当前位置: 仪器信息网 > 行业主题 > >

晶格常数

仪器信息网晶格常数专题为您整合晶格常数相关的最新文章,在晶格常数专题,您不仅可以免费浏览晶格常数的资讯, 同时您还可以浏览晶格常数的相关资料、解决方案,参与社区晶格常数话题讨论。

晶格常数相关的资讯

  • 中南大学在莫尔超晶格量子器件研究领域取得新成果
    近日, 中南大学物理与电子学院教授刘艳平、何军与美国加州州立大学北岭分校Gang Lu、澳大利亚悉尼大学刘宗文以及湖南大学潘安练、段曦东教授等国内外学者合作,在《先进材料》(Advanced Materials)上发表题为“TMDCs莫尔超晶格层间耦合效应的量子调制”的研究论文。中南大学物理与电子学院为该项研究成果的第一完成单位,博士后郑海红博士为论文第一作者,刘艳平教授为论文的通讯作者。在范德瓦尔斯材料中,层间扭曲或晶格失配可以形成莫尔超晶格(Moiré superlattices),其周期随着扭曲角的变化而连续变化。莫尔超晶格可以产生空间周期性的莫尔势,改变材料的电子和能带结构,从而产生强相关联的量子现象,为研究多体系统的量子模拟提供了可能,促进了量子光学器件的发展。二维莫尔超晶格为探索新的强相关联的物理现象提供了一个强大的平台,这些现象都取决于界面层间耦合相关的莫尔势。目前,莫尔超晶格主要通过机械剥离技术和人工堆叠方法制备。然而,人工转移方法不可避免地造成由不纯界面引发的层间耦合在空间上的不均匀性,阻碍了对周期性莫尔超晶格物理性质及其应用的深入理解。因此,直接生长具有均匀的层间耦合和最小晶格重构的莫尔超晶格仍然是一个挑战,对莫尔超晶格的应用构成严重限制。针对这一难题,该研究创新性通过Sn原子辅助生长克服堆积自由能,并使用CVD生长技术直接制备了不同扭角的WSe2莫尔超晶格。利用低频拉曼散射光谱验证了其均匀性,证明了强的界面耦合。扭曲角为1.5°的CVD生长的莫尔结构的莫尔势比人工堆叠的更深(增加了155%),表明界面耦合可以调节莫尔势的深度。第一性原理模拟揭示了莫尔超晶格中的平带现象,为莫尔激子的产生提供了理论基础。本研究成果提出了一种合成二维莫尔超晶格的新方法,并为设计和优化其莫尔性能提供了策略,这种新策略将有望用于量子计算、量子通讯、新型超导体等领域。研究者通过Sn原子辅助下克服堆积自由能,采用CVD生长技术制备了具有不同扭曲角的WSe2莫尔超晶格。受访者 供图据悉,“低维物理与量子器件”是中南大学物理与电子学院特色研究方向和“十四五”规划重点发展支持方向之一。此项研究得到了国家自然科学基金面上项目、湖南省自然科学基金杰出青年项目、湖南省重点研发项目、湖南省芙蓉学者特聘教授基金、中南大学创新驱动青年团队项目、中南大学高性能复杂制造国家重点实验室自主研究课题、澳大利亚ARC Discovery、博士后面上项目等多个项目的支持,并获得中南大学高性能计算公共平台在材料结构计算等方面提供的有力支持。
  • 首个大型可配置超导电路光机晶格创建
    瑞士洛桑联邦理工学院基础科学学院研究人员建造了第一个大型可配置的超导电路光学机械晶格,可克服量子光学机械系统的尺度挑战。该团队实现了光机械应变石墨烯晶格,并使用新的测量技术研究了非平凡的拓扑边缘状态。这项研究发表在最近的《自然》杂志上。对微机械振荡器的精确控制是许多当代技术的基础,从传感和定时到智能手机的射频过滤器。腔光力学使科学家能够利用电磁辐射压力来控制介观力学对象。这大大提高了人们对其量子性质的理解,使包括基态冷却、量子压缩和机械振子远程纠缠在内的许多进展成为可能。前沿理论研究曾预测,研究光学机械晶格有望带来大量物理学和动力学方面的创新性发现,比如量子集体动力学和拓扑现象。但要在高度可控的条件下造出这种实验性设备,构建可承载多耦合光学和机械自由度的光学机械晶格一直是个挑战。此次,研究人员开发了一种用于超导电路光学机械系统的新型纳米制造技术,该技术具有高再现性和对单个设备参数的极其严格的公差,使他们能将不同的位置设计成几乎完全相同,就像在自然晶格中一样。作为晶格单一位置的一部分,关键元件是所谓的“真空间隙鼓面电容器”,它由悬挂在硅衬底沟槽上的一层薄铝膜制成。这构成了器件的振动部分,同时形成了一个带有螺旋电感的谐振微波电路。石墨烯晶格具有非平凡的拓扑特性和局部边缘状态。研究人员在他们所谓的“光机械石墨烯薄片”中观察到了这种状态,该薄片由24个位点组成。该团队的测量结果与理论预测非常吻合,表明他们的新设备是研究一维和二维晶格拓扑物理的可靠实验平台。光机械晶格的演示不仅提供了在真实的凝聚态晶格模型中研究多体物理的途径,而且当与超导量子比特相结合时,还有望带来一种新型混合量子系统。
  • 中山大学实验室光子晶格设计制备取得重要进展
    光子晶格以其特有的光子带隙能够对光子的辐射和传播行为进行精确控制。自上世纪80年代提出以来,人们在光子晶体研究方面做出了巨大努力,取得了一系列重要研究进展。但作为光子信息处理中最重要的高速与海量光子元件,由于其设计与制备上的困难,发展速度一直比较缓慢。因此,成功设计与制备功能性光子晶体对于提高光子信息传输速率与信息处理能力有重要科学意义与应用价值。  最近,中山大学光电材料与技术国家重点实验室周建英教授与俄罗斯莫斯科大学Tretyakov院士以及英国圣安德鲁大学Krauss教授合作,成功设计与制备了一种新型光子晶格——折射率虚部形成的光子晶格,其相关成果发表在近期的《先进材料》杂志(Advanced Materials)。  周建英教授设计的新型光子晶格具有奇特的光学性质:这种由在透明介质中周期性掺杂吸收材料而形成的光子晶格晶体,在偏离材料吸收峰时等同于一块结构均匀的体材料,而在特定波段和光强作用下又表现出光子晶体的性质,这种二象性在高速量子信息处理以及光子缓存等领域有广泛应用价值。  此成果的合作者,英国St Andrews大学的Thomas F. Krauss教授和莫斯科大学材料学院的Yuri. D. Treyakov院士为物理和材料领域的国际著名学者,他们在本项目成果的样品制备方面提供了重要的技术支持。  本项目成果的主要作者之一,中山大学物理科学与工程技术学院毕业的李俊韬博士已于2009年获得著名的“欧盟-玛丽居里夫人研究奖”(Marie Curie Fellowship授予世界各国取得杰出成就的青年学者),现正在英国St Andrews大学开展相关研究。课题组的博士生毕业后分别在英国St Andrews大学,以色列魏兹曼科学研究所,香港科技大学与光电材料与技术国家重点实验室继续开展合作研究。  近期,由周建英教授与美国马里兰大学巴尔地摩分校Yan Li教授以及香港科技大学Kim Sin Wong教授合作的另一相关研究成果“基于相控非线性频率转化的激光光束合成技术”(《光学快报》,Optics Express, Vol. 18, p2995 (2010)),被英国物理学会(IOP)作为亚太地区物理学领域的重要研究进展与亮点予以报道。周建英教授的研究项目获得了国家自然科学基金重点项目,面上项目以及国际合作项目的持续资助。项目还获得了973国家基础研究计划的部分支持。  附:研究成果与论文发表  《先进材料》(Advanced Materials)2010, 22, 1-4,Juntao Li, Jianying Zhou, et al  链接:http://dx.doi.org/10.1002/adma.200903938  《光学快报》,(Optics Express),2010,18, 2995,Peiqing Zhang, Jianying Zhou, et al  链接:http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-3-2995  英国物理学会亚太地区物理学研究亮点报道:  链接:http://asia.iop.org
  • 我国破解阿伏加德罗常数测量一大难题
    准确测量硅摩尔质量有了新判据  最新发现与创新  近日,中国计量科学研究院、中国科学院地质与地球物理研究所及香港科技大学展开的一项联合研究,完成了对单晶硅摩尔质量准确测量,并提出准确测量化学组成的基本原理——物质的量测量均匀性原理。这一结果在国际计量学权威杂志《计量学》在线发表。  物质的量是国际单位制中7个基本量之一,摩尔是其的单位。一摩尔物质中包含的实物粒子数被称为阿伏加德罗常数。准确测定阿伏加德罗常数对于用基本物理常数来重新定义国际基本单位摩尔和千克至关重要。目前,国际上阿伏加德罗常数的测定主要是根据完整晶格单晶硅球的摩尔体积和单个硅原子的体积之比(X射线晶体密度法)来实现。但用自然丰度单晶硅X射线晶体密度法和功率天平法测量阿伏加德罗常数存在1.1×10-6不一致性。  我国科学家易洪等在实验中发现原先国际阿伏加德罗常数工作组所采用的碱溶法制样过程中存在有分馏效应,并且准确测量了这一分馏效应的大小。这一偏差可用于解释两种方法产生的测量误差。针对上述问题,我国科学家在理论上提出了准确测量硅摩尔质量的新判据,即:化学反应完全转化 无分馏效应 分子水平上的均匀性 更少的污染。  准确测量物质的组成一直是化学研究的基础课题之一。物质的量测量均匀性原理支配着化学测量的采样过程、样品化学制备过程和检测过程,它对于在分子水平上最高准确度情况下测量物质的量具有普遍的指导意义。相关评审专家认为,我国科学家的最新发现解开了10年来阿伏加德罗常数测量领域的一大难题,是对阿伏加德罗常数测量非常有价值的贡献
  • 材料晶格研究加速新型锂离子电池电解质发展
    p  研究人员表示,分析和设计新离子导体的新方法为可充电电池提供了关键部件。新方法的应用可能会加速高能锂电池以及其他能量存储和传输装置(如燃料电池)的发展。br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201803/insimg/3477e76a-b550-4f8f-87c2-f756b0769936.jpg" title="201803300842364192.png"//pp  该图揭示了意向电池电解质材料Li 3 PO 4的晶格结构。 研究人员发现,声波能够穿过固体材料,通过声音振动可以揭示离子带电荷的原子或分子如何通过晶格移动 ,以及它们如何在电池中实际的工作原理。在该图中,氧原子显示为红色,紫色金字塔形状为磷酸盐(PO4)分子。 橙色和绿色的球体是锂的离子。/pp  新方法依赖于对振动通过锂离子导体晶格方式的理解。新方法与抑制离子迁移的方式相关联。这提供了一种方法来发现具有增强离子迁移性的新材料,允许快速充电和放电。同时,该方法还可以降低材料与电池电极的反应性,材料与电池电极的反应会缩短电池的使用寿命。更好的离子迁移率和低反应性这两个特性——往往是相互排斥的。/pp  这个新概念是由W.M领导的一个团队开发的。该团队包括Keck能源教授Yang Shao-Horn,研究生Sokseiha Muy,最近毕业的年仅17岁的博士John Bachman,研究科学家Livia Giordano以及麻省理工学院,橡树岭国家实验室以及东京和慕尼黑的其他9所院校人员。他们的研究结果在 Energy and Environmental Science杂志上报道。/pp  Shao-Horn说,新的设计原则已经有五年的时间了。最初的想法始于她和她的团队用来了解和控制催化水分解,并将其应用于离子传导 - 这一过程不仅是可充电电池的核心,而且也是其他应用的技术关键,如在燃料电池和海水淡化系统中的应用。当带有负电荷的电子从电池的一极流向另一极(从而为装置提供电力)时,正离子以另一种方式流过电解质或夹在这些极之间,以完成流动。/pp  典型地,电解质以液体形式存在时,溶解在有机液体中的锂盐是当今锂离子电池中常见的电解质。但该物质易燃,有时会导致这些电池着火。通过新方法寻找一个可靠的材料来取代锂盐将消除这个问题。/pp  Shao-Horn说,存在多种有前景的固体离子导体,在与锂离子电池的正极和负极接触相比都具有不稳定性的特点。因此,寻找既具有高离子电导率又具有稳定性的新的固体离子导体是至关重要的。但是,通过对许多不同的结构族和成分进行分类,找到最有前途的结构无疑是一项大海捞针的工作。