因此实验结果还应经其他方法验证。●免疫 共沉淀 免疫共沉淀是以抗体和抗原之间的专一性作用为基础的用于研究蛋白质相互作用的经典方法。改法的优点是蛋白处于天然状态,蛋白的相互作用可以在天然状态下进行,可以避免认为影响 可以分离得到天然状态下相互作用的蛋白复合体。 缺点:免疫共沉淀同样不能保证沉淀的蛋白复合物时候为直接相互作用的两种蛋白。另外灵敏度不如亲和色谱高。●Far-Western 又叫做亲和印记。将PAGE胶上分离好的凡百样品转移到硝酸纤维膜上,然后检测哪种蛋白能与标记了同位素的诱饵蛋白发生作用,最后显影。 缺点是转膜前需要将蛋白复性。2. 等离子表面共振技术(Surface plasmon resonance)该技术是将诱饵蛋白结合于葡聚糖表面,葡聚糖层固定于几十纳米厚的技术膜表面。当有蛋白质混合物经过时,如果有蛋白质同“诱饵”蛋白发生相互作用,那么两者的结合将使金属膜表面的折射绿上升,从而导致共振角度的改变。而共振角度的改变与该处的蛋白质浓度成线性关系,由此可以检测蛋白质之间的相互作用。该技术不需要标记物和染料,安全灵敏快速,还可定量分析。缺点:需要专门的等离子表面共振检测仪器。3. 遗传学方法使某处发生缺损,检测对其他地方的影响。●基因外抑制子。基因外抑制子是通过一个基因的突变 来弥补原有基因的突变。比如相互作用的蛋白A和B,如果A发生了突变使两者不再相互作用,此时B如果再发生弥补性突变就可以使两者的相互作用恢复,那么B就是A的基因外抑制子。 缺点:需要知道基因,要有表型,筛选抑制子比较费时。●合成致死筛选 指两个基因同时发生突变会产生致死效应,而当每个基因单独发生突变时则无致死效应。用于分析两个具有相同重要蛋白之间的相互作用。4. 双杂交技术原理基于真核细胞转录因子的结构特殊性,这些转录因子通常需要两个或以上相互独立的结构域组成。分别使结合域和激活域同诱饵蛋白和猎物蛋白形成融合蛋白,在真核细胞中表达,如果两种蛋白可以发生相互作用,则可使结合域和激活域在空间上充分接近,从而激活报告基因。 缺点:自身有转录功能的蛋白会造成假阳性。融合蛋白会影响蛋白的真实结构和功能。不利于核外蛋白研究,会导致假隐性。5. 荧光共振能量转移技术指两个荧光法色基团在足够近(100埃)时,它们之间可发生能量转移的现象。荧光共振能量转移技术可以研究分子内部对某些刺激发生的构象变化,也能研究分子间的相互作用。它可以在活体中检测,非常灵敏,分辩率高,能够检测大分子的构象变化,能够定性定量的检测相互作用的强度。 缺点 此项技术要求发色基团的距离小于100埃。另外设备昂贵,还需要融合GFP给蛋白标记。此外还有交联技术(cross-linKing),蛋白质探针技术,噬菌体展示技术(Phage display)以及生物信息学的方法来检测蛋白质之间相互作用。
  • 近岸蛋白在上交所科创板成功上市
    2022年9月29日,苏州近岸蛋白质科技股份有限公司(Novoprotein Scienific,Inc.)正式登陆上交所科创板。股票简称:近岸蛋白,股票代码:688137。苏州近岸蛋白质科技股份有限公司(简称近岸蛋白)深耕重组蛋白行业十余年,是一家专注于蛋白质技术与应用解决方案的高新技术企业,主营业务为生物药、体外诊断、mRNA疫苗药物、生命科学基础研究等领域的原料与技术解决方案,包括靶点及因子类蛋白、重组抗体、酶及试剂的研发、生产和销售及相关技术服务。公司在上海、苏州和菏泽建有研发、生产基地。公司拥有上万种重组蛋白的开发经验,自主研发了蛋白设计与改造、蛋白生产和质量控制以及蛋白应用与评价等7大综合性技术平台,23项核心技术。公司以完善的技术体系和自产创新原料为基础,为下游客户提供从产品到技术创新及开发的一站式CRO服务。公司mRNA原料酶及试剂在国内市场处于领先地位,具备先进的mRNA原料酶规模化生产能力,产品质量达到国际先进水平。近岸蛋白“专注底层创新,赋能生物医药行业”,以蛋白质工具和技术的创新推动生物医药行业创新升级,为高效改善人类的生命健康而不懈努力。近岸蛋白初心蛋白质是生命科学应用的核心,蛋白质工具和技术创新是生物医药创新的源动力。2009年,怀揣着“以蛋白质工具和技术创新助力生物医药产业创新升级”的初心,朱化星博士创办了近岸蛋白。经过十多年发展,近岸蛋白建立了完善的技术平台,研发生产了数千种重组蛋白工具,并在体外诊断、生物药、mRNA疫苗药物和生命科学基础研究中得到广泛的应用。今天,我们依然在坚守初心的路上......近岸蛋白理念凡唯美的,必有价值。生命之路上,我们心怀对“唯美”的不懈追求,以蛋白工具创新,赋能生物医药行业的创新发展,让生命更健康,为守护人类健康贡献中国力量!感谢每一位同仁,每一位合作伙伴对近岸蛋白的信任和支持,感谢您们一路相伴!面对新的征程,我们已经做好了全面准备,脚踏实地用心经营,使近岸蛋白成为具有持续增长力的上市公司,担负起更多的社会责任,实现客户、员工、社会和股东的共赢。
  • Flag标签蛋白检测抗体实验应用说明
    Flag标签蛋白检测抗体  远慕生物提供可用于WB,IF,IP应用的Flag抗体,特异性检测Flag标签融合蛋白,Flag标签抗体可识别在细胞内表达的Flag标记重组蛋白,包括Flag位于氨基末端、中段以及羧基末端的重组蛋白。  Flag标签系统利用一个短的亲水性八氨基酸肽( DYKDDDDK)融合到目标蛋白。Flag标签可位于蛋白质的C端或N端,该系统已广泛应用于细菌、酵母和哺乳动物细胞等多种细胞类型,相应的Flag标签抗体也被广泛应用。由于Flag标签系统的纯化条件是非变性的,因此可以纯化所有有活性的融合蛋白。Flag标签可以通过加入肠激酶处理去除,肠激酶专一识别该肽序列C末端的5个氨基酸残基。Flag抗体可以用于检测和Flag标签融合表达蛋白的表达、细胞内定位,以及纯化、定性或定量检测Flag融合表达蛋白等。  由于Flag标签蛋白检测抗体亲水特性,Flag标签往往位于融合蛋白的表面上,因此比较容易被抗体接近并识别。不同的Flag标签抗体与Flag标签 有不同的识别和结合特性。  Fig. 1. Flag标签蛋白IP实验,IP (1:200) - WB (1:5,000):未转染的293细胞裂解液(lane A), 转染了Flag标签蛋白的293细胞转染裂解液 (lane B), 使用小鼠IgG作为阴性对照免疫沉淀293细胞裂解液(lane C),使用Flag单克隆抗体(1B10)IP转染后的293细胞裂解液(lane D), 293细胞裂解液 中仅加入Protein G Beads (lane E).  Fig. 2. 使用Flag标签单克 隆抗体,通过免疫荧光实验(1:2000),分析转染的Flag 重组蛋白在293细胞中的定 位,二抗为IFKine? Red 驴抗 小鼠,蓝色为DAPI染色的细 胞核。
  • 用ETD线性离子阱质谱成功鉴定蛋白和翻译后修饰