这就是新的设计原则的用武之地。/pp  我们的想法是寻找离子电导率与液体相当的材料,但必须具有固体的长期稳定性。Shao-Horn说研究人员被问到“基本原则是什么”,“在一般的结构层次上,是什么设计原则来控制所需属性的”。研究人员回应理论分析和实验测量相结合的方法现在已经有了一些结果。/pp  该论文的第一作者Muy说:“我们意识到有很多材料可以被发现,但是没有理解或者共同的原则让我们能够合理化发现过程。我们想出了一个可以封装我们的理解并预测哪些材料将处于最佳状态的想法。”/pp  Shao-Horn 说,关键是要观察这些固体材料的晶格性质。这决定了诸如热波和声子之类的振动是如何通过材料的。这种观察结构的新方法最终证明能够准确地预测材料的实际性能。一旦你知道了某物质的振动频率,你就可以用它来预测新的化学性质或解释实验结果。/pp  研究人员观察到使用该模型确定的晶格特性与锂离子导体材料的导电性之间具有良好的相关性。她说,“我们做了一些实验来实验性地支持这个想法”,并发现结果非常吻合。/pp  他们特别发现,锂的振动频率本身可以通过调整晶格结构、使用化学取代或掺杂剂来微妙地改变原子的结构排列来进行微调。/pp  研究人员表示这个新概念现在可以提供一个强大的工具,用于开发新的性能更好的材料,从而可以大幅度提高可存储在给定尺寸或重量的电池中的功率量,并提高安全性。他们已经用这个新方法筛选出了一些新的材料。而且这些技术还可以适用于分析其他电化学过程的材料,如固体氧化物燃料电池,基于膜的脱盐系统或产生氧气的反应。/pp  该团队包括麻省理工学院的张浩勋, Douglas Abernathy,Dipanshu Bansal和Oak Ridge的Olivier Delaire 东京工业大学的Santoshi Hori和Ryoji Kanno 以及宝马集团位于慕尼黑的研究电池技术公司的Filippo Maglia,Saskia Lupart和Peter Lamp。这项工作得到了宝马,国家科学基金会和美国能源部的支持。/pp  文章来自azonano网站,原文题目为Design principles could point to better electrolytes for next-generation lithium batteries/ppbr//p
  • 锶晶格钟50亿年分毫不差:可显示重力影响时间
    原子钟依靠两个能量级之间的原子振荡进行操作。在锶晶格钟里,数千个锶原子被困在一个激光光阱柱里。    美国科学家表示,这种&ldquo 锶晶格钟&rdquo 比以前的世界纪录保持者&mdash &mdash 美国国家标准与技术研究所(NIST)的量子逻辑时钟的准确度高50%。  新浪科技讯 北京时间5日消息,据国外媒体报道,一种打破世界纪录的新型原子钟的准确度高的惊人,它能在50亿年(比地球的年龄还要长)间不慢一秒,也不快一秒。  这种&ldquo 锶晶格钟&rdquo 比以前的世界纪录保持者&mdash &mdash 美国国家标准与技术研究所(NIST)的量子逻辑时钟的准确度高50%。研究人员表示,这种钟表的准确度是如此之高,它甚至能显示出重力对时间产生的影响。该钟是由美国国家标准与技术研究所和科罗拉多大学的一个科研组,在美国天文物理联合研究室(JILA)里研制的。今年年初在《自然》杂志上公布这一研究成果时,该科研组负责人叶军博士(Dr Jun Ye)说:&ldquo 我们已经打算更近一步地提高它的性能。因此从这方面来说,即使是发表在《自然》杂志里的这篇文章,也只代表着一个&lsquo 中期&rsquo 报告。在未来5到10年内,你有希望在我们的钟表研究中看到更多新突破。&rdquo   从稳定性方面而言,这种新钟的性能与美国国家标准与技术研究所的世界领先的镱原子钟不相上下。原子钟依靠两个能量级之间的原子振荡进行操作。在锶晶格钟里,数千个锶原子被困在一个激光光阱柱里。科学家通过让这种原子沐浴在非常稳定的红激光里,发现钟表的&ldquo 滴答声&rdquo ,每隔四百三十万亿分之一秒,钟表会发出一次&ldquo 滴答声&rdquo 。激光触发的精确频率提示着能量级之间的转换。叶军说:&ldquo 我们的目的是拥有一个非常精准的钟,它能在整个宇宙岁月里不慢一秒。&rdquo 然而该钟遇到了一个意外阻碍&mdash &mdash 地球上各个地方的时间并不是以相同的速率度过的。  时间度过的速度与重力(是爱因斯坦的相对论的组成部分)的强度有关,而且这是一个非常现实的影响。叶军说,如果你把一个钟表从地面上拿起来,把它悬挂在墙上,&ldquo 时间将会加快大约一千零十六分之一&rdquo 。然而这种新钟表的灵敏度足以发现这种变化。他说:&ldquo 仅把它举高几厘米,你就会看到一些变化。从这个水平来说,在地球上维持绝对时标事实上很难实现。他们打造的这种钟表,不只是看起来混乱。它正把我们的时间感变混乱。&rdquo 叶军称,解决上述问题的办法,就是把这些新钟表送入太空。
  • 综述:锑化物超晶格红外探测器研究进展与发展趋势
    锑化物超晶格红外探测器具有均匀性好、暗电流低和量子效率较高等优点,其探测波长灵活可调,可以覆盖短波至甚长波整个红外谱段,是实现高均匀大面阵、长波、甚长波及双色红外探测器的优选技术,得到了国内外相关研究机构的关注和重视,近年来取得了突破性的进展。中国科学院上海技术物理研究所科研团队介绍了InAs/GaSb超晶格红外探测器的技术特点和发展历程,并对后续发展趋势作了初步的展望和探讨。相关研究内容以“锑化物超晶格红外探测器研究进展与发展趋势”为题发表在《红外与激光工程》期刊上。InAs/GaSb超晶格红外探测器的技术原理和特点超晶格是由两种晶格匹配良好的半导体材料交替重复生长而形成的周期性结构,每一层的厚度通常在纳米尺度。根据组成材料相互间能带排列特点,超晶格一般分为I类超晶格和II类超晶格。在III-V族化合物半导体中,InAs、GaSb、AlSb之间可组成不同类别的能带排列,GaSb/AlSb组成I类能带排列,InAs/GaSb、InAs/AlSb组成II类能带排列。特别的,InAs导带底能量比GaSb价带顶能量低约150 meV,当InAs和GaSb结合时,两者形成“破隙型”II类能带排列,电子被限制在InAs层中,而空穴被限制在GaSb层中。当两者组成超晶格时,相邻InAs和GaSb层中电子和空穴会由于相互作用分别形成电子微带和空穴微带,如图1所示。图1 InAs/GaSb超晶格能带简图电子微带与空穴微带的能量差即为超晶格的有效禁带宽度,随着InAs层和GaSb层厚度的改变而改变。对InAs/GaSb II类超晶格的能带结构进行计算和模拟,可以获得超晶格材料光电特性等信息。图2是InAs/GaSb超晶格的截止波长随InAs厚度变化关系,通过改变InAs层的厚度,可以调节超晶格的截止波长,实现短波红外、中波红外和长波红外等不同谱段的红外探测。图2 InAs/GaSb II类超晶格截止波长随InAs厚度变化关系(GaSb厚度为2.1 nm)总体来说,InAs/GaSb超晶格红外探测技术具有如下特点:1)改变周期厚度可以调节InAs/GaSb超晶格的禁带宽带(响应截止波长),因此,可以通过结构设计来灵活调节超晶格探测器的光电响应特性,响应波段可以覆盖短波至甚长波的整个红外谱段,并实现多色探测。2)InAs/GaSb超晶格结构可以吸收垂直入射光。理论计算表明,InAs/GaSb超晶格可达到与HgCdTe材料相当的吸收系数,因此具有较高的量子效率。3)在InAs/GaSb超晶格结构中,由于轻、重空穴带的分离,抑制了Auger复合速率。在理论上,InAs/GaSb超晶格比HgCdTe具有更高的探测率。4)相比HgCdTe材料,InAs/GaSb超晶格有更大的有效质量,有助于抑制长波探测器的隧穿暗电流。5)现代材料生长技术,如分子束外延技术,可以在单原子层精度上控制材料的生长,十分有利于材料性能的可控性、稳定性和可重复性。6)InAs/GaSb超晶格是III-V族化合物半导体材料,材料生长与器件工艺较为成熟,有利于实现大规格、高均匀性焦平面器件。锑化物超晶格焦平面探测器发展历程技术孕育阶段(20世纪80年代—21世纪初)该阶段主要是超晶格红外探测技术概念的提出、超晶格探测器性能的理论计算分析、超晶格材料外延生长和基本光电特性研究,初步证实了超晶格材料具有优良的红外探测性能。超晶格概念是20世纪70年代美国国际商用机器(IBM)公司的江琦、朱兆详等人提出的,指出电子在沿超晶格材料生长方向运动将受到超晶格周期势的影响,形成与自然界材料性能迥异的特性,分子束外延技术的发展又允许人们生长出高质量的超晶格材料。1977年,江琦、朱兆祥等人又提出了锑化物(InAs/GaSb)II类超晶格的概念。技术突破阶段(21世纪初—2010年)该阶段主要聚焦于突破高性能焦平面器件制备的关键技术。采用先进的异质结构抑制超晶格长波探测器的暗电流;研究超晶格材料的刻蚀和侧壁钝化技术,制备出超晶格面阵器件。长波探测是超晶格技术发展的一个重要方向,而降低暗电流是长波红外探测器研究工作的一个重要内容。对于锑化物超晶格探测器,利用其灵活的能带结构调节能力以及分子束外延低维材料生长能力,国外各研究机构设计、制备出了多种宽禁带势垒的探测器结构来抑制暗电流,如pπMn结构、CBIRD结构、nBn结构等。上述不同结构的基本思想是利用宽禁带势垒层与吸收区形成异质结,从而达到抑制产生-复合电流的效果。像元台面刻蚀与侧壁钝化是超晶格焦平面制备研究的一个重要内容。在台面侧壁,由于半导体周期性晶格结构的突然中断,会引起能带在表面的弯曲,从而使得接近表面的半导体层内形成电荷累积,甚至引起表面反型,这会导致在表面形成导电通道。另外,在刻蚀等工艺过程中产生的损伤、沾污或者氧化物等也可能引起表面势能的变化,在带隙内形成载流子陷阱,增加隧穿电流。随着超晶格探测器结构的不断优化,器件制备工艺水平的提升,基于高质量分子束外延超晶格材料,结合前期建立的红外焦平面技术(如读出电路、铟柱混成互联等),相关研究机构相继研制出了320×256、640×512、1024×1024等不同规格的超晶格红外焦平面。双色或多色探测器具备多谱段探测能力,可显著提升识别距离、抗红外干扰与抗伪装能力,是新一代焦平面探测器重点发展方向之一。锑化物超晶格材料能带灵活可调及宽谱响应的特性,使得其成为制备双色、多色探测领域的优选技术。各研究机构先后报道了基于该材料体系的中/中波、中/长波、长/长波双色焦平面探测器。技术发展阶段(2010年—至今)超晶格焦平面制备能力的提升在相关政府机构的支持下,西方技术先进国家突破了超晶格结构设计、材料生长、芯片制备工艺等关键技术,多家研发机构先后获得高性能的超晶格长波大面阵器件和双色焦平面器件。这些成果的取得也使人们充分认识到超晶格技术在红外探测领域的意义和价值。在此基础上,2011年,美国启动了“重要红外传感器技术加速计划(VISTA)”,这是一个由政府主导的,包括JPL、MIT林肯实验室、Sandia国家实验室、海军实验室等研究结构,以及休斯实验室、洛克-马丁公司、L3辛辛那提电子公司等行业领先公司的联合体,技术链涵盖了衬底制备、超晶格材料外延生长、焦平面芯片制备工艺、读出电路设计、超晶格组件集成等。在5年时间内,VISTA计划在高性能长波、中长波双色、超大面阵焦平面、高温工作(HOT)焦平面器件等多方面获得了进一步的发展。图3 (a)超晶格5 μm像元尺寸的SEM照片,(b)超晶格中波红外焦平面在160 K和170 K工作温度下成像示意图,(c)超晶格中长波双色野外成像图超晶格焦平面的工程应用随着制备能力和探测器性能的不断提高,超晶格红外焦平面开始了应用试验。2005年,德国IAF和AIM公司研制的中/中波超晶格双色焦平面探测器应用于欧洲大型运输机Airbus A400 M的多色红外预警系统(MIRAS)。图4 非洲某地区的可见(来源谷歌地图)和CTI红外成像图片(来自美国NASA国际空间站拍摄),Band 1为中波红外图像,Band 2为长波红外图像锑化物超晶格探测器的展望与思考碲镉汞是当前最成功的红外探测材料,其响应波段可以覆盖短波至甚长波的整个红外谱段,具有高的吸收系数和量子效率。