    在翻译后修饰和/或极碱肽的序列分析方面,电子转移裂解( ETD )线性离子阱质谱是很有优势的工具。传统的诱导活化裂解(CAD)常用来鉴定蛋白,并试图确定和找到他们修饰的位点,但这种技术有其本身固有的缺点,下面将详细叙述。与线性离子阱的结合使用的ETD是蛋白质组学研究的一个可靠的技术,可以很容易鉴定用CAD不能鉴定的多肽。ETD 是一个相对较新的肽/蛋白质碎裂的技术,能够大大推进质谱鉴定蛋白质这个领域的进步。 翻译后修饰 翻译后修饰(PTM)是翻译后的蛋白质进行的一种化学修饰,是蛋白质生物合成的后续步骤之一。蛋白的分析及其翻译后修饰的分析对于研究许多疾病是非常重要的,如癌症、糖尿病、心血管疾病和神经退行性疾病---阿尔茨海默病。这是因为在蛋白质的合成的过程中以及合成之后,可能发生各种蛋白修饰。对于正常细胞的功能,这些修饰是必须的,但调节这些修饰的变化可能会导致疾病的发生,如阿尔茨海默病,癌症和勃起功能障碍。蛋白质修饰可提高/降低蛋白质的活性,可以与其他蛋白质发生相互作用和将某一蛋白质定位到细胞的特定地方。 翻译后修饰,如磷酸化,乙酰化和甲基化被用作化学开关,激活/灭活组蛋白基因转录调控, DNA复制和DNA损伤修复。组蛋白是染色质的主要蛋白,DNA盘绕时,它们起到线轴的作用,而且在基因调控中发挥重要作用。因此,鉴定这种翻译后修饰是必需的,因为它在生物系统中对于某些蛋白的功能和作用至关重要。 用CAD鉴定蛋白 质谱在确定蛋白及其翻译后修饰上发挥了不可或缺的作用。CAD是一种常见的分析鉴定蛋白质的技术。一般用胰蛋白酶将蛋白质消化成较小的多肽,然后用反相色谱将其分离,并直接注入电喷雾质谱仪检测,通过串联质谱( MS / MS法)获得序列信息。通过电喷雾电离这些多肽形成几种带电状态的肽离子,而较低带电状态的最适合CAD分析。低能量的CAD串联质谱一直是最常用的分析方法,通过裂解肽离子进行后续的序列分析。 翻译后修饰分析,如磷酸化,磺酸化和糖基化很难用CAD进行分析,因为这些修饰通常是不稳定且容易丢失肽骨架的碎裂信息,从而导致很少或几乎不能得到肽序列和磷酸化位点。利用常规的CAD质谱对于含多个碱性残基多肽测序也是极为困难。 根据不同的蛋白质序列,有时胰蛋白酶会产生过小或过大的肽段。在这种情况下,缺乏可信的序列分析手段。因此CAD对短的,低带电的多肽是最有效的。对于鉴定蛋白和了解蛋白的生物学功能,这是一种广泛使用的方法,然而,限制了研究者分析了所有的肽段,这也阻止多个翻译后修饰位点的检测和了解这些蛋白的生物学功能。 先进的碎裂方式:ETD ETD是基于离子/离子气相化学一种碎裂多肽的新方法。ETD通过从阴离子自由基到质子肽转移电子的化学能量将肽碎裂,这引起多肽骨干的分裂。 ETD产生的骨干肽序列和肽侧链的信息往往与CAD互补。 ETD已成功应用与线性离子阱以及其前身三维离子阱。虽然ETD在三维阱的执行价格具有竞争力且和CAD自身相比提供了独特好处 ,这样的组合并没有提供蛋白质组学分析所需的技术能力。非线性离子阱的ETD,它一直未能很好控制裂解过程,而且由于三维阱离子存储能力的有限不能处理大量的多肽。基于此,研究人员已经提出ETD功能应用于线性离子阱(Thermo Scientific LTQ XL mass spectrometer质谱仪) 。 相对于传统的CAD技术, ETD提供了更稳定的方法来定性PTMs,鉴定大型多肽或甚至整个蛋白质。 ETD能够将普通翻译后修饰的多肽,或者多个碱性残基的多肽甚至整个蛋白质生成离子。 ETD也可以轻易碎裂含有二硫键的的多肽。 ETD是为更复杂的FT-ICR仪器开发相似的裂解技术。使用电子转移试剂,而不是影响肽碎裂的自由电子使ETD在广泛使用的射频四极离子阱中得到应用。射频离子阱质谱仪具有低成本,低维护费用以及更易接受优点,相对于CAD碎裂方法,ETD碎裂技术能够产生更多的产物离子,利于肽段的解读。 ETD的线性离子阱提供了强有力的工具鉴定蛋白及其翻译后修饰 。LTQ XL线性离子阱质谱仪比其他任何离子阱提供更多的结构信息,ETD能够得到常规方法无法得到的序列信息。相比非线性离子阱,ETD的线性离子阱的显著特征在于离子和离子发生反应。虽然ETD功能是完全自动的且通常无需用户干预,但是当需要对离子数进行累积的时候,用户可通过软件完全控制线性离子阱的离子。线性离子阱质谱仪有能力处理大量的样品,并分析低浓度的大分子和小分子。与非线性离子阱的相比,该过程更为复杂和费时 应用实例 在最近的应用中,极碱的多肽和大量重要的翻译后修饰已经用含CAD和ETD线性离子阱质谱分析了。通常CAD碎裂方式产生的普通只显示有限的肽碎裂信息。然而,用ETD碎裂这些多肽的时候, 肽骨架碎裂信息能完全或几乎完全产生,因此得到更广泛的多肽序列的信息。 ETD的灵敏度和稳定性对于蛋白质组学分析是必不可少的。 ETD提供了高度可靠的解决方案,此方案具有用户友好性,几乎不需要日常维护,并提供高度准确的数据,而且ETD的数据分析有相应的软件支持,非常方便简单。 结论: 在蛋白质组学研究领域,ETD的应用对于研究疾病的机理,如癌症,药物开发研究以及细胞功能和信号转导有重大意义,ETD将扩大目前的分析,包括更多的碱性、非胰酶切肽段和蛋白质。它们能确定各种翻译后修饰以及鉴定新的蛋白亚型。 配备ETD的线性离子阱质谱可应用于蛋白质组学各个领域内。ETD的线性离子阱将继续推动蛋白质组学的发展,而且已被证明是替代CAD一种有效技术,而且ETD同样可以应用于非线性离子阱进行肽序列分析。在不久的将来,配备ETD的线性离子阱预计将成为碎裂技术的一种新选择。 参考文献 Leann M. Mikesh et al, The utility of ETD mass spectrometry in proteomic analysis, Biochemica et Biophysica Acta (2006), doi:10.1016/j.bbapap.2006.10.003关于 Thermo Fisher Scientific (赛默飞世尔科技,原热电公司) Thermo Fisher Scientific纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约30000人,在全球范围内服务超过350000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于ThermoScientific和FisherScientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。ThermoScientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。FisherScientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,
  • PALL蛋白纯化填料试用申请活动即将开始