由于碲镉汞非常低的肖特基-里德-霍尔(SRH)复合速率,少子寿命长,暗电流低,可以实现高性能红外探测器。碲镉汞的挑战主要来自于材料生长、芯片制备工艺等方面难度大及由此而带来的成品率和制备成本等问题。InAs/GaSb超晶格在谱段覆盖性方面和碲镉汞一样可以在短波至甚长波整个红外谱段内调节。与碲镉汞相比,超晶格红外探测器在量子效率和少子寿命还需要进一步的提升。但另一方面,InAs/GaSb超晶格属于III-V族化合物半导体,其物理化学性质较为稳定,超晶格焦平面在空间均匀性、时间稳定性等方面具有优势,同时,超晶格在材料、芯片的制备技术方面也具备更好的可控性。近年来,InAs/GaSb超晶格红外探测器取得了飞速的发展。在国外,超大规格、高像元密度、高温工作中波焦平面、高性能长波红外焦平面及双色焦平面等已先后获得突破,超晶格探测器也已初步获得航天应用。国内自“十二五”布局开展锑化物超晶格红外探测技术研究,相关研究单位先后在超晶格长波焦平面技术、双色焦平面技术等方面取得突破,初步形成了超晶格材料外延生长、芯片制备等技术能力和平台。后续,超晶格红外探测技术将在进一步提升材料基本性能(量子效率、少子寿命)的基础上,发展大规格和超大规格红外焦平面,高像元密度焦平面,甚长波和双色、多色探测器,高工作温度红外焦平面等。提升超晶格材料基本性能在少子寿命方面,在超晶格中,轻、重空穴带的分离抑制了俄歇复合过程,因此,理论上超晶格的少子寿命可以比碲镉汞更长。但目前InAs/GaSb超晶格的少子寿命一般小于100 ns,与碲镉汞相比有很大的差距,这主要是由于超晶格材料存在较强的SRH复合。InAs/InAsSb超晶格因表现出了更长的载流子寿命而颇受关注,但对于相同的探测波长,InAs/InAsSb超晶格的吸收系数较小;同时,InAs/InAsSb超晶格的空穴迁移率和扩散长度也较小。另一种新型超晶格材料——晶格匹配 InAs/GaAsSb超晶格展现出了优良的光电性能,计算表明,对于相同的探测波长,InAs/GaAsSb超晶格具有与InAs/GaSb超晶格相似的吸收系数。在量子效率方面,由于在超晶格中电子和空穴分别位于InAs和GaSb层中,吸收系数的大小与电子波函数和空穴波函数的交叠积分相关,从而导致器件的量子效率随波长增大而下降。目前中波红外超晶格探测器的量子效率可以实现70%~80%,长波器件的量子效率约30%~40%。提升长波、甚长波超晶格焦平面器件的量子效率是一个重要的研究课题。近年来,采用超表面微纳光子结构提升器件量子效率成为一个有效途径。与探测器集成的微纳光子结构主要包括一维、二维光子晶体、光栅、汇聚透镜、微腔结构等。近年来,美国麻省理工学院、空军实验室、JPL等在该方面开展研究并取得了较好的成果。超晶格红外焦平面发展趋势展望在焦平面器件发展趋势方面,将充分利用超晶格自身技术优势,发展高像元密度大面阵探测器、甚长波探测器、双色和多色探测器、高工作温度探测器及新型雪崩探测器等。在高像元密度大面阵器件发展方面,国际上超晶格外延材料尺寸已经达到6 in(1 in=2.54 cm),正向更大晶圆发展;像元尺寸已缩小至5 μm,最大规格达到6 K×4 K。国内已具备4~6 in超晶格外延材料生长和锑化物半导体探测器芯片制备能力,在小像元尺寸的台面芯片制备方面也具有技术基础。在甚长波红外探测器方面,关键在于降低器件暗电流,红外探测器的暗电流与少子寿命密切相关。因此,提升超晶格材料的少子寿命是一个重要的研究课题。晶格匹配InAs/GaAsSb新型超晶格材料有助于降低材料的深能级缺陷,从而提升少子寿命。降低器件暗电流的另一途径是运用InAs、GaSb、AlSb等材料间多样的能带排列方式,灵活设计出先进的抑制暗电流器件结构。最近,国外报道了14 μm超晶格甚长波焦平面探测器,采用先进势垒设计结构,大大地抑制了器件的暗电流。在实现高温工作超晶格红外探测器的研究方面,主要集中在设计和制备各种具有暗电流抑制功能的异质势垒结构器件。国外研究机构采用nBn等异质势垒结构,很好地将超晶格中波红外探测器的工作温度提升至150 K以上。在国外,高温工作的超晶格中波红外焦平面已经显示出了替代传统InSb器件的趋势。实现双色或多色探测是超晶格发展的一个重要发展方向。超晶格主要采用改变材料周期厚度来调节响应波长,采用分子束外延技术,只要改变InAs、GaSb单层的生长时间(改变层厚)就可以获得不同响应波长的超晶格材料,因此非常容易在一次外延生长过程中集成两个甚至多个响应不同波长的探测器材料结构。近期研究结果也表明,超晶格是实现双色或多色探测的优先技术。在新型探测器方面,锑化物超晶格雪崩探测器(APD)近年来也备受关注。美国伊利诺斯大学研究发现,InAs/GaSb超晶格的空穴/电子碰撞电离系数比可以近似为零,研制的电子雪崩型器件的增益为300时,过剩噪声因子小于1.2。该团队与美国雷神公司合作研制的电子雪崩型超晶格APD,在增益为500时,过剩噪声因子仍旧保持在接近于1的水平,表现出了极低的雪崩噪声特性。结论这项研究简要介绍了锑化物超晶格红外探测技术的技术特点、发展历程及其发展趋势。自InAs/GaSb超晶格红外探测器的设想被提出后,30多年来,通过结构设计优化和制备技术提升,国内外研究结构先后获得了一系列的大面阵、高温工作、长波、多色红外探测器,超晶格红外焦平面也表现出了高均匀性、高稳定性、高制备可控性等优势,并且在红外遥感成像等航空航天领域得到应用。今后,超晶格红外焦平面将向着更高的像素密度、更大的规格、更高的工作温度、甚长波、双色(多色)、雪崩器件等方向发展。
  • 钙钛矿量子点超晶格中的稳定蓝光腔增强超荧光研究取得进展
    近期,中国科学院上海光学精密机械研究所红外光学材料研究中心董红星研究员和张龙研究员团队在溴氯掺杂量子点自组装超晶格结构中实现稳定蓝光腔增强超荧光,并解析了量子点超晶格结构通过降低电声耦合进而抑制光致相偏析的机制。相关研究成果以“Stable and ultrafast blue cavity-enhanced superflourescence in mixed halide perovskites”为题发表于Advanced Science。   高质量蓝光光源受限于低的量子效率,相比于红、绿光源仍处于落后的阶段。而钙钛矿量子点体系中的腔增强超荧光是由量子耦合效应和腔光场放大的双重调制产生的超快相干光爆发,可为实现高质量蓝光相干光源提供新思路,解决传统蓝光光源效率低下的局限性。卤素掺杂是在钙钛矿量子点体系中实现蓝光发射最直接的策略。然而,由于光致卤化物相偏析引起的光谱不稳定以及量子点与光腔之间的低耦合效率,使得在这种掺杂卤化物的量子点系统中实现稳定的蓝光腔增强超荧光具有挑战性。   针对上述问题,研究人员通过可控自组装制备得到形貌规则、长程有序、密集排列的CsPbBr2Cl量子点超晶格微腔。在量子点超晶格中,激子离域效应可以有效地减少激子声子耦合,从而缓解光致卤化物相偏析。同时,量子点自组装超晶格微腔具有高的堆积密度、光滑表面和规则几何结构,既可以作为增益介质,也可以作为高光反馈的回音壁腔,可提高量子点与光腔之间的耦合效率。因此,这两个核心问题将在量子点自组装超晶格结构中得到解决。基于这样的卤素掺杂量子点超晶格,研究人员最终实现了具有优异光学性能的稳定蓝光腔增强超荧光。   该工作得到国家自然科学基金,上海市青年拔尖人才计划等项目的支持。图1(a)量子点超晶格通过减弱激子-声子耦合来缓解光致相偏析的示意图;(b)CsPbBr2Cl量子点自组装超晶格微腔在激光泵浦在产生腔增强超荧光(CESF)的示意图;(c)77K下超晶格中随功率变化的蓝光腔增强超荧光发射图,左上角为1.8Pth激发功率下的蓝光腔增强超荧光的条纹相机图像。
  • 仪器情报,科学家利用先进设备揭示超晶格材料中的磁性现象!
    【科学背景】随着纳米技术的进步,磁性薄膜的研究成为了一个长期关注的课题。这些薄膜的厚度在纳米尺度,显示出了与其厚度密切相关的独特磁性特性。临界行为理论预言,随着薄膜厚度的减小,磁相变温度会显著降低,这在多个研究案例中得到了观察。特别地,在二维极限下,Mermin和Wagner提出了在有连续旋转对称性的模型(如Heisenberg或XY自旋哈密顿量)中,长波长波动会在有限温度下完全抑制长程磁序的理论。然而,这一预测严格适用于热力学极限,即无限大侧向尺寸的样品。对于有限尺寸的实验室样品,这一预测的适用性则引起了广泛的讨论。近年来,磁性van der Waals材料的发现为研究厚度达到单层的磁性材料提供了新的平台。例如,对于反铁磁NiPS3材料的研究表明,当其厚度为两层或更多时,反铁磁序在单层样品中则被抑制,这与Mermin-Wagner定理的预测一致。然而,由于单层样品的侧向尺寸较小,磁性的直接探测成为了一个挑战,通常通过间接方法如Raman光谱学来实现。为了深入理解在超薄膜中的磁性行为,马萨里克大学科M. Kiaba教授团队选取了反铁磁LaFeO3和非磁性SrTiO3层构成的超晶格作为研究对象,这些材料可以通过先进的沉积技术精确控制其结构。LaFeO3作为典型的钙钛矿反铁磁绝缘体,在室温下具有稳定的反铁磁序,这使其成为理想的研究对象。作者利用了脉冲激光沉积技术制备了具有1-3单层LaFeO3和5单层SrTiO3的超晶格样品,并通过低能缪子自旋转动光谱学进行了详尽的磁性研究。实验结果首次展示了在超薄LaFeO3层的不同厚度下,其磁性质的显著变化。具体地,作者观察到当LaFeO3层厚度为三个或两个单层时,其电子磁矩表现出静态的反铁磁序。相反地,在单层LaFeO3样品中,磁矩没有长程有序,符合Mermin-Wagner定理的预期。这些发现不仅深化了作者对超薄膜中磁性行为的理解,还为调控这些材料的磁性特性提供了新的视角和方法。【科学亮点】(1)实验首次探索了在超薄LaFeO3/SrTiO3超晶格中的磁性特性,利用了低能缪子自旋转动光谱学作为敏感的磁性探针。(2)实验结果如下:&bull 制备了具有1-3单层LaFeO3和5单层SrTiO3的超晶格,侧向尺寸为10×10 mm² ,并且展示了高结构质量和界面锐利度。&bull 通过X射线衍射谱确认了超晶格的完整性和结构特征,验证了层间扩散水平极低。&bull 使用低能缪子自旋转动光谱学成功测量了超薄LaFeO3层的磁性行为,表明在具有3和2层LaFeO3的超晶格中,铁电子磁矩表现出静态的反铁磁序。 &bull 对单层LaFeO3超晶格的研究显示,磁矩不会有序,而是在最低测量温度下符合Mermin-Wagner定理的预期,表现出波动行为。【科学图文】图1. 超晶格的结构表征。图2. 零场缪子自旋转动。 图3. 磁体积分数和Néel温度。图4. 静态和动态磁性的区分。【科学结论】总之,缪子自旋转动数据在零场、横场和纵场中一致显示出以下结果:(i) m = 3 和 m = 2 超晶格表现出长程反铁磁序,其Néel温度分别为175 K 和 35 K;(ii) m = 1 超晶格的磁性质与之有显著区别,没有长程序,直至最低测量温度5 K;(iii) 在这个温度下,电子磁矩表现出波动而非静态无序。这些发现指向了一个维度磁性的交叉点,对于单层铁氧化物的超晶格,由于长波长自旋波动的增强,静态反铁磁序被消失,符合Mermin-Wagner定理的预期。然而,需要注意的是,作者的结果并不完全与Jenkins等人的工作11存在显著分歧,他们预测在二维有限尺寸的实验室样品中磁序的稳定,因为 (i) 他们的计算是针对比作者样品小四个数量级的系统进行的,而 (ii) 作者的m = 1 超晶格在当前低能缪子自旋转动仪器中可以达到的最低温度为5 K,存在在更低温度下可能存在静态序的可能性。参考文献,Kiaba, M., Suter, A., Salman, Z. et al. Observation of Mermin-Wagner behavior in LaFeO3/SrTiO3 superlattices. Nat Commun 15, 5313 (2024). https://doi.org/10.1038/s41467-024-49518-0.