    PALL蛋白纯化填料试用申请活动即将开始蛋白纯化新选择:多一次尝试,多一种选择,不同的结果。PALL蛋白纯化填料试用申请活动即将开始申请有效期2011年5月4号-2011年6月4号 您是否为蛋白纯化结果不理想而烦恼?试试PALL的层析填料吧,提供与传统填料不同的层析选择性!你是否为蛋白纯化过程耗时而烦恼?试试PALL的高流速层析填料吧,满足您在高流速下高结合性的要求。您是否为填料的载量不高而烦恼?试试PALL的Q/S HyperCel 层析填料吧,结合载量大于134-190mg/ml(BSA)您是否为抗体纯化费时、费经费而烦恼?试试PALL的MEP HyperCel层析填料吧,单抗纯化步骤,经济而简单 众多填料如何选择?请参考选择推荐。MEP HyperCel、HEA HyperCel、PPA HyperCel:混合模式层析填料:能替代传统的疏水层析模式,支持在低盐或者无盐状态下上样,洗脱PH更温和,最大限度保留蛋白生物活性的同时简化下游纯化流程。MEP HyperCel 同时含亲和层析模式,替代传统的Protein A 亲和层析,优势: 无需调整料液,直接上样:直接从各种培养系统中捕获蛋白。省去微滤、超滤浓缩的步骤。 支持低浓度捕获,即使单抗浓度为50μg IgG/mL也能高效捕获。省掉浓缩的步骤。 温和的条件下洗脱:IgG一般在pH 5.5 to 4.0 的范围洗脱。 有效降低多聚体,同时去除DNA和HCP。 价格更经济。Ceramic HyperD 系列:如果您追求超高流速下高结合能力,Ceramic HyperD绝对是首选,在满足高流速下,同样拥有高分辨率。CM Ceramic HyperD:在具备高流速下的高结合能力外,同时能接受180mM的盐浓度下上样,简化了上样流程,上样前无需脱盐操作。推荐Ceramic HyperD 混合包装,货号:IEXVP-C001。内含四种1ml预装柱,DEAE、CM、S、Q 任您选择不同的离子交换。(不参加试用活动)。此次参与试用申请的填料还有Protein A 亲和层析填料,IMAC HyperCel 亲和纯化His标签填料等,如需更多的具体性能的资料,请登录PALL的网站http://www.pall.com/查询。 样品申请货号及数量可见下表,详情请下载产品试用清单(附件一)层析类型货号产品描述配基应用可申请总数混合模式(离子交换;疏水层析;亲和层析)12035-C001ACROSEP MEP HYPERCEL,1ml 预装柱甲基嘧啶●直接捕获多种不同类型、压型和种属的多抗和单抗;●酶和重组蛋白;●重组抗体片段;●从多聚体中分离单抗单体;●低盐浓缩物中蛋白的直接捕获5支20250-C001ACROSEP HEA HYPERCEL, 1ml 预装柱乙胺基5支20260-C001ACROSEP PPA HYPERCEL,1ml 预装柱苯基5支12035-069MEP HyperCel 5mL, 瓶装甲基嘧啶3瓶20250-012HEA HyperCel 5mL,瓶装乙胺基3瓶20260-015PPA HyperCel 5mL,瓶装苯基3瓶24775-075HA Ultrogel 5mL 羟基磷灰石交联的琼脂糖和羟基磷灰石●免疫球蛋白;●糖蛋白;●疫苗2瓶亲和层析20078-C001ACROSEP PROTEIN A HYPE 1ml 预装柱重组蛋白A●免疫球蛋白;●MAbs5支20078-036Protein A Ceramic HyperD F 5mL瓶装2瓶20093-C001ACROSEP IMAC HYPERCEL 1ml 预装柱亚胺-乙酰乙酸(IDA)●His-tag重组蛋白5支20093-069IMAC HyperCel 5mL,瓶装3瓶离子交换20050-C001ACROSEP CM Ceramic HyperD F,1ml 预装柱羧甲基(CM)●重组蛋白;●质粒纯化;●蛋白,疫苗;●Mabs;●捕获阶段;●免疫球蛋白纯化2支20050-084CM Ceramic HyperD F,5mL 瓶装2瓶20062-C001ACROSEP S Ceramic HyperD F;1ml 预装柱磺酸基(S)2支PRC05X050SHCEL01PRC05X050 S HCEL01,1ml 预装柱(工业放大推荐)2支20195-013S Hypercel 5ml瓶装3瓶20066-C001ACROSEP Q Ceramic HyperD F 1ml 预装柱季氨基(Q)2支20196-012Q Hypercel 5ml 瓶装3瓶PRC05X050QHC001PRC05X050 QHCEL01,1ml 预装柱2支20067-C001ACROSEP DEAE Ceramic HyperD F 1ml 预装柱二乙基氨基乙基(DEAE)2支20067-070DEAE Ceramic HyperD F 5mL 瓶装2瓶申请方式:网上申请下载并完整的填写产品试验申请单(附件二),Email到Jessie_Jing_Chen@ap.pall.com经过审核后(完整的填写能方便您拿到样品),送出样品. 6月10号公布配送单号。配送方式:送货上门或.邮寄配送时间:2011年6月13号-6月17号申请要求:1.限高校、科研单位实验室客户;数量有限,每个实验室限申请一种填料。 2.申请的客户承诺开始试用后两个月内,给PALL公司提供使用反馈情况颇尔公司保留对该活动的解释权。
  • 蛋白测序技术革新崭露头角!未来可期实现大规模、高通量
    p style="text-align: center "  img src="https://img1.17img.cn/17img/images/201812/uepic/aab48e25-87ad-48f7-bf9a-b2ebac0fa992.jpg" title="蛋白.jpg" alt="蛋白.jpg" style="text-align: center width: 522px height: 348px " width="522" height="348"//pp style="text-indent: 2em "蛋白质是生物功能的主要载体。许多无法从基因层面解释的疾病,蛋白质可以给出我们想要的答案,为此,蛋白质组学应运而生。科学家们预测,随着人类基因组测序工作的完成,21世纪生命科学的研究重心或将从基因组学转移到蛋白质组学。蛋白质组学是后基因组时代生命科学研究的核心内容,想要深入了解蛋白质,进一步认识生命活动和疾病发生的分子机制,首先要有合适的蛋白质测序技术做支撑。为完善蛋白质测序技术科学家做出了许多尝试,如Edman降解,荧光染色、质谱测序等。然而已有的测序方法都存在各种技术不足与应用局限性,不利于蛋白质组学在整个生命科学和生物医学研究中的应用推广。br//pp  近日,strong瑞士苏黎世联邦理工学院分子生物学研究所的Ben C Collins博士和Ruedi Aebersold博士在Nature Biotechnology发表了蛋白组学平行测序的评论文章“Proteomics goes parallel”/strong,小编将文章进行了翻译整理分享给大家。