  • 仪器表征,科学家揭秘新型钙钛矿莫尔超晶格结构!
    【科学背景】摩尔纹超晶格是指在两个二维材料或层状结构叠加时形成的周期性结构,能够引发出多种量子现象,如超导性和莫特绝缘体。然而,迄今为止,这些研究主要集中在范德华层材料上,其层间相互作用较弱,限制了能量调制的深度和在室温下的应用。具体而言,范德华层材料的摩尔图案受到其相对弱的范德华力的限制,这导致形成的平带对热波动和杂质非常敏感,因此在低温下观察到的平带物理现象远多于室温条件下的观察。为了克服这一限制,科学家们开始寻找更强的层间相互作用,以增加能量调制的深度,从而实现室温下的摩尔纹材料在此背景下,二维卤化物钙钛矿被提出作为一个潜在的解决方案,因其具有离子键合和更强的层间耦合能力。然而,要实现这一概念,必须克服多个技术难题。首先,传统的二维钙钛矿合成方法通常依赖于有机配体,这些配体太过庞大,阻碍了层间的电子耦合,从而不利于摩尔纹超晶格的构建。其次,控制二维钙钛矿的厚度和侧向尺寸,尤其是在特定扭角下的生长,是一项具有挑战性的工程任务。为了解决这些问题,美国普渡大学(Purdue University)Letian Dou & Libai Huang教授、中国科学技术大学张树辰,上海科技大学Yuan Lu等教授携手开发了一种新的合成方法,成功制备出无配体、超薄、大面积的二维卤化物钙钛矿晶体。这些人工扭曲的结构展现了清晰的方形摩尔纹图案,并在扭角约为10°时显示出局域的激子和电荷。通过高分辨透射电子显微镜和瞬态光致发光显微镜等技术手段,研究团队验证了这些摩尔纹超晶格的形成及其在平带物理方面的潜力。【科学亮点】(1)实验首次展示了利用超薄、无配体卤化物钙钛矿构建摩尔纹超晶格的成功尝试。此前,大面积的二维非范德华材料在控制厚度和扭角方面存在挑战,本研究通过合理的合成方法克服了这些难题,成功制备了具有方形摩尔纹图案的扭曲钙钛矿层。(2)实验通过高分辨透射电子显微镜清晰展示了这些超薄钙钛矿层的方形摩尔纹超晶格,这些结构在扭角约为10°时显现出局域的明亮激子和捕获的电荷。(3)通过扭角依赖的瞬态光致发光显微镜和电学特性表征,研究发现摩尔势阱引起的局域激子导致了显著增强的激子发射。这些结果不仅验证了理论预测的平带增加的振子强度,也展示了扭曲钙钛矿结构作为独特的室温摩尔材料平台的潜力。【科学图文】图1: 通过平衡溶液方法和表征,将RP-相二维2D钙钛矿转化为APbX3相。图2. 在钙钛矿转角层twisted perovskite layers,TPLs中的方形莫尔图案。 图3. 在MAPbI3 钙钛矿转角层TPLs中,依赖于转角的激子输运和湮灭。图 4. 在MAPbI3 钙钛矿转角层TPLS中,依赖于扭转角的光致发光photoluminescence,PL发射。【科学结论】本研究揭示了扭曲的二维卤化物钙钛矿超晶格作为新兴的室温摩尔激子材料平台的潜力,通过引入超出传统范德华相互作用的离子层间耦合。这不仅拓展了摩尔材料的选择范围,还为光发射、光-物质相互作用等应用(如激子激光和激子极化子)提供了新的探索可能性。激子的增强振子强度不仅为设计能量和电荷传输功能提供了更多机会,还为太阳能电池和LED等领域的应用开发提供了潜在的技术路径。此外,通过调节阳离子和外部压力来控制层间距离,我们展示了钙钛矿结构的高度可调性,这为优化摩尔激子的定域和性质提供了有力工具。未来,进一步研究晶格松弛效应对摩尔平带稳定性的影响,并推动更完善的理论模型和改进的显微镜技术,将有助于深入理解这一新兴领域的基础物理与应用潜力。原文详情:hang, S., Jin, L., Lu, Y. et al. Moiré superlattices in twisted two-dimensional halide perovskites. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01921-0
  • 国家授时中心的锶原子光晶格钟的相关研究取得重要进展
    对于人们的日常生活而言,秒的精确定义将让人们享受更准确的导航服务。每当我们打开地图、“摇一摇”寻找身边的人,精确的秒定义都在发挥着作用。此外,交通、金融、电网、计算机网络、移动通信等领域的安全运行都依靠高精度的时间频率计量。你有没有想过,1秒是多久?是时钟的一次嘀嗒声,人们的一次眨眼,还是数到“1”的所用的时间?这一问题看似容易,其实并不简单。为了更精确地定义秒,全世界的科学家已经努力了多年。近日,中国科学院国家授时中心(以下简称国家授时中心)的锶原子光晶格钟的相关研究取得了重要进展。国家授时中心研制出了锶光钟,并通过守时氢钟溯源至国际原子时,实现了在现行时间单位秒定义下的锶光钟绝对频率测量,相关研究成果发表于《计量学》。重新定义“1秒”:从天文秒到原子秒我们可以通过运动来计量时间,有规律的、能够重复的周期现象是人们计量时间的重要工具。曾经,我们依赖观测天体运动定义秒。科学家们发现,日月轮换、昼夜交替具有规律性,因此便以地球的周期运动来定义秒,从而有了我们熟知的一年大约365日,1日24小时,每小时60分钟,每分钟60秒,总计一天86400秒。但由于地球公转、自转的运动速度并不均匀,于是,科学家们将目光转到了微观层面,寻找更精确稳定的周期来确定一秒有多长。“科学家们发现,微观量子世界的一些参数比天体运动更加稳定。1967年,国际单位制以铯-133原子的能级跃迁为基础,重新定义了秒,也即原子秒。”中国计量科学研究院(以下简称中国计量院)研究员林弋戈说。林弋戈告诉记者,原子的能级跃迁就是指原子从一种能量状态到另一种能量状态。在这一过程中,原子发射出的电磁波频率非常稳定,因此可以采用某些原子的跃迁频率作为时间的计量基准,从而建立原子钟。终于,1967年,第十三届国际计量大会(CGPM)决定,将秒的定义从天文秒改为原子秒,将铯-133原子无干扰的基态超精细能级跃迁对应辐射的9192631770个周期所持续的时间定为1秒。也就是说,将铯-133原子发出的辐射振动9192631770次所持续的时间定为1秒。锶光钟数据获得国际认可国家授时中心研究员常宏告诉记者,根据输出频率的范围不同,原子钟可以分为微波钟与光钟。以原子的微波波段共振频率作为时间频率基准的原子钟就是微波钟,而以原子的光学波段共振频率作为时间频率基准的原子钟则被称为光钟。据了解,光钟的工作频段比微波钟的工作频段高4到5个数量级,因此光钟可以达到比微波钟更高的精度。近日,国家授时中心完成了对其研制的锶原子光钟性能的评估确认,并在现行时间单位秒定义下对锶原子光钟的绝对频率进行了测量。这一步骤完成后,国家授时中心锶原子光钟的相关数据将作为重要的参考值上报给国际时间频率咨询委员会频率标准工作组,成为锶光钟频率国际推荐值计算所需要的源数据。“在我们的锶原子光钟研制完成后,需要将其数据纳入现行秒定义框架之下进行频率测量,来确保未来时间单位秒基于光钟重新定义时,量值保持连续。此次发表于《计量学》上的成果,代表着国际上认可了我们的锶光钟的评估和测量数据。”常宏说。这一成果的第一作者、国家授时中心卢晓同博士告诉记者,完成现行时间单位秒定义下的锶光钟绝对频率测量,主要包括两个方面的技术探索。第一是锶光钟的实现,第二是如何将锶光钟输出的光频信号溯源至现行秒定义。“研究的过程比较艰辛。”常宏说,“从研制锶光钟,到完成‘评估与认可’,国家授时中心一共花了15年。”“光钟的研制对于国家授时中心而言是全新的领域,需要非常多的专业知识,例如原子物理、激光技术、电子线路等,这些都需要知识的积累与时间的沉淀。”常宏说。常宏告诉记者,从2008年到2017年,国家授时中心的锶光钟制作完成,这台钟终于“走了起来”,但是“走起来”后,人们还需要知道光钟的频率值具体是多少。“校准”频率的研究始于2017年,近日,这台光钟实现了现行时间单位秒定义下的锶光钟绝对频率测量,数据获得了国际认可。据了解,能够成功研制光晶格钟的国家并不多,其中多数是发达国家。“现在,国内完成光晶格原子钟研制的共4家,分别是中国计量院、国家授时中心、中国科学院精密测量科学与技术创新研究院、华东师范大学。”常宏说。其中,中国计量院和国家授时中心都独立完成了光钟频率通过国际原子时溯源到现行秒定义的工作。“目前,锶光钟研究最为领先的是美国叶军团队和日本东京大学的香取秀俊研究组,我们的研究和这两个团队还有差距。但我们与法国的巴黎天文台、德国联邦物理技术研究院、英国国家物理实验室的差距正在缩小,甚至在某些方面实现了超越。”常宏说。秒定义关乎基础科学发展目前,国内多家单位都在进行光钟的研制与绝对频率测量,有些团队研制锶原子光钟,有些则研制钙离子光钟、镱原子光钟。“现在,在如何重新定义秒的问题上,国际上还没有一个共识,其中一个重要的原因就是这些光钟的表现都不错,不存在某一种原子光钟性能明显强于另一种的情况。所以,目前国际上还没有选定要用哪种光钟来进行未来的秒定义。”林弋戈说,“前两年,国际上提出了一个定义秒的新想法,是使用多种原子钟的加权平均值作为新的秒定义。所以国内做多种光钟是非常有意义的。”目前,中国计量院的锶原子光钟、中国科学院精密测量科学与技术创新研究院的钙离子光钟和华东师范大学的镱原子光钟的频率测量结果已经被国际时间频率咨询委员会频率标准工作组接受,这三所单位的测量数据参与了这几种光钟频率国际推荐值的计算。那么,为什么我们要积极研制光钟,实现更精确的秒定义呢?对于人们的日常生活而言,秒的精确定义将让人们享受更准确的导航服务。每当我们打开地图、“摇一摇”寻找身边的人,精确的秒定义都在发挥着作用。此外,交通、金融、电网、计算机网络、移动通信等领域的安全运行都依靠高精度的时间频率计量。此外,精确地定义秒还关乎基础科学的发展。“目前包括物理学研究在内的很多领域都亟待突破。而突破的发生,需要科学上或技术上其他的突破来带动。时间频率目前是人类能够测量的最准确的物理量,可以说时间频率测量能力的提升,将会带动多个研究领域的进步。”林弋戈说。例如,秒的精确定义和测量可以帮助科学家更深入地研究宇宙中的暗物质,了解发生在遥远太空中的由更小的天体并合所产生的极微弱的引力波等。“参与到国际秒定义变更中,对国家而言也意义深远。”常宏说。2022年,第二十七届国际计量大会通过“关于秒的未来重新定义”的决议——利用光钟实现时间单位秒的重新定义。该决议计划在2026年国际计量大会上提出关于秒的重新定义的建议,并在2030年第二十九届国际计量大会上做出最终决定。“我国需要让更多自己研制的光钟参与到这一工作中,在未来时间单位秒定义变更时确保我国有更多的话语权,维护国家权益。”常宏说。“我国一直在进行光钟的研究,是为了能够在秒定义的过程中作出贡献,推动科学的发展,并且在未来独立自主地复现秒定义,这一工作不仅体现了我国较高的科研水平,还能够长期、自主地保持中国标准时间的准确、稳定。”林弋戈说。
  • 鲁汶仪器“一种晶圆外延片表面的晶格缺陷修复方法”专利公布