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/29198ff0-12dc-4a8b-9f43-a535e065d874.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em "目前,蛋白质组测序技术尚不如基因组学和转录组学那么强大。核酸测序技术的表现之所以令人印象深刻,是因为它能利用荧光作为读数进行短寡核苷酸的大规模平行测序。在这个问题上,strongSwaminathan等证明了肽类也可以进行平行荧光测序/strong。他们的创新方法将经典的蛋白质测序技术与核酸光学测序系统进行了整合。虽然该方法仍需进一步优化,但这让我们看到了一种普遍可行、可靠和真正通用的蛋白组学测序技术的发展前景。/pp  蛋白质对于生命系统来说是必不可少的,它们可以作为化学催化剂、结构成分以及生理过程的媒介,能够准确识别和量化蛋白质的研究技术可极大地促进人们对生物学的理解。如今,蛋白质组已经可以由转录组被预测或推断出来。有充分的研究证据表明,蛋白质与mRNA水平之间的联系是复杂的,通过一种组学来预测另一种是不精确、不可靠的。那么,strong为什么在许多情况下,人们会优先选择通过mRNA预测蛋白,而不是直接进行蛋白质测序呢/strong?答案在于两种组学测序技术的发展和物质本身的可检测性。目前,生物学家可以通过已有的核心技术和商业公司获得基本完整的转录组信息及分析结果,而蛋白组分析仍只限于专业实验室研究使用,在通量、稳定性和重现性方面还不能达到转录组分析水平。/pp  第一代DNA测序仪绘制了具有突破性意义的基因组图谱,其原理是对分离DNA片段进行连续测序。尽管该仪器采用了自动化技术,但整个测序过程也是缓慢而昂贵的。只有开发可平行测序数百万个核酸片段,能够高通量、高覆盖率、低成本生成完整基因组图谱的方法,才能进行广泛的基因组分析。这些具有商业价值的测序技术已经改变了生物医学研究,并成为实验生物学研究的中流砥柱。/pp  虽然“自上而下”的蛋白质组学研究方法正在逐步发展,但传统的蛋白质定量和测序仍是采用“自下而上”的方法进行。正如基因测序原理一样,这些方法是通过检测酶促反应切割蛋白质产生的肽链,以分析蛋白组成。在20世纪50年代,Pehr Edman发明了一种通过循环化学反应测定肽链氨基酸序列的方法,被称为Edman降解。该方法通过异硫氰酸苯酯与可接近的氨基偶联,然后从肽链的N-末端释放氨基酸并生成新N端,不断重复这一过程,对释放的氨基酸进行鉴定就可以得到肽链的氨基酸序列。strongEdman降解过程缓慢,需要大量的高纯度肽/strong,尽管如此,直到20世纪90年代早期,所有已知的蛋白质序列都是使用该方法确定的。/pp  20世纪90年代,随着质谱(MS)技术逐渐成为蛋白质测序的首选方法,Edman降解在该领域退居二线。质谱是通过检测质荷比和肽段的断裂模式来推断蛋白质组成和定量。因具有先进、强大和多样化特点,MS已经被广泛应用。仿效基因组学技术的发展路径,MS已经从特定寡聚体的人工测序发展到高通量的肽链自动测序,并发展到通过独立数据分析进行多肽的平行测序,如SWATH-MS。虽然这些方法的通量、准确性和重现性都很出色,但想要与基因组分析一样,实现相似的大样本队列常规、完整的蛋白质组量化目标仍难以实现。/pp  随着当前数据独立采集MS检测系统的不断发展,最终取得与基因组学研究技术相似性能的蛋白测序技术也有可能实现。此外,要深入了解蛋白质组的复杂性,也需要颠覆性的新技术。虽然蛋白质的纳米孔测序技术显示了很好的发展前景,但StimaaNet等研发的肽荧光测序方法有着明确的常规应用途径,可以看作是这类颠覆性技术最先进的一个例子。strong肽荧光测序方法堪称跨越时代的结合,它将几乎被遗忘的Edman降解,与为下一代DNA测序开发的大规模平行荧光成像技术进行了整合/strong(图1)。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/462c7540-6c36-4ddd-8cd7-7b62240980c2.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "span style="color: rgb(127, 127, 127) "图1. Swaminathan等人所描述的肽荧光测序/span/pp style="text-indent: 2em "复合肽混合物,最有可能来源于酶或化学切割的蛋白质提取物,每种氨基酸残基都有不同的荧光标记(左)。在这种情况下,我们描述了一种双色方案,其中赖氨酸和半胱氨酸残基用不同的荧光标记。利用氨基硅烷的的酰胺键将标记肽的C末端固定在玻璃板。然后通过Edman降解和荧光成像(中)对肽进行N-末端氨基酸残基切割的迭代循环。在每个位置(即肽)的荧光强度被跟踪为Edman循环的函数。荧光强度下降模式为肽的部分序列提供了注释,得到的荧光信号可以与蛋白质序列数据库进行匹配和评分,推断样本中最有可能存在的一组蛋白质(右)。/pp  肽荧光测序的第一步是在特定的氨基酸侧链上进行荧光标记,并将其C端固定在测序系统的流通槽中,以生成测序底物阵列。然后将固定化肽平行地进行Edman降解,在每一步降解后对固定化底物的集合进行成像。与经典的Edman降解不同,该方法在每个步骤对消除的苯硫代内酰脲-氨基酸结合物进行了鉴定,降解步骤仅用于测定由消除标记氨基酸引起的荧光强度下降。基于该原理开发的软件工具,可以将观察到的荧光信号与蛋白序列数据库结合起来,进而推导出每种固定化底物的序列,也就是肽链的序列。/pp  strong该研究已经证明肽荧光测序的可行性/strong。具体而言,作者(i)描述了在严格条件下,与Edman降解兼容的成像系统 (ii)测定了模型肽中荧光标记的赖氨酸或半胱氨酸残基的精确位置 (iii)描述了该系统中误差和低效的来源 (iv)研究了从更复杂蛋白质组鉴别蛋白质的潜力,并提供了一种从观察到的荧光信号推断肽序列的计算框架 (v)从含有多个丝氨酸残基的肽中定位特定的磷酸化丝氨酸残基。/pp  Swaminathan等人开发的肽荧光测序方法是令人兴奋的,因为它开辟了一条通向肽的新研究路径,strong并使高通量、高重现性和潜在低成本的蛋白质组测序成为可能/strong。strong该方法的一个显著优点是,它整合了其他研究方法的优势,如Edman降解、大规模DNA平行测序和基于MS的蛋白序列数据库检索计算框架/strong。这种策略或有助于加快相关研究方法从证明概念到常规适用的转化速度。此外,该方法产生的数据与基因组学和转录组学的大规模平行先导数据有相似之处。MS蛋白组学技术在技术和计算方面仍存在较大的门槛,应用较为缓慢,与基于MS的蛋白组学技术相比,该方法有助于加速更多的生物体使用肽荧光测序技术。/pp  正如Swaminathan等人所指出的,strong在新方法发挥其全部潜力之前,还必须克服一些技术和概念上的挑战/strong。这些问题主要源于Edman降解的性质和人类蛋白质组的复杂性,包括以下内容:(i)尽管在研究中每个降解步骤的产率为91-97%,但可检测的肽链长度也是有限的 (ii)由于测序产率与蛋白序列本身有关,具有挑战性的序列,如富含脯氨酸的蛋白序列,可能会影响荧光信号的清晰度 (iii)可被荧光标记的功能基团仅限于肽链中可产生化学反应的基团,主要是氨基、羧基和巯基,因此荧光信号代表的信息量也会受限制 (iv)经修饰的残基通常不能被识别,除非经过特异荧光标记,这种特殊标记仅对氨基酸进行小部分修饰 (v)人类细胞蛋白质组的动态范围较大(~107),每种蛋白质也会通过酶消化产生大量的肽(~102),每个细胞会表达大量的开放阅读框(~104),在不考虑蛋白质多样性的前提下,这已经构成了巨大的分析挑战。对于肽荧光测序来说,满足这些挑战需要提高底物复用(substrate multiplexing)的水平,但目前尚未实现。/pp  虽然作者开发的系统目前仅限于分析相对简单的混合物样本,但发展前景很好,是一种值得尝试的蛋白质测序方法。/p