    天眼查显示,江苏鲁汶仪器股份有限公司“一种晶圆外延片表面的晶格缺陷修复方法”专利公布,申请公布日为2024年6月28日,申请公布号为CN118263091A。背景技术氮化镓基半导体材料具有带隙宽,发光效率高,耐高温以及化学性质稳定等优点,已广泛应用于固态照明、全色彩显示、激光打印等领域。氮化镓薄膜通常生长在异质衬底上,衬底和外延薄膜之间存在较大的晶格失配与热失配,一方面会导致压电极化效应,降低量子阱的发光效率;另一方面使得薄膜在沉积过程中一直受到应力的作用,导致外延片发生弯曲,翘曲甚至龟裂。在u-氮化镓生长时,由于衬底与外延薄膜之间较大的晶格失配,使得外延片受到应力的作用,产生“凹面”变形;又因为热失配的影响,使得在生长温度较低的多量子阱时,曲率绝对值不断减少甚至成为“凸面”变形。等离子体刻蚀是利用等离子态的原子、分子与材料表面作用,形成挥发性物质或直接轰击样品表面使之被刻蚀的工艺,它能实现各向异性刻蚀,即纵向的刻蚀速率远大于横向的刻蚀速率,从而保证了细小图形转移后的保真度。等离子体刻蚀中的感应耦合等离子体(ICP)刻蚀技术由于其控制精度高、大面积刻蚀均匀性好、污染少等优点,在半导体器件制造中获得越来越多的应用。但现有的技术中如直接采用氯基气体对氮化镓晶圆外延片进行刻蚀,会导致氮化镓外延表面的晶格缺陷层并未得到有效的去除,无法获得高均匀性与一致性的氮化镓外延片。发明内容本发明涉及半导体芯片生产领域,具体是一种晶圆外延片表面的晶格缺陷修复方法。本发明提供了一种晶圆外延片表面的晶格缺陷修复方法。本发明提供的方法使用氧化性气体如N2O或O2的等离子体对晶圆外延片表面进行处理,形成均匀的氧化层;使用氯基气体如BCl3的等离子体对氧化层表面进行处理,均匀地移除氧化表层;采用氯基气体与氟基气体的混合气体或氯基气体等离子体对材料表面进行刻蚀,能够有效地优化晶圆外延片表层外延生长过程产生的晶格缺陷或氧化斑造成的刻蚀缺陷和损伤,从而得到高均匀性与一致性的晶圆外延片;相对于现有技术,本发明的晶圆外延片表面晶格缺陷层去除效果更优。
  • Science:石墨烯莫尔(moiré )超晶格纳米光子晶体近场光学研究
    光子晶体又称光子禁带材料。从结构上看,光子晶体是一类在光学尺度上具有周期性介电结构的人工设计和制造的晶体,其物理思想可类比半导体晶体。通过设计,这类晶体中光场的分布和传播可以被调控,从而达到控制光子运动的目的,并使得某一频率范围的光子不能在其中传播,形成光子带隙。 光子晶体中介质折射率的周期性结构不仅能在光子色散能带中诱发形成完整的光子带隙,而且在特定条件下还可以产生一维(1D)手性边界态或具有Dirac(或Weyl)准粒子行为的奇异光子色散能带。原则上,光子晶体的概念也适用于控制“纳米光”的传播。该“纳米光”指的是限域在导电介质表面的光子和电子的一种耦合电磁振荡行为,即表面等离子体激元(SPPs)。该SPP的波长,λp,相比入射光λ0来说多可减少三个数量。如果要想构筑纳米光子晶体,我们需要在λp尺度上实现周期性介电结构,传统方法中采用top-down技术来构建纳米光子晶体,该方法在加工和制造方面具有较大的限制和挑战。 2018年12月,美国哥伦比亚大学D.N. Basov教授在Science上发表了题为Photonic crystals for nano-light in moiré graphene superlattices的全文文章。研究者利用存在于转角双层石墨烯结构(twisted bilayer grapheme, TBG)中的莫尔(moiré)超晶格结构,成功构筑了纳米光子晶体,并利用德国neaspec公司的neaSNOM纳米高分辨红外近场成像显微镜研究了其近场光导和SPP特性,证明了其作为纳米光子晶体对SPP传播的调控。 正常机械解理的双层石墨烯是AB堆叠方式,但是,当把其中的一层相对于另一层旋转一个角度,就会形成AB和BA堆叠方式相间排列的莫尔超晶格结构,AB畴区和BA畴区之间是AA堆叠方式的畴壁,如图例1A所示。如果通过门电压对该双层石墨烯施加一个垂直电场,会在AB畴区和BA畴区打开一个带隙,从AB畴区到BA畴区堆叠次序的反转连同能带结构的反转则会在畴壁上形成拓扑保护的一维边界态,如图例1C。一维边界态的存在会使得畴壁上光学跃迁更加容易,表现为畴壁上增强的光导能力。研究者通过德国neaspec公司的neaSNOM高分辨率散射式近场红外光学显微镜对样品进行近场纳米光学成像,在近场光学振幅成像中观察到了转角双层石墨烯上六重简并的周期性亮线图案,成功可视化了这种光导增强的孤子超晶格网络。从近场光学振幅成像上可以看到孤子超晶格周期长度大约为260nm,据此,研究者推断对应的转角大约为0.06°。 图例1:散射式近场光学显微镜(neaSNOM)对转角双层石墨烯(TGB)进行近场纳米光学成像研究的结果。A:实验示意图(AB,BA,和AA表示石墨烯不同堆叠类型);B:近场纳米光学振幅成像及TEM图;C:畴壁上电子能带结构。 不仅孤子超晶格的周期性和等离激元的波长相匹配,而且之前的研究表明,双层石墨烯中的孤子对SPP具有散射行为,转角双层石墨烯中规律的孤子结构所形成的周期性散射源恰好满足了作为纳米光子晶体的条件。接下来研究孤子超晶格对SPP的光子晶体效应,实验中研究者利用neaSNOM近场光学显微镜的针作为SPP发射源,并通过改变门电压和入射光波长改变SPP的波长,在该器件上同时得到了两组近场光学振幅图和相位图(如图例2B和2C)。从图中可以看到,λp=135 nm和λp=282 nm的情况下,近场光学振幅图和相位图表现出截然不同的周期性明暗图案,这种周期性明暗分布正是SPP在孤子超晶格传播过程中干涉效应的显现,近场光学振幅图、相位图和理论计算结果显示出的吻合性。对近场光学成像的傅里叶变换使得研究者可以进入动量空间研究其光子能带结构,结合模拟计算,对光子能带结构的研究表明,虽然孤子对SPP的散射较弱,还不足以形成纳米光学带隙,但是转角双层石墨烯中SPP的传播毫无疑问符合纳米光子能带色散行为。 图例2:散射式近场光学显微镜(neaSNOM)研究石墨烯超晶格中等离激元(SPP)传播近场光学成像结果。A,C: 通过改变门电压和入射光波长,λp分别为135nm和282nm下近场光学成像结果(同时获得近场光学振幅成像和相位成像);B,D: 模拟计算结果。 在该项工作中,研究者利用转角双层石墨烯设计实现了石墨烯SPP纳米光子晶体,并利用德国neaspec散射式近场光学显微镜从几个途径进行了研究。先,畴壁区域增强的光导响应来源于孤子的一维拓扑边界态,neaSNOM近场光学显微镜以高的分辨率可视化了孤子超晶格网络。其次,双层石墨烯纳米光子晶体的主要参数(周期性、能带结构)可以通过改变转角角度和静电场等实现连续调控,这可以突破标准top-down或光刻等技术来构筑纳米光子晶体的限制和挑战。在电中性点附近,孤子被预言具有拓扑保护的一维等离激元模式,此时,双层石墨烯纳米光子晶体作为一维等离激元的二维网络载体,可能会展现出很有意思的光学现象。 特别值得指出的两点是:1.即使研究者通过0.06°的超小转角制造了高达260nm的孤子超晶格周期长度,如果没有neaSNOM近场光学显微镜高的空间分辨率(取决于针曲率半径,高可达10nm),清晰地看到孤子超晶格网络依然是非常困难的。2.neaSNOM近场光学显微镜具有的伪外差相位解调模块,可以同时实现高信噪比下的近场光学信号振幅成像和相位成像。该项工作中实验结果和模拟计算结果的吻合很好地证明了这一点。作为二维材料纳米光学领域为专业的研究工具,neaspec近场光学显微镜已经助力国际和国内多个研究机构在为的杂志发表了诸多研究成果。不仅是在纳米光学成像领域,neaspec开放兼容的设计使得它在纳米傅里叶红外光谱(nano-FTIR)、太赫兹(THz)、拉曼、荧光、超快、光诱导等多个领域均有广泛应用。
  • 南洋理工大学Hu Xiao教授课题组《Int. J. Mech. Sci.》: 3D打印板晶格机械超
    超材料是经过精心构造的材料;它们通常由周期性排列放置的单元块组成。这些材料所表现出的特性和功能与其组成材料有所不同,它们不仅仅是结合了其组成材料的特性和功能,还能形成一些由结构影响的独特性能。其中,机械超材料是一类人为设计的微观物理结构组成的、具有特殊机械性能的超材料。由于其在结构设计、尺寸和材料组件方面的可调整性,机械超材料为改善材料的机械行为和特性提供了新的机会,并为各种领域提供了多功能应用的潜质。过去的几十年中,人们不断地在追求材料的轻质化和高性能。一些报道指出简单立方(SC)板晶格在纳米尺度上可以达到力学性能的理论极限,这种板晶格机械超材料由于其理论上优异的机械特性和可人工调节设计的低密度而逐渐受到人们的关注。但是此类复杂结构的研究在过去一直受到制造技术的限制,因此新型3D打印技术的出现使得对这种晶格结构的深度研究成为可能。近期,新加坡南洋理工大学Prof. Hu Xiao团队提出了利用微立体光刻技术(PμSL),采用新型面投影微立体光刻设备(nanoArch S140, 摩方精密BMF)来打印高精度的立方板晶格结构,并成功制备出微米级到厘米级的简单立方晶格结构。该团队研究了打印模型的单元数量、开孔直径等对压缩性能的影响,并且将打印出来的结构与其他目前报道的机械超材料等进行了压缩性能的比较。结果表明,增加单元数量可显著提高抗压强度和能量吸收能力,打印的立体板晶格结构的比能量吸收能力甚至可以超过不锈钢晶格结构和目前文献报道过的其他聚合物晶格材料。图 1.(a)以往文献中使用的理想单元板晶格模型。(b) 本工作中使用的理想板晶格单元。(c) 修改后带孔的可打印立方板晶格单元。(d) 实验样品Cubic444-0.5mm。(e)有限元模拟von Mises带孔板晶格的压缩-Cubic444-0.5mm。(f) PμSL打印技术示意图。该研究中,简单立方晶格模型的理想化单元设计以及修饰后带孔单元的设计如图1 (a)-(c)所示。打印后的一组4*4*4的模型如图1 (d)所示,是一边长为1厘米的立方块,里面整齐堆垛了64个立方晶格单元,除此之外,还打印了另外两组:8*8*8,12*12*12的立方晶格结构。打印出来的所有样品都与设计的模型高度相似,具有非常高的打印精度,其中最薄的壁厚甚至能达到80微米。为了评估打印好的晶格模型的压缩性能,对所有晶格结构做了压缩测试。图2展示了压缩后立方晶格的刚度、强度、能量吸收能力与晶格结构的立方单元边长孔径比之间的关系。图 2.(a) d/l = 0.4时的立方板晶格的实验压缩应力-应变曲线。(b) 立方板晶格的压缩刚度与 d/l的关系拟合曲线。(c)立方板晶格的压缩强度吸收与 d/l的关系。(d) 立方板晶格的压缩能量与 d/l的关系。结果表明,在d/l = 0.4时观察到的强度变化是由于样品从正常结构到超材料结构的力学行为的巨大差异。当 d/l 很小 (d/l 0.3) 时,晶格更接近纯板晶格拓扑。众所周知,对于板晶格拓扑,板的三维相交阻碍了板在受压时的运动,因此板晶格总是以拉伸为主。然而,随着d/l的增加,晶格开始类似于梁拓扑结构,运动学机制可能发生了变化。虽然在图2 (a)中,Cubic 444样品组表现出典型的拉伸主导行为的脆性应力 - 应变曲线,但对于Cubic 888-0.5mm和Cubic 121212-0.32mm来说,它们都存在着较长且稳定的屈服平台且压应力有一定的增加。这些现象表明弯曲样运动学机制在结构的压缩时被激活。这些晶格中的确切运动机理可能很复杂,因为纯柱状弯曲行为可能并不严格适用于这些具有大相对密度(30%)的样品。偏离拉伸主导行为的结果可以在图2d的能量吸收结果中看到。Cubic 444样本组具有低能量吸收值,对应于拉伸主导晶格的典型脆应力 - 应变行为。然而,Cubic 888和Cubic 121212具有更高的能量吸收,这对应于增加的弯曲特性即允许在失效前发生更大程度的变形。因此随着一个立方厘米内单元晶格数量的增加,晶格结构的能量吸收效率产生超乎寻常的增长。随后,将立方板晶格与具有相同相对密度相似单元大小的立方桁架结构和蜂窝结构进行了比较,如图 3(a)所示。在失效前,立方板晶格具有比桁架结构更大的应变和更高的刚度。与蜂窝相比,虽然蜂窝的垂直面表现出出色的机械性能,但其侧面压缩吸收的能量、压缩强度以及刚度都极低,几乎不具有支撑性,所以蜂窝从不同方向进行压缩的性能差异极其明显。而立方板晶格的三向力学性能相对来讲更均匀,它在三向上具有相同的结构特性,足够承受来自三维方向上的压力。同时,该团队将打印的所有晶格结构与最近报道的许多其他不锈钢或者聚合物基晶格材料的相对压缩能量吸收能力都进行了对比,如图 3(b)所示,其大范围可调节的能量吸收值最高约15 J/g,能力远高于文献报道的其他晶格材料,具有极高的应用潜能。图3. (a)不同结构类型样品的刚度、压缩强度和能量吸收比较柱状图。(b) 比能量吸收(SEA)比较图。
  • Nature:WSe2/WS2超晶格中的低温光电与磁光性质最新研究进展
    20世纪60年代物理学家约翰哈伯德提出的Hubbard模型是一个简单的量子粒子在晶格中相互作用的物理模型,该模型被用于描述高温超导,磁性缘体,复杂量子多体中的物理机制。Hubbard模型在二维材料中的验证可以当做是量子模拟器,用以解释强关联量子粒子中的问题。近期,美国康奈尔大学的Jie Shan课题组在《自然》杂志上发表了WSe2/WS2超晶格中的低温光电与磁光性质新进展,验证了Hubbard模型在二维材料体系中的实用性。文章通过对对角相排列的二硒化钨(WSe2)与二硫化钨(WS2)的研究,得到二维三角晶格Hubbard模型的相图。如图1a所示,由于双层WSe2/WS2的4%晶格失配而形成三角形的莫尔超晶格。通过调控双层WSe2/WS2器件的偏置电压来调控载流子浓度与填充因子,从而研究其电荷和磁性能。值得注意的是,WSe2/WS2之间的扭转角不同,两者的反射光谱展现出不同的性质(见图1d与图1e)。同时,在反射对比中观察到准周期调制,这可能与半整数莫尔代填充有关。图1. WSe2/WS2超晶格晶胞(a),能带(b)与器件示意图(c), WSe2/WS2扭转角分别为20度(d)与60度(e)时候的反射光谱数据。 通过测量WSe2/WS2超晶格器件的电阻,作者发现当填充因子是0.5(半填充)或者1(完全填充)时,电阻变化大(见图2c),该结果表明该器件在半填充与完全填充的时候具有缘态。图2. a: 温度1.65K,WSe2/WS2超晶格反射光谱随载流子浓度调控变化图。b: 反射光谱强度与填充因子的关系图。c: 不同温度下,器件电阻与填充因子曲线(内置图,电阻随温度变化图)。图3. a: 温度1.65K,WSe2/WS2超晶格圆偏振反射光谱随磁场变化。b: 不同填充因子情况下反射光谱塞曼分裂结果。c-d: g因子随温度变化结果。在半填充状态下,左旋圆偏振与右旋圆偏振测量的WSe2/WS2超晶格反射光谱在磁场下具有不同峰位(图3a)。该峰位差即是反应了磁场引入的塞曼分裂现象。通过分析g因子随温度变化的结果,确认温度高于4K时,WSe2/WS2超晶格的磁化率与温度关系符合居里-韦斯定律(Curie–Weiss law)。对以上磁化率与温度结果的进一步分析可以证实在WSe2/WS2超晶格中Hubbard模型完全适用。文章中,作者使用了德国attocube公司的attoDRY2100低温恒温器来实现器件在低温度1.65K下通过电场与磁场调控的低温光学实验。该工作成功地表明莫尔超晶格是很好的研究强关联物理并适用Hubbard模型的平台。图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。 attoDRY2100+CFM I主要技术特点:+ 应用范围广泛: PL/EL/ Raman等光谱测量+ 变温范围:1.5K - 300K+ 空间分辨率: 1 μm+ 无液氦闭环恒温器+ 工作磁场范围:0...9T (12T, 9T-3T,9T-1T-1T矢量磁体可选)+ 低温消色差物镜NA=0.82+ 精细定位范围: 5mm X 5mm X 5mm @4K+ 精细扫描范围:30 μm X 30 μm @4K+ 可进行电学测量,配备标准chip carrier+ 可升到AFM/MFM、PFM、ct-AFM、KPFM、SHPM等功能 参考文献:[1]. Yanhao Tang et al, Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices, Nature, 579, 353–358(2020)
  • 仪器情报,科学家利用HAADF-STEM成像技术揭示超晶格微结构的复杂细节!
    【科学背景】氮化镓(GaN)是一种重要的半导体材料,其在蓝光发光二极管等领域的广泛应用使得其成为了研究的热点。然而,尽管镁(Mg)掺杂对于实现p型GaN的成功合成至关重要,但GaN和Mg之间的相互作用细节仍然是未知的。这导致了在利用GaN进行掺杂和构建半导体器件时存在诸多挑战,尤其是关于提高载流子迁移率的问题。为了应对这一挑战,日本名古屋大学(Nagoya University)Jia Wang,Hiroshi Amano等研究者提出了一种全新的方法:通过在大气压下对镁薄膜和GaN进行退火,实现了单原子镁片自发插入到GaN中,形成了二维Mg插层GaN超晶格结构。这一方法为实现高弹性应变的GaN提供了可能,从而改变了其电子能带结构,极大地增强了其载流子传输性能。此外,这项研究还揭示了插层Mg对GaN极性的独特调控效应,为半导体掺杂和材料工程领域带来了新的思路和方向。【科学亮点】(1)本研究首次观察到在大气压下退火镁薄膜在GaN上的情况下,形成了Mg插层GaN超晶格结构,这标志着二维金属插层到体块半导体的首次实例。这一现象被称为2D-Mg掺杂。(2)通过高角度暗场扫描透射电镜(HAADF-STEM)成像技术,作者逐步放大的图像揭示了Mg插层GaN超晶格结构的复杂细节。每个连续的Mg插层片具有数十纳米的直径,并且每对Mg插层之间观察到5-10层GaN。进一步的原子分辨集成差分相位对比(iDPC)-STEM成像证实了插层片由单原子层组成,而能量色散X射线光谱(EDS)和元素分布图证实了这一单层完全由Mg组成。(3)此外,插层Mg(Mgi)到原子片中的分离不会破坏六角形GaN的原始晶格对称性。具体地,每个Mg原子被六个N原子包围,占据八面体间隙位,形成了ABCAB注册,而相邻的GaN层则遵循ABAB堆叠序列。这一结构的形成导致了在插层层之间垂直方向上的实质性单轴压应变,超过了薄膜材料中记录的最高值之一。【科学图文】图1:Mg插层的GaN超晶格。图2. 2D-Mgi插层片诱导的极性转变。图3. 在间隙插层的GaN超晶格MiGs纳米结构中,高单轴压缩应变。图 4:n型和p型GaN上,GaN超晶格MiGs电学性质。【科学启迪】本研究揭示了一种全新的现象,即在大气压下,通过在漏磁性氮化镓(GaN)表面退火镁(Mg)薄膜,自发形成了Mg插层GaN超晶格结构。这一发现开辟了一条新途径,可以将二维金属插层到体块半导体中,从而为材料科学和纳米技术领域提供了全新的研究方向。此外,通过对Mg插层GaN超晶格结构的详细表征,作者发现了这种结构具有极高的单轴压应变,超过了薄膜材料中记录的最高值之一。这为弹性应变工程提供了新的可能性,有望在半导体器件设计和制造中发挥重要作用。、另外,Mg插层还导致了GaN极性的周期性转变,并产生了极化场诱导的净电荷,这为半导体掺杂和导电性增强提供了新的思路。原文详情:Wang, J., Cai, W., Lu, W. et al. Observation of 2D-magnesium-intercalated gallium nitride superlattices. Nature (2024). https://doi.org/10.1038/s41586-024-07513-x
  • 中航红外成功研制1280×1024(15μm)InSb中波、640×512(25μm)超晶格长波焦平面探测器
    近日,中航凯迈(上海)红外科技有限公司(简称:中航红外)针对机载、舰载、防空雷达等光电系统远距离探测应用需求,研制出1280×1024(15 μm)InSb中波和640×512(25 μm)超晶格长波焦平面探测器。两款探测器均采用斯特林制冷机(可选集成式、分置式),性能稳定,具备高帧频、任意开窗、输出通道选择、全局复位等多种功能。1280×1024(15 μm)InSb中波探测器是基于中航红外公司多年累积的InSb焦平面探测器技术研制而成,具体参数见下表。表1 1280×1024(15 μm)InSb红外探测器主要参数在制冷型中波探测器领域,InSb具有量子效率高、稳定性好等特点,在国际军用中波红外探测器系统占据主导地位,而对于光电系统而言,该型探测器出色的稳定性同样具有很强的竞争力。图1 1280×1024(15 μm)InSb中波探测器:探测器(左)、成像(右)另外在公司原有十多年超晶格双色探测器技术基础上,采用二类超晶格材料成功研制出640×512(25 μm)超晶格长波焦平面探测器,具体参数见下表。表2 640×512(25 μm)超晶格长波红外探测器主要参数图2 640×512(25 μm)超晶格长波探测器:探测器(左)、成像(右)关于中航红外中航凯迈(上海)红外科技有限公司是中国空空导弹研究院控股子公司。公司建有红外探测器技术航空科技重点实验室、河南省探测器工程技术研究中心等。 中航公司在红外探测器设计、开发、生产等方面拥有良好人才、技术基础。现有正式职工200余人,专业技术人员120余人(其中博士20人,硕士90余人,技术专家1人,研究员11人),技能人员80余人,涵盖红外探测器设计、生产、测试、装配等各个专业及岗位。公司年均科研经费5000余万元,基础技术、基础工艺研究深入,获国家科技进步奖二等奖、国防发明二等奖等省部级奖15项,发明专利60余项,锑化物探测器科研生产能力处于国内领先水平。 近年中航公司将不断引进先进管理技术和高水平人才,做强、做大红外探测器产业,打造国内领先、国际一流的红外探测器研制生产基地,推进我国红外探测器的技术进步,带动相关产业发展,创造更大的经济和社会效益。
  • 国产化替代又一新成就——焜腾红外全球首发二类超晶格SF6红外热成像探测器
    近日,浙江焜腾红外技术股份有限公司(以下简称“焜腾红外”)通过持续的技术投入和研发试制,迎来了国产化替代的又一重要新成就:在二类超晶格(T2SL)材料技术优势基础上进一步深耕,往更长波方向迈进。该制冷型红外焦平面热成像探测器在覆盖普通长波的基础上,将波长延伸至11 μm-12 μm,正式推出器件覆盖10.3 μm-10.7μm波段,涵盖320 × 256和640 × 512二种面阵规格。该探测器可实时快速精准定位有害气体六氟化硫(SF6)的泄漏位置,并具有呈现高量子效率、高清晰度、高灵敏度、高精确度的气体泄漏热像视图的优势。二类超晶格六氟化硫(SF6)红外热成像探测器作为大气环保监测的一个有效手段,六氟化硫(SF6)气体红外热成像探测器可广泛应用于能源电力、环保监测、石油化工、船舶运输等领域,特别适用于电力行业中大型变电站的主变压器故障监测,变电站主变压器一旦出现故障,会泄漏六氟化硫(SF6)有害气体,如何通过远程非接触式的方式去判断SF6有害气体泄漏,一直以来都是行业难题。六氟化硫(SF6)气体红外探测器作为一种比较行之有效的监测手段,其核心探测器多年来一直靠进口国外厂家的产品来满足。之前国内生产的SF6热成像仪中使用的探测器一直是通过进口的量子阱(QWIP)探测器来实现。此次焜腾红外突破技术壁垒,利用其二类超晶格技术优势,攻克了这一技术难题,实现了核心材料和技术的全新国产化替代。同时,焜腾红外也是行业内全球第一家推出二类超晶格技术的六氟化硫(SF6)气体红外热成像探测器的企业,可谓国产化替代的又一里程碑!接下来,焜腾红外将持续提升产品技术优势,与行业内优秀的红外热成像整机厂商一起为电力设备故障监测及其他领域的有害气体监测提供有效的技术手段,用焜腾造中国“芯”武装这一领域的仪器与设备!关于焜腾红外焜腾红外成立于2017年9月,是国内仅有的几家集生产与研发制冷型红外探测器及激光芯片的国家高新技术企业,建有浙江省高新技术研发中心,2022年入选国家级第四批“专精特新小巨人企业”。多年来公司专注于红外探测芯片材料、器件、测试、封装等关键技术的研发,致力于Ⅱ类超晶格红外探测器的国产化研发生产与产业化应用,在大气环境监测、环保治霾等民用领域实现批量化应用,为实现碳达峰碳中和国家战略提供了有效的技术手段。