  • 纯化标签蛋白时填料的选择
    基因工程提供了人们改变蛋白质性质的机会,因而可以借此改善蛋白质的纯化特性。通过在目的DNA的3’端或5’端插入DNA序列,可以改变蛋白质两端的氨基酸序列,进而作为可纯化的融合蛋白。这些融合子可帮助蛋白质形成包含体,用于稳定蛋白质,免受蛋白酶的攻击,还可以赋予蛋白质特定的纯化性质,使其适用于免疫亲和、金属螯合、离子交换、疏水色谱以及其他分离操作。此外,对于已知特性的蛋白质,改变其中特氨基酸可引入具有特定基质吸附亲和力的片段。市面上有两种很常见的标签,分别为组氨酸标签和GST标签,这两种标签可插入蛋白形成重组蛋白,月旭科技现有针对这两种标签蛋白纯化的填料可供选择。His-Tag(组氨酸标签)是重组蛋白表达最常用的标签,无论表达的蛋白是可溶的或者包涵体都可以用固定金属离子亲和层析纯化。6×His-tag是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。纯化组氨酸标签蛋白最常用的配体是亚氨基二乙酸(IDA)和次氨基三乙酸(NTA),可使用月旭科技Ni Tanrose 6FF(NTA)或Ni Tanrose 6FF(IDA)来纯化。技术参数✦✦谷胱甘肽-S-转移酶(GST)是一种亲和标签,用GST标记真核蛋白可增强融合蛋白的溶解性。此外,带有 GST 标签的蛋白可以在细菌中高水平表达,但可能会由于蛋白聚集而形成包涵体。一般将GST标签添加到目标蛋白质的N或C末端。 GST对谷胱甘肽具有很相对强的亲和力,这意味着可以在固定的基质(如键合谷胱甘肽的填料)上捕获GST蛋白融合物。这种结合特性可用于蛋白质纯化以及通过蛋白质的结合,来捕获对应的蛋白质。因此可使用月旭科技GST Tanrose 4FF来纯化GST标签蛋白。
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 已上市及临床试验中以CHO细胞为生产平台的蛋白亚单位疫苗概述
    从18世纪天花的接种实践到通过接种牛痘预防天花,疫苗的开发与应用领域有着持续进步的丰富历史。1930年,可用于体外病毒繁殖的动物细胞培养物的引入,为20世纪下半叶针对麻疹、腮腺炎、风疹和脊髓灰质炎等疾病的减毒、灭活疫苗的成功开发奠定了基础。而随后的在酵母、细菌、昆虫和哺乳细胞中引入重组DNA技术的建立,使得新型疫苗的开发成为可能。本文将对当前上市或临床试验中的,以CHO细胞为生产平台的蛋白亚单位疫苗类型进行梳理。一 CHO细胞表达系统特征CHO细胞包括从CHO-ori细胞系衍生出CHO-DXB11 (DHFR+/-) 、CHO-DG44 (-/-) 、CHO-GS、CHO-K1SV等多种细胞系,各具特定的特征,可分离稳定的转染物并获得高产量。与其他重组蛋白质生产细胞系相比,CHO细胞具有更高的生产力,流加批次培养可达到1-10 g/L。而相较于293细胞,病毒不易感染CHO细胞并在其中复制。CHO细胞对于蛋白的翻译后加工修饰与人类细胞的高度相似,如糖基化、二硫键形成以及蛋白的水解加工,但是也与人类细胞在翻译后修饰的特定模式与结构上存在微妙差异,没有工程化修饰过的CHO细胞不能合成某些人源聚糖键,比如:α-2,6-唾液酸化、二分N聚糖和α-1,3/4-岩藻糖基化,为了在CHO细胞内实现目的蛋白的糖基化,不同的团队也开发了相应的糖工程方法。CHO细胞可以进行高密度无血清悬浮培养,并将目的蛋白分泌到培养基中,因而是一个经济有效的大规模重组蛋白表达平台。CHO细胞中重组蛋白的表达可受到多种因素影响,包括:表达质粒、启动子的选择、培养条件(培养基成分、温度、溶氧)、CHO细胞系的选择和表达系统的选择等。利用CHO细胞进行重组蛋白表达包括瞬时表达和稳定表达两种方式。瞬时表达系统中含有目的基因的cDNA会随着细胞分裂而被稀释,表达周期较短。尽管瞬时表达的效率低于稳定表达,但优化策略后的蛋白产量也可高达1 g/L。而瞬时表达减少了与细胞系开发相关的时间和成本,被广泛用于临床前研究中蛋白的快速生产。CHO细胞稳转则是大规模生物制造的标准方法。 二蛋白亚单位疫苗 蛋白亚单位疫苗是基于病原体的一种或几种分离或选定的成分,通常是免疫显性抗原(全蛋白、蛋白结构域或多肽),可在佐剂刺激下使产生体液和/或细胞免疫。蛋白亚单位疫苗因为没有恢复到致病形式的风险,也被认为比灭活疫苗或减毒活疫苗更安全。蛋白亚单位疫苗已被批准用于多种病毒感染性疾病的预防,如:SARS-CoV-2、水痘-带状疱疹病毒、呼吸道合胞病毒和流感,剂量范围从5到180 ug。尽管新冠的蛋白亚单位疫苗应用范围没有其他类型疫苗广,但仍是目前临床前和临床候选疫苗的主要选择。蛋白亚单位疫苗的一个潜在挑战是免疫原性较低,这也凸显了识别抗原以引起强大保护性免疫的重要性。三CHO细胞生产的已批准或处于临床阶段的蛋白亚单位疫苗基于CHO细胞作为治疗性重组蛋白表达系统的优势,CHO细胞已成为蛋白亚单位疫苗生产的主要选择之一。从近40年前开始,各种基于CHO细胞的治疗药物被监管机构批准,与新的细胞系或使用较少的细胞系相比,生物制药公司、CDMO公司以及供应商可以基于CHO细胞生产平台的熟悉度大大减少了疫苗生产的时间和风险。利用CHO细胞生产蛋白亚单位疫苗的上下游工艺与生产其他重组蛋白相似。接下来我们将梳理已获批或正在临床开发的蛋白亚单位疫苗(如图1)。图1:CHO细胞生产平台的应用 (a) 已获批或临床候选药物的蛋白亚单位疫苗; 呼吸道合胞病毒 呼吸道合胞病毒是全球呼吸道感染的主要原因,在幼儿、老年人和慢性病患者中可引起严重疾病,2019年全球幼儿死亡人数超过100000人,在高收入国家中造成2.2万到4.7万人死亡。早期使用甲醛灭活的RSV疫苗,甲醛导致病毒抗原产生羰基集团,阻碍了抗原在细胞质中的加工,产生了低亲和力的抗体,从而导致了增强型的RSV疾病,表现为:高烧、支气管炎和呼吸困难。目前RSV表面的病毒融合 (F) 蛋白作为疫苗开发的潜在靶点,这种预融合稳定形式的设计已被证明可以产生有效的中和抗体。