  • 莫尔超晶格重大突破发文Nature!低温强磁场纳米位移台扮演关键角色
    背景介绍 载流子之间的相互作用是凝聚态物理学的热门研究和重点关注对象。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子领域非常具体潜力的一个研发平台。莫尔系统通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,可以实现其物理参数的高度可调。进展概述 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而产生WS2/WSe2莫尔超晶格中的铁磁有序。该研究中,作者使用了德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,以确保在低温强磁场环境中精确控制样品位置。文章以《Light-inducedferromagnetism in moirsuperlattices》为题,发表于Nature期刊。 图1显示了丰富的填充因子依赖的磁光响应,在填充因子为&minus 1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在&minus 1/3的填充因子(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 图2a显示了在1.6K温度与填充因子为-1/3时RMCD信号与激光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,最终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为&minus 1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁滞回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW 课题组进一步在填充因子为&minus 1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐方案。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7 值得指出的是,整个实验都是在低温及强磁场中进行的。这其中关键的设备就是德国attocube公司提供的ANPxyz101系列兼容低温强磁场纳米精度位移台,该位移台能够在极低温环境下提供纳米级的精确位移,成为整个变温及磁场调控过程中精确控制样品位置的关键设备。 attocube公司生产的位移器设计紧凑,体积小巧,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和扫描器,并以稳定而优异的性能,原子级定位精度,纳米位移步长和厘米级位移范围受到科学家的肯定和赞誉。产品广泛应用于普通大气环境和极端环境中,包括超高真空环境(5E-11mbar)、极低温环境(10 mK)和强磁场中(31 T)。图4 attocube低温强磁场位移器,扫描器attocube低温位移台技术特点如下:参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)
  • 2722万!Bruker、Zeiss等中标武汉大学高分辨离子淌度质谱仪、冷冻光电联用系统、晶格层光显微成像系统、三重四级杆液质联用仪采购项目
    一、项目编号:ZB0107-202212-ZCHW0954(招标文件编号:ZB0107-202212-ZCHW0954)二、项目名称:武汉大学高分辨离子淌度质谱仪、冷冻光电联用系统、晶格层光显微成像系统、三重四级杆液质联用仪采购项目三、中标(成交)信息供应商名称:上海同霖进出口有限公司供应商地址:上海市静安区曲阜路123弄30号2602室中标(成交)金额:845.0000000(万元) 供应商名称:武汉脑赛思仪器设备有限公司供应商地址:武汉东湖新技术开发区光谷三路777号自贸生物创新港B区(生物医药平台检验研发楼)N807-808室(自贸区武汉片区)中标(成交)金额:598.8000000(万元) 供应商名称:广东省中科进出口有限公司供应商地址:广东省广州市越秀区先烈中路100号大院9号102房自编A一楼中标(成交)金额:898.0000000(万元) 供应商名称:武汉贝徕美生物科技有限公司供应商地址:洪山区珞狮路362号湖北农业科技大楼8楼801室中标(成交)金额:380.5000000(万元)四、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海同霖进出口有限公司 高分辨离子淌度质谱仪 Bruker/德国 timsTOF HT 1套 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 2 武汉脑赛思仪器设备有限公司 冷冻光电联用显微镜系统 Carl Zeiss Microscopy Gmbh/德国 Crossbeam 350 满足招标文件要求 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 3 广东省中科进出口有限公司 晶格层光显微成像系统 AB SCIX(Distribution)新加坡 QTRAP 6500+ 1套 / 序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 4 武汉贝徕美生物科技有限公司 三重四级杆液质联用仪 Carl zeiss microscopy gmbh/德国(耶拿) Lattice lightsheet7 1套 /
  • 许晓栋最新Nature正刊!低震动无液氦磁体与恒温器助力莫尔超晶格中的光诱导铁磁性研究取得重要进展
    载流子之间的多体相互作用是相关物理学的核心。调控这种相互作用的能力将有望调控复杂的电子相图。近年来,二维莫尔超晶格已经成为量子工程的一个前景研发平台。莫尔系统的功能在于通过调整层扭转角、电场、莫尔载流子浓度和层间耦合,实现其物理参数的高可调性。由半导体过渡金属双卤化合物(TMDs)形成的莫尔超晶格是一个新兴的平台,可探索高可调性相关效应。结合强库仑相互作用、三角摩尔几何、强自旋轨道耦合和孤立的平坦电子带,TMD异质分子层是测试可调多体哈密顿数的理想平台。事实上,在整数和分数莫尔微带填充下的相关缘状态已经被实验证明了。理论上,TMD莫尔平台提供了一个机会来研究具有三角形或六边形几何形状的经典模型,以探索强相关的物理。通过改变现场库仑相互作用U和近邻跳变参数t,预测了具有各种缘态、金属态和奇异磁态和拓扑态的多体相图。图1. WS2/WSe2异质结中的磁圆二色性随填充因子变化。a) 器件示意图 b) PFM图像,标尺:20 nm c) 反射谱随偏置电压变化 d-e) 磁圆二色(RMCD)随填充因子变化 近期,Xiaodong XU(美国华盛顿大学)的研究小组报道了光激发可以高度调整莫尔捕获载流子之间的自旋-自旋相互作用,从而导致WS2/WSe2莫尔超晶格中的铁磁顺序。图1显示了丰富的填充因子依赖的磁光响应,在填充因子为−1时,RMCD显示出超顺磁样响应。当空穴掺杂明显减少(见图1e)时,一个磁滞回线开始出现, 这是铁磁性的标志。在−1/3的填充因子附近(即每3个莫尔晶胞中有一个空穴)附近,随着激子共振激发功率的增加,在磁圆二色性信号中出现了一个明显的磁滞回线。图2. 在填充因子为-1/3的时候对光致铁磁性的观察。a-b)1.6K温度,不同激光功率下RMCD信号随磁场变化。c-d)磁滞回线宽度与温度的关系,激光功率103 nW。图2a显示了在1.6K温度与填充因子为-1/3的时RMCD信号与激励光功率的关系。当功率小于16 nW时,RMCD信号与磁场之间的关系消失,表现为一条无特征的直线。当功率增加到临界阈值以上时,出现一个滞回线。图2b中零磁场下RMCD信号的强度随激光功率的增加而增大,终达到饱和。在低填充因子下,由于空穴距离更大固有磁相互作用明显较弱。因此,在分数填充因子为−1/3处出现的功率依赖的RMCD响应表明,通过光学诱导的长程自旋-自旋相互作用,出现了铁磁序。磁滞回线宽度对光激发功率的依赖关系可以忽略不计,这意味着在温度远低于居里温度时,磁回线宽度主要由磁各向异性决定。如图2c-d所示,随着温度的升高磁滞回线宽度减小,有效的居里温度被确定为8K左右。图3. 利用光激发功率和填充因子调节磁态。a-d) RMCD信号强度与磁场、温度、填充因子的关系图 图a-b中填充因子为-1/7. 课题组进一步在填充因子为−1/7下进行了温度与激光功率依赖性的RMCD测量(图3)。图3a显示了在不同的激光功率下的测量结果。 作者定义了一个临界温度Tc,超过这个温度,RMCD的磁性响应(心跳线形状)就会消失。以253 nW光激发为例,心跳线形状保持强至约40K。为了进一步突出这一效应,图3b中绘制了提取的RMCD信号振幅与激发功率和温度的变化关系。这些数据表明,一旦光激发功率足够大,可以引入磁序,Tc可以从20K左右的调谐到45K。观察到的现象指出了一种机制,其中光激发激子促成了莫尔捕获空穴之间的交换耦合。这种激子促成的相互作用可能比莫尔捕获空穴之间的直接耦合范围更长程,因此即使在稀空穴体系中也会出现磁序。这一发现为莫尔量子物质的丰富的多体哈密顿量增加了一个动态调谐旋钮。 以上的结果是借助于attoDRY2100低震动无液氦磁体恒温器获得的,该低温恒温器可以与拉曼光谱、磁圆二色性、磁光克尔效应和偏振荧光测量等多种实验技术结合使用。图4:低振动无液氦磁体与恒温器—attoDRY系列,超低振动是提供高分辨率与长时间稳定光谱的关键因素。 attoDRY2100低恒温器温主要技术特点:☛ 应用范围广泛: PL/EL/ Raman/RMCD/MOKE等光谱测量☛ 变温范围:1.8K - 300K☛ 空间分辨率: 1 mm☛ 无液氦闭环恒温器☛ 工作磁场范围:0...9T (12T, 9T-3T,9T-1T-1T矢量磁体可选)☛ 低温消色差物镜NA=0.82☛ 精细定位范围: 5mm X 5mm X 5mm @ 4K☛ 精细扫描范围:30 μm X 30 μm@4K☛ 可进行电学测量,配备标准chip carrier☛ 可升到AFM/MFM、PFM、ct-AFM、KPFM、SHPM等功能 参考文献:[1]. Xiaodong XU, et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022)
  • 超声操控搬运与筛选技术实现 “隔空探物”或成现实