但也有研究表明,即使采用低剂量预融合F蛋白在动物上也可能产生增强型RSV疾病。相比之下,预融合的F蛋白在成人接种时表现出较好的结果,也导致葛兰素史克开发的RSV疫苗Arexvy疫苗 (RSVPreF3 OA) 的获批上市。该疫苗使用CHO细胞生产,由F蛋白的1-513号残基组成,通过T4纤维蛋白结构单元三聚体化。预融合形式通过将F1的Ser155和Ser290替换为半胱氨酸而实现,在不稳定的N端和结构刚性中心区域之间建立了二硫键,另外引入S190F和V207L突变以填充F1N端空隙,增加疏水相互作用。在早期临床试验展现良好的安全性,并确认其诱导产生中和抗体的能力后,和AS01E佐剂一起进入了III期临床,在17个国家25000名60岁以上成年人中评估有效性。研究结果显示,单剂该疫苗对RSV相关的下呼吸道疾病的有效性为82.6%,对严重表现的有效性为94.1%,对RSV相关急性呼吸道感染的有效性为71.7%。第二个获批的RSV疫苗是辉瑞公司的Abrysvo,是由CHO细胞生产的针对RSV A和B亚群的双价融合前F蛋白。在III期临床中,对RSV相关的下呼吸道疾病有66.7%的有效性,对严重RSV相关疾病有85.7%的有效性,且严重不良事件发生率低,安全性无明显问题。并且也作为孕妇疫苗进行评估,接种孕妇时间为妊娠第24-36周,该疫苗显示在新生儿出生后的前90天内,预防严重RSV相关呼吸道疾病有81.8%的有效性,因此获批做为预防婴儿RSV的母亲疫苗。以上两个疫苗受到了市场的广泛接受,在三个月内达到了12.35亿美元的销售额,也凸显了CHO细胞在疫苗制备中的商业潜力。 水痘-带状疱疹病毒 (VZV)VZV可引起水痘,是一种与典型皮疹和轻微症状相关的高度传染性感染。初次感染后,病毒可在神经元中持续存在,多年后重新激活会引起带状疱疹;重新激活后以皮疼痛性水疱性皮疹为特征,在免疫受损的宿主中可能导致出血性病变,最主要的并发症为急性神经炎和带状疱疹后神经痛,影响50岁以上的25%-50%的患者。为了保护年长或免疫缺陷的成年人,重组VZV疫苗Shingrix于2017年由FDA获批,一年后获批EMA。Shringrix是以VZV病毒表面最普遍的gE蛋白为抗原,是中和抗体和T细胞识别的关键靶标。该疫苗由CHO细胞生产,并由于去除了C端和跨膜结构域而可以被分泌到细胞外。在抗原产生过程中,CHO细胞的培养条件优化后,使用20 L的波浪式反应器进行批培养,最终每升产量在2.44 g。在50岁以上人群中,有效性达97.2%以上。 人巨细胞病毒 (HCMV)HCMV是一种感染了全球约80%人口的病原体,一旦个体免疫降低就会引发健康风险。并且也与各种癌症进展有关,其先天性感染也是出生缺陷的主要原因。即便如此,目前也没有批准上市的疫苗。但有几款疫苗在临床试验中,其中有几款疫苗基于HCMV表面的gB蛋白由CHO细胞产生,与病毒入侵过程中的膜融合至关重要,并且包含中和抗体的多个识别表位,该蛋白与佐剂MF59正处于临床II期进行测试。赛诺菲的gB基因来源于HCMV Towne毒株,不含跨膜结构域和弗林切割位点。gB/MF59疫苗在移植后患者、产后妇女和健康的青春期女孩等不同受众中均获得了良好的效果,结果显示,gB结合抗体滴度增加,CD4+T细胞反应增强,HCMV病毒血症降低。 葛兰素史克的另一款gB蛋白亚单位疫苗处于临床I期试验中,抗原基于AD169毒株,其修饰与赛诺菲相似。另外,来自单纯疱疹病毒1型的gD氨基酸序列融合在AD169 gB序列以促进分泌。最近葛兰素史克开发的针对HCMV的新型佐剂,由gB蛋白和五聚体抗原组成。HCMV五聚体复合物也是疫苗开发中的具有吸引力的抗原,相比于gB蛋白,能诱导更有效的抗体中和进入上皮细胞。因此,葛兰素史克使用CHO-K1和CHO-DXB11衍生的细胞克隆获得400 mg/L的五聚体复合物,并在小鼠中诱导了有效的中和免疫反应。五聚体/gB 蛋白亚单位疫苗候选药物目前正在健康成人受试者中进行评估。 人类免疫缺陷病毒 (HIV) 即使在发现HIV病毒40年后,HIV功能性疫苗的挑战仍然存在,主要原因包括逆转录酶中缺乏3’核酸外切酶的校对活性,使得病毒gp41和gp120可快速突变。而中和抗体靶向的抗原表位位于HIV包膜蛋白的gp可变区域,在免疫系统的筛选压力下也会导致突变体的产生。HIV env gp重组三聚体是目前作为疫苗开发最有潜力的靶点,可能会引发广泛的中和抗体。始终保持融合前构象的早期可溶性三聚体称为“SOSIP”,其中包括gp120-gp41之间的工程化二硫键 (SOS) 以及有助于维持融合前构象的螺旋断裂突变(I559P,称为IP)。最近的临床试验中的SOSIP三聚体已经进行了改进,包括CHO细胞的改进。其中某些env蛋白,尤其是HIV分支B的env蛋白容易受蛋白水解影响。为了解决这个问题,采用了工程化的C1蛋白酶缺陷的CHO细胞系,从而减少蛋白降解。三聚体4571 (BG505 DS-SOSIP.664) 是基于HIV A分支的高度稳定的与融合闭合可溶性包膜糖蛋白三聚体。该三聚体在gp120中结合了201C-433C二硫键突变以防止CD4诱导的构象变化。最近三聚体4571在I期临床试验中进行了独立评估,并在异源方案中作为加强剂量中做了评估,结果显示三聚体4571是安全的,没有引起不良反应,并能够成功诱导特异性抗体产生,主要是集中在三聚体上的无聚糖基底上的抗体。但是对于天然三聚体,通常由于免疫系统无法接触到无聚糖基底而导致其在临床试验中具有更明显的非中和反应。为了减少这种基底定向免疫,未来CHO细胞生产的蛋白亚基疫苗可以使用聚糖进行工程设计以掩盖三聚体基底结构域,减少非中和抗体的产生。 严重急性呼吸系统综合症冠状病毒2 (SARS-CoV-2)为抗击COVID-19大流行研发了多种疫苗,包括:灭活病毒疫苗、基于蛋白质的疫苗、核酸疫苗以及载体疫苗。源自SARS-CoV-2刺突 (S) 蛋白的蛋白亚单位疫苗由CHO细胞产生,不同的候选药物在特定国家/地区获得紧急使用或在临床试验阶段。表1:截止2023.12临床审批的CHO细胞生产的蛋白亚单位疫苗 SARS-CoV-2蛋白亚单位疫苗开发最广泛使用的策略之一是使用S蛋白的胞外结构域 (ECD) 作为抗原。Medigen Vaccine Biologics Corporation开发的MVC-COV1901疫苗基于融合前稳定的S ECD三聚体,该三聚体具有K986P和V987P突变,以及在S1/S2连接处具有弗林蛋白酶切割位点682突变 (RRARGGAS) ,以提高稳定性并增加了T4纤维蛋白三聚体化结构域。CHO细胞用于生成表达该S抗原的稳定克隆,该抗原被证明类似于人HEK293细胞表达的SARS-CoV-2 S蛋白的结构。该候选疫苗用氢氧化铝(明矾)和CpG 1018佐剂,CpG 1018是一种TLR-9激动剂,通过刺激CD4+/CD8+T淋巴细胞来增强免疫原性。II期临床试验 (NCT04695652) 表明,MVC-COV1901是安全的且耐受性良好,并且在年轻人和老年人中都能诱导高中和抗体滴度。MVC-COV1901还与牛津-阿斯利康的ChAdOx1 nCoV-19病毒载体疫苗进行了比较,其中MVC-COV1901被证明更优越,可诱导更广泛的IgG亚类和更高的抗Omicron (BA.1) 变体的中和抗体滴度。MVC-COV1901已获准在斯威士兰、巴拉圭、索马里兰和台湾使用。SARS-CoV-2 S蛋白内的受体结合域 (RBD) 是中和抗体的主要靶点。因此,它已被用于生产各种蛋白亚单位疫苗。已经探索了不同的策略来进一步增强其抗原性,例如使用单体、二聚体或多聚体形式。ZIFIVAX (ZF2001) 疫苗由安徽智飞龙康生物制药公司开发,由三剂基于RBD的疫苗和明矾佐剂组成。ZF2001是由两个拷贝的RBD (R319-K537) 形成并在CHO细胞中产生串联重复的二聚体。这种RBD二聚体与RBD单体保持相似的亲和力,而且能够有效地与人ACE2受体结合。在I期和II期临床试验中,ZF2001在人体中表现出安全特征和免疫原性。在多个国家/地区进行的III期临床试验显示,在完全接种疫苗后至少六个月内对有症状和重度至危重的COVID-19具有安全性和有效性。ZF2001疫苗已获准在中国、哥伦比亚、印度尼西亚和乌兹别克斯坦使用。 CHO细胞的广泛使用和抗原表达的翻译后修饰使得CHO细胞在面临非快速反应环境中生产疫苗更为可取,尤其是CHO细胞的可操作性、安全性和稳定性。CHO细胞作为更具成本效益和高效的疫苗生产平台的潜力会越来越的到业界认可。在CHO细胞培养过程中,HyClone可以提供多种商品化CHO细胞培养基,包括:Actipro、HyCell CHO、PSL A01和PSL A02等多种基础培养基以及包括Cell boost 7a、Cell boost 7b等多种补料。 参考文献:CHO cells for virus-like particle and subunit vaccine manufacturing声明:本文为作者原创首发,严禁私自转发或抄袭,如需转载请联系并注明转载来源,否则将追究法律责任
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。  基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。  目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。  这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 江苏弗泰生物科技融合蛋白试剂首次出口美国
    生意社7月26日讯 日前,江苏弗泰生物科技有限公司的融合蛋白试剂获得泰州海关出境通关许可,远销美国,成为国内首批经过海关允许出口的同类试剂。  据介绍,融合蛋白是目前世界上为数很少的以抑制为作用机理的重组药物,广泛应用于自身免疫、肿瘤免疫、器官移植。泰州中国医药城引进以海外科学家郑心校教授为技术领军人,以高层次人才张栋博士、黄序博士等为骨干的技术团队,建立了国内乃至国际领先的重组蛋白类药物研发技术服务平台——细胞及蛋白质治疗研发中心。目前,弗泰生物已建成哺乳动物细胞、原核细胞表达等产品生产线,创制出数十种具有全新功能的融合蛋白试剂,并接到了来自日本、美国的订单。 (金陵)
  • 胶原蛋白九成非保健食品
    潜力巨大的市场背后,是胶原蛋白功效的多次争议,更似乎是厂家们的一场商业忽悠。  继近日被卷入胶原蛋白“无效”风波后,东宝生物的胶原蛋白产品“圆素”又因未获得“保健食品”(俗称“蓝帽子”)批号而卷入涉嫌虚假宣传漩涡。  与此同时,市场上胶原蛋白的宣传推广攻势正此起彼伏。贵州百灵(002424.SZ)邀请了章子怡作为形象代言人,东方海洋邀请了赵雅芝,颜如玉邀请了林志玲,LUMI的代言人是杨幂。东宝生物2012年销售费用大增57.79%,为推广胶原蛋白投放了大量广告。  《第一财经日报》记者查询国家食品药品监督管理总局(下称“CFDA”)保健食品数据库后发现,涉及“胶原蛋白”的国产保健食品产品仅有32个,上市公司的相关产品几乎“全军覆没”。  九成胶原蛋白产品未获认证  “实际上,市面的上百个胶原蛋白类产品,其中九成以上都是普通食品。” 广州颜如玉医药科技有限公司董事长谢易麟告诉本报。  《食品广告管理办法》明文禁止普通食品宣传疗效,普通食品出现医疗术语、易与药品混淆的用语,以及无法用客观指标评价的用语都是违规的。CFDA药品评价中心专家孙忠实表示,有保健品批号的产品尚且不能对适应证、疗效进行描述 作为普通食品,则更无资格在宣传中鼓吹暗示各种功效。  东宝生物的“圆素”同样是普通食品,因其在天猫和京东商城等官方旗舰店上充斥着“骨骼强健”、“保湿补水”、“延缓衰老”、“淡斑祛黑”、“不只是水嫩肌,更是补骨素”等描述,而被外界质疑涉嫌虚假宣传。  然而,本报记者近日走访广州多家连锁药店、屈臣氏和广百商场等零售网点后发现,市面上形形色色的胶原蛋白产品,都在打着“保健食品”的擦边球宣传功能。辉瑞中国出品的善存沛优胶原蛋白粉在外包装上宣称“为皮肤真皮层提供养分” 杨幂代言的LUMI液态胶原蛋白宣称“补水保湿、亮白祛黄、紧致毛孔” 昂力莱胶原蛋白片则更为夸张,在外包装上宣传产品主要作用是美白淡斑、预防乳房下垂等。这些产品均未获得“保健食品”批号。  而此番东宝生物“圆素”之所以涉嫌“虚假宣传”,还因其一份用以佐证胶原蛋白口服产品“美容功效”的“研究报告”《口服骨胶原蛋白改善皮肤生理状况的临床研究》被媒体证实为造假。  值得注意的是,目前食药总局正在严打保健食品“四非”,其中一项就是非保健食品冒充保健食品及虚假宣传。  “蓝帽子”需苦候三年  申请胶原蛋白类产品“蓝帽子”并非易事。广州金康连锁药房有限公司董事长郑浩涛告诉本报,由于国内保健食品法规不健全,所有在国外获得保健食品资质的进口产品在国内均无法获得健字号,所以像日本FANCL、美国自然之宝的胶原蛋白产品在国内无法申请“蓝帽子”。  贵州百灵市场部一位前员工向本报透露,一开始贵州百灵“爱透”胶原蛋白口服液也想申请健字号,但他们发现要做很多验证,至少要花两三年时间,这与当时公司高层快速打开胶原蛋白市场的意愿不符合,所以没有申请。  而谢易麟则对本报称,颜如玉从2007年就开始申请保健食品资质,2010年获批,花了整整三年时间。  据谢易麟介绍,胶原蛋白类产品申请“蓝帽子”首先有很高的技术门槛,原料必须符合海洋鱼皮低聚肽分子量1000道尔顿以下的国家标准,这一点代表优质原料的可吸收性,但多数厂家无法达到。  其次,申请健字号的胶原蛋白产品,需要经过严格的动物、人体试验证明其安全性和有效性,在批准的功能上也有严格的限制。  东宝生物董秘刘芳称,公司长期重点发展胶原蛋白的计划不会因此次舆论针对胶原蛋白的质疑而改变。但连日来的质疑已经让东宝生物的股价持续走低,昨日跌幅达5.26%,报收11.16元。
  • 热烈庆祝普瑞麦迪完成抗体库和蛋白库平台建立!