    记者从中科院深圳先进技术研究院获悉,该院郑海荣课题组携手国内外合作者,实现了利用超声辐射力效应对物体进行非接触的操控、搬运以及筛选。这使得利用声波进行一定距离的&ldquo 隔空探物&rdquo 成为现实。相关成果于6月11日发表于《应用物理评论》杂志。  据了解,声波操控技术利用声场中的颗粒对声波产生的反射、折射、吸收等效应引起的动量在声波与颗粒之间交换,通过颗粒受到的力作用对其进行操控。声子晶体(人工周期结构)是具有声子带隙的人造周期弹性介质结构。利用声波在不同周期结构材料中的传播规律,以及不同材料的组元及其结构对能带结构和带隙的调控机制,可以设计优化声子晶体以对声场形态进行调制,从而控制声波的传播和分布。  在该研究中,郑海荣课题组提出通过设计制造的人工周期结构对换能器发射波束进行再调控,首次利用声子晶体板兰姆波诱发的透射增强机制,产生高度局域化的声辐射力,对同种材料不同尺寸或相同尺寸不同材料的微纳米颗粒成功实现捕获、排列、移动、筛选等操控。  由于组成&ldquo 声筛&rdquo 的声子晶体板共振频率由晶格常数和板厚等结构参数决定,因此可设计优化捕获力的激励频率以及微纳米颗粒的筛选尺寸。又因为颗粒尺寸小于晶格常数,且晶格常数为兰姆波波长,小于同频率声波在水中的波长,所以&ldquo 声筛&rdquo 对微纳米颗粒的操控具有亚波长特征。因此,&ldquo 声筛&rdquo 实现了对亚波长微纳米颗粒的可调控操控,其在生物医学工程、3D打印、催化反应和材料科学等领域具有广泛的应用前景。  据介绍,利用&ldquo 声筛&rdquo 技术可研制出精确可靠、成本低廉的微纳米颗粒控制器件,为研究金属、细胞、蛋白质、DNA等微纳米颗粒及其微纳米结构的装配、基本力学、物理和生化特性提供重要研究手段,为用于细胞、血小板、蛋白质等生物颗粒筛选的新型生化分析仪器研制提供技术支持。  据悉,该成果已被《应用物理评论》杂志推荐为&ldquo 研究亮点&rdquo 和&ldquo 特色研究&rdquo ,并受到国内外同行的广泛关注。
  • 常熟理工学院获批第9个苏州市重点实验室
    p  近日,常熟理工学院由物理与电子工程学院申报的苏州市绿色储能电池及系统技术重点实验室被苏州市科技局批准立项建设。该实验室是常熟理工学院自2008年以来获批立项建设的第9个苏州市重点实验室,物理与电子工程学院也成为继生物与食品工程学院、机械工程学院、计算机科学与工程学院、汽车工程学院之后的第5个苏州市重点实验室依托的二级学院。br//pp  据悉,该实验室将重点围绕动力电池电极材料研究、动力电池安全管理系统研究、大规模储能电源研究、电池模拟检测技术研究、电池回收再生技术研究等研究方向,整合校内优质资源、政府资源和周边行业企业资源,建立一支电池材料、电池技术、智能管理系统方面的科研团队,为新能源行业培养技术人才,突破关键技术攻关,促进科研成果的快速转化,力争在整体实力和研究成果上达到国内先进水平。/ppbr//p
  • 中国科学家测出国际最精确的万有引力常数
    1687年,牛顿发现了万有引力定律。p  有人说这个发现得益于一颗砸到牛顿脑袋上的苹果,也有人说这种说法纯属虚构,但无论如何,牛顿成功地让世界各地的中学课本里多了一个描述万有引力的公式:F=G(m1m2)/r2,其中G是万有引力常数。/pp  万有引力定律认为,大到宇宙天体,小到看不见的粒子,任何物体之间都像苹果和地球之间一样,具有相互吸引力,这个力的大小与各个物体的质量成正比例,与它们之间距离的平方成反比。/pp  定律虽好,要想派上实际用场,还得知道G的值。然而,这个值到底是多少,连牛顿本人都不清楚。/pp  300多年来,不少科学家在努力测量G值并让它更精确。就在8月30日凌晨,《自然》杂志发表了中国科学家测量万有引力常数的研究,测出了截至目前最精确的G值。/pp  卡文迪许的尝试/pp  G值不明确,万有引力定律就算不上完美。但是,地球上一般物体的质量太小,引力几乎为零,而宇宙里的天体又太大,难以评估其质量。于是,在万有引力定律提出后的100多年里,G值一直是个未解之谜。/pp  1798年,一位名叫卡文迪许的英国科学家,为了测量地球的密度,设计出一个巧妙的扭秤实验。/pp  他制作了一个轻便而结实的T形框架,并把这个框架倒挂在一根细丝上。如果在T形架的两端施加两个大小相等、方向相反的力,细丝就会扭转一个角度。根据T形架扭转的角度,就能测出受力的大小。/pp  接着,卡文迪许在T形架的两端各固定一个小球,再在每个小球的附近各放一个大球。为了测定微小的扭转角度,他还在T形架上装了一面小镜子,用一束光射向镜子,经镜子反射后的光射向远处的刻度尺,当镜子与T形架一起发生一个很小的转动时,刻度尺上的光斑会发生较大的移动。这样,万有引力的微小作用效果就被放大了。/pp  根据这个实验,后人推算出了历史上第一个万有引力常数G值——6.67× 10-11N· m2/kg2。/ppstrong  十年十年又十年/strong/pp  卡文迪许测出了常数值,但科学家们并不满足。在他们看来,万有引力常数G是人类认识的第一个基本常数,而G值的测量精度却是所有基本常数中最差的。/pp  而G值的精度在天体物理、地球物理、计量学等领域有着重要意义。例如,要想精确回答地球等天体有多重,就要依赖于G值 在自然单位制中,普朗克单位定义式的精度同样受G值测量精度的限制。/pp  怎么让这个数值更精确,是卡文迪许之后的科学家们努力的方向。利用现代技术完善扭秤实验,则是他们提升测量精度的办法。/pp  就在牛顿万有引力定律提出后的300年,中国科学家罗俊及其团队加入了这支寻找引力常数的队伍,此后他们几乎每十年会更新一次引力常数的测量精度。/pp  上世纪八十年代,华中科技大学罗俊团队开始用扭秤技术精确测量G值。十年后的1999年,他们得到了第一个G值,并被国际科学技术数据委员会(CODATA)录用。/pp  又十年后,2009年,他们发表了新的结果,成为当时采用扭秤周期法得到的最高精度的G值,并且又一次被CODATA收录。/pp  如今,经过又一个十年的沉淀,罗俊团队再次更新了G值。“30多年的时间里,我们不断地对完全自制的扭秤系统进行改良和优化设计。”罗俊告诉《中国科学报》记者。/pp  在精密测量领域,细节决定成败。光是为了得到一个实验球体,团队成员就手工研磨了近半年时间,最后让这个球的圆度好于0.3微米。/pp  不仅如此,论文通讯作者之一、华中科技大学引力中心教授杨山清告诉记者,实现相关装置设计及诸多技术细节均需团队成员自己摸索、自主研制,在此过程中,他们研发出一批高精端仪器设备,其中很多仪器已在地球重力场的测量、地质勘探等方面发挥重要作用。/pp  《自然》杂志发表评论文章称,这项实验可谓“精确测量领域卓越工艺的典范”。/ppstrong  G的真值仍是未知/strong/pp  为了增加测量结果的可靠性,实验团队同时使用了两种独立方法——扭秤周期法、扭秤角加速度反馈法,测出了两个不同的G值,相对差别约为0.0045%。/pp  《自然》杂志评论称,通过两种方法测出的G值的相对误差达到了迄今最小。目前,全世界很多实验小组都在测量G值,国际科技数据委员会2014年最新收录的14个G值中,最大值和最小值的相对差别约在0.05%。/pp  尽管数值的差距在缩小,但真值仍是未知。“不同小组使用相同或者不同的方法测量的G值在误差范围内不吻合,学界对于这种现象还没有确切的结论。”罗俊说。/pp  科学家推测,之所以测出不同的结果,一种概率较大的可能是,实验中可能存在尚未发现或未被正确评估的系统误差,导致测量结果出现较大的偏离,另一种概率较低但不能排除的可能是,存在某种新物理机制导致了目前G值的分布。/pp  罗俊告诉记者,要解决目前G值测量的问题,需要进一步研究国际上测G实验中各种可能的影响因素,也需要国际各个小组的共同努力和合作。/pp  “只有当各个小组实验精度提高,趋向给出相同G值的时候,人类才能给出一个万有引力常数G的明确的真值。”罗俊说。/ppbr//p
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。激光闪光法热常数测量系统
  • 江苏未现辐射环境异常数据 应急工作升级
    根据媒体最新消息,15日上午日本福岛核电站2号机反应堆安全壳的压力抑制池附近传出爆炸声,核泄漏扩大。江苏省辐射环境监测管理站站长陆继根表示:江苏未现核辐射环境异常数据,应急工作已升级。  “从目前的情况来看,不确定因素增多。我们已经加强了应急工作。一开始我们是启动辐射环境自动监测站,现在是全省十几个大气监测点不断采样和分析,并要求13个省辖市在没有辐射环境自动监测站的地方,采用手工方式、利用仪器进行检测。就在今天上午,我们向沿海地区派出了流动监测车”,陆继根说。  他解释说,中国沿海地区是否受到影响,这与核辐射总量、气象条件(例如风向)、距离、屏障物都有关系。一般来说,放射性元素会附着在空气的尘埃中,随气流飘散,也就是放射性尘埃。  “目前所有指标都正常,没有出现辐射环境异常情况,田湾核电站也没有受到日本地震和海啸的影响”,陆继根表示。
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • 热烈祝贺泽铭环境常熟分公司成立
    为了更好地服务客户,提高服务时效性,继无锡、苏州、昆山办事处后,2019年6月28日,上海泽铭环境科技有限公司第一家正式注册的分公司-常熟分公司正式投入运营。 常熟分公司位于常熟市中心的汇丰时代广场,环境优渥,交通便捷。成立之后,将为常熟区域提供技术支持和运维服务。2017年以来,泽铭环境凭借优质的硬件设备,强大的集成能力,真诚的服务和贴近用户的需求,在常熟地区承建及提供运维服务的水质和空气自动监测站约四十多个。 随着“绿水青山就是金山银山”理念深入人心,环境类公司迎来巨大的发展契机。环境设施的运维服务将是衡量企业能力的一把标尺,泽铭希望通过常熟分公司规范化运营,打造一支环境监测运维服务的铁军,在日趋激烈的市场竞争中保持较大优势,尽快成为环境监测运维服务的重要提供商。#常熟部分水水质自动监测站# “用科技净化地球”,12年的发展过程,泽铭环境步步为营,稳扎稳打,每一步都踏石留印。以“打造新型环境监测、环境评价与咨询和环境修复的综合环境服务提供商”为愿景,坚持“惟精惟一、应用创新、卓越服务、永续经营 ”的理念,泽铭环境用心做好每一个项目,为全国打赢这一场持久的“碧水蓝天保卫战”源源不断地注入能量! 小编在这里热烈欢迎有为青年加入我们,猛干实干,造福环境,功在当代,利在千秋。同时,我们为您提供富有竞争力的薪水,良好的福利待遇,良好的工作条件及众多的发展机会。
  • 崂应参加2016江苏省常熟市生态文明论坛活动
    2016年6月12日-13日,由常熟市生态文明建设领导小组主办,常熟市环保局、常熟市水利局、常熟市城管局、常熟市环境科学学会承办的“2016常熟市生态文明论坛”在江苏省常熟市隆重举行。参加此次论坛的有来自国内行业知名专家以及污染治理技术单位和全市重点行业企业负责人,青岛崂应有幸成为其中一员,与大家共同交流污染治理新技术。 本届论坛的主题为“改善环境质量 推动绿色发展”共设5个论坛和1个环境污染技术交流展示活动,由常熟市环保局顾玉芬局长主持,范建国副市长致辞,苏州市环保局领导、专家代表、企业代表等发言,并邀请国内专家、污染治理技术单位和全市重点行业企业参加,旨在交流污染治理新技术,帮助企业突破治污技术瓶颈,指导企业提升环境管理水平。 党的十八大以来,以习近平同志为总书记的党中央站在战略和全局的高度,对生态文明建设和生态环境保护提出一系列新思想新论断新要求,为努力建设美丽中国,实现中华民族永续发展,走向社会主义生态文明新时代,指明了前进方向和实现路径。 在此次环境污染治理技术交流暨展示活动上,崂应重点展示了3012H-D型 便携式大流量低浓度烟尘自动测试仪,本仪器应用皮托管平行采样法采集固定污染源排气中的颗粒物,用过滤称重法测定质量。执行山东省地方标准DB37/T 2537-2014《山东省固定污染源废气低浓度颗粒物的测定 重量法》可适用于测定锅炉、工业窑炉及其它固定污染源废气中浓度低于50 mg/m3的颗粒物的工况。崂应作为该标准起草单位之一,在行业内已成为标杆企业,该产品以其极高的可靠性和稳定性,产品一经上市便受到了广大用户的一致认可。 建设生态文明,是关系人民福祉、关乎民族未来的长远大计。面对资源约束趋紧、环境污染严重、生态系统退化的严峻形势,必须树立尊重自然、顺应自然、保护自然的生态文明理念,崂应,以成为民族产业的科技先锋为愿景,以企业发展与环境保护共生双赢为己任,为更加美好的自然环境与优质生活竭诚贡献!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制