    为了满足中国区广大用户对抗体、重组蛋白和细胞因子的需求,除了与现有品牌,如R&D,Santa Cruz,Abcam,Roche,CST,MBL等公司合作外,普瑞麦迪又与数十家国外抗体、重组蛋白和细胞因子生产公司直接签署全国总代理协议,组建全国最大最完善的抗体平台和蛋白平台!其合作厂商如下: .......
  • Nature | 非小细胞肺癌新的驱动因素与药物靶点:CLIP1-LTK融合蛋白
    肺癌是最具侵略性的肿瘤类型之一,根据致癌因素对病人进行分层的靶向治疗会显著改善非小细胞肺癌(Non-small-cell lung cancer,NSCLC)患者的治疗效果【1】。然而在NSCLC中最常见的肺腺癌中有25-40%的病例中找不到具体的致癌驱动因素【2】。为了对非小细胞肺癌的致癌驱动因素进行进一步地探究,2021年11月24日,日本国家癌症中心东医院Koichi Goto研究组与Susumu S. Kobayashi研究组合作发文题为The CLIP1-LTK fusion is an oncogenic driver in non-small-cell lung cancer,揭开了非小细胞癌肺癌新驱动因素CLIP1-LTK融合蛋白,并发现了可以作为临床治疗的药物参考。致癌驱动因素的发现会揭示非小细胞肺癌的发病机制,比如在76%的肺腺癌样本中受体酪氨酸激酶-RAS-RAF通路会出现体细胞致癌驱动突变【3】。而基于转录组测序的方法可以帮助发现非小细胞肺癌中其他的致癌驱动因素,比如CD74-NRG1蛋白融合【4】。而基于这些研究响应开发出来的激酶抑制剂会对病人的治疗策略进行进一步的优化,从而提高患者的生存率。2013年,作者们构建了多机构联合的肺癌基因组筛查平台LC-SCRUM-Asia,该平台可以识别肺癌的致癌驱动因素,并在临床开发分子靶向治疗。作者们希望利用该平台寻找目前无法治疗的NSCLC患者中的致癌驱动因素。为了对新的致癌驱动融合基因进行鉴定,作者们对目前LC-SCRUM-Asia平台中目前成因未知的病人样本进行了全转录组测序分析(Whole-transcriptome sequencing,WTS),从中鉴定发现了一个符合阅读框的转录本:位于染色体12q24的CLIP1以及位于15q15位置的LTK融合转录本(图1)。LTK和ALK构成受体酪氨酸激酶的ALK/LTK亚家族,而CLIP1是微管末端跟踪蛋白家族的成员之一。图1 CLIP1-LTK融合蛋白结构域示意图随后,作者们想知道该融合蛋白与肺癌之间的关系,所以对LC-SCRUM-Asia平台中所有572个肺癌样本都进行了检测,发现其中有两个病人表现出CLIP1-LTK融合转录本阳性的特征,占NSCLC病人比例的0.4%,并且这两个病人体内没有其他已知的致癌驱动因素。该结果说明CLIP1-LTK融合转录本的出现可能是NSCLC的特征性致癌原因。CLIP1-LTK融合蛋白中具有coiled-coil结构域,该结构域会协助蛋白质的二聚化,因此作者们想知道该融合蛋白是否会形成二聚体从而组成性地激活LTK的激酶活性。通过CLIP1、LTK以及CLIP1-LTK分别在细胞中进行瞬时转染,作者们对LTK的磷酸化水平进行检测,发现与其他组别相比CLIP1-LTK的转染显著增加LTK的磷酸化水平, 也就是说在融合蛋白存在的情况下LTK具有更高的激酶活性。随后,作者们找到了CLIP1-LTK融合蛋白中的激酶活性缺失突变位点,该结果进一步地确认了CLIP1-LTK是组成性激活的。另外,作者们也对CLIP1-LTK融合蛋白的定位进行检测,发现CLIP1-LTK融合蛋白与LTK本身在细胞表面的表达模式不同,由于该融合蛋白缺乏LTK的跨膜结构域,所以CLIP1-LTK融合蛋白主要定位在胞质之中。进一步地,通过对细胞进行表型分析,作者们发现瞬时转染CLIP1-LTK融合蛋白的细胞会表现出圆形的细胞形态,同时细胞之间也会缺乏接触抑制,这些结果说明CLIP1-LTK融合蛋白使得细胞具有转移特征。为了证实CLIP1-LTK融合蛋白在体内的转移活性,作者们将体外培养的细胞移植到裸鼠的体侧(图2),发现只有CLIP1-LTK融合蛋白会导致肿瘤产生因因而是致癌驱动因素,并且该融合蛋白发挥作用依赖于其激酶活性。图2 CLIP1-LTK融合蛋白会导致肿瘤产生以上的结果表明,CLIP1-LTK融合蛋白可能会是NSCLC病人体内的潜在治疗靶标。所以作者们首先对CLIP1-LTK融合蛋白转染的细胞中施用了一些美国食品和药物管理局批准的或正在研究酪氨酸受体激酶抑制剂,发现其中Lorlatinib的处理会显著降低肿瘤细胞的生长。进一步地,作者们对病人进行Lorlatinib 100mg每天的常规剂量进行临床治疗,发现CLIP1-LTK融合蛋白激酶活性受到抑制,同时肿瘤的生长也会受到抑制(图3)。图3 CLIP1-LTK融合蛋白分型的NSCLC病人施用Lorlatinib会抑制肿瘤生长总的来说,该工作发现CLIP1-LTK融合蛋白是非小细胞肺癌新的致癌驱动因子,并表明激酶抑制剂Lorlatinib可以靶向该融合蛋白。未来将需要对CLIP1-LTK融合蛋白进行分子靶向抑制剂的临床开发,以及对该致癌驱动因素进行临床筛查和验证。原文链接:https://doi.org/10.1038/s41586-021-04135-5
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制